SE A A A A A A A

Regret
6 P, (6) P(z|8) P(xh) P, (6) a, a,
r =2 0.3 0.7 0.26 0.182 0.92 1500 0
0.1 0.3 0.29 0.015 0.23 0 6000
0.197 1380 480%
x = 3: 0.3 0.7 0.08 0.056 1 1500 0
0.1 0.3 0.0 0 0 0 6000
' 0.056 ' 1500 0*
x =4 0.3 0.7 0.01 0.007 1 1500 0
0.1 0.3 0.0 0 0 0 6000
0.007 1500 0*
Summary of Posterior Expected Regret for n = 4, X
X Decision Marginal Probability Regret
0 a, 0.366 690
1 a, 0.374 1155
2 a, 0.197 480
3 a, 0.056 0
4 a, 0.007 0
Posterior Expected Regret: 779.07
Prior EVPI 1050.00
Post EVPI -779.07
EVSI (4) 270.93
Cn = 4) -200.00
ENGS (4) 70.93
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SIMULTANEOUS TRIBONACCI REPRESENTATIONS

RALPH GELLAR
North Carolina State University, Raleigh, NC 27607

1. INTRODUCTION AND DEFINITIONS

The two-sided sequence {t,,}‘fm of Tribonacci numbers is defined by t_; = 0, ¢, = O,

t, = L and the recursion ¢,43 = tn+2 + tns1 + tn. A Tribonacci representation of the integer
a is an expression q = IK;t; where {K,,}fm is a finitely nonzero sequence of integers.

This paper attempts to generalze to Tribonacci representations some of the results of
Robert Silber's and my joint paper [7], "The Ring of Fibonacci Representations.'" I advise
reading that paper before this one because, among other reasons, there one can see how much
can be done in the order 2 case.

It is a pleasure to acknowledge here the extensive and essential assistance that Professor
Silber gave me in working on the present paper.
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Although I had originally planned to attempt to generalize all of [7], for a variety of
reasons only parts of Section 3 of [7] were attempted. Some terminology must be introduced

to explain these generalizations. .
A finitely nonzero sequence of integers {K;}~_ will be called canonical (of order three)

—)‘.(Ai‘) -

iff
A. Either (a) all the nonzero K, are +l1 or (b) all the nonzero K, are -1;

B. No three consecutive k's are nonzero. (

If (a) holds, we call the sequence positive canonical; if (b) holds, it is negative
canonical. ;

Theorem 3.6 of [7] generalizes straightforwardly to: Every triple of integers (a,b,c)
can be written (ZK;t;, IK;t;41, LK;t;,,) for a unique canonical sequence {K;}. These are the
"simultaneous Tribonacci representations' of the title. The resolution algorithm, which (among
other things) enables one to find the sequence given the triple, was altered from that of [7]
not in an essential way.

For a finitely nonzero sequence {Kn} define the upper (lower) degree to be the largest
(smallest) integer p (r) such that Kp # 0 (K, # 0). By definition, the identically zero
sequence has lower degree + ® and upper degree - ©, By a straightforward generalization of
the order 2 case, those triples for which the associated canonical sequence has given upper
degree are found.

Theorem 3.4 in [7], "Every integer »r has a unique positive canonical Fibonacci representa-
tion with negative upper degree'" has the not so obvious generalization "Every integer pair
(a,b) can be written (LK;t;, IK;t;,,) for a unique positive canonical sequence {K,} of upper
degree < -2."

The above results which comprise Sections 2 and 3 of this paper, are mostly obvious
enough generalizations of [7] that they are included here only because they are needed in
parts of Sections 4 and 5, which attempt to answer the question of which triples have canon-
ical sequences with given lower degree. The answer to the analogous question for the Fibonacci
case is fairly easy to state (see Theorem 3.10, [7]).

Carlitz, Scoville, and Hoggatt [2] show that the solution to a problem intimately related
to the Tribonacci lower degree problem is not the obvious generalization of the order 2 answer.

I have not solved the lower~degree problem. However, a computer-drawn region in the com-
plex plane is shown to have the property that a certain algebraic expression in a, b, ¢, and r
lies in this region if the associated canonical sequence has lower degree r.

For the above problem of Carlitz-Scoville-Hoggatt, a computer draws a diagram which
divides the unit square into regions, and it is shown that this diagram is a solution to the
problem in the sense that explicit formulas for this diagram would solve the problem.

In practice, however, accuracy is guaranteed only for a (probabilistic) propostion of
integers. One must make some calculations with irrational numbers and plot a point on the
unit square. If this point is far enough away from the curves of the diagram, one is assured
of accuracy. The probability of accuracy can be increased by improving the accuracy of the
calculations, of plotting points on the square, and of the diagram itself by increase computer
time and improving the accuracy of the computer's sketching ability, finer tipped pens, etc.

Since there is no practical need at present for more accurate approximate solutions of
this problem, I have made fiarly rough diagrams, and paid more attention to the variety of
theoretical questions which appear.

