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1. INTRODUCTION 

The notion of completeness was extended to sequences of integers when 
oo 

Hoggatt and King [1] defined a sequence {Aj}._1 of positive integers a s a 
complete sequence if and only if every natural number N could be represented 
as the sum of a subsequence ,{B,•}.__.. , such that B. = A|. . 

A necessary and sufficient condition for completeness Is stated In the fol-
lowing Lemma, the proof of which is given by H6 L0 Alder [2 ] and J0 L„ Brown9 

J r . [3] . 
Lemma 1.1 Given any non-decreasing sequence of positive integers 

r °° 
{Aj}._ , not necessarily distinct, with A1 = 1, then there exists a sequence 
{ai}-K s where a^ = Oor 1, such that any natural number, Ng can be repre-
sented as the sum of a subsequence {B-j}. . , i„ effl , N = 2 a. A. if and only 

p J~l j=i J 4 
if, Ap+ 1 ^ 1 + S A . , p = 1 ,2 ,3 , - - - . 

The intention of this paper is to extend this past work by investigating 
the number of possible representations of any given natural number N as the 
sum of a subsequence of specific complete sequences, 

2. THE GENERATING FUNCTION 
We denote the number of distinct representations of N, not counting 

permutations of the subsequence {Bj}. _i $ by R(N). The following combin-
J k 

atorial generating function yields R(N) for any given subsequence {A|}. .. , 

A i 
(i) n, (x) = n [i + x 

K i=i 

Now, given any subsequence {Ai}._, the expansion of (1) takes the form, 
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<r 
(2) nk(x) = 2 R(n)xn , 

n=0 

where 

k 
(T = 2 A. . 

1=1 * 

To illustrate this9 consider the subsequence {.2,1,3,4} of the Lucas sequence 
| L n } , where L n = L ^ + \ _ 2 , and L 0 = 2, Lt = 1: 

n^x) = i + x2 

/ q x n2(x) = (1 + x2) (1 + x1) = 1 + x + x2 + x3 

n8(x) = (1 + x2) (1 + x1) (1 + x3) = 1 + x + x2 + 2x3 + x4 + x5 + x6 

n4(x) = 1 + x + x2 + 2x3 + 2x4 + 2x5 + 2x6 + 2x7 + x8 + x9 + xi0 . 

In (3) the coefficient of x is R(n), the number of ways of representing the 
natural number, n , by the summation of a subsequence of these four Lucas 
numbers. 

The expansion of (1) becomes quite tedious as k increases; however, 
we have developed a convenient algorithm for rapidly expanding (1)8 The rep-
resentation of the factors of (1) is the foundation of this algorithm0 The co-
efficients of x in (2) will be tabulated in columns labeled n. The process of 
computing entries in this table is as follows: 

(i) The first factor of (1), namely (1 + x A i ) f i s represented by 
entering 1 in row 1, column 0 and row 1, column A1 of our table. 
The remaining entries in row 1 are zero. 

(ii) The entries in row 2 consist of rewriting row 1 after shifting it A2 

columns to the right. 
(ill) The product (1 + x 1) (1 + x 2) is represented in the third row 

as the sum of row 1 and row 2a 
r i ° ° 

The following example considers the subsequence of {L } given above. The 
n 0 

product 
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(x) - IT .(1 + x ) , for k = 4 
1=1 

and 

{A.} 4 = { 2 ,1 ,3 ,4} is given by, 
1=1 
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1 

The coefficients R(n) of II. (x), k = l 9 2 f 3 s 4 in the above table are exactly 
those given In (3) and the entries In the row labeled IX4(x) are the number o f 
ways of representing the natural numbers 0 to 10 as sums of {2 ,1 , 3 ,4} , not 
counting permutations., 

It is important to note at this point that the representations of the natural 
numbers 4 through 10 will change and the representations of 0 through 3 r e -
main constant in the above table with subsequent partial products. The repre-
sentations which remain Invariant under subsequent partial products will be 
made explicit in Lemma 303 below. 

Prior to investigating representations as sums of specific sequences, It 
is convenient to define the following terms: 

th 
Definition 1,1 Level - The product IL (x) Is defined as the k level In 
the table* 
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Definition 1.2 Length — The number of terms in n, (x) will be denoted 
as the length \ , of the k level. From (1) it is clear that 

k 
X, = 1 + 2 A. 

k i=l x 

Definition 193 R(nsk) denotes the number of representations of n i n 
the k level, 

30 THE COMPLETE FIBONACCI SEQUENCE 

Now that the machinery has been developed for the investigation of com-
plete sequences, we proceed with the study of representations as sums of 
Fibonacci numbers. 

Lemma 3.1 The length \ , is F , + 2 

Proof: 

therefore 

By definition 

k 
X k = X + * A i • i = l 

k 
X k = 1 + ^ F i = F k + 2 

The following lemmas 3,2, 3.3, and 3.4 follow directly from the algorithm for 
expanding EL (x) . 

Lemma 3.2 (Symmetry) 

/ k \ k 
R 2 A. - j , k = R(j,k) for j = 0 , 1 , 2 , 3 , - " , 2 A. . 

Therefore, 

/ k \ k 
Rl 2 F . - j . k j = R ( j , k ) for j = 0 , 1 , 2 , . . - , 2 F. 
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L e m m a 3.2F 

R ( F k + 2 ~ ( j + 1 ) s k ) = R ( J > k ) > i = 0 , 1 , 2 , 3 , • • • , ( F k + 2 - 1) 

L e m m a 3.3 (Invariance) (At < A2 < A3 < • • • < A < ». •) 

R ( j , k ) =• R(J,«o) for j = 0 , 1 , 2 , 3 , . . . , ( A k + 1 - 1) 

F o r the Fibonacci sequence we have, 
L e m m a 3.3F Since (Ft ^ F 2 ^ F 3 ^ ^ F ^ - . . ) 

R ( j , k ) = R(j,co) for j = 0 , 1 , 2 , — , ( F k + 1 - 1) 

i . e . , the f i r s t F, - t e r m s of n (x) a r e a lso the f i r s t F, t e r m s of all 

subsequent pa r t i a l products 

\+m(x) , m = 1 , 2 , 3 , - • • 

L e m m a 3a4 (Additive Proper ty ) 

R ( A k + 1 + j , k + 1) = R ( A k + 1 + j , k ) + R ( j , k ) 

and by symmet r i c p rope r ty , Lemma 3.2, it i s also t rue that 

R ( A k + 1 + j , k + 1) = R ( A k + 1 + j , k ) + R l 2 A. - j , k 

for 

j = 0 , 1 , 2 , 3 , - • • , f 2 A. - A k + 1 

F o r the Fibonacci sequence {F^} this i s : 
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L e m m a 3a4F 

R(F k + ] _ + j , k + 1) = R ( F k + 1 + j f k ) + R ( j , k ) 

and 

R ( F k + ] [ + j g k + i ) = R ( F k + 1 + j f k ) + R ( F k + 2 - (j + l ) , k ) 

for 

j = 0 , l , 2 , 3 , - - « , ( F k - 1) . 

L e m m a 3„5F 

R ( F k + 2 ^ ° ° ) = X + R ( F
k » ° ° ) 

Proof: Using Lemma 304F we have, 

R ( F k + 2 , k + 2) = R ( 0 , k + 1) + R ( F k + 2 , k + 1) . 

But 

R ( 0 , k + 1 ) = R(0,«>) - 1. . 

By the s y m m e t r y proper ty of XL , 1 (x), 

/ k + 1 \ 
R( 2 A. - j , k + 1 = R ( ] 9 k + 1) 

for 

k+1 
j = 0 , 1 , 2 , 3 , - - - , 2 A i . 
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Since 

we let 

k+1 
F k + 3 = 1+ f F i 

which results in 

R ( F k + 2 ^ k + 1 } = R ( F k + l " 1 ? k + 1} ' 

Also by Lemma 3e3Fs 

R ( F k + 1 - l , k + 1) = R ( F k + 1 - l , k ) . 

By symmetry 9 

R ( F k + 1 - 1 , k) = R ( F k , k ) . 

But invariance yields 

R ( F k ? k ) = R ( F k , o o ) . 

Therefore, 

R ( F k + 2 ? - ) = 1 + R(F k > <») . 

The notation R(m) will be used to denote R(m , °° ) in what follows. 

Theorem 1. 

R ( F 2 k > = R ( F 2 k + l > = k + 1 
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Proof: (By induction) When k = 1, we observe that 

R(F2) = R(F3) = R(l) = R(2) = 2 . 

The inductive hypothesis is 

R<F2k> = R ( F 2 k + l ) = k + 1 • 

The inductive transition follows from: 
Lemma 3.5F 

R ( F2k+29 < > 0 ) = X + R ( F 2 k ' ° ° ) = 1 + * + 1) 

and 

R ( F 2k + 3 ' a > > = 1 + R ( F 2 k + l ' ° ° > = l + ( k + D • 

The proof is now complete by mathematical induction. Proofs of the following 

two theorems rely on: 
Lemma 3M6F 

(a) R ( F k + l + F k - 2 » k + 1] = R ( F k - l - X » k ) + R ^ F k - 2 ' k ) 

and 

(b) R ( F
k + l + F k - l » k + X) = R ( F k - 2 " X » k ) + R ( F k - l > k ) 

Proof: Using the additive property of the algorithm as stated in Lem-

ma 3 A , we have 

R ( A k + l + j > k + 1] = R ( A k + l + J » k > + R ( 3 > k ) 

j = 0 , 1 , 2 , . - ( S A . - A ^ j . 
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Let j = Ak_2 for (a) , and j = A ^ for (b) , 

(c) R(A k + 1 + A ^ 2 , k + 1) = R(A k + 1 + A k _ 2 , k) + R ( A ^ 2 , k) 

(d) R ( A
k + 1

 + A
k _ 2 > k + 1] = R(AkKL + Ak-1> k ) + R ( A k - i » k ) 

By symmetry (Lemma 3.2) 

(e) R(A k + 1 + A ^ , k) = R 2 A. - A k + 1 - ^ . k 

W R ( A k + l + Ak~l> k> = Rl ? Ai - Ak+1 - V l - k 
k 
2 

Therefore 

R ( A k + l + A k - 2 ' k + *> = R ( j A i ~ A k + 1 " A k - 2 ' k J + R < A k - 2 ' 

R < A k + l + A k - l ' k + *> = R ( j A i " A k + 1 " A k - l ' k | + R ( A k - l ' 

Specializing the above for the Fibonacci sequence, 

(a) R ( F
k + i + F

k -2» k + 1} = R ( F k ~ l " X> k ) + R ( F k - 2 > k ) » 

(b) R ( F
k + i + Fk-l'k + 1 ) = R ( F k - 2 " 1 » k ) + - R ( F k - l ' . k ) " ' 

Theorem 2 R(2Ffe) = .2R(Fk_2) 

and 

R(2F2 k) = R(2F ) = 2R(F ) = ZRff-.,) = 2k 



10 REPRESENTATIONS BY COMPLETE SEQUENCES [Oct. 

Proof: Using the r e c u r r e n c e re la t ion 

F1 = F -, + F, 0 k k -1 k-2 

and Lemma 306F we have, 

R ( 2 F k ) = R ( F k + 1 + F k _ 2 ) = R ( F k _ 2 ) + R ( F ^ - 1 ) . 

However, by symmet ry and Invar lance 5 

R ( F k ^ - l , k - 2 ) = R ( F k _ 2 f k ; - 2 ) = R ( F k ^ ) 

so that 

R ( 2 F k ) = 2 R ( F ^ 2 ) . 

Applying Theorem 1 to F ? k „ and F ? i -, y ie lds 

R ( 2 F 2 k ) = 2 R ( F 2 k _ 2 ) = 2k 

and 

R ( 2 F 2 k + 1 ) = 2 R ( F 2 k - i ) = 2k . 

Theo rem 30 R (LQ ) = R ( L
2 k ) = 2k - 1, k > 1 

Proof: Since L, < F, n - 1 f •— k k + 2 $ 

R ( L k , o o ) = R ( L k , k + 1) = R ( F k + 1 + F k - 1 , k + 1) 

= R ( F k - 1 , k ) + R ( F ^ 2 - l , k ) ' 

f rom Lemma 3*6F„ 
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By symmetry, Lemma 3.2F? 

R ( F k ~ 2 " l . k - 2) = R ( F
k ^ 1 ? k - 2) . 

But, from Lemma 3.5F, . 

R (F k _ 1 , k - 1) = R (Fk__1 , k - 2 ) + R (0, k - 2) 

and 

R ( F k - 1 , k - 2) = R(Fk__1?k - 1) - 1 

from the above equation. 
By Lemma 383FS 

R ( F k - 1 , - k - 1) = R ( F k _ 1 ? - ) . 

Therefore 

R(L k ) = 2 R ( F k - 1 ) - 1 . 

By Theorem 1, . 

R < F 2k) = R < F 2 k n > = k + 1 

so that 

R ( L 2k- l^ = ^ f c ^ " 1 = 2 k - 1 • 

R(L2 k) = 2R(F2 k_1) - 1 = 2 k - 1 . 

Lemma 3.7F 

(a) R ( F k + 1 - l ) = R ( F k _ l ) + R ( F | - l ) 



12 RE PRESENTATIONS BY COMPLETE SEQUENCES [Oct . 

(b) R ( F k + l - r ) = R ( F L l ~ X ) + R ( F k > ' 

Proof of L e m m a 3.7F: 

Since 

F_ = F 2 - F 2 - , then F 2 = F O + F 2 
2n n+1 n - 1 ' n+1 2n n - 1 

which gives 

R ( F ^ + l s 2 n ) = R ( F 2 n + ^ _ l s 2 n ) . 

By addition p rope r ty , L e m m a 3.4F, 

R ( F ^ + 1 ! 2n) = R ( F ^ l f 2n - 1) + R ( F 2 n + 1 - 1 - F ^ + 1 , 2n - 1) 

and by s y m m e t r y , L e m m a 3.2F, and the identity F = F 2 + F 2 , 

R ( F 0 "- 1 - F 2 , 2n - 1)• = R ( F 2 - 1 , 2n - 1 ) . 
v 2n+l n + 1 ' ; v n 9 ' 

There fore 

R (F2 , 2n) = R (F2
 1 , 2n - 1) + R (F2 - 1 . 2n - 1) . 

x n + 1 ' ' n - 1 * • ' x n ' ' 

S imi la r ly , 

R ( F ^ + 1 - 1 , 2n) = R ^ ! - 1 , 2n - 1) + R ( F ^ 9 2n - 1) . 

Since 

F 2 , < F 0 - 1 ; F 2 < F 0 - 1 ; n - 1 2n ' n 2n ' 

and 
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*n+ l 2n+l . . . V 

then by invar iance s L e m m a 3.2F, 

R ( F 2 , 2n) = R ( F 2 ) = R (F2
 1 ) + R ( F 2 - 1 ) v n + 1 s , . n+1 7 \ n - 1 ' . ..,A n ; 

and 

R ( F ^ + 1 - 1 , 2n) = R ( F ^ + 1 - 1) = R ( F ^ 1 - 1) + 

(a) 

(b) 

(c) 

(d) 

Theo rem 4 , 

R < F 2 k - l " *> = F 2 k 

R ( F 2 k - 2 ) = F 2 k - 1 

•• , R ( F 2 k - ^ = L 2 k - 1 

R ( F2k-l ) = L 2 k - 2 

Proof: (By induction) 

F 0 = 0 ; R(Fjj) = R ( F | - 1) = R ( F | . - 1) = 1 

and 

R(FJ) = 2 

(a) R ( F ^ ) = R (F ^ _ 2 ) H - ' R t F ^ - 1) 

(b) R(F« ,-".!)• = R(F2 - 1) + R(F^_ 1 ) 
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by Lemma 3.7F8 

Replacing k by 2k in Lemma 3.7F (a), yields 

B(F»2k) = R ( F | k _ 2 ) + B ( F | k _ 1 - l ) . 

