Christian Ballot, Clark Kimberling, and Peter J. C. Moses Linear Recurrences Originating From Polynomial Trees, Fibonacci Quart. 55 (2017), no. 5, 15–27.

Abstract

Let T^* be the set of polynomials in x generated by these rules: $0 \in T^*$, and if $p \in T^*$, then $p + 1 \in T^*$ and $xp \in T^*$. Let $g(0) = \{0\}$, $g(1) = \{1\}, g(2) = \{2, x\}$, and so on, so that the cardinality of g(n) is given by $G_n = 2^{n-1}$ for $n \ge 1$, and T^* can be regarded as a tree whose nth generation consists of nodes labeled by the polynomials in g(n). Let T(r) be the subtree of T^* obtained by substituting r for x and deleting duplicates. For various choices of r, the cardinality sequence G_n satisfies a linear recurrence relation.