REPRESENTATIONS BY COMPLETE SEQUENCES — PART I (FIBONACCI)
V.E. HOGGATT,JR. and S.L. BASIN, FIBONACCI BIBLIOGRAPHICAL
AND RESEARCH CENTER, SAN JOSE STATE COLLEGE

1. INTRODUCTION

The notion of completeness was extended to sequences of integers when
Hoggatt and King [1] defined a sequence {Ai}i:1 of positive integers as a
complete sequence if and only if every natural number N could be represented
as the sum of a subsequence,{ Bj}jlz‘ , such that Bj = Aij .

A necessary and sufficient condition for completeness is stated in the fol-
lowing Lemma, the proof of which is given by H. L. Alder [2]and J, L, Brown,
Jr. [3].

Lemma 1.1 Given any non-decreasing sequence of positive integers
{A;}. °°1 , not necessarily distinct, with A; = 1, then there exists a sequence

1 '
sented as the sum of a subsequence {B } —y» Le, N= § a'JA if and only
if, Ap+151+zA p=12,3,° =

The 1ntent10n of this paper is to extend this past work by investigating

{011}1_1 , where a; = 0 or 1, such that any natural number, N, can be repre-

the number of possible representations of any given natural number N as the

sum of a subsequence of specific complete sequences.
2. THE GENERATING FUNCTION

We denote the number of distinct representations of N, not counting
permutations of the subsequence {B } , by R(N). The following combin—

atorial generating function yields R(N) for any given subsequence {A1}1 —1

o

( Ai>
(1) M = I |\1+x
=1

Now, given any subsequence {Ai}ilil the expansion of (1) takes the form,

1
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o
2) M (x) = = R@m)x"
n=0
where
k
o= X A,
i=1 !

To illustrate this, consider the subsequence {2,1,3,4} of the Lucas sequence
400
{Ln}o , where L =L _+L and L,=2, L, = 1:

n- n-2°
Mx) = 1+ x?
3) Myx) = @ +x2) L +xl) =1+x+x2+x°
Oyx) = @ +x2) (X +x)y@+x3) =1+x+x>+ 23+ xt+ x5+ %6
Myx) = 1+ x+ x2+ 2x% + 2x4 + 2x5 + 2x8 + 2x7 + x8 + x% + x10 |

In (3) the coefficient of s R(n), the number of ways of representing the
natural number, n, by the summation of a subsequence of these four Lucas
numbers,

The expansion of (1) becomes quite tedious as k increases; however,
we have developed a convenient algorithm for rapidly expanding (1). The rep-
resentation of the factors of (1) is the foundation of this algorithm, The co-
efficients of X" in (2) will be tabulated in columns labeled n, The process of
computing entries in this table is as follows:

(i) The first factor of (1), namely (1 + xAi), is represented by

entering 1 in row 1, column 0 and row 1, column A, of our table,
The remaining entries in row 1 are zero,

(ii) The entries in row 2 consist of rewriting row 1 after shifting it A,

columns to the right.

(iii) The product (1 + xAi) a+ xAZ) is represented in the third row

as the sum of row 1 and row 2,
The following example considers the subsequence of { Ln};o given above. The

product
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k Aj
IIk(x)=l'[(1+x ), for k=14
i=1
and
{Ai}iil = {2,1,3,4} is given by,
0 2 3 4 5 6 7 8 9 10 11
11, (x) 1 0
0 1 0 1
I, (x) 1 1 1 1
0 0 0 1 1 1 1
I, (x) i1 1 2 1 1 1
0 0 0 0 1 1 1 2 1 1 1
TI,(x) 1 1 1 2 2 2 2 2 1 1 1

The coefficients R(n) of Hk(x), k=1,2,3,4 in the above table are exactly
those given in (3) and the entries in the row labeled I(x) are the number of
ways of representing the natural numbers 0 to 10 as sums of {2,1,3,4}, not
counting permutations,

Itis important to note at this point that the representations of the natural
numbers 4 through 10 will change and the representationsof 0through3 re -
main constant in the above table with subsequent partial products., The repre-
sentations which remain invariant under subsequent partial products will be
made explicit in Lemma 3,3 below,

Prior to investigating representations as sums of specific sequences, it

is convenient to define the following terms:

Definition 1,1 Level — The product ﬂk(x) is defined as the kth level in
the table.
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Definition 1,2 Length — The number of terms in Hk(x) will be denoted

th

as the length xk of the k= level. From (1) it is clear that

k
)\k =1+ .E Ai
i=1

Definition 1,3 R(n,k) denotes the number of representations of n in

th

the k level,

3. THE COMPLETE FIBONACCI SEQUENCE

Now that the machinery has been developed for the investigation of com-
plete sequences, we proceed with the study of representations as sums of
Fibonacci numbers.

Lemma 3.1 The length )\k is Fk+2 .

Proof: By definition

k
N = 1+ .Z A,
i=1
therefore
k
M =1 ZF = P
i=1

The following lemmas 3,2, 3.3, and 3.4 follow directly from the algorithm for
expanding Hk(x) .
Lemma 3.2 (Symmetry)

k k
R(EA. - j,k)= R@G,k) for j = 0,1,2,3,°+, Z A, .

i . i

1 i=1

Therefore,

k k

Rl ZF, -j,k|=R(j,k) for j = 0,1,2,+--, Z F,
1 1 1 1
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Lemma 3.2F
R (Fip - G+ 1k) = R(j,K), ] = 0,1,2,8,-++, (F,, - 1)
Lemma 3.3 (Invariance) (A; = Ay = Ag= ... = A=)
R(Jsk) = R(j,oo) for J = 0,1,2,3,.--, (Ak+1 - 1)
For the Fibonacci sequence we have,
Lemma 3.3F Since (F; =Fy = Fg= ... = an cee)
R(J,k) = R(j,°°) for ] = 09192"“s (Fk+1 - 1)
i.e., the first Fk+1 terms of Hk(X) are also the first Fk+1 terms of all

subsequent partial products

M, (), m = 1,23,
Lemma 3.4 (Additive Property)

R(A,, +i,k+1) = RA +3,k) + R(,k)

and by symmetric property, Lemma 3.2, it is also true that

k
R(Ak+1 +j,k+1) = R(Ak+1 +3,k) + R(fAi - j,k)

for

k
j=0,1,2,3,--, <12Ai - Ak+1)

For the Fibonacci sequence {Fi}ijl this is:



REPRESENTATIONS BY COMPLETE SEQUENCES [Oct,

Lemma 3,4F
R(F,, * §,k+ 1) = R(F,, +,k) + R(j,k)
and
R(F,, +i.k+ 1) = R(F, +i,k) +R (Fppp - G+ 1),k
for

J=0,1,2,3,°00, (Fk - 1)

Lemma 3.5F
R(Fk+2,°°) = 1+ R(stm)
Proof: Using Lemma 3.4F we have,
R(Fk+2’k +2) = RO, k + 1) + R(Fk+2,k + 1)

But

RO,k + 1) = R(0,») =1

By the symmetry property of Hk+1(x),

] J

ke+1 \
R ZAi—j,k+1 = R(j,k+ 1)
for

j=0,1,2,8,00, 3 A
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Since
k+1
Freg = 1+ 2 B
1
we let
j = (Fk+1 -1

which results in

R( k + 1)=R(Fk+1—1,k+1) .

Fk+2 ?

Also by Lemma 3.3F,

R ( -1,k+1) = R(F,, - 1,Kk)

Fla1 Kkt

By symmetry,

R( - 1,k) = R(F, k)

Pl

But invariance yields
R(F, k) = R(F,=)
Therefore,

R( ©) = 1+R(Fk,°0)

Fk+.2 ?
The notation R(m) will be used to denote R(m,~) in what follows.

Theorem 1,

R (F k+ 1

o) = BFgpy) =
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Proof: (By induction) When k = 1, we observe that

R(F,) = R(F;) = R(1) = R@) = 2

Il

The inductive hypothesis is
Rw%)=R®%H)=k+l

The inductive transition follows from:
Lemma 3.5F

R(Fgp,q»°) = 1+ R(F w) = 1+ (k+ 1)

2k’

R(F w) = 1+ R(F w) = 1+ (k+1).

2k+3*? 2k+1°?

The proof is now complete by mathematical induction, Proofs of the following

two theorems rely on:

Lemma 3.6F
(a) R(Fkﬂ + Fk—z' k+ 1) = R(Fk-l -1,k + R(Fk—Z’ k)
and
() R(Fk+1 + Fk—l’k + 1) = R(Fk_2 -1,k) + R(Fk_l,k)

Proof: Using the additive property of the algorithm as stated in Lem-

ma 3.4, we have

R(A +Lk+1)=R@m1+Lk)+RU$)

k
j=0Jﬂw-<?%—AmJ i

k+1
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Let j= Ak—2 for (@), and j = Ak—l for (®),
€  R@Apy + A, k1) = ROA, + 4 o, k) +RA ,, k)
) BByt A gkt 1) = RAL, + A g, k) + R 4, k)
By symmetry (Lemma 3,2)
k
(e) By * A0 = RUZ A = Ay = A g0k
k
@ R * A0 = R 12 Ay = Ay T A K
Therefore
k
R@A,,, +A ,k+1) =R f A=A - A Lk [+RA,, k)
k
Ry * Ao kP D = BLE A = Ay = A g B RGy0 1)
Specializing the above for the Fibonacci sequence,
(a) R(F,  * F o,k+1) = R(F_, - 1,k) + R(F_,,k) ,
) R(F 4+ F 1, k+1) = R(F_, -1,k + R(F_;, k)
Theorem 2 R(ZFk) = 2R (Fk—z)
and
R(2F, ) = R(2F, ;) = 2R(F, ,) = 2R(F, ) = 2k
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Proof: Using the recurrence relation

and Lemma 3,6F we have,

R(2F, ) = R(F F = R(F_,) + R(F)_, - 1).

1 b Freg)

However, by symmetry and invariance,

R(F,_; - 1,k=-2) = R(F kK -~ 2) = R(F

k-2 k-2

so that
R(éFk) = ZR(Fk_z) .
Applying Theorem 1 to F2k—2 and szml yields
R‘(2F2k) = ZR(FZR—Z) = 2k
and

R(2F2k+1) = ZR(FZk-—l) = 2k

= R(Ly ) = 2k -1, k = 1

R(Ly,*) = R(L,k+1) = R(F,; + F_ ,k+ 1)

= R(F k) + R(F,_, - 1,k)

k-1°

from Lemma 3.6F.
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By symmetry, Lemma 3.2F,

R(F,_, - 1,k-2) = R(F,_;,k- 2

But, from Lemma 3.5F,

R(F_;,k-1) = R(F_ ,k - 2)+R(0,k- 2)

and

R(F,_,,k=-2 = R(F,_ ,k-1)-1

from the above equation.

By Lemma 3.3F,

R(Fk—l’k - 1) = R(Fk_l,"o)

Therefore

R(L,) = 2R(F,_;) - 1

By Theorem 1,

R(Fgp) = R(Fgy4) = k+ 1
so that
R(Ly ;) = 2R(Fy ) -1 =2k -1,
R(sz) = 2R(F2k_1) -1 =2k-1
Lemma 3.7F
2 - 2 2
(@) R(Ff,; - 1) = RE} ) + R(F - 1)

11
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) R(Fk+1 - 1) = R(FIZ{_‘ - 1) + R(F )

Proof of Lemma 3.7F:

Since

= 2 2 2 = F 2
Fon = Fpep ~ Fpogs then Fp = Fo = Fo 4

which gives

R(F2,,,2n) = R(F, + F2 , 2n)

n+l? n-1°

By addition property, Lemma 3,.4F,

[Oct.

