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EDITORIAL

The Fibonacci Association was formed in order
to exchange ideas and stimulate research in Fibonacci num-
bers and related topics. From the start, the group was
active in prodﬁcing results and it soon became evident that
a journal would be highly desirable for the rapid dissemina-
tion of this research, Another phase of activity was the
gathering of bibliographical material which was extensive.,
Our present bibliography of over seven hundred items indi-
cates that the Fibonacci numbers have long sustained a
wide interest with papers appearing in many languages and
contributors ranging from curious amateurs to serious re-
searchers,

We hope that the journal may serve as a focal
point for widespread interest in Fibonacci numbers, es-
pecially with respect to new results, research proposals
and challenging problems. In addition we wish to help nur-
ture beginners in the fundamentals of Fibonacci numbers,
using the field of recurrent sequences as a background in
which vari ous basic concepts of simple research may be il-
lustrated.

Mathematics teachers and students of all levels
are encouraged to share our enthusiasm and to develop an
interest in arithmetic number sequences through participa-
tion in classroom projects, elementary problem sections,
and simple exploration of Fibonacci number facts, The
thrill of discovery is wonderful; and devising a good proof
is satisfying, even if the discovery or proof is not new, so
long as it is an original experience for the student.

Manuscripts submitted for publication should be
typewritten, double-spaced and carefully prepared, Au-
thors are encouraged to keep a complete copy of their man-
uscript. The articles should be written in a style which is
more expository than is usuelly found in mathematical
journals. Besides the technical papers there will also be
"Problem and Solutions'' sections, both elementary and ad-
vanced. In addition, there will be research proposals for



readers looking for something to investigate. Results
therefrom will receive careful attention.

This is a journal for active readers; the editors
desire reader participation especially from mathematics
teachers and students,

VEH
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A GENERALIZATION OF SEMI-COMPLETENESS 3
FOR INTEGER SEQUENCES

J.L.Brown,Jr.
Ordnance Research Laboratory, The Pennsylvania

State University, University Park, Pa,

Notation
In this article, the notation fi(ee) will be used to

SN

1

signify

Given a sequence fi(go) of positive integers and
two auxiliary sequences ki(oa) of positive integers and mi(oo)

of nonnegative integers, we wish to consider the possibility
of expanding an arbitrary positive integer n in the form

M
n = f}aif

i ?

where M is finite and each ¢, is an integer (zero and nega-
i
tive values allowed) satisfying

-m. < o. < k. for i= 1,2,...,M.
1 — 1 — 1

Throughout the paper, the convention is adopted that ki(go)

and mi(@o) will always denote given sequences of positive
and nonnegative integers, respectively,

As an application of the results to be proved, we
shall show that every positive integer n has an expansion in

the £
e form M

n = XYa. FP,
1 1 1

where p is a fixed integer greater than or equal to 2,
Fi(m) = {1,1,2,3,5,..... } is the usual Fibonacci sequence



4 A GENERALIZATION OF SEMI-COMPLE TENESS

-2
and @, is an integer satisfying |ai\ < 2P %for each val-
ue of i}

DEFINITION 1: A sequence of positive integers fi(oo), is
said to be quasi-complete with respect to the sequences
k(=) and m_ (=) iff (if and only if)

N
0 <n<l 4 2 k(f  implies
ii
1
N
(1) n =2 .1l with ¢ . integral and
11 1
1
(2) -m; < o, < ki for i = 1,2,....,N.

The purpose of the present paper is to obtain a
characterization of quasi-~completeness and to investigate
the conditions under which the representation in (1) is unique.
Moreover, we will also show that any nondecreasing
sequence of positive integers fi(oo y which is either complete
or semi-complete must also be quasi~-complete,

Before proceeding to the proof of the character-
ization theorem, we recall some pertinent definitions and
a lemma,

DEFINITION 2: (Reference l). A sequence of positive inte-
gers fi(oo) is complete iff every positive integer n has a re-
presentation in the form

(=]
(3) n = Cifi’ where each c is either zero
1

Oor one,

DEFINITION 3: (Reference 2). A sequence of positive in~
tegers . (w) is semi~complete with respect to the sequence
of positive integers ki(co), iff every positive integer n has a

representation
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e}
(4) n =3 cifi , where each <, is a nonnegative
1

integer satisfying

(5) 0 < c. < k.

LEMMA 1: (Alder, Ref., 2, pp. 147-8). Let fi(co) be a given
sequence of positive integers with f1 =1 and such that

P
fp+l < 1 + Ekifi forp = 1,2,3,....,
1

where k.(«) is a fixed sequence of positive integers, Then

for any positive integer n satisfying the inequality

N
0 «n <14+ ZkIi,
1 i
there exist nonnegative integers, ai(N) ; such that
N

n = Yyaf. and 0 = @ = k.
l11 i i

fori 1,2,.4..,N.

The following theorem gives a necessary and
sufficient condition for quasi-completeness,

THEOREM 1: For given sequences, ki(oo) and mi(oo), the
sequence of positive integers fi(oo) with fl
plete iff

=1 1s quasi-com-

P
+ —
(6) fp . 2 1 + ? (ki mi) fi forp=1,2,3...

