Andreas N. Philippou and Spiros D. Dafnis

A Simple Proof of an Identity Generalizing Fibonacci-Lucas Identities,
Fibonacci Quart. 56 (2018), no. 4, 334-336.

Abstract

Let $F_n^{(k)} = 0$ for $-k + 1 \leq n \leq 0$, $F_1^{(k)} = 1$, and $F_n^{(k)} = \sum_{j=1}^{k} F_{n-j}^{(k)}$ for $n \geq 2$. Also let $L_0^{(k)} = k$, $L_1^{(k)} = 1$, $L_n^{(k)} = n + \sum_{j=1}^{n-1} L_{n-j}^{(k)}$ for $2 \leq n \leq k$, and $L_n^{(k)} = \sum_{j=1}^{k} L_{n-j}^{(k)}$ for $n \geq k + 1$. The identity

$$\sum_{i=0}^{n} m^i \left((L_i^{(k)} + (m-2)F_{i+1}^{(k)} - \sum_{j=3}^{k} (j-2)F_{i-j+1}^{(k)}) \right) = m^{n+1}F_{n+1}^{(k)} + k - 2 \ (m \geq 2, k \geq 2),$$

derived recently by means of colored tiling [4], is presently proved using only the definitions of $F_n^{(k)}$ and $L_n^{(k)}$, and the identity $L_n^{(k)} = \sum_{j=1}^{k} jF_{n-j+1}^{(k)} \ (n \geq 1)$.

1