Thus 

R ( F 2 k ) ~~ F2k~-1 + F 2k F2k+1 

Replacing k by 2k + 1 in Lemma 3.7F (b), yields 

R ( F | f c f l - 1) = R ( F | k _ 1 - l) + R ( F | k ) 

Therefore 

Similarly, 

F + F 
* 2k x2k+l 

R ( F 2 k + l " *> = F2k+2 

R ( F | k + 1 ) = R ( F | k „ l ) + R ( F | k ™ 1) 

R<F2kfl> = L 2 k » 2 + L 2 k ^ l = L2k 

and 

R < F 2 ^ 2 - 1 > = R ( F 2 k " 1 ) + R ( F 2 k + l ) 

R (F2k+2 " 1 } = L2k»l + L2k = L2k+1 • 

Many more fascinating properties of complete sequences will follow in Par t II 
of this paper. 

References may be found on page 31. 



ON THE GREATEST PRIMITIVE DIVISOR'S OF FIBONACCI AND LUCAS 
NUMBERS WITH PRIME-POWER SUBSCRIPTS 

DOT JA3RDEM, JERUSALEM, ISRAEL 

, The g r e a t e s t p r imi t ive divisor F f of a Fibonacci number F i s defined 

as the g r e a t e s t divisor, of F re la t ive ly p r i m e to every F with posi t ive x < n. 

S imi la r ly , the g r ea t e s t p r imi t ive d ivisor Lf of a Lucas number L Is 

defined a s the g r e a t e s t d iv isor of L re la t ive ly p r i m e to eve ry L with non-

negative x < n. • . . 

• The f i r s t 20 values of the sequence (Ff ) a r e : 

F} = 1 , F£ = 1 , FJ = 2. ., FJ = 3 , FJ = 5 , FJ = 1 , Ff = 13 , 

F^ = 7 , FJ = 1 7 , F}0 = 11 , F i 1 = 89, F}2 = 1 , F | 3 = 233, F}4 = 29 , 

F j 5 = 6 1 , F\6 = 47, FJ7 = 1597, F}8 = 19, FJ9 = 4181, FJ0 = 41 . 

As may be seen f rom these few examples , the growth of the sequence 

(F? ) i s ve ry i r r e g u l a r . However , some special subsequences of (Fr ) may 

occur to be inc reas ing sequences . E . g . , the subsequence ( F ' ) , where p 

r anges over all the p r i m e s , Is a s t r i c t ly Inc reas ing sequence (since F* = F 

and (F ) i s a s t r i c t ly i nc reas ing sequence beginning with n = 2), 

S imi la r ly , the subsequence (L[ ) , where q r anges over all the odd 
4. 

p r i m e s and over all the powers of 2 beginning with 22, i s a s t r ic t ly Inc reas ing 
sequence. 

The main object of this note Is to prove the following inequal i t ies : 

(1) F? „ , -j > Ff
 v (p — a p r i m e , x - a posi t ive in teger ) 

pXi-l pA 

(2) F r > F r (p — a p r i m e , x — a nonnegative in teger) 
2 p x + 1 2 p x 

15 
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(2*) Lf • - > Lf (p — a prime, . x — a nonnegative integer) 
px*1 p x 

In other words: the subsequences (Ff „)'"and(F! ' •) of the sequence (Ff ), 
px 2px n 

as well as the subsequence (L* „ ) of the sequence (L? ) , p being a prime and 
p x .n • 

x = 1,2,3,°**, are strictly increasing sequences, 
Since (as is well known) the primitive divisors of F~ an(^ L n ^n~ ^ 

coincide, we have: F ' ='Lf (n ^1)9 and especially: F ' + 1 = L f
x (x ^ 0)o 

Hence, (2). and (2*) are equivalent, and, for p = 2, also (1) and (2*). Thus 
it is sufficient to prove (1) for p ^ 2 and (2*) for p =$ 20 

We shall even show the stronger inequalities: 

(3) F ' .1 > F (p —a prime, x — a positive integer) 
p p 

(3*.) Lf
 v + 1 > L x (p — a prime, x — a nonnegative integer) 

p A • p 

Since F > Ff
 9 L > L?

 9 it is obvious that in order to prove (1) for 
n n f n n9 * . 

p ^ 2, and (2*) for p T 2, it is sufficient to prove (3) for p ^ 2 and (3*) for 
P ¥ 2. 

The main tools for proving (3) for p ^ 2 and (3*) for p 4= 2, are the 
following inequalities: 

(4) F > F^ (n > 2, x ^ 1) 
n x • . • n x 

(5) • F ^ > 5F2x ( x ^ 1) 

(4*) L x + 1 > L 2
x ( n > 2, x * 0) 

n 

In order to prove (3) for p — 2 and (3*) for p + 2 , it is sufficient (as 
will be shown later) to prove (4) for n a prime ^ 2 and (4*) for n an odd 
prime. However, since (4) and (4*) are interesting by themselves, we shall 
prove them for any positive integer n ^ 2. 
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The following formulae a r e well known. 

1 + ^ 5 „ 1 - ^ 5 
a = 2 , P = ~^— 

(6*) L n = an + /3n 

Since 
1 + N/5 1 + N/4. 2> 

a ~ 2 2 " 2 ' 

we have: 

(7) " = g • 

Since 1 - N/5 1 - ^ 9 

1 - ^ 5 1 - ^ 4 _JL 
2 2 2 ' 

we have 

(8) - 1 < j8 < - f , |jS| < 1 

Since 
1 + N/5 1 - N/5 

^ = 9 ' 9 ~ ~ = _ 1 

we have: 
(9) a>p = -1 . 

F o r any posit ive in teger n ^ 3 we have, by (7): 

anx+1
 = ( ^ ) n ^ {op*f = a n x ^ 2 n x y (*) 2

a2n* > 2a2n* = 
2 

2 
ff

2nX + c.2nx > ^2nx + / | j > ^ n * + 3 , whence, 

(10) a n X + 1 > a 2 n x + 3 (n > 3) 
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For odd n ^ 3 we have, by (10), (8), (9): 

^ n x + l _ ^ x + 1 > a2nx + 3 = a2nx + 2 + 1 > a 2nx + 2 + ^2nX = ^ x ^ n x ^ ^ 

(11) o ^ X + 1 - /3nx + 1 > (a^X - £ n x ) (2 / n , n > 3) . 

Fo r even n > 3 we have9 by (10), (8), (9): 

anx+1 _ prf-+1 > Q,2nx
 + 3 . ^ + 1 = a 2 n x _ 2 + ( 5 _ ^ x + 1 } 

> Q-2nX - 2 + i 3 2 n X = (anX - /3nX) , whence 

(ff) a n X + 1 - /3DX+1 > ( a n x _ ^nX)2
 ( 2 | n , n > 3) 

Combining (IT) and (IT) we have: 

(11) a n x + 1 - /3nx + 1 > ( « n x - /3nX)2 (n > 3) . 

For n a 3 we have, by (6), (11): 

F J , ( a n x + l _ ^nx+l) > J_ ( a n x _ ^ x / > ( - L ) 2
( f f n X - f^f 

n x + 1 N/5 '\T5 ' r" 

— ( a n X - j 3 n X ) | 2 = F2 , whence, 

( i ) V l ' F
nx (n " 3) 

We have, by (6), (9): 

F ± (a2^l _ ^ 1 , > 1 (Q2X + 1 _ 2 + ^ + 1 ) 
2x+l ^ 5 5 

| - 1 (|Q,2X _ i 3 2 x
) r = F2 } whence 
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Combining (4) and (4) we have (4). 

We have, by (7):* 

cX+1 . , x , 5 . nX,3, cX 2
 v / 3 V 25 243 o 5x ^ _ « ex _ 

^5 r (ffs ) = ((Q/b ^ (av j > ( o" 1 # = "32" ^ > 7 Q / 

(12) ^ X + 1 > 5a2"5 X + 22 

We have, by (12), (8), (9): 

^ 5 x+l _ ^ x + 1 > 5 a 2 . 5 x + 2 2 _ ^5x+l > 5^5x + 1 Q + ( 1 2 _ ^gx+l j 

> 5 a 2 - 5 X + 1 0 + 5 / 3 2 - 5 X = 5 ( * 2 - s X + 2 + /32-sX) = 5(a 5 X 

whence 

(13) a*X+1 - / 3 5 X + 1 > 5(a6 X - /J5*)* „ 

We have by (6), (13), (8): 

F JL { a ^ _ ^+1} > J_ 5(a5K _ ^ >5\JL ( a 5x _ /35x) 

5X+1 4~5 V5 TVs 

= 5 F ! x • 
whence (5) Is valid. 

F o r odd n > 3 we have, by (6*), (10), (8), (9): 

L = anx+1
 + /5nx + 1 > ^ 2 n x

 + 3 + ^ x + 1 = a2nX _ 2 + ( 5 + ^ + 1 , 

if 2 
_cX . 

2 

<*2nx _ 2 + £ 2 n X = (a^X + /?n X) = L2, 

whence 
*See edi tor ia l r e m a r k , page 59e 
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(4*) L n X + 1 > L ^ x (2 | n , n * 3) . 

F o r even n ^ 3 we have , by (6*), (10), (8), (9): 

L = c ^ X + 1 + / 3 * X + 1 > a 2 n X + 3 = a2nX + 2 + 1 > a 2 n X + 2 + £2n" 
n X + 1

 2 
( a n x + /3nx) = L 2 , whence 

n x 

(4*) L > L2 ( 2 | n 3 n ^ 3) 
n x + i n x 

F o r n = 2 we have the well-known re la t ion: L = L2 - 2, whence 
2 ! 2 

(4*\ L -, < L2 

' 2 X + 1 2X 

Combining (4*), (4*) and (1*) we have (4*). 

Proof of (3), (3*). 

F o r p + 5, ( p , F v ) = 1. Hence, by the law of repet i t ion of p r i m e s in 

(F ) , the g r e a t e s t impr imi t ive divisor of F ± i s F whence9 by (4): 

pX+1 A p x + 1 / x
p x > F

p x 

i . e. , (3) i s val id for p =(= 5. 

F o r p = 5, by the law of repet i t ion of p r i m e s in (F ), the g r e a t e s t 

impr imi t ive divisor of F - is 5F , whence, by (5): 
5 x + i 5X 

F» -, = F _L1 / 5F > F , 
r sX+1 5X+1 / sX 5X ' 

i . e. , F ! - > F , i. e. , (3) i s valid for p = 5. 
5X-1-1 5 x 

F o r p 4 2, by the law of repet i t ion of p r i m e s in (L ), the g r e a t e s t 

impr imi t ive divisor of L is L , whence, by (4*): L ! . = L / L __ 
P P x P x -1- px+l/ px 

> L , i. e. , (3*) i s valid for p + 2. 
p x 



A GENERALIZATION O.F THE CONNECTION BETWEEN THE FIBONACCI 
SEQUENCE AND PASCAL' S TRIANGLE 

JOSEPH A. RAAB, WISCONSIN STATE COLLEGE 

Before the main point of this paper can be developed, it is necessary to 
review some elementary facts about the Fibonacci Sequence and Pascal 's 
triangle. 

It is well-known that rectangles exist such that if a full-width square is 
cut from one end, the remaining part has the same proportions as the original 
rectangle. 

K——- x —-— —>( 

Assuming width to be unity and length x9 we have 

1 
x 

x - 1 

(1) x - 1 = 0 

The greatest root of (1) is the number <p, called the Golden Ratio, and the 
rectangle defined is the Golden Rectangle of Greek geometry. Each root of (1) 
has the property that its reciprocal is itself diminished by 1, so that 

1 
— = CD 

cp * 

21 
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Given any two. i n i t i a l in tegra l t e r m s Uj and u2 not both z e r o f a 

Fibonacci Sequence is defined recurs ive ly by 

(2) 
n - 1 n-2 

It i s a well-known proper ty of such sequences that 

l im n+1 <P 

If Uj = 0 and u2 = 1, we have the Fibonacci sequence. 

if a rec tangle i s defined such that when an in tegra l number k of full-

width squa res a r e cut f rom one end, the remain ing p a r t has the s a m e p ropor -

t ions as the original rectangle, then 

(3) ky 1 - 0 

where 'the width i s unity and the length Is y. 

\<r-~~~—^ y — 

T 
1 

1 

-9H 

—*|y_k 

V \ / \ 
! 

The rec tangle defined i s a golden-type rec tangle . The roo ts of (3) behave much 

like cps that i s s l / y = y - k. The g rea t e s t root In absolute value of (3) i s the 

l im 
n-^oo 

n+1 

where u = ku ., + u n . In fact. It Is well-known that under ce r t a in con-n n - 1 n-2 9 

ditions F ibonacci - l ike sequences defined by 
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(4) u = au ., + bu 0 
n n - 1 n-2 

given init ial t e r m s ut and u2 not both z e r o , where a and b a r e real., have 

the p roper ty that 

l im n+1 
n-^oo u n 

= a 

where a i s the g r e a t e s t roo t in absolute value of (See [3] ) 

(5) x2 - ax - b = 0 

The condition i s that a and b mus t be such that the roots of (5) a r e not both 

distinct^ and equal in absolute value, 

The above genera l r e su l t can be es tabl ished in the following way: Con™ 
th s i de r sequences such that the n t e r m u sa t i s f ies 

(6) u = cc/1 + d/5n . 

By substi tution In (4), a and (3 can be de te rmined so that sequences (8) will 

sat isfy (4) and be Fibonacci - l ike sequences . We find that the coefficients of c 
in — 9 n—•? 

and d a r e a (a2 - aa - b) and /3 (/32 - a/3~b)s respec t ive ly . Sequences (6), 
t he re fo re , satisfy (4) if a and p a r e roots of (5). 

n-2 On the other handf if a and /5 a r e roots of (5), then ca (a2 - %a - b) 
n—2 

+ d/3 (J32 - a/3 - b) = 0 Is sat isf ied for any choice of c and d0 But then we 
have ca + d/3 = a(ca " + d/5 ~ ) + b(ca + d/3 ). Moreover^ if a =|= fi9 

c and d can be de te rmined given ini t ial t e r m s ut and u2. Hence a sequence 

satisfying (4) sa t i s f ies (6) under the conditions s ta ted. If | a>\ > j p\9 we can 

use (6) to obtain the 

l im n+1 11m ca + d(6/a) 6 

n c + d(p/a) 
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The above limit does not exist, of course, if a = -jS. If the roots of (5) are 
equal3 then we can set 

n , n 
(7) u = ca + nda 
1 ; n . 
and show by arguments similar to those above that (7) is a Fibonacci sequence 
if and only if a is the root of (5) and so>. + 2/3 = 0. But the roots of (5) are 
equal if and only if a = a/2 and b = - a 2 /4 . Therefore all requirements for 
(7) being a Fibonacci sequence are met. It is now possible to solve for c and 
d5 and to show that for sequences (7)9 

lim n+1 
_ a n-*°o u n 

An interesting observation has been made about the array of numerals 
known as Pascal*s Triangle. If a particular set of parallel diagonals is desig-
nated as in Fig. 1, then the sequence resulting from the individual summations 
of the terms of each diagonal is the Fibonacci sequence. [2 ] 

Figure 1 

Therefore, the limit of quotients of sums of terms on these parallel diagonals 
of the triangle is a. We shall now show that some generalizations of this 
connection can be made. 
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To begins we note that the indicated diagonal sums in Fig. 2 are indeed 
the first few terms (except the first) of (4) if nt = 0 and u2 = 1. 

