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GENERATING FUNCTIONS FOR PRODUCTS OF POWERS 
OF FIBONACCI NUMBERS* 

H. W. GOULD, WEST VIRGINIA UNIVERSITY, MORGANTOWN, W. VA. 

1. INTRODUCTION 

We may define the Fibonacci numbers , F . by Fn = 0, F< = 1, F n = F 
' n ' J ° ' 1 n+2 n+1 

+ F . A well-known generating function for these numbers is 

d.i) — ^ — = y F xn m 
1 _ x _ x2 Z- J n 
i x x n = Q 

Intimately associated with the numbers of Fibonacci a re the numbers of Lucas, 

L , which we may define by L0 = 2, Lt = 1, L 9 = L + L . The numbers 
n 

1 , 5 1 ' n+2 n+1 n 
F and L may be cons idered as special cases of general functions f irs t studied 
in great detail by Lucas [8 J, though as Bell [1 ] has observed many expansions for 
the Lucas functions appeared in papers of Cauchy and others p r io r to Lucas. 
Dickson [4 | devotes all of one chapter (17) to r ecur r ing s e r i e s and more par t i cu-
lar ly Lucas functions. Here one may find further references to the many papers 
on the subject which have appeared since Leonardo Pisano, or Fibonacci, f i rs t 
introduced the famous numbers in 1202. It would be difficult to est imate how many 
papers re la ted to Fibonacci numbers have appeared since Dickson's monumental 
History was wri t ten, however it may be of in te res t to point out that a project has 
been initiated under the direction of Professor Vern Hoggatt, San Jose State 
College, San Jose , California, to collect formulas , maintain a bibliography and co-
ordinate work on Fibonacci numbers . As par t of the w r i t e r ' s activity with this 
Fibonacci Bibliographical Projec t the subject of generating functions for powers 
of the Fibonacci 'numbers has come in for some study, and the object of this p r e s -
ent paper is to develop some very general generating functions for the Lucas 
functions. 

* Research supported by a June Research Grant from the College of Ar ts and 
Sciences of West Virginia University. 
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Riordan [10 J has recent ly made a very in teres t ing study of ar i thmet ic p roper -
t ies of cer ta in c l a s ses of coefficients which arose in his analysis of the generating 
function defined by the p- th powers of Fibonacci numbers . 

f W d .2 ) Lp 
n=0 I fP x n 

where f = F Golomb [5 J had found essent ia l ly that for squares of Fibonacci 
numbers we have 

(1 - 2x - 2x2 + x3) f2 (x) = 1 - x 

and it was this which led Riordan to seek the general form of f (x). 
However, there a re other simple generating functions for the numbers of 

Fibonacci. F i r s t of a l l , let us observe that we may define the Fibonacci and Lucas 
numbers by 

n u n 
(13) F = a - £ , L = a11 + b n 

KXm°' n a - b ' n 

where 

(1.4) a = | ( 1 +N/5) , b = | ( 1 - N/5) . 

The very general functions studied by Lucas , and general ized by Bell [ 1 , 2 ], 
a r e essent ial ly the F and L defined by (1.3) with a, b being the roots of the 
quadrat ic equation x2 = Px - Q so that a + b = P and ab = Q. In view of this 
formulation it is easy to show that we also have the generat ing function 

ax bx <~n n 

d-5> ^ T ^ F - = Z ^T Fn • 

For many purposes this expansion is eas i e r to consider than (1.1), and one i s natu-
ra l ly led to ask what form of generating function holds if we put p- th powers of the 
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Fibonacci numbers F in (1.5). Similar questions a r i se for L M . We shall also 
consider negative powe 
of Bernoulli and Euler . 
consider negative powers of. F , L , and suggest an analogy with the polynomials 

2. GENERATING FUNCTIONS FOR LUCAS FUNCTIONS 

Suppose we are given for any initial generating function, F(x), say 

(2-1) F(x) = Y Anxn 

n=0 

with no par t icu la r r e s t r i c t ions on A . It follows at once from this that 

(2.2) F(ax) + F(bx) = ^ A n x n ( a n + bn) = ^ T A n x n L n 

n=0 n=0 

and 

OO 

(2S)
 FI°2:b

F(bx' = Z \ * n r » -
n=0 

This incidentally is r a the r like the method used by Riordan [10 ] to begin his study 
of r ecu r r ence re la t ions for the generation function (1.2), except that we could study 
(1.5) as well as (1.1) in the general expansion of (2.3). 

Now of course we may i te ra te upon the formulas (2.2) and (2.3) by making suc-
cess ive substi tutions, replacing x by ax, or bx, and adding or subtracting, and 
by this i terat ion build up generating functions involving F^ and L Thus we have 
from (2.2) 

F(a2x) + F(abx) = 2A X
n a11 L ' ' n n 

F(abx) + F(b2x) = 2A x b L 
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so that 

(2.4) F(a2x) + 2F(abx) + F(b2x) = V A n x11 L^ , 

n=0 

and in s imi la r fashion 

(2 5) F(a%) - 2F(abx) + Ffofrl _ V A x n p 2 

(a - b ) 2 ^ n n 

Clearly we may proceed inductively to obtain a general resul t . We find the 
general re la t ions 

0 (2.6) > ( J F ( a p - k b k x ) = > A n * n L P , 
n^O 

and 

P oo 

(2.7) (a-b)^ Y> t - ^ f ) F(aP"kbkx) = E AnxIlFn ' 
k=0 ^ n=0 

In fact we may readily combine the re la t ions to obtain 

(2. 8) -
F ( a p + q - k - j b k + j x ) = £ A n x n F P L ^ , 

n=6 

for any non-negative in tegers p , q. Thus in principle we may set down generat ing 
functions for products of powers of the Fibonacci and Lucas numbers , though the 
resu l t may not usually be in the s imples t form; 

We obtain (1.1) when A = 1 identically; (1.5) when A = 1/n! identically. 
The expansion analogous to (1.5) for L i s 
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/o ™ a X kX 
(2.9) e + e 

OO 
<r—i n 

Z_) n; n 
n=0 

Proceding in the same manner as above, it is c lear that we also have 

(2.10) F ( a m x ) + F(b m x) = T A x n L 
n=0 

and 

F(a x] - F(b x) \ A n „ 
(2 11) —- l r L - / A x F 
v ^ 1 1 / a - b ZLJ n mn 

n=0 

which include other well-known generating functions. Consequently we have 

(2.12) ^ Q F ^ ^ ^ t A / ^ , 

with a corresponding resul t lor F , 

3. RECIPROCALS OF FIBONACCI NUMBERS 

Landau [7 ] showed that a certain se r i e s of rec iproca ls of Fibonacci numbers 

could be expressed in t e r m s of a Lambert s e r i e s . In fact he showed that if we write 

n 
(3.1) L(x) N X 

n 
n=l l - x 

then we have 
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The device used to obtain this i s to expand (a - b)/(a - b ) = (a - b ) / a • 1/(1 - z) , 
where z = (b/a) , by a power s e r i e s , and then invert the o rder of summation in 
the s e r i e s , this being justifiable. Landaufs resu l t i s noted inBromwich [3, p. 194, 
example 32], in Knopp [6, p. 279, ex. 144; p. 468, ex. 9], and in Dickson [4, 
p. 404]. Dickson also notes that 2 l / F was put in finite form by A. Aris ta . 

Let us now define in general 

(3.3) R(x) ^ A n f 
n=l n 

Then by the same technique we have used ea r l i e r to obtain (2.2) and (2.3) we see at 

once that R(x) sat isf ies a functional equation 

(3.4) R(ax) - R(bx) = (a - b) > A
n
 x 

Thus if we have 

(3.5) R(x) _ 
n=l 

= V | _ then R(ax) - R(bx) = ( a - b ) - j - ^ 

—-— \[E for ordinary Fibonacci 
•*• "" x numbers . 

For R(x) as defined by (3.3) we also easily verify that 

(3.6) R(a2x) - R(b2x) = (a - b) ^ A^ X
n L^ 

n=l n 
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To use this when A = 1 we need to note the generating function for L which is n & & n 

a companion to (1.1). Let us obtain this from (2.2). Inasmuch as we have 

(3.7) 

we find 

a + b = 1, 

F(ax) + F(bx) 

a - b = N/5J and ; 

1 , 1 
1 - ax ' 1 - bx 

2 - (a + b)x 2 - x 
1 - (a + b)x + abx 1 - x - x2 

and so for the ordinary Lucas numbers we find 

T L xn 
^ _ J n 

<3- 8 ) 1 - x - X2 
n=0 

Sometimes this i s stated in the equivalent form (since L0 = 2) 

(3. 9) x < 2 x + *\ =Y L xn . 
1 - x - x2 Z_J n 

n=l 

Thus if we have 

<c-i n 
(3 m \ TD/„X _ \ x • 10) R(X) = ) Y~ t h e n R<a2x) - R * 2 x ) = (a-b) . x ( 2 x ^ 1>q 

n = l n 1 - x - x-

4. BILINEAR GENERATING FUNCTIONS 

We wish to turn next to some simple resu l t s for what are called bil inear gene-

ra t ing functions for Fibonacci and Lucas numbers . To discuss this we first intro-

duce what we shall call a general Turaii operator defined by 

(4. i ) Tf = T f (x) = f (x + u) f (x + v) - f(x) f (x + u + v) . 
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For the Fibonacci numbers it i s a c lass ic formula f i rs t discovered apparently by 
Tagiuri (Cf. Dickson [4. p. 404]) and la te r given as a problem in the American 
Mathematical Monthly (Problem E 1396) that 

<4-2> T n F n = F n + u F n + v " F n F n + u + v = ^ F u F v • 

We may determine a general bil inear generating function for the s e r i e s 
2A x F F if we can first determine a resu l t for 2A x F F To do 

n n+u n+v n n n+u+v 
this let us consider 2A x F F 

n n n+j 
Again, let us set as in (2.1) 

CO 

F(x) = 2 Anxn 

11=0 

so that 

*J. F(x) = Y \ *n+j 
n=0 

Then we find 

J xJ F(ax) - b j J F(bx) = J A n x n + j ( a n + j - b n + j ) 
n=0 

and hence ultimately 

CO 

( 4 .3) aJF(ax) - b'F(bx) = y xn 
v ; a - b / , n n+j 

n=0 

Next we introduce F by the same device and we find 
n J 

ajF(a2x), - bJF(abx) _ a3F(abx) - b3F(b2x) = 2 A x
n
 F ( a

n _ b
n

} 
a - b a - b n n+ j 
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and consequently we have 

( 4 4^ ' aJF(a^x) - (a3 + b3) F(abx) + b j F(b*x) _ ^ . n 
K ' ' (a - b)2 " 2_* n x n n+j ' 

n=0 

Moreover , since we have the Turan expression (4.2), we have 

0 0 00 

(4.5) > A x n F F = > A x n F F + F F • F(-x) 
K ' ' ZJ n n + u n + v Z J n n n+u+v u v ( X ) ' 

n=0 n=0 

where the relat ion (4.4) i s used to simplify the r ight-hand side. In principle at 
l eas t we have a way to write down explicit bi l inear generating functions provided 
mere ly that we have F(x) = 2A x given. j \ / n n & 

It should be r emarked that since we have made no special assumptions about 
the coefficients A in any of the work so far, we could apply our work to finite 
s e r i e s just as well by supposing that A = 0 identically for n ^ some value n0, 

As far as relat ion (4.4) is concerned, there is an al ternat ive method. Call the 
s e r i e s M.(x), i . e . , let 

M.(x) - V A x n F F . 
J ' Z J n n n+j 

n=0 

If it Is possible to evaluate M0(x) = 2A x F 2 , then one may note that M (x) 
= M.(x) + M._1 (x) and so a simple formula could be wri t ten down giving M. . 

5. BERNOULLI AND EULER POLYNOMIALS 

Returning to the problems presented by rec iproca ls of Fibonacci and Lucas 

numbers , i t would appear to be of value to introduce some new polynomials based 

upon the polynomials of Bernoulli and Euler . Using a s tandard notation [9] we de-

fine Euler and Bernoulli polynomials by 

k tx 
(5.D > EV<X) | r 2 e 

k=0 e + 1 
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and 

,k , tx 
(5.2) \ - B . w y = t e 

k w k! " t n 
k=0 e - 1 

Now we have for general Lucas functions 

1 1 1 1 .,, ~ u / 

L; = ~t~r}j= T 3— with c = b/a 

t a + b a C + 1 

so that 

(5-3) 1 \ c t X = AClL w h e r e c = b / a 
H C1 + 1 

Similarly we find that when F, = (a - b )/(a - b) we have 

(5.4) t a C = ±£ w h e r e c = b / a 

* - a > F t Cl - 1 

The s imilar i ty of (5.3) with (5.1) and (5.4) with (5.2) motivates what follows. 

We define general ized Bernoulli and Euler polynomials by 

tx °° k 
(5.5) ±£— = ^ B k < x > c > ! r .• 

and 

tx °°- k 
(5-6) ^ T = 2 E^C)fe 
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Now in fact 

(5.7) JLC^l „ J L _ t l o g C - e X ( t l 0 g C ) 1 z e X Z 

c t _ x log C e t log C _ 2 log C e z _ x 

OO °Q 

= 15FC 2 V ) £ = E Bk(x, £ (log C)1-1 

k=0 k=0 

so that 

(5,8) B k (x ; C) = (log C)k l • Bk(x) 

Similar ly one easily finds that 

(5.9) E k (x ; C) = (log C) k • Ek(x) 

Putting these observat ions together we ultimately have the expansions 

(5.10) _ L = ^ ^ Y E ( x ) t ( 1 o g b / a ) k 

t 2 a (b/a) j ^ 

and 

(5.11) J j - = _ k ^ V Bk(x, £ (log b / a ) 1 - 1 

t t a (b/a) £ ^ 

Thus we also have an amusing analogy between four names: 

2) BERNOULLI = E U L E R 
{' } FIBONACCI LUCAS 
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We may extend the analogy by considering the more general Bernoulli and Euler 

polynomials of higher order as d iscussedin [9] and find expansions for the r e c i p r o -

cals of powers of the numbers of Fibonacci and Lucas. 

We have 

,n xt t e 
2^ Bk (X) k! , t , ,n (5.13) ^ * ^ (e - 1) 

and 

(5.14) 
*• 2

n e X t 

I *!> *r " V7TF ' 
and we ultimately find as before the rec iprocal expansions (with C = b /a ) 

and 

Qn n x t ^ k , k 0n nt ^ tx 
2__C = \ g ( n ) ^ t (log C) = 2 a C 

n Z_J k 
(5.16) - ^ = > E 1 '(x) 

, t , n n Z_i k w k! T n ( C - + 1 ) " k~0 L t 

Consequently we have 

0 0 t 00 , 00 

(5-17) t = m F t k=0 "" fei " \a"C 

m > 1 
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and 

\'t oo f - ^ °o u- oo 

2*.h-»""2,f«l!st?-2v k z 
^ • i 8 > t=m L

t k=0 P m \ a C J 

m > 0 . 

In these , log C will be r ea l provided, e. g. that both a and b a re posit ive, or 

both negative. In case C is negative we may take pr incipal 'values for the log C. 

6. SOME MISCELLANEOUS FIBONACCI FORMULAE 

We shall conclude our r e m a r k s here by der ivingafew miscel laneous re la t ions . 
In relat ion (2.1) let A = J , z being any rea l number. Then we find by (2.2) 

n T _ / - ! • • , ^ z 

(6-D 2-> U X L n = (1 + ax> + <! + bx> , 
n=0 

and by (2.3) 

(6.2) y (A x n p = (1 + ax)Z - (1 + bx)2 

6b W n a ; b 

Let us examine one special instance. Let z = r be any non-negative integer, 

and take the ordinary Fibonacci-Lucas numbers when a = ^(1 + ^5) , b = —(1 - N/S). 