Certain questions can be answered completely even with the rough sketches, though.

I had hopes before the first very rough diagram was drawn that it would turn out to be
some familiar shape which would indicate the correct analytic solution. However, the compli-
cated and unfamiliar shape that appeared indicates that any analytic solution is likely to be (-

very complicated.
2. THE RESOLUTION ALGORITHM

Approximations to the three roots of 3 -2 ~x -1 =0 are:

a = 1.839286754
B -.419643377 + .6062907297
Y -.419643377 - .6062907297
Zla] forms a ring and also is a free module of dimension 3 over Z; {1, a, a?} is one basis.
o is invertible in Z[a]. 1In fact, 0 = q® - ¢2 - o - 1 implies a™! = -1 - o + a?. We take
{0"2, a~!, 1} as the standard basis of Z[a] over Z.
Let A be the linear transformation of IR? defined by A(d,e,f) (fs d+fs e+ N.
Lemma 1: Given any three integers d,y, e,, and f, not all zero, let (d,, e,, fn) =4 (dy, €45 fo)-
Then, for sufficiently large n, the three integers d,, €,, and f, are of the same’ sign.
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Proo4: The characteristic pol¥nomial of A isx® -z2 -z - 1. An eigenvector associated with

maximum eigenvalue o is (1, o™ + 1, a). Thus, as n + », either

(a) (1, en/dns frlda) ~ (1, 0™ + 1, @)
or
(b)  (dn» ens fu) > (0, 0, 0) (since |B| = |y| < 1).

(This is an application of the "power method," see [5, Section 9.6].) Since d,, e,, and f, are
integers not all zero, (b) cannot hold. Then (a) implies that d,, e,, and f, must all even-
tually have the same sign.

The next theorem is found generalized in [3, Theorem A] except for a slightly different
version of uniqueness. Also the alternate proof of existence here is by means of a practical
algorithm. ’

We shall call two finitely nonzero sequences of integers {Kn)f, and {K;}t, equivalent if
LK,X, = ILK!X, for every complex sequence {Xn}f, which satisfies Xp4.3 = X,,,,+ X,,,; + X, for
all n.

Theonem 2: For any finitely nonzero sequence of integers {Kn}f, there is a unique equivalent
canonical sequence {K}}> . {K;}>. is in fact the unique canonical sequence satisfying
LK o™ = ILK,an.

Proof: Uniqueness.—First note that the sequence is positive or negative canonical according
as ILK!a" is nonnegative or nonpositive. By factoring out a minus sign if necessary, we may now
assume without loss of generality that {K}} is positive.

Claim.—p is the upper degree of the sequence iff aP < IKJo" < aP*!, Since K} =1, the
left-hand inequality is clear. For the right-hand inequality, note that {XK.} has zeros at
least in one of every three consecutive terms and thus IX,0"” would be increased if the omne's
in the series were moved upward in position (if necessary) and then more one's added (when
necessary) to form a new series IK,a” with Kj = 0 for n > p, Kf =1, Kf_; =1, Kf., = 0, and
successive decreasing terms 1, 1, 0, 1, 1, 0, ..., ad infinitum. We obtain

e I O I CLAE L VAC R
n=0
=Pt + 0D/ (@ + a7

= aP*l,

Thus p is determined by the value of IK;a". To find the next lower "one" in the sequence,
merely examine the powers of a that IK,a" - K af lies between. Successively subtracting off suit-
able powers of a will determine the positions of each of the other "ones" in the sequence.

Existence.—It is clear that the following operation replaces sequences by equivalent
ones:
Choose integers 7 and X

Replace X, by K, + X
Ky1 by Kno1 - K
K, ,byK,_,-K
and K, by K,_3 - K

Since the following resolution algorithm involves only repeated applications of the proper
choice of this operation, existence will be proven if the algorithm is proven to terminate
with a canonical sequence.

Step 1: To replace {K»}-, by an equivalent sequence in which all nonzero terms are of the
same sign. If the upper degree of the sequence is p, replace Kp by O and add Kp to Kp-1, Kp-2,
and Kp-3. Repeat this procedure until all nonzero terms are of like sign.

For analyzing Step I, let r denote the lower degree. If p - r > 3, p is reduced by at
least 1 but r is unaltered. Thus, eventually, no more than three terms are nonzero. If
Kp.o=d, Kp_1=e, Kp = f and all other terms are zero, application of the procedure yields
a new sequence with consecutive terms (f, d + f, e + f) and all other terms zero. It now
follows from Lemma 1 that eventually all nonzero terms are of the same sign.

Step I7: 1If all nonzero terms are negative, factor out a minus sign, and treat the
sequence as if all terms were nonnegative. Thus, without loss of generality, assume hence-
forth that the sequence is nonnegative. ‘

147



Step I11: (i) 1If any three consecutive terms are nonzero, choose three such terms
Kp-3» Kn_3, and Kn-1, pick a positive integer X < min{X,_3, K,.-5, K,_;}, subtract X from each
of X,_3, K,_5, and Kn-1 and add X to K.

