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1. ABSTRACT AND INTRODUCTION

Questions on the title subject have been raised and answered many times. However, there
does not seem to be a place where all this knowledge is gathered together, other than Dickson
(History of the Theory of Numbers, Vol. I, Chapter 9). It is my intention to give here a
systematic presentation of the subject. Much of the material is known, but there is a mode-
rate amount of new formulations and new results.

The main theorem in the subject is that p¢ []( ) if and only if e is the number of
carries in the addition k¥ + (n - k) = n when done in p-ary arithmetic. The multinomial ana-
log is that pe [In'/Hk ! if and only if e is the total amount carried in the p-ary addition
Lk; = n. The historical background of these results and its relation to Lucas' result will

be discussed.
Then the main theorem is used to investigate the following topics:

a) When does dI(Z) for k=1, 2, ..., n - 1?7
b) When does df (%) for k=0, 1, ..., n?
c) Equalities, lower bounds and upper bounds for e¢ in pe||(2).
For example, we shall see that p’l(gs) iff (k,p) = 1 and p‘](Z) implies p¢ < n.
d) The multinomial analogs of a, b, and c.
e) How often does p([(Z) or does pzl(Z) for k =0, 1, ..., n?
f) How often does d’(Z) forn =k, k+ 1, ...?

Numerous related questions arise in connection with these topics and some unsolved problems
occur. Some other related results are discussed afterward. The contents are described in
more detail in Section 3, after introducing notations in Section 2.

2. NOTATIONS AND CONVENTIONS

All letters n, k, e, etc., denote nonnegative integers, with p and g being distinct
primes, r > 2, and (usually) d > 1. In general, kX is always the bottom term of some binomial

coefficient (Z) and is always assumed to satisfy 0 < k < n. Similarly, if we have (gs), we

assume 0 < k < pé. The phrases "all k," "some k," etc., will always imply this, unless
otherwise spe01f1ed

For r > 2, we let % denote any r-tuple (kys kys +..s kp) such that Ik; = n (or what-
ever the top term of the r-nomial coefficient concerned is). The phrases "all X," "some k,"
etc., will always imply this, unless otherwise specified. We denote the multionomial (or
r-nomial) coefficient n!/ITk;! by M,(n,k).

Any 7 has a unique p-ary representation (or expansion)

Zapl with 0 L a; <p.

i=0
Occasionally, it is convenient to have a, # 0. In that case, we must exclude n = 0 or let
0=0+p® withm = 0. In most cases, we write the sum indefinitely: 7 = Ia,pt. We also

denote the p-ary expansion by (@m, ..., @1, @) or by (..., a;s ..., ay, @p). We let
k = £b,pt, n - k = Lc;p?, and k; = I;b;;p? be the respective p-ary representations. We refer
to the positions as the Oth, lst, ..., Zth, etc., so that the Zth position (or place) means

the place corresponding to p? and it has 7 places to its right.

We use pe||n for pe|n and pe*lfn. Note that p ||n means pfn. Square brackets [ ] will
denote the greatest integer function. We use the ALGOL symbol * to denote exponentiation
when the exponent becomes complicated. E.g., we write n =1Ilp te;.

*This paper was prepared while the author held a research fellowship of the Italian
National Research Council (Comsiglio Nazionale delle Ricerche).
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Dedinition 1: E(p,n) = e if pe||n.

Definition 2: (A) f(p,n) = E(p,n!).

® e@mnk =Ep, ()
© er(pym,k) = E(p,Mr(n,B)).

Clearly, E and e stand for exponent and f is used to avoid too many e's and because it
is next to e.

Deginition 3: (A) N(n,d) is the number of k such that dY(Z).
(B) N,(n,dj is the number of X such that dfM,(n,k).

When there is no danger of confusion, we may drop references to p and/or r in M, (n;z),
flp,n), e(p,n,k), er(p,n,k) and Nn(n,d).

All main items (theorems, definitions, lemmas, and propositions) are numbered consecu-
tively. Corollary 16.1 denotes the first corolllary to item 16. (I hope that those readers
who have found a Definition 4 located between Theorem 8 and Lemma 2 or who have tried to
locate a Definition 3.1.2.4 will find this system a bit easier to follow.)

3. SUMMARY

With the above notations in hand, we can now give a more precise description of the con-
tents of the paper.

Section 4 will present the main theorem that e(p,n,k) is the number of carries in the
p-ary addition k¥ + (n - k), and its multidimensional analog that e, (p,n ,K) is the total
amount carried in the p-ary addition Ik; = n. These will be derived from Legendre's classic
results. Then we deduce a necessary and sufficient condition for pY %) and for pYM,(n %).

Section 5 will discuss the history of the results given in Section 4, in their several
forms. The connection with Lucas' congruence will be noted.

In Section 6, we shall determine N(n,p), when N(n,p) = 2 and when N(n,d) = 2. The final
result is that ¥(n,d) = 2 if any only if d = p and n = p™ for some p.

In Section 7, we shall consider N(n,p¢) = n + 1 and N(n,d) = n + 1. The main result is
that ¥(n,peé) = n + 1 if and onlv if n = agp® - 1 with 1 £ a < p¢é. The related question of
determining » such that (d, (k) =1 for all k is considered.

Section 8 will give a number of results on the exact value of, or lower or upper bounds
for, e(p,n,k), depending on 7 and k. This will lead us to the determination of

cen{(3)IGm =1} and of reM{(})}

and to results such as:
5y . LA . n n
pS!(i ) iff (k,p) = 1; pgl(k) implies p°® < n; and‘zgjzyl(k).

(This section is large and contains many diverse things. I can only give an idea in this
short summary.)

In Section 9, we shall find multinomial analogs for most of the results of Sections 6,
7, and 8. The main result of Section 7 is radically different when » > 3:

_(n+1r - 1>
Ny(n,d) = ( r o1

has only finitely many solutions and all have »n < d. ”
ZII(gfftion 10 will cover a number of results on the number of k such that pl](k) and
p k
Section 11 will deal with problems on the density of 7 such that d](Z), for n =
k+ 1, ... . The basic result is the theorem of Zabek which gives the period of (Z) uwd )

and hence shows that the density being considered does exist. We shall see that the density is
> d™!, with equality iff d = p® and k = p™ for some prime p.

In Section 12, a few related topics that occur in the literature are discussed.
The references are intended to be reasonably exhaustive (but not too exhausting).

L. THE MAIN THEOREMS

We first state and sketch two well-known results of Legendre.

