FIBONACCI FEVER

ARTHUR F. SETTEDUCATI
University of California, Berkeley, California

This is an account of a strange case of infibonacciation suffered recently by the
author, the only remedy for which was found to be a dose of HP-35 followed by SR-50 taken
at intervals of 1.618 hours. It all began in Egypt, of course, as so many things do, and
specifically with the construction of the Great Pyramid of Khufu or Cheops (no mean task—
geometrically, as it turns out). Much has been written on the contributions supposedly made
to its design by knowledge Egyptian mathematicians may have had of Pi or Phi, generally con-
sidered to have been pretty fibal. Imagine my surprise when, under the influence of the con-
tagion afflicting me both phi-sickally and mentally, I looked up the values of the trigono-
metric functions in the neighborhood of the well-~known Great Pyramid angle of approximately
51°50' (and its complement) and found what I have not seen in print anywhere, namely

sin 4 = Vb sin B = b
cos 4 =D cos B =vVb
tan 4 = Va tan B = V&
cot A =vb cot B =Va
sec 4 = a sec B =Va
csc 4 = Va csc B =a

where g = 1.618033989... and b = ¢ - 1. 1Interpolation in the tables or use of one of the
new pocket calculators quickly yields exact values for the angles:

A = 51°49'38\253 B = 38°10'21V747

This observation, that the values of the trigonometric functions at which their plotted
curves intersect are all, except for the familiar values 0, #1, /2, and #/2/2, of magnitude
a, b, or their square roots, should be sufficient to launch the new science of Fibonometry
or Phigonometry, according to taste. Our basic right phiangle is then the one with unit
hypotenuse and base b, which has the property that its altitude is the mean proportional be-
tween its base and its hypotenuse. This altitude, Vb, is the approximation to w/4 that has
led to the association of the Creat Pyramid with an attempt to represent T.

VD = 0.78615 13778
m/4 = 0.78539 81634

This approximation is good to 0.1%Z. Some other phigonometric approximations that have been
noted by pyramidographers qualify as genuine Fibonacci curiosities. They are:

A = 1/7 circle (error 0.8%

A 9/10 radian (error 0.57%

B ~ 2/3 radian (error C.06%)
Further numerical approximations that have been noted are

6a%/5 = 3.1416408 = 7 (error 0.0015%)
and ,
arc tan V/2/2 b radian

0.61547971 ~ 0.61803399 (error 0.4%)

this latter deliriously close, but to what, is uncertain.

It is, and very likely will remain, an open question as to which of these approximations
the Egyptians may have had in mind, if any, but it is nevertheless extremely curious that
most of them fall within the probable limits imposed on the precision of construction of the
Pyramid by the technology and surveying techniques available at the time.
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The numerological ramifications of this question are quite prodigious, and demand the
introduction at this point of some measurements of the actual Pyramid. Values published by
Petrie and by Bruchet have been chosen here as representative of determinations made in both
English and metric units, respectively, and the rounded values in cubits, given in the last
column are based on generally accepted conversion factors.
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Feet Meters Cubits
Half-base 377.86 115.24 220
Height 481.33 146.60 280
Apothem of face 611.93 186.47 356

One cubit = 7 palms = 28 fingers, and the inclination of a pyramid's side is expressed (e.g.,
in the Rhind papyrus) as so many palms horizontal recession of the face for one cubit vertical
rise. This quantity, the seked, is thus 7 cot A, where 4 is the inclination angle measured at
the foot of the apothem. The angle A has actually been measured from one or two intact casing
stones from the buried portion of the Pyramid and compares well with the estimates made from
overall measurements. From the values given in the last column of the above table, we deter-
mine the seked of Cheops to be precisely 5.5 (or 5 palms, 2 fingers). This is not only a nice
simple number but in relation to the cubit of 7 palms suggests, as do the ratios of the sides
of the Pyramid triangle, the value of 22/28 as an approximation to either m/4 or VB, or both,
as you wish. The error in either case is less than 0.06%.