(ii) If no three consecutive terms are nonzero, either all nonzero terms are
1, in which case the sequence is canonical and Step III terminates, or else (a) choose any
K, > 1, choose positive J < K,, replace X, by K, - J, and replace X,_-3;, K, .3, and K, _3 by
Kn-1+J, Kn-2+J, and K,_3+ J, respectively; then (b) [actually applying (i) in a specific
way] choose positive K f_min{Kn ~J, Kn_1+J, Kn_2+ J} and replace K, - J, K,_; + J, and
Kn-2+J by K, - dJ - K, Kn_1+J - K, and Kn-2 + J - K, respectively, and replace X,,; by
K,,1 + K. Repeat Step III until the sequence obtained is canonical.

In order to show that Step III terminates in a finite number of repetitions, first intro-
duce the parameter N = IK,. Note that (i) reduces N by 2K > 0. Thus (i) cannot be repeated
consecutively indefinitely. Any infinite repetition of Step III would have an infinite number
of times (ii) is applied. The next thing to show is that from the position before one use of
(ii) .to the position before the next use of (ii) N is not increased. (ii) itself adds 2J - 2K
to N so (ii) increases N only if J > K. 1In this case, the new consecutive nonzero terms
Kn+J - K, Kn-9g+J - K, and K,.3 + J have minimum > J - XK. Thus (i) must next be applied,
and must be repeated until at least one of these three terms is reduced to zero. But if (i)
reduces an individual term by X', then that application of (i) reduces N by 2K'. Thus (i)
must be repeated at least until N is brought back down to its value before the most recent use
of (ii).

There still remains the possibility of an infinite sequence of Step III's, each with
NV = N, just before each application of (ii). To show this is impossible, order the set of
all finitely nonzero nonnegative integer sequences lexicographically. Note that (i) and (ii)
both strictly increase the lexicographic order. Consider only those {K,}.. produced with
N =N,. These form a sequence of nonnegative sequences of given entry-sum N = N, which is
increasing in lexocographic order. Such a sequence of sequences must be finite it if is
bounded above. The following is a proof of this.

Consider the highest-position nonzero term in each of the sequences. This single term
will be nondecreasing (in lexicographic order) and because of the existence of the upper bound
and the requirement ¥ = N, can only move through a finite number of values. Thus, the highest-
position term becomes fixed after a certain point. Beyond this point, consider also the next
highest-position term. This term must now be nondecreasing and so also eventually becomes
fixed. Continuing on, one by one each of the successive nonzero terms becomes fixed and since
there are at most N, nonzero terms, eventually all the terms become fixed.

It now only remains to show the existence of an upper bound for the sequences under con-
sideration. Pick m such that a™ > IK,0". If {K,} and {K!} are equivalent nonnegative
sequences and p"” is the upper degree of {k”}, them p” < m. Reason: if p" > m, then
am < K'hwaP" < IKJfa™ = LK,0™. Thus, one can choose the sequence with 1 in the mth place and
zeros elsewhere as a lexicographic upper bound to all nonnegative sequences equivalent to
{K,}. The proof is complete.

The above resolution algorithm is most conveniently done by first writing the sequence
{K,} in usual positional notation (the reverse of usual sequential order) with a dot setting
off position zero from position -1. Thus, the sequence with X_, =2, K, =1, X, = 3, X, =0,
K, = 4, and all other terms 0, would be written 403.12 in this notation.

Applying the algorithm,

(1ia) (11p) (1) (1)

403.12 2% 412,01 Y 130101 420 191211 2220 2101, 11 45 2110, 225 11000,

This shows that the sequence {K}} with X] = 1, K/ =1, and all other terms 0, is the canonical
sequence equivalent to {K,}.

3. SIMULTANEOUS TRIBONACC! REPRESENTATIONS

The following is found greatly generalized in [8, Theorem 2.4].
Lemma 3: TFor all n e Z,

Uy = 070 4 (B, = tie)OTT F B

Proof: First check this formula explicitly for 7 = 0, -1, -2 (making suitable use of the
relations a”+3 = a”*2 4+ a"*! 4+ 0”), The formula then follows for all ¢, since both left and

right sides satisfy the recursion X, , = X;,, + X;,, + X; for all <.
Proposition 4: There are unique integers a, b, and ¢ such that IX;a* = g™ + (¢ - b)a™* + b.
These integers are given by

a=ZIK;t., b=ZIK;t,,,, and ¢ = ZK;t;,,.

191 ° T
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Proof: Applying Lemma 3,

TW AT

ZK.a* = (

g}

Kt )o ™ 4 (TKitye, = ZEet, 00" + (CK tp,1).

Now use the fact that o™, o %, and 1 are a basis of Z[u] over Z.

