FIBONACCI NUMBERS, CHEBYSHEV POLYNOMIALS
GENERALIZATIONS ‘AND DIFFERENCE EQUATIONS

R. G. BUSCHMAN, STATE UNIVERSITY OF NEW YORK, BUFFALO, N.Y.

INTRODUCTION

In order to consider Fibonacci numbers, generalized Fibonacci numbers,
Chebyshev polynomials, and other related sequences all under one heading we
will discuss the sequences generated by the homogeneous linear second order

difference equation with constant coefficients,

(1) Ups gy uo g = au bun_1 , for n = 1.

First we note how the special cases arise. If a = b = 1, then the generalized
Fibonacci numbers, Hn’ discussed by Horadam [2] are produced. Further
specialization leads to Fibonacci numbers, Fn, for uy = 0, uy = 1; toLucas
numbers, Ln’ for uy =2, u; =1. If a and b are polynomials in x, then
a sequence of polynomials is generated. In particular, if a = 2x and b = -1,
then we have Chebyshev polynomials [ 1:10.11]— of the first kind, T (x), for

u, = 1, uy = x; of the second kind, U _(x), for uy, = 1, u; = 2x.
n

FIBONACCI-CHEBYSHEV RELATIONS

Since the same difference equation canbe used to generate these entities,
by an appropriate interpretation of a, b, u;, and uy, one then expects rela-
tionships to exist between some of them. The Fibonacci and Lucas numbers
are related to the Chebyshev polynomials by the equations

.-n ) 3 . .-n ) B
21i Tn(1/2) =L i Un(l/Z) = Fn+1

The second of these can be obtained, for example, by considering

Upx) = 1; Uix) = 2x; Un+1(x) = 2x Un(x) - U x) ,

n-1

substituting i/2 for x, and multiplying by i1 5o that we have
1
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U,/2) = 1; itu/e) =1 iR U_,,/2) = 1‘“Un(i/2)+i‘n+1Un_1(i/2),

which is the same as the Fibonacci sequence,

F, =1, Fy=1; F =F +F for n = 2 .
n n-

n+1 1’

This close relation leads one to investigate sources for Chebyshev poly-
nomials in order totry to findnot too familiar relations involving Fibonacci and
Lucas numbers, and vice versa. One such standard source for identities in-
volving Chebyshev polynomials is Erdelyi, et al. [1:10.9, 10.11]. Most of the
results which can be obtained were known as early as Lucas [3]; in fact, much
of his discussion contains relations with trigonometric identities which lead,

of course, to Chebyshev polynomial identities, since
T, (cos g) = cos ng, U (cos 9) = sin (n+1) 9/sin ¢

Some examples of such pairs of relations follow.

n/2 m ,
U (x) = ] Ch) _@-m): o, n-2m [1:10.11 (23)].
n m=o M- n-2m)!
[n/2] /. _
F = 2 (nmm> , [3:(72)].
m=0
/2] oy )
T () =5 2 1 lzn!(‘zn _“;m)l?- @x)P 2™ | [1:10.11 (22)].
m=0
[n/zJ n n-m .
Ln = Z n - m( m >
m=0

Examples of interesting generating functions are given by [1:10.11 (32),
(83)] which for x = i/2, z = -iu lead to

-1 o0
2) 2_%(1 -u- u2§%{1 ~w/2+(1-u- uZ)’}'}2 -yl oy (2n> F u"
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_1 i 1 3
@ 2¥0-u-w)yl{i-wa+q —u-uw)l} = 3 2_2n_1<21?)Lnun
n=0

If the series (2) and (3) are multiplied together as power series, then we
have

o n
11 -2yl o gt -2n-1 (2k) ! 2n - 2k)! n
27 -u-u) " =u nf()(kfoz Kk m-k'm-K' “kink|"

However, this is a generating function for Fn’

0
2-1(l-u-u) ' = utl 3 (F /2y,
n=0 n

so that by equating coefficients and rearranging somewhat we obtain

> (E)Lk(.nr—lk) Fn-k/(iﬁ) = Zann/(zrrf) .

Two examples of explicit formulas canbe obtained by substituting » = 1,
X = i/2 into the second forms of [1: 10.9 (21), (22)], since Crll(x) = Un(x),
and simplifying.

. _am D 2m+1 m+k+1)(_5)k'
2m+1 k§0m+k+1( m -k ’

F2m+2 -

IDENTITIES FOR THE DIFFERENCE EQUATION

In general, the solution to the linear difference equation can be written

(4) u, = {zy (u - zyuy) - zy (uy - zouy)}/ (29 - 2q)

provided z, # z; are the roots of the characteristic equation z% - az - b = 0.
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(A suitable modification can be made for z, = z; by a passage to the limit —
the formulas must be alteredappropriately.) An interesting method of arriving
at this is given by I. Niven and H. S. Zuckerman [4: pp 90 — 92 ].(This method
can be extended to higher order difference equations and to non-homogeneous
equations. Further, it has an analog for differential equations.) If the z's
are expressed in terms of a and b and the resultingbinomials are expanded,

then an alternate form of considerable use is obtained,

[n/2]
z

( ok ) D72 (a2 gp)K
k=0

[(n—l)/2]<

+ 277 2uy - auy) z " ) a1 2K 4b)k
k=

2k + 1

Here we can define sequences from the sums in (5), for n = 0. Let ¢,

=0, ¢; = 1; \y = 2, Ny = a so that

- [0-1)/2] n n-1-2k k
(6) o =2 g ( (a2 + 4b)
n =0 2k + 1) ,
et 2], 0y e
Q) N, = 2 ol by (zi)an 2K a2 4 ap)f

k=0

which correspond, respectively, to the Fibonacci and Lucas numbers. The
general sequence, u, can then be written as a linear combination of these;
1 1
(8) u, =3 Uph, + 5 (2uy - auo)tpn
Since also from (4) we can write
n n
$, = (@, - Zi)/(ZZ - zy)
n n
Ny = A - 2 - -2} (e -z

and since z;z, = -b, a relation between the ¢'s and \'s can be obtained,
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(9) Ny = 3@, + 2be
This generalizes a known formula, Ln = Fn + 2 Fn—l’ relating the Lucas and
Fibonacci numbers. The companion expression, 5Fn = Ln + 2Ln—1’ becomes
2 _
(a* + 4b)(,0n = a>\.n + 2b) n-1

These can then be used to express u, in terms of either the ¢'s or the )'s;

(10) W= we + buoqﬂn_l ,

(a% + dbju = (2bug + aug )\ + b(2uy - aug)\

One point of interest is that thelist of identities given by Horadam [2] for
his generalized Fibonacci numbers, Hn’ (1, uy arbitrary; a = b = 1) will
yield an analogous list for the general case, with suitable modifications of his
formula (1), and with the exception of his formula (16). This latter, '""Pytha-

gorean relation,'" is based upon the identity

2 _H2 -
Hn+3 4Hn+ 1 Hn+2 Hn 0

for which the analog is

u? . - a(3b + a?)u

nt3 - b3ur§ = (—b)nJrle(b2 - a) ,

n+1 un+2

where
(11) e = u} - au;uy - bu}

Unless this extra term is zero; i.e., unless b? = a or w2z = uy, the Pytha-
gorean relation does not generalize. In the set of identities for the general
equation the special case ?, introducedin (6) plays the same role with respect
to the u, as do the Fibonacci numbers with respect to the Hn' For example,
(10) provides an extension of Horadam's (7); i.e., if a = b = 1 so that u, =

Hn and replacing n by r + 1, then (10) becomes
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r+1

H = HoFr + H1 Fr+1

Two further examples of how one can generalize Horadam's formulas fol-
low. We consider his (8) and (12), several of the others being special cases of
these.

(8) Hn+r = Hn—l Fr * HnFr+1 i

eF F

12 HyH s r+s+l

non+r+l Hn—s I-In+r+s+l

= (-1
The general expressions are

(12) u‘n+r = bun—l (pr * unq)r+1 ’

(13) uu = (-b)*®

n'n+r+l T Yn-s'nirtstl
where e is defined by (11); @y by (6).
Proof of (12). We can write, using (10)

w.q = alwe, + by L)+ b, ; + by )

and then replace bgon_z by A and auy + bu; by u, to obtain

Upep T NPyt PO

Hence, by induction, the generalization is obtained. The substitution of r + 1
for n and n-1 for r with a =b = 1 reduces this to the case for Hn's.
Proof of (13). If the appropriate expressions from (4) are substituted in-
to the left side of this equation, and the result is simplified, the right side can
then be obtained. Other formulas can sometimes be generalized in the same
manner.
The analog to Horadam's (13),

2,3 3~ (a2 2 — (-p)? -
bun +oaw o (a? + b)unu.n+1 (-b) e(aunJrl bun) .

is more complicated. It reduces to
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3 3 2 "
Hn " Hn+1 2Han+1 + (1) eHn—l

We note here the misprint; Hn_ was omitted.

1

GENERALIZED CHEBYSHEV POLYNOMIALS

In (1) let a, b, uy, uy represent polynomials in x. Then u, becomes a
polynomial in x and the various formulas (5)— (13) can be interpreted as
formulas involving polynomials. From (8) we note that these polynomials un(x)
can be expressed in terms of "Fibonacci, " (pn(x), and ""Lucas, " )\n(x), poly-
nomials. The polynomials cpn(x) now play the same special role as the num-
bers b5 for example, formula (12) becomes

W, ) = b ®)e )+ u @, &)

r+1
The special case a(x) = 2x, b(x) = -1 leads to the set of polynomials,

Hn(x), corresponding to the numbers Hn‘ We then have analogously from (8),
H () = Hy@®) T () + Hilx) - xHx)U ),

where Tn(x) = —;—)\n(x) and Un_l(x) = gon(x) are again the Chebyshev poly-
nomials. Other identities can be written by inspection from Horadam's list
for these ""generalized Chebyshev'' polynomials.

We note finally that a generating function can be obtained in the usual
manner, One assumes a form g(x,z) = Eun(x)zn and obtains a relation by

using the difference equation. For the polynomials un(x) this is
g (x,2) = {w) + W) - aE@uy)z} {1 - ax)z - bE)z?}”

Hence the special cases xn(x) and wn(x) can be generated from

g, (x,2) {2 - ax)zH1 - ax)z - b(x)z2}_1 ,

I

g(p(x,z) z{1 - a®)z - b(x)z2}

REFERENCES

See page 19 for the references to this article.
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HISTORY OF THE FIBONACCI QUARTERLY

Toward the close of the year 1962, a small
group of mathematicians in Northern California
promoted the idea of an organization devoted to
the study of Fibonacci numbers and related top-
ics. Almost simultaneously the Fibonacci Quar-
terly was conceived, Sponsored by a group of
charter members who backed the project finan-
cially, the publication made its first appearance
in the spring of 1963.

At first, subscriptions came in slowly, but
with some advertising and favorable noticesin
various magazines, especially the Scientific
American, the tempo increased and, amazingly,
continued strong all during the summer. As a
result, September 1st saw the Quarterly with
six hundred subscribers. By the close of 1963,
the total should approximate the one thousand
mark.
To the editors, this response has been most
heartening inasmuch as it seems to indicate that
the mathematical public has looked withfavor on
this type of magazine and its subject matter —

the famed Fibonacci numbers.

CHARACTERISTICS OF THE QUARTERLY

The Fibonacci Quarterly has a number of
interesting features. The most obvious is the
very specialized nature of its scope. The first
natural reactions were: Will people subscribe
to such a magazine of limited field? The re-
sponse tothis question is evident inthe action of
subscribers, Wilit be possible to secure enough
N Contined p. 14)
8




FIBONAOCI NIM
MICHAEL J. WHINIHAN, MEDFORD SENIOR HIGH SCHOOL

The term Nim refers to any mathematical game in which two players re-
move objects from one or more piles. Fibonacci Nim was invented by Dr.
R. E. Gaskell of Oregon State University, and is a variation of One Pile [1].
In One Pile, {wo players alternately remove at least a, but no more than g
objects from a pile of n objects, the winner being the player who removes the
last object, where n is a variable integer, and a and g are predetermined
integral constants. The strategy is to leave your opponent a situation where
n = 0 modulo (a2 + q). This is a ''safe position." When n = i modulo (a + q)
where i + 0, the position is "unsafe.™

An unsafe [2] position is definedas one in which at leastone winningmove
is possible. A safe position is onein which there are no winning moves pos-
sible and every move on this position must make the position unsafe.

In Fibonacci Nim, the determination of safe and unsafe positions is
slightly more complex than in One Pile.

RULES OF THE GAME

The rules of Fibonacei Nim are the same as in One Pile with a = 1; but
q, a constantin One Pile, is a variable in this game. On the first move, q
is equal to n - 1. After the first move, Ay is equal to twice the number of
objects removed by the opponent on the (m - 1)th move. Let L be the
number of objects removed by a player on the (m - 1)th move. Then: Ay =
Zrm_l. For example, if n = 16, on the first move player A may remove up
to 15. If he removes 3, player B may remove as many as 6, since gy = 2ry
= 2.3 = 6. If player B removes 4, then A may remove as many as 8, and
SO on.

STRATEGY

Ag in all Nim games, the strategy of Fibonacci Nim calls for the deter-
mination of safe positions. The simplest way to determine whether any given
situation is safe is to first represent the number of objects left in a Fibonacci

number system.*

*See comment No. 1 at the end of this article.