A arc cot 22/28 = .90482 70894 radian = 51°50'34"
sin A 0.78631 83388

Measured angle of casing-stones = 51°51'

It has also been suggested that the Pyramid was designed to have a rise of 9 units in 10
taken along the edge of a face rather than at its center. This is easily checked for the
triangle that forms a vertical section through a diagonal of the (almost perfectly) square
base. Calling this corner angle of inclination (, we find

tan ¢ = 280/311.127 = 0.89995 40851

which verifies this hypothesis as well, to within 0.01%! The angle ( turns out to be 41°59'09"
or only 0.03% from the neat angle of 42° (which may recommend itself to hexagesimalists because
it is 7/60 of a circle). :

In case these excursions into the real world prove too enervating, let us indulge in a
lettle ideal-pyramid designing, starting from our basic right phiangle whose sides are in the
ratio 1:v/p = 1.27202 very nearly. Rounding this to 1.272, we might let our base be 1000 units
and our height 1272, giving us a face apothem for the pyramid, or hypotenuse of our triangle,
of 1618, a familiar number indeed. These numbers are all divisible by 2, so we get 500, 636,
809 (the last is prime). 1If we choose to be a little sloppy (will the Greeks detect it?), we
can settle for 50, 64, 81, which has the beauty that the full base is then 100 units, and our
numbers are simply 82, 92, 102, However, we would then have to settle for a pyramid angle
of almost exactly 52° (only good for 13-fetishists or card players) with its rather poor 3.15
for m and 0.621 for b. There are those who will claim this design is justified for its 81/64
approximation to va, which squares to 1.6018 for a itself. But then, some prefer bent pyra-
mids to straight._

Now there is one place where all may find good values for the extrema in our triangular
section, the base and hypotenuse, because their ratio if 1.618, that of the Fibonacci sequence.
The sequence itself yields the pairs we need, and they get progressively better as we go to
higher members, only requiring that we select for near-integer values of the mean proportional.
A little play with early members is rewarding: we immediately find the ancient 3, 5 pair with
its perfectly Pythagorean companion 4. Pyramid angle 53°08' and very primitive 3.2 for m. We
might dream of 8, 5 with its convenient 1.6 ratio, but we left 3.2 behind in the last trian-
gle, so we can't work a deal for m = 2g. It is at this point that it just dawns on us for no
apparent reason that we can get a fair estimate of the middle value (the height of our pyra-
mid) from the expression '

P, + 2F;
2

which shows us that F,, , must be divisible by 4 to give an integer middle term. The Pythago-
reans insist we write this as

5F. - 3F;

i+1 7

4

for obvious reasons, and as it is the same thing, we don't object. Now we cannot only con-
struct right phiangles, but Phiophantine ones as well. (Except for the 3, 4, 5 case, we
must not call them Diophantine, as the closer approximation to Phi precludes Di—still they
will serve the useful purpose of providing a suitable tomb should a Pharaoh Die.) Since
every F, for n = 6, 12, 18, 24, ... is divisible by 4 we have an unlimited supply of models.
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And what do we find almost as soon as we begin the painstaking task of examining this
infinity of models? The first one after the 3, 4, 5 model is the actual Great Pyramid of
Khufu! 55, 89 with the interpolated 70, upon multiplication by 4, yield the values 220,

280, 356, the very dimensions in Egyptian royal cubits that most people have found accept-
able. But already the astute observer will have found a hint of another pair that looks
interesting (do we all have our Fibonacci sequences out?), namely 377, 610, simply because
these numbers are so close to the Pyramid measurements in English feet! True, this pair
doesn't yield an integer value for the middle term (here 479.75) but the Fibonacci expres-
sion does give a value about halfway between the Pythagorean 479.55 and the round 480. Good
British foot-rules must have been scarce in ancient Egypt, and the architect had the bad luck
to choose one that was too long by 0.27%, though whether this was an effect of the higher
mean temperature at Giza or due to more esoteric considerations, such as the ratio of the
sidereal to the solar day (1.00274), the inhabitants of sunny Egypt preferring the longer
solar foot and thus assigning fewer units to a given length than Britons, whose work beneath
the moon and in the cooler northern dawns at Stonehenge and Avebury might naturally have led
them to employ the sidereal foot, remains to be determined by future investigators. 1In any
case, the reduction required is so slight that it can scarcely conceal the fact that Khufu
was built on the English system.

But wait! Had you already noticed that doubling our measurements in meters, or express-—
ing them in semimeters (perhaps in deference to Semiramis, always so phinegy with details):
230.48, 293.20, 372.94 begins to look alarmingly as i1f the French too had landed on the banks
of the Nile and had the situation well in hand—compare 233, 377 and the Fibonterpolated
value 296.5? The expansion of the French rule appears to have been greater, amounting to
1.1%, though it might be argued it was no less just.

It may be that further study will show vaguer correspondences with rough-hewn Norse
wooden rulers or sly yardsticks of China, but at least we have pointed the way. On the
vexed question of what the Egyptians hoped to achieve by their design, my own opinion is
that their architects made a wise decision to split the difference between a very accurate
representation of ™ and a very exact approximation to the Golden Ratio by choosing the very
neat 55, 70, 89 triad with its traditional 22/7 compromise, showing that after all they knew
perfectly well you can't square the circle but you can come as close as a scarab-beetle's
left front leg to doing it, and in the process keep thousands of generations of people,
amateurs and savants alike, guessing and struggling with the data to resolve the issue. No
edifice of lesser mass and durability than Cheops could have been relied upon to do the job
of preserving the sharp edge of the blade of discrimination between subtle geometric hypothe-
ses for thousands of years.