Theonem 5: Existence, uniqueness, and construction of simultaneous Tribonacci representaticns.

(a) For every integer triple (a, b, ¢) there is a unique canonical sequence {X;} such
that
a = ZKiti’ b = ZKiti+1’ and ¢ = ZKiti+2.
(b) The sequence {K;} can be found by resolving the sequence with a in the -2 positionm,
¢ - b in the -1 position, b in the 0 position, and zeros elsewhere, that is,
(b).(e - b)(a) in positional notation.
Proof: By Theorem 2, there is a unique canonical sequence {K:} such that °
aa™® + (¢ - b)a™ + b = IK;at.
Now apply Propostion 4.
Comment: Theorem 5(a) was stated first in [4]. I believe that the use of the resolution
algorithm to find the canonical sequence {K,} is in the majority of cases the most efficient
method now available.
Exampfe: Find the canonical sequence {X;} such that a = ZK;¢; = -1, b = ZK;t,,, = 4, and
c = Zk{t€+2 = 3,
L ] i i . iib
(B)(e = D) (a) = 4.(—1)(—1)}+ <334 1~L'2.112 HEVN 11.002-1—:l+ 11.001111 -ﬁi-L+ 11.010001
Verdigication:
tt o, vty +t, =-3+1+0+1=-1

tgtt ottt =240+1+1=4

t, +ty+t, +t;,=0+0+1+2=23

Theorem 6{a)l—F{uwst proven 4n [4, (5.2)]: The triple (a, b, ¢) has its simultaneous Tribonacci
Tepresentation using a positive canonical sequence {k.} iff ao™® + b(1 - a™!) + ea™? > 0.

Thechem 6{b): 1In addition, the sequence {K,} will have upper degree p iff

=

o < au”? 4+ bl - oY) + ea”t < aftl,

As was noted in the proof of wniqueness in Theorem 2, {¥;! is positive canonical iff
> 0, and in addition has upper degree p iff a” < IK.a? < of*’. By Propositions 4 and 5,

ac™® + (¢ - b)a™ + b. Substituting this into the above inequalities yields the
conclusion. :

Theotem 7: For each pair (a,b) of integers, there is a unique positive canonical sequence of
upper degree < -2 such that a = IK;%; and b = IK;¢;,;. The triple (a,b,c) for the given pair
(a,b) is found by the formula
- -1
e =-[lax™ + b(a - 1)].
Prco4: By Theorem 6, {X;} is positive canonical and of upper degree < -2 iff
0<agu?+b(1-a +ca? <o,
or, equivalently,

—act = b(a - 1) <e <1 -aut - Bla - D).

This formula gives a unique integer ¢ for each pair (a,b) and the existence of unique-
ness of {&,} then follows by Theorem 5.
L. THE LOWER DEGREE I

In this section and in Section 5, all sequences {K{}fm not otherwise described will be
assumed canonical. This property will not be explicitly stated again.

Define & = (f¥.8°: {k;} is positive and of lower degree > 0}. (R is defined at the
beginning of Section 2.) Alsc define §° = {ZX;f%: {X;} is positive and of lower degree 0.
We wish to describe § and ¢°, at least approximately, as subsets of the complex plane.

Let 6., = {fx.7°: {k:} is positive of lower .degree > O and upper degree < 11}. 8., is 2

finite set of cdmpiex numbers.
Let 8%, = ¢"Ng,,.
Let J

{zk:8%: {K;} is positive}.
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Proposition §: 1I1f IK;B € I, then |IK,B* - :E:K;Bi| < .075. In particular, every point of § is
within .075 of a point in 911 and every point of 6% is within .075 of a point in le.

R IR

11 ® ©
Proof: |IK.B - DT KBY| < DK, |BE| < DO [B[TAFI 4 (g2 < (IB|* 4+ |B]*?)/(1 - 181%) < .075
im1

i=12

-

where the second inequality uses an argument similar to that in the uniqueness part of Theorem 2.

The above proposition indicates that in a certain semse $,;, is a good approximation to §$ and
that le is a good approximation to S°. This, together with the following propositions, will
help explain the correctness of our "sketch" of § and & (Figure 1, which appears at the end of
this section). :

Proposition 9: If IK;B® € S°, then |ZK,B%| > .425.
rroposdsiton 7 i

Proof: We calculated the minimum of the moduli of the hundreds of points of le obtaining .50088
(attained at 1 + B2 + B* + B7 + B'?) and, applying Proposition 8, subtracted .075, thus obtaining
the lower bound of the theorem. Clearly, a listing of the details of this proof would be unprofit-
able. The skeptical reader with access to a computer can easily reproduce them for himself.

Proposition 10: 1f {K;} is positive and of lower degree r, then |IZK;B*| > .425|g"

Proof: The lower degree of (Ki+r}:L_u is zero. Hence |IK;,.8%| > .425.

|ZK;B*| = |2K;,,8°*"| = [B7[|IK;, 87| > .425[87].