9
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To represent a given number n in the binary system, the binary se-
quence is used, where bn = bn—l + bn—l’ and b; is defined as 1. Let the
Fibonacci sequence be defined in the following way: fn = fn—l + fn—2’ where
f_, is definedas 0 and f, as 1. f; through f; are then determinedas 1, 2,
3, 5, 8 and 13,

It is generally known that by using either a 1 or a 0 in the nth digit
from the left of the decimal point to represent the presence or absence of bn’
any number may be represented. Similarly, using f;, f;, etc. in place of
by, by, etc., any number may be represented in a Fibonacci number system,
if one remembers to start marking the largest digits first. Thus, 8 is al-

ten
ways represented as 10000f and never as 1100, or 1011, Notice that using

this rule not only makes the representation of arfy given nufnber unique, it also
makes it impossible for two 1's to appear in a number without at least one 0
separating them.*

In the representation of any number n > 0 in the Fibonacci number sys-
tem, there must be at least one 1. Let the 1 that is farthest to the right on
the mth move be F . If n=19 = 101001, F =£;, =1, If n=18

ten i ten ten
= 101000f, F =1 =5 If, onthe mth move, q_ < Fm, the situation is

safe. If 4y = Fm, the situation is unsafe, and the ginning move is to remove
exactly Fm objects. For example, if on the first move n = 10ten = 10010f,
gy = 9 and Fy = 2. Since q; > Fy, the situation is unsafe and the winning
move is to remove exactly 2 objects. If player A removes 2 objects, then for
player B, n = Sten = IOOOOf, Q; = 2ry = 4, and F, = 8. Since qy < Fy,
the situation is safe, and player B will lose unless player A makes a mistake.
PROOF
To prove the strategy correct, it must be proventhatunsafe positions can

always be made safe and that safe positions can only be made unsafe.

FIRST RESULT
Any unsafe position can be made safe,
By definition, on the mth move, Fm can be removed from an unsafe
position. If Fm = n, then by removing Fm objects the game is automatically
won, If n > Fm then, from the definition of Fm’ there is another 1, which

is the second 1 from the right. Let the Fibonacci number that this 1 repre-

*See comment No. 2 at the end of this article.
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sents be fk' Let the Fibonacci number that Fm represents be fi' It has al-
ready been shown that between any two 1's in a Fibonacci representation of a
number, that there must be at least one 0. It follows that there is at least one

Fibonacci number greater than fi’ but less than f, . Let f. be the next Fib-

k
onacci number after fi. It may or may not be the immediate predecessor of
fk'

f. < f,
1 ]
2f, < f. + f,
i j i
Zfi < fk
U1 = 2F = 2f
>
U1 fk
But fk = Fm+1’ after Fm has been removed.
<
qm+1 Fm+1

Thus, by removing Fm objects from an unsafe position onthe mth move,

the position will be safe on the (m + 1)th move.

SECOND RESULT
Any move from a safe position must make it unsafe.
Since any move on a safe position on the mth move can never take ayé

many as Fm objects, it follows that Fm+1 < Fm. Let n on the mth move
equal c + Fm =c+ fi. Let n onthe (m + 1)th move equal c + ¢y + Fm+1 =
c+oeyt fh. Suppose ¢y + fh can be written in the form fi—l + fi—3 + fi—5 s
f

- . o . ,
h+2+fh' If fi is written 1000000 , i.e., a 1 followed by i-1 Os,

then cq + fh is written 101010...101 followed by enough 0's to make i - 1

digits. The last 1, by definition, represents fh' Let ff+ fg be the two im-

mediate predecessors of fh' If fg is added to cy + fh’ it is found that:
101010 --- 101000 - - -

+ 100 - - -
1000000 - -- 000000 - - -

= f, % i
In other words, cy+ fh+ fg fi' If cy+ fh is less than fi—l + fi—3 + f.i—5

-+ fh+2 + fh’ it follows that c; + fh + fg < fi_ Therefore:

*See comment No. 3 at the end of this article.
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(1) r, = fi - (cg + fh) = fg
This means that any move that leaves fh as Fm+1 must remove at least fg
objects.
f = ff
2f = f. + £
g f g
(2) ng = fh
Im+1 = 2r
Qe e 2fg (by equation (1))
Ui = fh (by equation (2))
But
fh - Fm+1
- e .
Qi1 = Fm+1, and the position is unsafe. Thus any move on a safe posi

tion makes it unsafe.

GENERALIZED FIBONACCI NIM

Suppose 4Gy = Tm-1- Then the binary system will determine Fm (or
more correctly, B Safe and unsafe positions will be determined in exactly
the same way, and the proof parallels the one given above. If the binary se-
quence is called a Fibonacci sequence of order 1, and the ordinary Fibonacci
sequence is called a Fibonacci sequence of order 2, is there a formula for
finding a Fibonacci sequence of order n that will satisfy a Fibonacci Nim game

where qpy =n-T ? Dr. Gaskell and the author have worked on this prob-

m-1
lem independently and have found two different methods of determining an order
n Fibonacci sequence. All of the sequences investigated so far take the form
of fi = fi~1 + fi—p’
order of the sequence and p.

but as of yet no relationship has been found between the

REFERENCES
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Comments

1. While the proof makes use only of the fact that every Fibonacci number is at
least as large as its immediate predecessor and of the recurrence property,
fn = fn—l + fn—2’ it should be noted that Lucas numbers cannot be substituted
for Fibonacci numbers, because the number 2 cannot be represented in a
Lucas number system using only 1's and 0's. One might define L; as 2 and
L, as 1 in order to make a Lucas number system, but this would invalidate
the required property that every member of the sequence is at least as large

as its predecessor.

2. (Editorial Comment) The uniqueness follows from Zeckendorf's Theorem. If
the Fibonacci numbers uy, uy, -+ are defined by u; = 1, uy, = 2, w,o= oy
>
+ U oo 0 = 3.
Theorem. For each natural number N there is one andonly one system

of natural numbers iy, iy, - - id such that

N =u +u + Tt Uy and iv+1 = iv+2for 1 =v=4d

3. This is an example of how the Fibonacci number system canbe used to prove
theorems about Fibonacci numbers. The example shown is a generalized form
of the theorems concerning the sum of oddor even Fibonacci numbers. Another
simple example is to find the sum of the Fibonacci numbers through fn. One
simply represents all the Fibonacci numbers through an arbitrary n, 5 for
example, in the Fibonacci number system: lllllf. 11111f = 10101f+ 1010f‘
Since 10101f = 100000, - 1 and 1010, = 10000, - 1, ., 11111, =110000
-2, or 1000000f

f ten f ten f f
- 2. In other words, the sum of the Fibonacci numbers
through fn = fn+2 - 2.

REQUEST

v The Fibonacci Bibliographical Research Center desires that any reader
finding a Fibonacci reference send a card giving the reference and a brief de-
scription of the contents. Please forward all such information to:

Fibonacci Bibliographical Research Center
Mathematics Department,

San Jose State College,
San Jose, California



CHARACTERISTICS OF THE QUARTERLY (Cont)

material? Won't we eventually run out of ideas
or become involved in meaningless repetition?
So far in the first year, some three hundredand
twenty pages of mathematics dealing mainly with
Fibonacci numbers has been produced without
undue strain, All the evidence points to the fact
that there are still many potential writers and
untold possibilities of development.

However, to obviate the danger of narrow-
ness, the Fibonacci Quarterly is described of-
ficially as "A Journal Devoted to the Study of
Integers with Special Properties.'" While we have
not received much material of a non-Fibonacci
nature to date, authors are invited to prepare ar-
ticles alongthisline and submit themtothe edi-
tor for publication.

A second characteristic of the Quarterly is
that it aims to cater to a wide range of people.
The first half of each issue (approximately 50
pages) is devoted to mathematical developments
and favors the professional mathematician or
those more expert in the field. The second half
(approximately 30 pages)is more expository and
at a lower level of difficulty. The aim isto pro-
vide material that canbe read by those who have
an acquaintance with mathematics and are in-
terested in it, but who do not claim to be pro-
fessionals. We suspect, however, that some of
the more advanced readers will find this sec-
tion of value anda welcome relief from the stren-

uous activity of part one.

(Continued on page 20.)
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LEONARDO FIBONACCI
CHARLES KING, SAN JOSE STATE COLLEGE, SAN JOSE, CALIFORNIA

The Fibonacci Quarterly receives its name from Leonardo of Pisa (or
Leonardo Pisano), better known as Leonardo Fibonacci (Fibonacci is a contrac-
tion of Filius Bonacci, son of Bonacci). Leonardo was born about 1175 in the
commercial center of Pisa. This was a time of great interest and importance
in the history of Western Civilization. One finds the influence of the crusades
stirring and awakening the people of Europe by bringingthem in contact with the
more advancedintellect of the East. Duringthistime the Universities of Naples,
Padua, Paris, Oxford, and Cambridge were established, the Magna Carta signed
in England, and the long struggle between the Papacy and the Empire was cul-
minated. Commerce was flourishing in the Mediterranean world and adventur-
ous travelers such as Marco Polo were penetrating far beyond the borders of
the known world.

It is in this growing commercial activity that we find the young Leonardo
at Bugia on the Northern coast of Africa. Here the merchants of Pisa and other
commercial cities of Italy had large warehouses for the storage of their goods.
Actually verylittle is known about the life of this great mathematician. No con-
temporary historian makes mention of him, and one must look to his writings
to find information about him, In the preface of his first and most important
work, Liber Abbaci (I), Leonardo tells us that his father, the head of one of the
warehouses of Bugia, instructed him to study arithmetic. In Bugia, he received
his early education from a Moorish schoolmaster.

Leonardo then traveled about the Mediterranean visiting Egypt, Syria,
Greece, Sicily, southern France, and Constantinople. He met with scholars
and studied the various systems of arithmetic then in use. Leonardo was per-
suaded that the Hindu-Arabic system was superior to the methods then adopted
in the different countries he had visited and that it was even superior to the
Algorithma and the method of Pythagorus. He busied himself with the subject
and carried on his own research, intent upon bringing the Hindu-Arabic system
to his Italian countrymen. The study and research in mathematics so absorbed
him that he seems to have devoted his life to this pursuit and spent little time

in commerce which was flourishing at that time and was the favorite occupation

15
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of his fellow citizens. Yet most of the applications Leonardo makes in his works
are in the field of commerce. In one place, he gives a careful evaluation of the
money systems of the countries of his travels.

Leonardo returned to Haly about 1200 and in 1202 wrote Liber Abbaci (I),

in which he gave a thorough treatment of arithmetic and algebra, the first that

had been written by a Christian. The work is divided into 15 chapters. The
chapter contents are given here to indicate the scope of the work: (1) Reading
and writing numbers in the Hindu-Arabic system; (2) Multiplication of integers;
(3) Addition of integers; (4) Subtraction of integers; (5) Division of integers;
(6) Multiplication of integers by fractions; (7) Additional work with fractions;
(8) Prices of goods; (9) Barter; (10) Partnership; (11) Alligation; (12) Solu-
tions of problems; (13) Rule of false position; (14) Square and cube roots;
(15) Proportions, and Geometry and algebra.

The last and most important chapter is divided info three parts; the first
relates to proportions, the s€cond to geometry and the third, to algebra. Each
of the three parts begins with definitions and demonstrations credited to the
Arabs, then Leonardo considers six questions, three simple and three complex,
giving solutions for them.

Leonardo, in 1228, gave a second edition of the Liber Abbaci which he

dedicated to Michel Scott, astrologer to the Emperor Frederic II and author of
many scientific works. Copies of this edition exist today. Leonardo profusely
illustrated and strongly advocated the Hindu-Arabic system in this work. He
gave an extensive discussion of the Rule of False Position and the Rule of Three.
Leonardo did not use a general method in problem solving; each problem was
solved independently of the others. In the solution of a problem he not only con-
sidered the problem as it might occur, but consideredall of the variations of the
question, even those that were not reasonable.

In the Liber Abbaci, Leonardo states and gives the solution to the famous
Rabbit Problem [1, Vol. 1, p. 285]. A pair of rabbits are placed in a pen to
find out how many offspring will be produced by this pair in one year if each pair
of rabbits gives birth to a new pair of rabbits each month starting with the second
month of its life; it is assured that deaths do not occur.

Leonardo traces the progress of the rabbits: The firstpair has offspring in
the first month: thus two pair. The second month there are three pair, the first
reproducing in this month. In the third month there are five pair. Continuing

in this manner through the twelve months. Leonardo gives the following table:
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0 Sixth Month
Pairs 21
1 Seventh Month
First Month 34
2 Eighth Month
Second Month 55
3 Ninth Month
Third Month 89
5 Tenth Month
Fourth Month 144
8 Eleventh Month
Fifth Month 233
13 Twelfth Month
377

It is this sequence of numbers, 1,2,3,5,8,13,---, that gives riseto the
Fibonacci Sequence.

Of the many problems of elementary nature in the Liber Abbaci, the fol-
lowing are given as examples.

Seven old women are traveling to Rome and each has seven mules. On
each mulethere are seven sacks; in each sack there are sevenloaves of bread:
in each loaf there are seven knives; and each knife has seven sheaths. How
many in all are going to Rome?

A man went into an orchard which had seven gates; and there took a cer-
tain number of apples. When he left the orchard he gave the first guard half
the apples he had and one apple more. To the second he gave half the remain-
ing apples and one apple more. He did the same in the case of each of the re-
maining five guards, and left the orchard with one apple. How many apples
did he gather in the orchard? )

A certain man puts one denarius at such a rate that in five years he has
two denarii and in every five years thereafter the money doubles. How many
denarii would he gain from this one denarius in 100 years?

A certain king sent thirty men into his orchard to plant trees. If they
could set out a thousand trees in nine days, in how many days would thirty-six
men set out four thousand four hundred trees?

Many readers will recognize these problems.

In 1220, Leonardo wrote Practica Geometriae, which he dedicated to

Master Dominique, a person of whom there is no record. Inthis work Leonardo
systematized the subject matter of practical geometry with a specialization in

measurements of bodies. He included some algebra and trigonometry, square
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and cube roots, proportions and indeterminate problems. The use of a survey-
ing instrument called the quadrans is included. The work is skillfully done
with Euclidean rigor and some originality.

Leonardo's reputation grew and from his writings it can be seen that he
had avast range of knowledge concerning Arabian mathematics and mathematics
of antiquity, especially Greek. His treatment shows much originality, com-
pleteness and rigor. It is especially noted that his writings did not contain the
mysticism of numerology and astrology that were so prevalent in the writing
of his day.