Lemma 4:  f(p,n) = f(n) = [n/pé].

izl

Lemma 5: f(n) = (n - Za;)/(p - 1).
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Sketeh of Proogs: For the first, observe that [n/pi] counts the number of terms in n! that
are divisible by pJ. A term which is exactly divisible by p¢ will be counted exactly e times
in the sum, once by each [n/pd] with 1 £ j < e. For the second, observe that

[n/pd] = a; + ajy,p + +++ + aup""9;
collect terms and simplify. m

Lemma 4 may be found, usually in more detail, in [41, p. 10; 2, p. 50; 4, p. 25; 22, p. 4l1;
23, p. 86; 28, p. 342; 38, p. 46; 39, p. 7; 42, p. 90; 44, p. 47; 46, p. 79; 49, p. 117; 50,
p. 113; 58, p. 131; 66, p. 99; 67, p. 17]. Lemma 5 may be found in [41, p. 12; 2, p. 55; 4,
p. 26; 22, p. 42; 38, p. 49; 39, p. B; 60; 66, p. 103].
Note that when p = 2, Lemma 5 becomes f(n) = n - Ia; and that Ia; is simply the number
of ones in the binary expansion of n [4, p. 26; 25, p. 158; 38, p. 49].

Theorem é: e(p,n,k) = e(n,k) is the number of carries in the p-ary addition k + (n - k).
E&ggﬁ: Applying Lemma 5 to k, n - k, and n, we have:

(D) e(n,k) = f(n) - f(k) - fln - k)3

2) =I(b; +c; -a;)/ (- 1.

Now consider the p-ary addition. Set €; = 1 if there is a carry from the 7th place and set
€; = 0 if not. (Let €.y = 0.) Then

(3) a; + pE; = bi + c; + €;.1.

Hence IZ(b; + ¢; - a;) =ple; - Le;_;, = (p - 1)Ig; and so e(n,k) = Le; 1s the number of
carries. ®

Corollany 6.1: e(n,k) is the number of borrows in the p-ary subtraction n - k.

Corollarny 6.2: TFor p = 2, e(n,k) = Lb; + Ie; - La; and Za,; is the number of ones in the
binary representation of »n, etc.

Theorem 7 e,(p,n,k) = e(n,k) is the total amount carried in the p-ary addition
272‘7 =nN.

Proo4: Proceeding as before, we get

4) e(n,®) = L;(T;b;; - ap)/(@ - 1)
and we have
(5) ai + pEi = ZJbJ‘L + E‘l:-l’

where €; is the amount carried and may be greater than one. Hence, e(n,k) = Ze; is the total
amount carried. m

Conoflary 7.1: TFor p = 2, e(n,k) = L,I,b;; - L;a,.

Proposition §: p}'(Z) if and only if 0 £ b; < a; for all <.

Proof: We have that p) (%) iff e(n,k) = 0 iff a; = b; + e for all i iff 0 £ b; < a; for all
1. (Note that 0 < b; < a; for all < implies that 0 < k < n.) m

Proposition 9: plM(n,k) if and only if IL;b,; = a; for all %.

5. HISTORICAL NOTES

Lemma 4 is due to Legendre [7, p. 263, item 2; 41, p. 10] but is only rarely attributed
to him [14; 22, p. 41; 50, p. 113]. Lemma 5 is also due to Legendre [7, p. 263, item 2; 41,
p. 12] and is sometimes attributed to him [1; 2, p. 55; 14; 36; 38, p. 49; 60]. Carlitz [3,
P. 305] cites Bachmann [2] for Lemma 5, but this is presumably not intended as a primary ref-
erence. In general, number theorists all know these results are due to Legendre, especially
Lemma 4, but they don't seem to write it down in textbooks. (None of the other sources 1
have mentioned give any reference for these results. Personally, I think this is a shame.)

Kummer [7, p. 270, item 71; 40, p. 115] gives most of Theorem 6, but he does not iden-
tify Ze; as the number of carries. To me, this identification is an important step; it
clarifies the equations (3) and it reduces the whole question to simple p-ary arithmetic.
I have found only two references to Theorem 6 in its present form, namely Knuth [38, p. 68],
who gives it as a problem and cites Kummer, and Simmons [59], who mentions only the case
appropriate to Proposition 8. Bachmann [2, p. 60] shows that IZb; + Ze¢; = Ia; + (p - 1)Ie;,
but not in a context of binomial coefficients.
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On the other hand, Glaisher [17, pp. 353, 357] specifically states Corollary 6.1,
although Dickson's reference [7, p. 273, item 92] does not mention it. Dickson gives no
references to either Theorem 6 or Corollary 6.1 in their present forms.

Dickson [7, p. 273, item 93; 6, p. 378] has essentially obtained Theorem 7, but without
identifying the €; or forming their sum or even stating the result. Fray [1l4, p. 473] notes
this and states the result, but does not identify the €; as carries.

Modern authors have used Kummer's original form [3, p. 302; 14, p. 470] or other forms,

sometimes simply equivalent and sometimes not. If one puts Lemma 4 directly into equation (1),

we have one such form:
(6) e(,k) = Y [n/pd] - [k/pd) - [(n - k) /pdl.
st .
See [1; 9; 63]. Another form is simply equation (2) as it stands. See [7, p. 272, item 79;
53; 57]. Corollary 6.2 occurs in [33]. Some complicated forms occur in [24; 26; 36; 43],

the first two being related to Glaisher's form, Corollary 6.1.
Theorem 6 is complementary to Lucas' result:

(%) = n(gz) (mod p) »
where we set (g) =0 for b > a. See [7, p. 271, items 76 and 77; 3; 11; 14; 15; 16; 38,
p. 68]. Clearly, Proposition 8 also follows easily from this result. Dickson [7, p. 273,
item 90; 5, p. 76[ has generalized Lucas' result to multinomial coefficients and derived
Proposition 9 from it. Numerous authors have given Proposition 8, usually as a consequence
of Lucas' result; see [11; 15; 17, p. 357; 53; 59]. Proposition 9 has been given less
often [7, p. 273, item 90; 5; 14, p. 473].
6. WHEN DOES N(n,d) = 27

The topic of this section is to determine when d](ﬁ) for k=1, 2, ..., n- 1. We
are only interested in d > 1 and 7 2 1. Then df(g) and dY(Z) so we always have N(n,d) 2 2
and dl(g) for 1 £ k £n - 1 is equivalent to N(n,d) = 2.
Proposition 10: N(n,p) = N(a; + 1)
Proog: This follows easily from Proposition 8. See also [3; 11; 53]. m

Corollany 10.1: Setting p = 2, the number of odd binomial coefficients in the nth row =
N(n,2) = 24(Za;). (See also [7, p. 274, item 98; 16, p. 156].)

Corollary 10.2: N(n,p) = 2 if and only if n = p™. (See also [1l1; 12; 53].)
Conollary 10.3: Again setting p = 2, (Z) is even for 1 < k < n - 1 if and only if n = 2".
Proposition 11: For n > 1, N(n,pq) > 2.