Proposition 11: If TK;B* € G, then |IK,B%| < 1.69.
1

Proo4: The proof is analogous to that of Proposition 9. The point of §,; of maximum modulus is
T+ 8%+ 8%+ 8%+ 8%+ 8. Its modulus is 1.6055.

Proposition 12: 1f TK;B* € U and |ZK;B%| < 1.69, then lower degree {K;} is > -4.

Prood: Note that .425|87°| > 1.69 and apply Proposition 10.

To sketch S and 8%, plot S,,, identifying Q;l, and on the same graph plot.all points ZKiBi
where IZKiBLI < 1.69, lower degree of {K;} is between -4 and -1 inclusive, and upper degree of
{K;} is < 11. Then sketch a simple closed curve which separates 8;, from the other points
plotted, and add a simple curve to separate 921 from the rest of §,;.

By Proposition 8, every point in § is (approximately) inside the curve drawn, and by
Propositions 8 and 10, every point in T but not in S is (approximately) outside the curve, where
the approximation includes the value .075 of Proposition 10 and sketching errors which will prob-
ably be smaller than .075.

The next few propositions and theorems help justify the drawing of a simple closed curve,
since such a curve indeed encloses a simply-connected domain.

The polynomial X% - X¥* - X - 1 is irreducible and hence its Galois group is transitive on
the roots o, B, Y [6, Chapter 3, Section 5].

Hence,

a0e™® + bot + ¢ = K0t iff

aB~? + BB7Y + ¢ = IK;R° iff

aY—Z + b.Y—‘l
Thus I = those elements of Z[B] which become positive when Z is held fixed and o is substituted
for B.

+ e = IK;Y".

Proposition 13: I is dense in the complex plane.

Prood: Consider the complex set (with polar coordinates) 0 = {(r,6): r, <r < r,, 6, < 0 < 6,}.
Such sets are a base for the complex topology. Because |B| < 1 and argument B is not a rational
multiple of 21 (see the proof of Theorem 18 in [2]), therefore, for certain sufficiently large
integersm, [B"| < r, - r, and 6, < argument 8" < B,. Thus, n8™ € 0 for a correctly chosen
positive integer r. Now na” > 0, so nR™ € J.

Proposition 14: If'ZKiBi € I and [ZK;R%| < .425|Br—1|, then {X;} has lower degreg > r. 1In
particular, if IK;B*€ J and |ZK,;B*| < .425|87t|, then IK:B* € G.
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Proof: This is an immediate corollary of Proposition 10.

Theorem 15: The lower degree is locally constant at points of J. If IK,B*! ¢ I, {K;} has

Tower degree r and upper degree p, IK/B® € T and |IK/B - IK,B?| < 425]8"”[, then {X;} has

lower degree r.

Prood: Let IK!B® - IK,R* = IKUB®.

Claim.—IK!8® € J. If not, I - K"Bz € J, and by Proposition 14, {-X¥} would have lower
degree > p + 2 and thus also would have upper degree > p + 2. Consequem:ly, by Theorem 6,
IK;ab - IKla® =L - Kfa? > aP*2, But IK;af < aP*! since p is the upper degree of {K;}. This
yields ZK] ai = IK;a? - (ZK at - IKlai) < a‘”l aP*? < 0 contradicting the fact that IK! B £ .
Thus )ZK”Bz € J. As above, the lower degree of {XK”} is > p + 2, while the upper degree of
{K;} is p. Hence {K; + X!} is canonical, and since I(X; + K")S’ = )‘.ZK’B1 it follows that
{K'} {k; + K!}. Thus, lower degree of {K!} = lower degree of {K;} and the proof is finished.

Let U be the interior of the closure of S.

Let U° be the interior of the closure of §°.

Theorem 16: ¢ =gNna. ¢ =gnad.

Proof: Here is the proof for §. The proof for 8% is similar.

For each point z = ZK,B’ € U, consider the open disc B, with center z and radius .425|BP+1|
where p is the upper degree of {K;}. By Theorem 15, if z € §, then 8, N T C Q. Hence
2 €@, C Closure (B8, NY) C Closure §. Thus, § C Q.

On the other hand, if 2 € J\§ with lower degree r < 0, then B, does not meet §, hence
z ¢ a.

Lemma 17: 1f IK,B® € T has lower degree r and upper degree p, if ZKi’Bi € I and
]EKl.'B’: - ZKL-Bil < .425|BP|, then ZKi’Bi has lower degree > r.

Proof: The proof follows most of that of Theorem 15 word for word except that the lower

degree of {K"} is > p + 1, while the upper degree of {X;} is p, so that while {K!} is equiva-

lent to {K; + K"}, the latter may not be canonical. However, every term of {X; + K!} is

either 0 or 1 and thus this sequence may be resolved as follows: In choosing three consecutive
1's, choose such a triple with next higher term 0. Applying operation III(i) produces a new
sequence with, again, all terms either 0 or 1. The parameter N is reduced by 2. Repeat until
the equivalent canonical sequence {Ki] is obtained. Since operation III(i) never lowers the
lower degree, the conclusions is obtained.