Other sets of parallel diagonals of Fig. 2 also have interesting proper-
ties. It is possible to formalize the definition of the array given as Fig. 25 but 
it will be more efficacious here to simply refer informally to the figure in the 
arguments to follow. We will assume only that a and b are real9 and that 
Fig. 2 is a Generalized Pascal 's Triangle. The row index shall be j , and the 
term index for each row? 65 each ranging over the non - negative integers. 

th th 
The j power of (a + b) is the sum of terms in the j row of Fig. 2. 

Definition 1. A diagonal sum x. of the generalized Pascal 's triangle 
shall be given by 

Lr+lJ 

x. = 
r5 , 1 - 6 0 * 1 ^ 

6-0 

Counting from left to right in Fig. 2, the (<5 + l)th term of the diagonal sum is 
the (6 + l)th term in the (j - r6 )th row of the triangle as 5 ranges over the 
non-negative integers. Hence x. ^ is a function of j and r „ 

Note that the role of r is simply to determine which terms of the t r i -
angle are to be summed. This has the effect of defining a set of parallel diagon-
als for each r. For example3 if r = 1, the first term of x61 is the first 
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t e r m of the sixth row of Figs 2e The second t e r m of x61 i s the second t e r m 

of the fifth row of Fig9 2 , and so on„ If r = 39 the f i r s t t e r m of x63 i s t h e 

f i r s t t e r m of the sixth row of Fig. 2S but the second t e r m of x63 i s the second 

t e r m of the th i rd rowf and so on. When r = 0, x . n i s the sum of t e r m s on the 
.th JO 
3""" row. A sequence {x-j r}. of diagonal sums is uniquely de te rmined by r . 

J ' J th 
Since for j = 0 the (j - r6) row is defined for every r only when 6 = 0, 

x • = 1 for all r . Fur the r 9 x- = a if r > 0. If r = 2. the f i r s t f e w t e r m s 
Or 9 I r > 

of the resu l t ing sequence a r e : 
(1, as a2

? a3 + b5 a4 + 2ab, a5 + 3a2b, • * • ) 

Theorem 1. For sequences {x- } of sums of t e r m s on pa ra l l e l diagon-
j r j 

a ls of the genera l ized P a s c a l ? s t r i ang le , 

(8) 
"jr 

ax,. n . + bx. . n . 0™l)r ( j - r - l ) r 

Proof: j - r - 1 
r+1 J/ j~r(6 + 1 ) - 1 

. ( j - r - l ) r (j~l)r dmmmd \ 

5=0 \ 

j -(5(r+l)b6 

Lr+lJ/ j -r6 -1 

6=1 

Lr+1. 

J-Hr+Dh6 
j - r6 - 1 

6 - 1 

j - r6 - 1 

6=1 

Lr+1Ji 

J+ £ 
' j - T 6 - 1 \ 

6=1 

!aJ-S(r+Db6 

j - r 6 - l 
, j-<5(r+l), 6 j 
aJ v ; b + aJ + 

aj-<5(r+l)ba 

j - 6 ( r + l ) b 6 

but 
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j - r<5 - 1 \ / j - r<5 \ 

6 - 1 ) \ 6 ) 

27 

j -rfi 

and 

so 

( j - r - l ) r 0 - l ) r = a" 

r + l j I / j - r<5 

r f ( \ a / j™r(5 

j , 5 ( r + 1) aj-6(r+l)b<5 
j - r(5 ? 

r(5 

5=1 \ 6 

j ^ ( r + l ) b 6 = 
jr 

In view of Theorem 1, any property of sequences defined recursively by 

(9) u = au 1 + bu -n n-1 n - r -1 

will be a property of sequences of sums of terms on diagonals of the generalized 
Pascal 's triangle. Further s these diagonal sequences will all be of the special 

• s u •- = a : since r + 1 initial terms 
5 r+1 

case ut = 0, u2 = 13 u3 = a,. • • 
are required for (9) to generate a sequence. We note that diagonal sum x 
is u of (9) given the above initial terms. 

(n-2)r 

As In the proof of 
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lim n+1 _ 
n-*-oo u ~ ^ n 

given (2)3 we shall establish the existence of similar limits for the sequences 
defined by (9). If we set 

,., -. n n n n 
(10) un = e0a0 + exat + e2a2 + • •• + e ^ 

then substituting in (9) the coefficients of the e. are 

n - r -1 , r+l r , w . ~ ., , 
ai (a. - aa . - b) (i = 0 , 1 , - • • , r) , 

and (9) is satisfied if the a. are the r + l roots of 

(11) x r + 1 - ax r - b = 0 . 

Conversely, given that the a, are the roots of (11), it follows that sequences 
(9) can be written in the form of (10) if the e. can be determined. One can ob-
tain from the given (r + 1) initial terms (r + 1) equations u^ = eQal+ ejcq 
+ • • • + e or (j = 1, 2, • • • , r + l ) . This set of equations has a non-trivial 
solution for the e. , however, if and only if the a. are distinct. Whether or 
not the terms of sequences defined by (9) can be written in the form of (10) de-
pends, therefore, on whether or not we can determine conditions for the multi-
plicity of the roots of (11). 

Suppose p is a root of (11) where a and b are both not zero. Then 
(11) may be written as (x - p) Q (x) = 0 where 

^ / x r / x r - 1 , x r-2 . x ? r - 3 , , r - 1 
Q(x) = x + (p - a)x + (p - a)px + (p - a)p^x + • • • + (p - a)p 

Clearly p is a multiple root of (11) if and only if it is a root of Q(x) = 0. But 
then it is easily verified that 
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a r 
r + 1 

Now s ince p i s r e a l , at l e a s t all complex roo t s of (11) a r e distinct. 

DeGua's ru le for finding imaginary roots s t a tes that when 2m s u c c e s -

sive t e r m s of an equation a r e absent , the equation has 2m imaginary roo t s ; 

and when 2m - 1 success ive t e r m s a r e absent , the equation has 2m - 2 o r 

2m imaginary roo t s , according as the two t e r m s between which the deficiency 

occu r s have like o r unlike s igns . Accordingly, we see that (11) has at mos t 

t h r ee r e a l r o o t s , s ince t he re a r e r - 1 success ive absent t e r m s and hence at 
r + l r 

l e a s t r - 2 complex roo t s . F u r t h e r , if f(x) = x - ax - b , the two c r i t i -

cal numbers of f a r e z e ro and a r / ( r + l ) . Since f(ar / ( r + l)) i s an ex t r emum 

of f, the g r e a t e s t mult ipl ici ty of any r e a l root of (11) i s two. [ l ] 

If b i s ze ro but a i s not5 then the roo ts of (11) a r e ze ro (of mult ipl ici ty 

r ) , and a. Other c a s e s a r e t r iv ia l . 

If the r e a l roo ts of (11) a re dist inct and #0 i s any root such that \a^ 

> jofj (i = 1,2, • • • , r ) , then 

n+1 n+1 n+1 
l im V i = l im eo^Q + e i " i + ' - + e T * r ' 

n-* o o u n-*co n , n , , n 
n e0a0 + eta t. + ••• + e ^ 

l im e ° a ° + e i » i ( » i / « o ) n + '*' + e
Y

a
T(a

T/aof 

e 0 + e1(alL/a0) + •• • + er(a>T/a>0) 

There fo re — 
n 

It i s c l e a r that a r / ( r + 1) i s a root of (11) if and only if 

r + l r 
b = - * r 

( r + D r + 1 
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Suppose a0 and a^ a r e this root . Then we can se t 

/-lov n , n , n , n 
(12) u n = e 0 a 0 +.ne1of0 + e2a2 + >-• + e^a^ 

and use (9) to find the coefficients of the e.. The coefficient of e. where 
•n—r-T T*+1 T* 

i =|= 1 i s a. (a. - a a . - b) and for e. we have 
1 i i i ' i 

r 
n-r -1 / r+1 r , ^ a ^ ° ^ b ( r + 1) A 

It i s c l e a r that the r equ i r ed condition i s that the a. be the roo t s of (11) and 
r aq?0 + b(r + 1) = o. But with a0 chosen a s above, this i s indeed the case . As 

before , (12) can be used to genera te equations which enable us to find the e. . 
Finally 

l im n+1 
n — oo u n 

exis ts and i s the g r ea t e s t root of (11) in absolute value. 

Since (9) genera tes a r e a l sequence given r e a l ini t ial t e r m s 9 not only i s 

l im n+1 
n-^oo u n 

the g r e a t e s t roo t of (11) in absolute value , but i t m u s t a lso be r e a l . Hence the 

g rea t e s t root in absolute value of (11) mus t be r e a l . 

If a, b , and r in (11) a r e such that two dist inct roots sha re the g r e a t e s t 

absolute value of all roots 5 then i t i s eas i ly shown that no l imi t ex i s t s . 

Employing s imple unit t h e o r e m s , we can prove that 

l im "n+s s .„ l im n+1 
= a n it = cxii 

n-^oo u u n-*oo u u 

n n 

We a r e now able to s ta te that: 



1963] THE FIBONACCI SEQUENCE AND PASCAL'S TRIANGLE 31 

Theorem 2. For all sequences formed by sums of terms on parallel di-
agonals of the generalized Pascal 's triangle9 and for all sequences defined by 
(9) given r + 1 initial te rms, 

lim n+s 
n 

exists and is the greatest root in absolute value of 

r+1 r_ 
x - ax - b = 0 , 

provided this absolute value is not shared by two distinct roots. 
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CHARTER MEMBER, MORGAN WARD, PASSES AWAY 

Durate, Calif. , June 2Q9 1963 - Dr9 Morgan Ward, 61, well—known 
mathematician on the faculty of the California Institute of Technology, died to-
day of a heart attack at the City of Hope Medical Center. 

As a research mathematician, Dr9 Ward was noted for his work in alge-
bra and number theory, with particular emphasis on arithmetical sequences, 
During the past few years he worked with the School Mathematics Study Group 
set up by the National Science Foundation to reform, elementary school mathe-
matics curricula. He was co-author with Dr@ Clarence Hardgrove of a modern 
elementary mathematics text book which will be published this fall. 

Born In New York City, Dr3 Ward spent most of his life in Southern Cali-
fornia. He received his B9 As at the University of California at Berkeley in 
1924 and his Ph0 D. in mathematics, summa cum laude^ at Caltech in 1928* He 
joined the Caltech faculty as assistant professor of mathematics in 1929, be-
came associate professor in 1935 and full professor in 1940e 

In 1934-1935 he did research work at the Institute for Advanced Study in 
Princeton, Ne J9 , and from 1941 to 1944 he served as consultant to the Office 
of Scientific Research and Development on problems of underwater ballistics 
and anti-submarine warfare. He was a member of the American Mathematical 
Society and the American Mathematical Association,, 

Drs Ward was an accomplished pianist, a student of poetry, and an expert 
chess and GO player. 

The mathematician, who lived at 1550 San Pasqual Street, Pasadena, is 
survived by his wife, Sigrid; a daughter, Audrey Ward Gray of China Lake, 
Calif. ; three sons, Eric, Richard and Samuel of Pasadena; three brothers, 
Robert Miller, Malcolm Miller and Samuel Ward, and four grandchildren 



PERIODIC PROPERTIES O.F .FIBONACCI SUMMATION'S 
BROTHER U, ALFRED, ST„ MARY9S COLLEGE, CALIFORNIA 

INTRODUCTION 

It is well known that if we take the terms of the Fibonacci sequence mod-
ulo m that the least positive residues form aperiodic sequence. This paper 
will consider the summation of functions of such residues taken over a period 
with the further limitations that for most of the results the modulus considered 
is a prime and the total degree of the product being summed is less than the 
prime modulus0 

NOTATION 

We employ the usual notation F^ to signify the terms of the Fibonacci 
sequence: 19 1, 29 3g 5, 8, • • • . The letter p represents a p r i m e a n d m 
any positive integer. 

We shall be considering summations such as: 

2F?F? 0 F? C p i 1-3 1-5 

where the subscripts of the Fibonacci numbers in the product differ from each 
other by fixed integers; where the summation is taken over a period for a given 
modulus p§ this being Indicated by having P below the summation sign; and 
where the total degree n of the product being summed is the sum of the ex-
ponents of the Fibonacci numbersa 

Theorem 1« The summation of the residues of the Fibonacci sequence 
over a period is congruent to zero modulo m. 

Proof: From the basic relation for the Fibonacci sequence 

F. = F. - + F. 0 l i - l 1-2 

33 
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it follows that 

2 F. - 2F . , + 2F. 0 
p i p i-l p i-2 

From the nature of periodicity, it is clear that the summation over aperiodwil] 

always be congruent to the same quantity for a given modulus regardless o: 

where we start in the sequence. Thus 

2F . = SF. - = 2F . 0 (modm) p i p i-i p I-Z 

so that 

2F. = 22F. (modm) 
P 1 P l 

which leads to the conclusion that 

2 F. = 0 (mod m) . 
P l 

Theorem 2. The summations 

2F? and 2 F. F. , 
p i p l i-i 

are congruent to zero modulo any prime with the possible exception of 2. 

Proof. For convenience we shall replace 

2F? by a and 2 F . F by b 
p i p i l l 

noting once more that the precise subscript of F is inconsequential when com-
puting the residue modulo p over a period. We start as before with the 

relation F. = F. - + F. 0 and the derived relation F. = 2F. 0 + F. oe By 
i i-i i-2 l i-2 i-3 J 
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squaring each of these relations and summing over the period^ we obtain 

a = a + 2b + a (mod p) 

and a = 4a + 4b + a (mod p) 

or a + 2b = 0 (mod p) 

4a + 4b = 0 (mod p) 

Hence we can conclude that a and b must both be congruent to zero modulo p 

with the possible exception of the case in which the determinant of the coeffi-

cients is congruent to zero. But this determinant equals -4 so that the only 

prime in question would be 2. We find by direct verification that 

2F? = 0 (mod 2) but that XF.F. , is not. 
P 1 P -1 1 " 1 

Theorem 3. With the possible exception of primes 2 and 3 all summations 

2F? ,• 2F?F, , s and 2F.F? , 
p i p i i - l p i i - l 

are congruent to zero modulo p8 

Proof. We employ the same procedure as before after replacing 

2F? by a, 2F?F. by b and 2F.F? by c .. 
p i • ; p • -1 •. 1 1 : p i l l 

Starting with 

F. = F. - + F. 0 
i i - l 1-2 

and the two derived relations 

F. = 2F. 0 + F. 0 
1 . 1 -2 . : 1 - 3 -

F . •= 3 F . 0 + 2F. A 
i 1-3 1-4 



3 6 PERIODIC PROPERTIES OF [Oct. 

we cube each of them and sum over a period to obtain: 

a = a + 3b +: 3c + a (mod p) 
a = 8a + 12b + 6c + a (mod p) 

a = 27a + 54b + 36c + 8a (mod p) 

or 

a + 3b + 3c = 0 (mod p) 
8a + 12b + 6c = 0 (mod p) 

34a + 54b + 36c = 0 (mod p) 

The quantities a, b? and c are all congruent to zero except possibly when the 
determinant of the coefficients is congruent to zero modulo p. The value of 
this determinant being -2332, the only possible exceptions might be the primes 
2 and 3. 