Proog: 1If N(n,pg) = 2, then N(n,p) = N(n,q) = 2. This would imply that n = p™ = g¥, which
is impossible. Since N(n,pq) > 2, we must have N(n,pq) > 2. m

Theorem 12: For n > 1, N(n,p®) > 2.

Proog: 1f N(n,p®) = 2, then N(n,p) = 2 and so n = p™. The p-ary expansion of 7 is

(1, 0,0, ..., 0). Let k=¢(0, 1,0, ..., 00, son-k=(,p-1,0, ..., 0. Clearly
there is only one carry in the addition of k and n - k, so pzf(ﬁ) and N(n,p?) > 2. See
also [12]. m

Theorem 13: For d > 1 and n > 1, we have N(n,d) = 2 if and only if n = 1 or d is a prime p
with n = pmand m > 0.

Proof: For m = 1, everything is trivial. Let n > 1, and suppose N(n,d) = 2. By Proposi-
tion 11, d cannot have two distinct prime factors. By Theorem 12, d cannot have a square
prime factor. Hence d = p and Corollary 10.2 gives us n = p™ and m > 0 follows since n > 1.
The converse is given by Corollary 10.2. =

Theorem 13 can be rephrased as saying that the GCD of (Z) for 1 £ k <n -1 can only
be a prime p, and then iff n = pm [7, p. 274, item 98], or as saying that (a + b)" = a” + b"
(mod d) can hold iff n = 1 or d = p with n = p™.,
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7. WHEN DOES N(n,d) = n + 17
The theme of this section is to partially determine when dI(Z) for all k, i.e., when is

N(n,d) =n + 1, and to solve the related question of when (d,(Z)) = 1 for all k. 1In this
section, n = 0 is permissible.

Theorem 14: For e 2 1, N(n,p®) =n + 1 if and only if n = qp® - 1 with 1 £ a < pe.

Proof: For 0, everything is trivial, so consider n > 0 and suppose N(n,pé) =n + 1.
Assume that (Ams Am_1s «++» Gp) with am # 0. We claim that gq; =p ~ 1 for 2 < m - e.
Consider k = (@p - 1, p -1, p -1, ..., p=-1). Then 0 XL k <7n. Consider the addition of k
and n - k. If a; <p - 1, then there must be a carry from the Zth position, which creates

carries up to one from the (m - 1)st position, making a total of m - 7 carries, so

p”’fl(Z). So if N(n,p€) = n + 1, then pEY(Z), hence a; < p - 1 implies m - © < e, or

n
n

z>m- e, as claimed.

Let ¢ = min{Z]|a; # p - 1}, sothat s >m=-e andm - 8 < e. Then 7 = (Apmy .5 Ags
p-1, ..., p-1) withas <p - 1. Hence, we have n = (@up"~% + -+ + ag)p® + (p® - 1) =
(o + 1)peg - 1, where 0 < a < p¢-1. Son =ap® -1 with 1 < a < pe, by settinga =a + 1.

Conversely, if n = gp® - 1 with 1 < a < pe, we let a = 1= (a,_15 «.., Qp). Then
n=(a-1p%+ (p? = 1) = (Cg_1s «ees O, P -1, ..., p = 1). For any k, the subtraction
n - k can have at most e - 1 borrows; hence,

pef(Z) for all k. =

Conollarny 14.1: N(n,p) = n+ 1 if and only if n = gp® - 1, with 1 < a < p. See [7, p. 274,
item 98; 11; 38, p. 483; 53].

Conollary 14.2: Setting p = 2, all the binomial coefficients in the nth row are odd if and
only if n = 28 - 1. See [16, p. 156; 38, p. 69].

The exact determination of when N(n,d) = n + 1 appears intractable for d not a prime
power. For example: N(4, 12) = 5, but N(4, 3) = 4 and N(4, 4) = 3. However, we can say the
following.

Proposition 15: TFor any d > 1, there are infinitely many n such that N(n,d) = n + 1.

Proof: Let p!d. Then N(n,p) = n + 1 implies N(n,d) = n + 1, so we can let n = gp® - 1 with
l<a<p. m

This result is of particular interest, since it fails for multinomial coefficients with
r > 3.
For the related problem of finding 7 such that d is relatively prime to each (Z), we
have an easy solution. If d is a prime power, say d = p¢, then the problem is equivalent to
finding N(n,p) = n + 1 and Corollary 14.1 applies. Otherwise, we have the following.

Theorem 16: Let d have at least two prime divisors. Then there are only a finite number of n
such that (d, (%)) =1 for all . ‘

Bﬁggﬁ: Without loss of generality, we may assume d is square-free and we set d = Iip, with

P1 <Py < ... . Then (d,(Z)) = 1 for all k if and only if piY(Z) for all 7 and k, i.e.,
N(n,p;) =n + 1 for all 7. From Corollary 14.1, we must have n + 1 = a; * p.ts; with

1 £a; <p;. Nowa; <p, <p,, hence pzf(n +1)andson+1=a,<p, andson<p, - 2. m

In fact, the proof gives a determination of all such »n as all numbers of the form
n=a-°*pf-1lwithl £a<p, and a * pj < p,, since all such numbers have N(n,p;) =n + 1
by Corollary 14.1.

Most of the results of these last two sections are known, but are usually derived via
Lucas' result. Theorems 12 and 14 do not follow from Lucas' result, but Theorem 12 can be and
has been derived by ad hoc arguments. Theorem 14 does appear to be new, although its corol-
laries are not. I have not seen Proposition 14 or Theorem 16 before, but their proofs do not
require anything new.

8. SOME INEQUALITIES ON e(p,n,k)

First we shall consider a few exact determinations of e(p,n,k) = e(n,k). These lead
into a number of lower bounds. Combining the lower bounds for various primes will give
assertions of divisibility such as (k,n) = 1 implies n|(%). Then we consider a few upper
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bounds. Recall that e(n,k) = e is equivalent to pe||<z> , hence e(n,k) > e is equivalent to

pe]<Z> and e(n,k) < e is equivalent to pe+1Y(Z) .

Proposition 17: If n = kp®, then e(n,k) = Le;/(p - 1).
Proo4: We have that Ib; = Za;, so the result follows from equation (2). m

Coroflary 17.1: Setting p = 2 and s = 1, we have e(2k,k) = Ib; is the number of ones in the
binary representation of k (or 2k).

Corollary 17.2: For k > 1, (%f) is even; 2||(§f> if and only if k = 27; 4[(%?) unless

k=2".

Theorem 18: Let n = pm and let pt||k. (If k = 0, set £ =m.) Then pm't]|(z>.

Proof: We have n = (1, 0, O, ..., 0) and k = (b,, ..., by, 0, O, ..., 0), hence there are
exactly m - t carries in adding k and 7 ~ k. =

Conollarny 18.1: pm[<%f> if and only if (k,p) = 1.

