Helen G. Grundman
Closing an Open Problem on Negative Base Happy Numbers, Fibonacci Quart. 62 (2024), no. 2, 125-129.

Abstract

For $b \leq-2$, let $S_{2, b}: \mathbb{Z} \rightarrow \mathbb{Z}_{\geq 0}$ be the function taking an integer to the sum of the squares of the digits of its base b expansion. An integer a is a b-happy number if there exists $k \in \mathbb{Z}^{+}$such that $S_{2, b}^{k}(a)=1$. It has been shown that for $b \leq-5$ and odd, there exist arbitrarily long finite arithmetic sequences with constant difference 2 of b-happy numbers and that for $b \in\{-4,-6,-8,-10\}$, there exist arbitrarily long finite sequences of consecutive b-happy numbers. In this work, we complete this result, proving that, as conjectured, for all even $b \leq-4$, there exist arbitrarily long finite sequences of consecutive b-happy numbers.

