7 • Divisibility Properties of the Fibonacci and Lucas Numbers

Let us look at the first few Fibonacci numbers:

$$F_1$$
 F_2 F_3 F_4 F_5 F_6 F_7 F_8 F_9 F_{10} F_{11} F_{12} F_{13} F_{14} F_{15} ... 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ...

We observe the following:

- 1. Every third F_n is even; that is, $F_3 = 2$ divides $F_6 = 8$, $F_9 = 34$, $F_{12} = 144$, $F_{15} = 610$, . . .
- 2. $F_4 = 3$ divides $F_8 = 21$, $F_{12} = 144$,
- 3. $F_5 = 5$ divides $F_{10} = 55$, $F_{15} = 610$,
- 4. $F_6 = 8$ divides $F_{12} = 144, \ldots$
- 5. $F_7 = 13$ divides $F_{14} = 377, \dots$

These examples suggest the following theorem.

THEOREM I

Every Fibonacci number F_k divides every Fibonacci number F_{nk} for $n = 1, 2, 3, \ldots$; or if r is divisible by s, then F_r is divisible by F_s .

First, consider, for example,

$$F_{10} = \frac{\alpha^{10} - \beta^{10}}{\alpha - \beta}.$$

The difference of equal powers of two numbers can be factored, often in various ways. Here we may divide $\alpha^{10} - \beta^{10}$ by $\alpha^2 - \beta^2$ or by $\alpha^5 - \beta^5$ as shown on the following page.

$$F_{10} = \frac{\alpha^{10} - \beta^{10}}{\alpha - \beta}$$

$$= \frac{\alpha^2 - \beta^2}{\alpha - \beta} (\alpha^8 + \alpha^6 \beta^2 + \alpha^4 \beta^4 + \alpha^2 \beta^6 + \beta^8)$$

$$= F_2[(\alpha^8 + \beta^8) + \alpha^2 \beta^2 (\alpha^4 + \beta^4) + \alpha^4 \beta^4]$$

Since $\alpha\beta = -1$, we have

(A)
$$F_{10} = F_2(L_8 + L_4 + 1).$$

Also, we have

$$F_{10} = \frac{\alpha^{10} - \beta^{10}}{\alpha - \beta}$$

$$= \frac{\alpha^5 - \beta^5}{\alpha - \beta} (\alpha^5 + \beta^5), \text{ or}$$

$$F_{10} = F_5 L_5.$$

Thus, since $(L_8 + L_4 + 1)$ in equation (A) is an integer, F_2 is a factor of F_{10} ; also F_5 is a factor of F_{10} as shown by equation (B).

In general, to see why F_{nk} is divisible by F_k , consider the factorization

(C)
$$F_{nk} = \frac{\alpha^{nk} - \beta^{nk}}{\alpha - \beta}$$
$$= \frac{\alpha^k - \beta^k}{\alpha - \beta} (\alpha^{(n-1)k} + \alpha^{(n-2)k} \beta^k)$$
$$+ \alpha^{(n-3)k} \beta^{2k} + \dots + \alpha^k \beta^{(n-2)k} + \beta^{(n-1)k})$$

In the right-hand parenthesis, the first and last terms may be paired to form a Lucas number:

$$\alpha^{(n-1)k} + \beta^{(n-1)k} = L_{(n-1)k}$$

The second and next-to-last terms may be paired to form a product of $(-1)^k$ and a Lucas number:

$$\alpha^{(n-2)k}\beta^k + \alpha^k\beta^{(n-2)k} = \alpha^k\beta^k(\alpha^{(n-3)k} + \beta^{(n-3)k})$$
$$= (\alpha\beta)^k L_{(n-3)k} = (-1)^k L_{(n-3)k}$$

And so on. Notice that the number of terms in the right-hand parenthesis of (C) is n. If n is even, then the terms match up in symmetric pairs to make Lucas numbers, clearly adding up to an integer. See, for example, equation (B), where

$$F_{10} = F_{2\cdot 5} = F_5 L_5,$$

with k = 5 and n = 2, which is even. If n is odd, then the terms still match

up in symmetric pairs except for the middle term, which is of the form $(\alpha\beta)^{\frac{(n-1)k}{2}}$, clearly an integer. Again the right-hand parenthetical expression in (C) is an integer. See, for example, equation (A) where

$$F_{10} = F_{5.2} = F_2(L_8 + L_4 + 1),$$

with k = 2 and n = 5, which is odd.

