Christian Ballot, Clark Kimberling, and Peter J. C. Moses Linear Recurrences Originating From Polynomial Trees, Fibonacci Quart. 55 (2017), no. 5, 15-27.

Abstract

Let T^{*} be the set of polynomials in x generated by these rules: $0 \in$ T^{*}, and if $p \in T^{*}$, then $p+1 \in T^{*}$ and $x p \in T^{*}$. Let $g(0)=\{0\}$, $g(1)=\{1\}, g(2)=\{2, x\}$, and so on, so that the cardinality of $g(n)$ is given by $G_{n}=2^{n-1}$ for $n \geq 1$, and T^{*} can be regarded as a tree whose nth generation consists of nodes labeled by the polynomials in $g(n)$. Let $T(r)$ be the subtree of T^{*} obtained by substituting r for x and deleting duplicates. For various choices of r, the cardinality sequence G_{n} satisfies a linear recurrence relation.

