Eric F. Bravo, Jhon J. Bravo, and Florian Luca
Coincidences in Generalized Lucas Sequences, Fibonacci Quart. 52 (2014), no. 4, 296-306.

Abstract

For an integer $k \geq 2$, let $\left(L_{n}^{(k)}\right)_{n}$ be the k-generalized Lucas sequence which starts with $0, \ldots, 0,2,1$ (k terms) and each term afterwards is the sum of the k preceding terms. In this paper, we find all the integers that appear in different generalized Lucas sequences, i.e., we study the Diophantine equation $L_{n}^{(k)}=L_{m}^{(\ell)}$ in nonnegative integers n, k, m, ℓ with $k, \ell \geq 2$. The proof of our main theorem uses lower bounds for linear forms in logarithms of algebraic numbers and a version of the Baker-Davenport reduction method. This paper is a continuation of the earlier work [4].