Theorem 18: QU is connected.
Proof: Let z € U. Then, since AU is open and $ is dense in U, the connected component of U

containing z also contains a point ZKiBi in Q.
0

n-1 n
It suffices to show that ZKZ.B"”' and ZKL.B’: lie in the same connected component for all
0 0 .

1=0forp<’1:<7’[

-1
n>0 (where Z]{isl = 0>. This clearly holds if X, = 0, so assume X, = 1, K.
0

n-1
and K, =1 (if ZKiBi = 0, set p = -1 and succeeding statements will still hold true).
0

n-1 n-1
By Lemma 17 (or Proposition 14 if ZKL.B{ = O>, the open disc with center ZKL.Bi and
0 0

n
radius .425|B8"| is contained in A/ as is the open disc with center ZKiBi and radius .425|B"|.
n-1

iKiBi - ZK'[Bi
0 0

.425|BP| so the two discs overlap, and the proof is complete.

But since .425 + .425|B7Y] > 1, = |B"| < .425|B"| + .425|B"" 1| < .425|g"| +
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Theorem 19: QU is simply connected. -
Prood: Since A is the interior of a closure, if 2z is in a bounded component of the complement {
of U then z is in the closure of the (open) exterior of U, thus z £ Closure (J\U). By Propo-

sitions 11 and 12, z € Closure Ar, where Ar = {IK;B%|{K;} has lower degree r} where r is some !
number between -4 and -1 inclusive. Now Ar = Cr UDr where Cr = {B" + B"*2IK;R*: IK.B* e Q}

and Dr = {B” + B"*! + B"*rK,B?: IK;BY € S}. Then just as it was shown in Theorem 18 that {

8 C interior (Closure §), Simllarly, “or C interior [Closure(Cr)] = 87 + 87*? and

Dr C interior [Closure@r)] = B” + B”*! + B"*3q,, and these latter sets are open, connected, and
contained in the exterior of AU, and 2z is in the closure of one of these sets. Hence, it suf-
fices to show that each of these eight connected sets lies in the unbounded component of the
complement of U. Now U lies within the open disc of center zero and radius 1.69, but

B +B ey, B+ 1+8+85e@_, B2 e C,, B2+ 87 +8 e,
BPe C,y, BP+B2e @, B* e C,, 87"+8%ca,,

and each of these points has modulus > 1.69.

- ° v . . v - 520,525
’ oc.voa :a,- ee '°° .‘:: 0% 0o -0 ey .‘ 0°6,0%0

(01)‘.3..'(11)‘010...

R ol -1>--:::--::.,

FIGURE 1. Sketches of S and 8. The dots were plotted by computer, using different
colors in each of the three regions shown. Everything else was sketched
by hand. The four plotted points illustrate Application 21. Only dots of
modulus less than 1.69 were plotted. Thus, the right edge of the figure is
a sketch of part of a circle of radius 1.69. This gives an idea of the
accuracy of the rest of the sketch.

5. THE LOWER DEGREE II

If we assume that the set § is known, we can then solve the "lower degree problem" for
simultaneous Tribonacci representations in terms of S .

Theorem 20: a = IK;t;, b = IK;t.,,, and ¢ = IK;t;,,, where {K;} is positive of lower degree r
1ff B7"[aB™? + b(1 - B71) + ep7'] e S°.

E&ggﬁ: By Proposition 4 and Theorem 5, the first set of conditions is equivalent to

ac™® + (¢ - b)o't + b = IK;0f, where lower degree of {K;} = r. Substituting B for O and

making other rearrangements yields aB™ % + b(l1 - B™?) + B! =4§:.Ki+r8i+r = B"3K,,,.B%, which

is equivalent to the second condition of the theorem.
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Theorem 21: a = IK;t;, b = IK;t, ., and ¢ = IK;t;,,, where {K;} is positive of lower degree

1
> r iff B™"[aB™? + b(1 - B7Y) + cB7'] € &.
Proo4: The proof is similar to that of Theorem 19.

Application 2Z: Here is how Theorem 20 can be used in practice. Note that by Propositionms
9 and 11, if 2K,;B* € 8°, then .425 < |ZK;B*| < 1.69.

Compute x = aB™2 + b(l - o) + eca™. 1If z > 0, then {K;} is positive. If z < O,
replace (a, b, e¢) by (-a, -b, -e).

Next compute 2z = aB™2 + b(l - B™%) + eB~. Taking absolute values, we require
.425 < |B|™"|z| < 1.69, or taking logs and rearranging,
loglz| - log(.425) < p< log|z| - log(1.69)

log|8| log|8|

This gives four or five possible values for r. Plot B "z for these values and see which lies
within 8°.