2 = 2 - -1 -~ F? -
R(FZ . ,2n) = R(FZ_,,2n - 1) + R(F, ;- 1-F2  ,20-1)
- . — 2 2
and by symmetry, Lemma 3,2F, and the identity F2n+1 = Fn+1 + FIl ,
- - F2 - = 2 -
R(Fy ,-1-F  ,2n-1) = REF: -1,2n-1)
Therefore
R(F2,,,2n) = R(FZ_,,2n - 1) + R(F2 - 1,2n - 1)
Similarly,
2 - - 2 _ 2 _
R(F2,; -1,2n) = R(F?_, - 1,20 - 1)+ R(F,2n - 1) .
Since
F2 = F__ -1; F2 = F_ -1 ;
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2
Fn—l»l =

F 1

3

2n+1

then by invariance, Lemma 3.2F,

R (F? 2n) = R(F%Hl) = »R(F%l_l) + R(Ff1 - 1)

n+1?
and
2 - . = 2 — - 2 - 2
R(F2 , -1,2n) = R(FZ , - 1) = R(F,_; - 1) +R(F2)
Theorem 4
_ ) o
() ‘ RFok-1 =1 = Fax
2 —
(®) R(For o) = Forg
. 2 —
© . o Ry m D= Loy
@ R(Fok1) = Torep
Proof: (By induction)
Fp = 0; R(F}) = R(F} - 1) = R(F§ - 1) = 1
and
2y _
R(F;) = 2
2 — 2 2 _
(a) R(FL) = R(F}_,) + R(F}_; - 1)
22 _ 1y - R(F? _ 2
(b) | R(FL - 1) = R(F}_, - 1) + R(F} ;)

13
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by Lemma 3.7F,
Replacing k by 2k in Lemma 3.7F (a), yields

i

R(F2,_ )+ R(F

2 .
R{Fo) k-2 b

2 -
2k-1

Thus

2 I _
RO = Forg ™ For = Fopeq -

Replacing k by 2k+ 1 in Lemma 3,7F (b), yields

R(Foer = 1) = R(FG g - D+ R(FRy)
= Fop * Foprg
Therefore
RFAq =1 = Foppg
Similarly,
R(Fheg) = ROEGe ) + REY - 1)
R(Fhq) = Dopg * Lo g = Loy
and
R(Fhp = 1) = REY - 1) + RIF )
R =D = Lgpq + Tgp = Loy

[Oct. 1963]

Many more fascinating properties of complete sequences will follow in Part IT

of this paper.
References may be found on page 31.



ON THE GREATEST PRIMITIVE DIVISORS OF FIBONACCI AND LUCAS
NUMBERS WITH PRIME-POWER SUBSCRIPTS '
DOV JARDEN, JERUSALEM, ISRAEL

The greatest primitive divisor F]'[1 of a Fibonacci number Fn is defined
as the greatest divisor of Fn relatively prime to every FX with positive x <n.

Similarly, the greatest primitive divisor Lh of a Lucas number Ln is
defined as the greatest divisor of Ln relatively prime to every LX with non-
negative x < n,

The first 20 values of the sequence (Fl'q) are:

Fy =7, F} =17, Fyy=11 , F};, =89, Fl,= 1 , Fl3 =233, Fl,= 29,

Fl; =61, Flg=47, Fi;=1597, Flg =19, Fly=4181, Fy = 41

As may be seen from these few examples, the growth of the sequence
(Fr'l) is very irregular. However, some special subsequences of (F]’n) may
occur to be increasing sequences. E.g., the subsequence (FI')) , where p
ranges over all the primes, is a strictly increasing sequence (since FI’) = Fp
and (Fn) is a strictly increasing sequence beginning with n = 2).

Similarly, the subsequence (L(!l), where g ranges over all the odd
primes and over all the powers of 2 beginning with 2%, is a strictly increasing
sequence.

The main object of this note is to prove the following inequalities:

(1) F

pX+1 > F;Jx (p —aprime, x — a positive integer)

(2) FlszJrl > F'sz (p —a prime, x — a nonnegative integer)

15
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2%} LI')X +1 > L;J < (p — a prime, . x‘-*-va nonnegative integer)
In other words: the subsequences (FI')X) a,ncjl(F'2 %) of the sequence (F;l),
as well as the subsequence (L'_) of the sequence (L;l) s P being a prime and
‘X = 1,2,3,°++, are strictly increasing sequences, o
Since (as is well known) the primitive divisors of F, and Ln n=1)
coincide, we have: o = L;l (n =1), .and especially: F:'?,X"’l = Léx (= 2“0)‘.
Hence, (2) and (2*) are equivalent, and, for p = 2, also (1) and (2*), Thus
it is sufficient to prove (1) for p= 2 and (2*)for p % 2, .

' We shall even show the stronger inequalities:
3) ‘ F;)x-.kl' > pr (p—aprime, x—a positive integer)
(3%) - LI'J w1 > pr (p —aprime, x =~ a nonnegative integer)

_ Since Fn = 'F;l, Ln = L;l , it'is obvious that in order to prove (1) for .

p= 2, and (2*) for p ¥ 2, it is sufficient to prove (8) for p = 2 and (3% for
p 2 , ‘ :

The main tools for proving (3) for p= 2 and (3*) for p # 2, are the

following inequalities:

(4) FX+1>F2X,(n2 2, x=1)
n ) n .
)
(5) v F5X+1 > 5F2 (x z‘ 1)
(4%) Lnx+1 > Lf}x m= 2 x=0)

In order to prove (3) for p = 2 and (3*)for p # 2, itis sufficient (as
will be shown later) to prove (4) for n a prime =2 and (4*) for n an odd
prime. However, since (4) and (4*) are interesting by themselves, we shall

prove them for any positive integer n = 2,
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The following formulae are well known.

1 n n
(6) Fn=7\7§(a-ﬁ)
1+ N5 5_1_«f5
- 2 ’ B 2
(6%) Ln=a/n+6n
Since
_1+~N5  1+Na 3
@ =7 2 2
we have:
(7) a=%
Since gol-Ns 1oy
- 2 2 - ’
1-~N5 1 -+N4 1
B = 2 2 2
we have
1
®) -1 <p <=5, 08l <1
Since N; N~
1+ N5 1 - N5
af = 5 . 5 = -1 ,
we have:
(9) af = -1

For any positive integer n = 3 we have, by (7):

anx+1 = (Q,nx)nz (anx)g = X ,2n% (%) ZQZnX > 992n% _

2
o20X L o2nX o 20X (%> > o204+ 3, whence,

(10) oL S ganX 3 =3

17
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For odd n= 3 we have, by (10), (8), (9):

2
XL anXtl o onX L gl o20X g g s o205 4 g 205 o (o0F L 0% Ghence
— . R . | nX x.?
(11) P - B > @ - pr*y 2 fn, n= 3

For even n = 3 we have, by (10), (8), (9):

anx+1 B an+1 N Q,an + 3 - an+1 _ agnx -2+ (5 - an+1)

n¥ _ nX

2
> g2n% _ g 4 g2n% o (o g2y,  whence

|

2
anx+l _ an+1 N (Q/nx _ an) (2[ n, n= 3)

—~
=]
et

~

Combining (I1) and (I1) we have:

(11) anxﬂt _ anﬂ N (anx _ an)Z n= 3.

For n = 3 we have, by (6), (11):

_ 1 opxtl o opxtl 1 X anXy? 1\, nX _ onX
an+1 _’\[5 (o B ) >\/_5 (a gy > NE (o B)
1 X x. {2
=4 = (™ - gl = T2, whence,
N5 n¥
Z 2 >
) an+1 g an @ =3).

We have, by (6), (9):

_1_ (Q2X+1 _ BzX"’l) N %(Q2X+1 -9+ 52X+1

F2X+1 = \/.5

2
3_L (@ - gy = F?_,  whence
,\/_5 2

) =
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n 2
(4) F2X+1 g F2X ¢
Combining (4) and (Z-) we have (4).
We have, by (7):*

5 3 2 5 % 5
o™ - (@) = (&) (eF) >(%) o?d = %QZJX > 70255 =

6
525 + 2025 > 50255 + 2(2—) > 5025 + 22, whence

a/5X+1 > 5a25 + 22

(12)

We have, by (12), (8), (9):

oL _ gL 5Ky gg L gt S 50Xy 10 4 12 - 5T

2
> 5a%% + 10+ 5825 = 5(a2 5 + 2+ B2 7Y = 5(af - By,
whence
2

(13) QSX+1 _ 65X+1 S 5(a5X _ Bsx)

We have by (6), (13), (8):

I

2
Faer = @87 > Tae - g% 53715 (o™ - BSX)$
A 5 5 i

= 5F2
S
whence (5) is valid.
For odd n > 3 we have, by (6%), (10), (8), (9):
) =

an+1 - 20X g, G + 5nX+1

L 1 = afﬂX+1 + an+1 > o205 4 3 4 =
n

2
aznx 924 anx _ (anX + an) - L2X ,
n

whence
*See editorial remark, page 59.
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) Lnx+1 > Lilx (2 /n, n=3.

For even n = 3 we have, by (6%), (10), (8), (9):

L1 = MNPl L gnXtl o ponX g oon® o g 5 p20X L gy 20T
(anx + /3HX )2 = L12'1X , whence
(@*) Lot ” L;X (2| n, n =3
For n = 2 we have the well-known relation: L2X+1 = LZX - 2, whence
(i*) oX+1 < sz

Combining (2*), (3*) and (4*) we have (4%).
Proof of (3), (3%).
For p + 5, (p,F x) = 1. Hence, by the law of repetition of primes in

(Fn) , the greatest imprimitive divisor of pr+1 is pr , whence, by (4):

Y] - >
TpX” pr+1/ pr pr ’

i.e., (3)is valid for p * 5.

For p = 5, by the law of repetition of primes in (Fn), the greatest

imprimitive divisor of F X is 5F
5

+1 <’ whence, by (5):

Fleer = Fon /5F5x >

i.e., F;x+1 > st’ i.e., (3)is valid for p = 5.

For p # 2, by the law of repetition of primes in (Ln)’ the greatest
imprimitive divisor of L
p

> L _, i.e., (8%)is valid for p + 2.
X

is pr’ whence, by (4*): L'X

x+1 px+l pr+1/ Lpx




A GENERALIZATION OF THE CONNBCTION BETWEEN THE FIBONACCI
SEQUENCE ‘AND PASCAL’ S TRIANGLE

JOSEPH A. RAAB, WISCONSIN STATE COLLEGE

Before the main point of this paper can be developed, it is necessary to
review some elementary facts about the Fibonacci Sequence and Pascal's
triangle.

It is well-known that rectangles exist such that if a full-width square is
cut from one end, the remaining part has the same proportions as the original
rectangle,

e x —s]

}"X-—l ke

1

AL

Assuming width to be unity and length x, we have

or

(1) xX-x-1=20

The greatest root of (1) is the number ¢, called the Golden Ratio, and the
rectangle defined is the Golden Rectangle of Greek geometry. Each root of (1)
has the property that its reciprocal is itself diminished by 1, so that

QI

21
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Given any two initial integral terms u; and uy not both zero, a

Fibonacci Sequence is defined recursively by

@) Uy 7 un—l * un—z

It is a well-known property of such sequences that

u
lim _n+1
_ u

D=0 My

=9
if uy = 0 and uy, = 1, we have the Fibonacci sequence.

If a rectangle is defined such that when an integral number k of full-
width squares are cut from one end, the remaining part has the same propor-
tions as the original rectangle, then

(3) vi-ky-1=0

where the width is unity and the length is y.

y

TN T 4
( |

l N
2 ANZEIN
The rectangle defined is a golden-type rectangle. The roots of (3) behave much

like ¢, thatis, 1/y =y - k. The greatest root in absolute value of (3)is the

—a-i y-k j&—

lim U

n— co u ?
n

where u, = kun~1 + oo In fact, it is well-known that under certain con-

ditions Fibonacci-like sequences defined by
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(4) u = au + bun

given initial terms u; and uy not both zero, where a and b are real, have
the property that

where o is the greatest root in absolute value of (See [3] )
(5) x2-ax-b =0

The condition is that a and b must be such that the roots of (5) are not both
distinct, and equal in absolute value.
The above general result can be established in the following way: Con-

sider sequences such that the nth term u, satisfies

(6) u, = ca + dBn
By substitution in (4), o and [ can be determined so that sequences (6) will
satisfy (4) and be Fibonacci-like sequences. We find that the coefficients of ¢
and d are ozn—z(a2 - ao - b) and ,81‘1-2(62 - aB-b), respectively. Sequences (6),
therefore, satisfy (4) if ¢ and B are roots of (5).

