Andrew Bulawa and Whan Ki Lee
Integer Values of Generating Functions for the Fibonacci and Related Sequences,
Fibonacci Quart. 55 (2017), no. 1, 74-81.

## Abstract

It is known that the generating function of the Fibonacci sequence, $F(x)=\sum F_{i} x^{i}=x+x^{2}+2 x^{3}+3 x^{4}+5 x^{5}+\cdots$, attains an integer value if $x=F_{i} / F_{i+1}$ for any non-negative integer $i$. It has been conjectured that those values constitute all rational numbers, in the interval of convergence of $F$, that result in $F(x) \in \mathbb{Z}$. In this paper we prove this conjecture. We also extend these results to the class of sequences satisfying the recursion relation $R_{i+2}=a R_{i+1}+b R_{i}$ with initial values $\left(R_{0}, R_{1}\right)=(0,1)$, where $a$ and $b$ are positive integers satisfying $b \mid a$.