PROOF, Assume condition (6) is satisfied, and let n be a
fixed positive integer satisfying
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N
0 < n< 1l 4 Zkif. Then
ii
1
N N
0 <n 4+ Zmf <1 4+ Z(k, +m)f,
ii S i’ i
1 1
and Lemma 1 implies
N N
(7) n + Zmf = ZXZB. f., where each 3. is a non-
1 11 l 11 1

negative integer satisfying 0 < Bi < ki + m, for

eachi = 1,2,...,N, Thus

N
(8) n .= ;2 (Bi - rni) fi , with -m, < ‘Bi-mi < ki s
and the identification o = Bi - m, fori = 1,2,...,N

shows that fi(cc) is quasi~-complete,

Conversely, assume f («) is quasi-complete,
Then by Definition 1, the inequality

N
0 <n<1l + Zkf, implies
ii
1
N
n = o f. with-m, < a < k,
R i="1= "1

and we wish to show that (6) is satisfied,

For a proof by contradiction, assume (6) does
not hold; then, there exists an integer r greater than zero
such that

(9) f = 1 <+

ro+1 (k; + my) L .

!
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Hence, . 1
r 4
f - - < 2
0 < r +1 izmif11<fr+l l+2{kifi’

and by the quasi-completeness of fi (=),

T ral
(10) gy~ oyl -l = 2 o f, with -m, =a =k.
1 1
Now, in the representation (10), « , > 0, for, if not,
then T
r
£r+l$ar+lfr+1+1+?(ai+mi)fi
r r
<1l + Z(w. +m)f. <1 + Z(k. +m) 1.
—_ 1 1 1 — 1 1 1
1 1
in violation of assumption (9). Thus, from (10)
r
(11) -=1Z(o¢i+1ni) fi -1 = (ar +1-I) fr+1 > 0.

But the left hand side of (11) is clearly <=-l1, giving the de-
sired contradiction, We conclude that (6) must be satisfied
for all values of p > 1.

For nondecreasing sequences, quasi-complete -
ness can be rephrased in terms of semi~completeness ac~
cording to the following Corollary:

COROLLARY 1: A nondecreasing sequence of positive in-
tegers f (») is quasi-complete with respect to the sequen-
i

ces
ki(oo) and mi( @)

iff fi( ») is semi~complete with respect to the sequence

{l, + m.}
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PROOF: From [ 2 ] and Theorem 1, the necessary and
sufficient condition for both statements is inequality (6).

COROLLARY 2: If a nondecreasing sequence of positive in-
tegers f, (oo) with £, =1 is complete, then it is also quasi-
complete with respect to arbitrary sequences, k. ( } and

m, ().

PROOF: By Theorem 1l of [17,

P p
2s o=
fp+1_<_1 +;fi <1 +zl:(ki+mi)fi forp=1,2,..

for arbitrary sequences Kk, (co) and m, (co), since k > 1
andm > O0foralli > 1

COROLLARY 3: If a nondecreasing sequence of positive
integers f (oo) with f. =1 is semi-complete with respect to
the sequence of positive integers kl( =), then it is also
quasi~-complete with respect to the same sequence k, ( )
and any sequence m, (=) of nonnegative integers,

PROOF: From Theorem l of [27,

p p
fp+1 <1 + zl:kifi < 1 + Zl;(ki-{-mi) fi’

and the Corollary is immediate from the characterization
of quasi-completeness, Alternatively, Corollary 1 implies
the result since semi~completeness with respect tokj («}
implies semi~-completeness with respect to {ki + mi} .

Before discussing uniqueness, we note that, for
given sequences k (o) and m., (co), quasi~-completeness is a
sufficient condition for every p051t1ve integer to possess a
representation in the form of equation (1). However, if the
m, are not all zero, then quasi~completeness is not neces~
salry for such representations even in the case of a nonde~
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creasing sequence f (»), For, let ki =m, =1for all i > 1,
and consider the particular sequence ’ B

f(e) ={1,10,100,101,102,103,104,105,... }

1

Then the inequality

f < 1+22Z fi is not satisfied for p=l, 2, .;

nevertheless, any positive integer n has a representation in
the prescribed form:

n = (102-101) +{104-103) + ...+ [{100 +2n)-(100 +2n-1)]

Clearly, the same situation obtains for any se-
quence f, (o) which contains all consecutive integers after
some fixed index n =n_ , where n_ may be arbitrarily
large, This shows that in order to obtain a necessary con-
dition which holds for all members of the sequence, some
additional constraint must be introduced. The one chosen
in the above theorem requires that whenever

N
n <1 + Ykif , the representation for n can be
1 11
accomplished in terms of the first N members of the se-
quence, Thus, for a quasi-complete sequence, every pos-

itive integer which is N

< lzkifi
can be represented in the proper form using only the terms
fl, fZ’ f3, ceo e 'f. But the largest number that can be re-
presented in the proper form using only these terms is