Then we find 1 + a = a2, 1 + b = b2, whence (6.1) and (6.2) become 

(6-3) ^ Q Ln = d + ^ + » + b > r = a 2 r + ^ = L 2 r • 
n=0 

and 

(6.4) to'. 2r K2r a - b F a - b 2r " 
n=0 
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It is c lea r that by using the general re la t ions previously developed he re , we 
could go on to derive many in teres t ing Fibonacci-Lucas number re la t ions . As 
another example using the same value for A , we find from (2.10) that 

(6.5) V Q x n L m n = (1 + a m x ) r
 + (1 + b m x ) r 

In th i s , let x = - 1 , m = 2, and a and b as above. Then we find 

3 <-')• (6-6) > ( „ | ( - l ) " L 2 n = (-1)1" L r 

Also we have 

(6.7) J Q (-l)n FQ„ = (-l)r F 2n v ' r 
n=0 

By (4,3) we have 

JT? /OV \ _ V J T V A xn F = a F ( a x ) " hFQ>rt 
? n n+J a - b 

n=0 

and s imilar ly we have 

(6.8) \ x \ n x n L n + . = a: iF(ax) + b^ F(bx) , 
n=0 

OO 

where as before in (2.1) we have F(x) = 2 A x . 

numbers 

,\ n = 0 n 

Let A = ( M and take x = 1. We then have for the ordinary Fibonacci-Luc as 
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«..> S ( D F - " = F n+j 2r+j ' 
n=0 

and 

(6.10) Y (r) L . = L Q . , 

which a re well-known recu r s ions . 
A very elegant symmet r ica l re lat ion may be gotten from (2.6). In that re la t ion 

we choose A = ( J and set x• = a . The r eade r may easily verify that the 
formula then becomes , since F(a b x) = (1 + b a ) = L a , 

A ,TX Lp A /pN L; 
( 6 , 1 1 ) Z-JA W a P n Z J W a

r n • 
n=0 a n=0 d 

Similarly in (2.7) if we set A = ( j and take x = - a p we find easily that 

^ / r \ F P P . /P\ F r .-

wu> < . -^2<- i ' , ( j> -« - '" r 2 :< - i ' F , ( j^ • 
- p - Q 

And s imi lar ly we find from (2.8) that (here we take x = a ) 

,,18) 2(>-nM^M»-^2-»kQ20^T.-
With other choices of x we could give s imi la r r e su l t s . In fact with x = - a 

we have 

-p-q. 

- tr'0%^-Hrt)W% n=0 w * E=0 w j ^ o 
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It may be of in te res t to note that Kelisky [12] developed some curious resu l t s 
involving Bernoull i , Euler , Fibonacci, and Lucas numbers . The re la t ions he gives 
should be compared with those developed in the p resen t paper . In par t i cu la r , 
Kelisky has since writ ten the p resen t author that the unpublished proofs of the las t 
collection of relat ions he found a re somewhat s imi la r to the methods of the p resen t 
note. 
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A FIBONACCI ARRAY* 

L . CARLITZ, DUKE U N I V E R S I T Y , DURHAM, N. C. 

We take u0 = 0, u1 = 1, 

u ,., = u + u ., (n > 1) , 
n+1 n n-1 ; ' 

and define 

(1) u n = u (n = 0, 1, 2, 
' 0}n n ' 

as the 0-th row of the a r ray F. We next put 

(2) u l j n = u n + 2 (n = 0, 1, 2, 

the f i rs t row of F. For r ^ 2 we define u by means of 
r , n J 

(3) u = u 1 + u 0 (n = 0, 1, 2, 
r , n r - l , n r - 2 , n 

Thus u is defined for all r , n ^ 0. It follows from the definition that 
r , n 

(4) u = u i + u rt (n > 21 
v ; r , n r , n - l r , n - 2 l ~ ' ' 

Indeed, assuming the truth of (4), we get 

u , _, = u + u ., r + l , n r , n r - l , n 

u , + u „ + u 1 , + u . , 
r 5 n - i r , n - 2 r - l , n - l r - l , n - 2 

r + l , n - l r + l , n - 2 

14Supported in pa r t by National Science Foundation Grant G16485. 
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The following table is easily computed 

r \ n ° 
°  
1 

2 

1 3 
1 4 
1 5 1 
1 6 
7 

[j3 

f o 

1 

1 

2 

3 

5 

1 8 
13 

21 

1 

2 

3 

5 

8 

13 

21 

34 

55 

1 

3 

4 

7 

11 

18 

29 

47 

76 

2 

5 

7 

12 

19 

31 

50 

81 

131 

3 

8 

11 

19 

30 

49 

79 

128 

207 

5 

13 

18 

31 

49 

80 

129 

209 

338 

8 

21 

29 

50 

79 

129 

208 

337 

545 

13 

34 

47 

81 

128 

209 

337 

546 

883 

211 

55 1 

76 

131 

207 

338 

545 

883 

1428 

(5) 

The symmetry proper ty 

r , n n , r 

i s easily proved by making use of (3) and (4). 

We now put 

(6) fr(x) V n 
> U X 

Z_i r > n 

n=0 

(r = 0, 1, 2, . . . ) 

In par t i cu la r , it follows from (1) and (2) that 

(?) f o ( x ) = i - x - x2 ' f l ( x ) = T 
1 + X 

* 2 > 

and by (3) we have also 

(8) Vx> = fr-l ( x ) + W X ) (r " 2) 
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Using (7) and (8), we prove readily that 

u + u 1 x 

Thus (6) yields 

(10) u = u u , _. + u , . u 
r , n r n+1 r+1 n 

which again implies the truth of (5). 
If we put 

CO CO 

V V r n 
f(X'y) = L Z, Ur,nX y 

r=0 n=0 

then by (9) 

^ U r + u r + l y r 1 f x , y_ 
f(x,y) - ^ l - y - y 2 X " l - y - y 2 [ l - x - x 2 + l - x - x 2 i 

r=0 

so that 

( i i ) f(X, y) = x + y 
[ >Y) ( l - x - X 2 ) ( l - y - y 2 ) 

We r e m a r k that (10) is equivalent to 

(I2) u = u u + u 
r , n r n r+n 9 

as is easily proved, 

It appears from the table that 

(13) u ^ n - u = ( - l ) r (r > 1) 
v ; r + l , r - l r 3 r v ; v — ; 
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Indeed (13) holds for r = 1. Then 

V2,r - Vl .ru = (Ur+l,r + Urr) " ( V l . r " V l , r - l ) 

. . r + 1 

r , r V l , r -
u . . - u _ r _ x = (-1) 

Also the relat ion 

(14) V 2 , r - 2 - V r = ^ r + 1 <rs2> 

is suggested; the proof of (14) is s imi la r to the proof of (13). 

In the next place we have 

(15) V 3 , r - 3 - U r , r = ^ 4 <r ̂  3) 

The general formula of which (13), (14), and (15) a re special cases is 

(16) u M - u = ( - l ) r S + 1 u2 (r > s) 
r + s , r - s r , r s 

Indeed it follows from (12) that 

r + s , r - s ~r,..r .. .. r+s " r - s r 

and (16) is an easy consequence. 

For a la ter purpose we shall require the formula 

n " 1 fo *> 
V"1 hsu- (n even) 

(17) > u = < 
Z j r , r | 2 u n + 1 u n _ 1 (n odd) . 
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This is equivalent to 

n - l , n - l ^ 

2(u2 - u u 0) == 2u u -. n n n - 2 ; n n-1 

2(u ^ u 1 - uL _.) = 2u u 1 n+1 n-1 n-1 n n-1 

(n even) 

(n odd) 9 

which i s in agreement with (10). 
In connection with (17) we note that 

(18) I 
r=0 

u x = r , r (1 + x)(l - 3x + x-) 

Formulas of this kind a re perhaps most easily proved by using the 
representa t ion 

n _n 
a - 13 n a - (3 

where 

i + \H 1 - *sf5 

To i l lus t ra te we shall evaluate 

<-—, r 
\ u x 
L> n+r?r 

r=0 
Since by (12) 

* [ > ~ l o , n+2r+l _,n+2r+l\ , , r n ,n u , = u , u + u , n = - 2 b + 8 - (-1) [a + (3 
n + r , r n+r r n+2r 5 ' > '• / v M >J 
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we get 

u , x = 
_, , 0 n+1 n n n + l n 0n 

T 11 2a 2/3 _ a + (3 
n+r, r 5\ l-a2x l - /32x 1 + x 

r=0 

n / 2 (v , - - v .. x) v 
1 n+1 n-1 ' n 5 1 - 3x + x2 " l + x 

where 

n ^n (19) v n = a + (3 

It follows that 

T22! i (v _L1 + v JC l - x2) + 5v x 
\ r - i n+1 n - l ; ' n 

(2°) Z^ Un+r, r X " 5 (1 + x)(l - 3x + x2) 
r=0 

When n = 0. (20) reduces to (18). When n = 1, 2 we get 

\~" r 1 + x - x2 

(21) 2 , U r ? r + l X = (l + x)(l - 3 x + x * ) > 
r=0 

'v"1 r 1 + 3x - x 
(22> Xi U r , r + 2 X = (1 + x)(l - 3x+ x2) ' 

r=0 

respect ively. 
Returning to (11), we replace x, y by xt, yt, respect ively , so that 

"sT* ji \* r n - r (x + y ) t 
(23) 2 , t ZVn-rXy = ( 1 - x t - x 2 t 2 ) ( l - y t - y 2 t 2 ) 

n=0 r=0 
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Since the right member of (23) is equal to 

x + y 
(x-y)(x"+3xy + y«) 

x + y 
(x-y)(x2+3xy+y2 

xy + x-(x-ry)t _ xy-t-y*(x + y)t 
I - X t - X 2 ^ " l - y t - y 2 t 2 

OO 

> U , -, X t xy + x" (x + y)t 

xy + y2 (x + y)t "X-1 n , n i 

Z Viy 

it follows that 

V"1
 r n r xy(x + y)(x -v )u - (x -y ) - (x - y )u 

r=0 

The polynomials 

D = D (x,y) 
n n ' J ' 

r n - r u x y 
r 5 n - r J 

r - 0 

correspond to the secondary diagonals in the Fibonacci a r ray . For example, we 

have 

D0 = 03 Dj + x + y , D2 =-- ( x - y r r 

D3 - 2(x-. y)3 - 3 x y ( x - y ) , 

D4 - 3(x -r y)4 - 7xy(x ~ y)2 . 

Since 

n-rl n-1 
x - y 

x - y 
/ -̂D 1 r l(xy) (x - y) n-2r 
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we find, after a little manipulation, that (24) implies 

(25) D n ( X ' y ) - - - E [ t > n - ( r > n + l ] ^ + ^ 
-2r+2 

(x + y ) 2 r - (~l) r (xy)r 

(x + y)2 + xy 

In par t icu la r , if we take 

x = a = 
1 + -s/5 

Y = 0 
i - 4s 

(25) reduces to 

(26) Dn( >̂ = H O * n+1 \ r / "n 

However, it is s impler to make use of (11). It is easily verified that 

OO CO 

n=0 n=0 

so that 

(27) Dn(*,|3) - ]T ("1 ) r ( r + 1)U2n-2r 
r=0 

It is not obvious that (26) and (27) are identical. As an instance of (27), we have 

D4(a, (3) = u8 - 2u6 + 3u4 - 4u2 + 5u0 = 21 - 16 + 9 - 4 = 10. 
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In the next place we evaluate the determinant 

A (r, s; m , n) 
u u 

r , m r ? n 

u u 
s , m s s n 

Using (10) we get 

A (r, s; m ,n ) = (u u , . - u , n u )(u , ., u - u u n) . 
' ' 7 r s+1 r+1 s7 m+1 n m n+17 

Since, for n — m, 

U , -.U - U U , - = - ( U U -, - U - U ) = ( - 1 ) ( U H U - U„U -, ) 
m+1 n m n+1 m n-1 m - 1 n7 ' 1 n - m ° n - m + 1 ' 

i t follows that 

(28) A ( r , s ; m , n ) = ( _ i ) m + r + 1
u u ( n > m , s > r ) . 

7 n-m s-r ' ' 

In par t icu la r , when m = r , n = s, (28) becomes 

(29) A ( r 5 s ; r , s ) = - u2
g_r (s => r) . 

Consider the symmet r ic mat r ix of order n: 

(30) M = (u ) 
n r , s 7 

( r , s = 0, 1, . . . , n-1) 

Clearly the rank of M < 2 and indeed is equal to 2 for n > 2. The character-

is t ic polynomial of M is given by 

n-1 
P (x) = x n 

n V n-1 
- > u x :..(r, s; r , s )x ' n-2 

r=0 o < r < s < n 
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n -1 The coefficient of x can be found by means of (1.7). As for the coefficient of 
n-2 x , i t follows from (29) that 

n-2 n -1 

V * r , B ; r . * ) = - Y] U - r = - £ £ U s - r 
< r<s<n o < r < s < n r=0 s=r+l 

n-2 n - r - 1 n -1 n - r - 1 

= - v v ^ = - y y «». r=0 s=l r=0 s=0 

But 

n -1 n -1 
5 z us= z, r ? " ( } J" ̂ ^~ rf*"" 

s=0 s=0 

= 1 - v„ 0 + v„ - 2e , 2n-2 2n n ' 

where as above v = a + (3 and 

p (n even) 
(3D € ={ 

1 (n odd) . 

Then 

n-1 n - r - 1 n-1 

r=0 s=0 r=0 
5 E 2 Us = E U ' V 2n-2r -2 + V2n-2r " 2 V r » 

[|(n+l|] = n - 2 + V 2 n " 2 2 ( n + 1 ) = V 2 n - 2 - V 

so that 

n 
<32) /> A ( r , s ; r , s ) - - | (v0 - 2 - e ) 

/ i 5 2 n n7 

o < r < s < n 
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Therefore , using (17) and (32), we find that the charac te r i s t i c polynomial of 
M is given by 

(33) 
x11 - 2U2 x11"1 - U2 x n ~ 2 

Pn(x) = + 
(n even) 

l** ~ 2un+lun-lxn_1 " K - i ) ^ " 2 <n odd, n >1). 

For example, we have 

p2(x) = x2 - 2x - 1 , p3(x) = x3 - 6x2 - 3x , 

as can be verified direct ly. 

By means of (33) we can compute the charac te r i s t i c values of M . In addition 
to n - 2 ze ros we have 

(34) 

u2 ± u J u 2 + 1 n n v n (n even) 

u , - u 1 ± / u2 , - u2
 1 + u2 - 1 (n odd) 

I n+1 n - 1 v n+1 n -1 n v ; 

NOTICE TO ALL SUBSCRIBERS!!! 
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rece ive it. (This will usually cost about 30 cents for f i rs t c lass postage.) If poss ib le , 
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THE FIBOiACCi MATRIX MODULO 111" 

D. W. ROBINSON, C A L I F O R N I A I N S T I T U T E OF TECHNOLOGY, PASADENA, C A L I F , t 

In this paper we investigate some of the ar i thmetical p roper t i es of the famous 
Fibonacci sequence by use of e lementary mat r ix algebra. We believe the approach 
to be conceptual ancls at leas t in par t , novel. Thus, it is our purpose to explore 
the pedagogical advantages of mat r ix methods for problems of this kind as well as 
to provide a refreshing appreciation of the ar i thmet ical proper t ies themselves . At 
the conclusion of the paper we also indicate how the methods may be applied to other 
l inear r e cu r r en t sequences. 

We begin by considering the following example. Suppose that the Fibonacci 
sequence 

0, 1. 1, 2. 3, 5, 8, 13. 21 , 34; 55. 89, 144.. . . . 

i s reduced modulo 8: 

, 0, 1 , 1 , 2. 3. 5, 0, 5. 5. 2, 7. 1, 0. F 1, — 

We observe that the reduced sequence is periodic. Indeed, the 12 t e r m s of the 
per iod form two se ts of 6 t e r m s each, the t e r m s of the second half being 5 t imes 
the corresponding t e r m s of the f i rs t half. We say that the Fibonacci sequence r e -
duced modulo 8 is of period 12 and res t r i c t ed period 6 with multiplier 5, Also, we 
observe that the mult ipl ier is of exponent 2 modulo 8. 

More general ly, let u0, Uj, •••, u , *** be the Fibonacci sequence of in tegers 
satisfying u 9 = u n + 1 + u n for n > 0 with (U()5 at) = (0, 1). Given any integer 
m ^ 1 we provide below an elementary proof of the fact that there is a positive 
integer n such that (u , u . ) = (0. 1) (mod m). The least such integer 6(m) is 
called the period of the Fibonacci sequence modulo m. The least positive integer n 
sLieh that (u . u ..) = s(0. 1) (mod m), where s is some integer, is called the 

i r n + 1 ' ' '• 

r e s t r i c t ed period aim) of the sequence modulo m. If (u . u ) - s(m) (0.1) 
(mod m). 0 < s(m) < m, then s(m) is called the mult iplier of the Fibonacci s e -
quence modulo m. Obviously s(m) = u ,-. (mod m), Finally, we denote the 
exponent modulo m of the mult ipl ier s(m) by /j(m). 

