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CONVERGENCE PROPERTIES OF LINEAR RECURSION SEQUENCES

RALPH FECKE, M.S.
The Wyatt Company, Detroit, MI 48226

1. INTRODUCTION

The object of this paper is to examine convergence properties of linear recursion
sequences of complex numbers. Included are several theorems providing necessary and suffi-
cient conditions, in terms of solutions of an associated auxiliary equation, for various
cases and types of convergence.

The question of convergence of linear recursion sequences was raised by Singmaster in
Advanced Problem H-179 [6]. The articles of Raphael [4], Shannon [5], and Jarden [3] give
representations for linear recursion sequences of integers which are valid also for complex
number sequences (the restriction being for aesthetic reasons) and have been useful in pre-
paring this paper. These representations will be included without proof as the substance of
the next section.

Let a,, a,, ..., a, be complex numbers, with a, # 0. We define a linear recursion
sequence {QS(I%U} by

n
(1) QI =37 g2 for m > 1
i=1 ° Y
where U = [y, Ups voes Upl, @30V = u, for 1 <7 < n, and a(z) = " - a;a""! - a2 ...

- a,. We will refer to a(x) = 0 as the auxiliary equation. The absence of the row vector U
from the notation will imply that U = [0, O, ., 0, 1], representing the normalized sequence
we will be most concerned with in this paper. The order of the sequence {Q%*)¥} is #, and
hence the restriction that a, # 0 incures a unique definition of order.

2. REPRESENTATIONS

Some representations for linear recursion sequences will be helpful, and are presented
here.

Noticing that the recursion relation (1) has a form similar to that of scalar multiplica-
tion of n-tuples leads to a matrix approach, presented for instance in Raphael [4]. Explicitly,
we may write

la, a, ... oa,” 1] -Q,C,I,(I) ]
1 0 ...0 0 Q2
(2) 0 ... 0 s = for m > 0.
z)
0 ... 1 0 0 Q%)
L - - J - -~

Another approach by Raphael [4] relates linear recursion sequences to power series in
the following way:

(3 :E:QZ(I)xi =1/(1 - az - ax® - -+ - ax").
i=0
Let r;, ..., 1, be the n complex roots of a(x) (repeated according to their multipli-

city). Then, as Jarden [3, pp. 106-107] noted,
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(%) pP @at® _ pi@ M 4 DI M b 4 IR for m > 0. e
where D%®) is the constant determinant (
L (0) (0) ., (0)
N rZ,dz ETIE A (
(1) , (1) L, (1)
. a@ _ |Tna, Tra, ot Taz, '
(3) D . s
. (
(n-13 (n-1)
PR riy
: o]
the constant determinants Df(:) are as in (5) with <¢th column deleted, and replaced by Lol
d; is the multiplicity of r,oamong r;, ..., r;_,, and Léj
m _ (m\,,m-d;
(6) L P <¢zi)‘i '
Also involving the roots r;, ..., r, of a(x), it has been shown (see [5], for example)
that :
(7) Q:(:) = Z rit o Piic s o " form > 0, my > O.
n
2mi=m
i=1
3. CONVERGENCE THEOREMS
In this section we will look at the comvergence of {Q:(x)}:_o. Convergence of {Q:(x)}:_o

to zero will be considered first.

3 o
Theorem 3.1: Let {Qz(r’} be a linear recursion sequence. Then {5}  converges to zero

if and only if all the roots of a(x) lie in {z||z| < 1}.

Proof: Suppose all the roots of a(x) lie in {z||z] < 1}. Notice that a(x) is the character-
istic polynomial of the matrix

Fhl a, ... an]
, 0 .

(8) A =10 1 ...
10 1 0

Since by hypothesis, all the roots of a(x), the characteristic polynomial of 4, lie in
{zf]zl < 1}, from Bodewig [1l, p. 57], %im A" = 0. It now follows from equation (2) that

lim @%@ = 0.
1]
Let lim'Q:(:) = 0, and define E = 9 I. Then E, 4 * E, 4% « F, ..., A""Y « F form a
ma+w .
;)

basis for the field of all m-dimensional column vectors, since ag(x) is also the minimum poly-
nomial of 4. Thus an arbitrary column vector X can be written as 0y = F +(C,(4 « E) +
C,(4%* *E) + -++ +C,_; (A" + E). We compute using (2) that