N
¥ k.1,
1

aTe

11

so that, in this sense, the condition is the best possible,
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In order to discuss uniqueness of the representa-
tion, we introduce, for given sequences k () and m., ( ®),
the particular sequence of positive 1ntegers o; (), defined
by

g = 1
(12) p

— { Y = .
¢p+1_1 +ZI;(ki+vni)@i’ forp =1

It is straightforward to show that the terms of
this sequence may also be written in the equivalent form:

(13)

P
¢p+1 = I%(l +ki+mi)’ for p =1,

!Iﬂ

DEFINITION 4: For given sequences k (o) and ml(oo ), @
sequence of positive integers fl( ) will "be said to possess
the uniqueness property iff for any N> 0, the equation

: N N
(14) b o fi = X Bifi,wrch -m. < @ < ki
I 1
and -m, < Bi-<— ki’ i =1,2,0000,N
implies o, = ‘Bi fori = 1,2,...,N. (In other words, ev-

ery integer , positive or negative, which possesses a repre-
sentation in the required form has only one such represen-
tation in that form.)

THEOREM 2: Let k (o) and m.(») be given and let fl(m)
be a quasi-complete sequence of positive integers with
1 =1,

Then fi( =) possesses the uniqueness property iff

(15) f :¢1 for 1 = 1; 2, 33"""

1

PROOF: Assume f.(x) possesses the uniqueness property
and that fi =, does not hold for all i > 1. Then there
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exists a least integer N> O such that F__ 4 ¢ N (Note that
N > 1). From the quasi-completeness, we have

N-1 N-1
0 < fN_<_l + I;, (K.i +mi)fi =1 +§ ((Ki +mi) ©, = O

Since fN 4 o N We must have fN < N and

N-1
2 (1 .
0 < fN<1 + : (Ki -1—mi)<pi
By Lemma 1, fN can be written in the form
N-1 N-1
(16) fN,:" Zla Y, 0, = ? Y5 fi where each y; is a nonneg-

ative integer satisfying 0 < y. <k, *+ m,
- 71 =1

Hence,
N-1 N-1 .
(17) fN - f} mifi = 4 (v, ~m) fi , where

-m. < yi-m.< k.

Applying the uniqueness property to (17), we find
that y, -m; = -m, or Y T Ofori=1,2,.00..,N-1,
Thus, from (16), £ = 0, a contradiction, and we conclude
that fi =0, for all”'i> 1

For the converse, we must show that ¢i( o )
obossesses the uniqueness property, The proof is by con-
:radiction, If 0, (= ) does not possess the uniqueness
property, then there is a least integer N > 0 such that
ai(N) and Bi(N) exist having the property

N N
(18) Lo g = 21: Bicp. with -m. < «

1 .l 1
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- < i =
and mif'Bi—ki' (i 1,2,...,N)

N
1

Clearly, N>1, since a; ¢; =8, ¢;implies
oy = By . Moreover, we assert that N # BN in (18). For

ifa . =B, , then
N N N-1 N-1
= 1 - a <
fa %) z Bi‘pi’ with m, < i—kl,
sm < B< ks (= 1,2,...,Nal)
Nal

and ) | o £ 0. But this contradicts our
1

choice of N as the smallest upper limit.affording two dis-
tinct representations., Hence aN £ BN .

From (18)
N-1
and therefore,
N-1

(20) o< | By-ay oy < z | o; -B;le;
N-1
< Z (ki +mi)¢i = (pN-l,
1

giving a contradiction.

EXAMPLES: (a) As our first example, we consider the se-
quence of pth powers of the Fibonacci numbers, where
p > 2. Itis known [17] that the sequence Fi(oo),which is

defined as {1,1,2,3,5,....}, is complete; therefore,
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every positive integer n has a representation in the form
M

n = c.F. . .
{‘3 i1, where each c. is either 0 or 1,
1

To generalize this result, we leave it to the reader to ver-
ify the following inequality:

n
(21) FP < 1 + anl »FP , where p is a fixed integer
n+l — y b

greater than or equal to 1. From (21), it is clear that, for
sequences ki(go) and m, (=) defined by ki =m,,

p-2 .

m, = 2, for alli> 1, the sequence

FP (=) is quasi-complete. Thus every positive integer n
has a representation in the form

=]
(22) n = o, F? , where o, is an integer
1 1
. . p-2 .
satisfying lai| < 2 , for i > 1.
Moreover, from Theorem 1, if N is chosen so that
N 2
0 < n < g 2p Fp )
1 i

then n has at least one representation in the form (22)
which uses only the terms

P, "R, ... FP .

1 2 N
N
. 2 . )
In particular, 0 < n < 1 + % Fi implies
1
N 2
n = L a.F ,where each . is
1 i1 i

either -1,0, or +1.



