Benjamin Earp-Lynch, Simon Earp-Lynch, Omar Kihel, and Puntani Pongsumpun

Extension of the Equation $\sum_{j=1}^{k} jF_{j}^{p} = F_{n}^{q}$ to a Family of Lucas Sequences, Fibonacci Quart. **62** (2024), no. 3, 241–257.

Abstract

We solve the equation $\sum_{j=1}^{k} jU_j(x, y)^p = U_n(x, y)^q$ for positive integers x, p, q, k, n, with $y = \pm 1$ and $\max\{p, q\} \leq 11$, where $U_m(x, y) = \frac{\alpha^m - \beta^m}{\alpha - \beta}$ and α and β are the roots of the polynomial $t^2 - xt + y$. This generalizes existing results on similar equations, wherein the sequence was fixed as the Fibonacci or Pell numbers. In addition, we find all solutions when k = 2 and $y = \pm 1$.