Danielle Cox and Karyn McLellan
A Problem on Generation Sets Containing Fibonacci Numbers, Fibonacci Quart. 55 (2017), no. 2, 105-113.

Abstract

At the Sixteenth International Conference on Fibonacci Numbers and Their Applications the following problem was posed by Clark Kimberling:

Let S be the set generated by these rules: Let $1 \in S$ and if $x \in S$, then $2 x \in S$ and $1-x \in S$, so that S grows in generations: $$
G_{1}=\{1\}, G_{2}=\{0,2\}, G_{3}=\{-1,4\}, \ldots
$$

Prove or disprove that each generation contains at least one Fibonacci number or its negative.

In this paper we generalize the problem as follows. Let S be the set described above, \mathcal{S} be a sequence and \mathcal{P} the property that a generation contains a term of \mathcal{S} or the negative of a term of \mathcal{S}. We will show that when \mathcal{S} is the Fibonacci sequence there are many generations that fail to have property \mathcal{P}. Other sequences \mathcal{S} will also be considered and shown to have at least one generation failing to have property \mathcal{P}. The proportion of generations failing to have property \mathcal{P} is also investigated.