Because of Leonardo's great reputation, the Emperor Frederick II, when
in Pisa (1225), held a sort of mathematical tournament to test Leonardo's skill,
The competitors were informed beforehand of the questions to be asked, some
or all of which were composed by Johannes of Palermo [1, Vol. II, p. 227 ],
who was one of Frederick's staff. This is thefirst case inthe history of mathe-
matics that one meets with an instance of these challenges to solve particular
problems which were so common in the sixteenth and seventeenth centuries.

The first question propounded was to find a number of which the square
when decreased or increased by 5 would remain a square (II)( ). The correct
answer given by Leonardo was 41/12. The next question was fo find by the
methods used in the tenth book of Euclid a line whose length X should satisfy
the equation x3 + 2x2 + 10x - 20 = 0. Leonardo showed by geometry that the
problem was impossible, but gave an approximation of the root 1.368808 1075

-, which is correct to nine places,

The third question was:

Three men possess a certain sum of money, their shares in the ratio
3:2:1, While making the division, they were surprised by a thief and each took
what he could and fled. Later the first man gave up half of what he had, the
second gave up one-third, and the third, one-sixth. The money given up was
divided equally among them and then each man had the share to which he was
entitled. What was the total sum? Leonardo showed that the problem was in-
determinate and gave as one solution 47 which is the smallest sum,

The other competitors failed to solve any of these questions. Through
the consideration of these problems and others similar to them, Leonardo was
led to write his Liber Quadratorum (1225) [No. 1, Vol, II, p. 253] a brilliant

and original work containing a well arrangedcollection of theorems from inde-




1963 ] LEONARDO FIBONACCI 19

terminate analysis involving equations of the second degree such as x2+ 5 =
v, x* - 5 = z2. This work has marked him as the outstanding mathematician
bhetween Diophantus and Fermat in this field.

Two or three works of Leonardo that are known are the Flos [1, Vol. II,
p. 227] (blossom or flower), which contains the last two problems of the tour-
nament; the first problem is found in the Liber Quadratorum, and a Letter to
Magister Theodoris [1, Vol. II, p. 247], philosopher to Frederick II, relating
to indeterminate analysis and to geometry. The last three works show clearly

the genius and brilliance of Leonardo as a mathematician and were beyond the
abilities of most contemporary scholars.

The works of Leonardo Fibonacci are available in some universities in
the United States through B. Boncompagni, Scritte di Leonardo Pisano, Rome,
(1857-1862) [1]. The first volume contains the Liber Abbaci and the second’
volume contains Patricia Geometriae, the Flos, Letter to Magestrum Theo-

dorum, and Liber Quadratorum. A treatment of square numbers composed by

Leonardo and addressed to the Emperor Frederick II seems to have been lost.
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CHARACTERISTICS OF THE QUARTERLY (Cont)

A third feature is the open-ended nature of
the publication. Readers are definitely invited
to participate in mathematicizing— solving prob-
lems, working up articles, continuing discus-
sions that havebeen left unfinished, etc. Writers
do not have to wait endlessly before their arti-
cles appear in print. An idea canbe propounded
in one issue and a development resulting from
it may appear inthe next. This lends an element
of interest and continuity that isbadly lacking in
most other mathematical publications.

The unified nature of the subject matter
means that after awhile a steady reader will be-
come conversant with whatis being discussedin
the magazine. He will be ableto understand and
appreciate more and more of each succeeding

issue and may eventually find himself a publisher,

THE FIBONACCI ASSOCIATION

So much effort has been put into launching
the Fibonacci Quarterly that the Fibonaceci As-
sociation which sponsors this publication has
momentarily taken a secondary place. Butplans
are afoot for a regular type of organization and
activity. Already, two Fibonacci conferences
have been held at San Jose State College and it
is expected that these will become a regular
feature of the organization.

The overall picture at the present time is
somewhat as follows. Members of the Fibonacci

Association would, of course, receive the Fib-

onacci Quarterly. In addition, they would be

(Continued on page 40)
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ON THE PERIODICITY OF THE LAST DIGITS
OF THE FIBONACCI NUMBERS

DOV JARDEN, JERUSALEM, ISRAEL

In the FIBONACCI QUARTERLY volume 1, number 2, page 84, Stephen
P. Geller announced some empirical data on the periodicity of the last digits
of the Fibonacci numbers 1, 1, 2, 3, 5, --- . Using a table of the first 571
Fibonacci numbers, published by S. L. Basin and V. E. Hoggatt, Jr. in REC-
REATIONAL MATHEMATICS MAGAZINE issue number 11, October 1962, pp.
19— 30, he brought out the fact that the last (units) digit of the sequence isperi-
odic with period 60, and that the last two digits are similarly periodic with
period 300. Setting up an IBM 1620 he further found that the last three digits
repeat every 1,500 times, thelast four every 15,000, the last five every 150,000,
and finally after the computer ran for nearly three hours a repetition of the last
six digits appearedat the 1,500,000th Fibonacci number. Mr. Geller comments:
"There does not yet seem to be any way of guessing the next period, but per-
haps a new program for the machine which will permit initialization atany point
in the sequence for a test will cut down computer time enough so that more data
can be gathered for conjecturing some rule for these repetition periods. "

I would like to purse half the money necessaryto run a computer that will
supply the next periods I know. However, since I know the exact period of any
number of last digits, the money of the whole world will not suffice. The next
period is 15,000,000. Generally the following theorem holds:

Theorem 1. Thelast d = 3 digits of the Fibonacci numbers repeatevery
1510971 times.

The proof is based on the following theorems from the theory of Fibonacci
numbers.

Notation. A(n) — the period of the Fibonacci sequence relative to n.

a(n) — the least positive subscript of the Fibonacci numbers
divisible by n (known as '"rank of apparition' of n).
{a,b,- - -}— the least common multiple of a, b,---

Theorem 2. A(n) exists for each whole positive n.

Theorem 3. If n = p?ﬁ)?z cee pgk is the canonical decomposition of n
into different prime-powers (py, Py, - -, Py being different primes and d;,
dgy +++, dk being positive integers), then

21
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A - {A(pidl), Alp), o (p§k>}

Theorem 4. For any odd prime p and whole positive d,

d

AeY) = apd), 2apd), or 4ap?)

according as
a(pd) =2, 0, or 1 (mod4)

For d =3,
aczdy = 2a(2%) .
Theorem 5. For d =3, a(zd) - g.29°2
For any whole positive d, a(5d) = Sd.
Proof of Theorem 1. Obviously Geller's problem is equivalent with the

one of determining the periodof the Fibonacci sequence relative to 10d for any

whole positive d = 3. Now, by the above theorems,

faed), acsy
{2a(2d), 4a(59)1
f2.3.2%2 4.591

A0y = ae%dy

1

1

NS

oy

N
&

. &

91
(e}

—

= 4.3.2d’3. d

= 15.10%1
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SOME REMARKS ON CARLITZ’ FIBONACCI ARRAY
CHARLES R. WALL, TEXAS CHRISTIAN UNIVERSITY, FT. WORTH, TEXAS

Recently in this journal [Vol. 1, No. 2, pp. 17—27] Carlitz defined a
Fibonacci array. Among the properties not included in his discussion are the

F

following summation formulas: (Recall uo,][1 e Fn; uy n =F o ur,n =u._, ,n+ur—2 ,n)

r

_2 )
(I z ur—n,n T 5 [+ 1)Lr+1 Fr+1] ’
n=0
T n
w z (1) Yronn T 0,
n=0
T
[r 1 o r+l _
(I11) p) (n) Y pn =3 [2° 7L, - 2]
n=0
r 0 if r oddor r =0
ntl [ r _
™ 2z, Y <n ) r-nn {2- 5022 i v/pe gt

The similarities between the formulas above and the four below should be noted:

T
z FnF =
n=0

T 41 0 if r odd

n
z (-1) I‘nFr—n B { F_ if reven °*
n=0 r

U=

[rLr - Fr]

®

r 1 r
Z’O(n)FnFr—n T 5 [2 L. - 21

r il [ 0 if rodd or r = 0
z (D) ( )FnFr—n =) 2. 5(1‘-—2)/2 if r/2€¢ J°

Because of an overabundance of properties in Carlitz' discussion, we may

generalize his array in two ways, taking H; = p, Hy =p+q ,

23
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H =H +H
n n-

n+l 1

We make no attempt to generalize all his results, but consider only the simpler

ones. Arabic numerals referring fo formulas correspond to those in Carlitz'

article.
I. FIRST GENERALIZATION
We define
1" GrO,n = Hn ’
2" Gin = Hpg o

as the first two rows of the generalized array G. For r > 1 we define Gr
by means of ’

(3" G._ =G + G

It follows that

and

1 -
(4 Gr,n B Gr,n—l * Gr,n—Z

From these properties Table Iis easily computed.

Table I

ARRAY G
& 0 1 2 3 4
0 q p p+a 2p + q 3p + 29
1 p+q 2p + q 3p + 2q 5p + 3q 8p + 5q
2 p + 29 3p + q 4p + 3q Tp + 4q 11lp + Tq
3 2p + 3q 5p + 2q 7p + 59 12p + Tq 19p + 12q
4 3p + 5q 8p + 3q 11p + 8q 19p + 1lg 30p + 19q
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o
&

The symmetry property (5) obviously fails since Go’1 $ Gi,o .

If we put
o0
n
(6" g.x) = 2 G X
T n=o Dm
we find that
(7v) go(x) = q+ pPx - gx , gy(x) = Sl Wl 22:9
1-x-x° 1-x - x?
We also have
(8" g.x) = g, (&) +g. & ,
so that
Hr + XHr+1 + Q(Fr - XF1~+1)
(9" ) =
1-x - x°
Putting
gxy) = z ¢ G, Xy
’ r=0 n=0 i
we have
0 H‘r + yHr+1 * q(FI_ - yFr—Pl) r
gx,y) = = X
r=0 1 -y -y
so that
(111) g(x,y) = px + py +q - qy + (IX?(
(1-x-xH(1-y-y?)
It appears that
G -G = (DR -
r+l,r-1 " Ve - 7D P-4

(13")

- = - I.
G'r—l,r+1 Gr,r =1"p
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Indeed, following Carlitz' procedure we find that

r+1

(14" Cregp-2 ~ Gpp = D0 - 29)
_ r+1 ?
Cpgpre = CGpp = D 0+ Q)
G -G _ = (-1)" 4p - 6q)
(15") r+3,r-3 r,r P 1
— r ’
Gr_s,r+3 - Gr,r - (—1) (4:p + 2q)
and, in general,
_ r+s+1
(16" G{r+s,r—s - Gr,r = (1) FeEgP - Fop@
r+s+l
-G = (-1) F H
r-s,r+s r,r s’’s
From (16') we note that
") G._ =G _+(-1)"F__q
r,n n,r r-n
We also note that
n-1 2. Fan if n even
1 —_
(a7’ rEO Gr,r Ty 2. Fn+1Hn—l - q if n odd

Among the elementary properties that do not generalize are (10) and (12);
however, the latter failure is the basis for the second generalization. The

summation formulas in the introduction generalize as

r
_ 2 1
1) nz‘LOGr_n’n =5 [(x + l)Lr+1 - Fr+1 Ip + 5 [2(r + 1)Lr+ Fr+1] q ,
r n
1 - —
() 2t - ar,

r
' r -1 - 1
) oz (H)Gr_q,n = s 2L, -2lprs 27 Lo+ 3]q
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r . qifr=0
v s 1)® (rjc} = 5T /2 4 it 1 ooad
n=0 nor-nn (r-2)y/2 .. r -+
(-2p + q)5 it 5 e
II. SECOND GENERALIZATION
We define
" —_
(12" H,, o= H H o+ Ho o
It immediately follows that
1 —
(1") Hy, = Hy@+1)
2" Hl,n =pH +H .
1 =
3" Hr,n Hr—l,n * Hr—Z,n ?
(4") Hr,n - Hr,n—l * Hr,n—z ’
6" Hr,n - Hn,r
See Table II for array H. We also note that
= n? 2
Hr,n =P Fan T a Fr—l Fn—1 * pq(Fan_l * F1'—1
* IOFI'+n * qFr+n—1
We put
© n
(6" h x) = » H_ _X
r n=0 ="
and see that
Hoo + xH_y, Hy s + xH 44
(7 hx) = ——mm , &) = ——

1 - x - x2 1 -x-x2

Fn)
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Table II
Array H
0 1 2 3 4
r

o q? o 2q?

0 Pq +pq +2pq +3pq
+p +p +2p +3p

+q +q +q +2q

p? p? 2p? 3p?

1 pq +pq +pq +2pq
+p +p +2p +3p +5p

+q +q +2q +3q

p? p? 2p? 3p?

q2 +q2 +q2 +2q2

2 +pq +Pq +2pq +3pq +5pq
+p +2p +3p +5p +8p

+q +q +2q +3q +5q

2p? 2p? 4p? 6p?

q +q2 +q? +2¢2

3 +2pq +pa +3pg +4pq +7pg
+2p +3p +5p +8p +13p

+q +2q +3q +5q +8q

3p2 3p2 6p2 9p2

2q° +2¢2 +2q2 +4q2
4 +3pgq +2pq +5pg +7pq , +12pq
B +3p +5p +8p +13p +21p
+2q +3q +5q +8q +13q

But by (3") we have

(8")

so that

A

Putting

) = h () +h (),

+ xl?_l
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we have H() i . yH_] .
hix,y) = B ——
r=0 1 -y - y?
(11”)

a0+ + p-q)(1+q)x+y) + xy(p®-p+2q+ 2pg + g*)
(1-x-x)(1-y-y?