0| EER Pl a, a, (17
- 1 0
a
@ |9 =1 (91 | =1m @ b e O 0 g™ - B) = (1im 4") - E.
e me o mac | o . . m mec

o
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Similarly, lim(Am'i <A «E) =0 for 1 <% <n-1. Thus,
m-+c
(10) - 0=Co * Lim(4" + E) +C, » 1im(4" + 4 « E) + -+~
me+w m-wo

o lim(4™ + A*"Y < E) = 1im(4" - X).

n-1 m-+o ma+w

+C

~ Therefore, %im A™ = 0, since X was arbitrary, and from Bodewig [1l, p. 57] all the roots

of a(x), the characteristic polynomial of A, must lie in {zl[z‘ < 1},
We may use this theorem and equation (3) to prove the following corollary.

. ‘. - N A alx) . - - tee - =
Corollary 3.2: The infinite sum_z:ct. exists and equals 1/(1 a, a,) 2D

A

1=0

if and only if all the roots of a(x) lie in {z||z| < 1}.

Proog: If 2:(2:(:) exists, then lim Qz(x) = 0, and from Theorem 3.1, all the roots of a(x)

i=o me+w

must lie in {z]|z| < 1}.

If all the roots of a(x) lie in {z||z| < 1}, themn all of the roots of 1 - a,x - a,x® -
«++ - g x must lie outside {z||z| < 1}, since the roots of a(x) are the reciprocals of the
roots of 1 - a,x - azxz - «++ - gux". Note that a(x) has no zero roots, since a, # 0. Hence,
the power series for 1/(1 - ayx - .-+ - g,x") is valid at & = 1. Thus, from equation (3),

:Z:Qf(x) exists, and :E:Qg(x) =1/(1 - ayx = -+ = a,x").
=0 i=0

We are now ready to prove a theorem about the convergence of linear recursion sequences
to nonzero complex numbers.
Theonem 3.3: Let {Qf(x)} be a linear recursion sequence. Then lim Qg(:) =pb # 0 if and only
if 1 is a root of a(x), and all the roots of a(x)/(x - 1) lie in {z||z|< 1}. Furthermore, if

a*(x) = a(x)/(x - 1), then lim Q2 = 1/(a*(1)).

Proof: Let lim Q;(I) = b # 0. Using equation (1), we find

m- o

n n n
_ i (z) X 5 a(x) _ . nalx) _ .2
an 040 =1ina,™ = lin (Zam-‘i—> -3 umax=( 2 %) 2.
=1

i

=1

0. Therefore, 1 is a root of a(x). Let r;, ..., r, be the

n
Thus E: a; =1 and hence a(l)
i=1
roots of a(x) (repeated to their multiplicity) with », = 1. Then if a*(x) = a(x)/(x - 1),
ry, ..., r,_; are the (n - 1) roots of ag*(x). From equation (7),

“@ o S e e e e e Y 1Y e e
Q = r, r.o_, e, = 1 rytoe cr.

(12) Zm;:m ‘Z:;r.f:m—m"

"
)
In

*

8

Thus, since lim Q;(I) exists, 2: Q:*(:) exists, both equal 1/a*(l), and all the roots of

m-
« m=0

a*(z) lie in {z||z| < 1} by Corollary 3.2.

If a(x) has a root of 1, and all the roots of a*(z) = a(x)/(z - 1) lie in {z ||z| < 1},
by Corollary 3.2,

20 e%@ < 1/(ax(1))
m=0

and from equation (12), lim Q:(:) = 1/(a*(1)).

8]
N
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L. RELATLCD THEOREMS

Theorems 3.1 and 3.3 together give necessary and sufficient conditioms for convergence,
in the usual sense, of a linear recursion sequence tc a complex number. We will now consider (
some other aspects of linear recursion sequences related to convergence. The next theorem ,
concerns the ratio of consecutive terms of a linear recursion sequence.

Theorem 4.1: Let {Qf(z)} be a linear recursion sequence. If among the roots of largest
norm for a(z) there is a unique root, r,, of greatest multlnllc1ty, then there exists N > 0

such that if m > N, @ fo,)/qa‘” exists, and lim Q:fL /3= = p |

Proog: Let ry, ..., r, be the n roots of a(x) (repeatwd according to their multiplicity).