(n

Exampfe: Find by this method the lower degree of the canonical sequence {K,} such that
a = ZKiti = -1, b= ZK‘l:ti+l =4, and ¢ = ZKit-+2 = 3.

1
3.16 > 0, so {K,} is positive,
5.42 + 3.397, |z| = 6.3945131,

-10”?2 4+ 4(1 - a™) + 327!
z2=-18"2+4(1 -B7Y) + 3872

so (1) above gives

-8.90 < r < -4.37.

Plotting B~ "z for r = -8, -7, -6, and -5 on Figure 1 shows the lower degree is ~6, which
agrees with the result of the Example following Theorem 5. The above method will be must
more efficient than the resolution algorithm most of the time. However, accuracy will not be
guaranteed if one (and therefore two) of the points plotted falls near the boundary of g°,
If this problem comes up, r will still be known for sure to be one of two consecutlve integers.
It was shown in [2, Theorem 1] that each positive integer a has a unique (Zeckendorf)
representation a = IK;t;, where {K;} is positive and of lower degree > 2.

Probfem.—For a given a with this representation, find formulas for b = IK;t;,; and
¢ = IK;t;,, in terms of a. Let us call such a triple (a, b, ¢) a Zeckendorf triple. We shall
solve this problem, not with a precise formula, but rather, in terms of a picture.

Let x + Zy be an arbitrary point in S. Rewrite the condition of Theorem 21 for the
problem:
aB™ + (¢ - D)B™® + BB™? = x + 1y.
Equivalently,

(2) a2B™% 4+ (¢ - b)2B™Y 4+ 2b = 2R%*(x + 1y).

We wish to break this into real and imaginary parts. To do this, we need to find the real

and imaginary parts of 2B" for various #n. By the recursion relation, the values for all other
7n can be obtained from the values for m = -1, 0, and 1. Since o, B, and Yy = B are the roots
of 22 —x2 = x -1 = 0, we have o + 8+ Yy = 1 and aBy = 1: Hence, Re(28) =B + Yy =1 - o and
By = a”!. Thus, Re(287Y) = B2 4+ vyt = (B+7v)/By =a - a? = -1 - a~l, By the recursion
Re(2B?) = 3 - o and Re(287%) = -1 - a™?, Let & = Im(28) = (B - y)/Z % 1.21258146. Then

Im(287Y) = (B -y /i = =(B - v)/BY? = -ad. By the recursion Im(28%) = (1 - o) and

Im(2872) = (1 + @)8. Taking real and imaginary parts of (2) using the above data yields
(-1-a®a+ (-1 -a)Ee=-b) +2b=(3-a¥)z - (1 - a)dy,

and

(3) (1 +)ba+ (~ad)(e - b) = (3 -0y + (1 - a)dy.

Solving (3) for b and ¢ yields,
b=aa + u

e =an? + v,

where u = (4 - a2 - a®)z/2 + [(@ - 32  +1 - 3a"2)6! - 6(1 - @)]y/2 and
v=u+(l-aNHz+ (a- 301y,
Thus, there is a well-defined real matrix T such that (u,v) = T(x,y).

Now define W = {(u,v): (u,v) =T(x,y), £ + 2y € S}. Let X = interior (ClosureW).
Clearly, X = {(u,v): (u,v) = (z,y), = + 1y € U}. A sketch of W (or X) appears in Figure 2(b).
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We have proven

Theorem 23: (a, b, e¢) is a Zeckendorf triple if there is a point (¥,V) € W such that
b =an + u and ¢ = ao? + v, Every point in Q corresponds in this way to a unique Zeckendorf
triple.

- 99

Conollany 24: The pair (b,c) in a Zeckendorf triple (a, b, ¢) can and does take on only the
values ([aad + J, Daa?l + k) where (F,k) = (0,0), (0,1), (1,0), (1,1), or (2,1).

Proof: Wiy, W computed exactly with § replaced by §8,,, gives an approximation toW. The "error"
of .075 in replacing § by Qn is propagated into an error of no more than .098 in replacing W
by ‘wn. .

Note that (b,e) can assume the value (fao] + j, faa®] + k) iff there is a (u,v) e W with
Jg=-1<u<gjand k-1 <v <k, An examination of the thousands of points inW,, yields the
results of the corollary.

Let Q be the open unit square {(s,t): 0<s <1, 0 <% < 1}.
For each of the pairs (j,k) of Corollary 24, define ¥;, = {(s,t) € Q: (j - &, k - %) e W},
Qaa?] + k iff

Theonem 25: If (q, b, ¢) is a Zeckendorf triple, then b = [[ac] + § and ¢
(@o - [aals av® - Mae’D) € g, , -

Proof: By Theorem 24, b = [[aa]l + j and ¢ = [aa®] + k iff [aoll + j = ao + u and Jac®] + &k =
aa? + v with (u,w) eaw if F - (aa - [aol) s k - (aa? - Dac?D) € w . Also (ao - [aal,

aa? - Dao?ll) is always in Q for positive integer q. ‘

The sets ¢; x can be drawn approximately by rotating W through 180°, cutting W up along
lines of integer value and translating the pieces by integer distances vertically + horizontally
into Q. The result is shown in Figure 2(a). It is seen that these sets appear to disjointly
cox{er Q. This is worth proving. Let gj'k = interior (Closyre Cyj’k ). Clearly cyj.kg 3',1( =
[(J’k) -Q] n Q.

