Curtis Cooper, Steven Miller, Peter J. C. Moses, Murat Sahin, and Thotsaporn Thanatipanonda

On Identities of Ruggles, Horadam, Howard, and Young, Fibonacci Quart. 55 (2017), no. 5, 52–65.

Abstract

Ruggles (1963) discovered that for integers $n \ge 0$ and $k \ge 1$

$$F_{n+2k} = L_k F_{n+k} + (-1)^{k+1} F_n.$$

Horadam (1965), Howard (2001), and Young (2003) each expanded this identity to generalized linear recurrence relations of orders 2, 3, and integers $r \ge 2$, respectively. In this paper we let $r \ge 2$ be an integer and $w_0, w_1, \ldots, w_{r-1}$, and $p_1, p_2, \ldots, p_r \ne 0$ be integers. For $n \ge r$ set

$$w_n = p_1 w_{n-1} + p_2 w_{n-2} + \dots + p_r w_{n-r}.$$

We find identities like those of Ruggles, Horadam, Howard, and Young, of the form

$$w_{n+rk} = R_k(r-1, r)w_{n+(r-1)k} + R_k(r-2, r)w_{n+(r-2)k} + \dots + R_k(1, r)w_{n+k} + R_k(0, r)w_n,$$

where, by a result of Young, $R_k(i, r)$ is a linear recurrence relation of order $\binom{r}{i}$ for $i = 0, 1, \ldots, r-1$. Our proof uses the Cayley-Hamilton theorem. Next, we find the recurrences $R_k(0, r)$ and $R_k(r-1, r)$ for arbitrary r. Finally, we explicitly find identities for orders r = 3, r = 4 and r = 5.