Lawrence Somer and Michal Křížek

Identically Distributed Second-Order Linear Recurrences Modulo p, Fibonacci Quart. **53** (2015), no. 4, 290–312.

Abstract

Let w(a, -1) denote the second-order linear recurrence satisfying the recursion relation

$$w_{n+2} = aw_{n+1} - w_n,$$

where a and the initial terms w_0 , w_1 are all integers. Let p be an odd prime. The restricted period $h_w(p)$ of w(a, -1) modulo p is the least positive integer r such that $w_{n+r} \equiv Mw_n \pmod{p}$ for all $n \geq 0$ and some nonzero residue M modulo p. We distinguish two recurrences, the Lucas sequence of the first kind u(a, -1) and the Lucas sequence of the second kind v(a, -1), satisfying the above recursion relation and having initial terms $u_0 = 0$, $u_1 = 1$ and $v_0 = 2$, $v_1 = a$, respectively. We show that if $u(a_1, -1)$ and $u(a_2, -1)$ both have the same restricted period modulo p, or equivalently, the same period modulo p, then $u(a_1, -1)$ and $u(a_2, -1)$ have the same distribution of residues modulo p. Similar results are obtained for Lucas sequences of the second kind.