FURTHER DEDUCTION 
It should be noted that if a, b9 and c are congruent to zero modulo p, 

then any expression such as 
2 F ? F . . 
P x a~4 

is also congruent to zero modulo p. The reason is that F. . canbe expressed 
as a linear relation in F. and F. _, so that this summation becomes a linear 

i i - l 

combination of a, bs and c. Similar considerations apply for any degree 
whatsoever. Once it is known that all the summations 

2 F n , S F n ~ 1 F . , , 2Fn"*2F? , , - • • • , 2 F? F n " 2 , 2 F . F 1 1 " 1 

p i ' p l l - l p l l - l p l l - l p i l-l 

are all congruent to zero modulo p, then any summation product of degree n 
of the type we are considering taken over a period will also be congruent to 
zero modulo p. 
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GENERAL CASE 

The pa t t e rn es tabl ished in the above t heo rems may c lea r ly be extended to 

higher deg rees . To fix i d e a s , the fifth power summat ions will be used. As 
prev ious ly , le t ^ F? be rep laced by a, ^ F 4 F by b , ^ F? F? by c9 

| F ? F ? 1 by d, and 2 F . F 4
 n by e. P i l - l 9 Pi l-l J 

Star t ing with the re la t ions 

F . = F . - + F . 0 l i~l 1-2 
F . 

l 
F . 

l 
F . 

l 
F . 

l 

= 
= 
= 
= 

2F. 
l -

3F. 
l -

5F. 
l -

8F. 
i-

-2 

-3 
-4 

-5 

+ 
+ 

+ 

+ 

F i - ; 
2F . 

l -
3F. 

l -
5F. 

l -

3 
-4 

-5 

-6 

we obtain on r a i s i ng each to the fifth power and summing over a per iod of the 

modulus p : 

a + 5b + 10c + lOd + 5e = 0 (mod p) 

25a + 5 • 2 4 b + 10 • 2 3 c + 10 • 2 2 d + 5- 2 e = 0 (mod p) 

(35 + 25 - l ) a + 5 • 342b + 10 • 3 3 2 2 c + 10 3 2 2 3 d + 5 • 3 - 2 4 e = 0 (mod p) 

(55 + 3 5 - l ) a + 5 • 54 3b + 10 • 53 32 c + 10 • 52 33 d + 5 • 5 • 34e = 0 (mod p) 

(85 + 5 5 - l ) a + 5 • 845b + 10 • 8 3 5 2 c + 10 • 82 53 d + 5 • 8 • 54e = 0 (mod p) 

Once again, the quant i t ies a, b , c , d5 and e a r e all congruent to ze ro m o d -

ulo p provided: 

(1) The de te rminant of the coefficients i s not identical ly equal to z e r o ; o r 

(2) The de terminant of the coefficients i s not congruent to ze ro modulo p . 

Thus p r e c i s e information on which summat ions a r e congruent to ze ro modulo 

any given p r i m e i s r e l a t ed to knowing the value of the de te rminant of the c o -

efficients. These de te rminan ts have been made the object of extensive study 

by the author and T e r r y Brennan who will e labora te the r e s u l t s of the i r r e -

s e a r c h in a future i s sue of this publication. F o r the p r e sen t , le t i t suffice to 
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say that the formulas derived empirically by evaluating these determinants to 
the nineteenth order have now been theoretically justified. 

It will be noted that the binomial coefficients of the fifth degree enter in-
to the equations and that these may all be factored from the determinant. As 
long as the degree of the summation is less than p, these factored binomial 
coefficients do not affect the issue. Disregarding them, the remaining deter-
minant is as follows. 

1 

25 

35 + 25 - 1 

55 + 35 - 1 

85 + 55 - 1 

1 . 

24 

342 

543 

845 

1 

- 23 

3322 

, 5332 

8352 

1 

22 

3223 

5233 

8253 

1 
2 

3 

5 

8 

24 

34 

54 

If n be the degree of the summation and the order of the determinant, it is 
found empirically that: 

(1) For n = 0 (mod 4), the value of the determinant is zero. Thus for 
summations of degree ''4k, none need be congruent to zero modulo any prime. 

(2) For n = 2 (mod 4), the value of the determinant is: 

n n i + 1 n / ' 2 

(i) 2 n F 1 1 " 1 x n L ? • 
: 1 = 3 ) ' I - l 

where L. indicates the members of the Lucas sequence which is also of the 
Fibonacci type but with values lut =' 1, L2 = 3, L3 = 4, etc. 

(3) For n odd9 the value is 

n n - i + i ^ 1 ^ 2 ; 

(2) H F j n L2 i_x 
1=3 1=1 

For the convenience of the reader the express value of these determinants up 
to order 20 are given below, omitting those of order 4k which are all equal 
to zero. 
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VALUE OF DETEKMINANT 
n 

2 2 

3 23 

5 25 32 5 • 11 
6 212 35 52 

7 213 34 53 11 • 13 • 29 

9 224 38 55 72 11 • 133 17 • 19 • 29 

10 230 312 57 75 l l 3 134 172 

11 234 312 59 74 l l 3 135 173 19 • 29 • 89 • 199 

13 252 320 513 76 l l 5 137 175 19 • 29 • 893 199 • 233 • 521 

14 264 33 0 515 79 l l 7 139 176 293 894 2332 

15 273 32 8 518 78 l l 8 131 1 1711 19 • 293 31 - 61 • 895 199 • 2333 521 

17 293 33 8 524 712 l l 1 0 131 5 179 19 • 295 31 • 472 613 897 199 • 2335 • 521 • 1597 
• 3571 

18 2m 34 9 527 716 l l 1 1 1317 1711 193 297 475 61 4 898 2336 15972 

19 2119 34 8 530 716 l l 1 2 131 9 1713 193 297 31 • 474 61 5 899 199 • 2337 521 •• 1597s 

• 3571 • 4181 • 9349 

EXAMPLE 

F o r the modulus p = 19, i t follows from the above de terminant values 

that we might expect to have the sums of powers over a per iod congruent to 

z e r o for n = 132, 3 , 5S 63 7 S 10,14 . The actual si tuation i s shown in Table 1 

f rom which i t i s c l ea r that theory is co r robora ted . 

Table 2 shows the powers at which summat ions of Fibonacci e x p r e s -

s ions may cea se to be congruent to z e ro modulo p . 

Table 3 shows the compar i son of theory and calculat ion for smal l p r i m e s . 

A 0 in the table indicates by theory and calculat ion the summat ion to degree n 

modulo the given p r i m e i s z e ro ; x means that the summation need not be ze ro 

by theory; (x) indicates that theory does not r equ i r e a sum congruent to z e r o , 

but that in rea l i ty i t i s congruent to ze ro . The re i s in th i s no contradict ion. 
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Table 1 
RESIDUES OF POWERS OF FIBONACCI NUMBERS MODULO 19 

(Captions give n) 

1 

0 
1 
1 
2 
3 
5 
8 
13 
2 
15 
17 
13 
11 
5 
16 
2 
18 
1 
133 

2 

0 
1 
1 
4 
9 
6 
7 
17 
4 
16 
4 
17 
7 
6 
9 
4 
1 
1 
114 

3 

0 
1 
1 
8 
8 
11 
18 
12 
8 
12 
11 
12 
1 
11 
11 
8 
18 
1 
152 

4 

0 
1 
1 
16 
5 
17 
11 
4 
16 
9 
16 
4 
11 
17 
5 
16 
1 
1 
151 

5 

0 
1 
1 
13 
15 
9 
12 
14 
13 
2 
6 
14 
7 
9 
4 
13 
18 
1 
152 

6 

0 
1 
1 
7 
7 
7 
1 
11 
7 
11 
7 
11 
1 
7 
7 
7 
1 
1 
95 

7 

0 
1 
1 
14 
2 
16 
8 
10 
14 
13 
5 
10 
11 
16 
17 
14 
18 
1 
171 

8 

0 
1 
1 
9 
6 
4 
7 
16 
9 
5 
9 
16 
7 
4 
6 
9 
1 
1 
111 

9 

0 
1 
1 
18 
18 
1 
18 
18 
18 
18 
1 
18 
1 
1 
1 
18 
18 
1 
170 

10 

0 
1 
1 
17 
16 
5 
11 
6 
17 
4 
17 
6 
11 
5 
16 
17 
1 
1 
152 

11 

0 
1 
1 
15 
10 
6 
12 
2 
15 
3 
4 
2 
7 
6 
9 
15 
18 
1 
127 

12 

0 
1 
1 
11 
11 
11 
1 
7 
11 
7 
11 
7 
1 
11 
11 
11 
1 
1 
115 

13 

0 
1 
1 
3 
14 
17 
8 
15 
3 
10 
16 
15 
11 
17 
5 
3 
18 
1 
158 

14 

0 
1 
1 
6 
4 
9 
7 
5 
6 
17 
6 
5 
7 
9 
4 
6 
1 
1 
95 

15 

0 
1 
1 
12 
12 
7 
18 
8 
12 
8 
7 
8 
1 
7 
7 
12 
18 
1 
140 

16 

0 
1 
1 
5 
17 
16 
11 
9 
5 
6 
5 
9 
11 
16 
17 
5 
1 
1 
136 

17 

0 
1 
1 
10 
13 
4 
12 
3 
10 
14 
9 
3 
7 
4 
6 
10 
18 
1 
126 

18 

0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
17 

Table 2 

n odd 

3 
5 
5 
9 
5 
7 
9 
9 
25 
7 . 
15 
19 
21 

n = 4k + 2 

2 
6 
6 
10 
10 
10 
10 
18 
26 
14 
30 
22 
22 

P 

43 
47 
53 
59 
61 
67 
71 
73 
79 
83 
89 
97 
101 

odd 

45 
17 
27 
29 
15 
69 
35 
37 
39 
85 
11 
49 
25 

n = 4k + 2 

46 
18 
30 
58 
18 
70 
70 
38 
78 
86 
14 
50 
50 
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Table 3 

ZERO AND NON-ZERO SUMMATIONS 
FOR SMALL PRIMES 

11 13 17 19 23 29 31 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25-
26 
27 
28 
29 
30 

0 
X 

0 
X 
0 
0 

0 
X 
X 
0 
X 
X 
X 
X 

0 
X 
0 
0 
(X) 
X 
(x) 
(X) 
(x) 
X 

0 
X 
0 
0 
0 
X 
(x) 
(X) 
(X) 
X 
(x) 
(x) 
(x) 
X 

0 
X 
0 
0 
0 
X 
X 
0 
X 
X 
X 
0 
X 
X 
X 
X 

0 
X 
0 
0 
0 
X 
0 
0 
0 
X 
0 
0 
0 
X 
0 
0 
0 
X 
0 
0 

0 
X 
0 
0 
X 
X 
X 
0 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
x • 
X 
X 
X 

0 
X 
0 
0 
0 
X 
0 
0 
0 
X 
0 
0 
X 
X 
X 
0 
X 
X 
X 
0 
X 
X 
X 
0 
X 
X 
X 
X 

In addition to the exceptions for n = 7 , 9 , 1 0 , 1 1 modulo 13 and n = 9,1.0, 

1 1 , 1 3 , 1 4 , 1 5 modulo 17, an in te res t ing example was found by Dmit r i Thoro 

using a computer . F o r modulo 199 (period 22), the power summat ions should 

be ze ro for 1 , 2 , 3 , 5 , 6 , 7 , 9 , 1 0 , 1 4 , 1 8 but no o thers need be ze ro . Actually, 

an additional summat ion congruent to ze ro was found for n = 156. 

ADDITIONAL RESEARCH POSSIBILITIES 

The following offer additional r e s e a r c h poss ib i l i t ies along these l ines : 
(1) The situation when n ^ p . 

T 
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(2) The theory for composi te moduli . 

(3) Similar summat ions for other Fibonacci sequences than F . . 

(4) Poss ib ly by means of additional computer data, the study of c a s e s in 

which summat ions a r e congruent to ze ro when they need not be; pa t t e rns and 

genera l iza t ions in these ins tances . 

LETTER TO THE EDITOR 

TWIN PRIMES 

Char les Ziegenfus, Madison College, Har r i sonburg , Va. 

If p and p + 2 a r e (twin) p r i m e s , then p + (p + 2) i s divisible by 12, 

where p > 3. 

Two proofs : 

If p > 3, then p mus t be of the form 

6k + 5 or 6k + 1 . 

If p Ll = p + 2 , 
*n+l n * 

then p must be of the form 6k + 5. For o therwise n 

V l = (6k + 1) + 2 = 3(2k + 1) 

and i s not p r i m e . There fo re , 

P n + P n + 1 =- (6k +. 5) + (6k + 5) + 2 = I2(k + 1) . 

p mus t be of the form 3k, 3k + 1, or 3k + 2. Clear ly p = 3k s ince 

p i s a s sumed g r e a t e r than 3. 

If p = 3k + 1, then p ^ = 3k + 1 + 2. = 3(k + 1) *n J *n+l v ' 
and i s not p r i m e . Clear ly , p + P + 1 i s divisible by 4. 

Now p + p = (3k + 3) + (3k + 2) •+ 2 = 3(2k + 2) . 
So p + p is divisible by 12. 

n n + 1 M m ^ M ^ \ 



FIBONACCI NUMBERS AND .ZIGZAG- HASSE DIAGRAMS* 
AoP. HILLMAN, M„To STROOT, AND R.M, GRASSL, UNIVERSITY OF SANTA CLARA 

A Hasse d iagram depicts the o r d e r re la t ions in a par t ia l ly o r d e r e d set . 

In this paper Haase d i ag rams will indicate the inclusion re la t ions between m e m -

b e r s of a family of subse t s of a given universe U = {e l s • • • , e } of n e l e -

men t s . Each subset i s r e p r e sen t e d by a ve r tex and an upward slanting segment 

i s drawn from the ve r t ex for a subse t X to the ver tex for a subset Y if X i s 

contained in Y. [ l ] 

In a previous paper the senior author descr ibed methods for finding the 

number f(n) of famil ies {Sl 9* • • , S } with each S. a subset of U and with 

the inclusion re la t ions among the S. p ic tu red by a given Hasse d iagram. The 

formulas f(n) for all d iagrams with r = 29 39 or 4 were l is ted. The formu-

las for r = 5 have also been obtained and will be published subsequently. 

We now single out a zigzag d iag ram for each r ^ 2, i. e. , the d i ag rams 

I, V, N, W, ••• . 

