John Greene
Lucas Sequences and Traces of Matrix Products, Fibonacci Quart. 56 (2018), no. 3, 200-211.

Abstract

Given two noncommuting matrices, A and B, it is well-known that $A B$ and $B A$ have the same trace. This extends to cyclic permutations of products of A 's and B 's. Thus if A and B are fixed matrices, then products of two A 's and four B 's can have three possible traces. For 2×2 matrices A and B, we show that there are restrictions on the relative sizes of these traces. For example, if $M_{1}=A B^{2} A B^{2}, M_{2}=$ $A B A B^{3}$, and $M_{3}=A^{2} B^{4}$, then it is never the case that $\operatorname{Tr}\left(M_{2}\right)>$ $\operatorname{Tr}\left(M_{3}\right)>\operatorname{Tr}\left(M_{1}\right)$, but the other five orderings of the traces can occur. By utilizing the connection between Lucas sequences and powers of a 2×2 matrix, a formula is given for the number of orderings of the traces that can occur in products of two A 's and $n B$'s.

