1 1 o Two-by-Two Matrices Related
to the Fibonacci Numbers

A two-by-two matrix is represented by a symbol such as

a b
PCE
where a, b, ¢, and d represent any real numbers. These numbers are called

elements. In this section, all matrices mentioned are to be considered to
be two-by-two matrices.

I'wo matrices,
a b e f
A= (C d> and B = (g h> R

are equal if and only if their corresponding elements are equal. That is,
A=B
if and only if
a=¢e, b=f c=g and d=h

The matrix which is the sum of two matrices A4 and B is defined to be

_fa b e f\ _ (a+e b+[f\
A+B—<c d>+<g h>_<c+g d—{-h)

The zero matrix Z is defined as

0 0
2=(0 0);
It can be shown (Exercise 1, page 68) that

A+Z=2Z+ A=A,

and so Z is the additive identity element for the system of two-by-two matrices.
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Also, it can be shown (Exercise 2, page 68) that, in general,
A+ B =B+ A.

Thus, matrix addition is commurative. It can also be shown (Exercise 3,
page 68) that matrix addition is associative.
We define the negative, or additive inverse, of A to be

4= (—a’ ——b>
—c =
and the difference of A and B as
A— B= A+ (—B).
You can verify (Exercise 4, page 68) that
A+ (—A4) = Z

When we are dealing with matrices, we refer to the real numbers as
scalars. The product of a scalar s and a matrix A4 is defined to be

A4 = (@ b  (sa sb .
~ \¢c d)  \sc sd
It can be shown (Exercise 5, page 68) that

(sr)A = s(rA).

The matrix which is the product of two matrices 4 and B is defined to be
4 - (° b\ (e S\ _ (ae+ bg af+ bh\
“\c¢ d/\g h)  \ce+dg cf+ dh
The identity matrix [ is defined as

-5 0)

It can be shown (Exercise 7, page 68) that
Al = IA = A,

and so [ is the multiplicative identity element for this system. It can also be
shown that matrix multiplication is associative.

1 1 3 1
LetA=<l O>andB=<0 l>,then.
4B = I 1\/3 1\ (13410 -1y /3 2
_ ~\1 o/\0 1/ \1-34+0-0 0-1/  \3 1
(3 1IN/ 1\ _ (3-1+1-1 1-0y (4 3
BA_(O 1>(l O)-—<O']+l~l 1-O>_<1 O)

Therefore, in this case AB = BA. This demonstrates that matrix multiplica-
tion is not always commutative.

1
1
3-
0-



64 - Fibonacci and Lucas Numbers

IfA = (_: —i) and B = (: }), then we have

o {114 (=DI 11+ (=DI _ (0 0} _
AB“((—1)1+1-1 (—1)1+1-1>’<0 o)“Z‘

Here we note that the product 4B is the zero matrix although neither 4
nor B is the zero matrix. In elementary mathematics, if the product of two
numbers is zero, then at least one of the numbers has to be zero. For matrices
(which are not numbers) this rule does not apply.

If A, B, and C are matrices, it can be shown (Exercise 8, page 68) that
matrix multiplication is distributive over matrix addition. That is,

A(B+ C) = AB+ AC and (B+ C)4 = BA + CA.

Since matrix multiplication is not always commutative, these two distributive
laws do not necessarily say the same thing.
Associated with each matrix 4 is a number, called the dererminant of

matrix 4, and denoted by det 4, which is defined as

b
d

The matrix A4 is said to be nonsingular if det A % 0; otherwise, matrix A
is singular.
We now prove a simple theorem.

det 4 = = ad — bc.

THEOREM |

The determinant, det AB, of the product of two matrices, A and B, is the
product of the determinants, det A and det B. That is,

det AB = (det A)(det B).

Proof. Using the matrices 4 and B shown at the beginning of this section,
we have

_|a b _ _le Sl_

det 4 = dl-—ad be, detB—lg h*—ch /8,
__|ae + bg af + bh

detdB =\ . L dg of + dh‘

= (ae + bg)(cf + dh) — (af + bh)(ce + dg)

= acef + adeh + bcfg + bdgh — (acef + adfg + bceh + bdgh)
= adeh + bcfg — adfg — bceh

= (ad — be)(eh — f3)

= (det A)(det B).
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Before looking at powers of a two-by-two matrix, let us recall how powers
were defined for real numbers. If a is a nonzero real number, then one can
define all integral powers of a as follows:

1 ! .
0 ], a' = a, (1"+1 — anal,

n

- 1 e
and a " = — for positive integral n
an

The definition @t = a”a! is called an inductive definition. We shall also
use an inductive definition for powers of matrices. For any nonzero matrix A4,

A% = ((1) ?) =1, A'=A, and A"*t! = 4"4!

for positive integral n.
We shall now consider a particular matrix

1 1 )
Q=<1 0), with det Q0 = —1,

and we shall prove the following theorem.

