Thomas Koshy and Zhenguang Gao
Polynomial Extensions of a Diminnie Delight Revisited: Part II, Fibonacci Quart. 56 (2018), no. 1, 10-17.


#### Abstract

Recently, we investigated the Fibonacci polynomial recurrences $a_{n+1}=$ $a_{n}\left(\Delta^{2} a_{n}^{2}+3\right)$, where $a_{n}=a_{n}(x), a_{0}=f_{e}, e$ is an even positive integer, $\Delta=\sqrt{x^{2}+4}$, and $n \geq 0$; and $a_{n+2}=a_{n+1}\left(\Delta^{2} a_{n}^{2}+2\right)$, where $a_{1}=f_{2 k}$; $k$ is an odd positive integer; and $n \geq 1$ [10]. We also studied their Lucas counterparts: $a_{n+1}=a_{n}\left(a_{n}^{2}-3\right)$, where $a_{0}=l_{e} ; e$ is an even positive integer; and $n \geq 0$; and $a_{n+2}=a_{n+1}\left(a_{n}^{2}-2\right)-2$, where $a_{1}=l_{2 k}$; $a_{2}=l_{4 k} ; k$ is an odd positive integer; and $n \geq 1$ [10]. This article focuses on the Jacobsthal, Vieta, and Chebyshev extensions of these charming recurrences and their implications.