^Presen ted to the Mathematical Association of Amer ica , Southern California Sec-
tion, March 9, 1963. 

fPresent ly on sabbatical leave from Brigham Young University and at California 
Institute of Technology under an N. S. F. Faculty Fellowship P rogram. 
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By d i rec t calculation we obtain the following table: 

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Q,(m) 3 4 6 5 12 8 6 12 15 10 12 7 24 20 12 9 12 18 

(3{my 1 2 1 4 2 2 2 2 4 1 2 4 2 2 2 4 2 1 

6 ( m ) 3 8 6 20 24 16 12 24 60 10 24 28 48 40 24 36 24 18 

The resu l t s of this table i l lus t ra te severa l in teres t ing ar i thmet ical p roper t i es . 
In fact, if (a,b) a n d [ a , b ] denote the grea tes t common divisor and the leas t com-
mon multiple, respect ively , of the integers a and b , then we propose to e s t ab -
l ish the following: 

(i) m ju if and only if a(m) in, and m|u , m|(u . - 1) if and only if <5(m) i n; 
(ii) 6(m) = a(m)P(m) = (2,/3(m)) [y(m),ar(m)] , where 7(2) = 1 and 7(m) = 2 

for m > 2; 
(iii) a([m1,m2]\= [fffm]), a(m2)] , and 6([m1, m2 ]) = [&(mt). 6(m2)] ; 
(iv) for every odd p r ime p there i s a positive integer e(p) such that a(p ) 

, . max(0. e-e(p)) , s. e. w , max(0. e-e(p)) = a(p)p v ' ^" and <5(p ) = <5(p)p ; 
(v) #(p)|(p - (5/p)), where (5/p) is the usual Legendre symbol; fur thermore , 

if p ^ 5, then 6(p)|(p-l) or 6(p)|2(p + 1). 
With the possible exception of the last equation of (ii). which is due to Morgan 

Ward, these p roper t i es a re all well known. Indeed, the fact that reduced sequences 
of this type a re periodic was observed by J . L. Lagrange in the eighteenth century. 
A century la ter E. Lucas engaged in an extensive study of the ar i thmet ic d ivisors 
of such sequences. These ear ly resu l t s together with some of the la ter develop-
ments in the subject a re reviewed in Chapter 17 of Dickson's History [6]. How-
ever , it is suggested that this general background be supplemented with at leas t 
the papers of Carmichael [ 3 ] , Lehmer [ l l ] , and Ward [19] , (See also [4, 7, 8, 
9, 10, 17, 20, 21 ] . ) 

Fu r the rmore , since the main purpose of this p resen t paper is to indicate the 
use of matr ix algebra for the study of l inear r ecu r r ence re la t ions , we also r e m a r k 
that such techniques a re certainly not new. (See for example [ 1, 13, 16, 18] . ) In 
fact, some of the ar i thmet ica l p roper t ies of l inear r ecu r r en t sequences have been 
studied by means of ma t r i ces . (See for example [ 2 , 12, 15] . ) It is our aim to now 
indicate some of the further possibi l i t ies of this method. 
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We begin by introducing the main tool of our discussion. Specifically, we 
view the l inear r e c u r r e n c e above as defining a mapping of the o rde redpa i r (u ,u ) 
onto the o rdered pair (u „u ,..)• Since u . = u ., + u . it i s c lear that this ^ n ' n+ l ; n+1 n-1 n9 

mapping is represen ted by the mat r ix product (u _1 ,u )U (u ,u , _,), wher^ nJ n+ l ; ? ^ 

0 1 

1 1 

F u r t h e r m o r e , by induction on n," we observe that ( u
n > u

n + i ) = (°> 1 ) u a n d 

u . u n -1 n 
u u. ^ n n+1 

Because of these resu l t s we call U the Fibonaccixmatrixa 

F r o m the foregoing it is evident that (u ,u ..) = (0, 1) (mod m) if and only 
if U is congruent (elementwise) modulo m to the identity matr ix . Thus, the study 
of the per iod of the Fibonacci sequence modulo m is equivalent to the study of the 
per iod of the sequence I, U, U2, reduced modulo m. In par t icu la r , 
since there a re only a finite number of distinct ma t r i ce s in this reduced sequence, 
it follows that there a re in tegers k and n such that U is congruent to U 

with k + n > k > 0. But since the determinant of U is the unit - 1 , this means 
that for some positive integer n, U = 1 (mod m). Thus, there exists a leas t 
such positive integer n, which is in fact <5(m) as defined above. Also, it is c lear 
that every such n is an integral multiple of <5(m). That i s , U = I (mod m) if 
and only if <5(m)|n, which is equivalent to the second statement of (i). 

By a s imi la r argument we have (u , u _.) = s(0, 1) (mod m) if and only if 
n n 

U = si (mod m). Indeed, U i s congruent to a sca la r mat r ix modulo m if and 
only if a(m)\n, where a(m) i s the r e s t r i c t ed period defined above. This resu l t is 
equivalent to the f i rs t pa r t of (i). 

F u r t h e r m o r e , we have 

ifW = s(m) I (mod m) 

where the mult ipl ier s(m) is of exponent /3(mj modulo m. Since U 
= s ( m ) ^ m ^ 1 = 1 (mod m), 6(m)|cKm)/3(m). On the other hand, since it is evident that 
a(m)\ <5(m), we have by a s imi la r argument that /3(m)| 6(m)/a(m). Thus, <5(m) 
= a(m)/3(m), which es tabl ishes the f irst equation of (ii). 
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Also, since the determinant of U is - 1 , we have from the mat r ix congruence 
above that 

(_1 )^(m) ^ (S(m))2 (modm) 

Hence, these congruent in tegers have the same exponent modulo m. Specifically, 

7(m) _ g(m) 
(/(m), or(m)) (2,0(m)) 

where 7(m) is the exponent of -1 modulo m. Tnat is 

6(m) = «(mW?<m) = (2,/3(m)) ^ J ^ y , 

which is c lear ly equivalent to (ii). In par t icu lar , we observe that <5(m) is even for 
m > 2 and that /3(m)|4. 

We now demonstrate the second equation of (iii). We f irs t observe that if 
m T | m , then U = I (modm1) and 6(mf)| <5(m). Thus, since m1 and m2 both 
divide [ m 1 . m 2 ] , it follows that 6([m1,m2]) i s a common multiple of d(rn.t) and 
<5(m2). On the other hand, suppose d(mt) and <5(m2) both divide <5. Since U is 
congruent to the identity mat r ix modulo both m t and m2, the congruence is also 
valid modulo [m1 ? m 2 ] , That i s , ^ ( [m^mg] ) divides d and is therefore the 
leas t common multiple of 5(m1) and <5(m2). 

We obtain s imilar ly the f i rs t equation of (iii). Thus, we observe that both a 
and 6 a re factorable (1. c. m. multiplicative) functions of the argument m, which 
suggests next the consideration of property (iv). 

Therefore , let p be any odd pr ime and let e be any positive integer . Since 
U 6 ( P * = I + p e B for some matr ix B, U p 6 ( p ) = (I + p G B) P = I (mod p G + 1 ) . That 

e+1 t e e [ e+1 
i s , 6(p ) |p <5(p ). But obviously 6(p ) | 6(p ). We conclude, since p i s a 

e+1 e e e 
p r ime , that dip ) is e i ther <5(p ) or p dip ). In par t icu lar , dip )/ dip) is some 
non-negative power of p. Similarly, a(p )/ctip) is some non-negative power of p. 
Recalling that for any given modulus the ratio of the period to the r e s t r i c t ed period 
divides 4 and that p is odd, it is immediate from the identity 
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g(pe) <MR!) = 51R!) _6(p) 
^(P) ' a(p^ <5(p) ' a(p) 

that a(pe)/a(p) = S(pe)/5(p) and 6{pe)/a(pe) = 6(p)/or(p). e 

Moreover , suppose that 6(pe ) ^ <5(pe). Then U ^ ' = I + p e B with 
B £ 0 (mod p). Hences 

T T P < 5 ( p ) T , e+1^ / T , , e+2. U ; = I + p B ^ i (mod p ) 

e+1 p p+? p+1 
That i s , if 6(p ) = p6(p ), then 5(p ) = pS(p ). Consequently, if e(p) 
i s the l a rges t positive e such that 6(pe) = 6(p), then <5(pe) = 6(p) for 1 <e _< e(p) 

g g _ Q /p \ 
and 6(p ) = p <5(p) for e > e(p). Finally, the existence of e(p) i s a s su red 
from a consideration of the al ternat ive: if U ^ = I (mod p e ) , e = 1,2, • • •, then 
U - I, which is impossible . This completes the proof of (iv). 

It is of in te res t to r e m a r k that a tes t [17J with a digital computer has shown 

that e(p) = 1 for all p r imes p l ess than 10,000. However, the problem of ident i -

fying the exceptional p r imes p with e(p) > 1 remains unsolved. 

Finally, we prove proper ty (v). For every p r ime p we define the r e s t r i c t ed 

graph R(p) of U modulo p to consis t of the p + 1 points P0 = (0, l ) , P i = (1,1), 

••• , P = (p - 1, 1), P = (1, 0) together with the collection of all d i rected edges 
P — _L °° 

P. — P . T , where P.T is the unique point which is l inearly dependent upon the 
ma t r ix product P.U. (Contrast this with, for example, [5 ] . ) Byway of i l l u s t r a -
tion, R(5) consis ts of the 1-cycle P2 —* P2 and the 5-cycle P 0 - * Pj - * P 3 - * P 4 

-»- P -— P0. In general , since this graph i s determined by a one-to-one cor respond-
ence, it follows that R(p) consists of a collection of disjoint cycles . (See for 
example [14 J pp. 25-27.) F u r t h e r m o r e , i t is c lear that P. belongs to a 1-cycle 
(or in other words is a fixed point under the correspondence) if and only if P. is a 
cha rac te r i s t i c vector of U modulo p. Moreover, suppose that P. belongs to an 
a -cyc le with a > 1. Since {P . , P . U} is a l inearly independent set , it follows that 
P. Ua = s P . (mod p) implies U = si (modp) , which means that a(p)\a. Thus, 
since obviously a\a(p)} a = a(p). That i s , R(p) consis ts of a collection o f l - c y c l e s 
and a(p)-cycles . Consequently, #(p)|(p + 1 - t) ,where t is the number o f l - c y c l e s 
of R(p). But t is also the number of linearly independent characteristic vectors 
of U modulo p , or equivalently the number of distinct roots modulo p of the mini -
mum polynomial X2 - X - 1 of U. Since the discr iminant of this quadratic is 5, it 
follows that t i s 0, 1, or 2 according as the Legendre symbol (5/p) is - 1 , 0, or 1. 
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That i s , <*(p)|(p-(5/p)), which means that u p " ( 5 / / p ) = si and Up = sU ( 5 / / p ) (mod p), 

for some integer s depending upon p. Now, considering the t r ace of each of the 

m a t r i c e s in this las t congruence, t r U5 = 2s (mod 5) and t r U = (5/p)s (modp^5) . 
But. since U U I implies U = U - I (mod p), we have - t r U = t r Up - 2 
and t r . t r = 1 (mod p). Therefore U5 =. 31 (mod 5). and 

U P " < 5 / P ) S (5/p)I (mod p £ 5) , 

which es tabl ishes proper ty (v). As a corol lary we obtain the well-known congruence 
u = (5/p) (mod p). Also, it is of in teres t to add that, by the quadratic reciproci ty 
law, we have (5/p) = l i f p = 5 k ± l and (5/p) = -1 if p = 5k ± 2 . 

Thus, by use of the Fibonacci mat r ix , we have established some of the p r inc i -
pal ar i thmet ical p roper t i es of the sequence 0, 1, 1, 2, ••• . Although we may use 
this mat r ix to establ ish many other interest ing proper t ies and identit ies of the 
Fibonacci numbers , we feel that the foregoing is sufficient to i l lus t ra te the appl i -
cation of this tool (at l eas t as far as the ar i thmet ical p roper t i es a r e concerned). 
However, we indicate in conclusion how the idea maybe readily adapted to the study 
of more general l inear r e c u r r e n t sequences. 

Specifically, let x0, x l s . . . , x , ••• be the sequence of in tegers satisfying 
the l inear r e c u r r en c e 

x , = a.]X , n + ••• + a x , n+r l n+r-1 r n 

for n > 0 where x0, ••• , x __1 and al9 . . . , a a re given in tegers . A study of 
this l inear r e c u r r e n t sequence may be made by means of the equation X = X0A , 
where X = (x , ••• , x , ') and n n ' ' n + r - 1 ; 

A = 

0 a ] 

0 a r - 1 

0 ••• l a v 

Indeed, the ar i thmet ical p roper t i es of this sequence maybe investigated by a gener -
alization of the methods suggested by this p resen t paper . In par t icu lar , if m is a 
positive integer such that {X0, ••• , X -} is l inearly independent modulo m, then 
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X ^ = sX0 (mod m) if and only if A n = si (mod m). Fu r the rmore , if (m, a ) = 1, then 
the determinant of A is the unit (-1) ~ a modulo m and the sequence of powers 
of this mat r ix reduced modulo m is periodic. That i s , under these assumptions, 
the periodic proper t ies of the sequence of integers reduced modulo m maybe identi-
fied with those of the sequence I, A, • • • , A ,• • • reduced modulo m. For example, 
we have that (ii) above is a special case of the equation 

6(m) = a(m)/3(m) = (r, (3(m)) [ y(m)9a(m) ] , 

where r i s the order of the r e c u r r e n c e , 7(m) is the exponent of the determinant 
of A modulo m, and a(m), /3(m), and <5(m) are obvious extensions of the defini-
t ions above. 
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THE RELATION OF THE PERIOD MODULO 
TO THE RANK OF APPARITION OF m IN THE FIBONACCI SEQUENCE 

JOHN VINSON, AEROJET-GENERAL CORPORATION, SACRAMENTO, CALIF. 

The Fibonacci sequence i s defined by the r e c u r r e n c e relat ion, 

(1) V 2 = V l + % , n = 0, 1, 2, 

and the initial values u0 = 0 and VLt = 1. Lucas [2, pp. 297-301] has shown that 
every integer , m5 divides some member of the sequence, and also that the sequence 
is periodic modulo m for every m. By this we mean there is an integer, k, such 
that 

(2) u k + = u (mod m) , n = 0, 1, 2, *** . 

Definition. The period modulo m, denoted by s(m), is the smal les t pos i -
tive integer , k, for which the system (2) i s satisfied. 

Definition. The rank of apparation of m, denoted by f(m), is the smal les t 
positive integer , k, for which u, = 0 (mod m). 

Wall [3] has shown that 

(3) u n = 0 (modm) iff f(m)|n. 

In par t icu la r , since u , . = un = 0 (mod m) we have 1 ' s(m) u ; 

(4) f(m) |s(m) . 

Definition. We define a function t(m) by the equation f(m)t(m) = s(m). 
We note that t(m) is an integer for all m. The purpose of this paper is to 

give c r i t e r i a for the evaluation of t(m). 
Now we give some resu l t s which will be needed la ter . 

2 n (5) u • = u u + (-1) v ' n-1 n n-2 v ; 

This can be proved by induction, using the r ecu r r ence relat ion (1). 

This paper was par t of a thes is submitted in 1961 to Oregon State University in par t ia l 
fulfillment of the requi rements for the degree of mas t e r of Ar t s . 