14, A GENERALIZATION OF SEMI-COMPLE TENESS

(b) To illustrate Theorem 2, let ki(co) and mi(co)
be defined by k, = m, = 1 for alli > 1, Then, if a given se-
quence ,fi(m) is quasi~complete with respect to ki(oo) and
mi(m), every positive integer n has a representation

®
n =3 o, fi’ where each o, is either =1,0,0r +1

1
Next, define [ compare (13) ]

(23) n 1 n
ON 1 = 1;[(1+ki+mi) =l;[3 = 3,forn > 1,
n

Then = 3n...1 for all n> 1, and since =1 +2T 0. ,

the sequence gpi(ca) is quasi~complete with respect to the
unity sequences, ki(oo) and m, (). Moreover, according
to Theorem 2, representations are unique in the sense that
if M M
= i <
?0‘1‘91 ?Bi(’oi w1th|ai|§_1and‘/3i[_lfor

ii 1, thenai: Bi fori =1,2506605M.

Combining Theorems' 1 and 2, we have that every
integer n satisfying

N . N
-1 3
0 <n<1l1l + Z 31 = +1
1 2
_ N .
(namely, the integers1,2,3,...,3 -1 ) has a unique re~
2
presentation in the form
N
n =% ai3 with each ai:—1,0,0r+1
1

The reader may note that this result provides a
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solution to Bachet's weighing problem [ 3] . It is also left
to the reader to interpret the quasi-complete sequence
@i(@a) of (13) as the solution of a dual-pan weighing problem
with the constraint that at most ki weights of magnitude ®;

can be used in the right pan, at most m, weights of magni-
. 1 .
tude ¢, can be used in the left pan, and every integral num-
ber of pounds less than or equal to
N

;‘3 <5 €5
must be weighable using only the weights, Bys Gooree

O
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16 EXPANSION OF ANALYTIC FUNCTIONS IN
POLYNOMIALS ASSOCIATED WITH
FIBONACCI NUMBERS

Paul F. Byrd
1. Introduction, A problem which has long been of funda.

mental interest in classical analysis is the expansion of a
given function f(x) in a series of the form

(1.1) fx) = Tb_P_(x)
n= O

where { P (x) } is a prescribed sequence of polynomials,
and where the coefficients b are numbers related to f, In
particular, the inn.umerableninvestigations on expansions
of "arbitrary' functions in orthogonal polynomials have led
to many important convergence and summability theorems,
and to various interesting results in the theory of approxi-
mation, (See, for example, Alexits [ 1], Szegd [2],
Rainville[ 3], and Jackson [4] .) Numerous recent stud-
ies have also been made on the expansion of analytic func-
tions employing more general sets of polynomials (e.g,,
see Whittaker[ 5], or Boas and Buck [ 6] )., There is thus
already in existence a great wealth of theory which may be
applied when a particular set of polynomials is introduced
to accomplish a certain purpose,

In the present article, we shall apply some avail-
able results in order to consider the expansion of analytic
functions in a series of a certain set of polynomials which
can be associated with the famous numbers of Fibonacci,
Our primary objective is to illustrate a simple, general
technique that may be used to obtain expansions of a given
class of functions in terms involving Fibonacci numbers,
Some important broad questions and problems concerning
convergence and the representability of our polynomial ex-
pansions in general will not be discussed, however,

2. Fibonacci Polynomials, By 'Fibonacci polynomials'
we shall mean the sequence of polynomials { (pk(x)} R
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(k =0,1,.00000) satisfying the recurrence :t'ela’cion1

(2.1) (pk+2(x) -2x ¢k+1(x) - gpk(x) = 0, ~o <x<®

with initial conditions

(2.2) Py = 0, @) =L

In the special case when x = 1/2, equations (2.1) and (2. 2)
clearly reduce to the well-known relations [ 7] that fur-
nish the Fibonacci numbers 0,1,1,2,3,...., which we shall
denote by ggk(l/Z) or qu

A generating function defining the polynomials
(pk(x) is

S

LI}

(2.3)

e
1 -2xs - s K=

0

Now since the left member of (2.3) changes sign if x is re-
placed by (~x) and s by (~s), we have

(2.4) o - = (0o ()

thereby showing that CR (x) is an odd function of x for k
odd and an even function of x for k even, Upon expanding

the left side of (2,3) and equating coefficients in s, we ob-
tain the explicit formula

[k/2] ,. ,
(x) = T (K;?)(a@K'hn,(kiob

m=0

(2.3) Pral

1A related set of polynomials, which satisfies the re-
lati _ - - _ :
currence relationy, Z(:x;) XYy l(x) yk(x) 0, was

considered in 1883 by Catalan [ 8]. The name 'Fibonacci
polynomials' is also given to solutions of the relation

= + =
Ziy 2(x) Zk+l<X) x ZK(X)’ z (x) =0, zy

0
gated by Jacobsthal [9].

(x) =1, investi-
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where [k/2 ] is the greatest integer < k/2.

An alternative form for expressing the polynomi-
als ggk(x) may be found by introducing the exponential gen-
erating function defined by

(2. 6 Y(s,%) = T o (x) s
k=0 k!

