Curtis Cooper, Steven Miller, Peter J. C. Moses, Murat Sahin, and Thotsaporn Thanatipanonda
On Identities of Ruggles, Horadam, Howard, and Young, Fibonacci Quart. 55 (2017), no. 5, 52-65.

Abstract

Ruggles (1963) discovered that for integers $n \geq 0$ and $k \geq 1$

$$
F_{n+2 k}=L_{k} F_{n+k}+(-1)^{k+1} F_{n} .
$$

Horadam (1965), Howard (2001), and Young (2003) each expanded this identity to generalized linear recurrence relations of orders 2,3 , and integers $r \geq 2$, respectively. In this paper we let $r \geq 2$ be an integer and $w_{0}, w_{1}, \ldots, w_{r-1}$, and $p_{1}, p_{2}, \ldots, p_{r} \neq 0$ be integers. For $n \geq r$ set

$$
w_{n}=p_{1} w_{n-1}+p_{2} w_{n-2}+\cdots+p_{r} w_{n-r} .
$$

We find identities like those of Ruggles, Horadam, Howard, and Young, of the form
$w_{n+r k}=R_{k}(r-1, r) w_{n+(r-1) k}+R_{k}(r-2, r) w_{n+(r-2) k}+\cdots+R_{k}(1, r) w_{n+k}+R_{k}(0, r) w_{n}$, where, by a result of Young, $R_{k}(i, r)$ is a linear recurrence relation of order $\binom{r}{i}$ for $i=0,1, \ldots, r-1$. Our proof uses the Cayley-Hamilton theorem. Next, we find the recurrences $R_{k}(0, r)$ and $R_{k}(r-1, r)$ for arbitrary r. Finally, we explicitly find identities for orders $r=3, r=4$ and $r=5$.