THEOREM I
For n > 1, the nth power of Q is given by

n __ F11+1 Fn .
Q"= (Fn Fn—l)
Proof. We shall use mathematical induction. Clearly, for n = 1,
Fy F 11
1 _ 2 1) .
o' - (7 2)-( o)

Assume that QF = (?‘“ If;" > ; then
k k—1

PN _ (Fryr Fi I 1
Qk+l_~QkQ1_(Fk+ Fk_1><l O)

_ <Fk+1 + Fi Fk+1>
Fy+ Fry Fi

_ (Fk+2 Fk+1>.
’ Fk+1 Fy

The proof is complete by mathematical induction.
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THEOREM Il : ,
det Q" = (—1)7%, n> 1.

Proof. The proof is left to you (Exercise 9, page 68).

From Theorem II and Theorem III we have

Fn-{—l Fn

F, F,_ = Fu1Fayr — F:=(=D" n>1

det Q" =

Thus, we have still another derivation of (I;3) of Section 10.
Of much technical interest in the algebra of matrices is the characteristic
polynomial. For a matrix A, the characteristic polynomial is defined to be

P(x) = det (4 — xI) = (‘C’ Z) . A((l) (1))

a b —x 0
B ( d)+( 0—x)
a— x b

c d— x

= x%2 — (a + d)x + (ad — bo).

The equation P(x) = 0, or
x2 — (a + d)x + (ad — bc) = 0,

is called the characteristic equation of matrix A. Note that the constant term
is the determinant of matrix 4 and the linear term has coefficient —(a + d).
which is the negative of (a + d). The sum (a + d) of the elements on the
diagonal of matrix 4 is called the trace of matrix A. The roots of the char-
acteristic equation are called the characieristic roots of matrix A.

For Q, the characteristic polynomial is

det (Q — xI) = l(: (l)> — (8 S)

_l—x 1
- 1 —X

4

= x"—x— 1,

and the characteristic equation is
x2—x—1=0,

which we have called the Fibonacci quadratic equation (page 11). The
characteristic roots of Q are then, of course,

_ N
= I+ +2\/5 and B = l_#_\_S .

a
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Now what are the characteristic equation and the characteristic roots of Q"?

Fn+l—x Fn
Fn Fn—l_x

= x> — (Fug1 + Fa_)x + (FuyrFay — F2)
But F, 41 + Fo_1 = L, [from (Ig) of Section 10] and Fpy Fu_q — F7 =
(= D" [(113)]. Thus,
det (Q" — xI) = x?> — L,x + (= D",
and the characteristic equation is
x? — L,x+ (=" = 0.
The characteristic roots are given by (using Athe quadratic formula)
szﬁthg—q—nﬁ

We now recall from (I;,) in Section 10 that L2 — 4(—1)"* = S5F2; thus,
the roots are

det (O™ — xI) =

Lll + \/5 El
—y—— and

Ln—\/—S—Fn.
2

However, we recall that these are the expressions that we found for o™ and
B" on page 27, and so we have the following theorem.

THEOREM IV

The characteristic roots of matrix Q™ are the nth powers of the charac-
teristic roots of Q, and the trace of Q" is L,,.

You can easily verify (Exercise 10, page 68) that
0’=0+1,

02— 0 —1=2Z

Thus, Q may be said to satisfy its characteristic equation

or

x2—x—1=0.

This is an instance of the following theorem, which we state without proof.

THEOREM YV (Hamilton-Cayley* Theorem)

Every square matrix satisfies its own characteristic equation.

* Sir W. R. Hamilton (1805-1865), Irish mathematician; Arthur Cayley (1821-1895),
English mathematician.
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EXERCISES

. Using

a b (0 O
A——(c d) and Z—-<O 0)
and the definition of addition, show that
A+ Z =272+ A= A

_fa b (e f
A—(C d) . and B—(g h)

and the definition of addition, show that

A+ B=B+ A

_fa b _ (e f _ (i 7
A (c d> , B (g h) , and C ( L [>
and the definition of addition, shon that -

A+ B +C=A4+ B+ O0).
Show that 4 + (—A) = Z.

Using

. Using

Using the definition of scalar multiplication, show that (sr)A = s(rA).

. Show that —A4 = (—1)(A).
. Using

_fa b (1 O
A——(C d) and 1-(0 1)

and the definition of multiplication, show that
Al = 14 = A.
Using A4, B, and C as given in Exercise 3, show that

AB + C) = AB + AC and (B+ C)A = BA + CA.

. Prove that det (Q*) = (—1)" for Q = <: N s
Yy

Showthat 02 = Q + Lor Q> — Q — 1 =2



