Laurent Habsieger
Explicit Bounds for the Diophantine Equation A!B! = C , Fibonacci Quart. 57 (2019), no. 1, 21-28.


#### Abstract

A nontrivial solution of the equation $A!B!=C!$ is a triple of positive integers $(A, B, C)$ with $A \leq B \leq C-2$. It is conjectured that the only nontrivial solution is $(6,7,10)$, and this conjecture has been checked up to $C=10^{6}$. Several estimates on the relative size of the parameters are known, such as the one given by Erdös, $C-B \leq 5 \log \log C$, or the one given by Bhat and Ramachandra, $C-B \leq(1 / \log 2+o(1)) \log \log C$. We check the conjecture for $B \leq 10^{3000}$ and give better explicit bounds such as $C-B \leq \frac{\log \log (B+1)}{\log 2}-0.8803$.


