Danielle Cox and Karyn McLellan

A Problem on Generation Sets Containing Fibonacci Numbers, Fibonacci Quart. 55 (2017), no. 2, 105–113.

Abstract

At the Sixteenth International Conference on Fibonacci Numbers and Their Applications the following problem was posed by Clark Kimberling:

Let S be the set generated by these rules: Let $1 \in S$ and if $x \in S$, then $2x \in S$ and $1 - x \in S$, so that S grows in generations:

 $G_1 = \{1\}, G_2 = \{0, 2\}, G_3 = \{-1, 4\}, \dots$

Prove or disprove that each generation contains at least one Fibonacci number or its negative.

In this paper we generalize the problem as follows. Let S be the set described above, S be a sequence and \mathcal{P} the property that a generation contains a term of S or the negative of a term of S. We will show that when S is the Fibonacci sequence there are many generations that fail to have property \mathcal{P} . Other sequences S will also be considered and shown to have at least one generation failing to have property \mathcal{P} . The proportion of generations failing to have property \mathcal{P} is also investigated.