8+u
Conollarny 18.2: TFor 0 < k < p**l, we have psl(pk ),

e+u
Proo4: Let pt||k, so t < u. By the theorem, p® p“*“‘tll(pk ). (This corollary will be

needed in Section 11.) m

Conollarny 16.3: TFor 0 < kb< p™, we have pf(i;), i.e., V(pm,p) = 2. (See Corollary 10.2.)

We have already moved into considering lower bounds with the above corollaries. We now
examine lower bounds more directly.
(%)
%)

Proof: The argument is a slight modification of that of Theorem 18. m

Theorem 19: Let p®|n and p*||k. If t < s, then p°-*

Conoflany 19.1: 1f pc|n and (k,p) = 1, then P”(Z)

Conolbary 19.2: TFor v 2 1, we have (n?k)l<2?>.

Proof: Consider any prime p and let pé||n and p*||k. If ¢ > s, then p[zz%zy and is irrele-

vant. If ¢ < s, then ps-t‘|fﬁ%§7 and ps‘tl<?f) by the theorem. m

Corollary 19.3: 1f (k,m) = 1 and v > 1, then ”l(?)-

Corollaries 18.1 and 19.3 (with v = 1) partially resolve the question of when does nl(Z).
This problem was posed by Hausmann in 1954 [29] and no answer has been published. The first
case not covered by the corollaries is 101(20). See also [47, p. 86; 7, p. 265, items 18 and

21; 2, p. 625 4, p. 28; 22, p. 45; 46, p. 82). Gould [20] attributes Corollary 19.2 (with

Vv = 1) to Hermite, apparently on the basis of [7, p. 272, item 85], while Bachmann [2, p. 62]
assigns it to Catalan. However, Dickson [7, p. 265, item 18] makes it clear that the result
is due to Schonemann. Gupta [25] has studied the parity of the ratio iﬁikl(z> and asserts
that his method applies to the study of its divisibility by any prime.

Corollany 19.4: For (b,k) = 1, we have (ak + b)[(akié+ b); in particular, (ak + 1)|(akéf 1),

and ((a - 1)k + 1)](%5). Setting a = 2 gives k + l](i?).

The ratios (if)/(k + 1) = <2ké+ L
(although due to Euler). They occur often in combinatorial problems, particularly as the
number of ways of associating kX + 1 terms. See [27, p. 25; 38, pp. 239, 531-533; 45, pp. 140-
152; 52, p. 101, and elsewhere (see his index); 69, p. 154; 21; 48], the last two giving nume-
rous other references.

>/(2k + 1) are known as Catalan or Segner numbers
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Theonem 20: For m > 1, let n =1Ilp e, and let p, 4f,||v. Then GCD{(??)I(k,n) = 1} =
Hpi+(ei + f;). (Recall that 0 < k < nv, by convention.)
Proo4: We have (pif(ei + f}))lnv and (k,n) =1 implies (k,p;) = 1, so that (p€+(ei + f}))[(ﬁf)

for all such k by Corollary 19.1. Hence Hpi+(ei + f;)|GCD. On the other hand, GCD|(7P) = nv

TN een T

and (pi+(ei + f}))llnv, so no higher power of p, can divide the GCD. Further, the only other
primes which can enter into the GCD are primes p such that p|v and p # p; for each ¢. Con-

sider such a prime p and let p¢||v, so p®||nv and p® # nv (since n > 1). Hence NV = (Qps «-.»
ags 0, 0, ..., 0) with a, # 0. Setting k =p¢ = (0, ..., 1, 0, 0, ..., 0), we have 0 < k < n,

(k,n) =1, and pY(Z) by Proposition 8. Hence, p/GCD. m

The case n = 2 is solved in [64] using a special argument only suitable for n = 2 instead
of the second half of the above proof.

The next theorem is complementary to Theorem 19.
Theorem 21: Let p®||n + 1 and let pt|k + 1. If t > s, then pt"[(Z).

Proof: We have n = (Am, «ves Qg P - 1, p -1, «o., p-1) witha, #p - 1 and
k= (bms «ees» b4y p-1,p~-1, ..., p~1). Hence n - k has at least t - s borrows. m

Conollany 21.1: 1f (k+ 1,m + 1) =1, then k + 1|(Z>.

Conolbarny 21.2: k + 1|(§f). (See also Corollary 19.4.)

The proofs of Theorems 19 and 21 can be somewhat generalized to give the following two
results.

8. Then p"*|(2).

§. Then pt"|(2>.

Proposition 22: Let p®|n - o and pt||k - o where 0 < o < pt and ¢t

A

v

Proposition 23: Let p®||n + o and pt|k + o where 0 < a <p®andt

Note that Proposition 22, with o = 0, is Theorem 19 and that Proposition 23, with o = O,
is Theorem 21. However, these are the only two simple applications of the propositions.

Now we consider some upper bounds on e(p,n,k) = e(n,k). We now assume that # = (Q,s .«.»
a,) has a, # 0, i.e., p" < n < p"™*l For n = 0, we take m = 0.
Theonem 24: Let pf|k. (For k = 0, set t =m.) Then e(n,k) <m - t.

Proog: We have n = (Ams «..5 Q45 ...5 Qy) and we have k = (bp, ..., b, 0, 0, ..., 0). Hence,
there can be at most m - ¢t borrows in7n - k. m

Note that Theorems 19 and 24 imply Theorem 18.
Coroflary 24.1: For n > 0 and any k, e(n,k) < m. Hence, pel(Z) implies p¢ < p™ £ n.
See [1; 9; 63] for proofs using equation (6) and [57] for a proof using equation (2).

The special case, that p“l(iﬁ implies p® < 2k, occurs often in prime number theory [23, p.
103; 28, p. 342; 42, p. 105; 44, p. 60; 46, p. 165; 58, p. 133].

Corollary 24.1 can also be derived as a consequence of Theorem 14, as pe|(2) implies
N(n,p¢) <n + 1 and the least such n is the least n not of the form gp® - 1 with 1 < a < pe,
which is pe.

Conoflary 24.2: For 1 < k <n -1, (Z) is never a prime power. (See [30; 57; 63].)

. ny\ _ n _(n n
Proog: 1f (k) = p¢, then p‘](k>, hence p® < n (l> < <k)' =
Erdos and others [10 and its references and its review] have considered the question of

whether (Z) can be a power for 1 < k < n - 1. For 3 < k <n - 3, Erdos has shown that (Z)

is never a power, but the situation for k = 2 and k = 3 does not yet appear to be fully
resolved.
The next theorem is the complement of Theorem 24.

