5 • Some Fibonacci Algebra

Recall from Section 3 that $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$ are the roots of

(F)
$$x^2 - x - 1 = 0,$$

and so $\alpha^2 = \alpha + 1$ and $\beta^2 = \beta + 1$. Also, $\alpha + \beta = 1$ and $\alpha - \beta = \sqrt{5}$. Moreover,

$$\alpha^{n+2} = \alpha^{n+1} + \alpha^n$$

and

$$\beta^{n+2} = \beta^{n+1} + \beta^n$$

and by using these equations, we found that the Fibonacci numbers can be expressed in the so-called Binet form:

(C)
$$F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta} = \frac{\alpha^n - \beta^n}{\sqrt{5}}, \quad n = 1, 2, 3, \dots$$

Now suppose that we add the members of equation (B) to the members of equation (A), giving

$$(\alpha^{n+2} + \beta^{n+2}) = (\alpha^{n+1} + \beta^{n+1}) + (\alpha^n + \beta^n).$$

If we let $u_n = \alpha^n + \beta^n$, then we have

$$u_{n+2} = u_{n+1} + u_n$$

and

$$u_1 = \alpha + \beta = 1,$$

 $u_2 = \alpha^2 + \beta^2 = \alpha + 1 + \beta + 1 = (\alpha + \beta) + 2 = 1 + 2 = 3.$

Thus, this sequence u_n is the sequence of Lucas numbers defined in Section 2, and so we have a Binet form for the Lucas numbers:

(D)
$$L_n = \alpha^n + \beta^n, \quad n = 1, 2, 3, ...$$

Now look at the following comparison of the Fibonacci numbers and the Lucas numbers:

$$F_1$$
 F_2 F_3 F_4 F_5 F_6 F_7 F_8 F_9 F_{10} ...
1 1 2 3 5 8 13 21 34 55 ...
1 3 4 7 11 18 29 47 76 123 ...
 L_1 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10} ...

Notice that

$$F_1 + F_3 = L_2$$
, $F_2 + F_4 = L_3$, and so on.

It can be proved (Exercise 2, page 29) that in general

$$L_n = F_{n-1} + F_{n+1},$$

from which, since $F_{n+1} = F_n + F_{n-1}$, it follows that

$$(E) L_n = F_n + 2F_{n-1}.$$

You can verify this latter statement for specific examples; that is, you can show that $L_6 = F_6 + 2F_5$, and so on.

We now have F_n and L_n expressed in terms of α^n and β^n . We can also find α^n and β^n in terms of F_n and L_n . If we note that $\alpha - \beta = \sqrt{5}$, then, from the Binet forms, we have

$$\sqrt{5} F_n = \alpha^n - \beta^n,$$

$$L_n = \alpha^n + \beta^n.$$

Adding, we find

$$2\alpha^n = L_n + \sqrt{5} F_n$$

OΓ

$$\alpha^n = \frac{L_n + \sqrt{5} F_n}{2};$$

subtracting, we find

$$\beta^n = \frac{L_n - \sqrt{5} F_n}{2}.$$

Recall that in Section 2 we had occasion to define F_0 as $F_2 - F_1$ (page 6). Similarly, we can define L_0 as $L_2 - L_1 = 3 - 1 = 2$. (Notice that this agrees with the definition by the Binet form, since $\alpha^0 + \beta^0 = 1 + 1 = 2$.) Since $L_1 = \alpha + \beta = 1$, we can now write expression (E) for L_n (above) as

(E')
$$L_n = L_1 F_n + L_0 F_{n-1}.$$

The method of defining F_0 and L_0 suggests that we can also define F_{-1} , L_{-1} , and so on, by applying the formulas

$$F_{n-1} = F_{n+1} - F_n$$

and

$$L_{n-1} = L_{n+1} - L_n$$

repeatedly. Thus, we have:

$$\ldots L_{-4} L_{-3} L_{-2} L_{-1} L_0 L_1 L_2 L_3 L_4 \ldots$$

We can derive a formula for F_{-n} , n > 0, by assuming that the Binet form also holds for negative values of the exponents (compare derivation on pages 10–11):

$$F_{-n} = \frac{\alpha^{-n} - \beta^{-n}}{\alpha - \beta} = \frac{\left(\frac{1}{\alpha}\right)^n - \left(\frac{1}{\beta}\right)^n}{\alpha - \beta}$$

Since $\alpha\beta = -1$ (Exercise 3c, page 13), we have

$$\frac{1}{\alpha} = -\beta$$
 and $\frac{1}{\beta} = -\alpha$.

Therefore

$$F_{-n} = \frac{(-\beta)^n - (-\alpha)^n}{\alpha - \beta} = \frac{(-1)^n (\beta^n - \alpha^n)}{\alpha - \beta} = (-1)^{n+1} \left(\frac{\alpha^n - \beta^n}{\alpha - \beta} \right),$$

and so

$$F_{-n} = (-1)^{n+1} F_n.$$

Similarly, you can show (Exercise 3, page 29) that for n > 0,

$$L_{-n}=(-1)^nL_n.$$

Now suppose that we compute the first 14 successive ratios $\frac{F_{n+1}}{F}$ and

 $\frac{L_{n+1}}{L_n}$. The values of the successive ratios as shown at the top of the next

page suggest that in both cases the value of the ratio becomes closer and closer to α as we take larger and larger values of n. However, we shall not undertake to prove this here. We can also observe that the first Fibonacci ratio is less than α , the second is greater than α , and so on, while the first Lucas ratio is greater than α , the second is less than α , and so on. Moreover,

$$\frac{F_2}{F_1} < \alpha < \frac{L_2}{L_1}, \quad \frac{F_3}{F_2} > \alpha > \frac{L_3}{L_2}, \quad \text{and so on.}$$

 $\alpha \doteq 1.61803398875...$

EXERCISES

Using the Binet form:

- 1. Show that $F_{2n} = F_n L_n$, $n \ge 1$.
- 2. Show that $L_n = F_{n-1} + F_{n+1}$, $n \ge 1$. Hint: Use $\alpha\beta = -1$.
- 3. Show that $L_{-n} = (-1)^n L_n$ for n > 0.
- 4. Show that $5F_n^2 = L_{2n} 2(-1)^n$.
- 5. Show that $L_n^2 = L_{2n} + 2(-1)^n$.
- 6. Show that $F_{n+1}L_n L_{n+1}F_n = 2(-1)^n$.

Using previously found results:

7. Show that
$$\frac{F_{n+1}}{F_n} - \frac{L_{n+1}}{L_n} = \frac{2(-1)^n}{F_{2n}}$$
.

- 8. Show that $F_{-n} = (-1)^{n+1} F_n$ holds also when n < 0.
- 9. Show that $L_{-n} = (-1)^n L_n$ holds also when n < 0.
- 10. Show that $5F_n^2 = L_n^2 4(-1)^n$.
- 11. Show from $L_n = F_{n+1} + F_{n-1}$ that $L_n = F_{n+2} F_{n-2}$.