Another interesting theorem is given in terms of the greatest common divisor of two positive integers. The greatest common divisor of two positive integers a and b is denoted by

$$(a, b) = d,$$

meaning that d is the greatest positive integer dividing both a and b. For example,

$$(14, 2) = 2$$
, $(24, 15) = 3$, and $(6765, 610) = 5$.

This theorem can now be stated as:

THEOREM II

$$(F_m, F_n) = F_{(m,n)}.$$

This means that the greatest common divisor of two Fibonacci numbers is a *Fibonacci number* whose subscript (index) is the greatest common divisor of the subscripts (indices) of the other two Fibonacci numbers. Thus,

$$(F_{15}, F_{14}) = (610, 377) = F_{(15, 14)} = F_1 = 1;$$

 $(F_9, F_6) = (34, 8) = F_{(9, 6)} = F_3 = 2;$
 $(F_{12}, F_6) = (144, 8) = F_{(12, 6)} = F_6 = 8.$ Here F_6 divides F_{12} .

Theorem II can be proved by using the Euclidean Algorithm* or as the solution to a Diophantine equation.†

Theorem I and Theorem II may be combined as:

THEOREM III

 F_n is divisible by F_m if and only if n is divisible by m.

* N. N. Vorobyov, *Fibonacci Numbers* (Boston: D. C. Heath and Co., 1963), pp. 22–24. † Glenn Michael, "A New Proof for an Old Property," *The Fibonacci Quarterly*, Vol. 2, No. 1 (February, 1964), pp. 57–58.

Let us now look at the first few Lucas numbers:

$$L_1$$
 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10} L_{11} L_{12} L_{13} L_{14} L_{15} ... 1 3 4 7 11 18 29 47 76 123 199 322 521 843 1364 ...

We immediately notice that every third L_n is even, as was the case for the Fibonacci numbers.

We next state without proof two interesting theorems.

THEOREM IV (L. Carlitz)*

$$L_n$$
 divides F_m if and only if $m = 2kn$, $n > 1$.

For example, $L_3 = 4$ divides $F_6 = 8$, $F_{12} = 144$, and so on.

THEOREM V (L. Carlitz)*

$$L_n$$
 divides L_m if and only if $m = (2k - 1)n$, $n > 1$.

For example, $L_3 = 4$ divides $L_9 = 76$, $L_{15} = 1364$, and so on.

It is easy to see that two consecutive Fibonacci numbers have no common factor greater than one. If F_{n+2} and F_{n+1} had a common factor d, then $F_n = F_{n+2} - F_{n+1}$ would also be divisible by d. Thus, we could progress down to $F_2 = 1$, which d would have to divide. Since d is a positive integer, d must be 1. A similar argument applies to Lucas numbers. Thus, we have:

THEOREM VI

$$(F_{n+2}, F_{n+1}) = 1.$$

$$(L_{n+2}, L_{n+1}) = 1.$$

EXERCISES

Refer to the list of Fibonacci and Lucas numbers on page 83.

- 1. Verify that F_7 divides F_{14} , F_{21} , and F_{28} .
- 2. Verify that F_{10} divides F_{20} , F_{30} , and F_{40} .
- * L. Carlitz, "A Note on Fibonacci Numbers," *The Fibonacci Quarterly*, Vol. 2, No. 1 (February, 1964), pages 15–28.

- 3. Verify that F_{24} is divisible by F_3 , F_4 , F_6 , F_8 , and F_{12} .
- 4. Verify that F_{30} is divisible by F_3 , F_5 , F_6 , F_{10} , and F_{15} .
- 5. Verify that L_4 divides F_8 and F_{16} .
- 6. Verify that L_7 divides F_{14} and F_{28} .
- 7. Verify that L_4 divides L_{12} and L_{20} .
- 8. Verify that L_5 divides L_{15} and L_{25} .
- 9. Verify that

$$F_{12} = F_3(L_9 - L_3) = F_3L_3L_6$$

= $F_4(L_8 + 1)$
= F_6L_6 .

10. Verify that

$$F_{18} = F_3(L_{15} - L_9 + L_3)$$

$$= F_6(L_{12} + 1)$$

$$= F_9L_9.$$

- 11. Find the greatest common divisor of F_{16} and F_{24} .
- 12. Find the greatest common divisor of F_{24} and F_{36} .