On the other hand, if o« and B are roots of (5), then cafnnz(c«2 - ax - b)
+ dﬁn_z(ﬁ2 - aB - b) = 0 is satisfied for any choice of ¢ and d. But then we
have co' + dg" = a(ca™ 1+ dﬁn—l) + b(can_2 + dBn—z ). Moreover, if o % 8,
¢ and d can be determined given initial terms u; and u,. Hence a sequence
satisfying (4) satisfies (6) under the conditions stated. If || >| Bl, we can

use (6) to obtain the

lim "o+l  lim co + d(ﬁ/a)nﬂ

TR T e dp/e)
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The above limit does not exist, of course, if o = -B. If the roots of (5) are

equal, then we can set

(7) u, o= ca + ndo"

and show by arguments similar to those above that (7) is a Fibonacci sequence
if and only if o is the root of (5) and aw + 28 = 0. But the roots of (5) are
equal if and only if @ = a/2 and b = -a?/4. Therefore all requirements for
(7) being a Fibonacci sequence are met. It is now possible to solve for ¢ and
d, and to show that for sequences (7),

lim un+1

n—c© u
n

= o

An interesting observation has been made about the array of numerals

known as Pascal's Triangle. If a particular set of parallel diagonals is desig-

nated as in Fig. 1, then the sequence resulting from the individual summations
of the terms of each diagonal is the Fibonacci sequence. [2 ]

1

" 5
1’/2//’5 8
1 3//?;///;1321
1//6/’/ 1

Figure 1

1

Therefore, the limit of quotients of sums of terms on these parallel diagonals
of the triangle is «. We shall now show that some generalizations of this

connection can be made.
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To begin, we note that the indicated diagonal sums in Fig. 2 are indeed

the first few terms (except the first) of (4) if u; = 0 and u, = 1,

row 0 {—

TOW 1 a //

row 2 ——“—-maz/2ab” K2
TOW 3 83/:;‘/’?:;”/53/
—at e 3h=—"Fa2n2 Lra.h3///:‘5

Other sets of parallel diagonals of Fig. 2 also have interesting proper-
ties. It is possible to formalize the definition of the array given as Fig, 2, but
it will be more efficacicus here to simply refer informally to the figure in the
arguments to follow, We will assume only that a and b are real, and that

Fig. 2 is a Generalized Pascal's Triaungle, The row index shall be j, and the

term index for each row, 6, each ranging over the non-negative integers.
The jth power of (a+ b) is the sum of terms in the jth row of Fig, 2.
Definition 1. A diagonal sum Xjr of the generalized Pascal's triangle

shall be given by

j - 1o .
x. = E : ) 6(r+1)b6
jr 5

Counting from left to right in Fig. 2, the (0+ 1)th term of the diagonal sum is
the (6 + 1)th term in the (j - rd)th rowof the triangle as ¢ ranges over the
non-negative integers. Hence Xjr is a function of j and r .

Note that the role of r is simply to determine which terms of the tri-
angle are to be summed. This has the effect of defining a set of parallel diagon-

als for each r. For example, if v = 1, the first term of xg is the first
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term of the sixth row of Fig, 2, The second term of x4 is the second term
of the fifth row of Fig, 2, and so on, If r =3, the first term of xg is the
first term of the sixth row of Fig. 2, but the second term of x4 is the second
term of the third row, and so on. When r = 0, Xj 0 is the sum of termsonthe
jth row. A sequence {xjr}j of diagonal sums is uniquely determined by r.

Since for j = 0 the (j - r6)" row is defined for every r only when 6 =0,

Xop = 1 for all r. Further, X, .=a if >0, If r=2, the first fewterms
of the resulting sequence are:
(1, a, a2, a3 + b, a? + 2ab, a + 3a%, +:-)

Theorem 1. For sequences {Xjr}~ of sums of terms onparallel diagon-
]

als of the generalized Pascal's triangle,

®) Xp T gy T PGy
. J-r-1
Proof: [ r+1 Yij-r(d+1)-1
‘ .
B j=6(r+1)-(r+1), 6+1
b oy T o1y T Z & b
6=0 6 [L-_1]
r+1y /j-r6-1
+ Z a]—é (r+1)b6
6=0 6
(] [Ll]
r+11/j-r6-1 r+1i/ j-ré6-1
_ a]—(5(1"+1)b(§ N 2 : a]—é(r+1)b6
6=1 6 -1 0=0 o
[ _3_] [u]
tr+1)/ j-r6-1 r+1} /j-ré-1
_ a)-é(r+1)bo + ) aJ-@(r+1)b5
6=1 6-1 6=1 [

];;%] j-ré—l\ j-ré-1
+

J-o(rel) 0

6=1 5-1 / 6

but
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j-r6-1 j - b
_ 9
= T j-ré
6 -1 0
and
j-rd j-16-1
Ll + 1) _
j - rd B
9 o
so
d
r+1 j-rd 5
- ) 2:
bx(j-r—l)r * aX(j—l)r =at 5
6=1 8 j-r
j - ré\
+ LAz o@s 1) [ j-0(r+1) 6
j - rd
19}
-
r+1 j - 1rb
= al 4 E 2700
jr
6=1 o

In view of Theorem 1, any property of sequences defined recursively by

(9) u_ = au + bu

will be aproperty of sequences of sums of terms on diagonals of the generalized

Pascal's triangle. Further, these diagonal sequences will all be of the special
r-1 . R
case uy =0, up =1, ug = a, -, u..; = @& 5 since r+ 1 initial terms

are required for (9) to generate a sequence. We note that diagonal sum X(n-z)r

is u of (9) given the above initial terms.

As in the proof of
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lim un+1

N—ow U =9 4
n

given (2), we shall establish the existence of similar limits for the sequences
defined by (9). If we set

n n n n
(10) un=eoa0+e1a/1+eza/2+"' +er01r ,

then substituting in (9) the coefficients of the e, are

n-r-1 , r+1
a. (.

r .
i i ‘aai*b)(1=0,1,"',1’) ’

and (9) is satisfied if the @; are the r + 1 roots of

(11) Lo b =0

Conversely, given that the @; are the roots of (11), it follows that sequences

(9) canbe written in the form of (10) if the e; can be determined. One can ob-

tain from tbe given (r + 1) initial terms (r + 1) equations uy = eooz%+ e1a/]1
+ -0t era/IJ_ (j=1, 2, «--, r+1). This set of equations has a non-trivial

solution for the € however, if and only if the @; are distinct, Whether or
not the terms of sequences defined by (9) canbe written in the form of (10) de-
pends, therefore, on whether or not we can determine conditions for the multi-
plicity of the roots of (11).

Suppose p is a root of (11) where a and b are both not zero. Then

(11) may be written as (x - p)Q(x) = 0 where

Q) = '+ @ - s - apt T - AP s poapt L.

Clearly p is a multiple root of (11) if andonly if it is a root of Q(x) = 0. But

then it is easily verified that
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ar
r+ 1

Now since p is real, at least all complex roots of (11) are distinct.

DeGua's rule for finding imaginary roots states that when 2m succes-
sive terms of an equation are absent, the equation has 2m imaginary roots;
and when 2m - 1 successive terms are absent, the equation has 2m - 2 or
2m imaginary roots, according as the two terms between which the deficiency
occurs have like or unlike signs. Accordingly, we see that (11) has at most
three real roots, since there are r - 1 successive absent terms and hence at
least r - 2 complex roots. Further, if f(x) = xr+1 - ax’ - b, the two criti-
cal numbers of f are zero and ar/(r+1). Since f(ar/(r+1)) is an extremum
of f, the greatest multiplicity of any real root of (11) is two. [1 ]

If b is zero but a is not, then the roots of (11) are zero (of multiplicity
r), and a. Other cases are trivial.

If the real roots of (11) are distinct and ¢, is any root such that |oz0]
> |ozi! i=1,2,---,r), then

u e ol an+1 + +e ol
lim ‘n+1 _ lim 0% C1%1 rr
n—oc u Tn—o n n n
n ey * ey t oo +erar
n n
. ag t e/ a + e te o (o /o
_ lim %%t @ 1(@1/ ap) 2oy (@ /)
) n n
ey + eg(@y/ap) + +-- +er(01r/a’o)
u
lim "nt+l1
Therefore hew u = @
n

It is clear that ar/(r + 1) is a root of (11) if and only if
ar+1 rr

(r+ 1)r+1
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Suppose @, and oy are this root, Then we can set

n n n n
(12) U, = gt nejy t ey toers e

and use (9) to find the coefficients of the e;. The coefficient of e where

-r- +
i1 is ozin r l(ozir L aaIi. - b) and for e; we have
aot
- 0
naré r-l <aI(;+1 - aalg - b+ + ern+ 1)>

It is clear that the required condition is that the a; be the roots of (11) and
aozro +b(r +1) = 0. But with ¢, chosen as above, this is indeed the case. As
before, (12) can be used to generate equations which enable us to find the e;-
Finally

lim uLJrl_

n—oco u
n

exists and is the greatest root of (11) in absolute value.

Since (9) generates a real sequence given real initial terms, not only is

. u
lim "n+l1
N— oo u
n

the greatest root of (11) in absolute value, but it must also be real. Hence the
greatest root in absolute value of (11) must be real.

If a,b, andr in (11) are such that two distinct roots share the greatest
absolute value of all roots, then it is easily shown that no limit exists.

Employing simple unit theorems, we can prove that

. u . u
lim n+s s .. lim n+1
= a, if - =
nN—- oo u n-—co u
n n

We are now able to state that:
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Theorem 2. For all sequences formed by sums of terms on parallel di-
agonals of the generalized Pascal's triangle, and for all sequences defined by

(9) given r + 1 initial terms,

lim  “nt+s
n— o u
n
exists and is the greatest root in absolute value of

r+1 T

x5 —ax® -b =0 s

provided this abhsolute value is not shared by two distinct roots.
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CHARTER MEMBER, MORGAN WARD, PASSES AWAY

Durate, Calif., June 26, 1963 — Dr. Morgan Ward, 61, well—known
mathematician on the faculty of the California Instifute of Technology, died to-
day of a heart attack at the City of Hope Medical Center.

As a research mathematician, Dr., Ward was noted for his work in alge-
bra and number theory, with particular emphasis on arithmetical sequences,
During the past few years he worked with the School Mathematics Study Group
set up by the National Science Foundation to reform elementary school mathe-
matics curricula, He was co-author with Dr, Clarence Hardgrove of a modern
elementary mathematics text book which will be published this fall,

Born in New York City, Dr. Ward spent most of his life in Southern Cali-
fornia, He received his B, A, at the University of California at Berkeley in
1924 and his Ph, D, in mathematics, summa cum laude, at Caltech in 1928, He
joined the Caltech faculty as assistant professor of mathematics in 1929, be-
came associate professor in 1935 and full professor in 1940,

In 1934-1935 he did research work at the Institute for Advanced Study in
Princeton, N, J,, and from 1941 to 1944 he served as consultant to the Office
of Scientific Research and Development on problems of underwater ballistics
and anti-submarine warfare, He was a member of the American Mathematical
Society and the American Mathematical Association,

Dr. Ward was an accomplishedpianist, a student of poetry, and an expert
chess and GO player,

The mathematician, who lived at 1550 San Pasqual Street, Pasadena, is
survived by his wife, Sigrid; a daughter, Audrey Ward Gray of China Lake,
Calif, ; three sons, Eric, Richard and Samuel of Pasadena; three brothers,

Robert Miller, Malcolm Miller and Samuel Ward, and four grandchildren,




PERIODIC PROPERTIES OF FIBONAOCI SUMMATIONS
BROTHER U. ALFRED, ST. MARY’S COLLEGE, CALIFORNIA

INTRODUCTION

It is well known that if we take the terms of the Fibonacci sequence mod-~
ulo m that the least positive residues form a periodic sequence, This paper
will consider the summation of functions of such residues taken over a period
with the further limitations that for most of the results the modulus considered
is a prime and the total degree of the product being summed is less than the

prime modulus,
NOTATION

We employ the usual notation F; to signify the terms of the Fibonacci
sequence: 1,1,2,3,5,8,--« . The letter p represents a prime and m
any positive integer.

We shall be considering summations such as:

3 72 4
ZFiFig¥ios

where the subscripts of the Fibonacci numbers in the product differ from each
other by fixed integers; where the summation is taken over a period for a given
modulus p, this being indicated by having P below the summation sign; and
where the total degree n of the product being summed is the sum of the ex-
ponents of the Fibonacci numbers.

Theorem 1, The summation of the residues of the Fibonacci sequence
over a period is congruent to zero modulo m.

Proof: From the basic relation for the Fibonacci sequence
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it follows that

b Fi = ZF, ., + 2ZF

P p! P
From the nature of periodicity, it is clear that the summation over aperiod will
always be congruent to the same quantity for a given modulus regardless o:

where we start in the sequence. Thus

ZF. = XF, = ZF, (mod m)
p i P i-1 P i-2
so that
ZFi = ZEFi‘ (mod m)
P P

which leads to the conclusion that

n

z Fi 0 (mod m)
P

Theorem 2, The summations

ZF2 and ZF.F
1 1

p P i-1

are congruent to zero modulo any prime with the possible exception of 2,

Proof, For convenience we shall replace

ZF% by a and ZXF.F, by b
P P

noting once more that the precise subscript of F is inconsequential when com-
puting the residue modulo p over a period, We start as before with the

relation F, = F, . + F, and the derived relation ¥, = 2F., , + F. .. By
i i-1 i-2 i i-2 i-3
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squaring each of these relations and summing over the period, we obtain

a =a+2b+a (modp)
and a =44 + 4b + a (mod p)
or a+ 2 =0 (modp)

4a + 4b = 0 (mod p)

Hence we can conclude that a and b must both be congruent {o zero modulop
with the possible exception of the case in which the determinant of the coeffi-
cients is congruent to zero, But this determinant équals -4 so that the only
prime in question would be 2. We find by direct verification that

‘ EF% = 0 (mod 2) but that ZF.F, ; is not.

p P 1

" Theorem 3, With the possible exceptionof primes 2 and 3 all summations

ZF , TZFEF, . , and TTF, FE
i-1 i i-

pt pt P 1

are congruent to zero modulo p.