Let r, be as described in the theorem, and the r.'s be arrenged so that IP_E < lrh} for

72 =1, ..., J (J could be 0) and irii = irni for<i=45+1, ..., n = 1. Using (4), we may

then write

a(xy _ AT (m a2 () ™) L Ad (S ()
(13) Q, =C, vt c, 2,5,*"" +C, r,y form>0
where Ca(x) = D?(n /D% are constants depending on c(z). Jarden [3, p. 107] observes that
D%l ¢ 0, so this quotient is defined, for such 2 =1, ..., n. Also notice using the defini-
(=)/z &
tion of D2 that D2 = DEW/T Tad 0 again by Jarden's observation [3, p. 107], thus,

C, # 0, a fact we will need shertly. From the definiticr of rjﬁ; in. (6), we may write
, L aiz) =~ _alx) - .
(14) Qp'® =3 ¢ T form > m

We next form the new equaticn

- 4 \
c (X)) yom-g, RN A VA \ i) m-d,

Y= ! L. ¥ “ “n) = E " 0

(15) @, " /r, > C; O (CHa ) ‘5 : (i1 (r; /r,)
i =1 v =l

where Ea(z) = C?‘x’zﬁ*’af are coastants depending on a{x). Thus,

oty [ - . . .
(16) lim 2 (4 )(1-/!h) =0 for < =1, ci., d.

mao S
Since 1fi! < lrni for 7 = 1, ..., ; and there exists an ¥ > 0 such that
atx) {m\ ”— ! = . .
(17) ‘Ei( (;')(u;/ﬁr) d”i < |Gln) for each £ =1, ..., J whenm > Ny;
a; 2 -~ o
i i G max {F,, 1}.

We consider two cases. 1f r, is &« simple root, then J = » - 1 and

1/
1 ) 4y e A
(18) 1 = lim[i",:(m; *)(‘r,z /pn)’"“““ij [L(; )(r,, fr, )R *]
m =+ n / “Un

m+ 1\ S m o+ 2 /r \

. — 7. R - [T ¢ AT S = ~Gn
= lim ﬁ'n( ; )(1”, /Y’-,,.)’h " +Z ;< 5 1)'\17_. fr, 3 / _,,(_ )(1’, [ )" E
mao CZH J o e . a: < I8 / "

1=1 / L
+ Z T
PIEH(N N
_ halx) - I R N € R R N L AaiE) o)
- m[er T e ] - ma @
al '~ . - .
Hence 11m QG(I)/““x‘ = r, . Notice that Qm+:’/qj(r) exists for m > Ny . since
jn-1 m N m\ , ]
~a{z -d, - i med, - m m-d,
(19) |g2t prodn = zz:ai<d‘)(ri/rﬁ) + Ln(ﬁ')(rﬁ/rg) ¢ l
i g as:
n-1 m m | I 7"‘ |
B S A (A CNES U I EX
el N d; | i Gy
(n-1) ‘

and we are finished.

%
I

(/4

’ + |E.| >0 form >V
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1f »r, is not a simple root, d, # 0. Let ¥ > 0 and define

i=7+1

(20) N, = max{N [(n -J) max {E; |} + dun + l]} |E, | .

Then we find

(21)

z)

|[2alten = a3 san (" )
- <<" AR 1><d;"-1>|
2 e )

oy I(dn )(:« o
ai

>M - ZEL(QL)(r 7 R

1

v

M o E. + 1‘

M

|v

i=g+1

b3
-

+ Z 1227, ) 7

for m > N,.

M

Therefore, Q%@ /Q“‘I) exists for m > N.. Furthermore, if
m+1 1

n-1
@ o= (8 ala)oom=) /2(2)

1=1

by (21), lim 2 = 0 and thus

m-+w

G EA I AL TN | ST

. [ ~a(z) . - ) —dn . a(z a(x)
= 11m(Qm+1 /I’nm+l d")/(Qz( /I’nm d) = ]’;']:;RTL 1/T‘n * m+1) /Qm

m=+ o

. (x} a(x)
= 1/r'n ’%_3;12 Q:H-l /Q,., B

a(x) /Q a(x)

and hence llm Qm1 =r .