37 
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/ ^ <?n - (3n , 1 + N/5 , . (6) u = ——-f1- , where # = — 5 and £> 1 + V5 , „ 1 - \/5 
— w n o T O ru — • 

n a - j8 

This is the well-known "Binet fo rmula . " It gives a natural extension of the Fibonacci 
sequence to negative values of n. By using the relat ion a (3 = (-1) , we find 

(7) u_„ = (-1) u. n+1 
n * - S i 

F r o m this we see that the r e c u r r en ce (1) holds for the extended sequence. 
By solving the sys tem 

ak - /3k = (a - (3) u k 

a • ak - /3 . /3k = (or - 0) u k + 1 

k k 
for a and ft , we obtain 

or = u. k+1 
/3uk = (1 - £ ) u k + u k _ x = , u k + u k _ x 

and 

Then 

/3k =, u k + 1 - « u k = (1 - a) u k + u k _ x = £ u k + u k - 1 

{a - 0 , ^ = «n k + r - ^ = ( .u , + V l , V - (̂ uk + V l)V 

By expanding and recombining we get (for n > 0) 

%k+r = X I .UkVlVj 

Now if we set k = f(m). we find 

(8) u r, x, = Up. . , u (mod m) 
v ; nf(m)+r f(m)-.l r 



1963 ] OF APPARITION OF m IN THE FIBONACCI SEQUENCE 39 

We note that this is valid for negative as well as non-negative in tegers , r . 
Lemma 1. t(m) is the exponent to which uf , . - belongs (mod m). 

n Proof: Suppose u f / . ., = 1 (mod m). Then from (8) we have u -, x, - ^ f (m)-l x ; v ; nf(m)+r 
= u (mod m) for all r . It follows from the definition of s(m) that s(m) _< nf(m) 
and thus u f , ,_-. = 1 (mod m) implies t(m) = s(m)/f(m) <_ ne 

Now we set r = 1 and n = t(m) in (8) to obtain 

t(m) -, , -, x 
uf ' = 1 1 , / .-, v, -, = u , ,, .. = ut = 1 (mod m) . 

f (m)-l t(m)f(m)+l s(m)+l x v ; 

n Thus t(m) is the smal les t positive n for which u f , , = 1 (mod m), that i s , 
u f , ._1 belongs to t(m) (mod m). 

Theorem 1. For m > 2 we have 
i) t(m) = 1 or 2 if f(m) is even, and 

ii) t(m) = 4 if f(m) is odd. 
Also, t ( l ) = t(2) = 1. Conversely, t(m) = 4 implies f(m) is odd, t(m) = 2 i m -
plies f(m) is even, and t(m) = 1 implies f(m) is even or m = 1 or 2. 

Proof. The cases m = 1 and m = 2 a re easily verified. Now suppose 
m > 2 and se t n = f(m) in (5) to get 

Uf(m)-1 - u f (m) u f ( m )-2 + ( " 1 ) f ( m ) - ( " 1 ) f ( m ) (modm) . 

If f(m) is even we have u?, x _. = 1 (mod m), and i) follows from Lemma 1. v ' t (m) - l ' 
If f(m) i s odd we have uS, x -. = -1 (mod m), and since m > 2 ,u | , . 1 v ' f (m)-l / ? ' l (m) - l 

^ 1 (mod m). This implies u f , ,_-. ^ ± 1 (mod m) and then 

3 2 i Up, x *- = u_p. . _. u„. , _, = -Up, , ., ± ± 1 (mod m). f (m)- l f (m)- l f (m)- l f (m)- l r v ' 

Finally, u4 = (u2 )2 = (-1)2 = 1 (mod m) and, by Lemma 1, t(m) = 4. 

The converse follows from the fact that the cases in the direct s ta tement of 
the theorem are all inclusive. 

Theorem 2. Let p be an odd pr ime and let e be any positive integer. Then 

i) t(pe) = 4 if 2 | f(p), 

ii) t(pe) = 1 if 2 | f(p) but 4 1 f(p), 
iii) t(pe) = 2 if 4 | f(p), and 
iv) t(2e) = 2 for e 2 3 and t(2) = t(22) = 1 . 
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Conversely, if q r ep re sen t s any p r i m e , then t(q ) = 4 implies f(q) is odd, 
e a e 

t(q ) = 2 impl ies 4|f(q) or q = 2 and e _>. 3, and t(q ) = 1 implies 2jf(q) but 
4 | f(q) or q e = 2 or 4. 

Proof. Wall [3, p. 527] has shown that if p n + 1 \ u then f(pn + 1)= pf(pn). 
•It follows by induction that f(p ) = p f(p), where k is some non-negative integer . 

e We emphasize that f(p ) and f(p) a r e divisible by the same power of 2, since this 

fact i s used severa l t imes in the sequel without further explicit re ference . 
e e 

In case i) , f(p ) i s odd and the resu l t is given by setting m = p in Theorem 1. 
e e 

In cases ii) a n d i i i ) , f(p ) i s even and we may set m = p , n = 1, and r - | f (p G ) in (8) to get 

UI-P/ p\ - U4T/ P\ 1 u H o, «x (mod p e ) | f (p e ) f (p e ) - l - | f ( p e ) v P ' 2 

which, in view of (7), i s the same as 

Uf(pe)-1 u i f (pe) s . ( -D 2 i V F / , i u i f ( p e ) < m o d ^ 
l f (P e ) + 1 „ / ™ H r ^ 

2 

Now |f(pe). = p-p^(p), where k i s some non-negative integer , and we see that 
f(p) I if(pe). Then from (3) we have p | u l f , e so that we may divide the above 

2 2XvP ) 
congruence by u l f , y We get 

i , 
Af(p6)-u . ^ ^ .= ( - l ) 2 f ( P e ) + 1 ( m o d p e ) . 

Now in case i i) , ~f(p) i s odd and so is H{pe)f and the las t congruence gives 
2 <* 

u f / ^x - = • 1 (mod pe) and thus , by Lemma 1, t (pe) = 1 . i lp^J- l 
In case iii) the congruence becomes 

since 

a r e both even. Then 

u f (pe) - i = - 1 ( m o d P e ) '. 

Hip) and if(pe> 

V ) - ! s l (modpe) 

and by Lemma 1 again, t(pe) = 2. 
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In case iv) we can easi ly verify t(2) = t(22) = 1. That t(2e) = 2 for e ^ 3 
follows from resu l t s given by Carmichael [1, p. 42] and Wall [3 , p. 527]. These 
resu l t s a r e , respect ively: 

A. Let q be any p r ime and let r be any positive integer such that (q, r) = 1. 
xl , X+l I ,-, X+a X+a+1 

we find that 2 Iuv.f/o3\ ^ 2 |k- It follows from (3) that f(2 ) must be a m u l t i -

If q u and q / u , then q u _ and q / u _ except when q = 2 
I n A n I nrqa H /] n r q a L 

and X = 1. 
B. Let q be any p r ime and let X be the la rges t integer such that s(q ) 

e-X = s(q). Then s(qe) = q s(q) for e > \ . 
The hypotheses of A. a re satisfied by q = 2, X = 3, and n = f(23), and 

->3+a| .ff 0 a | T T4-.cn e /OV4.U 4. .c/o3+ax 
' \ f ( 2 3 ) 

pie of f(23), hence f (2 3 + a ) = 2af(23). Since f(23) = 2f(2) we have f(2e) = 2e"2f(2) 
for e ^ 3. Now set q = 2 and X = 1 in B. We get s(2e) = 2 e _ 1 s (2 ) . Thus for 
e ^ 3 we have 

t ( 2 e } = 3(2!) = f^m = 2 . 
f(2e) 2 e f(2) 

The converse follows from the fact that the cases in the d i rec t s ta tement of 
the theorem a re all inclusive. This completes the proof, 

Now we give a l emma which is needed in the proof of the next theorem. 
Lemma 2. If m has the p r ime factorization 

m = qt q2 . . . qr , then 
n 

i) s(m) = 1. c. m. ( s (q . 1 )} , and 
l ^ i ^ 

ii) f(m) = 1. c. m. ( f f q 1 ) } 
l < i ^ n 1 

Wall has given i). The proof of ii) is as follows: Since the q.1 a re pai rwise 
relat ively p r i m e , m |u , i s equivalent to q. i u, (i = 1, 2, 0°* , n), which, by (3), 
i s equivalent to f (q. i ) k (i = 1, 2, •«• , n). The smal les t .positive k which s a t i s -
fies these conditions i s 

k = 1. c. m. ( f fa? 1 )} , 
l < i < n 1 

which, according to the definition of f(m), gives the des i red resul t . 
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Theorem 3. We have 

i) t(m) = 4 if m > 2 and f(m) i s odd. 
ii) t(m) = 1 if 8/f m and 2 | f (p) but 4 f f (p) for every odd p r ime , p , which 

divides m, and 
iii) t(m) = 2 for all other m. 

Proof: F rom what has already been given in Theorem 1, we see that it suf-
fices to show that the conditions given here in ii) a re both necessa ry and sufficient 
for t(m) = 1. Let m have the p r ime factorization m = q 1

1 q 2
2 q n and set 

m 

f(q^) = 2 V (i = 1, 2, - , n) , 

where the K. a re odd in tegers . By Theorem 1, we may set 

at 6 i 
t(q x ) = 2 (i = 1, 2, ••• , n) where 6. = 0, 1, or 2. 

Then s ^ 1 ) = f (q?i )t (q?i) = 2 1 1 K. (i = 1, 2, ••• , n). F rom Lemma 2 we 

have, where K is an odd integer , 

, x 1. c. m. r / # i \ i 0max(7i + &\ )xr 
s(m) = - , ' . „ i s f a - M r = 2 w i i 'K, 

' l < i < n L l J 

£/ . 1. c. m. p , ^ . 0 max^ i T / , 
f(m) = , . ffa-1) = 2 iK, and 

x ; l £ i < n VHi ; 5 

4., ^ i X/-P/ x 0max(7-+<5 ) - m ax7-
t(m) = s(m)/f(m) = 2 x i i ' i 

Now suppose t(m) = 1. Then max (7. + 5.) = m a x / . . Let y, = m a x / . . We have 

7, <L 7i + 5, < max (7 + 6.) = max 7, = 7u , 

Q'kv ~6k and thus <5k = 0 and t (q£ K ) = 2 = 1. It follows from Theorem 2 that 4 ( f ( q k
k ) , 

that i s , that y^ < 1. Then for all i , 

6. < max (7. + 6.) = max 7. = 7 , < 1 . 

F u r t h e r m o r e , 6. = 1 is impossible , for 5. = 1 is the same as t(q. i ) = 2 which 

impl ies , by Theorem 2, that 2 f(q. *) and thus 7. > 1. Then we would have 



1963] OF APPARITION OF m IN THE FIBONACCI SEQUENCE 43 

/. + t > 2j which is contrary to max (:>'. +•£.) < 1. Thus for all i , 6 
id t 

in ii). 

1 1 3 z. " I I 7 ' 1 
CX' ^ 1 

and t (q . 1 ) = 2 = l s which, by Theorem 2, is equivalent to the conditions given 

Now suppose, conversely, that the conditions given in ii) a r e satisfied, which, 
as we have just seen, is equivalent to the condition t (q . x ) = 1 for all i. Then 

s(q?i) = f(qj'i) t ( q^ ) for all i. 

Then Lemma 2 gives 

. , 1. c. m. r . a\ . -, 1. c . m . r p / ^ i x i P. . 
S ( m ' = l<i<_n {S<V>} = l<i<n ^t(qi }'' = f ( m ) 

and thus t(m) = s(m)/f(m) = 1. 
Our las t theorem is of ra the r different charac te r . Once again, we need a p r e -

l iminary lemma. 
Lemma 3. Let p be an odd p r ime . Then 

i) f(P) | (p - 1) if p = ±. 1 (mod 10) , 
ii) f(p) | (p + 1) if p = ± 3 (mod 10) , 

iii) s(p) | (p - 1) if p = i l (mod 10) , and 

iv) s ( p ) | ' ( p + 1) but s(p) | 2(p+ 1) if p SE+ 3 (mod 10). 

Lucas [2, p. 297] gave the following resul t : 

P | U p - l i f P " ~ X ^ m o d 1 0 ) a n d P I U
D + 1

 i f P = - 3 (mod 10). 

We get i) and ii) by applying (3) to this resul t , Wall [3. p. 528] has given iii) and iv). 
Theorem 4. Let p be an odd pr ime and let e be any positive integer. Then 

i) t(pe) = 1 if p = 11 or 19 (mod 20), 
ii) t(pe) = 2 if p = 3 or 7 (mod 20), 

iii) t(pe) = 4 if p = 13 or 17 (mod 20), and 

iv) t(pe) 4 2 if p =• 21 or 29 (mod 40). 

Proof: Theorem 2 shows that t(p ) is independent of the value of e, hence 
i s sufficient to consider e = 1 throughout the proof. 
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If follows from the definition of ff(p) that p j( u f , . so that by F e r m a t r s 
theorem, 

u f (p) - l ~ X ( m o d p ) ' 

Then, since u f . . 1 belongs to t(p) (mod p), it follows that t(p) j (p- l ) . Now if 
p = 3 (mod 4) we have 4 \ (p - 1) and thus t(p) ^ 4. 

i) Here p = 3 (mod 4) so t(p) ^ 4. Suppose t(p) = 2. Then, by Theorem 2, 
4 | f(p). Now p = ± 1 (mod 10) and, by Lemma 3 i ) , f(p) (p - 1) and thus 

4 | (p - 1). But this is impossible when p = 3 (mod 4), hence t(p) ^ 2 and we 
must have t(p) = 1. 
ii) Again p = 3 (mod 4) and t(p) ^ 4. Also p = ±. 3 (mod 10) and it follows from 
Lemma 3 that s(p) ^ f(p) and t(p) = s(p)/f(p) ^ 1. Hence t(p) = 2. 
iii) We have just seen that t(p) ^ 1 when p = ± 3 (mod 10), which i s he re the case . 
Also, f(p) J (p + 1). Now p = 1 (mod 4) so that 4 j (p + 1) and thus 4 | f(p), 
and it follows from Theorem 2 that t(p) ^ 2. Hence t(p) = 4. 

iv) Suppose t(p) = 2. Then by Theorem 2, 4 | f(p) and thus 8 js(p) (since s(p) 
= t(p)f(p) = 2f(p)). F u r t h e r m o r e , s(p) | (p - 1) since p = ± 1 (mod 10). Then 
t(p) = 2 impl ies 8( (p - 1). But we have p - 1 = 20 or 28 (mod 40) which gives 
p - 1 = 4 (mod 8), so that 81 (p - 1) i s impossible . Hence t(p) ^ 2. 

We naturally ask if a ^ t h i n g more can be said about t(p ) for p = 1, 9, 21 , 
29 (mod 40). The following examples show that the theorem is "complete'1: 

p = 1 (mod 40) 
p = 9 (mod 40) 
p = 21 (mod 40) 
p = 29 (mod 40) 

t(521) = 

t(809) = 
t(101) = 
t(29) = 

1, 
1, 

1, 
1, 

t(41) = 2, 

t(409) = 2, 
t(61) = 4. 
t(109) = 4. 

t(761) 
t(89) = 

= 4 
4. 

Now we might ask whether there is a number, m, for which t(p ) is always 

determined by the modulo m res idue c lass to which p belongs. The answer to 

this question is not known. We note that the pr inciples upon which the proof of 

Theorem 4 is based a r e not applicable to other moduli. 
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SPECIAL NOTICE 
The Fibonacci Associat ion has on hand 14 copies of Dov Ja rden , Recur ren t 

Sequences, Riveon Lematematika, J e r u s a l e m , I s rae l . This i s a collection of papers 
on Fibonacci and Lucas numbers with extensive tables of factors extending to the 
385th Fibonacci and Lucas numbers . The volume sel ls for $5.00 and is an excel -
lent investment . Check or money o rder should be sent to Verner Hoggatt at San Jose 
State College, San Jose , Calif. 

REFERENCES TO THE QUARTERLY 

Martin Gardner , Edi tor , Mathematics Games , Scientific Amer ican , June , 1963 
(Column devoted this issue to the helix. ) 

A Review of The Fibonacci Quarter ly will appear in the Feb. 1963 issue of the 
Recreat ional Mathematics Magazine. 

FIBONACCI NEWS 

Brother U. Alfred repor t s that he is current ly offering a one unit course on 

Fibonacci Numbers at St. Mary ' s College, 

Murray Berg , Oakland, Calif. , r epor t s that he has computed phi to some 

2300 decimals by dividing F l l o 0 4 by F11003 on a computer . Any inquir ies should 

be addressed to the editor. 

Charles R. Wall, Ft. Worth, Texas , r epor t s that he is working on his m a s t e r ' s 

thesis in the a rea of Fibonacci re la ted topics. 

SORTING ON THE B-5000 - - Technical Bulletin 5000-21004P Sept . , 1961, 

Burroughs Corporation, Detroit 32, Michigan. 