Proof., We employ the same procedure as before after replacing

by b and I F,F? by ¢

3 ) 2
Z¥; by a, ZEE iFio1

P P P

Starting with

and the two derived relations

F, = 2F, . + F.
i- i-

F, = 8F, , + 2F,
i- i-
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we cube each of them and sum over a period to obtain:
a =a+ 3b+ 3c +a (modp)
a = 8a + '12b + 6c + a (mod p)

a = 27a + 54b + 36¢c + 8a (mod p)

or

a+ 3b+ 3¢ =0 (modp)
8a + 12b + 6¢c = 0 (mod p)
34a + 54b + 36c = 0 (mod p)

The quantities a, b, and c¢ are all congruent to zero except possibly when the
determinant of the coefficients is congruent to zero modulo p. The value of
this determinant being -2%3%, the only possible exceptions might be the primes
2 and 3.

FURTHER DEDUCTION
1t should be noted that if a, b, and ¢ are congruent to zero modulo p,
then any expression such as
z Fz Fi—

P 4

is also congruent to zero modulo p. The reason is that Fi—4 canbe expressed
as a linear relation in Fi and Fi-l so that this summation becomes a linear
combination of a, b, and c¢. Similar considerations apply for any degree

whatsoever. Once it is known that all the summations

-2 n-2

ZFNE, po Sl ZF2F ZF.F

2 - 3 3 T H] H _ H e
i i-1 P i i-1 P i i-1 P i“i-1

are all congruent to zero modulo p, then any summation product of degree n
of the type we are considering taken over a period will also be congruent to.

zero modulo p.
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GENERAL CASE

The pattern established in the above theorems may clearly be extended to

higher degrees. To fix ideas, the fifth power summations will be used. As

i Z b Z e Z 2
I;re;/mgusly, let PFi be repl4aced by a, PFi Fi—l by b, PFi Fi—l by ¢,
PFiFi—l by d, and %FiFi—l by e.

Starting with the relations

Fy = T Fig

Fi = 2F %" Fig
F, = 3F, ,+ 2F,_,
F, = 5F,_, + 3F, .
F, = 8F, . + 5F, ,

we obtain on raising each to the fifth power and summing over a period of the

modulus p:

a + 5b + 10c + 10d + 5e = 0 (mod p)
252 + 5-24b + 10-2%c + 10-22d + 5-2e =0 (modp)
(85 + 2% - 1)a + 5-342b + 10 - 322¢ + 10322%d + 5-3- 2%e = 0 (mod p)
(5° + 35 - 1)a + 5-5%3b + 10-5%3%¢c + 10 - 523%d + 5 -5 3% = 0 (mod p)
(8° + 55 - 1)a + 5 - 845b + 10- 85%2¢c + 10 - 8253d + 5. 8- 5% = 0 (mod p)

il

Once again, the quantities a, b, ¢, d, and e are all congruent to zero mod-
ulo p provided:

(1) The determinantof the coefficients is not identically equal to zero; or

(2) The determinant of the coefficients is not congruent to zero modulop.
Thus precise information on which summations are congruent to zero modulo
any given prime is related to knowing the value of the determinant of the co-
efficients. These determinants have been made the object of extensive study
by the author and Terry Brennan who will elaborate the results of their re-

search in a future issue of this publication. For the present, let it suffice to
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say that the formulas derived empirically by evaluating these determinants to
the nineteenth order have now been theorétically justified.

It will be noted that the binomial coefficients of the fifth degree enter in-
to the equations and that these may all be factored from the determinant. As
long as the degree of the summation is less than p, these factored binomial
coefficients do not affect the issue. Disregarding them, the remaining deter-

minant is as follows.

1 1 1 1 1
25 24 23 22 2
35+ 25 -1 342 3322 32238 3. 24
55 + 35 - 1 543 5932 5233 5. 3%
8% + 55 - 1 845 ' 8352 8253 8 . 54

If n be the degree of the summation and the order of the determinant, it is
found empirically that:

(1) For n =0 (mod 4), the value of the determinant is zero. Thus for
summations of degree 4k, none need be congruent to zero modulo any prime,.

(2) For n = 2 (mod 4), the value of the determinant is:

n . n/2
1) 2 BT

1.2
i=3 . i=1 !

5

where Li indicates the members of the Lucas sequence which is also of the
Fibonacci type but with values L; = 1, L, =3, L3 =4, etc.
(3) For n odd, the value is

ph-itl
1

(n+1)/2
I
3 i=1

L

@ 2i-1,

=B

1

For the convenience of the reader the express value of these determinants up
to order 20 are given below, omitting those .of order 4k which are all equal

to zero.
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VALUE OF DETERMINANT

2183455 11-13- 29

224 38557211 - 1331719 - 29

10 230 312 57 75 113 134 172

11 2343125974113 13517319 - 29 - 89 - 199

13 252320518 76 11513717519 - 29 . 893 199 - 233 - 521

14 264330 515 79 117 139 176 293 894 2332

15 20 328 518 78 118 1311 1711 19 - 293 31 . 61 - 895 199 - 2333 521

17 2% 398 524 712 17110 1315 179 19 . 295 31 - 472 61° 897 199 - 2335 - 521 - 1597
- 3571

18 2111 349 527 716 1711 1317 1711 193 297 475 614 898 2336 15972

19 2119 348 530 716 1712 1319 1713 193 297 31 - 474 615 89° 199 - 2337 521 - 15973

- 3571 - 4181 - 9349

n

2 2

3 28

5 2532511
6 212 35 52

7

9

EXAMPLE

For the modulus p = 19, it follows from the above determinant values
that we might expect to have the sums of powers over a period congruent to
zero for n = 1,2,3,5,6,7,10,14, The actual situation is shown in Table 1
from which it is clear that theory is corroborated.

Table 2 shows the powers at which summations of Fibonacci expres-
sions may cease to be congruent to zero modulo p.

Table 3 shows the comparison of theory and calculation for small primes.
A 0 in the table indicates by theory and calculation the summation to degreen
modulo the given prime is zero; x means that the summation need not be zero
by theory; (x) indicates that theory does not require a sum congruent to zero,

but that in reality it is congruent to zero. There is in this no contradiction.
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Table 1

RESIDUES OF POWERS OF FIBONACCI NUMBERS MODULO 19
(Captions give n)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 0 0o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1
3 9 8 b 15 7 2 6 18 16 10 11 14 4 12 17 13 1
5 6 11 17 9 7 16 4 1 5 6 11 17 9 7 16 4 1
8 T 18 11 12 1 8 7 18 11 12 1 8 7 18 11 12 1
13 17 12 4 14 11 10 16 18 6 2 7 15 5 8 9 3 1
2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1
15 16 12 9 2 1113 5 18 4 3 7 10 17 8 6 14 1
17 4 11 16 6 7 5 9 1 17 4 11 16 6 7 5 9 1
13 17 12 4 14 11 10 16 18 6 2 7 15 5 8 9 3 1
11 7 1 11 7 1 11 7 1 11 7 1 11 7 1 11 7 1
5 6 11 17 9 7 16 4 1 5 6 1 17 9 7 16 4 1
16 9 11 5 4 7 17 6 1 16 9 11 5 4 7 17 6 1
2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 & 10 1
18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

133 114 152 151 152 95 171 111 170 152 127 115 158 95 140 136 126 17

Table 2
p n odd n =4k + 2 p n odd n = 4k + 2
2 3 2 43 45 46
3 5 6 47 17 18
5 5 6 53 27 30
7 9 10 59 29 58
11 5 10 61 15 18
13 7 10 67 69 70
17 9 10 71 35 70
19 9 18 73 37 38
23 25 26 79 39 78
29 7 14 83 85 86
31 15 30 89 11 14
37 19 22 97 49 50
41 21 22 101 25 50
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Table 3

ZERO AND NON-ZERO SUMMATIONS
FOR SMALL PRIMES

—
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In addition to the exceptions for n = 7,9,10,11 modulo 13 and n=9,10,
11,13, 14,15 modulo 17, an interesting example was found by Dmitri Thoro
using a computer. For modulo 199 (period 22), the power summations should
be zero for 1,2,3,5,6,7,9,10,14,18 but no others need be zero. Actually,
an additional summation congruent to zero was found for n = 156.

ADDITIONAL RESEARCH POSSIBILITIES
The following offer additional research possibilities along these lines:

(1) The situation when n = p,
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(2) The theory for composite moduli.

(3) Similar summations for other Fibonacci sequences than Fi .
(4) Possibly by means of additional computer data, the study of cases in

which summations are congruent to zero when they need not be; patterns and
generalizations in these instances.

MYYWWWY AWV

LETTER TO THE EDITOR

TWIN PRIMES

Charles Ziegenfus, Madison College, Harrisonburg, Va.

If p and p+ 2 are (twin) primes, then p+ (p + 2) is divisible by 12,
where p > 3.

Two proofs:

If p >3, then p must be of the form

6k + 5 or 6k+ 1

If

Ppin ~ anr2 ’

then P, must be of the form 6k + 5. For otherwise

Py = 6k + 1) + 2 = 3(2k + 1)

and is not prime. Therefore,

P+ P, = (6k+ 5)+ (6k + 5) + 2 = 12(k + 1)

1o must be of the form 3k, 3k+ 1, or 3k+ 2. Clearly P, = 3k since
P, is assumed greater than 3.
If

p, = 3k + 1, then P = 3k + 1+ 2 = 3k + 1)

and is not prime. Clearly, Pt P is divisible by 4.

Now P, TPy T 8k + 3) + Bk + 2) + 2 = 32k + 2) .

So P, P is divisible by 12.

LOOOOOONKXXXNN,



FIBONACCI NUMBERS AND ZIGZAG HASSE DIAGRAMS* ,
A.P. HILLMAN, M.T. STROOT, AND R.M. GRASSL, UNIVERSITY OF SANTA CLARA

A Hasse diagram depicts the order relations in a partially ordered set.
In this paper Haase diagrams will indicate the inclusion relations between mem-
bers of a family of subsets of a given universe U = {e;,---, en} of n ele-
ments. Each subset is represented by a vertex and an upward slanting segment
is drawn from the vertex for a subset X to the vertex for a subset Y if X is
contained in Y. [1]

In a previous paper the senior author described methods for finding the
number f(n) of families {Sl,' T, SI_} with each Si a subset of U and with
the inclusion relations among the Si pictured by a given Hasse diagram. The
formulas f(m) for all diagrams with r = 2,3, or 4 were listed. The formu-
las for r = 5 have also been obtained and will be published subsequently.

We now single out a zigzag diagram for each r = 2, i.e., the diagrams
I’ V! N! W’

More precisely, we consider the problem of determining the number ar(n) of

ordered r-tuples (Sq,---, Sr) of subsets Si of U such that Sj is contained
in Sk if and only if j is evenand k = j +1. Our previous results imply the
formulas:

a,(n) = 3" - 2"

agn) = 5" - 2 . 4" + 3"

agm) = 8" -3-7"+3 6" -5

am) = 13" -2 - 12" 11" + 5 - 10" -4 - 9" + &"

agn) = 21" - 20" - 2-19" - 18"+ 8- 17" -4 16" - 2. 15" - 14"

+3.13" - 12"

*This work was partially supported by the Undergraduate Research Participation
Program of the National Science Foundation through G-21681.
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Note that the leading term is the nth power of the (r + 2)nd Fibonacci number.
The object of this paper is to prove this for general r.

We begin by numbering the 2" basic regions of the Venn diagram for r
subsets Si of U. Express a fixed integer k satisfying 0 =k = 2" in
binary form, i.e., let k = cy+ 2cy+ 2%cg + +++ + 2f-1 c, where each c; is
zero or one, For i =1,---, 1 let Wi be Si if c; = 1 and let Wi be the
complement of Si in U if ¢; = 0. Now let Ek be the intersection of Wy,
cee, Wr' These E, are the sets represented by the basic regions of the Venn
diagram,

We next illustrate the process by finding ag(n). In this case the Hasse
diagram is a V and we are concerned with ordered triples (S;,S,, S3) such
that S, is contained in S; and in S; and there are no other inclusion relations.
The condition that S, is contained in S; forces E, and E; tobeempty. The
condition that S, is contained in S3 forces E; (and E,;) to be empty. One
then sees that there are no other inclusion relations if and only if both E; and
E, are non-empty.

