4 o Some Geometry Related
to the Golden Section

We shall now consider several geometric problems and their solutions.

PROBLEM 1*

Suppose that we wish to remove from a rectangle, ABCD, three right
triangles of equal area, APAQ, AQBC, and ACDP, as shown in Figure 4.
How shall we locate points P and O?

A x Q y B
w
w+2z
P
z
D xX+y C
Figure 4

Solution. Let
AQ = x, QB =y, AP = w, and PD = z.

Then, since the areas of triangles PAQ, QBC, and CDP are to be equal,

we have
3xw = 3p(w + z) = iz(x + ),

or
xXw = yw + yz = xz + yz.

* J. A. H. Hunter, “Triangle Inscribed in a Rectangle,” The Fibonacci Quarterly, Vol. 1,

No. 3 (October, 1963), page 66.
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From
yw+ yz = xz+ yz

we have

yw = xz,
or

w_x,

z Yy
Also, from

xw = y(w + 2)

we have

_w+z'=l+_z____l+
w

x _
y w

N |-

) w X
Since — = = > we have
z Yy

AR

or

2
<5> ~Z_1=0
v) "y

Again choosing the positive root, we have

But also
x
(A) -,
and so the points P and Q must divide sides 4D and 4B, respectively, in

the Golden Section. Thus:
A Q B
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PROBLEM 2*

If the rectangle ABCD in Problem 1 had been a Golden Rectangle, then

the additional condition +
XT )y _
(B) w-+ z o

would be imposed. Show that in this case APQC would be an isosceles
right triangle with the right angle at vertex Q.

Solution. From (A) on page 15 we have
X = ay and W= az,
and so, from (B) above, we have

xty_ap+y_(a+ 1y,
wt+z az4+z (a+ 1)z

But we had w = «az, and so

w=y; thatis, AP = QB.

Since we were given originally in Problem 1 that
zxw = gy(w + 2),
the fact that w = y implies that
=w+ z, that is, AQ =~ BC.
Therefore, right triangles PAQ and QBC are congruent. Thus,

Q=~0C and LAQP= /BCQ.

Moreover,
m°ZLBCQ + m°£LCQOB = 90.
Since '
m° LAQP + m°LPQC+ m° LCQB = 180°
and A x 0 y B
m°LAQP = m°£LBCQ,
we have w :
m°ZLPQC = 90. P | Wz
Therefore, since in APQC we now 2
have PQ =~ QC and m°ZPQC = 90, D x+yj c

APQC is an isosceles right triangle, as
pictured in Figure 5. Figure 5

* H. E. Huntley, “Fibonacci Geometry,” The Fibonacci Quarterly, Vol. 2, No. 2 (April,
1964), page 104.
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PROBLEM 3

Do two triangles exist which have measures of five of their six parts
(three angles and three sides) equal and yet are not congruent? Your first
impulsive answer may be a resounding No! However, we propose to show
that this is indeed possible.

Solution. Clearly, if among the five parts are three sides, then the triangles
must be congruent. The only possibility then is to have the three angles
of one triangle congruent to the three angles of the other triangle (thus,
the triangles are similar) and two sides of one triangle congruent to two
sides of the other. (Notice that it is not specified that these sides be corre-
sponding sides.) One example of such a pair of triangles (in this case with
integral sides) is shown in

Figure 6, where y\z /\
27 18 12
= = 18 27

18 12 8
Figure 6
Let us see how to find pairs of triangles having just five parts congruent.
First, we know that the triangles must be similar; that is, the measures of the
sides must be related as shown in Figure 7, where r is the ratio of similarity:

rb
. b ra
c rc
Figure 7
The additional conditions are
b=ra and c=rb=ra.

Thus, the measures of the sides of the two triangles will be

a, ra, r’a and ra, rla, ra,

as shown in Figure 8:

2
ra rca
/\ /\
r‘a ria

Figure 8

Ifa = 8 and r = 2, you will find the measures of the sides of the triangles
shown in Figure 6. Try other values to find other triangles having this

property.
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PROBLEM 4

If a =4 and r = 2 in Problem 3, then the measures of the sides of the
triangles would be

4, 8 16 and 8, 16, 32.
Can there be triangles with sides of these measures? No, because
44+8<16 and 8+ 16 < 32.
What restrictions must be placed on the values of r, assuming for the present

that r > 1?

Solution. If a, ra, and r2a are to be the measures of the sides of a triangle,
then the sum of each two must be greater than the third. Thus, we have
three inequalities:

(i) a4 ra>r%a or,sincea > 0, 147> r?
(i) ra4+ r’a>a  or,sincea > 0, r+r?2>1
(i) r’a+a>ra or,sincea>0, rZ4+1>r

We are looking for the solution set of these three inequalities.
On the assumption that » > 1, we have

r2>r>l,

and inequalities (ii) and (iii) hold. Thus, we need to consider inequality (i),
which we shall write as

rP<r+4+1, o rP—r—1<0.
Recall that
x*—x—1=0
is the Fibonacci quadratic equation with roots

a=1_+2i§ and g L=V5

Therefore, we can write

() (1)

For the second factor, we have

_1=~/5 1 W5
4 2 277 72

and this is positive for » > 1.
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Therefore, to have
PP—r—1<0

we must have
14 /5

r—l—4;2——\—/——§<0, or r < 5 ,

that is, » < «, and so if » > 1, we must have
I <r<a

in order to have a pair of triangles with just five parts congruent.