From (12") we have

H - H = H H - HZ |
r+s,r-8 r,r r+s r-$ T
so that
11" — = - r
(s Hr+1,r—1 Hr,r -1)" e ,
" _ R r+1
(14) Hr+2,r—2 Hr,r (-1) e ,
T
1 — = -
(15™) Hr+3,r—3 Hr,r (-1)" e4 ,
" _ - (- r+s+1 9
(16') Hr+s,r—s Hr,r (-1) eFS ,

where e = p? - pq - g2,

The summation formulas previously referred to generalize as

T

" - _& r
" nZ:O Hr-n,n r+ 1)Hr * qu 5 Fr - 5 [(Hr+1 i Hr—l)p y (Hr - Hr—z)q] !
r 0 0 if r odd
' - — -
(I —Z~O( 1) Hr—n,n ¥, +aF, , + 2pF )
n= + (p - p2)Fr if r even
Torr r 1.1 r
(I n§0(n )Hr_n’n =2"H + s [2Tp(H,, +H )+ 2 q +H ) - 2e]
r 0 if r odd
(v') z 1" (1;1) r-nn ) 47 ¢ if r =0
n=0 205T 22 iz egt



RECIPROCALS OF GENERALIZED FIBONACCI NUMBERS

DMITRI THORO, SAN JOSE STATE COLLEGE

One of the oldest procedures for the numerical solution of f(x) = 0 is
the classical regula falsi method. This "rule of false position" is given by the

iteration

X 1 f (Xn) - an (Xn—l )

n+l F(x ) -f(x_)) ’

X

where x; and X, are the initial estimates. (It may be noted that the regula
falsi method is simply inverse linear interpolation. )

For the innocuous equation x% = 0, this iteration reduces to

X X
n-1"n

X = —

n+1 X + X
n-1 n

If we define the generalized Fibonacci numbers by

F, =a, Fy = b, Fg =a+b, Fy = a+ 2b, ---
n+2 Fn+1 * Fn’
it immediately follows that with starting values x, = 1/a, x, = 1/b, this appli-
cation of regula falsi yields the reciprocals of the generalized Fibonacci num-

bers since

1 1
i+1 Fi+2 _ 1 _ 1
1 1 - -
+ + F,
i1 i+2 i+1 i+2 i+3

390



FIBONACCI EXPONENTIALS AND GENERALIZATIONS
OF HERMITE POLYNOMIALS

H. W. GOULD WEST VIRGINIA UNIVERSITY MORGANTOWN, W. VA,

Little seems to be known about series of the form

0

Q) z A x'n
n
n=0
or
° L
@) T oA xm
n=0

where the exponents are Fibonacci and Lucas numbers, respectively, defined

by

a" - p" n n
ﬁ L =a +b ,a#b

3) F = , L,

n
It may thereforebe of interest to point out that Fibonacci exponentials are
intimately related to some generalizations of Hermite polynomials [1]. The
existence (or non-existence) of certain generating functions for these generalized
Hermite polynomials would possibly shed some light on series of the type (1)
and (2).
In the paper [1],a function Hi(x, a,p) was introduced by the definition

(4) H (x,2,p) = (-1)"x" ePX" DT (e

which gave the generating function

a T Tr ©
) (1_1) LPE-E) g o

X

This expansion gives at once in a formal sense

k

(6) P - (P@P)Fn _ <a> Ty bt H (a,m,p)
k=0

X k!

where p,x satisfy p(a - b) = log x.
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Therefore we have

e nvl‘ﬂ' a Y 7 ga—b)k e n.n
(7) =z Ant"x B o= (5) z 0 z Ant Hk(a,m,p) .
n=0 =0 ) n=0

from which it is evident that it would be desirable to establish simple generat-

ing functions of the sort

o
(8) G, = = AnthE (2, m, )
n=0

for the generalized Hermite polynomials.

For the Lucas numbers we have
Ly an  pn pal bl ;
X = x" . x07 = e . eP , with p = logx ,

and, formally, we have from (5)

o0 k
(9) ePa — x —f—';—,- HE (a,0,p) .
=0
Consequently we find
20 k k j
L b k\fa n n
(10) XM = 5 2= % ( )(~) H. (2,0,p)H,__. (b,0,p)
k=0 k! =0 j b i k-j

With this approach to a series of the type (2) we should next have to find bilinear
generating functions of the form
o

(11} Gy = Z Ant]‘1 HT; (a,u,p) Hﬁ (b,v,p) ,
n=0

which seem difficult to obtain. Of course this is not the only way to relate the
Lucas numbers to the H functions, but it is suggestive of new avenues of
research.

One may readily verify (as was found in [1]) that an explicit formula for

n rken k . \j{k\fa+Tr]
N (5)0")

the H functions is

1

(12) Hi (x,2,p)
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In (7) m is a parameter and we may take m = 0 for our purposes. Thus

we find

o0

n_.n

nz::O Ant Hy (2,0,p)
(13)

k s s . o0 . n

= ) a7k 3 IS’—, (-1)3(?’)2 A (‘l‘g)(tas) ,
5=0 " j=0 V=0 ®

so that we should have to find some really simple sum for a series of the type
nj\ n
An ( k )z ?

and this also seems difficult. In the case An = 1 (for all n) it is possibleto

0
(14) z
n=0

sum this series as follows.

In general
m j jm . s
(15) S i) =L 2 % @), with o = 2"/
n=0 Jg=1n=0 ! J

This gives the summation formula

. s. k
0 . . i) (tw)
n n 1 .
(16) ZO(Jk)tJ :-j—z: TS |t|<1, j=1 ,
n=

s=1 (1 - tooj)

so that in principle we have a (complicated) generating function for (13).
Another direction in which we may go to find generating functions is sug-

gested by the second generalization of Hermite polynomials given in [1]. By

definition
r _ hDr'' . n -
a7) gy (x,h) = e x , D= DX ,
and this yields the generating function
r o4
(18) Xt -y gfl (x,h)
n=0 -
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Thus in a formal sense

o0 k

(19) ePa = ¢ 3 B gl (z,p)
k! "k
k=0
Two such expansions, with parameters a and b, might be multiplied

together or perhaps combined with the expansion (9)in order to obtain generat-
ing functions involving Fibonacci and Lucas numbers as exponents. It seems
clear that what is needed is a collection of interesting and simple generating
functions for the generalized Hermite polynomials. It is hoped to offer further

results in this direction in a later paper.
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LINEAR RECURRENCE RELATIONS — PART IIX
JAMES A. JESKE, SAN JOSE STATE COLLEGE
1. INTRODUCTION
By applying the exponential generating function transformation

n

I -

M 8

(1.1) Y(t) = y

0

1 >

n

=]

n

we derived inPart I of this article [1] an explicit formula for the general solu-
tion of the homogeneous linear recurrence relation

k : k
(1.2) LEY = 2 aBy =32 ay .=0,
k n i=0 j n i=0 iY n+j
where the coefficients aj were constants, and the translation operator E) was
defined by
Ely =y .. (G=0,1,,k

n ntj

Inthe present part of this article, we discuss the non-homogeneous recurrence
relations having variable coefficients.

2. EXPLICIT SOLUTION
OF A NON-HOMOGENEOUS RECURRENCE RELATION

We consider the linear non-homogeneous recurrence relation

k
(2.1) S oa,y

L (EYy =Db
P k n
j=0

n+j = n
with constant coefficients, and where the roots ry, ry,---, T of the charac-
teristic equation Lk(r) = 0 are all distinct. Multiplying both sides of (2.1)by
tn/n.' and summing over n from 0 to « yield the transformed equation

_ d
(2.2) L DY = B(), D= g
where

35
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tn

(2.3) B(t) = Z b =y

n=0

Now (2.2) is an ordinary linear differential equation whose general solution is

k rit
(2.4) Y{t) = YY)+ = c,e”
P i=1 !

where, by the method of variation of parameters, the particular solution Yp(t)

can be expressed by

k erit e bn ft n _-r;s
(2.5) Y (t) = T = T = s e 17ds
P i=1 Mc®i) n=o U7 g
or
e {0 k 1"ri1 n-1 lop
(2.6) Y#) = £ = Z =5 Z —
p n=1 n i=1 L'r(ri) p=0 I‘Ii)+1
Since v, = Y(n)(O), we immediately find that
k k rri1 n-1 b
(2.7) y, = Z ¢ Tyt 3 T b

5
o1 b I 2 rIiHl

is the general solution of the recurrence relation (2.1). The case where Lk(r)

= 0 has repeated roots may be treatedin a similar way and isleft to the reader.

3. LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS

A generalization of the recurrence relation (1.2) with constant coefficients

is the equation
k
(3.1) zZ Pmny . =0,
where Pj (n) are polynomials of degree qj in the independent discrete variable

n. If the exponential generating function (1.1) is applied to (3.1), we obtain the

differential equation
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k g
(3.2) s P.(»)YD = o
=0

where ¢ is the operator

= d
(3.3) <1>—1:D—td,c ,
and where, by definition,
q.
J m
(3.4) Pj(n) = Z a1
m=0

Equation (3.2) is an immediate consequence of the following theorem which can

easily be established by mathematical induction:

Theorem 3.1. The exponential generating function for the sequence

m .
{n yn+j} is given by

tn

3.5 ¢"yWe - = 0y b

n=0

, (j=1,2,"'; m:o’]_’...’)

where ¢ is defined by (3.3).

Since the theory of differential equations is richer in special formulas
and techniques than the corresponding formulas and techniques in the theory of
recurrence relations, equation (3.2) resulting from the application of the ex-
ponential generating function may be more amenable to an explicit solution than

the original relation (3.1). We illustrate this fact with the following examples:

4, EXAMPLES WITH VARIABLE COEFFICIENTS

The Bessel functions Jn(x) of order n satisfy the recurrence relation
(4.1) Xyn+2(X) - 2(n + 1)yn+1(x) + xyn(x) =0 ,

which is a very special case of (3.1) with k = 2, Py(n) = x, Py(n) = -2(n + 1),
Py(n) = x. Equation (3.2) thus yields the differential equation

(4.2) (x - 20)Y" - 2Y'+ xY = 0

which has the particular solution

9
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(4.3) Y = J, (Nx? - 2tx)

where Jy(z) is Bessel's function of zero order defined by [2]

m 2m
(4.4) Joz) = z Lz
m=0 4" (m!)?

Thus, we find

o m m
Y = SN - o) = oz ) - 20%)

m=0 4™ (m!)?

n=0 =n 4™ ()2
or finally

© n ® j . 2jn
(4.5) v = = t_ _(_1u<_

z
n=0 " j=0 227%j1 (j + n)!
By definition of the generating function (1.1), we therefore have

b 1 J x2_]’+n
(4.6) yx)=J X = Z L)y x”
" M g0 2y ey

As afinal example, we consider the second-order recurrence relation
(4.7) yn+2(x) - 2xyn+1(x) + 2(n + l)yn(x) =

which is satisfied by the Hermite polynomials Hn(x) of degree n, with initial

values

(4.8) Volx) = 1, yilx) =

The transformed equation of relation (4.6) is the differential equation
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(4.9) Y" - 2(x - t)Y' + 2Y = 0

with conditions Y(0,x) = 1 and Y'(0,x) = 2x. Solution of (4.8) is

2 —(x—t)2 _42
(4.10) Yitx) = & . o &N _ 2x-t

and expansion of the right side thus yields

0 n/2 m n-2m
(4.11) Y_Etn[zlii)_ﬁﬁl_

- 1 _ 1 9
n=0 meo (n - 2m)!

where [n/2] means the integral part n/2. From the definition of the expo-

nential generating function (1.1), it is seen that

[néZ] (—l)mn.' (2x)n—2m

m! (n - 2m)!

(4.12) Yn Hn(x) =

m=0

is the explicit solution of the recurrence relation (4.6)

5. REMARKS

The Laguerre polynomials, and in fact mostof the important special func-
tions of mathematical physics, satisfy a second-order recurrence relation of

the form

(5.1) [Ay(x) + nBy(®)]y, , () + [A1(x) + 1By )]y, () + [A4(x) + nBy(x)]y, (%) = 0

whose coefficients arelinear in the independent real variable n. Explicit solu-
tions for them, by the method of generating functions, may be obtained as in
the above two examples. The method of generating functions can also be easily
applied to solve certain partial recurrence relations. In part III of this article
we shall show how this may be done and give examples of solutions involving

Fibonacci arrays.
REFERENCES
See page 34 for the references to this article.




THE FIBONACCI ASSOCIATION (Cont)

invited to attend two annual Fibonaceci confer-
ences, the present locale being Northern Cali-
fornia. However, members who live at a distance
would be able to share in this activity by means
of aduplicated publication that would appear sub-
sequent to the conference, This same publica-
tion would likewise be a news organ in which
members of the Association would be able to
share their Fibonacci experiences and plans with
others in the group,

Finally,there is the matter of library privi-
liges. Brother Alfred, Managing Editor of the
Quarterly, is presently producing a library of
photostats of Fibonacci articles. Already, most
of the pertinent references in Dickson's History
of the Theory of Numbers have been covered
and the ultimate objective is to include all avail-
able Fibonacci publications, Members of the
Association would be allowed to borrow this
material without charge. This should provide a
great boon to many who are not in a position to
examine such works in libraries close at hand.
It should also provide an opportunity for research
even to those living in somewhat remote places.

The annual fee for membership in the Fib-
onacci Association (and this includes subscrip-
tion to the Quarterly) is $5.00.

The Fibonacci Association invites Educational Institutions to apply for Academie
Membership inthe Association. The minimum subscription fee is $25 annually.

(Academic Members will receive two copies of each issue and will have their

names listed in the Journal.)
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FURTHER APPEARANCE OF THE FIBONACCI SEQUENCE

A. F. HORADAM, UNIVERSITY OF NEW ENGLAND, ARMIDALE,N.S.W., AUSTRALIA

Besides the widespread use of Fibonacci's sequence in Mathematics gen-
erally, and the occurrence of the sequence in such diverse fields as electrical
network theory and biology (e.g., in the botanical phenomenon of phyllotaxis
and the genealogical tree of the male bee [1]), there are certain non-scientific
contexts in which its appearance may be of interest.