This contains in Section 3 the use of Fibonacci numbers in the merging of infor-
mation using three tape units instead of the usual four thus effecting considerable 
efficiency. (This was brought to our attention by Luanne Angle my er and the pamphlet 
was sent to us by Ed Olson of the San Jose office.) 
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S. L. Basin, General ized Fibonacci Numbers and Squared Rectangles , American 

Mathematical Monthly, pp. 372-379, Apri l , 1963. 
J . A. H. Hunter and J . S. Madachys Mathematical Divers ions , D. Van Nostrand 

Company, I n c . , Pr ince ton , New J e r s e y , 1963. 
•S. K. Stein, The Intersect ion of Fibonacci Sequences, Michigan Math. Journal , 

9 (1962), Dec. , No, 4a pp. 399-402. (Correction) 
L. Carl i tz , Generating Functions for Powers of Certain Sequences of Numbers , 

Duke Math. Journal , Vol. 29(1962), D e c , No. 4, pp. 521-538. (Correction) 
V. E. Hoggatt, J r . and S. L. Basin, The F i r s t 571 Fibonacci Numbers , Rec rea -

tional Mathematics Magazine, Oct. , 1962, pp. 19-31 . 
A. F. Horadam, Complex Fibonacci Numbers and Fibonacci Quaternions, The 

Amer ican Mathematical Monthly, M a r . , 1963, pp. 289-291. 
S. L. Basin, The Appearance of Fibonacci Numbers and the Q-matr ix in E l ec t r i -

cal Network Theory, Math. Magazine, Vol. 36, No. 2, March 1963, pp. 84-97. 
J. Browkin and A. Schinzel, On the Equation 2 - D = y2 , Bulletin de l 'Academie 

Polonaise des Sciences, Serie des sci. math. , as t r , et phys. —Vol. VIII. No. 5, 

I960, pp. 311-318. 
Georges Browkin and Andre Schnizel, Sur les nombres de Mersenne qui sont 

t r i a n g u l a r e s , Comptes rendues des seances de l 'Academie des sc iences , 

t. 242, pp. 1780-1781, seance du 4 Avril 1956. 
C. D. Olds, Continued Frac t ions , Random House (New Mathematical Library 

S e r i e s - - p a r t of the Monograph Pro jec t of SMSG) 1963. 
This is an excellent understandable t rea tment of the subject at a reasonable 

level with many in teres t ing topics for those devoted to the study of in tegers 

with special p rope r t i e s . 
L. Zippin, Uses of Infinity7, Random House (New Mathematical Library Se r i e s , 1962.) 

This has no index which, makes the Fibonacci topics ha rde r to find but there 
a r e severa l in teres t ing comments there . 

Mannis Charosh, Prob lem Department, Mathematics Student Journal , May, 1963. 
In the editorial comment following the solution of Prob lem 187, there is a 

l i t t le general ized resu l t s imi la r to problem B-2 of the Elementary Prob lems 
and Solutions section of the Fibonacci Quarter ly , Feb. , 1963. 

A. Rotkiewicz, On Lucas Numbers with Two Intr insic P r i m e Divisors , Bulletin 

de l 'Academie Polonaise des Sciences, Serie des sci . math. , a s t r . et phys. — 

Vol. X. , No. 5, 1962. 



FIBONACCI MATRICES AND LAMBDA FUNCTIONS 

MARJORIE BICKNELL AND VERNER E. HOGGATT, JR . , SAN JOSE STATE COLLEGE, SAN J O S E , C A L I F . 

When we speak of a Fibonacci mat r ix , we shall have in mind ma t r i ces which 
contain member s of the Fibonacci sequence as e lements . An example of a Fibonacci 
ma t r ix i s the Q mat r ix as defined by King in [ l ] , pp. 11-27, where 

- I 1 1 • 
I1 °/ 

The determinant of Q is - 1 , writ ten det Q = - 1 . F r o m a theorem in mat r ix theory 3 

det Q n = (det Q)n = ( - l ) n . 

By mathematical induction, it can be shown that 

/ n+1 n \ 
Q n = ! 

\ F F , / 
.̂ n n-1 

so that we have the famil iar Fibonacci identity 

F ± 1 F - F 2 = (-1)11 . 
n+1 n -1 n v ; 

The lambda function of a ma t r ix was studied extensively in [2] by Fenton 
S. Stancliff, who was a professional musician. Stancliff defined the lambda func-
tion A(M) of a ma t r ix M as the change in the value of the determinant of M when 
the number one i s added to each element of M. If we define (M + k) to be that 
ma t r ix formed from M by adding any given number k to each element of M5 we 
have the identity 

(1> det (M + k) = det M + k X_(M). 

47 
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For an example, the determinant \{Q ) is given by 

MQn) 

F + 1 
n+1 

F + 1 n 

(F F 
v n+1 n -1 

F , + 1 n -1 
- d e t Q " 

F 2 ) + (F , + F : 1 - 2 F ) - det Q n 
n ; v n -1 n+1 n ; 

n -3 

which follows by use of Fibonacci identi t ies. Now if we add k to each element 
of Q , the resul t ing determinant is 

F - + k n+1 

F + k n 

F + k n 

F - + k n -1 

det Q + k F n-3 

However, the re a re more convenient ways to evaluate the lambda function. 

Fo r simplici ty, we consider only 3 x 3 ma t r i ces . 

THEOREM. For the given general 3 x 3 mat r ix M, X(M) is expressed by ei ther 

of the express ions (2) or (3). For 

M 
a b c ^ 
d e f 

kg h J I 

(2) X(M) = 

a + e - ( b + d ) b + f - ( c + e) 

d + h - (g + e) e + j - (h + f) 

(3) MM) = 

1 
1 
1 

b 
e 
h 

c 
f 

j 

+ 
a 
d 

g 

1 
1 
1 

c 
f 

j 

+ 
a 
d 

g 

b 
e 
h 

1 
1 
1 

Proof: This is made by direct evaluation and a simple exerc ise in algebra. 
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An application of the lambda function is in the evaluation of determinants . 
Whenever there is an obvious value of k such that det (M + k) is easy to evaluate. 
we can use equation (1) advantageously. To i l lus t ra te this fact, consider the mat r ix 

M 
000 

990 

675 

998 

988 

553 

554 

554 

554 

We notice that, if we add k •= -554 to each element of M, then det (M.+ k) =• 0 
since every element in the thi rd column will be zero . F rom (2) we compute 

X(M) 

0 10 

-120 435 

1200. 

and from (1) we find that 

0 - det M + (-554) (1200) , 

so that det M = (554) (1200). 
Readers who enjoy mathematical cur ios i t ies can crea te determinants which 

a re not changed in value when any given number k is added to each element, by 
writ ing any ma t r ix D such that X (D) = 0. 
LEMMA: If two rows (or columns) of a mat r ix D have a constant difference b e -
tween corresponding e lements , then X(D) = 0. 
Proof: Evaluate X(D) direct ly , by (2) or (3). 

For example, we wri te the mat r ix D, where corresponding elements in the f i rs t 
and second rows differ by 4, such that 

det D 

1 

5 

4 

2 

6 

9 

3 

7 

8 

-

1 + k 2 + k 3 + k 

5 + k 6 + k 7 + k 
4 + k 9 + k 8 + k 

= 24 

Now, we consider other Fibonacci ma t r i ce s . Suppose that we want to wri te 

a Fibonacci mat r ix U such that det U Now 



[ April 50 FIBONACCI MATRICES AND LAMBDA FUNCTIONS 

a 0 0 I . 

x b 0 = abd. 

y z d | 

We can write F = F ^ F = F ^ F = F2F2F for any n, and for some n we 
n n n n 

will also have other Fibonacci factorizations. Hence, F = det U for 

p . \ 

where F 0 = 0. If we choose m = k = 3 and p = 2, we find that X(U) = 0. If we 

choose m = 1 or 2, k = 1 or 2. and let p be an a rb i t ra ry integer, then \(U) = F . 
A more elegant way to write such a mat r ix was suggested by Ginsburg in [3 ], 

who showed that if a = 

then det B = n, where 
2p' c = b = F 

B = 

2p+l ' 

a b 

c d 

e f 

F 2 p + 2 , and f- 2p+3J 

Letting n = F , we can wri te F = det U, where 

2p '2p+l 
F F F 

2p+l 2p+2 m 
F F F 

2p+2 2p+3 m 

Using equation (3) we have 

X(U) 

= 0 + 0 + 1/F (det U) = 1 

m 
b 1 

d 1 

f 1 
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If we let k — F ^ ^, from (1) we see that 

det (U + F J - F + (F J (1) = F 
m - r m v m - l ; v ; m+1 * 

51 

Notice the possibi l i t ies for finding Fibonacci identi t ies using the lambda func-
tion and evaluation of de terminants . As a brief example, we let k = F and con-

n n 

s ider det (Q + F ), which gives us 

n+1 n 

F + F n n 

F + F n n 

F , + F n -1 n 
= det Qn + F n X(Q n ) 

or 

n+2 

2 F n 

2 F 

n+1 
-1) + F F 0 ; n n -3 

so that 

4 F 2 = F . F _ - F F _ + ( - l ) n + 1 
n n+2 n+1 n n-3 ; 

As a final example of a Fibonacci mat r ix , we take the mat r ix R, given by 

/ 0 0 V 

R = 0 1 2 

\ l 1 1 

which has been considered by Brennan [ 4 ] . 

It can be shown by mathematical induction that 

R11 = 

/ ^ 
2 F , F n-1 n 

F , F n-1 n 

F \ - F . F n+1 n-1 n 
F F , i n n+1 

2 F F n n n+1 

n+1 
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The reade r may verify by equation (2) and by Fibonacci identit ies that 

\(R1J 
F2 + F2 - 4 F F n -1 n+1 n-1 n 

3 F _, F - F 2 - F2 + F F , n -1 n n n+1 n n+1 

2n-3 

n-2 

r 2 n - 2 

- F 0 F n + ( - l ) n 
n-2 n-1 v ; 

2 F , F + 2 F F _ F 2 - F 2 
n -1 n n n+1 n n+1 

2 F 2 - 3 F F i n - F F , n+1 n n+1 n n-1 

= <-1>X-l-Fn-3Fn-2>-

Here we see that the value of (R ) i s the center element of R multiplied by 

(-Dn. 
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ADVANCED PROBLEMS AND SOLUTIONS 

EDITED BY VERNER E. HOGGATT, JR., SAN JOSE STATE COLLEGE 

Send all communications concerning Advanced Prob lems and Solutions to 
Verner E, Hoggatt, J r . , Mathematics Department, San Jose State College, San 
J o s e , Calif. This depar tment especially welcomes problems believed to be new or 
extending old r e su l t s . P ropose r s should submit solutions or other information that 
will a s s i s t the editor. To facilitate their considerat ion, solutions should be submitted 
on separa te signed sheets within two months after publication of the problems. 

H - 9 Proposed by Olga Taussky, California Institute of Technology, Pasadena, California 

Find the numbers a , where n > 0 and r a r e in tegers , f o r which the n, r5 to > 
re la t ions 

a. + a - + a = a ., 
n, r n . r - 1 n, r - 2 n + l . r 

and 

aA = <5 0 . r . o . r 

0 r ^ 0 

,1 r = 0 

hold. 

H - 1 0 Proposed by R. L. Graham, Bell Telephone Laboratories, Murray Hill, Sew Jersey 

OO 30 

Show that v 1 -i x - 1 (_ i \ n + l 
F " d + Z J F F Z _ I F Z _ i F F , F ^ 

n = l n n = l n n + 1 n + 2 

H - l l Proposed by John L. Brown, Jr., Ordnance Research Laboratory, The Pennsylvania 
State University, University Park, Penna. 

Find the function whose formal Four i e r s e r i e s is 
OO 

F sin nx 
f(x) = -5> 

n=l 
where F is the nth Fibonacci number. n 

53 
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H - 1 2 Proposed by D. E. Thoro, San Jose State College, San Jose, California 

Find a formula for the nth t e r m in the sequence: 

1. 3 , 4 , 6 , 8, 9 , 1 1 r 12, 14, 1 6 , 1 7 , 1 9 , 2 1 , 2 2 , 2 4 , 2 5 , 

H - 1 3 Proposed by H. W. Gould, West Virginia University, Morgantown, W. Va., and 
Verner E. Hoggatt, Jr., San Jose State College, San Jose, Calif. 

Show that 
TT = \ 7 r \ T?r-J *J r 

n+j-rk 
F
n = S(0F^iFiF

n 
j=0 

H - 1 4 Proposed by David Zeitlin, Minneapolis, Minnesota, and F. D. Parker, University of Alaska, 
College, Alaska. 

Prove the Fibonacci identity 

F3, , - 3 F3 _ - 6 F^ + 3 F3 + F3 - 0 i>:-4 n+3 n+2 n+1 n 

H - 1 5 Proposed by Malcolm H. Tallman, Brooklyn, New York 

Do there exist in tegers Nl5 N2, and N3 for which the following express ions 

cannot equal other Fibonacci numbers? 

(i) 

(ii) 

(iii) 

F3 - F2 F - F3 
n n m m 

F3 + F 2 F + F F2 
n n m n m 

F2 - 3 F 3 

n m 

m, 

m, 

m, 

n > Nj 

n - N2 

n > N3 

H - 1 6 Proposed by H. W. Could, West Virginia University, Morgantown, West Virginia 
n x n _ x 

Define the ordinary Hermite polynomials by H = (-1) e D (e ). 

(i) Y Hn( X / 2 ) £ 
n x 

n=0 

(") Y Hn <x/2) £ Fr, 
Show that: ^ x ^ 

n! n 
n=0 

OO 

V"1 x n -x2 

(iii) 2 i H n ( x / 2 ) - H T L n = 2 G ' 
n=0 

where F and L are the nth Fibonacci and nth Lucas numbers , respect ively. 
n n 
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H - 1 7 Proposed by Brother U. Alfred, St. Mary's College, Calif. 

n 
Sum: \ k 3 F k 

k=l 

H-18 Proposed by R. G. Buschman, Oregon State University, Gorvallis, Ore. 

"Symbolic re la t ions" a re somet imes used to express identi t ies . For example, 
if F and L denote, respect ively 2 Fibonacci and Lucas numbers^ then 

(1 + L) n i L 2 n , (1 + F ) n # F 2 n 

a r e known ident i t ies , where £ denotes that the exponents on the symbols a re to be 
lowered to subscr ip ts after the expansion is made. 

(a) Prove (L + F ) n = (2F)n . 
(b) Evaluate (L + L) n . 

(c) Evaluate (F + F ) n . 

(d) How can this be suitably general ized? 

NOTE: On occasion there will be problems l is ted at the ends of the a r t ic les in the 
advanced and elementary sect ions of the magazine. These problems a re to be con-
s idered as logical extensions of the corresponding problem sections and solutions for 
these problems will be discussed in these sections as they a re received. 

See, for example, "Expansion of Analytic Functions In Polynomials Associated 
with Fibonacci Numbers , " by Paul F. Byrd, San Jose State College, in the f irs t i ssue 
of the Quar ter ly , and "Linear Recurrence Relations - P a r t I, " by J ames J e ske , San 
Jose State College, in this i s sue . 

Solutions for problems in ISSUE ONE will appear in ISSUE THREE. 
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A convenient method of generating Fibonacci numbers i s the al ternating sub-
total exchange and add procedure which is easily performed on the Olivetti Tet rac tys 
desk calculator . 

The Olivetti Te t rac tys has two separate accumulating r e g i s t e r s so ar ranged that 
the contents of ei ther can be added to the other by manual commands and without r e -
writing numbers into the input keyboard. The detailed procedure for generating any 
Fibonacci sequence on the Te t rac tys follows: 

Set automatic total lever (14) to left and set automatic accumulation lever (29) to 
up position. 

a) Clear the r e g i s t e r s by depress ing the green and black total keys. 
b) Write the value of the initial t e r m of the sequence in the 10-key keyboard. 
c) Depress the green add key. The initial value now printed on the tape in blue 

ink is the sequence title but is not the f i rs t t e r m . 
d) Advance the paper tape 3 l ines . 
e) Depress simultaneously the green sub-total key and the black add key. The 

initial t e r m of the sequence is now printed on the tape in red ink. 
f) Depress simultaneously the black sub-total key and the green add key. The 

second t e r m of the sequence is now printed on the tape in red ink. 
g) Repeat step (e) for the third t e r m . 
h) Repeat step (f) for the fourth t e r m . 
i) Continue al ternating s teps (e) and (f) for as many t e r m s as des i red up to the 

13 decimal digit capacity of the ar i thmet ic r e g i s t e r s . 
j) The sequence can be continued beyond the 13 digit l imit by clear ing the r e g i s -

t e r s 9 step (a), and rewri t ing the requi red most significant digits of the las t 
t e r m obtained as a new initial value, r es ta r t ing at step (b). 

