Helen G. Grundman and Pamela E. Harris
Sequences of Consecutive Happy Numbers in Negative Bases, Fibonacci Quart. 56 (2018), no. 3, 221-228.

Abstract

For $b \leq-2$ and $e \geq 2$, let $S_{e, b}: \mathbb{Z} \rightarrow \mathbb{Z}_{\geq 0}$ be the function taking an integer to the sum of the e-powers of the digits of its base b expansion. An integer a is a b-happy number if there exists $k \in \mathbb{Z}^{+}$such that $S_{2, b}^{k}(a)=1$. We prove that an integer is -2 -happy if and only if it is congruent to 1 modulo 3 and that it is -3 -happy if and only if it is odd. Defining a d-sequence to be an arithmetic sequence with constant difference d and setting $d=\operatorname{gcd}(2, b-1)$, we prove that for odd $b \leq-3$ and for $b \in\{-4,-6,-8,-10\}$, there exist arbitrarily long finite sequences of d-consecutive b-happy numbers.