This transforms the recurrence relation (2.1), and the ini-
tial conditions (2. 2), into the differential equation

2
. d
(2.7) .ZY—ZXj;[ -Y =0
ds
with conditions
dy | =1
(2.8) Y(O,X) = O, a—s—‘l s—0

1 sa sa

(2.9) Y(S,X): ——————-—r [e 1-e 2],
2/ (L+x")

where

(2.10) a; = X+vf(l+xz),azgx—/(1+xz).

If we now apply the inverse transform

k
d'Y

(2.11) gpk(x) = — s 0’ k= 0,1,2,....
ds -

(2.12) x = sinh @ , f(1+x2) = coshy

we obtain
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¢2k(x) = sinh 2kgy
h w
(2.13) cos (k =0,1,2,....)

¢2k+1(X) = cosh (2k+1) w
cosh w

3. Some Other Relations, We note, as can easily be shown
that the polynomials . (x) are related to Chebyshev's pol-

ynomials Um(x) of the second Kll’ld [37 by

(3.1) @y(x) =U (ix) =0, @___ (x) = (-)" U__ (ix),
i=/-,m> 0).

The Chebyshev polynomials themselves of course belong to
a larger family designated as 'ultraspherical polynomials'
or sometimes 'Gegenbauer polynomials' 2] . Unlike
those of Chebyshev or of Gegenbauer, however, our Fibon-
acci polynomials gom(x) are not orthogonal on any interval
of the real axis,

The sequence gak+l(x), (k =0,1,2,...) is a so~
called simple set, since the polynomials are of degree pre-
cisely k in x, as is seen from (2.5). Thus the linearly in=-
dependent set contains one polynomial of each degree, and
any polynomial P (x) of degree n can clearly be expressed
linearly in terms of the elements of the basic set; that is,
there always exist constants <k such that the finite sum

n

(3.2) P (x) = 2Z c o (x)
n k= 0 k Tk+1

is a unique representation of P_(x).
n

These polynomials of Chebyshev are not to be con=
fused with the Chebyshev polynomials T (x) of the first
kind, which are useful in optimal- interval interpolationf10 7,
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Before we seek the explicit expression for the
coefficients in the expansion of a given analytic function
f(x) in series of our basic set { ¢k+l(x)} , it is useful to

have x in a series of this set, Taking Fibonacci polynoms=
ials as defined by formula (2.5), we thus need the easily
established reciprocal relation(3),

[n/2]

¥ -2r +1
w2 ()2 e e,

which could also be re~arranged in the form

n
I
=0
that will then contain only even ¢'s when n is odd, and odd
¢©'s when n is even,

4. Expansion of Analytic Functions, We assume that our
arbitrarily given function f(x) can be represented by a pow~
er series

Ny
W
bt

(4.1) f(x) =

n=0

having a radius of convergence of £ > 1/2, with the coeffi-
cients a expressed by
(4.2) ) (n=0,1,...)

n!

Formal substitution of relation (3. 3) into (4.1) yields the de-

sired polynomial expansion
°0

(4.3) ) = £ o @, ),
k=0
{3) In view of (2.12) and (2.13) , this relation is an equiv=~
alent form for known expressions for powers of the hyper-~
bolic function sinh W,
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where the coefficients are finally determined from the for-
mula

0 (wl)ja. . 2j+k
(4.4) o = (k+1) X _ET_?_HEM :
j=0 2997 (G4 1) \ g

Convergence properties of the general basic ser-
ies (1.1) have been investigated by Whittaker [5] , by Boas
and Buck [ 6] , and by others. If Whittaker's results are
applied to our case, it can be shown that the expansion (4. 3)
will converge absolutely and uniformly to the function f(x)
in | x| < £ if the series

(4. 5) Zla | v ()

n= 0

converges, where Vn( £ ) is given by

(4. 6) V) =Ty dMce,
j=0
with
4.7 M. = Max |o. ,
(4.7) J(C ) lxizg @J+1(X)‘
and with 7y being the coefficients in (3.3) after they have

i
been re-arrJanged in the form (3. 4).

Now, we may also introduce a parameter 24
such that l 20 xf < ¢ , and may thus start with the form

n

[ee] o0
(4.8) f(2ox)= % (Znanan)x =2 A x"
n= 0 n=0
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where
n

(4.9) A =1 d f(ZaX)IX:O

nt n
dx

The expansion (4, 3) in terms of Fibonacci polynomials then
becomes

Z R O

(4.10) f(2a x) =
k=0

with the coefficients Bk now being determined by the equa~
tion

j _2j+k .

: (-1) « 2j+k

4 =
(4.10) B (o) = (k1) T === 250k |

j= 0

For our purposes, the form (4.10) is often more convenient
than that of (4. 3).