It takes a little pract ice to develop the manual knack of simultaneously d e p r e s -
sing the adjacent sub-total and add keys, A firm push is necessary but i t must not 
las t too long or the operation will be done twice, producing an e r r o r , 

In generating long sequences it is a read-out convenience to depress the non-
add key after every fifth t e r m . This provides a blank line and makes it easy to 
count t e r m s , 

It is difficult? but not impossible to make e r r o r s . The usual e r r o r s consist in 
skipping a step or doing a step twice, which amount to the same thing. 

The printed tape can be checked for e r r o r s in two ways. 
1) Each t e r m approximates 1.6 t imes the preceding t e r m . 

2) The + symbols on the far r ight side of the printed tape should al ternate b e -
tween the two symbol columns. If two successive + signs fall in the same 
ver t ical symbol column, an e r r o r wras made at that point. 

(Continued on p. 88) 



PART H 

I 





BEGINNERS' CORNER 

EDITED BY DMITRI THORO, SAN JOSE STATE COLLEGE 

DIVISIBILITY II 

We shall continue our investigation of some "background ma te r i a l " for the b e -
ginning Fibonacci explorer . Whenever necessa ry , we may assume that the in tegers 
involved are not negative (or zero). 

1. DEFINITIONS 

Two integers a and b a re relatively pr ime if their g rea tes t common divisor 
(g. c. d. ) i s 1. When convenient we will use the customary abbreviation (a,b) to 
designate the g. c. d. of a and b. Finally, as previously implied, we shall say that 
n *s composite if n has more than two divisors , 

2. ILLUSTRATIONS 

E l . If d = a and d| b , then d ( a ± b ) ; i. e. , a common divisor of two numbers is a 
divisor of their sum or difference. 

PROOF: d | a means there exis ts an integer a such that a = a'd. Similar ly. 
we may write b = bTd. Thus a ± b = d (a? ± b?) which proves that d[ (a ^ b). [ This 
follows from the definition of divisibility. ] 

E2. If d = (a,b). then j -7 , -7 J = 1; i. e. , if two numbers a re divided by their 
g. c. d. , then the quotients a re relat ively p r ime . [This resu l t is a wide!}- used 

"tool. "] 
a b 

PROOF: Since d is the g. c. d. of a and b. —, and -7 are certainly in tegers : 
to • d d " to 

let us call them a' and b1, respect ively. Thus a = a'd, b = b 'd . and we a r e to 
show that (a'. br) = 1. The t r ick is to use an indirect argument. 

Suppose (a?, bT) = df > 1. Then (there exist in tegers a" and b" such that) 
a' = a"d' and bT = b"d ' . This implies a = a'd = a"dTd and b = b'd -• b"d 'd; 
i . e . . dfd is a common divisor of a and b. But we assumed d' 1. which means 
ddT > d — contrary to the fact that d is the grea tes t common divisor of a and b. 

E3 . If a and b a r e relat ively p r ime , what can you say about the g. c. d. of a -r b 

and a - b? For example, (13 -f 8, 13 - 8) - 1. but (5 - 3. 5 - 3) - 2. It turns 

out, however, that these a re the only possibilities. ' 

57 
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If (a,b) = 1, then (a + b , a - b) = 1 or 2. 

PROOF: Let (a + b, a - b) = d. Then by E l , dj [(a •+ b) ± (a - b)] ; i. e. , 
d |2a and d |2b . 
(I) If d i s even, set d = 2 K. Then from 2a = ' 2KaT, 2b = 2Kb' we have a = Kar, 
b = K b \ Therefore K must be 1 (why?), and hence d = 2. 
(ii) Similarly if d is odd, then d would have to divide both a and b , whence 
d = 1. 

Can you see what objection a pedantic r eade r might have to this proof? 

E4y The following is a special case of a resu l t due to Sophie Germain, a French 

mathematician (1776-1831). 

n4 + 4 is composite for n > 1 . 

PROOF: Unlike the preceding i l lus t ra t ions , he re one needs to stumble onto 

a factorization, n4 + 4 = (n2 + 2)2 - (2n)2 = (n2 + 2 + 2n) (n2 + 2 - 2n) does the t r ick, 

for this shows that N = n4 + 4 is divisible by a number between 1 and N and 

hence must be composite, 

E5. We now consider one of the s imples t p roper t ies of Fibonacci numbers . 

Two consecutive Fibonacci numbers are always relatively p r ime . 
PROOF: Certainly this i s obvious for the f irs t few numbers : 1. 1, 2f 3, 5, 

8, , Let us use an indirect argument. Suppose F and F _, i s the f i rs t 
: to II- n n + J 

pair for which (F . F , ) = d > 1. Now examine the pair F _, and F . Since 1 ii' n+1 n-1 n 
F ., - F = F 1? d is a divisor of F 1 (for d| F , 1 , d! F and hence, by E l . n+1 n n - l J n -1 < n+V n ' J 

their difference). This means that F - and F are not relatively p r ime — a con-' n -1 n 
tradict ion to our assumption that F and F is the f irst such pai r . 

3. SOME USEFUL THEOREMS 

T l . Any composite integer n has at least one p r ime factor. 
PROOF: (i) Since n is composi te , it must have at least one divisor g rea te r 

than 1 and less than n. 

(ii) Let d be the smal les t divisor of n such that 1 < d < ii. 
(iii) Suppose d is composite; let d r jd, 1 < d' < d. 
(iv) Thus we have n = ntd = li^l'd"; i. e. , d' j n but d < d' — a contradiction 
to the definition of d. Therefore d must be a p r ime . 
T2. Given n > 1. Suppose that the quotient q. in the division of n by a, is less 
than a. If n is not divisible by 2. 3, 4. . (a - 1). a, then n is a p r ime . 
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PROOF: (i) If q (q < a ) is the quotient and r the remainder in the division 
of n by a, we may wri te 

n r 
- = q + - , 0 < r < a . 

(ii) Assume that n i s not divisible by 2, 3 , 9 9 ' , a but has a divisor d, 1 < d < n. 
We shall show that this leads to a contradiction. 
(iii) Since djn, n = ddT, where 1 < dT < n. 

(iv) By (ii), df > a and by (i) a > q; hence d? >q or d? > q + 1. Also d > a ; 
multiplying dT - q + 1 by d > a. we a r r i v e at 

(v) n = ddf > aq + a. But by (i), n = aq + r < a q + a since r < a. This i s the 
des i red contradiction which proves that n cannot be divisible by d, 1 < d < n9 

and hence must be a p r ime . 

T3. If n > 1 i s not divisible by pt = 2, p2 = 3, p3 = 5, p4 = 7, • • • , p k ? where 
p^. i s the l a rges t p r ime whose square does not exceed n, then n is a p r ime . 

PROOF: Assume a2 — n < (a + l ) 2 and that n i s not divisible by 2, 3, ••• ,' 
(a - 1), a. Then n = dd? impl ies d ^ a + 1, df — a + 1, whence n = dd? ^ (a+1)2 

— a contradiction. Thus n must be p r ime . The r eade r should convince himself 
that he r e (as well as in T2) i t suffices to consider only p r ime divisors - Vn. 

4. PROBLEMS 

1.1 Suppose that 
(i) p i s the smal les t p r ime factor of n and 

V (ii) p > vn . 
What in teres t ing conclusion can you draw? 

1.2 Prove that two consecutive Fibonacci numbers a re relat ively p r ime by 

using one of the identit ies on p. 66 (Fibonacci Quarter ly , February , 1963). 
1.3 Prove that if p and p + 2 a re (twin) p r i m e s , then p + 1 i s divisible 

by 6. (Assume p > 3. ) [This problem was suggested by J a m e s Smart . ] 
n 

1.4 Prove that if n i s divisible by k, 1 < k < n, then 2 - 1 i s divisible 
by 2 k - 1. For example, 235 - 1 = 34 359 738 367 is divisible by 25 - 1 =31 and 

27 - 1 = 127. 
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1.5 Prove that there a re infinitely many p r imes . Hint: Assuming that p 
i s the l a rges t p r i m e , Euclid considered the expression N = 1 + 2 - 3 - 5 - 7 - - -p . 
Now ei ther N is p r ime or N is composite. Complete his proof by investigating 
the consequences of each al ternat ive. 

Additional hints may be found on p. 80. 

FIBONACCI FORMULAS 
Maxey Brooke3 Sweeny, Texas 

If you have a favorite Fibonacci formula, send it to us and we will t ry to publish 
i t . Some his tor ical ly in teres t ing ones a r e shown below. 

1. Pe rhaps the f i r s t Fibonacci formula was developed by Simpson in 1753. 
F ± 1 F n - F 2 = ( - l ) n 

n+1 n - 1 n v ' 

2. A very important formula was developed in 1879 by an obscure French mathe -
matic ian, Aurifeuille. In fact, i t is his one cla im to fame, 

L_ = L (LQ - 5F + 3 ) (L 0 + 5F + 3) 
5n n 2n n ' 2n n ' 

3. The only formula involving cubes of Fibonacci numbers given in DicksonTs 
"History of the Theory of Numbers" i s due to Lucas . 

F 3 + F 3 _ F 3 = F 
n+1 n n - 1 3n 

The late Jekuthiel Ginsburg offers F* ,' - 3F3 + F 3
 n = 3 F 0 . 

te n+2 n n - 1 3n 
4. The recurs ion formula for sub-factor ials i s s imi la r to the one for Fibonacci 

numbers : P , , = n(P + P J ; P0 = 1 , Vx = 0 . 
n+1 v n n - 1 7 ' u * i 

5. Fibonacci numbers have been re la ted to a lmost every other kind of number . 
Here is He S. Vandiver 's relat ion with Bernoulli numbers . 

Y B2kF2k S hmod^ ^ P = 5a+ 1 
k=0 
^ 3 

) B
2 k F 2 ( k - l ) ~ X ( m o d p ) if P = 5a ± 2 

k=0 
p -3 denotes the g rea tes t integer not exceeding (p - 3) /2 . 

I think that this is a good idea. 
Ed. 



A PRIMER ON THE FIBONACCI SEQUENCE - PART II 

S.. L. BASIN A M I VERNER E. HOGGATT, JR . , SAN JOSE STATE COLLEGE 

1. INTRODUCTION 

The proofs of existing Fibonacci identities and the discovery of new identities 
can be greatly simplified if matrix algebra, and a particular 2 x 2 matrix are intro-
duced. The matrix approach to the study of recurring sequences has been used for 
some time [1J and the Q matrix appeared in a thesis by C. H. King [2] . We first 
present the basic tools of matrix algebra. 

THE ALGEBRA OF (TWO-BY-TWO) MATRICES 

The two-by-two matrix A is an array of four elements a, b. c, d: 

A = 

The zero matrix. Z, is defined as. 

Z 

The identity matrix, I, is 

0 0 

0 0 

The matrix C. which is the matrix sum of two matrices A and B. is 

/ a b \ / e f \ / a ^ b+f 
C = A + B= Ut U / 

\ c d / \ g h / \ c - g d-h 

The matrix P, which is the matrix product of two matrices A and B5 is 

P = AB = / a b V e V / " * 1 * ^-
\ c d / \ g h / \ce+dg cf+dh 
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The determinant D(A) of mat r ix A is 

D(A) 
a b 

c d 
ad - be. 

Two ma t r i ce s a re equal if and only if the corresponding elements a r e equal; t h a t i s , 

a b \ / e f 
A = t 

c d / \ g h 

if and only if, a = e, b = f, c = g, d = h. 

A SIMPLE THEOREM 

The determinant , D(P), of the product, P = AB. of two ma t r i c e s A and B i s 
the product of the determinants D(A) and D(B) 

D(P) = D(AB) = D(A) D(B) 

The proof is left as a s imple exerc i se in algebra. 

THE Q MATRIX 

The Q mat r ix and the determinant of Q, D(Q)5 a r e : 

Q = I J , D(Q) = - 1 . 

1 (T 
If we designate Q° = ( ) = l? then 

,0 1/ 

Q = Q1 • = Qu Q = IQ = QI = QQU . 

DEFINITION: Q n + 1 = Q n Q 1 , an inductive definition where Q1 = Q. This i s the 
law of exponents for ma t r i ce s . 
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It is easily proved by mathematical induction that 

Q1J 

F ^ F 
n+1 n 

F F 
n n -1 

where F is the nth Fibonacci number , and the determinant of Q is n ' 

D(Qn) = Dn(Q) = ( - l ) n 

MORE PROOFS 

We may now prove severa l of the identit ies very nicely. Let us prove identity III 

(given in P a r t I), that i s , 

F . -. F - F2 = ( - l ) n 

n+1 n -1 n v ; 

Proof: 

If Q" = 
/F ^ F 

n+1 n 

F F n 
n n -1 

and D(Qn) = ( - i ) n 

then 

D(Qn) = 
F x 1 F 

n+1 n 

n-1 
F F - F2 - (-n11 

n+1 n-1 n l ; 

Let us prove identity VI 

2n+l F* + F2 
n+1 n 

j n + 1 Q n = Q 2 n + 1 

then 
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Q n Q n + 1 

r F F + F F F* + F" 
n+1 n+2 n n4-! n+1 n 

F F , 0 + F n F , F F ^ + F , F 
n n+2 n-1 n+1 n n+1 n-1 n 

But this is also 

, 2 m l 
F2n+2 F 211+1 

F F 
2n+l 2n 

Since these two ma t r i ces a re equal we may equate corresponding elements so that 

F 0 0 = F F 0 + F F , (Upper Left) 2n+2 n+1 n+2 n n+1 v *^ ; 

F . ., = F2 t F2 (Upper Right) 
2n+l n+1 n 1 K & ' 

F 0 , = F F + F - F ^ , (Lower Left) 
2n+l n n+j n -1 n+1 v ; 

F n = F F + F , F (Lower Right) 
2n n n+1 n-1 n to ' 

F (F + F ) ^n u n+1 n - l ; 

If we accept identity V: L = F , - F 1 , then 1 J n n+1 n-1 

F 0 = F L 2 n n n 

which gives identity VIII. Return again to 

F 0 = F (F + F J 2n n v n+1 n - l ; 

F rom F, . = F, , + F, . for k = n - 1. one can write F = F . - F 
k- -2 k-f 1 k ' n n -1 n-1 

thus also 
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F 0 . = (F _L1 - F 1 ) (F , n + F n) = F2 , - F2 
2n v n+1 n - 1 ' v n+1 n - 1 7 n+1 n 

which i s identity VII. 
It is a s imple task to verify 

and 

and 

Q2 - Q + I 

Q n + 2 = Q n + 1
 + Q n , 

Q n = Q F n + I F n _ x , 

where F is the nth Fibonacci number and the multiplication of mat r ix A, by a 
number q, i s defined by 

a b \ / a q bq 
qA = q 

c d / \ cq dq 

GENERATION OF FIBONACCI NUMBERS BY LONG DIVISION 

1 = Fi + F 9 x + Fox2 + • • • + F x n X + 
1 - x - x' 

In the p roces s of long division below 

2 l L 6 n 

1 - x - x2 I 1 

the re i s no ending. As far as you ca re to go the p rocess will yield Fibonacci Num-
b e r s as the coefficients. 
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F AS A FUNCTION OF ITS SUBSCRIPT n 

It is not difficult to show by mathematical induction that 

P(n): F r 

n / , j(l^y. ^ j - j 
This can be derived in many ways, P( l ) and P(2) a re clearly t rue . F rom F, 

= F, _.. + F, _9 and the inductive assumption that P(k-2) and P (k - l ) a re t r u e , then 

(a) F k _ 2 fM^T-Ml 
1 \ 1 + NO 

Adding, after a simple algebra step, we get 

k " ! / i - ^ - 1 ! 