Theorem 25: Assume p” <n+1<p"!and pe||n+ 1. Then, for any k, e(n,k) £m - s and
equality can hold.
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Proof: Write n + 1 = op?, where p"-?< o < pm*l-s, Thenn = (a0 - 1)p® + (p° - 1) =

(@ms +++sag>p=-1,p-1, ..., p - 1). Hence, there can be at most m - s carries for any k.
Note that a, = O may occur, but only if m = s and @ = 1. Also note that q, # p - 1. 1If
m = g, then equality holds for any k. If m > s, then equality holds for kK = (bm, ..., bs,

.+s by) if and only if a, < by, <p, a; £ b; <p for s <7 <m, and 0 £ by < ap. Such k are
readily found. m

Conottary 25.1: 1om{(})} = 7o Tptllog,(n + D] = —— npp+[1

og(n + 1)
logp J°

Meynieux [43] has considered this LCM.
Conollary 25.2: Max,{e(n,k)} = e if and only if n = qp® - 1 with pla and p¢ < a < pe+l.

The form of Corollary 25.2 is clearly reminiscent of Theorem 14. In fact, Theorems 14
and 25 each imply the other. Theorems 24 and 25 do .not seem to have generalizations similar
to Propositions 22 and 23. The reader may convince himself that Theorems 19, 21, 24, and 25
give all the bounds on e(n,k) which arise in the four cases when 7 ends in more (or less) zeros
(or p = 1's) than k.

9. MULTINOMIAL ANALOGS

In this section, we shall obtain multinomial analogs for most of the results of Sectioms 6,
7, and 8. 1In many cases, the analog is straightforward or only requires some greater care in
the statement, e.g., the condition (k,n) = 1 must be replaced by GCD{kj} =1, 1If the reader
has forgotten the conventions for the multinomial case, he should review Section 2, Theorem 7
and Proposition 9. We shall place the number(s) of the binomial analog(s) in parentheses after
the results in this section.

First, we need the following basic combinatorial fact.

Lemma 26: A nonnegative integer 7 can be partitioned into an ordered sum of r nonnegative inte-
n+r -1
ro 1 > ways.
For proofs, see [27, p. 5; 58, p. 402]. This is the same as the number of ways of dis-
tributing »n objects into » distinct cells [51, p. 92], which is the same as the number of
n-combinations of r things, with repetition [45, p. 59; 51, p. 6].

gers in (

Conollarny 26.1: There are (n ; f I 1) r-nomial coefficients of rank n.
Proposition 27 (10): N, (n,p) = H(aflf_?]f 1).
Cornollany 27.1 (10.1): setting p = 2, the number of odd r-nomial coefficients of rank n is

Np(n,2) = r+(2a;).
Corollony 27.2 (10.2): N.(n,p) = r if and only if » = p™,

The r-nomial coefficients contain (z) copies of the binomial coefficients, correspond-

ing to setting all but two k;'s equal to zero, and they contain r bounding axes of ones, corre-
sponding to setting all but one k; equal to zero. We shall refer to these bounding axes as the
edges. Consequently, for n > 1, we have N,(n,d) > r and N, (n,d) = r implies that N(n,d) =
N, (n,d) = 2.
Conoflony 27.3 (10.3): Again setting p = 2, M(n,k) is even except at the edges if and only if
n= 2"
Theorem 28 (11, 12, 13): For = > 1 and 4 > 1, the following are equivalent:

(a) N,(n,d) = r.

(b) W, (n,d) = 2.
(c) Either n = 1 or d is a prime p with n = p™ and m > 0.

Proof: (a) implies (b) by the discussion above. (b) implies (c) by Theorem 13. (c) implies
(a) by Corollary 27.2. m

Now we ask when can N,(n,d) = (n ; f I 1
conversely. For example, consider » = 3 and p = 2. Let n =3 = 22 - 1, so. that Nz(n,p) =

). This implies that N, (n,d) = n + 1, but not

n+r -

n+ 1. But 2
r -1

7> and so N,(n,p) # ( 1). In fact, for r > 3, this question has a

3!
1111

radically different solution than for r = 2.
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Theonem 29 (14, 15): Ford > 1 and r > 3, N.(n,d) = (n : f ; 1> implies that n < d.
Proof: Let n; =n - k; and n, = n, - k,. Then we have
n! n\/n !

= "2
M MOLR) = TR (kl)(k2>k3! R
By varying the k;'s, we can let n, and k, be any integers such that 0 < k, <7, <n. In
particular, we can take X, = 1. Hence, N,(n,d) = (n : f I 1) implies that d]n1 for
n,=2,3 ..., n. Hemce,n<d. m
Conollany 29.1 (14.1): For r > 3, Np(n,p) = (n : f I 1) if and only if 0 < n < p.

Conoflany 29.2 (14.2): For p
and only if n = 0 or n = 1.

2 and r > 3, all r-nomial coefficients of rank n are odd if

(n +r -

The exact determination of when N,(n,d) = - 1) seems awkward, but may perhaps be

easier for r > 3 than for r = 2,

Conollary 29.3 (16): 1If r 2 3 and d =Ilp,te; with p; < p, < ..., then (d,M(n,k)) = 1 for all k
if and only if 0 < n < p,

The converse of Theorem 29 need not hold even for r = 3. Let r = 3, d = p¢ = 9, and

n+r-1

r-1 ). I shall discuss this more fully at the end

n = 6. Then 9|§T§+§T’ so N, (n,d) # (

of the section. _
Now we consider inequalities for er(p,n,F) = e(n,k). Proposition 17 can be generalized in
several ways, but I shall give only two.

Proposition 30 (17.1): Let r = p and let all k; = k = Ib,p*, so that n = pk. Then e(pk,k) =
Ib; is the sum of the digits in the p-ary expansion of k (or n).
Corollary 30.1 (17.2): For k > 1, we have p|(pk)!/(k!)P and p||(pk)!/(k!)P if and only if

n=pn

Theorem 31 (17.1): Let k; = k = Ib,p? for all j, so that n = rk. Then e(rk,k) > f(r) * Ib;.

Proof: Consider the addition in p-ary arithmetic. In the Zth place, we have I;bj; + €,.1 =
rb; + €;.1. This produces a carry to the (¢ + 1)st place of at least [rb;/g] + [e;-1/p] and
this produces a carry to the (¢ + 2)nd place of at least [rb;,,/p] + [rb:/p?] + [e;-1/pP%],
etc. Hence, '

ZE{ 2 Z,(E [Pb.,_/pJ]> = Zi f(rb,_) pd L; bif(r'). [ ]
Jzl

Conofhany 31.1 (17.2): 1If Ib; > o for all primes p < r, then (r!)*|(rk)!/(k!)". (Note that

o> 1.) See [7, p. 266, item 28 2, p. 57; 42, p. 92; 46, p. 8l; 66, p. 103].

The argument used in Theorem 18 fails to generalize to the multinomial case because a carry
can now have a value greater than one. In general, this fact prevents us from obtaining any
useful upper bounds. However, we do have some nice lower bounds.