If we take x = 1/2, the polynomials ggk(x) become

the numbers of Fibonacci, go,k(l/Z) = Fk’ so that the series

=]

(4.12) fla) = T B (@), (1/2) = T B (F,

k=0 k=0

furnishes a formal expansion of the function f{®} in terms
involving Fibonacci numbers, One apparent use of the ser-
les expansion {4.12) is for the case in which it is desired to
make a given analytic function f serve as a generating funce-
tion of the Fibonacci-number sequence,

5. Examples, We first consider the function

2
(5.1) fx) = ™%, (0< |a|<=),
where

(5. 2) a = 2 a/nt,
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The coefficients ¢, in (4.4) are then given by the formula

k
e j_ 2j+k 2j + k

' (-1)) o ( | )
5.3 = (k+1 e ——
(5.3) < <+)j=zo ST OTERT i
or finally by
(5.4) c. = k+1

k o Jk+1(2a)’ (k- = 091: 24, ----- )

where J is Bessel's function [11 ] of order k +1, The

k+1
polynomial expansion (4. 3) therefore yields formally

(5. 5) eZax

I

(o) ()

(1/a) f“,, (k+1) Jk+1

k=20

[==)

W) B3, (20) @09

We note that

(5.6) Lim (m+1) Jm+l(2a) ¢m+1(x)

m —&®

mJ (ea) ¢ (x)

= Lim (x +\/l+x2) a = 0,

m —= ® m

so that the series (5,5) is convergent for all finite values of
x if the parameter o« remains also finite.

From (5.5), with the relations

2Q -2
cosh 2ax = (e T ioe OLX)/Z,
(5.7)

20 - 20
sinh 20 x = (e“% % . e¢ /2,
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we immediately obtain the two expansions

(5.8) cosh2axs= (o) I (2m-1)J, (2e)¢, ()
m=1

and o

(5.9) sinh 2 x = (/o) Z 2m sz(Za) QZm(X)

m:l
Similarly, we have
] i +1

(5.10) cos 2ax =(l/a)Z (-1™ (zm-11, (20)e, {x)
m=1

and o

_ +1
(5.11) sin 2ax = (1/a) 2{—1)m (2m) I, ()@, ()
m=

where Ik is the modified Bessel function [11] of the first

kind of order k.

To produce expansions involving the Fibonacci
numbers F . we simply set x =1/2. Hence from (5.5),

(5.8), (5.9), (5.10) and (5.11), it is seen for 0 < | o | <
that

e — (/o) Zm J_(2a) F_
m:].
(5.12)
-]
cosha =(1l/a) Z (2m-1) sz_l(Za) Fer—l
m=1 '
sinha = (1/a) T (2m) sz(Za) FZm

1

m



EXPANSION OF ANALYTIC FUNCTIONS 25
(5.12)
= m=+1
os o= (1 -1 2m-
c ( /Oér)n? 1( ) (2m l)IZm_I(Zoz) FZm-

sinoa = (/a) Z (-1)

m=1

m+ 1
(2m) I, (2a) F,

As a-—» 0, the right-hand sides of (5.12) all become inde-

terminate forms, but the correct result is obtained in the

limit. The particular series expansions (5.5), (5.8), (5.9)
(5.10), (5.11) and (5.12) are apparently not found in the lit-
erature in the specific form we have presented for our pur-
poses; they could be related, however, to some expansiont
due to Gegenbauer [11, page 369] .

Many higher transcendental functions can also be
explicitly developed along similar lines. For instance,
without difficulty we may derive the series expansions

c 2
Il(a) = (2/a) T mJ_ (a)F
m
m=1

(5.13) -
m#l 2
(Z/O()rn}_;,l(—l) mIm(a) FZm

2m

-

H/‘\
Q
1]

for the Bessel functions I, and Ji'

1

The coefficients in the above examples all in-
volve Bessel's functions, but this indeed would not be the
case in general, For instance, for

| 2ax| <1

we can show from (4.10) and (4.11) that

(5.14) In (1 + 20 x) = —[rZ/Z + Inr/a ] (pl(x)

+ 3 (_1)]*('}‘1 & [1/k + rz/(k+ )1 o, ()
k:l
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where 5
J(+ 4a) - 1 .

20

(5.15) ro=

With x =1/2, we then have, for | « | <1,

(5.16) In(l+a) (r/a) = -(r2/2) F
2 k1 Kk
+ T (-)) [1/k +r2/(k+2)] F
O k1

6. Another Approach.4 The coefficients Bk in our basic

series expansion (4.10) or (4.12) may be obtained by an al-
ternative procedure which is based on relations (3.1) and
certain known properties of the orthogonal polynomials
Uk(X)' (A good reference giving many properties of Uk is

[127).

If our prescribed function f(2ax) can be expand-
ed in the formal series

(6.1) f(Zax)-Z;bU (x), |x| <1, |2ax|< ¢
k=

k
0 k+

the coefficients b, are given by

k

(x) dx, (k=0,1...).

(6.2) b = (z/n)f f2axN(1 x2)U

k+1

With the relations

(6. 3) X = COX V, Uk(x) = (sin kv)/f(l—xz)

4
We could also apply the tools employed in [ 6]
but have written this paper without assuming knowledge of
complex-variable methods,
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the expression (6.2) becomes

(6. 4) "
bk(a) =1 f f(2¢c cosv) [cos kv - cos(k+2)v ] dv.
"
0

In view of relations (3.1, (4. IC) and (6.1), we then have
formally,

Kk T
1

6. = .
(6.5) -Bk(a) o f f(-2¢ icosv) [cos v=cos(k+2)v] dv
as an equation for Bk in integral form.