Both instances to which I shall refer in a moment involve not only the
Fibonacci sequences but the ratio known as the Golden Section which has exer-
cised apoweriful influence on men's minds down the ages, and about whichthere
is considerable literature. The idea of the Golden Section, probably of Pytha-
gorean origin, is stated by Euclid (Book 2, proposition 11, according to the
standard Heath translation) in the following problem: "To cut a given straight
line sothat the rectangle contained by the whole and one of the segments is equal
to the square on the remaining segment, ' A little calculation reveals that for
a segment of unit length, the division (Golden Section) occurs at the irrational
point distant X = (5 - 1)/2 = .62 from the origin, i.e., X is a solution of

the equation x2+x -1 = 0,

Now ) F
X = lim n
n—wo \ F

n+1l

. 'H
_ lim n
Do Hn+1

where Fn is the nth term of the ordinary Fibonacci sequence and Hn is the
nth term of the generalized Fibonacci sequence [2]. Hence the link between
the Golden Section and the Fibonacci sequence,

Psychologists have found by experiment that aesthetically the mostpleas-
ing rectangle is the one whose sides are in the ratio X: 1 -X = (N5 -1): (8
- nB) = 1:X, Recognizing this aspect of beauty, the ancient Greeks some-
times constructed temples according to these proportions.

A more subtle appreciation of the aethetic qualities of the Golden Section

is detailed by Hambidge [3 ] in his study of Greek vases. After searching in-
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quiries concerning the bases of design in nature and in art, he concludes that
the "principle of dynamic symmetry" manifest in shell growth and in leaf dis-
tribution in plants was known only fo the Egyptians and the Greeks. By meticu-
lous measurements of objects of ancient art, such as Egyptian bas-reliefs and
Greek pottery, Hambidge exhibits the constant but hidden occurrence of the
Golden Section,

Noless meticulous hasbeen the very recent detailed research of Professor
G. E. Duckworth [4], of Princeton, into the structural patterns andproportions
used by Vergil in the Aeneid. In carefully analyzing the literary architecture
of this epic, Duckworth discovers, quite by accident, the basic mathematical
symmetry which Vergil consciously used in composing the Aeneid. This is a
reminder that ancient poetry was intended to be heard and that, like music, as
Duckworth points out, harmony and mathematical proportion appeal to the ear
and the imagination,

In his investigations, he gives evidence that

(i) Other poets of Vergil's era, e.g., Catullus, Lucretius, Horace and

Lucan, used the Fibonacci sequence in the structure of their poems;
and

(ii) Besides the frequent occurrence in the Aeneid of the Golden Section

for the ordinary Fibonacci sequence 1,1, 2, 3, 5, 8, 13, 21, 34, 55,
-«+, Vergil alsofrequently usedseveral Fibonacci sequences, name-
ly, those which in my notation [2 ] would be labelled H,, (the Lucas
sequence) Hyg, Hyy, Hys, Hyg, Hgy, Hyso Her.

This latter discovery raises a very important point. We are told that
Vergil was a serious student of Mathematics. Duckworth produces evidence to
show that Vergil, and other poets of his time, were familiar with the Golden
Mean and the Fibonacci sequences, a fact which suggests that the Greek and
Roman mathematicians knew about the Fibonacci sequence, though there is no
record that this is so. [Have we therefore given our Association the correct
name? ]

Like the work of Hambidge, the minutiae of the painstaking scholarly re-
searches of Duckworth and his fellow-workers reveal a fascinating modern
tendency, namely, the successful search for the mathematical expression of

beauty and form (and sometimes of chaos). Their discoveries pose a problem

(Continued on p. 46)



ON THE ORDERING OF FIBONACCI SEQUENCES
BROTHER U. ALFRED, ST MARY’S COLLEGE, CALIFORNIA

We may define a Fibonacci sequence by taking any two relatively prime
integers and employing the relation

£, = fh1 tEho

to extend the sequence to subscripts going to plus infinity or subscripts going
to minus infinity, Evidently, since any two successive terms of a given se-
quence define the sequence, there appears to be at first glance an element of
confusion in the situation. - How may this be obviated and how, once it is re-
moved, is it possible to arrange Fibonacci sequences according to some ra-
tional order? Such are the questions that will be answered in this short paper.

It is a remarkable fact that every Fibonacci sequence has two parts: the
one going to the right with all the signs the same may be called the monotonic
portion; the other going to the left with signs alternating may be denoted the
alternating portion. The sequence will be designated positive or negative ac-
cording as the monotonic portion has all terms plus or minus respectively.
However, since a negative sequence may be obtained from a positive sequence
by changing the signs of all terms, it will be sufficient in what follows to con-
sider the positive sequence.

Starting, then, with two positive terms a and b with a < b, we work
back to a' = b - a; if this is less than a, we next form a" = a - a'; and so
on, Evidently, this process cannot be continued indefinitely and so we finally
arrive at a term which is greater than the term which follows it. Once this
occurs, the next term to the left is negative and from then on the signs alternate.

It is important to note that in this process we have arrived at a smallest
positive term which has the characteristic that it is less than one-half the fol-
lowing positive term. This property of the smallest positive term is unique in
the monotonic portion of the sequence. Let us call this smallest non-negative,
f), and the subsequent term, f;. We thus have an unambiguous means of rep-
resenting the Fibonacci sequence by giving these two terms: (£, f;).

If we had started with a positive term and a negative term, as longas

terms alternate in sign in going to the rightinthe sequence, the absolute values
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decrease in magnitude. Since this cannot go on indefinitely, there must come
a term which is of the same sign as the preceding term, From then on the se-
quence is monotonic, Evidently, the second term in the monotonic portion of
the sequence is 2 minimum for that part of the sequence and so once more it is
possible to represent the sequence according to the minimum term and the term
that follows it.

Now that a unique representation of each Fibonacci sequence has been
achieved, it might appear desirable to have some method of arranging these

sequences in order. One means of doing so is by the use of the quantity
D = ff -} = £} - £;f, - £

which is characteristic of any given sequence. Intuitively it appears that for

any sequence

_f2 = (B
£t - £ (-1)'D

Suppose this to be true to n, Then

2 = 2 _f2  _— f2 _ _ (_1yntl
fm+2fn - fn+1 - fn+1fn * fn fn+1 - fn fn+1fn—1 (-1)" D

so that the formula is seen to hold by mathematical induction.

For any given value of f;, since

D = £ - f,(f + £;)
and since
L < £/2

it follows that
D > f3 - f(f + £,/2)/2

or

D> t}/4

Accordingly, by considering successive values of f; and the various Fibonacci

sequences that may be associated with these values, it is possible to arrive at
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certain knowledge regarding the Fibonacei sequences that may be associated
with allowed values of D, This information is summarized for values of D
up to 1000 in the following table.

TABLE OF FIBONACCI SEQUENCES
HAVING A GIVEN VALUE OF D

D SEQUENCES D SEQUENCES

1 (0,1) 431 (5,24), (14,33)

5 (1,3) 439 (6,25), (13,32)

11 (1,4),(2,5) 445 (7,26),(12,31)

19 (1,5), (3,7) 449  (8,27), (11,30)

29 (1,6), (4,9) 451 (3,23),(9,28), (10,29), (17,37)
31 (2,7),(2,8) 461  (1,22),(20,41)

41 (1,7), (5,11) 479 (2,23), (19,40)

55  (1,8),(6,13) 491  (7,27),(13,33)

59 (2,9),(5,12) 499  (9,29), (11,31)

61 (3,10), (4,11) 505 (1,28),(21,43)

71 (1,9),(7,15) 509 (4,25),(17,38)

79 (3,11),(5,13) 521 (5,26), (16,37)

89  (1,10),(8,17) 541 (3,25), (19,41)

95  (2,11), (7,16) 545  (8,29), (13,34)

101 (4,13), (5,14) 551 (1,24), (10,31), (11,32), (22,45)
109 (1,11),(9,19) 569 (5,27),(17,39)

121 (3,13), (7,17) 571 (2,25), (21,44)

131 (1,12),(10,21) 589  (3,26), (7,29), (15,37), (20,43)
139 (2,13), (9,20) 599  (1,25), (23,47)

145 (3,14),(8,19) 601  (9,31), (13,35)

149  (4,15), (7,18) 605 (4,27),(19,42)

151 (5,16), (6,17) 619 (5,28),(18,41)

155 (1,13),(11,23) 631  (6,29), (17,40)

179  (5,17), (7,19) 641 (7,30),(16,39)

181 (1,14), (12,25) 649 (1,26), (8,31), (15,38), (24,49)
191 (2,15), (11,24) 655 (9,32), (14,37)

199  (3,18), (10,23) 659 (10,33), (13,36)

205  (4,17), (9,22) 661 (11,34), (12,35)

209 (1,15), (5,18), (8,21), (13,27) 671 (2,27)(5,29), (19,43), (23,48)
211 (6,19), (7,20) 691 (3,28, (22,47)

229  (3,17), (11,25) 695 (7,31), (17,41)

239 (1,16), (14,29) 701 (1,27),(25,51)

241 (5,19), (9,23) 709 (4,29), (21,46)

251 (2,17), (13,28) 719 (11,35), (13,37)

269 (4,19), (11,26) 739 (6,31), (19,44)

271 (1,17), (15,31) 745  (3,29), (23,49)

281 (7,22), (8,23) 751 (7,32), (18,43)

295 (3,19), (13,29) 755  (1,28),(26,53)

401 (7,25), (11,29) 761 (8,33), (17,42)

409 (3,22), (16,35) 769 (9,34), (16,41)

419 (1,21), (19,39) 779 (2,29), (11,36), (14,39), (25,52)

421 (4,23), (15,34) 781 (5,31),(12,37), (13,38), (21,47)
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D SEQUENCES D SEQUENCES
809 (7,33), (19,45) 905 (11,38), (16,43)

811  (1,29), (27,55) 911  (13,40), (14,41)

821 (4,31), (23,50) 919  (3,32), (26,55)

829 (9,35), (17,43) 929 (1,31), (29,59)

839 (5,32), (22,49) 941  (4,33), (25,54)

841 (11,37), (15,41) 955  (9,37), (19,47)

859 (3,31), (25,53) 961  (5,34), (24,53)

869 (1,30), (7,34), (20,47), (28,57) 971  (11,39), (17,45)

881 (8,35), (19,46) 979  (6,35), (13,41), (15,43), (23, 52)
895 (2,31), (27,56) 991 (1,32), (30,61)

899 (5,33), (10,37), (17,44), (23,51) 995 (7,36), (22,51)

By adopting the convention that for several sequences having the same value of
D, the ordering will be determined by which has the smaller value of f;, it be-
comes possible to give the Fibonacci sequences a precise arrangement. The

first few members would be as follows:

SI(O’]-)! 82(113): 83(194)3 S4(2s5)’ S5(1:5)9 86(397), S7(1’6)a
Sg(4,9), ete.

The above approach in representing Fibonacci sequences and ordering
them is all by way of suggestion. There are doubtless other ways of achieving
the same objective. It would be very helpful if additional proposals were aired

before a final standard is adopted.

FURTHER APPEARANCE OF THE FIBONACCI SEQUENCE
(Cont, from p. 42)
for the classicist, no less than for the historian of Mathematics. ''Measure

and symmetry, '"observed Socrates, "arebeauty and virtue all the worldover. "
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ADVANCED PROBLEMS AND SOLUTIONS

EDITED BY VERNER E. HOGGATT, JR., SAN JOSE STATE COLLEGE

Send all communications concerning Advanced Problems and Solutions to
Verner E. Hoggatt, Jr. , Mathematics Department, San Jose State College, San
Jose, California. This department especially welcomes problems believed to
be new or extending old results. Proposers should submit solutions or other
information that will assist the editor. To facilitate their consideration, solu-
tions should be submitted on separate signed sheets within two months after

publication of the problems.

H-24 Proposed by the late Morgan Ward, California Institute of Tech-
nology, Pasadena, California.

Let ¢,(x) = x+x/2+ -+ +x"/n, andlet ki) = k (x) = @1 o1yp,
where p is an odd prime greater than 5. (The function k(x) is called the
""quotient of Fermat' in the literature.) Let P = Pp be the rank of apparition
of p in the sequence 0’1’1’2’3’5"””Fn’ (so Py3 =7, P; = 8 and so on).

Then

Fp = 0 mod p?

if and only if

¢ 5 (5/9) = 2k(3/2) mod p

(P-1)/

H-25 P d by J h Erbacker and John A. Fuchs, University of
o oS oy Tk B B i Suny . "Buffale, .Y,

Prove:
D =|a..‘ = 36, forall n ,
n ij
where
- 3 . . -
4 = Friegee 61 = 1,23

H-26 Proposed by Leonard Carlitz, Duke University, Durham, N.C.

r-1

n
K+ 1- s)’ then show Rk = (ars) such

Let Rk = (brs)’ where brs = (

that
47
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s-1 . .
. (r - 1)(1{ +1 - r) Fk+2—r—s+]Ffl+s—2—2JFJ

a = Z . .
rs =0 J s -1-1] n-1 n+1

H-27 Proposed by Harlan L. Umansky, Emerson High School, Union City,N.J.

Show that
F3 = k;:2 -1y E.F + 1)kF k=4
I Vo E Fay s k-3 » K4

H-28 Proposed by H.W. Gould, West Virginia University, Morgantouwn, W.Va.

Let Cj(r,n) be the number of numbers, to the base r (r = 2) with at
most n digits,and the sum of the digits equal to j.

Sum the series:

o0
Z C,(r,n)alp™
=0 !

SOLUTIONS

TRINOMIAL COEFFICIENTS

H-9 Pproposed by Olga Taussky, California Institute of Technology,
Pasadena, Calif.
Find the numbers a, Lo where n =0 and r are integers, for which
9
the relations

an,r * an,r—l * an,r—2 - an+1,r
and
0 r* 0
Bo,v Oo,r :{1 =0
hold.

Solution by the proposer.

It can be shown that R is the coefficient of x* in the expansion of
n 9
)

(1+x+x?
This is certainly true for n = 0 and it follows for n > 0 by using the

generating functions

r
Za _X .
r ‘n,r

For, multiplying this sum by (1 + x + x*) and using the recurrence rela-
tions it follows that
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r T
(1+x+x%) Za x =Za X
n,r n+l,r
T T

This proves the assertion.

SOME FIBONACCI SUMS

H-10 Proposed by R.L. Graham, Bell Telephone Laboratories, Murray Hill,

New Jersey .
Show that 0 % n+l
Eog=3+ 2 piia—
n=1 n n=1 "n n+l n+2

Solution by Leonard Carlitz, Duke University, Durham, N. C.