For a given triple (S, Sy, S3) each of the n objects in the universe is

in one and only one of the E Excluding the empty E,, E3, and Eg, there

are 5" ways of distributingl;he n objects among the 5 remaining basic sets
E,, Ey, E4, E5, and E;. We subtract the 4" ways in which E; turns out to
be empty (as well as E,, E3, and Eg) and also subtract the 4" gt ways in
which E,, but not E;, is empty. The remaining as(n) = 50 - 4" - (4n - 3n)
ways of distributing the elements of U are all those that meet the conditions
associated with the Hasse diagram V.

For ageneral r the inclusion relations of the zigzag diagram force g(r)
of the 2° basic sets Ek to be empty. The technique illustrated above canbe
used to show that these are the Ek such that the r-tuple (cy---, cr) of
binary coefficients for k has an even-subscripted ¢ = 1 with an adjacent
¢i+1 = 0. The remaining r-tuples will be called allowable; there are h(r) =
2;— g(r) such r-tuples. We wish to show that h(r) is the Fibonacci number

. . . . n
Fr+2' It will then be clear that the leading term in ar(n) is (Fr+2) and that
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the other terms result from subtracting numbers of ways of distributing the ele-
ments of U among fewer Ek than the allowable ones.

For r = 3 the allowable triples are
(1) (0,0,0), (1,0,0), (0,0,1), (,0,1), (1,1,1) ,

i.e., those for Ey, E;, E;, E;, and E;. The allowable quadruples for r = 4
can be made by attaching a zero in the fourth place to the 2 triples in (1) that
have a zero in the third place and by attaching either a zero or a one in the
fourth place to each of the remaining 3 triples in (1). There are thus 3 allow-
able quadruples with a one in the fourth place, 2 + 3 = 5 of them with a zero
in the fourth place, and a total of h(4) = 8 = F¢ such quadruples. Similarly
the number of quintuples of our desired form with a zero in the fifth place is 5,
the number with a one is 3 + 5 = 8, and the total number of such quintuples is
h(5) = 13 = F;. Using mathematical induction, one now easily shows that

h(r) = Fr+2'

REFERENCES

1. G. Birkhoff, Lattice Theory, Amer. Math., Soc. Colloquium Publications,
vol. 25, Rev. Ed., 1961.
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1955.
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ADVANCED PROBLEMS AND SOLUTIONS
EDITED BY VERNER E. HOGGATT, JR., SAN JOSE STATE COLLEGE

H-19 Proposed by Charles R. Wall, Texas Christian University, Ft. Worth
Texas.

’

In the trianglebelow [drawn for the case (1,1, 3)], thetrisectorsofangle,

B, divide side, AC, into segments of length Fn’ Fn+1’ Fn+3' Find:

(i) lim @
n—co

() lim e

; n—oo

B

01806 o
N ¢
C
| P - v I — by
Fn Fn+1 Fn+3

H-20 Proposed by Verner E. Hoggatt, Jr., and Charles H. King, San Jose State
College, San Jose, California.

L1 n L
If Q = ( ), show D(eQ ) = e ™ ,
0 0 :

where D(A) is the determinant of matrix A and Ln is the nth Lucas number.
H-21 proposed by Francis D. Parker,University of Alaska,College, Alaska

th

Find the probability, as n approaches. infinity, that the n™ Fibonacci

number, F(n), is divisible by another Fibonacci number (+ F; or F,).
46
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H-22 proposed by Verner E. Hoggatt, Jr.

o0 F- (e}
If Px) = I 1+x')y= 2 Rmx™ |,
i=1 n=0
then show
(i) R(F, - 1) = n
(ii) R(N) > n if N> F, -1

(See first paper of this issue.)

H-23 Proposed by Malcolm H. Tallman, Brooklyn, New York

1, 3, 21, and 55 are Fibonacci numbers, Also,they are triangular '

numbers, What is the next higher number that is common to both series?

SOLUTIONS
- 2 = .
H-3 Show F2n—2 < Fn < FZn—l’ n =3 ;
2
F2n—1 < Ln—l < F2n’ n=4,

where Fn and Ln are the nth Fibonacci and Lucas numbers, respectively.
Solution by Francis D. Parker, University of Alaska.
The identities F2(n) F(@2n - 2) + Fl@m - 2)
and F’(n) = F(2n - 1) - F2(n - 1)
are valid for n = 3 and can be proved from the explicit formulas for F(n).

From these it follows that F(2n - 2) < F%(n) < F@2n ~ 1), n = 3. Again, from

the explicit formulas for L(n) and F(n) it is possible to prove the identities

L’m~1) = F@n - 1)+ F(2n - 3) + 2(-1)‘”JL and LZm - 1) = F(2n) - F(2n - 4)

+ 2(—1)n+1. From these it follows that F(2n - 1) < L%(n - 1) < F(2n), (n =4).

This problem was also solved by Dov Jarden, Jerusalem, Israel.

H-4 Prove the identity:

Pt Forn Foon " ¥ ¥ ¥ - Py Foli By = Frigie
Are there any restrictions on the integral subscripts?
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Solution by J. L. Brown, Jr., Pemnsylvania State University, State College,
Pennsylvania

We shall prove the assertion under the subscript restrictions, r =-1,
s =-1, t = -1, where F_2 = -1, F_1 =1 and Fnz Fn~1+Fn—2 for n = 0.
The proof is by an induction on n,where n= r + s+ t, To show that the re-
sult holds for n = 1 and n = 2, a symmetry argument shows that it suffices
to verify the result for the nine triples (r,s,t) = (1,0,0), (-1,1,1), (3,-1,-1),
-1,2,0), (2,0,0), (1,1,0), (-1,3,0), (2,-1,1) and (4,-1,1).

Now assume as an inductionhypothesis that the result has beenproved for
all n satisfying n =k, where k= 2. Then consider any triple (r,s,t) such
that r+ s+t = k+ 1. Assume without loss of generality that r = max (r, s,t).

Then r = 1 and

A +F F F -F F

el = Frpe1 Feen Foaa rost r-1Tg-1 -1
(Fr Fs+1Ft+1 * Fr—l Fs+1 Ft+l)

+ (Fr_lFSFt+ Fr-—ZFsFt)
- (F

I

rooFe1Fro1 * FrogFeq Fig)

But

LS Fiqg ¥ Fr—lFsFt - P Fs—lFt~1 = F s+t

by the induction hypothesis applied to the triple (r-1,s,t), which has the sum

r-1+s+t = k, Similarly

P Fer1 Pt * P T Fy - FosFe1Fi1 = Frogsnt

by the induction hypothesis applied to the triple (r-2,s,t), which has the sum
r-2+s+t = k-1. Thus

Ar1 = Frgisrt © Frogeset Foiert

as required and the result follows by induction.
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H It F P Frng 7 T
-5 i = . -
( ) {m n] (Fn Fl’l-l e Fl ) (Fnl‘“n Fm"n"l o

- Fy)
then

2|:an] = H:m—an] Ln * [m—l Fn~1] Lm—n ’

where Fn and Ln are the nth Fibonacci and nth Lucas numbers, respectively.
(ii) Show that this generalized binomial coefficient I:m Fn] isalways an

integer,
Solution by J. L. Brown, Jr.

. . o , — . = h=0d . .
(i) The identity Lnfm—nJr Lm_n Fn = ZFm for m = n =0 iseasily ver

ified by induction. Multiplying both sides of the identity by 'anl FIn then

gives the required relation Ln[m—l F1+L, [m-l Fn—l] = 2 Lm Fn} .

From the expression for Fm , it follows that

m-n n 1 =
Fm~oz FH+BFm_nform—n.

Then

[ "]

) [an] = T ) Fm =" [m—an—l] * Bn[m—l Fn]

but [an] = Lm Fn—m]' If we replace n by m-n on the right-hand side of

(*), then we have

(**) [m Fn] = an[:m—l Fm—n—l] * Bm—n[m—l Fm-]ﬂ}

However, [m—lFm-n—l] = [m—an:[ and [m—lFm—n] = [m—an—l] , so that

adding (*) and (**) yields

z[m Fn] (am-n - Bm_n)[m—l Fn—l] " (an * ﬁn)[m—l Fn]

il

Lo . [m—an—l:l + L, [m—an:l as required,
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(ii) A proof of the second part which makes use of relation (*) can be

found on p. 45 of D, Jarden's "Recurring Sequences. "

H-6 Determine the last three digits, in base seven, of the millionth Fibonacci
number, (Series: F; =1, Fy =1, Fy3 = 2, etc.)

Solution by Brother U. Alfred, St. Mary's College, Calif.

The last three digits base seven may be determined if we find the residue
modulo seven cubed of the millionth Fibonacci number.

Seven has a period of 16 and 73 has a period of 72 x 16 = 784,

In 1,000,000, there are a number of complete periods and a partial per-
iod of 400.

For a period of the form 2m(zx + 1) where m = 2, there is a zeroat
the half-period of 392, Also, for a prime or a power of a prime, the adjacent
terms are congruent to -1 modulo the power of the prime. Hence we know that

we have the following series of values:

n Residue (modulo 343)
392 0
393 342
394 342
395 341
397 340
397 338
398 335
399 330
400 322

This expressed tobase seven is (440);, sothat these are the last three digits of

the millionth Fibonacci number expressed in base 7.

L and show that

]

H-7 If Fn is the nth Fibonacci number find lim I}Ji"n

n~* oo

2/\n/ N5 an < L < 2/\n+1/ J5 F2n+1 for

Solution by John L. Brown, Jr.
Let a=(1+ V5 y/2. Then, it is well-known (see, e.g., pp. 22—23 of
"Fibonacci Numbers'" by N. N, Vorobév) that

=1
v
o
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an i )
F -—| < Z forall n = 1
n \/5 2
a 1 n n an
- a 9 1 -
Therefore F \/_ , where Ienl <7 and T F VAN + Qn .

But for n= 1

n

//Za - _n a 1 n /a
~/ 2= N -5 <A =0
2~/5 25 2 N5 n

nV—Zn
_n/a lzy_____Zan+1 <Nn/§?f=—__~a
"\/g 2 - \/3 25 n 2./5
Taking lim , we find 5 3
n= e L=1m, Y& +9 =a .

n—w’ N5 D

Thus L=a:l—;—@

Now, let b = % —Z\ﬁ‘i so that b < 0. Then, since \/SFnz a’ - b for

n = 1, we have

2n _ 2n/ 2n 2n 2n+1/ 2n+1 2n+l _ 2n+l/,
/\/E,F2n = “/a"" - b <a </ a -b = EFZm—l
a

thus the desired inequality follows for all n = 1 on noting that L =

Also solved by Donna Seaman,

H-8 Prove
F121 F%1+1 F %1+1
Fii1 Fhee Fhesls 2(_1)n+1
Firz Thrs  Thea

where Fn is the nth Fibonacei number,

Solution by John Allen Fuchs and Joseph Erbacher, University of Santa Clara,
Santa Clara, California

The squares of the Fibonacci numbers satisfy thelinear homogeneous re-

i i i 2 = oFe 2 _ T2 -
cursion relationship Fn+3 = 2Fn+ + 2Fn+l Fn‘ (See H, W, Gould, Gen
erating Functions for Products of Powers of Fibonacei Numbers, this Quarterly,

Vol. 1, No. 2, p. 2.)
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We may use this recursion formula to substitute for the last row of the

given determinant, Dn, and then apply standard row operations to get

2 2 2
Fn Fn+1 Fn+.2
—|w2 2 )
Dn" Fn+1 Fm+2 I{n+3
2 2_ w2 2 2 _m2 2 2 _ 2
2Fn+1+2Fﬂ Fn—l 2Fn+2+2Fn-!—1 Fn 2Fn+3+2Fn+2 Fn+1
2 2 2
Fn Fn+1 Fn+2
=| F2 2 2 = =
Fn+1 Fn+2 Fn+3 Dn—l :
_F2 w2 w2
Fn—l Fn Fn+1
It follows immediately by induction that D = (_1)n—1 D,. Since Dy = 2, DI1

_ 2(_1)n—1 _ 2(__1)n+1 )

Also solved by Marjorie Bicknell and Dov Jarden.

Continued from p. 80, "Elementary Problems and Solutions"

Then

k+1 k+2 k+1

_ k+2
+ Fk+1p = (Fk+1 + Fk)p + (Fk + Fk_l)p

FlioP

k

k+1 k+1
= p(Fqp + Fyp )+ p*(Fp

k
+ Fk_lp ) .