In the special case when

(6. 6) f2 %) = %%

we find T

k -2¢q icosv
(6.7) ﬁk(a) =i e [cos kv -cos(k+ 2)v] dv
™ 0

= Jk(za) + J 2.0(),

ra2lfe) = KL T
o

which is the same result obtained in example (5.5). Usual-

ly, however, the integrals (6. 5) involving a given function

f are not available, so that the expression (4.1l) is more

often the better procedure for determining the coefficients
B

The particular expansions (5.12) and (5.13), or
(4.12) in general, turn out to have little use as a means of
obtaining efficient approximations for computational pur-
poses, Independent of numerical or physical applications,
however, the introduction of Fibonacci numbers into vari-
ous expressions involving classical functions has a certain
interest and fascination in itself,
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PROBLEM DEPARTMENT

P-1. Verify that the polynomials I 1(x) satisfy the differ-
ential equation

3 :
1 +x)y" + 3xy' -k(k+2)y = 0 (k=0,1,2,...)

P-2. Derive the series expansion
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x)

0

o (@) 1F

T 2
h 2k+17

k
where J and I. are Bessel Functions,

0 k

P-3, Verify the reciprocal relation

[n/2]
-21 *1
x = (1/211) z (_1)1' <:) E:ﬁi_(PnH—Zr(X)” n> 0.
r=0

P-4, Show that the determinant

2% i 0.....0 0

i 2x i, 0 0

0 i1 2% . 0 0
© (x) = {. . . k > 1,
k+l 0 0 0.,..2x i

0 0 0. i 2x

with 0, (x) =0, ggl(x) = 1, and where i = /-1, satisfies the

recurrence relation for gpk(x). Whence derive the express-
ion

=
L st
(@]
(=]

for the Fibonacci numbers,

P-5. Show that the Fibonacci polynomials may also be ex-
pressed by

k. K 2. k+1/2
‘Qk-t-l(x) = 2 (k+1)! d (I +x)

: , (k>0 .
Vis s (2ieql)t axt




30 OPERATIONAL RECURRENCES INVOLVING
FIBONACCI NUMBERS

H.W. Gould
West Virginia University, Morgantown, W. Va,

The Fibonacci numbers may be defined by the lin-
ear recurrence relation

(1) Fn+1 = Fn + Fn-l

together with the initial values F_ =0, F

0 1:1'

There are some unorthodox ways of making up se-
quences which involve Fibonacci numbers, and we should
like to mention a few of these, For want of a better narhe,
we shall call the recurrences below 'operational recurren-
ces,!

Instead of taking the next term in a sequence as
the sum of the two preceding terms, let us suppose the
terms of a sequence are functions of x, and define

(2) un+1(x) = DX (un un—l) ,
where Dx = d/dx. As an example, take U =1, Uy = e”,
Then we find
u, = D(e) = e”
2
u, = D{e X) = ZeZX
3
3 3
u, = D(2e = @@y e

w, = MANENE) e

and we can easily show by induction that
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F x
(3) u = (FF,F......F e n , (=1, u =eM).

Of course, the addition of exponents led to the appearance
of the Fibonacci numbers in this case,

Another operation which we may use is differen~
tiation followed by multiplication with x, We define

(4) wop = D) (u u

n+1 1)'

For an interesting example, let us take

claim that
(5) u = x In r . n > 1,
k=1

Taking x = 1 we obtain the following table of
values as a sample:

n u.n(l)

1 oo

2 oo

3 R P

4 32t e

5 1°1% 2% 3t st 2 6o

6 181523 3% 5 gl 2880

L _,
7 11218 2533 52 gly3l | 2,246,400
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For the sake of completeness we give the induct~
ive proof of formula (5). Suppose that

Foaa 21 Fo
U’n-—l = X I Fk
k=1
Then
u = xD (un-l un-Z)
F F n-1 F n-2 n-l-j
=xD{Xn-1Xn~21—[ FknthF. }
k=1 j=1 4
F F Ne? + F
= xD{x n} F 11 I1 Fkn—k n-1-k
- k=1
F F ne2
= F_x nFnll I Fkn"'l"k
k=1
F r F ne2
=F1an2 I.IFn+1--k
n n~1 k
=1
F n
- n r Fk n+l-k
k=1

The only 'tricky'part is to recall thatl = ]5‘1 and F1 = F2 SO

that the factors may be put together at the last step in the
desired form,

Suppose that the function un(x) has a power series
representation of the form

(6) un(x) =k:Z;‘3 ak(n) x
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Imposing the operational recurrence (4) we find readily that
the coefficients in (6) must obey the convolution recurrence

k
(7) ak(n) = kj_zo aJ.(n—Z) ak_j(n—-l) .

Conversely, if (7) holds then un(x) satisfies (4).