A H - H 2

SO Ty s Foo1fner = Fy IS b
2 Fn 2 n—an+1 2 Fn~1FnFn+l 2 Fn—l FnFn+1
® Fo P - P 1 1 1.1
2F F . 2 F F ., E\F °F =T tF, T %
2 "n-1"n+l 2 n-1"n+l1 2 n-1 n+1 1 2
o 0 n

1 (=1)
e =3+2
1 Fn 2 Fn—anFn+1

Also solved by Zvi Dresner.

FIBONACCI AND FOURIER
H-11 Proposed by John L.Brown,Jr.,Ordnance Research Laboratory, The
Pennsylvania State Untversity, Universtty Park, Penna.

Find the function whose formal Fourier series is

00 Fn sin nx
x) = 32 —/m ,
n=1 n!

where Fn is the nth Fibonacci number.

Solution by Lucile Morton, Santa Clara, Calif.

. s =) PR nn 0
oZ(cos x+i sin X) _ 5 (cosx +isinx)z 5 cosnx n
- - 1
n=0 n! n=0 o
+i 3 Sin 'nx n
n
n=0 :

Theretfore
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Z COS X _, . ¥ sinnx .n
e sin(z sinx) = Z —r Z
n=0 :
Recalling 1 -
F NH (@" - "), where o = (1+~5)/2 and 8= (1 - V5)/2,
then
_1 o COS X _, . B cos x ., .
fx) = 5 {e sin (o sin x) - € sin (B sin x)}
and 0
gtx) = ¢ %% X sin (@sinx) + & ¥ sin @sinx) = yp LIy
n=0 :

Also solved by the proposer.
A CURIOUS SEQUENCE

H-12Proposed by D.E. Thoro, San Jose State College,San Jose,Calif.

Find a formula for the nth term in the sequence:
1,3,4,6,8,9,11,12,14,16,17,19, 21, 22, 24, 25, - -

Solution by Malcolm Tallman, Brooklyn, N. Y.

1, 3, 4, 6, 8, 9,11,12
14,16,17,19, 21,22, 24,25
M 27,29, 30, 32, 34, 35, 37, 38
40, 42, 43, 45, 47,48, 50, 51

i

Let M

Nt

8m + 1,2,3%,4,5,6,7,8
13m + 1,3,4%,6,8,9,11,12

What is the 19th term? M = 19 = 8 x 2 + 3%, thus Ny = 13x 2+ 4% = 30,

Also solved by Maxey Brooke and the proposer.
Editorial Comment: If T, =1, Ty =3, Tg =4, Ty =6, Ty =8, T =

9, T; = 11, Ty = 12, then T8m+k = 13m + Tk’ k>0, m=1,2,3,-"

A MATRIX DERIVED IDENTITY

H-13 Proposed by H.W.Gould,West Virginia University,Morgantown, W.Va.
and Verner E.Hoggatt, Jr.,San Jose State College,San Jose,Calif,

Show that _ r-j j
Fp = Z()Flek ntj-rk
See p. 65 of "A Primer for the Fibonacci Numbers—Part II1,'" Oct., 1963, Fibonacci

Quarterly.
Also solved by Leonard Carlitz and Merritt Elmore.
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IDENTITY FOR FIBONACCI CUBES

H-14 Proposed by David Zeitlin,Minneapolis,Minnesota, and F.D.Parker,
University of Alaska, College, 'Alaska.

Prove the Fibonacci identity

3 - 3 _ 3 3 3 -
Fn+4 3Fn+3 GFn+2 * 31;‘11+1 * Fn 0

Solution by Maxey Brooke, Sweeny, Texas.

From '""Fibonacci Formulas,' page 60, April, 1963, Fibonacci Quarterly, one

obtains, from paragraph 3,

(1) Fn+1 * Fn Fn—l F3n

and the corrected version of Jekuthiel Ginsburg's identity there is

3 _ 3 3 _
2) F SF3+ F , = F

n+2 3n

Multiplying equation (1) through by 3 and equating the new left side of (1) to the
left side of (2) and simplifying yields

3 _ 3 3 3 3 -
Fn+2 3Fn+l 6Fn + 3Fn—1 + Fn—2 0

Also solved by J. A.H, Hunter, Zvi Dresner and the proposers.

SOME CHOICE IDENTITIES
H-16 Proposed by H.W.Gould,West Virginia University,Morgantoun,W.Va.

-x2

e ™)

n x¢

Define the ordinary Hermite polynomials by Hn = (-1)"e o

D

o0 n
@) I H (x/2) XH" =1 ,
n=0 :
Show that
o0 Xn
() = H (/2) % F =0

n=0
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_ -X
(iii) nio H (x/2) o Ln = 2e

2

where ]8‘n and Ln are the nth Fibonacci and nth Lucas numbers, respectively.

n
Xy X
(—?_—2—>

X=X,/ 2

Solution by Zvi Dresner, Tel-Aviv, Israel.

. %2
0 1o 2
n, -x
D

° X0\ %o ,
M = Hn<“§>ﬁ=e4 3 5]

n=0 ’ =0 ’

. -x2 ' %o
The sum in braces on the right is the expansion of e about the point + 5
with x = -x;,/2. Hence

n
%0 X\ Xp 2,0 [ 2
z H<*>T=e+xo/4KeX°/4>:l.
n=o R 2 n!

N

N
(ii) In the same way (o = 1;’\/5, B = L P Y2 , and Fn =

(@ - 8%,

s

s %0 ) %o 1 xi/a) L D" X n n
e B = L % De - - (-
% HH( 2 ) n' /En J5 € = (( Xga) - (=XB) )
n=0 . X=X0/2

\71; ex(2,/4 {;(X()z\fs )2_ o (j%ﬁ)z} = 0.

(i) Similarly (L_ = o™+ p")

n
o0 Xy \ X 2, % _n -x?
EH(_‘l_O_L:eXo/‘lED_e__

n\ 2 /n! "n n!
n=0 n=0

[(‘XOQ’ Yt (%08 )“]
X:XO/Z

2 e 2
_ eX0/4 (Ze 5x0/4) _ 07X
Also solved by L. Carlitz and the proposer.

Correction to Problem H-20 in the October issue

H-20 (Corrected)Proposed by Verner; E.Hoggatt,Jr.and Charles H.King,
‘San Jose State College,San Jose,California.
n L

1t Q:G é) show D(e® )=¢en

3

where D(A) is the determinant of matrix A and Ln is the nth Lucas number.

L0



DYING RABBIT PROBLEM REVIVED

BROTHER U. ALFRED, ST. MARY'S COLLEGE, CALIFORNIA

In the first issue of the Fibonacci Quarterly the following problem was
proposed [1]. Suppose that in the original Fibonacci rabbit breeding problem,
we allowfor the dyingof rabbits, Those that are bred in February, for example,
begin to breed in April and continue breeding monthly through February of the
following year. At the end of this month they die. What would be the formula
for the number of pairs of rabbits at the end of n months for n =13?

Originally, it was thought that the rabbits removed would constitute a se-
quence which could be readily identified with an expression involving Fibonacci
numbers, But after several attempts by a number of people it appeared that it
would be difficult to arrive at an answer by straightforward intuition. The fol-
lowing development will indicate why this is so.

First of all we shall set down a table showing how the rabbits propagate
over a two-year period., It will be noted that the original table values for the
case inwhich rabbits do not die are positive while a negative termis introduced
to show the effect of allowing rabbits to die.

Breeding Non-Breedihg Bred Dying Rabbits
Rabbits Rabbits Rabbits Rabbits End of Month
1 0 1 0 0 1
2 1 0 1 0 2
3 1 1 1 0 3
4 2 1 2 0 5
5 3 2 3 0 8
6 5 3 5 0 13
7 8 5 8 0 21
8 13 8 13 0 34
9 21 13 21 0 55
10 34 21 34 0 89
i1 55 34 55 0 144
12 89 55 89 -1 233 -1
13 144 - 1 89 144 - 1 0 377 - 2
14 233 -1 144 - 1 233 -1 -1 610 - 4
15 377 -3 233 -1 377 - 3 -1 987 - 8
16 610 - 5 377 - 3 610 - 5 -2 1597 - 15
17 987 - 10 610 - 5 987 -~ 10 -3 2584 - 28
18 1597 - 18 987 - 10 1597 - 18 -5 4181 - 51
19 2584 - 33 1597 - 18 2584 - 33 -8 6765 - 92
20 4181 - 59 2584 - 33 4181 - 59 -13 10946 - 164

53
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n

21
22
23
24

Breeding
Rabbits

6765 - 105

10946 - 185
17711 - 324
28657 - 564

Non-Breeding

Rabbits

4181 - 59
6765 - 105
10946 - 185
17711 - 324

Bred
Rabbits
6765 - 105
10946 - 185
17711 - 324
28657 - 564

DYING RABBIT PROBLEM REVIVED

Dying
Rabbits
=21
-34
-55
-89

[ Dec.

Rabbits
End of Month

17711 - 290
28657 - 509
46368 - 888
75025 - 1541

For the sake of convenience, a table of the negative values is formed with

a shift of riumbering, the first row inthe new table corresponding to n = 14 in the

old.

o a'n an-l an
1 -1 1 1

2 3 1 3

3 5 3 5

4 10 5 10
5 18 10 18
6 33 18 33
7 59 33 59
8 105 59 105
9 185 105 185
10 324 185 324
11 564 324 564

15
28
51
92
164
290
509
888

1541

The following relations may be noted apart from those implicit in the col-

umn headings.

1 T T Pt Fn

T](1 = Zan+a_1+ Frl

Using the relation for 241 We obtain the following succession of
relations.

a; =1
ag = a;+a,+F; = 2+ F,
ag = ag+ay+Fy = 3+ F;+Fy
ag = ag+ay+Fyg = 5+ 2F;+ Fg+ Fy
ag = ag+ag+Fy = 8+ 3F;+ 2F,+ Fg + Fy
ag = ag+ay+ Fy = 13+ 5F; + 3Fy + 2Fg + Fy + F;
a; = ag+tag+ Fg = 21 + 8F; + 5Fy) + 3F3 + 2F, + F; + Fg

It is clear that a formula involving Fibonacci numbers is emerging.

ample, a; can be written:

For ex-
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and in general, it could be shown by mathematical induction that:

n-1

a = F + £ F

n n+1 kel k "n-k

The problem then reduces to finding a formula for the summation on the right,

Using the roots r and s of the equation x2-x-1 = 0 in terms of which:

1“n - Sn n n
Fn = ——\/:5— and Ln =1 + 8
where
_ 1+ N5 _ 1 - N5
ro= T and s = T
we have
- _ (rk _ sk) (rn—k _ Sn—k)
k n-k 5
B R rksk(rn-Zk + sn»—Zk)
- 5
k k k . . . .
But r's = (-1) since rs, the product of the roots of the given equation, is
the constant term -1. Thus
k+1
FF _ Ln + (-1) Ln—2k
k*n-k ~ 5

This is the expression that must be summed from 1 to n-1 over k. How-
ever, since the first part Ln/ 5 does not involve k, it is essentially a con-
stant taken n - 1 times so that this part of the sum becomes (n - 1)Ln/5.
The second half is

1 k+1 -1 - - cee # (1P
5 2 D Ly = 5[Ln—2 Lyea* Lyog = Lpgt - * 0D L—n+2]

t
Ul |

[Fn—l tF s g F st Pt Fpg o
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It will be noted that all terms cancel out except the first and last and since
n _ L
(-1) F_n+1 = Fn—l’ the total of the summation is 2Fn_1 /5. Thus the value
of a, is given by the expression
AFD—].
5

a =T +—-—)—(n;1 L o+

n n+1

Substituting L_ = F + F , this can be transformed to
. n n+1 n-1

r
a = 3 _(n FYF o+ @+ D) Fn_ljl

As a check, for n = 7, this becomes
1/5{11-21+8-8] = 59
After suitable transformations one can find a value of Tn equal to

1/5 [(Sn + 10OF , + (@ + 6) Fn]

Reconvertingback to our original notation, the solution of the dying rabbit prob-

lem can be expressed as follows (n = 13):

Fn+1 - 1/5 [(3n - 29)Fn—12 + (o - 7)Fn-13]

REFERENCE

1. Brother U. Alfred, Exploring Fibonacci Numbers, The Fibonacci Quarterly,
Vol. 1, No. 1, Febh. 1963, pp. 57 —63.
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PHYLLOTAXIS
SISTER MARY de SALES McNABB, GEORGETOWN VISITATION PREPARATORY SCHOOL

When Nehemial Grew remarked in 1682 that "from the contemplation of
plants, men might be invited to Mathematical Enquirys, ""[5] he might not have
been thinking of the amazing relationship between phylletaxis and Fibonacei num-
bers, but he could well have been; for the phenomenon of phyllotaxis, literally
"leaf arrangement, " has long been a subject of special investigation, much
speculation, and even heated debate among mathematicians and botanists alike.

By right it is the botanists who deserve the credit for bringing to light the
discovery that plants of every type and description seem tohave their form ele-
ments, that is, their branches, leaves, flowers, or seeds, assembled and ar-
ranged according to a certain general pattern; but surely eventhe old Greek and
Egyptian geometers couldnot have failed to observe the spiral nature of the archi-
tecture of plants. Many andvaried and evencontradictory are the theories on this
féscinating phenomenon of phyllotaxis, but it would be beyond the scope of this
paper to investigate them here; instead we shall simply try to describe the man-
ifestation of it in the interval-spacing of leaves aroundacylindrical stem, inthe
florets of the sunflower and, finally, in the scales of fir cones and pineapples.

