Lawrence Somer and Michal Křížek
Identically Distributed Second-Order Linear Recurrences Modulo p, II, Fibonacci Quart. 54 (2016), no. 3, 217-234.

Abstract

Let p be an odd prime and let $u(a, 1)$ and $u\left(a^{\prime}, 1\right)$ be two Lucas sequences whose discriminants have the same nonzero quadratic character modulo p and whose periods modulo p are equal. We prove that there is then an integer c such that for all $d \in \mathbb{Z}_{p}$, the frequency with which d appears in a full period of $u(a, 1)(\bmod p)$ is the same frequency as $c d$ appears in $u\left(a^{\prime}, 1\right)(\bmod p)$. Here $u(a, 1)$ satisfies the recursion relation $u_{n+2}=a u_{n+1}+u_{n}$ with initial terms $u_{0}=0$ and $u_{1}=1$. Similar results are obtained for the companion Lucas sequences $v(a, 1)$ and $v\left(a^{\prime}, 1\right)$. We also explicitly determine the exact distribution of residues of $u(a, 1)(\bmod p)$ when $u(a, 1)$ has a maximal period modulo p.