Theonem 32 (19): Let p¢|n and (ptt;)||k;. Set ¢ = min{t;}. If t < s, then p®~*|M(n,k).

Proog: Suppose, without loss of generality, that ¢ = £,. Then p°-°? < )IM(n,F), using
equation (7). m

Conoflary 32.1 (19.1): 1f ps|n and (k;,p) = 1 for some J, then p®|M(n,k).

Conollary 32.2 (19.2): For v > 1, we have —65%5771M(nv,?). See [7, p. 265, item 18].

Cornollarny 32.3 (19.3): 1If GCD{t;} =1 and v > 1, then n|M(n ,k). See [16, p. 103; 22, p. 46;
46, p. 82]. Obviously the question of when does n|M(n,k) is even more unsolved than n|(z>‘

Conoflany 32.4 (19.4): rk + 1|(rk + 1)!1/(k + 1)1 (k!)""!, hence k + 1| (rk)!/(k!)".
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One can write down numerous similar consequences of 32.3.
Proposition 33 (20): For m > 1, let n = Iip,te; and let FQTfEllU' Then GCD{M(n,z)|GCD{kj} = 1}
= Hpif(ei + f;).
Theorem 34 (21): Let p®||n + 1 and let (ptt;)|(k; + 1). Set ¢t = max{t;}. If ¢ > s, then
pt 'BIM(n,T(-) .
Proog: As for Theorem 32. m

Conollany 34.1 (21.1): If.(k; + 1,n+ 1) = 1 for some j, then k; + 1|M(n,k).

Conollany 34.27 (21.2): k + 1|(rk)!/(k!)7. (See 32.4.)

Versions of Propositions 22 and 23 can be stated, but do not seem useful. I have not been
able to obtain any useful upper bounds, but one can still obtain the analog of 24.2.

Proposition 35 (24.2): 1f 1 < k; <n - 1 for some j, then M(n,k) is not a prime power.

Proo4: From equation (7) and symmetry, we have that (i{)lM(n,%} for all j. From Corollary
—_— J

24.2, if M(n,k) is a prime power, we must have k; = 0, 1, n - 1 or n for each j. m

I have not seen any work on the general problem of whether M(n,k) can be a power.

We have obtained Proposition 35, which is the analog of Corollary 24.2, but we have not
1
obtained a multinomial analog of Theorem 24 or of Corollary 24.1. In fact, since 9!§T%f§T’ the

obvious analog of 24.1 does not hold. 1Imn [61], I have given a method for finding the least n

n+r-1
r-1 ). For p 2 »,

the method gives the following simple result. For e > 1, let e = s(r - 1) + B with

0 <B<r- 1. Then the least n such that N,(n,p®) # (n-; f I 1) is n = Bpe+i,

such that p¢|M(n,%) for some K, i.e., the least n such that N,.(n,pe) # <

n+r

-1
o appears to be very messy.

The exact determination of when N, (n,p¢) = (

10. DETERMINATION OF ¥(n,p?), ETC.
We now return to the ordinary binomial case and use the main Theorem 6 to determine the
number of kX such that p]I(Z). This number is simply N(n,p?) - N(n,p), so that we can then

determine N(n,p2?), since N(n,p) is known from Proposition 10.

1
Theon 36: , 2y - 1s = -pr -— .
eorem N(n,p®) - N(n,p) N(n,p)Z(ai 1 - YUt Gie, F 1
Proof: As remarked above, the left-hand side is the number of k such that p]l(Z), that is,
such that k¥ + (n - k) has exactly one carry. If this carry occurs at the ith place, we have
that there is exactly one carry if and only if a; < b, <p, 0<Db., , < a;,, and 0 < b; < ajy
for j #7, © + 1. There are

-a. - . = P ___ S S
@ - a - Dagy I @+ N(n,p)(ai - 1)(1 T 1)
ways of doing this. Adding this for all 7 gives the theorem. m See [3, p. 303; 53].
Conollarny 36.1: Let p = 2 and let w be the number of pairs (a;,;,a;) = (1,0) in the binary
representation of n. Then N(n,4) - N(n,2) = N(n,2)w/2 and N(n,4) = N(n,2) (1 + w/2).

The argument of the theorem can be extended to obtain the following results, which we
only state.

Proposition 37: N(n,p®) - N(n,p?) = N(n,p)jz:(z;fgr—I - 1)(-13;t_l__ - 1><1 - Ef_—iti_f>

a;e1 + 1 i+2

p 1 p S —

i+l< i+l

See [53].
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Conoflany 37.1: Let p = 2. 1In the binary expansion of 7, let w, be the number of triples
@;42:G:410a;) = (1,0,0); let w, be the number of triples (@;+2,2;4+1,a;) = (1,1,0); and let
w; be the number of quadruples (a;.;,a;,a;.+15a;) = (1,0,1,0) with J>171+ 1. Then

N(n,8) - N(n,4) = N(n,Z)(w1 + W, + ws)/4)'

A multinomial analog for Theorem 36 seems very difficult to express. One must determine
the number of ways p + a; = L;b;; subject to 0 < b;; < p.

TN eeN

11. RESULTS FOR k FIXED, n VARYING

Thus far, we have been concerned with kX (or n and k) varying. Now we hold k fixed and
let n vary; that is, we look at the diagonals of Pascal's triangle, rather than at the rows.
We no longer have a finite set of values for n and so we cannot reasonably ask for the number

of n with some property, say p}’(Z) . However, one can ask for the density of such n. The
basic theorem for this study is due to Zabek [70, p. 42] and determines the period of the
sequence (;Z) (mod p¢) as n =k, k+ 1, ... . We give the proof of Trench [65], somewhat

simplified by use of our previous results. In this section, we shall always take k > 0, except
in one discussion.

m
Theonem 38: Let k = E b;pi = (bgs +..» by) with b, # 0. (That is, p™ < k < p™*1.) Then the
im0

sequence of residues (Z) (mod pe) for n = k, k+ 1, ..., is periodic with minimal period p"*¢.

Proo4: Let & = pm*e, Then (n ; x) is a polynomial f(x) of degree k. Let Af(x) =

f(x + 1) - f(x) be the usual forward difference operator and let Ajf(:z:) be the iterates. For

@ = (7). ve neve o560 = (V120N < (7)< (17 3) me s = (375). m

o - S0 ) - 5 7))

J=0

Newton's formula,

. 1 pe+m x .
Now j £ k < p™*1, so Corollary 18.2 gives us p‘-’l( 3 ), i.e., p"l(j) , for 0 < j £ k. Hence
f(x) = (n ; .r) (Z) (mod p®) and so x = p™** is a period.