As a slight variation of (4) let us next define

2

(8) Yny1 T F Dx (un u'n-s].) y
and take u = 1, w = X, Then it is easily shown by induc-
tion that
F -1 n+2 F -k
(9) u = x n+Z o (F, ~2) nt3 for n > 2,

k=4

The reader may find it interesting to derive a
formula for the sequence defined by u = un(x) with

(10) R xpDX(unun_l), uy= 1, W =%, p= 3,4,5,..

As a final example, let us define a sequence by

(4) withug =1, u; = e™.
Then the first few values of the function sequence are:
X
U.Z = X € 2
uy = (sz + x) eZX
2. 3
u, = (6x4+ 9x3+ Zx)eX
6 5 4
u, = (60x7 + 192 x +185x" + 62x +6x3) e5X

F x

. . ‘d
and it is evident that un(X) equals P(x) e o s, where P(x)

is a polynomial of degree Fn -l in x,

+1



34 ADDITIONAL FACTORS OF THE FIBONACCI
AND LLUCAS SERIES

Brother U, Alfred,F.,S,C,

In his volume entitled, "Recurring Sequences,"
D. Jarden (1) has listed known factors of the first 385 Fib-
onacci and Lucas numbers, The present article has for
purpose to explore these numbers for additional factors in
the range p < 3000.

Initially recourse was had to the results of D, D,
Wall (2). His table lists all primes less than 2,000 which
have a period other than the maximum. A comparison of
these results with Jarden's factorizations indicated that the
following additional factors are now known,

FACTOR NUMBER FACTOR NUMBER
1279 L(213) 1823 L(304)
1523 L(254) 1871 L(187)
1553 F(259) 1877 F(313)
1579 L(263) 1913 F(319)
1699 1.(283) 1973 F(329)
1733 F(289) 1999 L(333)

The altered factorizations are given below, the
newly introduced factors being starred while the remaining
residual factors are underlined,

L(213) = (2% (12797} (688846502588399)
(92750098539536589172558519)

L(254) = (3) (1523)
(2648740825454148 6132499495083 63373930080

1481688547)
F(259) = (13) (73)(149) (1553%)(2221)
(1230669188181354229694664202889707409030657)
L(263) = (1579)* (58259567431970886012123727669192696

71291074998545101)
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L(283) = (1699%) (819046977269431264944632304401
43683491348547590190211271)
F(289) = (577)(1597)(1733%) (6993003378638095531165091

46296699696041517688627857)

L(304) = (607)(1823%)(2207) (1394649074942606274369752
59198518716068204180276 749344])

L(187) = (199)(1871%)(3571)(9056742344085065262650973
90431)

F(313) = (1877%)(61685362812877205040156603432943577
707491529123044875479090829)

F(319) = (89)(1913%)(514229)(2373070801850309840641893

5684191808195096087137462113977)

F(329) = (13)(1973%)(2971215073) (33530815263744997367
32080010898338282852228390465658077)

1

(2%) (19) (1999%)(4441) (146521) (1121101) (54018521
(654168669603048078197865815767570296106159)

L(333)

1l

The next step was to explore the periods of all
primes in the range 2000 < p < 3000. In carrying out this
work the following points were kept in mind:

(1) For primes of the form 10x + 1, the period k(p) of the
Fibonacci series is a factor of p-1; for primes of the form
10x + 3, k (p) is a factor of 2p + 2.

(2) For primes of the form 10x + 1, the period is even; for
primes of the form 10x + 3, the period has the same power
of 2 as is found in 2p + 2,

The first zero of the Fibonacci series for a
prime p is indicated by Z(F,p) , while the first zero for
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the Lucas series is denoted Z (L, p).
All cases are covered by the following:

()If k(p) is of the form 2(2y + 1), then Z(f, p) :k(p)/4 and
Z(L,p) =k(p)/2.

2
(2) If k(p) is of the form 2 (2y + 1), then Z(F,p) =k(p)/4
and p is not a factor of the Lucas series,

(3) If k(p) is of the form 2" (2y +1), m > 3, then Z(F,p)
is k(p)/2 and Z (L, p) is k(p)/4.

It is to be noted that in the first case Z(L,p) is odd and
that Z(F,p) is likewise odd in the second case, In the
third case Z(L,p) is even, Knowledge of the first zeros in
the Fibonacci and Lucas series leads to a direct conclus-
ion regarding the period of the Fibonacci series,

In the table that follows, the period of the Fib-
onacci series as well as the first zeros in the Fibonacci
and Lucas series are given for all primes in the range
2000 < p < 3000, All Fibonacci numbers with index a mul-
tiple of Z(F, p) have the given prime as a divisor; all Luc-
as numbers with index an odd multiple of Z(L,p) have the
given prime as a divisor,

TABLE OF PERIODS AND ZEROS5 OF THE FIBONACCI
AND LUCAS SERIES IN THE RANGE 2000 to 3000

P k(p) Z(F,p) Z(L, p)
2003 4008 2004 1002
2011 2010 2010 1005
2017 4036 1009 ———
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