But
k k-1

k+1 Ky _
p(F ,p + Fp ")+ p(Fp ~+F_;p)=p+pi(modp’+p-1).

. k k+1 k-1 k
Since Fk+1p + ka and ka + Fk—lp are both congruent to 1 (mod p

+p - 1) by the induction hypothesis and p + p? = 1 (mod p?+ p - 1), the de-

2

sired result follows by induction on n .

Also solved by Marjorie R, Bicknell and Donna J, Seaman,




BEGINNERS® 'CORNER
EDITED BY DMITRI THORO, SAN JOSE STATE COLLEGE

THE GOLDEN RATIO: COMPUTATIONAL CONSIDERATIONS
1. INTRODUCTION

"Geometry has two great treasures: one is the Theorem of Pythagoras;
the other, the division of a line into extreme and mean ratio. The first we may
compare to a measure of gold; the second we may name a precious jewel" — so
wrote Kepler (1571—1630) [1].

The famous golden section involves the division of a given line segment
into mean and extreme ratio, i.e., into two parts a and b, such that a/b =
b/(a+b), a < b. Setting x = b/a we have x* -x -1 = 0. Let us designate
the positive root of this equation by ¢ (the golden ratio). Thus

(1) Pt - ¢ -1 =0

Since the roots of (1)are ¢ = (1 +~5)/2 and -1/¢ = (1 -~5)/2 we may

write Binet's formula [2], [3], [4] for the nth Fibonacci number in the form

) S R ) N
o V5

2. POWERS OF THE GOLDEN RATIO
Returning to (1), let us ""solve for ¢?" by writing
(3) Pt = ¢ + 1
Multiplying both members by ¢, we get ¢ = ¢p2+ ¢=(p+1)+ ¢ = 2¢ + 1,

Now ¢3 = 2¢ + 1 yields ¢* = 292 + ¢= 2(¢p + 1) + ¢ = 3¢ + 2. Similarly,
53
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¢% = 3¢2 +2¢ = 3(p + 1) + 20 = 56 + 3 ,

This pattern suggests

n _ — .
) ¢" = F ¢+ F , n=1,23,

To prove (4) by mathematical induction [5], [6], we note that it is true for n

=1 and n =2 (since Fy; = 0 by definition). Assume ¢k = qub + F

Then ¢! = F ¢2+ F =F (¢+1)+F = (F, + F +Fk—l—.
en ¢ = Foth B 0 = F@ D F ¢ = (B F P )¢ By oS
Fk+1 ¢ + Fk’ which completes the proof, The computational advantage of (4)

over expansion of

()
2

by the binomial theorem is striking.

Dividing both members of (3) by ¢, we obtain
1
(5) ® ¢ -1.

Thus 1/¢%2 =1-1/¢ = 1- (¢ - 1) = (¢ - 2). Using this result and (5), 1/¢°
=2/¢-1=2(¢-1)-1=2¢ -3, Similarly, 1/¢4 =2-3/¢p = 2-3¢p+3 =
-3¢ - 5). Via induction, the reader may provide a painless proof of

-n n+1l

(6) ¢ = (-1) (FH(P - Fn+1) s D= 1,2,3, *°

3. A LIMIT OF FIBONACCI RATIOS

2

If we ""solve' x* -~ x-1=0 for x by writing x = 1+ 1/x and then con-

sider the related recursion relation

(M) x =1, x =1+
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Fibonacci numbers start popping out! We immediately deduce x, = 1+ 1/ X4
=1+1/1=2,x =1+1/xp=1+1/2=3/2, %, = 5/3, x; = 8/5, etc. This
suggests that X, = Fn+1/Fn .

Now suppose the sequence xy, Xy, X3, *-- has alimit, say L, as n —
o, Then

lim x =lim x = L
n—c nt+l nN—o n

whence (7)yields L = 1+ 1/L or L = ¢ since the X, are positive. Indeed,

there are many ways of proving Kepler's observation that

lim Fn+1

®) n— oo T = ¢
n
E.g., from (2)
¢ - 1
F n+l . n
r————— — - - - _ —
Fn+1 _ [¢n+1 _ (_¢)n1]/[¢n_ (=) n] _ , ( 9)1 o p
n R S
n.n
since ¢ = (1+~5)/2 >1 (-¢) ¢

implies that the fractions involving d)n approach 0 as n—-w .

4, AN APPROXIMATE ERROR ANALYSIS

Just how accurate are the above approximations to the golden ratio? Let

us denote the exact error at the nth iteration by

) ey =x, - ¢
The trick is to express €1 interms of e, and thentomake use of the identity
(10) L =l-wt+tw-w+wl-... | w <1

1+w
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(The latter may be discovered by dividing 1 by 1+ w; cf, [7].)

Thus

en+ 1

EXn+1—¢:1+§1__¢
n
_1- Loy if— 1
Sloere e ¢+4’[1‘+(%/¢>J
=m0 g [1- ey o)+ e /9 - (/90 + e ]
°n 612’1 e?l 1
:_(—p-;+;3~—;—4+-n since 5=¢>—1by(5).

However, the terms involving the higher powers of e, are quite small in com-

parison with thefirst term. Thus, following the customary practice of neglect-

ing high order terms, we will approximate the error at the (n+ 1)st step by

€1 = "0 "2, Finally, we may note that €y = -€1¢™%, 6= - ¢ % =  €,¢74,
€4 = ~¢; 978, and, in general,
+1_ ~2(n-1
(1) e, = (1he o207
5, COMPUTATION OF ¢ VIA MATRICES

We recall (cf. [8]) that if the matrix

and the column vector

(10
= (2)
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then the product Mv is defined to be the column vector

( ar + bs
\cr + ds
Let us investigate the recursion relation

(12) Vsl = Avn , n = 1,2,3,"°"
where A is a given matrix and vy a given vector. (For convenience we will
always take v, to be the first column of A.)

1\
(a) ¥ A is the @ matrix [9], [10] (} 6), then vy = (i”) and v, =

avi = (1 o) (1) = (D) v v = (1 0)(3) - (3) vem (5)0

Fp. T
(8),'”',V = -l ,*** . Thus if V.=(1), then for A = Q the ratio
5 n Fn i Si
ri/ 8; is precisely the approximation to ¢ obtained from (7).

) Let A =(i }) Then

w= (E(E) = (3) w = (2U3) = () wm (%)

F
This time v, = ( Ff%ml) . Note that here the ratio obtained from, say, vs is
2n
exactly that obtained from vy when A is taken to be the @ matrix.
(c) For A = (10 _11) , the successive approximations suggested by (12)

turn out to be

(13) T 3235 g "

From the discussion in (a) above it is easy to deduce that the limit of the se-

quence (13) is - 1@ : the negative root of (1)!
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Similarly pleasant results may be obtained from (infinitely many) other
A's, Several possibilities are suggested in the following exercises, The

mathematical basis for this approach will be explored in a future issue.
6. EXERCISES

E1. Show that the definition of the golden section leads to the equation
xX-x-1=0.

E2. Use mathematical induction to prove (6).

E3. How shouldyou define F—k (k > 0) in order that (4) would hold for
negative values of n?

E4. Verify (10) by long division, Find an additional check by starting
with the right-hand member,

E5. Give an inducﬁon proof of (11).

E6. Show that when x; = 1, the estimated error given by (11) becomes

n, 1-2n

€, = 1) ¢
Hint: Use (5).

E7. Using the results of E6 (with ¢ = 1.618) compute an estimate of
Fy1/Fiy - ¢. Compare this approximate error to the actual error (given ¢ =
1.61803). Thus although €, is a function of ¢ itself, it canbe usedinapproxi-
mating ¢ to a desired number of decimal places.

E8. A comparison of the three values of A exhibited above reveals that

in each case A has the form

w 1 >
1 w-1
It turns out that w need not be an integer. Experiment with different values

of w. Hint: consider the cases

(a) w o> ¢
()

DO

< w < ¢
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() - w3
(@ wo< -

E9. What happens, in the preceding exercise, when w = 1/2?
E10. Explain why the first two illustrations of (12) are essentially "com-
putationally equivalent." Hint: count the minimum number of arithmetic oper-

ations required in each case,
REFERENCES

1. H. S, M. Coxeter, Introduction to Geometry, John Wiley and Sons, Inc.,
New York, 1961, p. 160.
The Fibonacci Quarterly, 2 (1963), 66—67.
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LXK

EDITORIAL REMARK FROM PAGE 19:

In the European notation, 763,26 means what 763,26 does to us, and 2.5 means

266%) = 2. 5%,

HAVE YOU SEEN?

Nathan J. Fine, Generating Functions, Enrichment Mathematics for High School,
Twenty-eighth Yearbook National Council of Teachers of Mathematics, Wash-
ington, D.C., 1963, pp. 355—367. This is an excellent and inspiring article.



EXPLORING FIBONACCI POLYGONS
EDITED BY BROTHER U. ALFRED, ST. MARY'S COLLEGE, CALIFORNIA

We shall define a Fibonacci polygon as any closed plane figure bounded
by straight lines all of whose lengths correspond to Fibonacci numbers of the
series: 1,1,2,3,5,8,13,--- , Specifically, we shall investigate one subset of
this group of figures, namely, those for which all sides are unequal,

The question for study is: Under what circumstances may a polygon be
formed from line segments all of whose lengths correspond to Fibonacci num-
bers? Three situations may be envisaged:

(1) The greatest length is greater than the sum of all the other lengths
in which case no polygon can be formed;

(2) Thegreatestlength is equal tothe sumof all the other lengths, Again,
no polygon can be formed, but this case is interesting as itrepresents the divi-
sion point between polygons and non-polygons,

(3) The greatest length is less than the sum of all the other lengths in
which case a polygon can be formed.

Research could beginby studying specific polygons beginning with the tri-
angle and working upward, We might ask such questions as the following:

(1) Is it possible to have a Fibonacci triangle with all sides unequal?

(2) Is a Fibonacci quadrilateral possible? Under what circumstances?

(3) What is the limiting situation between polygons and non-polygons for
the pentagon?

(4) Isthere some situation in which we can be surethat a polygon can al-
ways be formed if the number of sides is greater than a given quantity?

(5) Is there some situation in which we can be certain that a Fibonacci
polygon can never be formed?

This study leads to some interesting results. It is not difficult but it is
rewarding in mathematical insights into the properties of Fibonacci numbers.

Readers are encouraged to send their discoveries to the editor of this
section by December 15, 1963, so that it may be possible to give due recogni-

tion to all contributors in the issue of February, 1964,
L0000
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‘A PRIMER FOR THE FIBONACCI SEQUENCE — PART III
VERNER E. HOGGATT, JR. and I.D. RUGGLES, SAN JOSE STATE COLLEGE

1. INTRODUCTION

The algebra of vectors and matrices will be further pursued to derive

some more Fibonacci identities.
2. THE ALGEBRA OF (TWO-DIMENSIONAL) VECTORS

The two-dimensional vector, V, is an ordered pair of elements, called

scalars, of a field: (The real numbers, for example, form a field. )
V = (a,b) .
The zero vector, ¢, is a vector whose elements are each zero (i.e.,
a=0 and b = 0),
Two vectors, U= (a,b) and V = (c,d), are equal if and only if a =
¢ and b = d, thatis (iff) their corresponding elements are equal.

The vector W, which is the product of a scalar; k, and a vector, U

Il

(a,b), is
W = kU = (ka,kb) = Uk .
We see that if k = 1, then kU = U, We shall define the additive inverse
of U, -U, by -U = (-1)U.
The vector W, which is the vector sum of two vectors U = (a,b) and

V = (c,d) is
W=U+V = (ab)+ (c,d) = (@+c,b+d .

The vector W = U -V is
W=U-V =TUH+ (-V)
which defines subtraction,
The only binary multiplicative operation between two vectors, U = (a,b)

and V = (c,d), considered here is the scalar or inner product, U -V,
U -V = (ab) - (c,d) = ac + bd,

which is a scalar,
61
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3. A GEOMETRIC INTERPRETATION OF A TWO-DIMENSIONAL VECTOR

One interpretation of the vector, U = {(a,b), 1is a directed line segment
from the origin (0,0) to the point (a,b) in a rectangular coordinate system.
Every vector, except the zerovector, ¢, will have the direction from the origin
{0, 0) to the point (a,b) and a magnitude or length, U=~a?+Db%  The zero
vector, ¢, has a zero magnitude and no defined direction.

The inner or scalar product of two vectors, U = (a,b) and V = (c,d)
can be shown to equal

u-Vvs= EUHVE cos 6 ,

where 6 is the angle between the two vectors,

4, TWO-BY-TWO MATRICES AND TWO-DIMENSIONAL VECTORS

If U = {a,b) is written as (a b), then U is a 1x2 matrix which we shall
call a row-vector. H U = (a,b) is written (g )g then U is a 2x1 matrix,

which we shall call a column-vector.

