Salah Eddine Rihane, Mohand Ouamar Hernane, and Alain Togbé On the D(4)-Diophantine Triples of Fibonacci Numbers, Fibonacci Quart. 56 (2018), no. 1, 63-74.

Abstract

Let F_{m} be the m th Fibonacci number. We prove that if $F_{2 n+6} F_{k}+4$ and $4 F_{2 n+4} F_{k}+4$ are both perfect squares, then $k=2 n$ for $n \geq 1$, except in the case $n=1$, in which we can additionally have $k=1$.

