Eric F. Bravo, Jhon J. Bravo, and Florian Luca Coincidences in Generalized Lucas Sequences, Fibonacci Quart. **52** (2014), no. 4, 296–306.

Abstract

For an integer $k \ge 2$, let $(L_n^{(k)})_n$ be the k-generalized Lucas sequence which starts with $0, \ldots, 0, 2, 1$ (k terms) and each term afterwards is the sum of the k preceding terms. In this paper, we find all the integers that appear in different generalized Lucas sequences, i.e., we study the Diophantine equation $L_n^{(k)} = L_m^{(\ell)}$ in nonnegative integers n, k, m, ℓ with $k, \ell \ge 2$. The proof of our main theorem uses lower bounds for linear forms in logarithms of algebraic numbers and a version of the Baker–Davenport reduction method. This paper is a continuation of the earlier work [4].