_{ab
Am(cd)’

for example, can be considered as two row vectors R; = (ab) and Ry = (c d)

The matrix

in special position or, as two column vectors, C; = <g) and C, = <2) in
special position,
The product W of a matrix A and a column-vector X = (X) is a

y
column-vector, X',

Xt - ax = (& P)(x :(ax+by): X‘)
c d y cx + dy y!

Thus matrix A, operating uponthe vector, X, yields another vector, X!'.
The zero vector, ¢ = {8}9 is transformedinto the zero vector again, In gene-
ral, the direction and magnitude of vector, X, are different from those of

vector X', (See "Beginners' Corner' this issue.)
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5. THE INVERSE OF A TWO-BY-TWO MATRIX

If the determinant, d(A), of a two-by-two matrix, A, is non-zero, then
there exists a matrix, A-l, the inverse of matrix A, such that
ATIA = AATL =
From the equation AX = X' or pair of equations
ax + by = x' cx +dy = y'
one can solve for the variables x and y in terms of a,b,c,d; and x',y' pro-
vided D(A) = ad - bec # 0. Suppose this has been done so that (let D = D(A)

+0)

Thus the matrix B, such that BX' = X is given by

4 -k
B:DD,D+0.

< a

D D ,

It is easy to verify that BA = AB = 1. Thus B is

A-l
. . - -1 0 1
to matrix A. The inverse of the Q matrixis Q ~ = (1 _1> .

, the inverse matrix

6. FIBONACCI IDENTITY USING THE Q MATRIX

Suppose we prove, recalling Q = ( 1 é) and
n Fl'l+l Fn
Q = Fn Fn_] N that F1+F2+-..+Fn=Fn+2_l .
It is easy to establish by induction that
(I+Q+Q2+...+Qn)(Q_I) - Qn+1—I '

If Q-1 hasaninverse (Q - I)_1 , then multiplying on each side
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yields

n n+1

- @1 -n@-nt.

satisfies the matrix equation Q2 = Q + I,

I+ Q+ Q%+ --v +Q
It is easy to verify that Q@ = (] :)\;
Thus Q-1)Q = @ -Q =1 and Q - I)~1 = Q. Therefore
Q+ e+ Q= Q@+ = QMo
Equating elements in the upper right (in the above matrix equation) yields

F1+F2+~--+Fn=Fn+2—F2=Fn+2-—l.

7. THE CHARACTERISTIC POLYNOMIAL OF MATRIX A

In Section 4, we discussed the transformation AX = X'. Generally the
direction and magnitude of vector, X, are different from those of vector, X',
If we ask which vectors X have their directions unchanged, we are led to the

equatibn
AX = )X, (\, ascalar).

This can be rewritten (A - X)X = 0. Since we want IXI %: 0, the only pos-
sible solution occurs when D(A - M) = 0. This last equation is called the
characteristic equation of matrix A, The values of )\ are called character-
istic values of eigenvalues and the associated vectors are the characteristic
vectors of matrix A, The characteristic polynomial of A is D(A - \).

The characteristic polynomial for the @ matrixis N -\ -1 = 0. The
Hamilton-Cayley theorem states amatrix satisfies its own characteristic equa-
tion, so that for the Q matrix

R-Q-1I=20.

8. SOME MORE IDENTITIES

TLet Q = (1 é), which satisfies Q2 = Q + I, thus (remembering Q%= I)
2n g\ n % /n\ Ai
(1) QT = (Q) =(Q+1I) = Z UQ
i=0 \

Equating elements in the upper right yields
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(Compare with problems H-18 and B~4).

From (1) : n -

. 2 i+

P = (I;)le ,
i=0
which gives
. n
- n =0, i
F2n+p = ifo < i ) Fi+p (n = 0, integral p)

FrompartI, Q" = F Q+ F_1T,

an+p _ rg [ m Qi+pf‘i Fﬁ—i
- i=0 i n- n-1

Equating elérrients'in'upper‘ right of the above matrix equation gives

m —l -1
an+p_ - ifo (i )Fi+p Fy L

with m = 0, any integral p and n.
(See the result p. 38, line 12, issue 2, and H-13).

HAVE YOU SEEN? ?

65

Melvin Hochster, "Fibonacci-Type Series and Pascal's Triangle,' Particle,
Vol. IV, No. 1, Summer 1962, pp. 14—28, (Written while author was a sopho-

more at Harvard University, but the work was done while he was-a senior stu-

dent at Stuyvesant High School, New York, New York.) -

~ Particleis a quarterly by and for science students with editorial and pub-

lishing offices located at 2531 Ridge Road, Berkeley 9, California. The pres-

ent editor is Steve Kahn,

A. Hamilton Bolton, The Elliott Wave Principle—A Critical Appraisal, Bolton—

Tremblay and Company, Montreal 2, Canada, Chap. IX, pp. 61—67.

This is an interesting application of the Fibonacci Sequence to business

cycles, and will merit some interest.



TRIANGLE INSCRIBED IN RECTANGLE
J. A.H. HUNTER

Arising from a problem proposed recently by Ben Cohen in a letter to

myself, yet another example of the famous Golden Section has been revealed,
The problem was:

Within a given rectangle, inscribe a triangle such that the remainder of
the rectangle will comprise three triangles of equal area,

W+ 2z

Xty
Referring to the figure above, we have:

xw = yz, and X = yw/(w + z),

whence

72 + Zw - W

I}

0, so 2z = w(N5 - 1) ,
Then,

2x

y(~N5 - 1),

So, as a necessary condition to meet the requirements, we have:

y _w _ _2 N5+ 1
ARG 2

the Golden Section.




FIBONACCI SUMMATIONS
KEN SILER, ST. MARY'S COLLEGE, CALIFORNIA

In the first issue of the FIBONACCI QUARTERLY, several problems re-
garding summation of terms of the Fibonacci series were proposed [1], They
can be solved without too much difficulty by means of intuition followed by
mathematical induction. The vesults for the series suggested in the article

"Exploring Fibonacci Numbers' are as follows:

n n
z ¥, =F -1 ZF,. = F o
=1 2k 2n+1 k=1 4k-3 2n-1" 2n
n n
Z F = F? zF = F, F
=1 42 2n =1 4k-1 2n” 2n+1
n n
2 F = 72 ~ 1 2 X F . =F
k=1 4k 2n+1 k=1 3k-2 3n
n n
it = - Z P = -
. jri%kt-—l F8n+1 1 2 FSk F3n+2 1
k=1 k=1

The attempt to extend this work by intuition to such summations as

n
Z

F
k=1 5k-4

leads to difficulties. One is led therefore to adopt a more mathematical ap-
proach in solving the general case of all Fibonacci series summations with sub-
scripts in arithmetic progression, namely,

n

ZF

k=1 ak-b

where a and b are positive integers and b < a.

67
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We recall that Fibonacci numbers can be given in terms of the roots of

the equation x> — x -1 = 0 [2]. If these roots are

1+ Vs and 1 - 5
T T2 S
then
- st n n
Fn = — and L. = r + s |,
N5 n
where F_ is the nlCh term of the Fibonacci sequence 1,1,2,3,5,--- and L
n n
is the nt‘h‘ term of the Lucas sequence 1,3,4,7,11,18,--- , In these terms
n n n
5 'Fak—b _ i = rak—lo _ s sak—b
k=1 N5 | k=1 k=1

One can restate the summations on the right-hand side of the equation by using

the formula for geometric progressions.

% ak-b a-b a, 2 _3a (n-Lya’| = b e o
Zr =T [1+r +r +r t+erc+T ] a
k=1 r -1

There is an entirely similar formula for the "s" summation. Substituting into

the original formula and combining fractions, one obtains

'n “a_an+a-b a _anta-b - _anta-b an+a-b
> F _1 |sr -r's -r + s
k=1 ak-b N5 2 ot i st i
. g a-b + o2 a-b . a-b _ Sa—b
a a a a
rs -r -s +1

Various simplifications result using the definitions of Fn and Ln in terms of
r and s together with the relation rs = -1, the product of the roots inthe

equation x? - x -1 = 0 being the constant term -1. For example,



1963 | FIBONACCI SUMMATIONS 69

Saran+a—b I anta-b _ (rs)a(ran-b _ San—b

r's ) = (DNBF,

The denominator can be transformed into (—1)a - La+ 1. Using these relations
the reader may verify without too much difficulty that the final formula is
a-b

an-b ~ Tamiyp T D TF T F

a
-7+ 1 - La

n (-1)2F
b5
k=1

Fak—b -

With this formula particular cases can be handled with little effort., For exam-
ple, let a =7, b=3 and n = 6. Then

6 (-1)"F3g - Fyg + (-1)*F3 + Fy
Z Fopg =
k=1 (—-1)7 + 1 - L7

-63245986 - 1836311903 + 2 + 3
-29

65501996

1

This result may be checked by actually summing the series:

Fy+ Fyy + Fyg + Fog + Fg9 + Fgq or 3+ 89+ 2584 + 75025 + 2178309
+ 63245986
the result being 65501996.

REFERENCES
1. Brother U. Alfred, Exploring Fibonacci Numbers, Fibonacci Quarterly,
Vol. 1, No. 1, February 1963, pp. 57—64.

2. I. Dale Ruggles, Some Fibonacci Results Using Fibonacci-Type Sequences,
Fibonacci Quarterly, Vol, 1, No. 2, April 1963, pp. 75—80.
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FIBONACCI-TRIBONACCI

Editorial Comment

[ Oct. 1963]

Mark Feinberg is a fourteen-year-old student in the ninth grade of the Susque-

hanna Township Junior High School and recently became the Pennsylvania State

Grand Champion in the Junior Academy of Science. This paper is based on his

winning project and is editorially uncut, Mark Feinberg, in this editor's opin-

ion, will go far in his chosen field of endeavor. Congratulations from the edit-

orial staff of the Fibonacci Quarterly Journal, Mark!

21

Year

44

34 LAY

13
24 A\
13 7
11 /
8
24 - 20 /j
Golden Rectangle "Silver' Rectangle
Figure 1

"Fibonacci" Tree

Figure 3

"Tribonaceci' Tree




FIBONACCI-TRIBONACCI *
MARK FEINBERG

For this Junior High School Science Fair project two variations of the

Fibonacci series were worked out,
"TRIBONACCI"

Just as in the Fibonacci series where each number is the sum of the pre-
ceding two, or Ppip =Py T Py_gs the first variation is a series in whicheach
number is the sum of the preceding three, or q.. .1 = 9, + 9,1 + A4y hence

the series is called "Tribonacei." Its first few numbers are
1,1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504 - - -

Like the Fibonacci series, the Tribonacci series is convergent, Where

the Fibonacci fractions pn/(p and pn+1/ p, converge on .6180339--- and

n+1
1.6180339... , the Tribonacci fraction of any number of the series divided by

the preceding one (qn/q ) -approaches ,54368901--- . While the Fibonacci

convergents are termed ”Yglii“ (¢), the Tribonacci convergents might be called
"Tri-Phi" (¢s).

Series-repeating characteristics are shown inthe famed Fibonacci Golden
Rectangle.* A rectangle can be made of the Tribonacci series which also has
series-repeating characteristics but since they are less obvious this rectangle
might be called the "Silver Rectangle." Its length (qn+1) and its width (qn)
make it proportionately longer than the Golden Rectangle.

By removing the squares a4, by q4, and 94, 1 by Ay 1 two new rec-
tangles in the proportion of the original appear (shaded areas). One is q_1
by Uy but the other is composed of numbers not found in the Tribonacci

series, This rectangle is (qn+1 - qn) by (q. - qn—l) and is formed of num-

n
bers from an intermediate series obtained by subtracting each Tribonacci num-

ber from the one after it.

*See editorial remarks, page 70. Figure 1 appears on page 70.
71



72 FIBONACCI-TRIBONACCI [Oct.

By carrying the rectangle out farther new numbers found in neither the
original Tribonacci series nor the intermediate series appear., These are of a
second intermediate series and are obtained by subtracting each number of the
first intermediate series from the succeeding one. New numbers of new inter-
mediate series also appear by further carrying out the rectangle, These other
series are formed by triangulating in the same way as the first two intermedi-
ate series, All these intermediate series are convergent upon the "Tri-Phi"
values and each number in each of these series is the sum of the preceding

three., Figure 2 shows the first two intermediate series,

1, 1, 1, 3, 5 9, 17, 31 ++-
0o, 1, 2, 3, 6, 11, 20, 37, 68 -
1, 1, 2, 4, 7, 13, 24, 44, 81, 149-...