F + F = -L U L±J*fZ (l±* + \ ./i^^f2/!^ + , 
k"1 k"2 N/5 IV 2 / \ 2 

Observing that 

1 + 45 
2 

3 + \fe / 1 + N/5 \2 

1 " 2 V 2 / 
1 - N/5 + x 3 - ^ 5 

it follows simply that if (a) and (b) are t rue (P(k - 2) and P(k - 1) a re t r u e ) , 
then for n = k, 

P(k): F k = F k _ x + F k _ 2 ^ 1 U 1 + ^5 \ k / l - ^ 5 X k 
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The proof i s complete by mathematical induction,, Similarly it may be shown that 

L = F j_1 + F , n n+1 n-1 

and 

, - (H^5)" • ( H * ) " 
Let us now prove identity VIII 

FQ = F L 2n n n 

Proof: 

2n N/5 

'i + %r5\n 

^ r 
Now factoring: 

F*» -75{{~v~> -(-7-)nvr~);{-r~) 
F 0 = F L 2n n n 

MORE IDENTITIES 

XIV. F .-ih*;-^)") 
1 + ^ 5 \ n / l - ^ 5 \ n 

- w-^H ) 

n+1 F c 0 + (-1) 6 F + 5 
XVI. Bf + F | + • • • + < = - ^ ^ 5 l l 

XVII. l - F 1 + 2 F ? + 3 F o + - - . + n F = (n+1) F n - F- , + 2 
1 z d n v ' n+2 n+4 
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XVIH. F2 + F4 + + F„ = F 0 _ - 1 
1 4 2n 2n+l 

XIX. F1 F2 + F 2 Fo + Fo F4 + . . . + F , F = \ (F „ - F^ F ) - 1 1 2 l 6 6 4 n -1 n 2 n+2 n n - 1 ' 

XX. JoGH-, 
where ( ) = n • , and m ! = 1 . 2 . 3 . . . - m . 

1 J ( n - i)I i ! 

XXI F = F3 + F 3 - F3 

**A' *3n+3 n+1 n+2 n 
XXII. F F - F , F M = (-l)1 1"1^^ F . 

n m n-k m+k v ' k m+k-n 

REFERENCES 

1. J. S. F r a m e , "Continued fractions and m a t r i c e s , " Amer . Math. Monthly, 

Feb. 1949, p. 38. 

2. Charles H. King, 'Some proper t ies of the Fibonacci n u m b e r s / M a s t e r ' s 
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REQUEST 

The Fibonacci Bibliographical Resea rch Center des i res that any r eade r finding 
a Fibonacci reference send a ca rd giving the reference and abr ief description of the 
contents. P lease forward all such information to: 

Fibonacci Bibliographical Research Center, 
Mathematics Department , 
San Jose State College, 
San Jose , Calif. 

SPECIAL NOTICE 

The Fibonacci Association has on hand 14 copies of Dov Ja rden , Recur ren t 
Sequences, Riveon Lematematika, J e r u s a l e m , I s rae l . This is a collection of papers 
on Fibonacci and Lucas numbers with extensive tables of factors extending to the 
385th Fibonacci and Lucas numbers . The volume sel ls for $5.00 and is an excel-
lent investment. Check or money order should be sent to Verner Hoggatt at San Jose 
State College, San Jose , California. 



LINEAR RECURRENCE RELATIONS - PART I 
J/W1ES A. JESKE, SAN JOSE STATE COLLEGE 

1. INTRODUCTION 

Most of the special sequences , which appear in The Fibonacci Quar ter ly , 
satisfy a type of equation called a r e cu r r en ce relat ion i . e . , a difference equation 
whose independent var iable i s r e s t r i c t ed to integral values. Although there a r c 
severa l good textbooks (e. g. , see [1] , [2] , [3] or [4]) which p resen t var ious 
methods of solution for many such equations, the beginner may not be acquainted 
with any of them, and in fact is likely to have more knowledge of the theory of dif-
ferential equations than of that of r e c u r r e n c e re la t ions . 

The purpose of this s e r i e s of a r t ic les is to introduce the beginner to the sub-
ject , and to derive explicit express ions for the solution of cer ta in genera l , l inear 
r e c u r r e n c e re la t ions by applying a generating function t ransformation. The p a r -
t icular generat ing function chosen i s seldom used in the t rea tment of r e c u r r e n c e 
re la t ions , but for the purpose of developing general formulas it has the advantage 
of immediately t ransforming the problem to a more famil iar one involving dif-
ferential equations, for which there is already available a grea t wealth of special 
formulas and techniques. 

2. DEFINITIONS 

A l inear r e c u r r e n c e relat ion of order k i s an equation of the form 

k 

I2-1) Saj,nVj = b n > 
j=0 

where a^ , a, . « . . . a, and b a re given functions of the independent v a r i -0 ,n ' l , n ' k, n n to ^ 
able n over the se t of consecutive non-negative in tegers S, and a 0 a, ^ 0 
on S. If b = 0 , the relat ion i s called homogeneous, otherwise it is said to be 
non-homogeneous. We may introduce the t ranslat ion operator E , defined by 

(2.2) E m y = y (m = 0, 1, • • • , k ) , x ' ' J n J n + m v ' ' ' ' ' 

and thus we can wri te (2.1) as 

(2.3) L k ( E ) y n = b n , 

69 
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where the l inear operator L, (E) is 

(2.4) L k (E) 

j=0 

A sequence whose t e r m s are v is a solution to the r ecu r r ence relat ion on 
the set S if the substitution y = v reduces relat ion (2.3) to an identity on S. 

If a set of k success ive initial values y0s y1}-»-, y, _-, i s given a rb i t r a r i ly , 
equation (2.1) or (2.3) enables us to extend this se t to k + 1. successive values. 
Using mathematical induction, it can be easily established that the r ecu r rence r e -
lation (2.3) over the set S of consecutive non-negative integers has one and only 
one solution for which the k values are prescr ibed . 

3. A SERIES TRANSFORM 

we introduce the exponential gen-For the sequence {y }, n = 0, 1, 2,#-v 
erat ing function defined by tne infinite s e r i e s 

(3.1) Y(t) Vy £ 
jLjyn n.f 
n=0 

which we suppose is convergent for some positive value of t. F rom (3.1) we find 
the derived s e r i e s 

(3.2) dJY __ v ( j ) , , x V * ^ 
a x n=0 

0 = 0 , 1 , - . - , k). 

These s e r i e s of course have the same radius of convergence as (3.1), and are seen 

as the generating functions of the sequences {y . } , j = 0 , l , - -* ,k . Now from (3.1), 

we have the inverse t ransform 

(3.3) yn = ^\o) — Y(t) 
n dt 

( n = 0 , l , 2 , - - - , k ) . 

t=0 
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The relat ions (3.2) and (3.3) follow from known proper t i e s of Taylor s e r i e s . 

4. EXPLICIT SOLUTION OF A LINEAR RECURRENCE RELATION 

We shall now derive the formula for the general solution to the l inear homo-

geneous r e cu r r e n c e relat ion 

k 

(4.1) E a j y n + j s L k ( E ^ n = 0 

3=0 

with constant coefficients. (Discussion of the non-homogeneous case will appear in 
the next i ssue of this journa l . ) The derivation i s based on the application of the ex-
ponential generat ing function (3.1) which t rans forms the r e cu r r e n ce relat ion into a 
more famil iar differential equation. 

Multiplying both sides of (4.1) by t /n.T and summing over n from 0 to °o} 

we thus obtain the t ransformed equation 

k 

( 4 ' 2> Z aj Y d ) ( t ) = L k ( D ) Y = ° ' (D S dt ) ' 
J=0 

which is an ordinary l inear differential equation of o rder k. Now it is well known1 

that, if r l 5 r 2 ; ••• . r, a r e k distinct roots of the charac te r i s t i c equation 

(4.3) Lk(r) = 0, 

then the general solution of (4.2) is given by 

k 

(4.4) Y(t) = 2^ c . e 1 

i=l 

where c. a re k a rb i t r a ry constants . Application of the inverse t ransform (3, 

then yields immediately the explicit formula 

^ e e for example, a lmost any textbook on ordinary differential equations. 
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(4.5) yn-Eci4 
i=l 

for the general solution of the r e c u r r enc e relat ion (4.1). 

In the case where the charac te r i s t i c equations LjJr) = 0 pos se s se s m d i s -
tinct roots rl9 r2 , ••• , r and each root r . being of multiplicity m. ( i = l , ••% m), 
with 

(4.6). y^m, = k , 
1=1 

the differential equation (4. 2) is known to have the general solution 

m . - l m , I 

<4-7> Y(t) =2e l S bijtJ ' 
1=1 j=0 

where b . . a r e k a rb i t r a ry constants , Applying the inverse t r ans form (3.3), we 
then obtain the general solution 

m . - l m l 

i=l 3=0 

to the r e c u r r e n c e rela t ion (4.1). 
In P a r t II of this a r t i c le , we shall not only derive an explicit formula for the 

general solution of the non-homogeneous l inear r e c u r r e n c e relat ion with constant 

coefficients, but shall also show how the method employing the exponential gen-

erat ing function may solve cer ta in r e cu r r en ce re la t ions having variable coefficients. 

5 EXAMPLE 

The Fibonacci numbers satisfy the second-order r e c u r r enc e relat ion 

( 5 a ) F n + 2 " F n + 1 " F n = °> F» = °> F i = 1 
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(5.2) 

where 

(5.3) 

L2(E)F^ = 0 , 

L2(E) = E ' - E - 1. 

The cha rac te r i s t i c equation L2(r) = 0 has the distinct roots 

(5.4) i-i = (1 + V5)/2, R2 = (1 - N/5) /2 , 

so that the formula (4.5) immediately yields 

(5.5) ^ _ n n 
F n = y n = c i r i + c 2 r 2 

Now since F0 = 0, Fj = 1, we obtain ct - - c 2 = l / \ / 5 ; hence the general solu-
tion for the Fibonacci sequence is expressed by 

(5.6) 1 
^5 

i + V"5\n ^ 5 \ n 

We note from (4.2) that the t ransformed equation for (5,1) i s the second-order 

differential equation 

(5.7) yn - Y' - Y = 0, Y(0) = 0, Yf(0) = 1 

Hence the exponential generat ing function for the Fibonacci sequence is 

(5.8) 

OO 

Y(t) = [e^ - er2tJ/V5 = ^ F n g 
n=0 

while the well-known ordinary generating function for this sequence is 
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(5.9) W(t) = ~ g =^2 F n t n ' 
1 - t - t ~ n=0 

The two generating functions W(t) and Y(t) a re re la ted by the express ion 

OO 

(5.10) W(t) = I e"Z Y(tz)dz . 

o . 

REFERENCES 

1. L. M. Milne-Thompson, The Calculus of Finite Differences, London, 1933. 

2. C. Jordan, Calculus of Finite Differences, New York, 2nd Ed. , 1947. 
3. S. Goldberg, Introduction to Difference Equations, New York, 1958. 
4. G. Boole, Calculus of Finite Differences, New York, 4th Ed. , 1926. 

PROBLEM DEPARTMENT 

P - l . The r e c u r r e n c e relat ion for the sequence of Lucas numbers is 

L l 0 - L ,., - L = 0 with LH == 1, L2 = 3 . n+2 n+1 n x ' L 

Find the t ransformed equation, the exponential generating function, and the 
general solution. 

P -2 . Find the general solution and the exponential generating function for the r e -
cu r rence relat ion 

y n + 3 - 5 y n + 2 + 8 V l " 4 y n = °. • 

with y0 = 0, y t = 0, y2 = - 1 . 

REQUEST 
Maxey Brooke would like any re fe rences suitable for a Lucas bibliography, 

His address i s 912 Old Ocean A v e . , Sweeny, Tex. 



SOME FIBONACCI RESULTS USING FIBONACCI-TYPE SEQUENCES 

I . DALE RUGGLES, SAN JOSE STATE COLLEGE 

The elements of the Fibonacci sequence satisfy the recurs ion formula, F 
= F + F 1 5 where F0 = 0 and F1 n n -1 u 1 

which the recurs ion formula u n+1 

n+1 
1. Let us define an F-sequence as one for 

u + u -, holds for the elements u of the n n-1 n 
sequence. 

Suppose {u } and {v } a re two F-sequences . Then a l inear combination, 
| c u + dv 1, is also an F-sequence. If the determinant 

"I 

Vl 

u 2 

v2 

^ 0 , 

then by an application of a theorem from algebra, every F-sequence can be ex-
p r e s s e d as a unique l inear combination of the F-sequences {u } and {v }. 

Consider the sequence 1 , 7 , 7 2 , 73 , This will be an F-sequence if 

7 + 1 . This 
\T5 

7 = 7 + 7 for all in tegers n; that i s , for 7 such that 7 
i + 'sfh i 

equation has solutions which we will denote by [3 = —~ and a = . 
Thus, t h e ^-sequence 1, a, a2, •«• and the (3-sequence 1, /3, [32, a re 
F-sequences . These can be extended to include negative integer exponents as well. 

Since 
2|' 

= p - a = ̂ 5 P P 

every F-sequence can be writ ten as a unique l inear combination of the cy-sequence 
and the £>-sequence. (Note that a + (3 = 1 and a[3 - - 1 . ) 

In par t i cu la r this applies to the Fibonacci sequence. F rom the equations 

' Fj = 1 = ca + d{3 

F 2 = 1 = ca2 + d/32 

one finds that c = -1 /V5 and d = l/4~5. Thus, 

nn n n n 
[3 - a _ (3 - a (3 - a \fe 
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The F-sequence with L̂ L = 1 and L2 = 3 is known as the Lucas sequence. 
In the case of the Lucas sequence. 

T o n , n 

L = B + a n * 

The a- and ^-sequences can be used to prove many well-known rela t ions 
involving Fibonacci numbers , Lucas numbers , and general F-sequences : 
1. Since 

0n n 
F = g ^ J L . 

n f3 - a 
n n L = (3 + a then it follows immediatelv that and L = (3 n r 

F • L = n n 
n2n 2n 
p -a 

(3 - a 
= F 2n 

2. Since (3U+1 + /3n l = f3n ((3 + (3 X) = (3U ((3 - a) and aU+1 + ^ n X - a11 {a - 0), it 

follows that / 3 n + 1 - an+1 + pn~X - a11'1 = ((3 - a){f3n + a \ thus L n = F n + 1 + F n _ r 

Also, L + L , = 5 F can be s imilar ly shown. ' n+1 n -1 n J 

n n 
3. Let {u } be an F-sequence , such that u = ca + d(3 . Then the determinant 

n+1 

-*• i n -1 

can be simplified as follows: 

n+1 

A. -. 

n-1 

n+1 , 0 n+l ca + dp 

ca + d/3 

= cd 

n+1 

1 1 J n11 

ca + d/3 
n -1 , 0 n - l 

ca + d/3 

. n -1 
c d 

0n+l 

1^ 
n-1 

, -xn+1 _ , (-1) 5 cd . 
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In par t i cu la r , 

"n+1 

F F , n n -1 
= (-D 

4. F 2 - F2 = F 0 • F 0 for all p and n. Consider F + F Then , 
n+p n-p 2n 2p ^ n+p n-p ' 

F + F = P -j± 
n+p n-p p - a 

n+p n+p /Dn~P n~P £ 

P - a 

0P+ /3-P)[ /3n
+(-DP +Vj 

since a P = (-1)P/3P 

/3 - a 

[/?" + ( - l )P+V] [fP + (-ifgP] 

P - a 

Therefore , if p i s even, F , + F = F . L and if p i s odd. F + F 
n+p n-p n p ^ ' n+p n-p = L • F . n p 

Also, F - F = L . F for p even and F - F = F • L for 
' n+p n-p n p n+p n - p n p p odd. Thus , F 2 - F2 = F 0 • F 0 for all p and n. ^ ' n+p n-p 2n 2p 

5. Let us simplify F3 + F 6 + ••• + F . Since the ^-sequence and t h e p-

sequence a re also geometr ic sequences it follows that 

03 / 03n 

p + . . . + p 3n P°(P ~ 1) 

/ 3 3 - 1 

and 

a° + •.. + a 
3n 

3, 3n 1X a (a - 1) 

Thus , F 3 + F 6 + + F 
^3n 3n Q 
3 + a + p° 

F 3 n + 3 + F 3 n " F 3 

03n+3 3n+3 
_§_ + a 
a) 
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6. As another example consider F 1 + 2 F2 + ••• + n F , n positive. Now 

since 

P + 2/3' + n/3 = /3 n ^ - l - gP + i 

0n+2 „n+3 , J 
n/3 - j8 + jS 

1 + 2x + ••• + nx n -1 
dx 

x(x - 1) 
(x - 1) 

Also, a + 2a2 + ••• + na = no? - a + ad. Therefore , Fx + 2 F2 + . . . + n F 
= n F 0 - F 0 + Fo. Note that a s imi lar resu l t holds for a general F-sequence. n+2 n+3 6 & 

7. Let us consider some resu l t s that utilize the binomial theorem. Since 

and 

/3n = (1-af = £ ( (-1)^ 
j=0 

v U 

*n = a-/3)n = E ( ) ( - D V . 

it follows that 

hence, 
j = 0 \ j , 

Also, 

r = y 
j=0 

(-D3+1 F, 

^ E O A j=0 
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8. Again using the binomial theorem, 

n > 

a
2n = a+̂

n = v r w 
and 

^ = (i+^n = i : 
3=0 O 

Therefore 

also 

j=o VJ 

If {u } i s a general F-sequence , it also follows that 

u 0 2n SO-
9. As a final example to i l lus t ra te the usefulness of the a- and /3-sequences in 
establishing Fibonacci re la t ions we will derive the resu l t 

F = F ^ F + F F , n n-p+1 p n-p p - 1 

for all n and p . F i r s t , from 
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,p ,n -p - l nP-1 ,n-p ,n - l ,n - l nn. , 
[3^ [3 + [^ j3 F = j3 - fS = (3 (j3 - a) 

and 

we obtain 

,-# n-p+1 .p-1 n-p . 

r t n-p+1 t n-p 

Similarly, one can show that 

a - a r _, -i- a 1 
n-p-^l n-p 

It then follows that F = F F -, + F J and if {u } i s an F-sequence . 
n p n-p+1 p - 1 n-p L n J 

then 

u = u F , + u , F 
n p n-p+1 p -1 n-p 

Note that if q = n - p + 1. then u 1 = u F - r u ^ 1 F 
1 ^ p+q-1 p q p -1 q-1 ^ n n n n Since p -a = V5 F and [3 + a ~ L , it follows that 
' n m 

and 

..1 Examine — 
P 

L + \/5 F 
.n n n 

/3 = _ _ 

L - \/5 F 
n n n 

a = _ /VMVWWW\V\VYVW^ 

HINTS TO BEGINNERS' CORNER PROBLEMS 
(See page 59) 

1.2 Use identity III . 
1.3 Notice that p. p -r- 1. p + 2 a r e three consecutive in tegers . Since p > 3 is 

an odd p r ime , p - 1 is even. Why must p * 1 be a multiple of 3? 
1 . 4 2 5 * 7 - 1 = ( 2 5 ) ' - ( 1 ) T = ( 2 s - 1 ) [ ( 2 5 ) 6 + ( 2 5 ) 5 4- . . . + ( 2 5 ) t- 1 ] . 

