## Andrew Bulawa and Whan Ki Lee

Integer Values of Generating Functions for the Fibonacci and Related Sequences,

Fibonacci Quart. 55 (2017), no. 1, 74–81.

## Abstract

It is known that the generating function of the Fibonacci sequence,  $F(x) = \sum F_i x^i = x + x^2 + 2x^3 + 3x^4 + 5x^5 + \cdots$ , attains an integer value if  $x = F_i/F_{i+1}$  for any non-negative integer *i*. It has been conjectured that those values constitute *all* rational numbers, in the interval of convergence of *F*, that result in  $F(x) \in \mathbb{Z}$ . In this paper we prove this conjecture. We also extend these results to the class of sequences satisfying the recursion relation  $R_{i+2} = aR_{i+1} + bR_i$  with initial values  $(R_0, R_1) = (0, 1)$ , where *a* and *b* are positive integers satisfying  $b \mid a$ .