Lawrence Somer and Michal Křížek
Identically Distributed Second-Order Linear Recurrences Modulo p, Fibonacci Quart. 53 (2015), no. 4, 290-312.

Abstract

Let $w(a,-1)$ denote the second-order linear recurrence satisfying the recursion relation $$
w_{n+2}=a w_{n+1}-w_{n},
$$ where a and the initial terms w_{0}, w_{1} are all integers. Let p be an odd prime. The restricted period $h_{w}(p)$ of $w(a,-1)$ modulo p is the least positive integer r such that $w_{n+r} \equiv M w_{n}(\bmod p)$ for all $n \geq 0$ and some nonzero residue M modulo p. We distinguish two recurrences, the Lucas sequence of the first kind $u(a,-1)$ and the Lucas sequence of the second kind $v(a,-1)$, satisfying the above recursion relation and having initial terms $u_{0}=0, u_{1}=1$ and $v_{0}=2, v_{1}=a$, respectively. We show that if $u\left(a_{1},-1\right)$ and $u\left(a_{2},-1\right)$ both have the same restricted period modulo p, or equivalently, the same period modulo p, then $u\left(a_{1},-1\right)$ and $u\left(a_{2},-1\right)$ have the same distribution of residues modulo p. Similar results are obtained for Lucas sequences of the second kind.

