Andreas N. Philippou and Spiros D. Dafnis
A Simple Proof of an Identity Generalizing Fibonacci-Lucas Identities, Fibonacci Quart. 56 (2018), no. 4, 334-336.

Abstract

Let $F_{n}^{(k)}=0$ for $-k+1 \leq n \leq 0, F_{1}^{(k)}=1$, and $F_{n}^{(k)}=\sum_{j=1}^{k} F_{n-j}^{(k)}$ for $n \geq 2$. Also let $L_{0}^{(k)}=k, L_{1}^{(k)}=1, L_{n}^{(k)}=n+\sum_{j=1}^{n-1} L_{n-j}^{(k)}$ for $2 \leq n \leq k$, and $L_{n}^{(k)}=\sum_{j=1}^{k} L_{n-j}^{(k)}$ for $n \geq k+1$. The identity $\sum_{i=0}^{n} m^{i}\left(\left(L_{i}^{(k)}+(m-2) F_{i+1}^{(k)}-\sum_{j=3}^{k}(j-2) F_{i-j+1}^{(k)}\right)\right)=m^{n+1} F_{n+1}^{(k)}+$ $k-2(m \geq 2, k \geq 2)$, derived recently by means of colored tiling [4], is presently proved using only the definitions of $F_{n}^{(k)}$ and $L_{n}^{(k)}$, and the identity $L_{n}^{(k)}=\sum_{j=1}^{k} j F_{n-j+1}^{(k)}(n \geq 1)$.