More p r e c i s e l y , we cons ider the p rob lem of de termining the number a (n) of 

o r d e r e d r - t u p l e s (Sls • • • , S ) of subse ts S. of U such that S. i s contained 

in S, if and only if j i s even and k - j ± l . Our prev ious r e s u l t s imply the 

formulas : 

a2(n) 

a3(n) 

a4(n) 

a5(n) 

a6(n) 

= 

-

= 

= 

= 

3 n - 2 n 

5 n - 2 • 4 n + 3 n 

8 n - 3 • 7 n
 + 3 • 6 n - 5 n 

1 3 n - 2 • 12 n - l l n + 5 • 10 n - 4 

2 l n - 20 n - 2 • 19 n - 18 n + 8 • 1 7 n -
n n + 3 • 13 - 12 . 

• 9 n + 8 n 

4 • 16 n - 2 • 1 5 n - - 1 4 n 

*This work was par t ia l ly supported by the Undergraduate Resea rch Par t ic ipa t ion 
P r o g r a m of the National Science Foundation through G-21681. 

43 
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th Note that the leading term is the n power of the (r + 2)nd Fibonacci number. 
The object of this paper is to prove this for general r. 

r We begin by numbering the 2 basic regions of the Venn diagram for r 
r subsets S. of U. Express a fixed integer k satisfying 0 ^ k ^ 2 in 

1 o r - 1 
binary form, i. e. , let k = ct + 2c2 + 22c3 + • • • + 2 c where each c. is 
zero or one. For i = ! „ •«• . r let W. be S. if c. = 1 and let W. be the 

9 9 i i i i 

complement of S. in U if c. = 0. Now let E, be the intersection of Wls 

• • • , W . These E, are the sets represented by the basic regions of the Venn 
diagram. 

We next illustrate the process by finding a3(n)0 In this case the Hasse 
diagram is a V and we are concerned with ordered triples {Su S2, S3) such 
that S2 is contained in St and in S3 and there are no other inclusion relations. 
The condition that S2 is contained in S1 forces E2 and E6 tobe empty. The 
condition that S2 is contained in S3 forces E3 (and E2) tobe empty. One 
then sees that there are no other inclusion relations if and only if both Et and 
E4 are non-empty. 

For a given triple (Sls S2s S3) each of the n objects in the universe is 
in one and only one of the E, . Excluding the empty E 2 J E3s and E6, there 
are 5 ways of distributing the n objects among the 5 remaining basic sets 
E0, El9 E4, E5, and E7. We subtract the 4 ways in which Et turns out to 

n n be empty (as well as E2, E3, and E6) and also subtract the 4 - 3 ways in 
which E 4 J but not Eu is empty. The remaining a3(n) = 5 - 4 — (4 . - 3 ) 
ways of distributing the elements of U are all those that meet the conditions 
associated with the Hasse diagram V. 

For a general r the inclusion relations of the zigzag diagram force g(r) 
r 

of the 2 basic sets E, to be empty. The technique illustrated above can be 
used to show that these are the E, such that the r-tuple (cj, • • • , c ) of 
binary coefficients for k has an even-subscripted c. = 1 with an adjacent 
Ci+i = 0. The remaining r-tuples will be called allowable; there are h(r) = 
2 r - g(r) such r-tuples. We wish to show that h(r) is the Fibonacci number 
F ? . It will then be clear that the leading term in a Jn) is (F ) and that 
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the other t e r m s r e su l t from subtrac t ing numbers of ways of dis t r ibut ing the e l e -
ments of U among fewer E, than the allowable ones . 

F o r r = 3 the allowable t r i p l e s a r e 

(1) ( 0 S 0 9 0 ) S ( l 9 0 3 0 ) s ( 0 , 0 , 1 ) , (1 ,0 ,1) , (1 ,1 ,1) f 

i . e . , those for E0 , Eu E4, E5, and E7. The allowable quadruples for r = 4 

can be made by attaching a ze ro in the fourth place to the 2 t r i p l e s in (1) that 

have a zero in the th i rd place and by attaching e i ther a ze ro or a one in the 

fourth place to each of the remain ing 3 t r i p l e s in (1). T h e r e a r e thus 3 al low-

able quadruples with a one in the fourth p lace , 2 + 3 = 5 of them with a ze ro 

in the fourth p lace , and a total of h(4) = 8 = F 6 such quadruples . Similar ly 

the number of quintuples of our des i r ed form with a ze ro in the fifth p lace i s 55 

the number with a one i s 3 + 5 = 8, and the total number of such quintuples i s 

h(5) = 13 = F 7 . Using mathemat ica l induction, one now easi ly shows that 

W = Fr+2-
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ADVANCED PROBLEMS AND SOLUTIONS 
EDITED BY VERNER E, HOGGATT, JR0 , SAN JOSE STATE COLLEGE 

H-19 Proposed by Charles R. Wall, Texas Christian .University, Ft. Worth, 
Texas. 

In the t r iangle below [drawn for the case (1 ,1 ,3 ) ] , the t r i s e c t o r s of angle, 

B, divide s ide , AC, into segments of length F , F i n , F _. Find: 

(i) l im.0 
I I ' -* oo 

(ii) l im cp 
n-*-oo 

B 

- X . _A-

n+1 n+3 

H - 2 0 Proposed by Verner E. Hoggatt, Jr., and Charles H. King, San Jose State 
College, San Jose, California. 

If Q = f J, show D ( e Q n ) = e L n 

\ 0 0 / 

where D(A) i s the de terminant of ma t r i x A and L i s the n Lucas number . 

H - 2 1 Proposed by Francis D* Parker, Univ er si ty of Alaska, College ,•' Alaska 

Find the probabil i ty , as n approaches infinity, that the n Fibonacci 

number , F(n), i s divisible by another Fibonacci number (f F± or F 2 ) . 
46 
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H-22 Proposed by Verner E. Eoggatt, Jr, 

oo oo 

If P(x) = n (1 + x *) - 2 R(n) x n , 
i= l n=0 

then show 

(i) R ( F 2 n - 1) = n 
(ii) R(N) > n if N > F £ n - 1 . 

(See f i r s t paper of this i s sue . ) 

H-23 Proposed by Malcolm H. Tallman, Brooklyn^ New York 

1, 3, 2 1 , and 55 a r e Fibonacci number s . Also , they a r e t r i angu la r 

n u m b e r s . What i s the next higher number that i s common to both s e r i e s ? 

SOLUTIONS 

H-3 Show F Q • < F 2 < F 0 ',. n ^ 3 ; 2n-2 n 2 n - P 3 

F 0 n < L 2
n < F 0 , n ^ 4 , 

2 n - l n - 1 2nJ 9 

where F and L a r e the n Fibonacci and Lucas n u m b e r s , respect ive ly . 

Solution by F r a n c i s D. P a r k e r , Univers i ty of Alaska. 

The ident i t ies F2(n) - F(2n - 2) + F2(n - 2) 

and F2(n) = F(2n - 1) - F2(n - 1) 

a r e valid for n — 3 and can be proved from the explici t formulas for F(n). 

F r o m these i t follows that F(2n - 2) < F2(n) < F(2n - ' 1 ) , n ^ 3. Again, from 

the explicit formulas for L(n) and F(n) i t i s poss ib le to prove the ident i t ies 

L2(n - 1) = F(2n - 1) + F(2n - 3)'+ 2 ( - l ) n + 1 and L2(n - 1) - F(2n) - F(2n - 4) 

+ 2 ( - l ) n + 1 . F r o m these it follows that F(2n - 1) < L2(n - 1) < F(2n)9 (n ^ 4). 

This problem was also solved by Dov J a r d e n , J e r u s a l e m , I s r ae l . 

H-4 Prove the identity 

r+1 s+] 
Are there any r e s t r i c t i ons on the in tegra l subsc r ip t s ? 

F F F + F F F - F F F = F 
r+1 s+1 t+1 r s t r - 1 s -1 t - 1 r+s+t 
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Solution by J . L. Brown, Jr„ 8 Pennsylvania State Univers i ty , State College, 
Pennsylvania 

We shall prove the a s se r t i on under the subsc r ip t r e s t r i c t i o n s , r — - 1 , 

s > - 1 , t > - 1 , where F „ = - 1 , F 1 = 1 and F = F , + F . f o r n ^ 0. » > -2 9 - 1 n n - 1 n-2 
The proof i s by an induction on n , where n = r + s + t. To show that the r e -

sult holds for n = 1 and n = 2 , a symmet ry a rgument shows that i t suffices 

to verify the r e su l t for the nine t r ip les ( r , s , t ) = ( 1 , 0 , 0 ) , ( - 1 , 1 , 1 ) , ( 3 , - 1 , - 1 ) , 

( - 1 , 2 , 0 ) , ( 2 , 0 ,0 ) , ( 1 ,1 ,0 ) , ( - 1 , 3 ,0 ) , ( 2 , - 1 , 1 ) and ( 4 , - 1 , 1 ) . 

Now as sume as an induction hypothesis that the r e su l t h a s b e e n p r o v e d for 

all n satisfying n ^ k , where k ^ 2. Then cons ider any t r ip le ( r , s , t ) s u c h 

that r + s + t = k + 1 . Assume without loss of general i ty that r = max (r, s , t ) . 

Then r ^ 1 and 

A, £ F , F , F^ , + F F F+ - F , F , F. , k+1 r+1 s+1 t+1 r s t r - 1 s -1 t - 1 

= ( F F F + F F F ) * r s+1 t+1 r - 1 r s+1 t + 1 ' 
+ ( F - F F, + F 0 F F . ) 1 r - 1 s t r - 2 s t' 
- (F F F + F F F } lJJ r - 2 s -1 t - 1 r - 3 s - l V l ' 

But 
Y F + F + F F F - F F F = F 

r s+1 t+1 r - 1 s t r - 2 s -1 t - 1 r - l + s + t 

by the induction hypothesis applied to the t r ip le ( r - l , s , t ) , which has the sum 

r - l + s + t = k. Similar ly 

F F F + F F F - F F F = F 
r - 1 s+1 t+1 r - 2 s t r - 3 s -1 t - 1 r -2+s+t 

by the induction hypothesis applied to the t r ip le ( r - 2 , s , t ) , which has the sum 

r -2+s+t = k - 1 . Thus 

A = "F1 + F = F 
k+1 r - l + s + t r -2+s+t . r+s+t 

as r equ i r ed and the r e su l t follows by induction. 
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( F F . . . F i ) 
v m m - 1 1 ; H-5 (i) If L m F n J (F F •-- F<) (F F ' " F O n n-1 1' m-n m-n-1 

then 
2r F i = r . F i L + r , F , ] L 

[_m nj |_m-l nj n |_m-l n - l j m-n ? 

where F and L are the n Fibonacci and ny Lucas number ss respectively. 
(ii) Show that this generalized binomial coefficient f~ F 1 is always an 

integer, 

Solution by J„ L8 Brown9 Jr . 

(i) The identity L F + L F = 2F for m ^ n ^ 0 is easily ver-w J n m-n m-n n m J 

ified by induction. Multiplying both sides of the identity by f F 1 F then 
gives the required relation L T , F ] + L [ - F -1 = 2 I F 1 , & ^ nLm""1 nJ m"n L111"1 n"1J Lm nJ 

From the expression for F , it follows that 

F = a F + 8 F for m - n . 
m n • ' m-n 

Then 
T F 1 

(*) r F ] = b^l . F = a
m^r F J + ̂ r J l . 

K ; Lm nj F m L111"1 n " 1 J Lm-1 n j 

but f F 1 = | F 1. If we replace n by m-n on the right-hand side of L m nj [_m n-mj r J & 
(*) 9 then we have 
(**) r F 1 = ^ n r , F j + £ m - n r . F I . 
v ; |_m nj L111"1 m ~ n - 1 J L111"1 m"nJ 
However, f J -,1 = f J 1 and f , F 1 = T i F - . 1 , so that 

9 Lm-1 m - n - l j L111"1 n J L111"1 m ~ n J [_m-l n - l j ' 
adding (*) and (**) yields 

|_m nj x H ; j_m-l n - l j v H } [_m-l nj 

= L f - F - "I + L T -. F "I as required. m-n [_m-l n - l j n |_m-l n j H 
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(ii) A proof of the second part which makes use of relation (*) can be 
found on p. 45 of D. Jar den's "Recurring Sequences. f? 

H-6 Determine the last three digits, in base seven, of the millionth Fibonacci 
number. (Series: Ft = 1, F2 = 1, F3 = 2, etc.) 

Solution by Brother U. Alfred, St. Mary1 s College, Calif. 

The last three digits base seven maybe determined if we find the residue 
modulo seven cubed of the millionth Fibonacci number. 

Seven has a period of 16 and 73 has a period of 72 x 16 = 784. 
In 1,000,000, there are a number of complete periods and a partial per -

iod of 400. 
For a period of the form 2 (2X+ 1) where m > 2S there is a zero at 

the half-period of 392. Also, for a prime or a power of a prime, the adjacent 
terms are congruent to -1 modulo the power of the prime. Hence we know that 
we have the following series of values: 

n Residue (modulo 343) 
392 0 
393 342 
394 342 
395 341 
397 340 
397 338 
398 335 
399 330 
400 322 

This expressed to base seven is (440)7, so that these are the last three digits of 
the millionth Fibonacci number expressed in base 7. 

H-7 If F is the n Fibonacci number find lim ^F = L and show that n n 

V ^ 5 F2n < L < 2Xy~S5 F2n+1 for n * 2. 
Solution by John L. Brown,, J r . 

Let a = (1 + -N/5)/2. Then, it is well-known (see, e. g. , pp. 22-23 of 
"Fibonacci Numbers" by N. N. Vorobev) that 
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n 
F - 3 -

n V~5 
< — for all n — 1 

There fore F = -r- + 9 , where 16> I < £ and n F 
n V5 n J n J 2 

n / a 
n V /̂5 

>ut for n > 

a 
nV2 2 ^ 1 

1. 

n / a r i ; 

n / a n
 + 1 

/ 2 a n - N/5 
2 N / 5 

n/2a
n + 

^ N/5 

/ n 1 n / a 1 
"""v -75 2 

1 n / 3 a n 

< ' V 2^5 

^ n / a x O 
W ^ + * n 

a 

n /2vf 

n-*oo L = Hm * / A - + 

Thus L = a = 1 + N / 5 
n - o ? 7 ^ 

Now, let b = X
 9 ^ 5 so that b < 0. Then, s ince N/5 F = a11 - b n for z n 

n ̂  1, we have 

V^ 2n/ 2n ,2n ^ ^ 2n+l/ 2n+l u2n+l a - b < a < ^ / a - b = 2 ^ i ] 2n+l 
thus the de s i r ed inequality follows for all n ^ 1 on noting that L = a. 

Also solved by Donna Seamane 

H-8 P r o v e 
F n F n + 1 F n + l l 

th 

F n + 1 F n+2 F n + 3 

F 2 F 2 « F 2 '„ 
n+2 n+3 r n + 4 

= 2 ( - l ) n+1 

where F i s the n Fibonacci number . 
Solution by John Allen Fuchs and Joseph E r b a c h e r , Univers i ty of Santa C la ra , 

Santa C la ra , California 

The squa re s of the Fibonacci number s satisfy the l inea r homogeneous r e -

curs ion re la t ionship F 2 = 2 F ^ + 2 + 2F 2 - F ^ . (See H. W8 Gould, Gen-

era t ing Functions for P roduc t s of Power s of Fibonacci N u m b e r s , th is Quar te r ly , 

Vol. 1, No. 2, p . 2 , ) 
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We may use th is r e c u r s i o n formula to subst i tute for the l a s t row of the 

given determinants D 9 and then apply s tandard row operat ions to get 

D 

F 2 

n 
F 2 , 

n+1 

F 2 , 
n+1 

F 2
 n n+2 

F 2 
n+2 

F 2 
n+3 

2F 2 + 2 F 2 - F 2 
^ n+3 n+2 n+1 

= 

F 2 F 2 F 2 
n n+1 n+2 

F 2 F 2 F 2 
n+1 n+2 n+3 

- F 2 _, - F 2 ~F 2 J n - 1 n n+1] 

= -D n - 1 * 

n - 1 , I t follows immedia te ly by [induction that D = (-1) D1# Since Dj = 29 D 

= 2 ( - l ) n - 1 = 2 ( - l ) n + 1 . 