e}

Theo/w,m 4.7: Let {Qa(x)} be a linear recursion sequence, with all of the roots of a(x) in
z][]z] < 1}, and letr+l, --»» 7, be the roots of a(x) in {z||z| = 1}. If for each

i J + 1, ouiy m, r; 1s a simple root, r; = 1 for some integer m > 0, and m; is the least
positive integer with r =1, then there exists {P, },,, ;s & periodic sequence of period
L.C.M. {mj+l, cees my} such that

1im(@2“® - p,) = 0.

m=+co

Proof: Let r,, ..., r, be the roots of a(x), repeated according to their multiplicity, with

riiys .» r, as described in the theorem. Using (4), we may write
(24) v a(x) ZCG(I) (’") form > 0
where Ca(z) = D:(I) /0% from equation (5). Evaluating ri("g' , we find
(25) am an(x)( >1°'" -4 for m > n.
=1

Notice that
(26) lim (c2® m)r;""d“ =0 for 2 =1, ..., J.

me+ew v di :

Hence, for each k, there exists an N, > 0 such that
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(x) m n -4 . 4 . .
27) C: <d;>r;” P <1/ * k) foreach < =1, vv.y J.
Therefore,

n n

@ o - e (e (2)rr) - (£ o (2)ee

maa = Z Eryi Cl1_~

n 77’\
= :’,’-’]33 Q’: (z) - Z cia(.‘t) (C:/)rim = %EIE(Q:(I) - Pm)‘

i=j+1

The powers of ther., ¢ = J + 1, ..., n are periodic sequences of period m;, and hence

n
P = 2 C:(:) r,™ 1is a periodic sequence of period L.C.M. {-'nj”, cees My}
i=j+1

5. NONNORMALIZED SEQUENCES

x) . . . P .
A sequence {Q:("U} may be written as a linear combination of the terms in the sequence
{Q:(x)} by modeling it after (2)

[

z, [, A, G, .. Gy

Ty U, 1 6 ... ©
(29) . = |. + |0 1 ... 5

x| luy | o ... I 0

where the matrix has an inverse, since its characteristic polynomial a(x) has no zero roots.
We may then write equation (2) for the nonnormalized sequence

- m - Taaln), 87
al az .« a, Ly .
1 0 ... 0 - ~Gix), Y
. “n-l %1
(30) 0 i R ¢ . =
~2(x) U
0 ... 1 0 x, Qrlany
L . L u L -
or also
n
a(x), I a(x)
o = )4
(31) LS Z“n+1~igm+l-i’ m > 0.

=1

Hence, we may use the normalized sequence to determine convergence for the nonnormalized
sequence.

6. CONCLUSION

The theorems proved in this paper rely heavily on the relationship of the roots of the
auxiliary polynomial to the region {z||z| < 1}. A problem in Wall's book [7, p. 190] gives
exact computations to determine this relationship. So given a linear recursion sequence and
its auxiliary polynomial, it can be decided whether it converges to 0, to a nonzero complex
number, or is nonconvergent in the usual sense.

Necessary and sufficient conditions for 'convergence" to infinity are not given, and are
not known to this author. Theorem 4.1 gives a sufiicient condition that if there exists a
root r, of a(x) which has norm larger than or equal to all other roots and has greatest multi-
plicity among the roots of its norm. The sufficiency of the conditions excluded by Theorems

3.1, 3.3, and 4.2 may be refuted by considering a(x) = 2% - 2. The roots of a(x) are —v2, +/2,

both of which lie outside {z||z| < 1}, but the sequence begins 1, 0, 2, 0, 4, 0, 8, 0, 16, 0, ...

and thus does not "converge" to infinity. This example also shows that Theorem 4.1 cannot
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include certain examples where there are two or more roots of largest norm and equally great

multiplicity, since the quotient 2% /Q2'® = 0 for even m, and does not exist for odd m.
The original problem of Singmaster [5] asked if the conditioms that the a; all be real
n
a; 20 forz =1, ..., n, a; >0, and E:cg = 1 were sufficient for lim Q2 =D # 0. The
m-+eo
i=1

answer to this question is affirmative. Looking at equation (2), the matrix may be viewed
as a stationary Markov transition matrix, and by Doob [2, p. 256] the powers of the matrix

n
converge. Thus, %iﬂ Q;‘” exists. Since E:czi =1, 1 is a root of a(x), and so, by Theorem

i=1
im0 o gk "(z) = 2@
3.3, %iﬂ e, a*(1l) where a*(x) -0
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