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Abstract

Although 10230 terms of Recamán’s sequence have been computed,
it remains a mystery. Here three distant cousins of that sequence are
described, one of which is also mysterious. (i) {A(n), n ≥ 3} is defined
as follows. Start with n, and add n+ 1, n+ 2, n+ 3, . . ., stopping after
adding n+k if the sum n+(n+1)+ . . .+(n+k) is divisible by n+k+1.
Then A(n) = k. We determine A(n) and show that A(n) ≤ n2−2n−1.
(ii) {B(n), n ≥ 1} is a multiplicative analog of {A(n)}. Start with n,
and successively multiply by n+1, n+2, . . ., stopping after multiplying
by n+k if the product n(n+1) · · · (n+k) is divisible by n+k+1. Then
B(n) = k. We conjecture that log2B(n) = (1

2
+o(1)) log n log log n. (iii)

The third sequence, {C(n), n ≥ 1}, is the most interesting, because it
is the most mysterious. Concatenate the decimal digits of n, n+ 1, n+
2, . . . until the concatenation n‖n+1‖ . . . ‖n+k is divisible by n+k+1.
Then C(n) = k. If no such k exists, we set C(n) = −1. We have
found k for all n ≤ 1000 except for two cases. Some of the numbers
involved are quite large. For example, C(92) = 218128159460, and the
concatenation 92‖93‖ . . . ‖(92 +C(92)) is a number with about 2 · 1012

digits. We have only a probabilistic argument that such a k exists for
all n.
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