Now 1etn=p”’*e+k"p’"= (1: 0) sy 0, bm-li bm—l’ ceoey bO) and let nl=n+p
(1, 1, 0, vvey O, By = 1, Dpgs eees bo)' Examining the subtractions n - k and n; - k shows

that PEH(Z) while pe-1 |(’;{1), hence p™*€¢-! is not a period and so p"*¢ is the minimal

m+e+1_

period. m See also [14, p. 479].

Conollany 38.1: TFor d > 1, let d = Nlp te,. For each %, let p,*(m; + 1) > k 2 p. tm . Then -

(Z) (mod d) is periodic with minimal period Ip, 4(m; + e;).

Deginition 39: Given d > 1, let d* = d*(k,d) be the minimal period of (Z) (mod d) as given
in Corollary 38.1. (

Note that d*(k,d) is (weakly) multiplicative in d by virtue of Corollary 38.1. Further,
d = d* if and only if p, > k for each 7. If d has r distinct prime factors, then d* > k7.

Deginition 40: Let
A(k,d) be the number of residue classes n (mod d*) such that d!(ﬁ) ]
B(k,d) be the number of residue classes » (mod -d‘*) such that d| Z),
C(k,d) be the number of residue classes n (mod d*) such that (d,(z )) = 1; and let
A*(k,d) = A(k,d)/d*; B*(k,d) = B(k,d)/d*; C*(k,d) = C(k,d)/d* be the corresponding
densities.

Proposition 41:

(a) B(k,d) =d* - A(k,d); B*(k,d) =1 - A*(k,d).
(b) B(k,d), c(k,d), B*(k,d) and C*(k,d) are (weakly) multiplicative in d.
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(c) C(k,p) = A(k,p); C*(k,p®) = C*(k,p) = A*(k,p); C(k,pe) = pe~1C(k,p).

Theorem 42: For k = z: b,p* with b, # 0, we have 4(k,p) = II (p - b;) and so

im0 i=0

4*(k,p) =TI - b, /p).

Proof: From Proposition 8, we know that pY(Z) if and only if b; < a; < p for each <.

Since (Z) is periodic (mod p) with period p™*!, we need only consider 0 < 7 < m, so there

are fi(p - b;) choices for n (mod p"*!). Hence, 4*(k,p) = [l (@ - b,)/p =111 - b;/p),
im0

i=0
where the last product is indefinite, since 7 > m gives 1 = b;/p = 1. =

We note that we can now determine C(k,d) and C*(k,d).
Conollany 42.1: TFor p = 2, A*(k,2) = 1/(24Tb;) = 1/N(k,2).

One may interpret 4*(0,d) = 1, for d > 1, which agrees with the formula for A* in Theorem
42, Conversely, A*(k,p) = 1 can only occur for k = 0. So, for X > 0, the maximal value of
A*(k,p) 18 1 - 1/p.
Conollary 42.7: For k > 0, we have A*(k,p) <1 - 1/p, 1.e., B*(k,p)
and only if k = pm.
Conoflfary 42.3: TFor k > O and m as above, we have 4*(k,p) 2 1/p™*%, i.e., B*(k,p) £ 1 - 1/p"™*},
with equality if and only if % = p™*! - 1,

v

1/p, with equality if

In fact, since <§) = 1, we always know at least one residue class n = k (mod p™*!) such

that p[(ﬁ). From the Corcllary, this is the only one when k = p™*! - 1. For example:
2/(3) 1f and only 1f 7 = 3 (mod 4).

We can extend the above inequalities by some simple analysis.

Proposition 43: B(k,d) > k.

Proog: Consider the k values: n=d * k! + 7, for 2 =0, 1, ..., k = 1. Then dl(;) for all
these n. Further, kX < d*, so these values are all distinct (mod d%). m

Corollany 43.1:

(a) B*(k.,pe) > k/pm*e.
(b) B*(k,p¢) > 1l/p€ with equality only if k = p™.
(¢) B*(k,d) > 1/d with equality only if d = pe, k = p™

Proposition 44: B(pm,pe) = pm.
Proog: We have k = pm" = (0, ..., 0, 1, 0, ..., 0). Consider n = (Gn .15 +++s Ams «oes Qp)-
Then pef(Z) if and only 1if @, = a,,; = Qp4yy, = *++ = Ap,._; = 0. There are exactly p™ such

values. ®
Conollany 44.1:

(a) B*(k,p®) = 1/p® if and only if k = p~
(b) B*(k,d) = 1/d if and only if d = pe nd k=

Proposition 45: B*(k,pe¢) <1 - 1/p"*! with equality if and only if e = 1 and k = p"*! - 1.

Proof: First we have B*(k,p®) < B*(k,p) <1 - l/p"’+1 by Corollary 42,3, 1If equality holds,
it must also hold on the right and so k = p"*l - 0, p-1, ..., p~-1). Consider

n={®-1,0,p-1, ..., p-1). Then p[[(k). Hence, for e > 2, B*(k,p®) < B*(k,p?) <
B*(k,p) <1 - 1/p™*i. m

I have not been able to find the appropriate form of this result for B*(k,d). However,
for ¢*(k,d), we do have a result.

Proposition 46: Llet d = TMp, te;, let p;4(m; + 1) > k > p.4m; and let d' = lp,. Then we have
c*(k,d) = C*(k,d') = nCc* (k,p ) = T4t (k,p ) z_Hl/(p (m; + l)s = 1/d*(k,d’) with equality if and
only if d = pe and k = p7+1 - 1. See [59; B8].
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Proposition 47: #*(p®) - 4*Gep) = 4 kp 2 (Em - 1)(1 - =)

Conoflary 47.1: Let p = 2 and let w be the number of pairs (b;,,,b;) = (0,1) in the binary
expansion of k. Then

A* (k&) - A% (k,2) = A*(k,2)w/2

and
A*(ky4) = A*(k,2) (1 + w/2).

Most of the material in this section, after Zabek's Theorem (Theorem 38), seems to be new,
and I feel that there is room for improvement and extension of it. I am not sure what the
proper multinomial analogs are.

12. OTHER RESULTS IN THE LITERATURE

In this section, I shall discuss a number of topics related to the subject of this paper,
but either too complex or too distant to consider in full detail.

The pattern of the binomial coefficients divisible by an integer d is rather pretty.

S. Rosch has published three articles on these patterns [54; 55; 56], the latter two using
colors. I sometimes find these, or similar, patterns useful in visualizing theorems.

Fine [11] has shown that the density of binomial coefficients divisible by a prime p is
one. One can prove this fairly easily using Proposition 10. On the basis of numerical evi-
dence, Rosch conjectured [54; 56] that the density of coefficients divisible by any integer d
is one. Using Theorem 6, I have shown this [62] by showing that pe divides "almost all" bino-
mial coefficients, using four different senses of "almost all." These include showing that
N(n,pe)/(n + 1) and 4* (k,pe) both converge in mean to zero.