In a lighter vein, we noticed one day as the fever was wearing off and we were relaxing
to the sound of the oud, that much of the world's music can be represented, with regard to
pitches of degrees of the scale, by simple powers of ratios between 1 and 2 (the unison and
octave), with the perfect fifth (3/2) doing yeoman's work ever since the days of Pythagoras,
who probably learned about it in Egypt, according to legend. Musics of China, India, Persia,
Arabia, Byzantium, and Greece can be represented by using sufficiently high powers of 1.5
alone (try it some time, merely taking care to reduce values that exceed 2 by the appropriate
division by a power of 2 so that the set of tones remains within the octave-——negative powers
should be included in a symmetrical manner). Those who appreciate the value of common cents
in musicology will want to see results expressed in this medium of exchange currently being
favored at 1200 to the octave according to the formula

Cents = (1200/log,,2.0)log, R

where R is the frequency ratio of two pitches of interest, say any note and the fundamental
or tonic. If R is some power of a constant ratio between 1 and 2, say

R = pi/2k J =0, %1, 2, ..., #n
and k is chosen such that 1 < R < 2,
Cents = 3986.314(j log,,r - k log,,2).

The point for Fibonaccians is, of course, what happens if we choose » = 1.618...? The
result is curious. After reordering successive powers into a monotonic sequence, we have,
in cents:

30.2 69.1 99.3 129.4 168.4  198.5
237.5 276.6 297.8 336.7 366.9 397.1
436.0 466.2  496.4 535.3 565.5 595.6 (604.4)

and so on for the upper half of the octave. These values are within a few cents of forming a
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36-tone tempered scale, so that every third member of the sequence is very nearly one of the
twelve tones of our present musical scale. For perfect correspondence, such that every third
tone is 100, 200, 300, etc. cents, the value of r should be 1.618261.

The usual method of constructing tempered scales is to use a ratio » which is the nth
root of 2 to obtain a scale of n equidistant tomes. /2 = 1.019440644, The ratio 1.618261
is a power of this, in fact the 25th power. It is interesting to note that 1.618... itself
is not a frequency ratio that corresponds to a tone of our 12-tone scale, for it gives 833
cents, far enough from 800 to sound sharp and give discords. Other attempts to relate the
Golden Ratio to musical pitch have overlooked this hard musical fact. The present discussion
may serve to reinstate the Divine Proportion into the Divine Harmony.
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EXPONENTIAL GENERATION OF BASIC LINEAR IDENTITIES*

RODNEY T. HANSEN
Montana State University, Bozeman, Montana

Generalizing results of Fibonacci and Lucas numbers has been an occupation of a large
number of mathematicians down through the years. Frequently, one approach taken is to first
prove a result involving the Fibonacci sequence {F }n=0 and the Lucas sequence {Ln}n.o and
then extend it to a result or results of special cases of the sequences {F%k+r} .o and
(Lnk+r}n-o, where k and r are fixed integers. In this paper attention is focused on deriving
identities related to these latter sequences. Such results, called linear because of the
subscripts, are surveyed in [1]. The exponential generating functions for these latter
sequences are now shown to be most productive in deriving basic linear identities that the
author believes to be new. In addition, alternate derivations of several known results will
be given to show the great usefulness of these generating functions in attacking a variety of
Fibonacci and Lucas problems.

Recalling the Maclaurin series expans1on for e®

X 2 — T
ex=1+—l—!—+2—- Z—-—
and hence
Ar _ (Ax)z
(1) efr = 1 + 1, i HZ::OAn',

for any constant A, we note that the exponential generating functions for the first men-
tioned sequences are

n ax _ Bx
2:5} ET.= e -—e”
n=0 n S B
and -
ZLn %T = %" + 7
. n=0
where o = l_if!i and B = i—%fﬁi.

The exponential generating functions of the sequences of interest in this paper are
found by use of (1) to be

n "x r B":c
_afe®® - Be
) Zo er oy TE
(3) ZLnk+r - = area": + Breskx
n=0 n
K k
n _ afe T _ Bre-Bx
(4) nz.:o( l) Fk+I‘nl - o - B

*This paper was presented at the Fifth Annual Spring Conference of The Fibonacci Association,
April 23, 1972.
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