PROBLEM 5

Can a pair of right triangles have just five parts congruent?

Solution. Suppose that r > 1. Then r2a is the measure of the longest side.
If the triangles are to be right triangles, we have by the Pythagorean theorem
that

(r2a)? = a? + (ra)®.

Thus,

2 2

2
rta® —r?a® —a* =0

or, since a # 0,
rt—r2—1=0.

Therefore,
2

r° = a,
and so the positive value of r in this case is V.

How can we construct such a pair of right triangles? Recall that in a
right triangle, the altitude from the vertex of the right angle to the hypot-
enuse separates the given triangle into two triangles that are similar to each
other and also to the given triangle. That is, in Figure 9, where angle C
is a right angle,

AACD ~ ACBD ~ AABC. C

Notice that AACD and ACBD are similar
and have one side, CD, in common. If we
had AD congruent to BC, we would have
two right triangles that have just five parts A

congruent. These are shown as Figure 9

AA'C'D’ and ANC'B'D’

in Figure 10 on the next page.
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If we use the letters shown in Figure 10 c
to represent the measures of the sides, we
have
z
x+y_z_x w *
x woy
From
A' x D'y B
xX_X+J
y X Figure 10
we have

2
<£>—§—1=0, and so g
¥y y y

Thus, the point D’ must divide A’B’ in the Golden Section.
Let us find the ratio of similarity for AA’C’D’ and AC’B’D’, that is, the

value of

w z
== — = —-
y w X
Since x = ay, we have
w o oay w2
—_ = = or -—o =
y w 2
Therefore, since r > 0,
w P
r=Y_a,
y

as predicted by our computation on page 19.

Some of the possible shapes for triangles having just five parts congruent
are shown in Figure 11. Those sketched are right and oblique triangles. In
order for such triangles to have only acute angles, we must have

1<r<+va Va=1217

Triangles with sides of
\/& = 1.27 measures a, ar, ar® for
1 <r<aa=1.618

r =

= 1.5

N w

r =

= 1.6

W | oo

r =

ac® = a(la + 1) = 2.618a
Figure 11
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Triangles with sides of
measures ar, ar?, ar®, for
1 <r<a,a=1.618

\ 2

ac® = a(2a + 1) = 4.236a

Figure 11 (continued)

Up to now we have restricted ourselves to » > 1. If r > 1 is the ratio
of similarity of the larger triangle to the smaller triangle, then

r=-
-

is the ratio of similarity of the smaller triangle to the larger triangle. Thus,

in general, we may have

£<r<1 as well as 1 <r<a,

that is, approximately
618 < r <1 or 1 < r < 1618.

The triangles pictured in Figure 12 have ratios that are the reciprocals of
those for the triangles in Figure 11. Notice that each pair of triangles in
Figure 11 is similar to the pair in Figure 12 that has the reciprocal ratio
(compare Exercise 6 on page 25). (If r were 1, then the triangles would be
congruent equilateral triangles.)

a a
—=a(2 — a) = .38a — = a(2a — 3) = .24a
a? od
Triangles with sides of measures Triangles with sides of measures
| 1
a, ar, ar? forl <r< 1,-1- = 618 ar,ar*,ar’for- <r <1,- = .618
x [¢4 24 24

Figure 12
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In Section 3 we defined a Golden Rectangle. We shall now define a
Golden Triangle. In Figure 10, the ratio of the area of AA’B'C’ to the
area of AA’C’'D’ can be found as follows:

Area AA'B'C' = w(x + y)
Area AA'C'D’ = iwx
Area AA'B'C’ x+y=ay-|—y=a+1=a

— — =«

Area AA'C'D’ x ay a a

2

A triangle that has this property is called a Golden Triangle; that is, a
Golden Triangle is one such that when a triangle similar to it is removed
from it, the ratio of the area of the Golden Triangle to the area of the re-
maining triangle is a«. That is, in Figure 10 when AC’B’D’ is removed
from AA’B'C’,
Area AA'B'C’
Area AA'C'D’

= «.

We also note that
Area AA'C'D"  Jwx  x

Area ACB'D’ ~ 3wy y
and
Area AA'B'C’ _ Area AA'B'C' Area AA'C'D' _
Area AC'B'D’ ~ Area AA'C'D' Area ACBD'~ % %7~ ¢
PROBLEM 6

Show that an isosceles triangle with vertex angle measuring 36° is a
Golden Triangle.