Sylvester, Schur, and then Erdos [9] have shown that for n > 2k, there is a prime p
dividing (Z with p > k. I do not see that the material of this paper is useful in attack-
ing this type of problem, despite the apparent connection.

Lucas' congruence, mentioned in Section 5, has been generalized by Kazandzidis [36, p.

3] and I have given a simple proof in [60]. The result is that

n e ai!
(k) = P Mgy @od oy

where e = e(p,n,k). This extends readily to multinomial coefficients and to arbitrary ratios
of factorials. The analogous result for n! was given by Stickelberger [7, p. 263, items 4, 7,
8; 38, p. 50]:
n! = (p)la;! (mod pr*?)

where f = f(p,n).

A problem which has been extensively studied is when a ratio of factorials is an integer.
If ¥n; = Lk; = n, then the ratio IIn;!/llk;! can be expressed as a ratio of multinomial coeffi-
cients and we can apply Theorem 7. Another approach is to extend the concept of pella to
pe||a/b, allowing e < 0. If we set each n; = I;a,;;p?, we can obtain

%517
e = e(;l-;.E) = (Zb.?‘l- - Ea:,,h)/(p - 1)
it i
by arguing as in Theorem 7. Hence, in this case where In; = Ik;, then the ratio Iin;!/Ilk;!

is an integer iff Zag;; < Ib;; for every prime p.
- !

The problem of when does n](Z) can be rephrased in this form as: When is é?fz—%li%f
an integer? Hence, the above discussion gives an answer to this problem, but not a very satis-—
factory one. Dickson [7, pp. 295-269] gives a number of other forms, e.g., the following are
always integers:

(2a) ! (2b) ! and (ba) ! (4D)!
a!'b!(a + b)! a'b!'(2a + b)!(a + 2p)!°

See also [2, p. 63; &4, p. 27; 22, p. 45; 42, p. 92; 46, p. 81; 66, p. 103].
A number of authors have considered generalized binomial coefficients [13; 14; 18; 19;
20; 31; 32; 35; 68] defined by
S (),
nl/a

(n) - Aphy_q oo Ay with <n)
A T
In general, even if the 4; are integers, (Z)A may not be integers. Remarkably, if 4, = F,

k A o A A, o A 0/4
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is the nth Fibonacci number (with F; = F, = 1), then the generalized binomial ("Fibonomial")
coefficients are integers (see [31]). One also has generalized multinomial coefficients.

I have only seen one paper which treats the divisibility of such coefficients by primes
and prime powers, namely Fray [l14]. In it, he considers the case when

A, =q" -1 (or 4, =(@@"-1/(@-1D)

which gives the g-binomial coefficients of Jackson [34; see the references of 68]. He obtains

analogs of Lemma 5, Kummer's form of Theorem 6, Dickson's unstated form of Theorem 7, Proposi-

tion 9, Lucas' result, Proposition 10, and Theorem 38. He also observes and states the results
for the ordinary case. He establishes that for any », the least d* such that

.
(n Ed ) = (2) (mod p¢) for 0 < k < n is d* = d*(n,p®),
a result which is in a somewhat different direction than Theorem 38.

Gould [20] mentions the generalized and the Fibonomial forms of Corollary 19.2 (with
v =1).

13. -ADDENDUM

While this draft was being prepared and typed, several items became available to me.
These include some articles which I had previously only known via references, reviews, or
memory, and some articles which have only just appeared. This addendum will briefly discuss
these articles and the changes tc be made in a later version of this paper. The references
[Al1], etc., refer to the addendum to the references.

Gould [19] gives more detailed information and references on generalized binomial coef-
ficients than I have indicated in Section 12. He remarks that the g-binomial coefficients
date back to Causs and Cauchy, prior to Jackson.

Gould has now published [Al], the paper announced in [20]. He again attributes Corollary
19.2 (with v = 1) to Hermite, referring to [7, p. 272]. He attributes the multinomial analog
to Ricci [A4], although it is due to Schonemann [7, p. 264, item 18]. He also considers the
following equivalent form of Corollary 19.2 (with v = 1):

n—k+1]<71)
(n+ 1,k) '\k/°
He gives simple proofs based on (n,k) = na + kb. He gives a number of variations and special
cases of this type of divisibility relation and extends many of them to Fibonomial coeffi-
cients.

Gupta [24] also shows the form of Theorem 6 given in [6] of Section 2, part of Corollary
14.1, and part of Theorem 13. His paper [A2] is an earlier and alternate version of [25].

Sato [A4] has obtained the results of Stickelberger and Kazanzidis discussed in Section
12.
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A MATRIX GENERATION OF FIBONACCI IDENTITIES FOR F,,,

VERNER E. HOGGATT, JR.
San Jose State University, San Jose, CA 95192
and
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A series of identities involving even-subscripted Fibonacci numbers and binomial coeffi-
cients are derived in this paper by means of a sequence of special 2 x 2 matrices. We begin
with the simplest case.

3 1
Let R = ) and the characteristic equation, of course, is 22 -3z +1 = 0, which is
-1 0 :
related to the recursion formula for the alternate Fibonacci numbers. By induction, one can
easily establish that, for all integers n,

R" _ F2n+2 FZn
'F2n 'FZn-Z

2 1
and, if the auxiliary matrix S = ( ), then
-1 -1
n Fones Fonsr
RS = s
'F2n+1 'FZn-l

where F, is the nth Fibonacci number defined by F,,, = F, + F,_;, F; = F, = 1. Since R satis-
fies its own characteristic equation, R2 - 3R+ 1 =0o0r (R+ I)? = 57, which leads to

(1) R™(F + I)?" = 5"R™*™,

(2) R™R + I)®"S = 5"R"*"S,

(3) RM(R + I)2n+1 = San-o-M(R + I),

(4) R™(R + I)*"*15 = 5"R"*™(R + I)S.

We use the binomial theorem to rewrite equation (1) and equate elements in the upper
right from equations (1) and (2), which gives us

2n

Z (27:1)1?;“"" = San+m’

k=0
2n 2
n
an ; (k>F2k+2m = 5"F pi2ms
=0
pi om
2" Z(k>F2k+2m+1 = 5 Fonsomer-
k=0

Similarly, from equations (3) and (4), we can obtain

2n+1
2n + 1
(3') kZ:o ( k >F2k+2m = 5n(l'-'z»+2m+2 + F2n+2m) = 5nL2n+2m+1’
2n+1 om + 1
n
(4" E( k >F2k+2m+1 = Sn(F2n+2m+3 + F2n+2m+1) = 5nL2n+2m+2’
k=0

where L, is the nth Lucas number defined by L,,, =L, + L,_;5 L, =1, L, = 3.

The equations above can be simplified still further. Equations (1') and (2') can be com-
bined by letting p = 2m in (1') and p = 2m + 1 in (2'), and noting that p takes on any integral
value, we write, finally,
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