Before we proceed to consider the actual arrangement of the form ele-
ments, however, it is interesting to note the relationship bet\véen the number
of petals of many well-known flowers and the Fibonacci numbers. Two-petaled
flowers are notcommon but enchanter's nightshade is one such example. Seve-~
ral members of the iris and the lily families have three petals, while five-
petaled flowers, including the common buttercup, some delphiniums, larkspurs
and columbines, are the most common of all. Other varieties of delphiniums
have eight petals, as does the lesser celandine, and in the daisy family, squalid
and field senecio likewise have eight petals in the outer ring of ray florets.
Thirteen-petaled flowers are guite common and include the globe flower and
some double delphiniums as well as ragwart, corn marigold, mayweed, and
several of the chamomiles. Many garden and wild flowers, including some
heleniums and asters, chicory, doronicum, and some hawk-bits, have twenty-
one petals, while thirty-four is the most common number in the daisy family

and is characteristic of the field daiseys, ox-eye daisies, some heleniums,
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gaillardias, plantains, pyrethrums, and a number of hawk-bits and hawkweeds.
Some field daisies have fifty-five petals, and Michaelmas daisies often have
either fifty-five or eighty-nine petals. It is difficult to trace this relationship
much further, but it must be remembered that this number pattern is notneces-
sarily followed by every plant of a species but simply seems to be character-
istic of the species as a whole.

Fibonacci numbers occur in other types of patterns too. The milkwort
will commonly be found to have two large sepals, three smaller sepals, five
petals and eight stamens, and Frank Land 4 reports that he found a clump
of alstroemerias in his garden in which one plant had two flowers growing on
each of three stalks and that, where the three stalks grew out from the top of
the main stem, a whorl of five leaves grew out radially; while another plant
had three flowers on each of five stems with a whorl of eight leaves at the base
of the flower stalks.

The Fibonacci number pattern, .however, which has received the most
attention is that associated with the spiral arrangement of the form elements
of the plants. In its simplest manifestation it may be observed in plants and
trees which have their leaves or buds or branches arranged at intervals around
a cylindrical stem. If we should take a twig or abranch of a tree, for instance,
and choose a certain bud, then by revolving the hand spirally around the branch
until we came to a bud directly above the first one counted, we would find that
the number of buds per revolution as well as the number of revolutions itself
are both Fibonacci numbers, consecutive or alternate ones depending on the
direction of revolution, and different for various plants and trees. If the num-
ber of revolutions is m and the number of leaves or buds is n, then the leaf
or bud arrangement is commonly called an m/n spiral or m/n phyllotaxis.
Hence in some trees, such as the elm and basswood, where the leaves along a
twig seem to occur directly opposite one another, we speak of 1/2 phyllotaxis,
whereas inthe beech and the hazel, where the leaves are separated by one-third
of a revolution, we speak of 1/3 phyllotaxis. Likewise, the oak, the apricot,
and the cherry tree exhibit 2/5 phyllotaxis, the poplar and the pear 3/8, while
that of the willow and the almond is 5/13. Much investigation along these lines
seems to indicate that, at least as far as leaves and blossoms are concerned,
each species is characterized by its own particular phyllotaxis ratio, and that

almost always, except where damage or abnormal growth has modified the
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arrangement, the ratios encountered are ratios of consecutive or alternate
terms of the Fibonacci sequence.

When the form elements of certain plants are assembled in the form of a
disk rather than along a cylindrical stem, we have a slightly different form of
phyllotaxis. It is best exemplified in the head of a sunflower, which consists
of a number of tightly packed florets, in reality the seeds of the flower, Very
clearly the seeds can be seen to be distributed over the head in two distinct
sets of spirals which radiate from the center of the head to the outermost edge
in both clockwise and counterclockwise directions. These spirals, logarithmic
in character, are of the same nature as those mentioned earlier in plants with
cylindrical stems, but in those instances, the adjacent leaves being generally
rather far apart along the stem, it is more difficult for the eye to detect the
regular spiral arrangement. Here in the close-packed arrangement of the head
of the sunflower, we can see the phenomenon in almost two-dimensional form.
As was the case with the cylindrical-stemmed plants, the number pattern ex-
hibited by the double set of spirals is intimately bound up with Fibonacci num-
bers. The normal sunflower head, which is about five or six inches in diameter,
will generally have thirty-four spirals winding in one direction and fifty-five in
the other. Smaller sunflower heads will commonly exhibit twenty-one spirals
in one direction and thirty-four in the other or a combination of thirteen and
twenty-one. Abnormally large heads have been developed with a combination
of fifty-five and eighty-nine spirals and evena gigantic one at Oxfordwith eighty-
nine spirals in one direction and a hundred and forty-four in the other. In each
instance the combination of clockwise and counterclockwise spirals consists of
successive terms of the Fibonacci sequence.

One other interesting manifestation of phyllotaxis and its relafion to the
Fibonacci numbers is observedinthe scales of fir cones andpineapples. These
scales are really modified leaves crowded together on relatively short stems,
andso, in a sense, we have a combination of the other two forms of the phenom-
enon; namely, a short conical or cylindrical stem and a close-packed arrange-
ment which easily enables us to observe that the scales are arrangedin ascend-
ing spirals or helical whorls calledparastichies. In thefir cone, as in the sun-
flower head, two sets of spirals are obvious, and hence in many cones, such
as those of the Norway spruce or the American larch, five rows of scales may
be seen tobe winding steeply up the cone in one direction while three rows wind

less steeply the other way; in the common larch we usually find eight rows
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winding in one direction and five in the other, and frequently the two arrange-
ments cross each other on different parts of the cone. In the pineapple, on the
other hand, three distinct groups of parastichies may be observed; five rows
winding slowly up the pineapple in one direction, eight rows ascending more
steeply in the opposite direction and, finally, thirteen rows winding upwards
very steeply in the first direction. The fact that pineapple scales are of ir-
regular hexagonal shapes accounts for the three sets of whorls, for three dis-
tinct sets of scales can consequently be contiguous and, hence, constitute a dif-
ferent formation. Moreover, Fibonacci numbers manifest themselves in still
another way in connection with the scales of the pineapple. If the scales should
be numbered successively around the fruit from the bottom to the top, the num-
bering being based on the corresponding lateral distances of the scales along
the axis of the pineapple, we would find thateach of the three observable groups
of parastichies winds through numbers which constitute arithmetic sequences
with common differences of 5, 8 and 13, the same three successive Fibonacci
numbers observed above. Thus a spiral of the first group wouldascend through
the numbers 0, 5, 10, - --; one of the second group through the numbers 0, 8,
16, ---; and, finally, a spiral of the third group would wind steeply up the pine-
apple through the numbers 0, 13, 26, --- .

In all these many and varied ways, then, in the number of petals possessed
by different species of flowering plants, in the interspacing of leaves or buds
around a cylindrical stem, in the double spirals of the close-packed florets of
sunflowers, and in the ascending spirals or parastichies of the fir cone and the
pineapple, we have encountered number patterns which again and again involve
particular terms of the Fibonacci sequence. These Fibonacci number patterns
or combinations occur so continually in the varied manifestations of phyllotaxis
that we often hear of the '"law' of phyllotaxis. However, it must be admitted
that not all four-petaled flowers are so rare as the four-leaf clover's reputed
tobe and thatother combinations also occur, notably inthose species exhibiting
symmetrical arrangements. Moreover, inthe cases of fir cones and somelarge
sunflowers, where the spiral number pattern can be verified more carefully,
deviations, sometimes even large ones, from the Fibonacci pattern have been
found. If this is at all disturbing to the modern botanist, it is not at all so to
the Fibonacci devotee, for whom the whole phenomenon, if not a "law,'" is at
least, in the words of H. S, M. Coxeter [1], a fascinatingly prevalent tendency!

[References for this article are found on page 71. ]



THE “GOLDEN RATIO” AND THE FIBONACCI NUMBERS
IN THE WORLD OF ATOMS

J. WLODARSKI

In the world of atoms there are four fundamental asymmetries. They

appear

In the structure of atomic nuclei of protons and neutrons,

In the distribution of fissionfragments by mass number resulting from
the bombardment of most heavy nuclei by thermal neutrons,

In the distribution of numbers of isotopes of even stable elements,

In the distribution of emitted particles in two opposite directions at
""weak'' nuclear interactions.

It turns out that the numerical values of all these asymmetries are equal
approximately the ""golden ratio' ("g.r.") and the numbers forming these nu-
merical values are sometimes Fibonacci or 'near'-Fibonacci numbers as
follows:

1. The number of protons Z in the lightest stable nucleus as a rule is
equal the number of neutrons N, When the atomic number Z in-
creases, the proton-neutron ratio in the nucleus Z/N decreases to
about 0.6.

A practical stable nucleus, found in nature may possess a maximum of

92 protons and 146 neutrons (nucleus oU%8%). The ratio of both these numbers
Z/N is equal to 0.630 and differs from the "g. r.'"-value (if we limit the"g.r.'"-
value to three decimals behind the point) by 0.012 only.

2. Tt is knownthat symmetrical fission of most heavy nuclei by slow neu-
trons is very rare. For example, in the case of 4,U®5+ n! the
atomic mass of fission-fragments A = 118 happens in only about
0.01 of all cases. The most common event in this case is a splitting
into two fragments with mass numbers in the range 89— 99 and 144—
134 respectively. The mass numbers 89 and 144 appearing in

the nuclear reaction

235 1 89 144 .
0oUpss + o0y — 36Krsy + 5¢Bags + 3(ony)

belong to two neighboring terms in the Fibonacci sequence. The ratio

of 89/144 = 0.618056--. yields one of the best approximations tothe

61
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"g. r,"-value found in nature. rlv‘he same ratio of 89/144 in the world
of plants yields, for example, the distribution of sees-spirals on the
disk of the sunflower.
It is interesting that the number of protons and neutrons of fission-
fragments in above nuclear reaction is also one of the Fibonacci or '"near"-

Fibonacci numbers as the following table shows.

Table 1
Compound Fission Terms of
Nucleon-numbers Nucleus Fragments | Fibonacci Sequence
number of protons 92 36 56 89 34 55
number of neutrons 144 53 88 144 55 89
mass-number 236 89 144 233 89 144

Remarks:

® We have to consider the amount of 3 (on the average) emitting neutrons
® A variety of other pairs of nuclei, as Kr - Ba pair, may be produced in

the above nuclear reaction, but this pair is one of the most abundant.

3. When the atomic number Z of elements in the periodic table in-
creases, the number of isotopes of even stable elements also in-
creases little by little and reaches a maximum (10 isotopes) at Z =
50. Behind Z = 50 the number of isotopes of even elements grad-
ually decreases with the advancing atomic number. With that the
whole row of stable elements in the periodic table is divided in the
ratio 32 : 50 = 0.640. The last value differs from the "g.r.'"-value
by 0.022 and

4. The recent (1957) discovery of parity non-conservation at "weak"
interactions showed that:

a. The p-decay of polarized neutrons is a process with an asym-
metrical feature. The result of an experiment decisive for vio-
lation of the parity principle at the "weak" interactions was as
follows:[1]

Intensity of p-emission parallel to neutron spin
Intensity of pB-emission antiparallel to neutron spin

This ratio lies in the range of the "g. r. '"-value.

=0.62 + 0.10

(1)
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b. Various types of the hyperon-decay are also processes with an
asymmetrical feature. A series of experiments was performed
at some laboratories in order to investigate the distribution of
emitted particles. Thereby it was found that upward emission

prevailed over downward emission,

In the following table, some data of these experiments (colums 2, 3) and out of

that computed values (columns 4, 5) are given:

Table 2
The Emitted Particles Divergence of
Experiment Number in the direction Ratio of the Ratio of
N d/up d/up From
o.
down up (roughly) ""g.r."-value
by (roughly)
1 [2 ] 138 215 0.642 0.024
2 [3 ] 81 129 0.628 0.010
3 [4 ] 105 158 0.665 0.047

Finally it would appear that a Nobel Prize-winning English chemist and physicist
F. W. Aston [5] probably was the first who showed the appearance of the
Fibonacci numbers in the world of atoms. He observed that all the atoms with -
atomic number Z in the range 1 to 30 have the gaps representing the mass
numbers of atoms which either entirely are non-existent in nature or too rare
to be found. If one takes the recurring series 2, 3, 5, 8, 13, 21, 34, 55,

then the first 7 of these terms correspond to the missing mass numbers, but

the relation breaks down at Mn’® and again at Y%,
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A PRIMER FOR THE FIBONACCI NUMBERS — PART IV
V. E. HOGGATT, JR. AND I. D. RUGGLES, SAN JOSE STATE COLLEGE

1. INTRODUCTION

Inthe primer, Part III, it was noted that if V = (x,y) is atwo-dimensional

vector and A is a 2 by 2 matrix, A = Zl g , then V' = AV is atwo-
dimensional vector, V' = (x',y') = (ax+ by, cx+ dy). Here, V and conse-

quently V', are expressed as column vectors. The matrix A is said to trans-
form, or map, the vector V onto the vector V'. The matrix A is called the

mapping matrix or transformation matrix.
2. SOME MAPPING MATRICES

The zero matrix, Z = (8 8) , maps every vector V onto the zero
vector ¢ = (0,0).

The identity matrix, I = (é (1)> maps every vector V onto itself; that
is, IV =V,
The matrix B = (; ;) maps vectors V = (k,-k), (k any realnumber),

onto the zero vector ¢ Such a mapping as determined by B is called a many-
to-one mapping.

If the only vector mapped onto ¢ is the vector ¢ itself, the mapping is
a one-to-one mapping. A matrix A determines a one-to-one mapping of two-
dimensional vectors onto two-dimensional vectors if, and only if, det A * 0.
If det A # 0, for each vector U, there exists a vector V such that AV =
U. Note, however, that for matrix B above, B(;} = (2§:§y> There is
no vector V such that BV = (0,1).

3. GEOMETRIC INTERPRETATIONS OF 2x2 MATRICES
AND 2-DIMENSIONAL VECTORS

As in Primer III, the vector V = (x,y) is interpreted as a point in a rec-
tangular coordinate system. Thus the geometric concepts of length, direction,
slope and angle are associated with the vector V.

A non-zero scalar multiple of the identity matrix, kI, maps the vector
U = (a,b) onto the vector V = (ka,kb). The length of V, |V|, is equal to |k|
| Ul. There is no change in slopebut if k < 0 the sense or direction is reversed.
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. 01
The matrix (1 0

to the line through the origin with slope one. Note that different vectors may

) maps a vector onto the reflection vector with respect

be rotated through different angles!

