Helen G. Grundman and Pamela E. Harris Sequences of Consecutive Happy Numbers in Negative Bases, Fibonacci Quart. 56 (2018), no. 3, 221–228.

Abstract

For $b \leq -2$ and $e \geq 2$, let $S_{e,b} : \mathbb{Z} \to \mathbb{Z}_{\geq 0}$ be the function taking an integer to the sum of the *e*-powers of the digits of its base *b* expansion. An integer *a* is a *b*-happy number if there exists $k \in \mathbb{Z}^+$ such that $S_{2,b}^k(a) = 1$. We prove that an integer is -2-happy if and only if it is congruent to 1 modulo 3 and that it is -3-happy if and only if it is odd. Defining a *d*-sequence to be an arithmetic sequence with constant difference *d* and setting $d = \gcd(2, b - 1)$, we prove that for odd $b \leq -3$ and for $b \in \{-4, -6, -8, -10\}$, there exist arbitrarily long finite sequences of *d*-consecutive *b*-happy numbers.