Also solved by Mar jor ie Bicknell and Dov Ja rden . 

Continued from p . 80, "Elementa ry P r o b l e m s and Solutions" 

Then 

F 
k+2 

But 

k + l ^ T? p + F k+l P
 = ( F v + i + F v ) P + < F v + F v _ i ) P k+l " A k ; 

/ T n k , ^ k + l x , ? / „ k+l , _, kx P ( F U 1 P + F v p ) + p 2 ( F , p + F , - p ) k+ l 1 

k - 1 ' 

?k* k - l J 

k ^ k + l , o k - 1 , ^ k . __ , ?/ j ? p ( F k + 1 P + F k p ) + p M F k p + F k - 1 p ) = p + p ^ m o d p ^ + p - 1). 

Since F, -p + F , p and F , p + F, . p a r e both congruent to 1 (mod p 2 

+ p - 1) by the induction hypothesis and p + p 2 = 1 (mod p2 + p - 1)9 the d e -

s i r e d r e s u l t follows by induction on n „ 

Also solved by Marjor ie R0 Bicknell and Donna J . Seaman. 

/)Mm()cmcm^^ 



BEGINNERS9 CORNER 
EDITED BY DMITRI THORO, SAN JOSE STATE COLLEGE 

THE GOLDEN RATIO; COMPUTATIONAL CONSIDERATIONS 

1. INTRODUCTION 

"Geometry has two g rea t t r e a s u r e s : one i s the Theorem of Py thagora s ; 

the o ther , the division of a line into ex t reme and mean ra t io . The f i r s t we may 

compare to a m e a s u r e of gold; the second we may name a p rec ious jewel" — so 

wrote Kepler (1571-1630) [1] . 

The famous golden sect ion involves the division of a given line segment 

into mean and ex t r eme ra t io , i. e. , into two p a r t s a and b , such that a /b = 

b / ( a + b) , a < b . Setting x = b / a we have x2 - x - 1 = 0. Let us designate 

the posit ive root of this equation by 0 (the golden ra t io) . Thus 

(1) 0 2 - <p - 1 = 0 . 

Since the roots of (1) a r e <p = (1 + 4h)/2 and - 1 / 0 = (1 - N / 5 ) / 2 we may 

wr i t e Binet f s formula [2 ] , [ 3 ] , [4] for the n Fibonacci number in the form 

(2) F = 0n - (-0)~n 

N/5 

2. POWERS OF THE GOLDEN RATIO 

Returning to (1), let us "solve for 0 2 " by wri t ing 

(3) 02 = 0 + 1 . 

Multiplying both m e m b e r s by 0 , we get 0 3 = <p2 + 0 = (0 + 1) + 0 = 20 + 1. 

Now 0 3 = 20 + 1 yie lds 0 4 = 20 2 + 0 = 2(0 + 1) + 0 = 30 + 2. S imi lar ly , 

53 
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0 5 = 302 + 2(f) = 3(0 + 1) + 20 = 50 + 3 . 

This pattern suggests 

(4) 0 n = F n 0 + F n _ 1 , n = 1,2,3, . -• . 

To prove (4) by mathematical induction [5],. [6], we note that it is true for n 
k = 1 and n = 2 (since F0 = 0 by definition). Assume 0 = F, 0 + F, . 

k+1 o 
Then 0 = F k 0 2 + F ^ = Ffe(0 + 1) + F ^ t f ) = (Ffe + F ^ ) 0 + Ffe .= 
F, 1 0 + F, , which completes the proof„ The computational advantage of (4) 
over expansion of 

by the binomial theorem is striking. 
Dividing both members of (3) by 0, we obtain 

(5) 

Thus 1/02 = 1 - 1/0 = 1 - (0 - 1) = »(0 - 2). Using this result and (5), 1/03 

- 2/0 - 1 = 2(0 - 1) - 1 = 20 - 3. Similarly, l / 0 4 = 2 - 3/0 = 2 - 30 + 3 = 
-(30 - 5). Via induction, the reader may provide a painless proof of 

(6) 0 " n = (~Dn + 1 ( F n 0 - F n + 1 ) , n = 1,2,3, ••• 

3. A LIMIT OF FIBONACCI RATIOS 

If we "solve" x2 - x - 1 = 0 for x by writing x = 1 + l /x and then con-
sider the related recursion relation 

(7) xi - 1, x J_1 = 1 + — 
v ' i » n+x x 

n 
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Fibonacci numbers start popping out! We immediately deduce x2 = 1 + l /x t 

= 1 + 1/1 = 2, x3 = 1 + l /x2 = 1 + 1/2 = 3/25 x4 = 5/35 x5 = 8/5, etc. This 
suggests that xn = Fn+1/Fn . 

Now suppose the sequence xl s x2, x3, • • • has a limit, say L, as n -* 
co. Then 

lim x , - = lim x = L 
n->co n+1 n-^co n 

whence (7) yields L = 1 + l / L or L = <p since the x. are positive. Indeed, 
there are many ways of proving Kepler's observation that 

(8) lim ^£+1 
n 

E. g. , from (2) 

n 
since 0 = (1 + ^ ) / 2 > 1 

F 
n n ,n 

(-0) <£ 
implies that the fractions involving <p approach 0 as n -* oo . 

4. AN APPROXIMATE ERROR ANALYSIS 

Just how accurate are the above approximations to the golden ratio? Let 
us denote the exact e r ror at the n iteration by 

(9) e n S xn - 0 

The trick is to express e - in terms of e and then to make use of the identity 

(10) y—1— = 1 - w + w2 ~ w3 + w4 - • • • , w < l 
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(The latter may be discovered by dividing 1 by 1 + w ; cf. [ 7 ] . 
Thus 

-, , 1 
en+l Xn+1 

= 1 

= 1 

e + n 1 + (en/<t>) 

n n 

[l --(en/</)) + (en/^)2 - (en/0)3 + . . . ] 

= <£> - 1 by (5) . since 

Howevers the terms involving the higher powers of e are quite small in com-
parison with the first term,, Thus, following the customary practice of neglect-
ing high order te rms, we will approximate the error at the (n + l)st step by 
€ = - e $~2. Finally, we may note that e2 ~ ""eic/)""29 e3 = -ei<P~2 - e i0""4

9 

€4 = -€t<p 6 , and3 in generals 

(11) , -xn+l ,-2(n-l) 
e = (-1) ei<t> 

5e COMPUTATION OF <j> VIA MATRICES 

We recall (cf. [8]) that if the matrix 

M = 
a b 

c d 

and the column vector 
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then the product Mv i s defined to be the column vector 

a r + bs 

I c r + ds 

Let us invest igate the r e c u r s i o n re la t ion 

(12) v n + 1 = A v n , n = 1 , 2 , 3 , - • • 

where A i s a given m a t r i x and vt a given vec tor . (For convenience we will 

always take vt to be the f i r s t column of A„ ) 

(a) If A is the Q ma t r ix [ 9 ] , [10] (I *) , then vt - Q ] and v2 -

A * . - ( i S ) ( i ) ; ( i ) . w . - (U) ( ! ) - (J ) - '« - I S ) - - -
( 5 ) » ' • • » v

n = ( F + 1 ) ' " ' ' T h u S i f V i = ( s* ) 3 t h e n f o r A = Q t h e r a t i ° ' 

r ^ / s-j_ i s p rec i se ly the approximation to <fi obtained from (7). 

(b) Let A = ( % M . Then 

" - ( J i K O - U ) - ' * - ^ !)(!)-( ' . ' ) • * • - ( £ ) • -
/ F 2 n + 1 \ 

This t ime v = I „ . Note that h e r e the ra t io obtained f rom, say , v3 i s 
n \ *2n / 

exactly that obtained from v6 when A i s taken to be the Q mat r ix . 

(c) Fo r A = ( ) , the success ive approximat ions suggested by (12) 
1 - 1 

tu rn out to be 

(13) X zl A. d* 
- 1 ' 2 5 - 3 5 5 

F r o m the d iscuss ion in (a) above i t i s easy to deduce that the l imi t of the s e -

quence (13) i s - T\ i the negative root of (1)1 
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Similar ly p leasant r e s u l t s may be obtained from (infinitely many) o ther 

A ! s . Severa l poss ib i l i t ies a r e suggested in the following e x e r c i s e s . The 

mathemat ica l ba s i s for this approach will be explored in a future i s sue . 

6e EXERCISES 

E l . Show that the definition of the golden sect ion leads to the equation 

x2 - x - 1 = 0. 

E2. Use mathemat ica l induction to prove (6). 

E3 . How shouldyou define F , (k > 0) in o r d e r that (4) would hold for 

negative values of n ? 

E4„ Verify (10) by long division. Find an additional check by s t a r t ing 

with the r igh t -hand m e m b e r . 

E58 Give an induction proof of (11). 

E6. Show that when x1 - 1, the e s t ima ted e r r o r given by (11) becomes 

. - .n , l - 2 n 
€n = ( -1) (j) 

Hint : Use (5). 

E7. Using the r e s u l t s of E6 (with <p = 1.618) compute an es t ima te of 
F t l / F 1 0 - 0 . Compare this approximate e r r o r to the actual e r r o r (given <fi = 

1.61803). Thus although € i s a function of 0 i ts elf, It can be use d in approx i -

mat ing (p to a de s i r ed number of decimal p laces . 

E8. A compar i son of the th ree values of A exhibited above r evea l s that 

in each ca se A has the form 

/ w 1 

\ 1 w - 1 

It t u rn s out that w need not be an Integer . Exper iment with different values 

of w. Hint: cons ider the ca ses 

(a) w > <fi 

(b) | < w < 0 
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i -1 

(c) 

(d) 

E90 What happens , in the preceding e x e r c i s e , when w = 1/2? 

E10. Explain why the f i r s t two i l lus t ra t ions of (12) a r e essent ia l ly " c o m -

putationally equivalent.?? Hint- count the min imum number of a r i thmet ic o p e r -

ations r equ i r ed in each case* 
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EDITORIAL REMARK FROM PAGE 19: 
x 

In the European notation, 763,26 means what 763,26 does to u s , and 2.5 means 
2 (5 X ) = 2 . 5X . 

HAVE YOU SEEN? 

Nathan J. F ine , Generat ing Funct ions , Enr ichment Mathematics for High School^ 

Twenty-eighth Yearbook National Council of Teache r s of Mathemat ics , Wash-

ington, D. C. , 1963?- pp. 355 — 367. This i s an excellent and Inspir ing a r t i c l e . 



.EXPLORING FIBONACCI POLYGONS 
EDITED BY BROTHER U, ALFRED, ST, MARYBS COLLEGE, CALIFORNIA 

We shall define a Fibonacci polygon as any closed plane figure bounded 
by straight lines all of whose lengths correspond to Fibonacci numbers of the 
series: 1,1,2, 3, 5, 8,13, * • • . Specifically,, we shall investigate one subset of 
this group of figures, namely, those for which all sides are unequal,, 

The question for study Is: Under what circumstances may a polygon be 
formed from line segments all of whose lengths, correspond to Fibonacci num-
bers? Three situations may be envisaged: 

(1) The greatest length Is greater than the sum of all the other lengths 
in which case no polygon can be formed; 

(2) The greatest length Is equal to the sum of all the other lengths,, Again, 
no polygon can beformeds but this case Is Interesting as It represents the divi-
sion point between polygons and non-polygons. 

(3) The greatest length is less than the sum of all the other lengths in 
which case a polygon can be formed, 

Research could begin by studying specific polygons beginning with the t r i -
angle and working upward. We might ask such questions as the following: 

(1) Is it possible to have a Fibonacci triangle with all sides unequal? 
(2) Is a Fibonacci quadrilateral possible? Under what circumstances? 
(3) What is the limiting situation between polygons arid non-polygons for 

the pentagon? 
(4) Is there some situation in which we can be sure that a polygon can al -

ways be formed if the number of sides Is greater than a given quantity? 
(5) Is there some situation in which we can be certain that a Fibonacci 

polygon can never be formed? 
This study leads to some Interesting results. It Is not difficult but it is 

rewarding in mathematical insights Into the properties of Fibonacci numbers. 
Readers are encouraged to send their discoveries to the editor of this 

section by December 15, 1963s so that it may be possible to give due recogni-
tion to all contributors In the issue of February, 19648 
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'A P,BIH£R .FOR TIE .FIBONACCI 'SEQUENCE — FART III 
VERNER E. HOGGATT, JR0 and I.D. RUGGLES, SAN JOSE STATE COLLEGE 

1. INTRODUCTION 

The a lgebra of vec to r s and m a t r i c e s will be fur ther pursued to der ive 

some m o r e Fibonacci ident i t ies . 

2. THE ALGEBRA OF (TWO-DIMENSIONAL) VECTORS 

The two-dimensional vec to r , V9 is an o r d e r e d pa i r of e l emen t s , ca l led 

s c a l a r s , of a field: (The r e a l numbers^ for example , form a field. ) 

V = ( a , b ) . 

The ze ro vec tor , 0 , Is a vec tor whose e lements a r e each ze ro ( i . e . , 

a = 0 and b = 0). 

Two v e c t o r s , U = (a,b) and V = (c ,d) , a r e equal if and only if a = 

c and b = dg that is (Iff) the i r cor responding e lements a r e equal. 

The vec tor Wg which Is the product of a s c a l a r , k, and a vector ? U 

= (a s b) s is 

W = kU = (ka,kb) = Uk . 

We see that If k = 1, then kU = XL We shall define the additive i nve r se 

of U, -U, by -U - (-l)U. 

The vec tor W9 which Is the vec tor sum of two vec to r s U = (a, b) and 

V - (c,d) Is 
W = U + V = (a,b) + (c,d) = (a + c , b + d) . 

The vec tor W = U - V is 

W = U - V = U + (-V) 

which defines subtraction,, 

The only binary mult ipl icat ive operat ion between two vectors^ U = (a,b) 

and V = (c,d)9 cons idered he re Is the s ca l a r or Inner product9 U • V, 

U • V = (a,b) • (c,d) = ac + bd , 

which Is a s c a l a r . 
61 
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3. A GEOMETRIC INTERPRETATION OF A TWO-DIMENSIONAL VECTOR 

One Interpretation of the vector, U = (a,b), Is a directed line segment 
from the origin (090) to the point (a,b) in a rectangular coordinate systems 
Every vector,'except the zero vector, <p$ will have the direction from the origin 
(0,0) to the point (a,b) and a magnitude or lengths U=N/a2 + b2

e The zero 
vector, #, has a zero magnitude and no defined direction. 