Solution. The base angles measure 72°

each. If one of these base angles is

bisected (see Figure 13), two isosceles

triangles are formed. One triangle,

ACDB, is similar to the given triangle,

A ABC, while the other, AACD, is not.
In AABC and ACDB,

Xty _x

— 9

X y Figure 13

and again we have

and the positive result is
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To find the areas of AABC and AADC, draw altitude CE. Then:

2
(:E=,/x2—yT (CE  0)

Area AABC = 3(x + y)(CE)
Area AADC = }x(CE)
Area AABC _x+y _

Area AADC ~ x o
Thus, AABC is a Golden Triangle.
We also note that
Area AADC _ x _ N

x
Area ACDB ~ y

and
Area AABC x+y x4y x_ 2
Area ACDB y X Ty

Since the central angle of a regular decagon is 36° (see Figure 14), we
know from Problem 6 that the ratio of the radius r to the measure s of the
side of an inscribed decagon is a.

N

\_/

Figure 14 Figure 15

Also, in a regular inscribed pentagon, the angle between two adjacent
diagonals at one vertex is 36° (see Figure 15), and so the ratio of the measure
d of a diagonal to the measure s of a side is also a.

A'B’

B'C’
Thus, in each case the ratio of the measure of the longest side to the measure
of the shortest side is a.

The Golden Trianglé appears on pages 61-62 of Tobias Dantzig’s The
Bequest of the Greeks (New York: Charles Scribner’s Sons, 1955) and also
on page 42 of N. N. Vorobyov’s The F ibonacci Numbers (Boston: D. C. Heath
and Company, 1963). Also, see the article, “Golden Triangles, Rectangles,

= .

. . . AB . .
Notice that in Figure 13, EE = « and that in Figure 10,
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and Cuboids,” by Marjorie Bicknell and Verner E. Hoggatt, Jr., in The
Fibonacci Quarterly, Vol. 7, No. 1 (February, 1969), pages 73-91.

PROBLEM 7
Inscribe a square in a semicircle. M N
| N K
Solution. Figure 16 shows the completed con- |\ /1
struction where AMNB is a square. The con- ' \\ / |
struction makes use of the fact that right tri- | \ ¢ F/ :
angles I \ K I
0AM, ODC, OEF, and OBN | /LN
/
are similar. V
A D O E B
Now consider Figure 17, in which AF and FB Figure 16
have been drawn, forming similar right triangles
ABF, AFE, and FBE. Thus,
I1+s _ s ,
| s C F
from which we obtain A7 N
2 // S| N
(£> _s_ 1oy 41 s |
! ! A D E B
and so the positive result is Figure 17
s
- = a.

Thus, point E divides DB in the Golden Section.

Two articles by Marvin Holt, which give further excellent material on the
Golden Section and geometry, are “Mystery Puzzler and Phi” in The
Fibonacci Quarterly, Vol. 3, No. 2 (April, 1965), pages 135-138, and ““The
Golden Section” in the Pentagon, Spring, 1964, pages 80-104.

The Golden Cuboid is discussed in an article of that title by H. Huntley
in The Fibonacci Quarterly, Vol. 2, No. 3 (October, 1964), page 184.

Another interesting reference is Patterns in Space by Colonel R. S. Beard
(available from Brother Alfred Brousseau. St. Mary's College, California
94575). This book describes many appearances of the Golden Section in
variations of the regular solids.
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EXERCISES

. Show that there can be no triangle having three distinct Fibonacci numbers
as measures of its sides.

. Show that a pair of triangles which have the measures of five parts equal, but
which are not congruent, cannot be isosceles.

. Show that
a. if @ < b, then y = (x — a)(x — b) is negative for « < x < b and non-
negative otherwise;

b. ifa = b, theny = (x — a)> > 0 for all x.

. Using the results of Exercise 3a, show that, in general,
a. inequality (i) on page 18 holds when

r2 —r—1<0,thatis, forg <r <a.
b. inequality (ii) on page 18 holds when
r24+r—1>0,thatis, forr < —aorr > —f.

c. inequalities (i) and (ii) both hold when

1
—B <r<a, or -<r<a,
«

since o8 = —1 (Exercise 3c, page 13).

. Using the result of Exercise 3b, show that inequality (iii) on page 18 holds
for r > 0, that.s, that

r’+1>2r>r for r>0.

. The measures of the sides of one triangle are a, ar, and ar? and those of a
second triangle are «, g, and % . By suitably pairing the sides, show that the
triangles are similar and find the ratio of similarity.

. In Figure 16 extend CF to meet BN in point G. Show that rectangle DCGB is

a Golden Rectangle.

. AF
. In Figure 17 show that

FB~©
. In Figure 17 show that:
2 2 2 2
s~ + 2st T — 2st s* 4+ 4st — ¢ 3
, —— = . — —— — = ° = 5
as‘-’—l—t‘2 “« 52 4 12 b ¢ 52 4 12

Hint: Recall that o =a +lL,a4+B=1la—fB= V5.