1,0 .

(a)

Y;,; indicated

by (i,7)

FIGURE 2
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Theorem 26(a): The union of the ¢, is demse in Q.
Theorem 26(b): The sets g, are disjoint.

Proof (a): By Theorems 23 and 25, it is seen that the union of the Q; x consists of the set
T(ac - [aal, ao® - [ac?]): a positive integer}. Since 1, a, and a? are linearly independent
over ¢, this set is dense in the unit square (see [1, Chapter IV]).

Proog (b): 1t suffices to prove that if j', j", k', and k" are integers, if (u',v') and
W™, v e and if (J' - u', k' = v") = (F" - u", k" - v"), then u' = " and v' = v". These
hypotheses imply that u” = u' + j and v” = v’ + k where j and k are integers.

Let {(u}, v))} be a sequence in W converging to (u',v’). Corresponding to each (u!, v})
there is a unique Zeckendorf triple (a,, b,, ¢,) with

= ’
b, = a,a + uj,

(4)

= 2 '
e, = a,0” +v,.

By deleting from the sequence a finite number of terms, we can assume without loss of generality
that a,0?+ ([a,al + §)(1 - a™) + (Ia.e®l + kK)o~ > 0 for all n. Since b, > [a,o] and

Cn z,ﬂanazﬂ, this guarantees by Theorem 6 that a positive canonical sequence is obtained for
simultaneous Tribonacci representation of the triples (a,, b, + j, e, + k). 1f we suppose that
(Jsk) # (0,0), these are not Zeckendorf triples and thus they are simultaneously represented by
a positive sequence {K;} of lower degree < 1. Going through precisely the same calculations as
precede the proof of Theorem 24, it is seen that bn + J = @,0 + u! and ¢, + k = q,0® + v where
!, vy = T(xz}, y!') where z§f + iy"TI\S. Hence, (u}l, v}) € exterior X. In light of (4), we

have (uy, vh) = (u}, vi) + (F,K). Hence (ull, v)) converges to (u", v"), which thus cannot lie
in X, contradicting our hypothesis. The theorem is proven.

Example: Use Figure 2(a) to find the Zeckendorf triple with a = 650.

First we compute ad = 1195.5364 and aa? = 2198.9343. Then observe from Figure 2 that
(.5364, .9343) € Y(y,,). Hence, b = 1195+ 1 = 1196, and ¢ = 2198 + 2 = 2200, which results
can be verified by direct calculation.

It was shown in [2, Theorem 12] that each integer has a unique (2nd canonical) representa-
tion a = IK;t; where {X;} is positive and of lower degree positive and congruent to 1 modulo 3.
For such a representation, we call (a, b, ¢) a 2nd canonical triple if b = IK;t;,; and
¢ = LK;t;,,. The following facts about 2nd canonical triples are proved similarly to their
analogues for Zeckendorf triples.

Conolﬁanﬁ 27: The pair (b,c) in a 2nd canonical triple (a, b, ¢) can and does take on only the
values aajl + j’ IICZ(X.ZI] + k) where (j’k) = ("'1"'1), (-1,0), (0’_1)9 (0,0), (O;l)s (0>2)’ (1,0):
(1,1), or (1,2). 1In [2] it was shown that j takes on the values -1, 0, and 1. Figure 3 is the
analogue for 2nd canonical triples of Figure 2. A region marked (j,k) in Figure 3(a) denotes
the region Cyj’k .

Theorem 28: 1f (a, b, ¢) is a 2nd canonical triple when b = [aa]l + § and ¢ = [ao?] + k iff
(ao - [aall, bo® - [pa’D) €q? , .
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0,0)

(b)

FIGURE 3. (a) shows the unit square divided into the regions Qj
(b) shows the region W2

It is seen that with the given limits of accuracy, the
computer sketch of W?does not indicate for sure whether
q;% j is nonempty for (j,k) = (1,1), (1,0), (0,-2), (0,1)
and (-1,0). However, accurate calculations of carefully
chosen points of W2 corresponding to points of § of high
upper degree show that these sets are indeed nonempty.
Further theoretical considerations show that the areas
near all four corners of Q are covered by infinitely many
"strips" periodically alternating between those three sets

i i which the sketch "allows" into the corner (for exam—
ple, only Cyo 07 <y_1 -1 » and cy Z1,-z fit near (0,0) in Q).
Since all thése strlps are below accuracy level size, the
corners of Q have been blacked out.
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