Figure 2

The two Fibonacci convergents fit the quadratic equation x =1+ 1/x,
The Tribonacci convergent of any number in the series divided by the preceding

one (g / q,) fitsthe cubic equation y = 1+ 1/y + 1/y% Tt is derived thus:

n+1
The formula giving any number in the series is

A4y = qn * q‘n—l + qn—z °

Dividing by 94,

1
1 4 -2
= + 1+ —
-1 -1 n-1
Let
qn+1 -t qn -t X qn—l -
%y L Y R n-2
Then since
9ni1 _ 9n+1 . ?g_ _ 9h+1 9 -t ¢
- - ' 1 n-1
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Therefore q q
t -t = n _n-2
n n-1

n-1 qn~l

Substituting for the rest of the formula:

_ 1
ty tn—1~tnl+1+t
n-2
Dividing by tn—l :
1 1
ty =1+ t 3 t

All the tn terms converge upon one value (y). Therefore 'y" can be

substituted for all tn terms. So
y =1+ % + é

The convergent approached by any number of the series divided by the
succeeding one (qn /qn+1) fits the cubic equation 1/y = 1 +y + y? and is de-
rived through a similar process.

Charting the Fibonacci convergent ,6180339- - on polar coordinate paper
is known to produce the famed spiral found all over nature. By charting the
Tribonacci convergent .54368901-.- a slightly tighter spiral is produced.

It is not known whether the Tribonacci series has any natural applications.
A well-known Fibonacci application is of a hypothetical tree. If eachlimb were
to sprout another limb one year and rest the next, the number of limbs per year
would total 1, 2, 3,5, 8--- in Fibonacci sequence. However if each limb
on the tree were to sprout for two years and rest for a year, the number of
limbs per year would total 1, 2, 4, 7, 13 --- in Tribonacci sequence. See
Figure 3, page 70,

Could such a tree as that on the right be called a "Tree-bonacci? "

"TETRANACCI"

The second variation of the Fibonacci sequence is a series in which each

number is the sum of the preceding four numbers or r =r +r + T
n+1 n n-1 n-2
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+ ro_s Therefore this series is called "Tetranacci.' Its first few numbers
are:

i, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, T73.--

Like the Fibonacci and Tribonacci series, the Tetranacci series is con-
vergent, The fraction rn+1/ r ~converges upon 1.9275619 ... and fits the
fourth power equation z = 1+ 1/z+ 1/z% + 1/2% .

The fraction r /T,,q converges upon .51879006 - - - which fits the equa-
tion 1/z = 1+ z +z%+ z%,

The derivation of these formulas follows the same algebraic process as

that given above and will be gladly furnished upon request.

The Fibonacci Association invites Educational Institutions to apply
for Academic Membership in the Association. The minimum sub-

scription fee is $25 annually. (Academic Members will receive two

copies of eachissue andwill have their names listedinthe Journal.)

REQUEST
The Fibonacci Bibliographical Research Center desires that any reader
finding a Fibonacci reference send a card giving the reference and a brief de-
scription of the contents. Please forward all such information to:

Fibonacci Bibliographical Research Center,
Mathematics Department,

San Jose State College,

San Jose, California

NOTICE TO ALL SUBSCRIBERS !!!

Please notify the Managing Editor AT ONCE of any address change. The Post
Office Department, rather than forwarding magazines mailed third class, sends
them directly to the dead-letter office. Unless the addressee specifically re-
quests the Fibonacci Quarterly be forwarded at first class rates to the new ad-
dress, he will not receive it. (This will usually cost about 30 cents for first-
class postage.) If possible, please notify us AT LEAST THREE WEEKS PRIOR
to publication dates: February 15, April 15, October 15, and December 15.




ELEMENTARY PROBLEMS AND SOLUTIONS
EDITED BY S.L. BASIN, SYLVANIA ELECTRONIC SYSTEMS, MT. VIEW, CALIF.

Send all communications regarding Elementary Problems and Solutions
to S. L. Basin, 946 Rose Ave., Redwood City, California, We welcome any
problems believed to be new in the area of recurrent sequences as well as new
approaches to existing problems, The proposer must submit his problem with
solution in legible form, preferably typed in double spacing, with name(s) and
address of the proposer clearly indicated. Solutions should be submitted within
two months of the appearance of the problems,

B-17 Proposed by Charles R. Wall, Ft. Worth, Texas

If m is an integer, prove that

Fotamiz = Tn = Lom+1 Fnrame1

where Fp and Lp are the pth Fibonacci and Lucas numbers, respectively.

B-18 Proposed by J. L. Brown, Jr., Pennsylvania State University.
Show that

n-1
F o= 2% 3 (—1)k cos™ K1 Tgink T , for n = 0
n k=0 5 10

B-19 Proposed by L. Carlitz, Duke University, Durham, N.C.

Show that
o0 [=e] 1
sy —r .y 1 %
_ 2 - 2
n=1 Fn Fn+2 Fn+3 n=1 Fn Fn+1 Fn+3

B-20 Proposed by Louis G. Brékling, Redwood City, Calif.

Generalize the well-known identities,

i) F1+F2+F3+---+Fn Fn+2

1l

(i) Ly+ Lo+ Lg+ =-- + L](1 Ln+2

75
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B-21 Proposed by L. Carlitz, Duke University, Durham, N.C.

If
=3 [(x s 12 - 1)211

o
11

show that

u? + Zznu% uf ceou?
n n-

Il

Unr1 1 .

B-22 Proposed by Brother U, Alfred, St. Mary’s College, Calif.
Prove the Fibonacci identity
- F2 T
ForFort = Flu = Fege
and find the analogous Lucas identity.

B~23 Proposed by S.L. Basin, Sylvaenia Electronic Systems, Mt. View,

Calif.
Prove the identities
' - Fi1
) Fo1 = 0 1Y
i=1 i
F n i
(i) Ly oz
n i=1 “i7i-1
0 i
(iii) R G
2 . F.F,
=1 i7i-1

SOLUTIONS TO PROBLEMS IN VOL, 1, FEBRUARY, 1963

B-1 Show that the sum of twenty consecutive Fibonacci numbers is divisible by

0
Fyp, 1., .21 Fn+1 = 0 (mod Fy), n =0,
1=

Solution by Marjorie R, Bicknell, San Jose State College, San Jose, Calif.

The proof is by induction, When n = 0

20
Z B = Fpp -1 = F(Fgg+ Fyy)
i=1
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Assume that the proposition is true for all n =k, 1i.e.

3

20
.E Fk+i = 0 (mod Fyy)
i=1
and
20
1:21 Fk—1+i = 0 (mod Fy,)

Now addition of the congruences yields

20 20 20 20
z: Flesi +.i\: Fre1a = ? (Fk+i * Fk—1+i): ? Flrryg = 0 (mod Fy)
i=1 i=1 i=1 i=1

Also solved by J. L. Brown, Jr., Dermott A, Breault, and the proposer.

B-2 Show that W P ot t gy = 11 wo- holds for generalized
Fibonacci numbers such that Wooog =W g+ U, where u; = p and u, = q.

Solution by J. L. Brown, Jr., Pennsylvania State University, Pennsylvania
It is easily shown, by induction, that w, may be written in terms of the
. . _ - . . B
Fibonacci numbers, Fm’ as u = pFn_2 + an—l for n=1. Using this re

sult, we have

10 10 10
Zu =p 2 F +q & F
k=1 ntk k=1 n+k-2 k=1 n+k-1
and
11lu 7 = ll(pFn+5 + an+6)
The result follows if
10
_ = .
<1> E Ty = Wy forn =0 s
however,
10 n+10 n
F = Z F.- T F, = (F -1+ (F_. - 1)
kel n+k PR n+12 n+2
= P m Fygs 250

Equation (1) is therefore equivalent to

(2) F 11F , n=0

n+12 ~ Tpee T n+7
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By direct calculation, Fy, - Fy = 11F; and Fy3-F3 = 11Fg; now adding these
identities we have, Fy - Fy = 11Fy, Proceeding in this fashion, (2) is veri-
fied by induction.

Also solved by Dermott A, Breault, Marjorie R. Bicknell and Edward Balizer.
B-3 Show that Fn to4 = Ty (mod 9)

Solution by Marjorie R. Bicknell, San Jose State College, San Jose, Calif,

1l

Proof is by mathematical induction, When n = 0,

Foy = Fp (Fyg + Fyy) = 144 (Fy3 + Fyy) = Fy (mod 9)

Assuming that the proposition holds for all integers n =Kk,

Fi1424 = Figg (mod?9)

and

Il

Fk%24 = Fk (mod 9)

Adding the congruences, we have

Fk+1 (mod 9) ,

Fk+1+24
and the proof is complete by mathematical induction.

Solution by Dermott A, Breault, Sylvania ARL, Waltham, Mass.

Using the identity Fn+p 1= le Fp+1 + Fn Fp write
Fosn = Foginey = FauFpyy * FuFpp o
Therefore,
Fn+24 "Fn = F24Fn+1 + (F23 - 1)Fn s but
Fyy = 9(5153) and Fy - 1 = 9(3184) ,
hence
Fn+24 - Fn = 0 (mod 9).

Also solved by J. L. Brown, Jr,
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B-4 Show that n

z (?) Fy = Fy
i=0 n

Solution by Joseph Erbacher, University of Santa Clara, Santa Clara, Calif,,

Generalize,

and J, L. Brown, Jr., Pennsylvania State University, Pennsylvania.
Using the Binet formula,

kn kn
2) 2
F ___(a —(b
2kn a->b
where
31.2—-1+a,b2—1+b,a—lg\/:r),b—l_z\/—5
we have
- :(1+a)kn—(1+b)1m_ 1 hzlnai_kn(n)bl_lmnal—bl
2kn a-b>b T a-b, (1) Vi “_(i) a-b
i=0 i=0 i=0
AKE
Therefore, kn 1=0

Fokn = oo (f) B
Also solved by the proposers.
B-5 Show that with order taken into account, in getting past an integral number
N dollars, using only one-dollar and two-dollar bills, that the number of dif-

ferent ways is FN+1 .
Solution by J, L. Brown, Jr., Pennsylvania State University, Pennsylvania,

Let ay for N = 1 be the number of different ways of being paid N dol-
lars in one and two dollar bills, taking order into account. Consider the case
where N = 2, Since a one-dollar bill is received as the last bill if andonly if
N-1 dollars have been received previously and a two-dollar bill is receivedas
the last bill if and only if N-2 dollars have been received previously, the two
possibilities being mutually exclusive, we have o = N1t Ny for N= 2,

But o; =1, oy =4, therefore o =F N= 1.

N Nt for
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x(1 - x) _ 2
T-2x-22+ 38 IEOFI
=0 i 12

Is the expansion validat x = 1 4, i.e., does 10F2 4 =55

Solution by Wm. E. Briggs, Umver31ty of Colorado, Boulder, Colo,

Write (1 - 2x - 2x% + x3) = E a, 0 where
n=0

B-7 Show that

2, = Zak_1+2ak_2—ak_3, k>2, and a3 = 1, a; = 2,a = 6.,

Therefore, o
x(1 - %) _ B n
I-2x-ox+8 =7 E: (3,1~ 82) X
n=2
It follows that the coefficient of x‘k is Flz{ for k = 1,2,3,4; assume this is
true for all k = n, From above, the coefficient of xn+1 is
B Ty T 2@y g R ) 20 5 - Ay g) - (@, 3 A )
- - 2 2 _ F2 .
Therefore, a =a ;= 2F + 2Fn 1 Fn—Z’ however,
2 2 - 2 - 2 _ o2 2
Fn+1 * Fn—z (Fn * Fn—l) * (Fn Fn—l) 2Fn+ 2Fn—l
so that the coefficient of ¥ 1 is Flz‘l—l' The zero of 1 - 2x - 2x?+ x5 with

smallest modulus is r = (1/2)3 - '\/:5) which is the radius of convergence of
the power series. Since r > |1/4| , the series converges for x = 1/4 to the
value 12/25.

Also solved by J, L. Brown, Jr.

B-8 Show that
n+1

(i) F 12 + F 2" = (mod 5)
(i) F 13 + F 3™ = 1 (mod 11)
(iii) F 15 + F 57 = g (mod 29)
Generalize,

Solution by J. L. Brown, Jr., Pennsylvania State University, Pennsylvania.

The general result,

n+1l

F nTan = 1 (modp?+p-1) ,

n+lp
where p is a prime and n = 0 is proved by mathematical induction,
The proposition is clearly true for n = 0 and n = 1, with the usual

definition F, = 0, Suppose the proposition is true for all n = k where k =1,
(Continued on p. 52)