The inner or scalar product of two vectors^ U = (a,b) and V = (c,d) 
can be shown to equal 

u • v = |u| |v| cos e 9 
where 0 Is the angle between the two vectors. 

4e TWO-BY-TWO MATRICES AND TWO-DIMENSIONAL VECTORS 

If U = (a,b) is written as (a b), then U Is a 1x2 matrix which we shall 
call a row-vector. If U = (a,b) Is written f J, then U Is a 2x1 matrix9 

which we shall call a column-vector. 
The matrix 

A = fa 5' 
c d 

for example, can be considered as two row vectors Mt = (a b) and R2 = (c d) 
In special position or, as two column vectors, Cj = ( ) and C2 = ( , ) in 
special position. 

The product W of a matrix A and a column-vector X = I is a 
column-vector, X? , 

X? = AX / a b \ / x \ = /ax + by \ / x? \ 
\c d)\y j " Ux + dyi V y ' / 

Thus matrix A3 operating upon the vector, X, yields another vector, X!„ 
/0 \ 

The zero vector, 0 = ( 0 1, is transformed into the zero vector again. In gene-
ral,, the direction and magnitude of vector, X9 are different from those of 
vector X!, (See "Beginners1 Corner" this issue. ) 
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5e THE INVERSE OF A TWO-BY-TWO MATRIX 

If the determinant^ d(A), of a two-by-two matrix^ A5 i s non-ze ro ? then 

t h e r e ex is t s a matrix,, A ~ l , the inve r se of ma t r i x A9 such that 

A" 1 A - A A " 1 = I . 

F r o m the equation AX = Xf o r pa i r of equations 

ax + by = xf ex + dy = yf 

one can solve for the va r i ab les x and y in t e r m s of a 5 b g c s d ; and x f
9y f p r o -

vided D(A) = ad - be =f= 0. Suppose this has been done so that (let D = D(A) 

* 0) 

d . b . 
_ x , _ _ y, = X 

D X D y ~ y ' 

Thus the m a t r i x B 9 such that BXf = X i s given by 

, D + 0 

It Is easy to verify that BA = AB = I. Thus B Is A , the inverse m a t r i x 
- 1 / 0 1^ to m a t r i x A. The Inverse of the Q m a t r i x Is Q = I i _i 

6. FIBONACCI IDENTITY USING THE Q MATRIX 

Suppose we prove 9 r eca l l ing Q = I J and 

Qn = ( / + 1
 F

 F N . that F l + F2 + - . + F n = F n + 2 - 1 . 
\ n n - 1 / 

It Is easy to es tabl ish by Induction that 

(I + Q + Q2 + . . . + Q n ) (Q - I) = Q n + 1 - I . 

If Q - I has an Inverse (Q - I) , then multiplying on each side 



64 A PRIMER FOR THE FIBONACCI SEQUENCE [Oct 

I + Q + Q2 + . . . + Q n - ( Q n + 1 - I ) (Q - I ) X 

y ie lds 
I + Q + Q2 + . . 

It i s easy to verify that Q = I 1 ~ J sa t i s f ies the m a t r i x equation Q2 = Q + I. 

Thus (Q - I )Q = Q2 - Q = I and (Q - I)""1 = Q. Therefore 
Q + . . . + Q n = Q n + 2 - (Q + I) = Q n + 2 - Q2 . 

Equating e lements in the upper r ight (in the above m a t r i x equation) y ie lds 
F t + F 2 + • • • + F = F . - F 2 = F . - 1 . 1 L n n+2 L n+2 

7. THE CHARACTERISTIC POLYNOMIAL OF MATRIX A 

In Section 4, we d i scussed the t rans format ion AX = Xf . General ly the 

d i rec t ion and magnitude of vec to r , X, a r e different f rom those of vec to r , Xf„ 

If we a sk which vec to r s X have the i r d i rec t ions unchanged, we a r e led to the 

equation 
AX = XX, (X , a s ca l a r ) . 

This can be r ewr i t t en (A - X1)X = 0. Since we want |X| =^ 0, the only p o s -

sible solution occurs when D(A - XI) = 0. This l a s t equation i s cal led the 

c h a r a c t e r i s t i c equation of m a t r i x A. The values of X a r e cal led c h a r a c t e r -

i s t ic values of eigenvalues and the assoc ia ted vec to r s a r e the c h a r a c t e r i s t i c 

v e c t o r s of m a t r i x A. The c h a r a c t e r i s t i c polynomial of A is D(A - XI). 

The c h a r a c t e r i s t i c polynomial for the Q m a t r i x i s X2 - X - 1 = 0a The 

Hamil ton-Cay ley t heo rem s t a t e s a m a t r i x sa t is f ies i ts own c h a r a c t e r i s t i c equa-

tion, so that for the Q ma t r i x 
Q2 _ Q _ i = o . 

80 SOME MORE IDENTITIES 

Let Q = j 1, which sa t is f ies Q2 = Q + I, thus ( r emember ing Q°= I) 

a) crx = (Q2)" - (Q + i r = 2 r;i Q* 2n / o 2 x i i __ / 0 + T , n = T> (n\ ^ i 

1=0 

Equating e lements in the upper r ight y ie lds 

n / \ 
F 0 = 2 n< F . 

2n U i 



1963] A PRIMER FOR THE FIBONACCI SEQUENCE 65 

(Compare with problems H-18 and B~4). 
From (1) 

which gives 

Q P Q
2 n = 2 ( * ) Q 1 + P 

F2n+p = | 0 ( ?.) F i + p ( ^ 0, integral p) 

From part H, Q = F n Q + F ^ I , 

m 
2 

i=0 

/ 
m 

I 1 -
\ • • 

F. F 1 ^ : 1 

/ i+p n n - 1 

Qmn+p = ^ fm]Qi+PFiFm"i 
i = o \ * / ; . . • • n - . n - 1 

Equating elements in upper right of the above matrix equation gives 

F ' • mn+p 

with m ^ 0S any integral p and n. 
(See the result p. 38, line 12, issue 2, and H-13). 

HAVE YOU SEEN? ? 

Melvin Hochster, "Fibonacci-Type Series and PascaPs Triangle," Particle, 
Vol. IV, No. 1, Summer 1962, pp. 14-28. (Written while author was a sopho-
more at Harvard University, but the work was done while he was a senior stu-
dent at Stuyvesant High School, New York, New York.) 

Particle is a quarterly by and for science students with editorial and pub-
lishing offices located at 2531 Ridge Road, Berkeley 9, California. The p re s -
ent editor is Steve Kahn. 

A. Hamilton Bolton, The Elliott Wave Principle-A Critical Appraisal, Bolton— 
Tremblay and Company, Montreal 2, Canada, Chap. K , pp. 61-67. 

This is an interesting application of the Fibonacci Sequence to business 
cycles, and will merit some interest. 



TBIANGLE INSCRIBED IN RECTANGLE 
J . A . H . HUNTER 

Arising from a problem proposed recently by Ben Cohen in a letter to 
my self 9 yet another example of the famous Golden Section has been revealed. 

The problem was: 
Within a given rectangle, inscribe a triangle such that the remainder of 

the rectangle will comprise three triangles of equal areaa 

w + z 

x + y 

Referring to the figure above, we have: 

whence 

Then, 

xw = jzf and x = yw/(w + z) , 

z2 + zw --w2 = 0, so 2z = w(V5 -•• 1) 

•2x = y C ^ - 1) . 

So, as a necessary condition to meet the requirements, we have: 

y_ __ w _ 2 
x " z ^ - 1 

\/5 + 1 

the Golden Section. 
A m m m m M M 
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FIBONACCI SUMMATIONS 
KEN SILER, ST. MARY'S COLLEGE, CALIFORNIA 

In the first issue of the FIBONACCI QUARTERLY, several problems r e -
garding summation of terms of the Fibonacci series were proposed [1], They 
can be solved without too much difficulty by means of intuition followed by 
mathematical induction. The results for the series suggested in the article 
nExploring Fibonacci Numbers1 ? are as follows: 

n n 

kfx
 F2k = F2n+1 _ * kfx

 F4k-3 = F 2 n - l F 2 n 

n n 
T 1 4k-2 2n . . 
k-1 k==l 

n n 
2 

2 F = F2 2 F = F F 
*4k-2 r 2n , * 4k-l 2n 2n+l 

2 F., = F% ,, - 1 2 2 F01 0 = F 0 
4k 2n+l , - 3k-2 3n 

n 
2 

k=l OIV~x ^1 , J- k=l 
2 2 F~, ., — F 0 , - - 1 2 2 F0 1 — F 0 , 0 - 1 

3k-1 3n+l , - 3k 3n+2 

The attempt to extend this work by Intuition to such summations as 

n 
2 F 

k = i 5 k " 4 

leads to difficulties. One is led therefore to adopt a more mathematical ap-
proach In solving the general case of all Fibonacci series summations with sub-
scripts In arithmetic progression, namely, 

n 
2 F , 1 ak-b k=l 

where a and b are positive Integers and b < a, 

67 
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We recall that Fibonacci numbers can be given in terms of the roots of 
the equation x2 - x - 1 = 0 [2], If these roots are 

1 + '^5. ' 1 - ^5 
r _ ^ a n c j s _ _ — —. 

then 
n n •̂  r —• s ,. T n , n 

p = . _ a n ( j L = r + s 
n . xr_ n V5 

where F is the n term of the Fibonacci sequence 1,1,2 ,3 ,5 , •• • and L 

is the n term of the Lucas sequence 1, 3,4, 7,11,18, •••'•. In these terms 

kflJ a k"b " 5̂ 
2 r' 

fc=l 
ak~b 2 s 

'fc=l 
ak-b 

One can restate the summations on the right-hand side of the equation by using 
the formula for geometric progressions. 

n 
2 r° 

k=l 
|_1 + r a , 2a ,. 3a , , (n - l )a l 

+ r + r + - • * + r ; J 
ra-b r ^ - 1 

\ r - 1 

There is an entirely similar formula for the n s n summation. Substituting into 
the original formula and combining fractions, one obtains 

n 
2 F 

k=l 
ak-b \/5 

a an+a-b a an+a-b an+a-b , an+a-b s r - r s - r + s 
a a • a • ' a , -

r s - r - s + 1 
a a-b , a a~b , a-b a-b 

+ s r + r s + r - s 
a a a a 

r s - r - s + 1 
Various simplifications result using the definitions of F and L in terms of 
r and s together with the relation rs = - 1 , the product of the roots in the 
equation x2 - x - 1 = 0 being the constant term - 1 . For example, 
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a an+a-b a an+a-b , ,a, an-b an-b. , ^a^r , -^ s r - r s = (rs) (r - s ) = (-1) V5 F , . 
; 7 an-b 

The denominator can be transformed Into (-l)a - L +1. Using these relations 
a 

the reader may verify without too much difficulty that the final formula is 

n (-l)aF , - F . _ , + (-l)a~bF, + F , 
2 Y = an-b a(n+l)-b ; b a-b 

k-1 a k - b (-i)a + 1 - L 
a 

With this formula particular cases can be handled with little effort. For exam-

ples let a = 79 b = 3 and n = 6„ Then 

6 (-1)7F39 - F46 + (-1)4F3 + F4. 
2 F? = 

kKL {K 3 (~1)7 + 1 - L7 

-63245986 - 1836311903 + 2 + 3 
-29 

= 65501996 

This result may be checked by actually summing the series: 

F4 + Fll + F18 + F25 + F32 + F39 or 3 + 89 + 2584 + 75025 + 2178309 
+ 63245986 

the result being 65501996. 

REFERENCES 

1. Brother U. Alfred, Exploring Fibonacci Numbers, Fibonacci Quarterly, 

Vol. 1, No. 1, February 1963, pp. 57-64. 

2. I. Dale Ruggles, Some Fibonacci Results Using Fibonacci-Type Sequences, 

Fibonacci Quarterly, Vol. 1, No. 2, April 1963, pp. 75-80. 
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Editorial Comment 

Mark Feinberg is a fourteen-year-old student in the ninth grade of the Susque-
hanna Township Junior High School and recently became the Pennsylvania State 
Grand Champion in the Junior Academy of Science, This paper is based on his 
winning project and is editorially uncut. Mark Feinberg, in this editorfs opin-
ion, will go far in Ms chosen field of endeavor. Congratulations from the edit-
orial staff of the Fibonacci Quarterly Journal, Mark! 

34 

21 . 
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Golden Rectangle ,?SilverH Rectangle 
Figure 1 

13 

7 

4 
2 

?Fibonacci?? Tree fTribonaccin Tree 
Figure 3 



FIBONACCI-TBIBONAOCI* 
MARK FEINBERG 

For this Junior High School Science Fair project two variations of the 

Fibonacci series were worked out. 

"TRIBONACCF 

Just as in the Fibonacci series where each number is the sum of the pre-

ceding twos or p .. = p + p _.., the first variation is a series in which each 

number is the sum of the preceding three, or q .. = q + Q ral + Q o ; hence 

the series is called nTribonaccie
 n Its first few numbers are 

1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504 • • • 

Like the Fibonacci series, the Tribonacci series is convergent Where 

the Fibonacci fractions p /(P + 1 and p /p converge on .6180339-— and 

1,6180339... , the Tribonacci fraction of any number of the series divided by 

the preceding one (q /q ) approaches ,54368901* ** . While the Fibonacci 

convergents are termed nPhiv? (<p)5 the Tribonacci convergents might be called 
f?Tri-Phin (03). 

Series-repeating characteristics are shown in the famed Fibonacci Golden 

Rectangle.* A rectangle can be made of the Tribonacci series which also has 

series-repeating characteristics but since they are less obvious this rectangle 

might be called the "Silver Rectangle. M Its length (q ) and its width (q ) 

make it proportionately longer than the Golden Rectangle. 

By removing the squares q by q and q __1 by q - , two new rec-

tangles in the proportion of the original appear (shaded areas). One is q _ r 

by q o ; but the other is composed of numbers not found in the Tribonacci 

series. This rectangle is (q , ' - q ) by (q - q n ) and is formed of num-
t> x^n+l n ' J n TI-1 

bersfrom an intermediate series obtained by subtracting each Tribonacci num-

ber from the one after it, 

*See editorial remarks, page 70. Figure 1 appears on page 70. 
71 • 
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By carrying the rectangle out farther new numbers found in neither the 
original Tribonacci series nor the intermediate series appear. These are of a 
second intermediate series and are obtained by subtracting each number of the 
first intermediate series from the succeeding one. New numbers of new inter-
mediate series also appear by further carrying out the rectangle. These other 
series are formed by triangulating in the same way as the first two intermedi-
ate series . All these intermediate series are convergent upon the nTr i -Phi , ! 

values and each number in each of these series is the sum of the preceding 
three. Figure 2 shows the first two intermediate ser ies . 