1.5 If N is composite, then by T l it must have a p r ime factor p. This factor 
must be one of the following: 2. 3, 5, 7, •••, p . Thus p;N and p|(2-3-5---p ). 



EXPLORING RECURRENT SEQUENCES 

EDITED BY BROTHER U. ALFRED, S T . M A R Y ' S COLLEGE, C A L I F . 

The following ar t ic le constitutes the Elementary Research Department of the 
p resen t i ssue of the Fibonacci Quarter ly . Readers a re requested to send their d i s -
cover ies , quer ies , and suggestions dealing with this portion of the Quarter ly to 
Brother U. Alfred, St. Mary ' s College, Calif. 

Everyone who buys insurance i s urged to read the fine print because it usua l -
ly contains qualifications of an important nature . In a s imi la r vein the r e a d e r s of 
the newly c rea ted Fibonacci Quarter ly should turn to the inside cover and examine 
the sub-t i t le : "A journal devoted to the study of in tegers with special p roper t i e s . M 

This in no way indicates that the edi tors could not fill the pages of their magazine 
with mater ia l dealing exclusively with Fibonacci sequences. It does, however, p r o -
vide for a measu re of latitude and a cer ta in variety in the contents while adhering to 
the main theme indicated by the t i t le of the magazine. In this sp i r i t , the TtFibonacci 
exp lo re r s ' ' a r e invited to look into a somewhat broader topic: Recurrent Sequences. 

The word " r e c u r r e n t " need not frighten anyone. Recur rence simply means 
repeti t ion. A sequence is a set of mathematical quantities that a r e o rdered in the 
same way as the in tegers : 1, 2, 3,"9 . Put the two ideas together- and the resu l t 
i s a " r e c u r r e n t sequence. " 

Pe rhaps the s imples t example of such a sequence i s the in tegers themselves . 
Let us denote the t e r m s of our sequence by Tl 5 T2, T 3 , e o e ,T •••. In the case of the 
in tegers , the relat ion involved i s 

T - T + 1 
i n + l n 

that i s , every integer is one more than the integer preceding it. This idea is readily 

extended to even in tegers and odd in tegers . If, for example, T n is an even integer 

the next even integer i s 

T , = T + 2 . n+1 n 

Likewise, if T i s an odd integer , the next odd integer i s 

T , = T + 2 . n+1 n 

81 



82 EXPLORING RECURRENT SEQUENCES [April 

Now look at the last two laws of r ecur rence . They a r e the same! This fact is a 
source of confusion to students of elementary algebra wTho think that if x and x - 2 

represen t consecutive even in tegers , something else would represen t consecutive 
odd in tegers . The answer l ies , of course , in the "if" portion of the proposition. If 
x is an odd integer, then x - 2 is also the next odd integer. 

The natural extension of such relat ions which we have been considering is the 
ar i thmetic progress ion in which each t e rm differs from the preceding t e r m by a 
fixed quantity, a, called the common difference. Thus for this type of sequence 
we have 

T - • = . T + a , 
n+T n * 

where a can be any rea l or complex quantity. 

Another, well-known type of r ecu r rence sequence is the geometric p r o g r e s -

sion in which each t e rm is a fixed multiple, r , of the previous t e rm. The relat ion 

in this case is 

T = r T 
n+1 n 

A simple example i s : 2. 6, 18, 54, 162, •••, where r = 3, Tj = 2, 

We now come to the commerc ia l . Recurrent sequences in which each t e r m is 
the sum of the two preceding t e r m s a re known as Fibonacci sequences. The law of 
r ecu r rence for all such sequences is 

T .- = T + T - . 
n+1 n n -1 

Starting with the values of T t and To, it is possible to build up such a sequence . 
Thus, if Tj = 3 and T2 = 11, it follows that T3 = 14, T4 = 25, T5 = 395 ••• . 

One can go on to var ia t ions of this idea. For example: 

T 1 = 2 T + 3T , n+1 n n-1 

or 

T n - T + T . + T 0 n-1 n n-1 n-2 
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Any one such sequence can be the subject of a great deal of investigation and r e -
sea rch which can lead to many in teres t ing mathematical r e su l t s . 

At this juncture i t may be well to point out that in some ins tances , the law 
of r e c u r r e n c e is such that i t i s possible to work out an explicit mathemat ical e x p r e s -
sion f o r the nth t e r m . In o thers , this i s not convenient or poss ible . For 
example; if Tx = 1, T2 = 1, and every t e r m i s the sum of all the t e r m s preceding 
i t , we find directly that T3 = 2 , T4 = 4, T5 = 8, T6 = 16, T7 = 32, . . . , so that 
a pe rson not endowed with mathematical genius can see that the nth t e r m is given 
by ? 

On the other hand, if Tt = 1, T2 = 1 and 

n+1 n n - 1 ' 

we have the well-known Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 2 1 , 34, ••• whose 
t e r m s a re such that they a r e not as readily express ib le by a s imple formula. Hence, 
we establ ish them as a s tandard sequence which can se rve to express r e su l t s found 
in other sequences. 

EXPLORATION 

A few sequences worthy of exploration have already been indicated. Other 
suggestions follow, and beginning r e a d e r s a re urged to c r ea t e additional sequences 
of their own. Interest ing mathematical r e su l t s derived from such work should be 
communicated to the Editor of this department of the Fibonacci Quarter ly . Here a r e 
a few suggestions to s t a r t you exploring: 
1. Let Tt = a, T2 = b , where a and b a r e any posit ive numbers , and let the 

law of formation in the sequence be that each t e r m i s the quotient of the two p r e -
ceding t e r m s . 

2. Starting with the same init ial t e r m s , le t each t e r m be the product of the two 
previous t e r m s . 

3. Another law: Let each odd-numbered t e r m be the sum of the two previous t e r m s 
and each even-numbered t e r m be the difference of the two previous t e r m s . 

4. Let each odd-numbered t e r m be the product of the two preceding t e r m s and each 
even-numbered t e r m be the quotient of the two preceding t e r m s . 

5. Start ing with Tt = a, T2 = b , T3 = c, le t the law of formation be: 

T ., = T + T - - T 0 
n+1 n n-1 n-2 
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A Computer Investigation of a Property of the Fibonacci Sequence 
Stephen P. Geller 

Mathematics Department, University of Alaska 
February 18, 1963 

Publication of a table of the first 571 Fibonacci numbers in Recreational Mathe-
matics Magazine (Oct. 1962) brought out the fact that the last (units) digit of the se-
quence is periodic with period 60, i .e . , the 1,1,2,3,4, ••• sequence repeats on the 
last digit every 60 entires of the sequence. It also appeared that the last two are 
similarly periodic with a period of 300. Noting that the table had been calculated by 
an IBM 7090 digital computer, I resolved to set up our IBM 1620 to check out the 
above observations and extend to more digits. The size of our memory (20K) pro-
hibited calculation of the terms of the sequence in their entirety, but this was no1 
necessary since it was quite easy on this machine to truncate off all the digits oJ 
the running sums beyond those under consideration. The machine verified that the 
last two digits repeat every 300 times, the last three every 1500, the last four ever} 
15000, the last five every 150,000, and finally after the computer ran for nearly 
three hours a repetition of the last six digits appeared at the 1, 500, 000th Fibonacc: 
number. These may be written in the form: 

F, ^rm " F = 0 (mod 10) (n+60) n v ; 

F ( n + 3 0 0 ) - F n " ° ( m o d 1 0 0 ) 
V l 5 0 0 ) ' V 0 ( - o d l 0 0 0 ) 
F, , , „„„ , " F = 0 (mod 10000) (n+15000) n ' 
V 1 5 0 0 0 0 ) - F n s ° <m 0 d 1 0 0 0 0 0> 
F(n+1500000) " F n S ° ( m o d 1 0 0 0 0 0 0 > 

There does not yet seem to be any way of guessing the next period, but perhaps 
a new program for the machine which will permit initialization at any point in the se-
quence for a test will cut down computer time enough so that more data can be' 
gathered for conjecturing some rule for these repetition periods. 



ELEMENTARY PROBLEMS AND SOLUTIONS 

EDITED BY S. L. BASIN, SAN JOSE STATE COLLEGE 

Send all communications regarding Elementary Prob lems and Solutions to 

S. L. Basin, 946 Rose Ave. , Redwood City, California. We welcome any problems 

believed to be new in the a r e a of r ecu r r en t sequences as well as new approaches to 

existing prob lems . The proposer must submit h is problem with solution in legible 

form, preferably typed in double spacing, with the name(s) and address of the p r o -

pose r c lear ly indicated. Solutions should be submitted within two months of the 

appearance of the p rob lems . 

B - 9 Proposed by R. L. Graham, Bell Telephone Laboratories, Murray Hill, New Jersey 

Prove 
^i Fn-1 V l " n=2 

OO 

r - i F \ n 
ZJ F - F , " 

n n -1 n+1 n=2 

= 1 

= 2 and 

where F is the nth Fibonacci number. n 
B - 1 0 Proposed by Stephen Fisk, San Francisco, California 

Prove the tfde Moivre- type n identity, 

/ L + ^5 F A P L • + N/5 F 
/ __n n 1 _ np np 
\ 2 / = 2 

where L denotes the nth Lucas number and F denotes the nth Fibonacci number. n n 

B - l l Proposed by S. L. Basin, Sylvania Electronic Defense Laboratory, Mt. View, California 

Show that the hypergeometr ic function 

n ~ 2 , k , 

k=0 

generates the sequence G ( ^ , n) = F 0 

G(x,n) = V 2> + k)-' (* - 1) 

Z J (n - k - 1 ) : (2k + i ) : 

(f'n) 85 
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B - 1 2 Proposed by Paul F. Byrd, San Jose State College, San Jose, Calif. 

Show that 

n+1 

3 

i 

0 

0 

0 

0 

i 

1 

i 

0 

0 

0 

0 

i 

1 

i 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

i 

0 

.0 

0 

0 

i 

1 

where L is the nth Lucas number given by Lj = 1, L2 = 3, L ~ = L
n + i + L n ' 

and i = ^^-l . 

B - 1 3 Proposed by S. L. Basin, Sylvama Electronic Defense Laboratory, [At. View, Calif. 

Determinants of o rder n which a re of the form, 

K (b .c .a ) = 
nv ' ' 

c a 0 0 0 
b c a 0 0 
0 b c a • 0 
0 0 b c a 

a re known as CONTINUANTS, 

Prove that, 

K (b ,c ,a ) 
nv ' ' ' 

(c + Vc2 - 4~ab) - (c - Vc2 - 4~ab) 
2

n + 1 N / c 2 _ 4 a b 

n+1 

and show, for special values of a, b, and c, that K (b ,c , a ) = ^n+l 

B - 1 4 Proposed by Maxey Brooke, Sweeny, Texas, and C R. Wail, Ft. tiortn, Texas 

Show that 

oo Y\+ 1 
\ 10 , V ^ fn_ _10 

- i o n = 8 9 ^ i o n " 1 0 9 

n=l n=l 
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B-15 Proposed by R. B. Wallace, Beverly Hills, Calif, and Stephen Celler, University of Alaska, 
College, Alaska. 

If p, i s the smal les t positive integer such that 

F ^ = F mod(10 k ) 

for all posit ive n, then p, i s called the per iod of the Fibonacci sequence re la t ive 
to 10 . Show that p, exis ts for each k, and find a specific formula for p, as a 
function of k. 

B - 1 6 Proposed by Marjorie Bickneil, San Jose State College, and Terry Brennan, Lockheed Missiles 
& Space Co., Sunnyvale, Calif. 

Show that if 

R = 

then 

/ F 2 , / n -1 

R " = 2 F n - l F n 
\ F 2 
\ n 

NOTE: On occasion there will be problems l is ted at the ends of the a r t i c les in the 
advanced and elementary sections of the magazine, These problems a re to be con-
s idered as logical extensions of the corresponding problem sections and solutions for 
these problems will be discussed in these sect ions as they a re received. 

See, for example, "Expansion of Analytic Functions In Polynomials Associated 
with Fibonacci Numbers , " by Paul F. Byrd? San Jose State College, in the first i s sue 
of the Quar ter ly , and "Linear Recur rence Relations —Part I, " by J a m e s J e ske , San 
Jose State College, in this i s sue . 

Solutions for problems in ISSUE ONE will appear in ISSUE THREE. 

0 
0 

1 

0 
1 

1 

1 
2 
1 

F , F n-1 n 
F 2 - F F n+1 n -1 n 
F F _ n n+1 

F2 
n \ 

2 F F , n n+1 
F 2 

n+1 
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When an e r r o r is found, c lear the r eg i s t e r s and s t a r t at Step (b) with the las t 

accurate values before the e r r o r . It is not necessa ry to s t a r t fresh and do the whole 

sequence over0 

It may be noted for any simple Fibonacci sequence s tar t ing with an odd digits 

that the odd probability of any most significant digit i s 0a6s and the odd probability 
of any leas t significant digit is 0W66. For a sequence s tar t ing with an even digit in 

the LSD position, the odd probability of any MSD is st i l l 096s but the odd probability 

of any LSD is 0o0I 
FIBONACCI SEQUENCE 

1<+ 8 3 2 0 4 0 0 + 
< < < < 
^< 1346269+S 
<< 2 17 830 90+ 
<< 3524578+S 
<< 57028870+ 
<< 9227465+S 

1 + S << 
10+ 149 3 03 520+ 
2+S 24157817+S 
30+ 3 90 8 816 90+ 
5+S 63245986+S 
<< 1023341550+ 

80+ << 
13+S 165580141+S 
210+ 2679142960+ 
34+S 433494437+S 
550+ 7014087330+ 

<< 1134903170+S 
89+S << 

1440+ 18363119030+ 
233+S 2971215073+S 
3770+ 48075269760+ 
610+S 7778742049+S 

<< 125 86 2 6 902 50+ 
9870+ << 

1597+S 20365011074+S 
2 5 840+ 3 2 9512 8 00 990+ 
4181+S 53316291173+S 
67 6 50+ 862 67 57 127 20+ 

<< 139583862445+S 
10946+S << 
17 7HO+ 2258514337170 + 
28657+S 365435296162+S 
4 6 3 6 SO + 5912867298790 + 
7 5 0 2 5 + S 9567220260 41 + S 

<< 1548008755 9200+ 
1213 930+ << 
196418+S 2504730781961+S 
3 1 7 81lO + 405273953788 10 + 
514229+S 6557470319842+S 