1, 1, •!,. 3, 5, 9, 17, 31 '•••. 
0, 1 , 2, 3, 6, 11, 20, 37, 68 ••• 

1, 1, 2, 4, 7, 13, 24, 44, 81, 149 •••.•' 

Figure 2 

The two Fibonacci convergents fit the quadratic equation x = 1 + l /x . 
The Tribonacci convergent of any number in the series divided by the preceding 
one (q - / q ) fits the cubic equation y = 1 + l /y + l/y2. It is derived thus: 

The formula giving any number in the series is 

V i = V + V i + V 2 • 
Dividing by q ^ : 

Let 
V l 

qn 

Then since 

V i 
V i " 

V i 
V i 

1 = V 

V i 

= + 1 + 
V i 

—s- = t , 
V l n~1 

\ V i 

v~ % 

V 2 
V i 

' V 2 n~2 

A_ . t 
V i n h-1 
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There fore 

t • t - = + 1 + 
n n - 1 q 1 q 1 

T I ~ 1 T I - 1 
Substituting for the r e s t of the formula: 

1 

Dividing by t - : & J n - 1 

t • t - = t , + 1 + . n n - 1 n - 1 t 0 
n -2 

t = 1 + ^ + x 
n t ., t .. • t 0 

n - 1 n - 1 n-2 

All the t t e r m s converge upon one value (y). Therefore f !yn can be 
subst i tuted for all t t e r m s . So n 

y = l + U± . 
y y2 

The convergent approached by any number of the s e r i e s divided by the 

succeeding one (q /q - ) fits the cubic equation 1/y = 1 + y + y2 and i s d e -

r ived through a s i m i l a r p r o c e s s . 

Chart ing the Fibonacci convergent .6180339- • • on polar coordinate pape r 

i s known to produce the famed sp i ra l found all over na ture . By char t ing the 

Tr ibonacci convergent .54368901- • • a slightly t ighter sp i r a l i s produced. 

It i s not known whether the Tr ibonacci s e r i e s has any na tura l applicat ions. 

A well-known Fibonacci application i s of a hypothetical t r e e . If each l imb we re 

to sprout another l imb one y e a r and r e s t the next , the number of l imbs pe r y e a r 

would total 1, 2, 3 , 5, 8- • • in Fibonacci sequence. However if e a c h l imb 

on the t r e e were to sprout for two y e a r s and r e s t for a y e a r , the number of 

l imbs p e r y e a r would total 1, 2, 4 , 7, 13 • • • in Tr ibonacci sequence. See 

F igure 3, page 70. 

Could such a t r e e as that on the r ight be cal led a n Tree -bonacc i? T ? 

"TETRANACCI" 

The second var ia t ion of the Fibonacci sequence i s a s e r i e s in which each 

number is the sum of the preceding four numbers o r r , ^ = r + r . , + r 0 
& n+1 n n - 1 n-2 
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+ r n. Therefore this series is called "Tetranacci. M Its first few numbers n-3 
are: 

1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773 •• • . 

Like the Fibonacci and Tribonacci series, the Tetranacci series is con-
vergent. The fraction r - / r converges upon 1.9275619-•• and fits the 
fourth power equation z = 1 + l / z + l /z2 + l /z 3 . 

The fraction r IT .. converges upon .51879006- •• which fits the equa-
tion l /z = 1 + z + z2 + z3 . 

The derivation of these formulas follows the same algebraic process as 
that given above and will be gladly furnished upon request. 

The Fibonacci Association invites Educational Institutions to apply 
for Academic Membership in the Association. The minimum sub-
scription fee Is $25 annually. (Academic Members will receive two 
copies of each issue andwill have their names listed in the Journal.) 

REQUEST 
The Fibonacci Bibliographical Research Center desires that any reader 

finding a Fibonacci reference send a card giving the reference and a brief de-
scription of the contents. Please forward all such information to: 

Fibonacci Bibliographical Research Center, 
Mathematics Department, 
San Jose State College, 
San Jose, California 

NOTICE TO ALL SUBSCRIBERS III 

Please notify the Managing Editor AT ONCE of any address change. The Post 
Office Department, rather than forwarding magazines mailed third class, sends 
them directly to the dead-letter office. Unless the addressee specifically r e -
quests the Fibonacci Quarterly be forwarded at first class rates to the new ad-
dress, he will not receive it. (This will usually cost about 30 cents for first-
class postage.) If possible, please notify us AT LEAST THREE WEEKS PRIOR 
to publication dates: February 15, April 15, October 15, and December 15. 



ELEMENTARY PROBLEMS AND SOLUTIONS 
EDITED BY S.L. BASIN, SYLVANIA ELECTRONIC SYSTEMS, MT. VIEW, CALIF. 

Send all communications regarding Elementary Problems and Solutions 
to Sa Le Basin9 946 Rose Ave* , Redwood Citys California, We welcome any 
problems believed to be new in the area of recurrent sequences as well as new 
approaches to existing problems. The proposer must submit his problem with 
solution in legible form§ preferably typed in double spacing 3 with name(s) and 
address of the proposer clearly indicated. Solutions should be submitted within 
two months of the appearance of the problems, 

B-17 Proposed by Charles R» Wall, Ft. Worth, Texas 

If m is an integerg prove that 

TP T? z=. T "F 

n+4m+2 " n 2m+l n+2m+l th where F and L are the p Fibonacci and Lucas numbers, respectively, 

B-18 Proposed by J. L. Brown* Jra, Pennsylvania State University. 

Show that n-1 
„ 0n~l v / 1xk n-k-1 IT „ k TT 
F = 2 2 (-1) cos - s m 777 , for n ^ 0 . 

n i « 5 10 ' 
k=0 

B - 1 9 Proposed by L« Carlitz, Duke University, Durham, N*C. 
Show that 

2 1 + 2 1 = A . 
n = 1 F n F n + 2 F n + 3 n = 1 F n F n + l F n + 3 

B - 2 0 Proposed by Louis G. BrUling. Redwood City, Calif.-

Generalize the well-known identities, 

(i) 

(ii) 

75 

Ft + F 2 + F 3 + . . 

Li + L 2 + L3 + •• 

. . + F = n 

•• + L = n 

= F n+2 

= Ln+2 " 

- 1 

- "3 
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B-21 Proposed by L» Carlitz, Duke University, Durham, N*C* 

If -« r on oir 
(x + if + (x - if % - 1 [< 

show that 

u , ^ = u2 + 2 u£ u? • • • u2 -n+1 n ° x n - 1 

B-22 Proposed by Brother U, Alfred, St, Mary's College, Calif* 

P r o v e the Fibonacci identity 

F F = F 2 - F 2 

*2k 2kf k+k8 *k-k* 

and find the analogous Lucas identity. 

B-23 Proposed by S»L. Basin, Sylvania Electronic Systems, Mt, View, 
Calif. 
Prove the ident i t ies 

(i) 

(ii) 

(iii) 

P «-M l t ! *r ) 
F . . F . F . , n i=l l l - l 

r °° i 
1 + ^ 5 , + 2 (-1) 

2 " X + .% F . F . , i=l l l - l 

SOLUTIONS TO PROBLEMS IN VOL. 1, FEBRUARY, 1963 

B - l Show that the sum. of twenty consecutive Fibonacci number s i s divisible by 
20 

F 1 0 , i . e . , 2 F n + 1 = 0 (mod F 1 0 ) , n => 0. 

Solution by Mar jor ie R. Bicknel l , San Jose State College, San J o s e , Calif. 

The proof i s by induction. When n = 0 

20 
S F = F2 2 - 1 = F 1 0 ( F 1 3 + F n ) . 

i= l 
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A s s u m e that the proposi t ion i s t r ue for all n - k, i. e. , 

20 
2 F k + . = 0 (modF 1 0 ) 

i= l 
and 

20 
2 F k - l + i S ° ( m o d F i o ) 

i= l 

Now addition of the congruences yields 

20 20 20 . 20 
2 F,_._. + 2 F,. 

i= l 
j \ . + 2 F, , . = 2 (F, . + F, , .]= 2 FT _, . = 0 ( m o d F l n ) k+i • . = 1 k - l+ i . = 1 \ k+i k - l + i / . k+l+i v l o ; 

Also solved by J . L. Brown, J r . , Dermot t A. Breau l t , and the p ropose r . 

B-2 Show that u - , + u 0 + • • • + u ., _ = 11 u _ holds for genera l ized n+1 n+2 n+10 n+7 to 

Fibonacci number s such that u 2 = u - + u , where \it = p and u2 = q. 

Solution by J . L. Brown, J r . , Pennsylvania State Univers i ty , Pennsylvania 
It i s eas i ly shown, by induction, that u may be wri t ten in t e r m s of the 

Fibonacci n u m b e r s . F , a s u = p F 0 + q F _, for n ^ l . Using this r e -5 m 5 n ^ n -2 ^ n - 1 & 

sui t , we have -. Q 1 Q 1 0 

and 

2 U ( 1 = p 2 F L l 0 + q 2 F t l , 
k = l n + k k=l n + k " 2 k^ l n + k - X 

l l u n + 7 = l l ( p F n + 5 + q F n + 6 ) 

The r e s u l t follows if 

10 
for n ^ 0 (1) 

however, 
10 
2 F . = 

fc=l n + k 

10 
2 F 1 

k=l n + k 

n+10 
= 2 F. -

i=l * 

= 11F _ f« 
n+7 

n 
2 F. = (F 
i=l X ] n+12 - *> + <Fn+2 " *> 

= F 1 0 - F L Q 9 n > 0 . n+12 n+2 9 

Equation (1) i s therefore equivalent to 

(2) F ,n - F i Q = 1 1 F L_ , n > 0 
x ' n+12 n+2 n+7 5 
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By d i rec t calculat ion, F1 2 - F 2 = 11 F 7 and F1 3 - F 3 = 11 F 8 ; now adding these 

ident i t ies we have , F 1 4 - F 4 = 11 F 9 . Proceeding in this fashion, (2) i s v e r i -

fied by induction. 

Also solved by Dermot t A, Breaul t s Mar jor ie R. Bicknel land Edward Ba l i ze r . 

B - 3 Show that F iOA = F (mod 9) . 
n+24 n x ; 

Solution by Mar jor ie R9 Bicknell , San J o s e State College, San J o s e , Calife 

Proof i s by mathemat ica l induction. When n = 0, 
F 2 4 = F 1 2 ( F 1 3 + Fn) = 144 (F13 + F t l ) = F 0 (mod 9) 

Assuming that the proposi t ion holds for a l l i n t ege r s n ^ ks 

F k - l + 2 4 E F k - 1 < m 0 d 9> 

and 

F k + 2 4 S F k < m o d 9> 

Adding the congruences , we have 

F k + l + 2 4 S F k + 1 < m o d 9> » 

and the proof i s complete by mathemat ica l induction. 

Solution by Dermot t A„ Breaul t , Sylvania ARL, Waltham, Mass . 

Using the identity F n + p + 1 = F ^ F ^ + F n F p wr i t e 

The re fo re , 

hence 

F 24+n ~ F 23+n+l " F 2 4 F
n + l + F 2 3 F r 

F ^0yl - F = F 2 4 F ^ + (F23 - 1 ) F , but n+24 n ^ n+1 d6 l n * 
F 2 4 = 9(5153) and F2 3 - 1 = 9(3184) , 

Fn+24 " Fn s ° ( m ° d 9>-

Also solved by J . Le .Brown, Jr„ 
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B - 4 Show that 

Genera l ize . 

n 
2 

i=0 
F . = i 2n 

Solution by Joseph Erbacher3( Universi ty of Santa Cla ra , Santa Cla ra , Calif. , 

and Je L„ Brown3 J r 8 , Pennsylvania State Universi ty s Pennsylvania . 

Using the Binet formula^ 

where 

we have 

2kn a - b 

u2 t , v. 1 + ^ i. 1 - NT5 
1 + a9 b<* = 1 + b , a = — r - — , b = 

= (1 + a) 
2kn i 

There fo re , 

kn 
(1 + by 

kn 

2kn 

kn 
2 

i=0 

kn 
2 

i=0 

{y - f (»K 
kn , , i u i 

= w ^ 
i=0Viy a - b 

kn 
2 

i=0 
F. 

i 

Also solved by the p r o p o s e r s . 

B-5 Show that with o r d e r taken into account, in getting pas t an in tegra l number 

N d o l l a r s , using only one-dol la r and two-dol lar b i l l s , that the number of dif-

ferent ways i s F N + 1 . 

Solution by J6 L. Brown, J r . , Pennsylvania State Universi ty s Pennsylvania. 

Let a-KT for N 1 be the number of different ways of being paid N dol-

l a r s in one and two dol lar b i l l s , taking o r d e r into account. Consider the ca se 

where N > 2„ Since a one-dol la r bil l i s r ece ived as the l a s t bi l l if and only if 

N - l do l la rs have been rece ived previously and a two-dol lar bi l l i s r ece ived as 

the l a s t bil l if and only if N-2 dol la rs have been rece ived prev ious ly , the two 

poss ib i l i t ies being mutually exclusive, we have aN = a-N - l + Q , N - 2 f o r N ~ 2-
But (x1 = 19 a2 = 1 , there fore a-N F N + 1 for N - l . 
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B-7 Show that r r ^ O i j L r ^ = 2 F 2 x i . 
1 = 0 °° i 12 

Is the expansion val id at x = 1 4S i . e . , does .2 F? 4 = — 
Solution by Wm, E. B r i g g s , Universi ty of Colorado, Boulder , Colo. 

-1 °° n 
Write (1 - 2x - 2x2 + x 3 ) = S a x where 

n=0 

a k = 2 a k - l + 2 a k - 2 ™ a k - 3 $ k > 2 ' a n d a ° = l f a i = 2* a = 6 • 

The re fo re . 
' OO 

x ( l - x) , v / , n 
- — 0 -A o 2 .—T = x + 2- ( a i - a 0 ) x 
1 - 2x - 2x^ + xd

 0
X n - 1 n - 2 ; 

n=2 
It follows that the coefficient of x i s F 2 for k = 1 , 2 , 3 , 4 ; a s s u m e this i s 
t rue for all k ^ n. F r o m above, the coefficient of x i s 

a - a - = 2 (a . - a 0 ) + 2 (a 0 - a n ) - (a o " a ^ ) . n n - 1 v n - 1 n-2 ; K n -2 n - 3 ' v n -3 n - 4 7 

The re fo re , a = a - = 2 F 2 + 2 F 2 - - F 2
 0 ; however . 9 n n - 1 n n - 1 n -2 5 * 

F2 + F 2
 0 = (F + F 1 )2 + (F - F n )2 = 2 F 2 + 2 F 2 , n+1 n-2 l n n - 1 ; l n n - 1 ' n n - 1 

so that the coefficient of x i s F 2
 v The ze ro of 1 - 2x - 2x2 + x3 with 

sma l l e s t modulus i s r = (1/2 )(3 - 'N/S) which i s the rad ius of convergence of 

the power s e r i e s e Since r > J1/4J , the s e r i e s converges for x = 1/4 to the 

value 12/25 . 

Also solved by J. L. Brown9 J r . 

B -8 Show that 

(i) F n + l 2 n + F n 2 n + 1 s X ( m o d 5 ) 

(ii) F n + 1 3 n + F n 3 n + 1 = 1 (mod 11) 

(iii) V l 5 n + F n 5 n + 1 S 1 ( m o d 2 9 ) 
Genera l ize . 

Solution by J . L. Brown, J r . , Pennsylvania State Univers i ty , Pennsylvania . 

The genera l r e s u l t , 

F n + l p I 1 + F n p I 1 + 1 S X ( m o d P 2 + P •- '!) » 

where p is a p r i m e and n ^ 0 i s p roved by mathemat ica l induction. 

The proposi t ion i s c lear ly t r ue for n = 0 and n = 1, with the usual 

definition F 0 = 09 Suppose the proposi t ion i s t r u e for al l n — k where k ^ 1B 
(Continued on p. 52 ) 