/

The matrix 0) preserves the first component of a vector while an-

(0 0
nihilating the second component. Every vector U = (x,y) is mapped into a

vector on the x-axis.

The matrix R = (cps 6 -sin 0
sin 6 cos 6

angle ¢ (theta), in a counterclockwise direction if theta is a positive angle.

)rotates all vectors through the same

There is no change in length, This seems to contradict the notion of a matrix
having vectors whose slopes are not changed but in this casethe characteristic

values are complex; thus, there are no real characteristic vectors.
4. THE CHARACTERISTIC VECTORS OF THE Q-MATRIX

The Q matrix ( i (1)) does not generally preserve the length of a vec-
tor U = (x,y). Also, different vectors are in general rotated through different
angles.

The characteristic equation of the @ matrix is

with roots

which are the characteristic roots, or eigenvalues, for Q.

To solve for a pair of corresponding characteristic vectors consider

(18)G) = 2(5) v w0

Then
L-Nx+y =0
Thus, a pair of characteristic vectors are
X1 = O\IX,X) s |X1| + 0o ,
with slope )
NG -1
my = 5 and X, = (\x,x), | Xo| £ 0 ,

' with slope

m = - (%)
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What happens whenthe matrix Q? is applied tothe characteristic vectors

X, and X, of matrix Q? Since
QX = QAX) = Q\Xy) = Z\QX; = N\X ,

clearly X, is a characteristic vector of the matrix Q? as well as a character-
istic vector of matrix @. The characteristic roots of Q? arethe squares of the
characteristic roots of matrix Q. In general if ) and \, are the character-
istic roots of @ then ﬁ and )\I; are the characteristic roots of Q". But the

N, . n .
characteristic equation for Q" is

N\ - (F + F

- F2y =
1 gt E L F F2) = 0

n+tl n-1 n

; - _F2 = (1B 2 = 5R2
Recalling that Ln = Fn+1 + Fn—l’ Fn+1 Fn—l F][1 = (-1)7, and Ln = 5Fn+

4(—1)n, it follows that, since »; = o = (1 + N5)/2 and Ao =B =(1- N5)/2,

o' =V = @ +N5F )/2 and 7 =) = (@ - \5F )/2

5. FIBONACCI AND LUCAS VECTORS AND THE Q@ MATRIX

Let Un = (Fn+1’Fn) gnd Vn = (Ln+1’Ln) be denoted as Fibonacci and

Lucas vectors, respectively. We note
n+l

and |Vn|2 =LY+ L2= (F2 + (1) 4+ 5F2

2 = P2 2
IUn| - Fn+1 +F n+1 n

n- F2r1+1

+ (1)) = 5(FL +FY = 5

F2n+1'
It is well known that the slopes of the vectors Un and Vn (the ratios
Fn/ i and Ln/ L approachthe slope, (N5 - 1)/2, of the characteristic

vector, Xj.

n+1)

Since Qan = Qm+n, it is easy to verify that

Fm+1Fn+1 * Fan = Fm+n+1

by equating elements in the upper left in the above matrix equation. In a simi-

lar manner it follows that

FreiFoee © FiFuer = P
Fm+1Fn * Fan~1 - Fm+n
Adding these two equations and using Ln 1= Fn ot Fn it follows that

F L + F L = L
m n

m+1 n+1 m+n+1
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From the above identities it is easy to verify that

+1
Q“VO=QV=V ,

n n+l
Q"luy = QU =T,
QnVm = Vm+n+1 ’
QnUm = Um+n+1

6. A SPECIAL MATRIX

1 2
Let P = ( ), then from

2 -1
Ln+1 = Fn+1 + 2 Fn s Ln = 2Fn+1 - Frl ,
5F 41 7 Lpyp T 2Ly B5F) = 2L, - Ly
it follows that
PU, = (Fppq ¥ 2F, 2F 0 - F) =V,
PV, = (L, * 2L, 2L ;- L) =50
Also
PQn 1 2 Fn+1 Fn _ Ln+1 Ln
12 -1 F F " VL. L
n n-1 n n-1
Pan - 5Qn
L L
D( - n>= pP)D@") = 51"}
L L .
' n-1

We now discuss two geometric properties of matrix P, Let U = (xy),
ulz = x2+y2 & 0. '

PU = (x + 2y, 2x - y) |PU%2 = 5&x2 + y?) = 5|u]2.

Thus matrix P magnifies each vector length by ~/5.

If tano = y/x, wesay a = Ta.n_1 y/x, read "« isan angle whose tan-
gentis y/x." Let tano = y/x and tan B = (2x - y)/ & + 2y). From tan (a+p)
= (tan o + tan B)/(1 - tan o tan f) we may now see what effect P has on the

slope of vector U = (x,¥).
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Now (recalling x®+y2 4 0 says x and y are not both zero at the same
time. )

- - - 2 2
tan(a+3)=tan<Tan1¥-+Tan12X Y)=2(X+YJ
X X+2y X2+y2

Thus, since x2+y2 + 0, then

tan @+ B) = 2 .

What does this mean? Consider two vectors A and B, the first inclined at
an angle o with the positive x-axis and the second inclined at an angle 3 with
the positive x-axis and the angles are measuredpositively inthe counterclock-
wise direction. The angle bisector, 3, of the angle between vectors A and
B is such that @ - ¥ = ¥- B whether or not o is greater than B or the other

way around. Solving for ¥ yields
b = (a+ p)a.

Thus y is the arithmetic average of o and B. Also we note that o + 3 = 2¢.

The tangent of double the angle is given by

tan 29 = (2 tan®)/(1 - tan®y) .

Let
N5 -1

tany= —5=

then it is an easy exercise in algebra to find tan 2y = 2, but tan (o + B) =2,
therefore we would like to conclude that the angle bisector between vectors U
and PU is precisely one whose slope is ('\/:5 - 1)/2, but this is the slope of
Xy, the characteristic vector of @. Can you show that X, is also a character-
istic vector of P?

We have shown

Theorem 1, The matrix P = (
vector PU such that

1

° j) maps a vector U = (x,y) into a

@) lpay| = Vs |Ul

and
(2) The angle bisector of the angle between the vector U and the vector PU

is X, a characteristic vector of @ and P. Thus Matrix P reflects vector

U across vector Xj.
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Theorem 2, The vectors U, and Vn are equally inclined to the vector
X; whose slope is (N5 - 1)/2.

Corollary. The vectors Vn are mapped into vectors N5 Un by P and
the vectors Un are mapped into Vn by P.

7. SOME INTERESTING ANGLES

An interesting theorem is

Theorem 3.

L n
Tan Ta.n_1 Ln/Ln+1 - Tan—1 Ln+1 = -I-‘,L-—l-)—
n+2 2n+2
; n+1
-1 -1 _ (1)
Tan { Tan Fn/Fn+1 - Tan Fn+1/Fn+2 /! F
2n+2
Theorem 4.,
F n
Tan ™t 3 L. 3 (—1)m+l Tan—li‘—l——
n+1 m=1 2m

We proceed by mathematical induction. For n = 1, itis easy toverify Tan™11
= Tan L (1/F,).

Assume true for n = k, thatis

F k
Tan™! 7 ko s (™t ran™t -1;:-1——
k+1 m=1 2m
But, by Theorem 3,
F F k
Tan™! —Fk+1 - Tan™! = LS —(——LF—I
k+2 k+1 2k+2
Thus, if
F k
Tan™ ! F k 5 (_1)m+1 Tan™! F————l
k+1 m=1 2m
then
F k k
Tan_l Fk+1 =z (_1)m+1 Tan_l F1 + Ta_n_l F{—l[
k+2 m=1 2m 2k+2
k+1
= 3z ()™ Tan? ?1—
m=1 2m
because Tan_l(—X) = —Tan-lX and (—1)k = (_1)k+2 and the proof is complete.
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8. AN EXTENDED RESULT

Theorem 5., The series

o]
A=z ()™ T
m=1 2m

converges and A = Tan™! (N5 - 1)/2.
Proof: Since the series is an alternating series, and, since Tan_lX is

a continuous increasing function, then

Tan™* F—l— > Tan™t 3 and Tan 10 = 0 .
2n 2n+2
The angle A must lie between the partial sums SN and SN+1 for every N >2
. . . — __1
by the error bound in the alternating series, but SN = Tan (FN / FN+1)' Thus
the angles of UN and UN+1 lie on opposite sides of A, By the continuity of
Tan_lX then
lim -1 _ _ -1 B
e Tan™ (F_/F ) = A = Tan (N5 - 1)/2 .
Comment: The same result can be obtained simply from
F. - Js _ 1\ 20+l
Tan { Tan~L - \/52 Lo gyt ( 52 1 )
n+l ’
. . . . . 5-1
Which slope gives a better numerical approximation to 5 . Fn / le or

Ln/Ln+1? Hmmm?
LXNXOOOAXXX OO
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EXPLORING THE FIBONACCI REPRESENTATION OF INTEGERS
BROTHER U. ALFRED, ST. MARY'S COLLEGE, CALIFORNIA

Every integer maybe representedas the sum of Fibonacci numbers or as
a single such number. What is being considered in this investigation is the
smallest number of different Fibonacci numbers required inthe representation
of an integer. For example, 125 is the sum of 89 + 34 + 2, This seems to be
the smallest number of Fibonacci numbers required to represent 125,

The following question is being proposed: Is it possible to setup an upper
limit to this minimum number of Fibonacci numbers required to represent any
integer? Possibly, there are many approaches to a solution, but one particular
line of development will be indicated here.

We need first of all some notation. A well known symbol is the square

bracket [] which means "the greatest integer in.'" Thus
[6.3] = 6; [5] = 5; [17/3] = 5

Along with this we are going to introduce a similar notation to mean ''the

greatest Fibonacci number in," Thus
[63* = 55; [189/4 1% = 34; [13]* = 13

One way to solve the proposed question may be indicated by the following par-
tially stated theorem:

Theorem. The maximum number of different Fibonacci numbers required
to represent an integer N for which [N]* = F  is givenby [] . The answer
in the bracket is some function of n. Explorers who find this result are en-
couraged to report their solution., In addition, there is a line of proofs that
could be formulated to show that the theorem holds in general.

The above investigation will be reported in the April, 1964, issue of the

Fibonacci Quarterly.




ELEMENTARY PROBLEMS AND SOLUTIONS
EDITED BY S. L. BASIN, SYLVANIA ELECTRONIC SYSTEMS, MT. VIEW, CALIF.

Send all communications regarding Elementary Problems and Solutions
to S. L. Basin, 946 Rose Ave., Redwood City, California. We welcome any
problems believed to be new in the area of recurrent sequences as well as new
approaches to existing problems. The proposer must submit his problem with
solution in legible form, preferably typed in double spacing, with name(s) and
address of the proposer clearly indicated. Solutions should be submitted with-

in two months of the appearance of the problems.

B-24 Proposed by Brother U.Alfred,St.Mary’s College, Calif.

It is evident that the determinant

Fn Fn+ 1 Fn+2

Fn+1 Fn+.2 Fn+3

n+2 Fn+3 Fn+4

has a value of zero. Prove that if the same quantity k is added to each ele-

ment of the above determinant, the value becomes (-—l)n_lk .

B-25 Proposed by Brother U. Alfred.

Find an expression for the general term(s) of the sequence T, = 1, T; =
a, Ty =a, -+« where

T

" 2n-1 _
2n T d T2n+1 - TZnTZn-l
2n-2

T

B-26 Proposed by S.L.Basin,Sylvania Electronic Systems,Mt.View,Calif.
Given polynomials bn(x) and Bn(x) defined by

byx) = 1, Byx) =1
b () = xB () +b ;) (=1
Bn x) = x+1) Bn+1 (x) + bn—l(x) (n =1)

73
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show that

bn(x) = PZn (x)
and

Bn(x) = P2n+1 )
where

2] m

2 i =1-j
= n-j [2]
Pa = 37 (M7 )

=0

m . . m
[E] being the greatest integer less than or equal to 5
B-27 Proposed by D.C. Cross, Birmingham, England.

Let x = cos ¢, [z] is the greatest integer contained in z .

cos ¢ = X
cos 2¢ = 2x% - 1
cos 3¢ = 4x3 - 3x
cos 49 = 8x% - 8x2 + 1
cos 5¢ = 16x% - 20x3 + 5x
cos 6¢ = 32x% - 48x% + 18x% - 1
N :
cosn® = P (x) = ‘?1 Ajn X+2-2] (N = [@+ 1)/2] is
greatest integer function, ) !
Show n
G A, =2
) Ayy g = A0 - A (j = 1,2,--+ N-1)

i) P, (x) = 2xP_ (x) - P ()

then An+2 = ZAn+1 + An

(iv) I An = 3 ,A.
Note: (A1=1, A2=3,7=A3=2A2+A1=2'3+1).
B-28 Proposed by Brother U. Alfred.

Using the nine Fibonacci numbers F, to Fy, (1,2,3,5,8,13,21,34,55),
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determine athird-order determinant having each of these numbers as elements

so that the value of the determinant is 2 maximum,

B-29 Proposed by ‘A.P. Boblétt, U.S. Naval Ordnance Laboratory,
Corona, California.

Define a general Fibonacci sequence such that

F1 = a; F2 = b, Fn = Fn_2 + Fn—l n=3

F F
n

n =

|
=

n2 ~ Tnrl

Also define a characteristic number, C, for this sequence, where C =
(a + b)(a - b) + ab.

Prove: n
- F2 = (-
Fn+1 Fn—-l Fn (-1) C, forallmn
SOLUTIONS

Solutions to Problems B6 and B9 through B15, Vol, 1, No. 2, April, 1963
SOME REFLECTIONS
B-6 Proposed by Leo Moser, University of Alberta, Edmonton, Alberta,

Light rays fall upon a stack of two parallel plates of glass, one ray goes
through without reflection, two rays (one from each interval interface opposing
the ray) will be reflected once but in different ways, three will be reflected
twice but in different ways. Show that the number of distinct paths, which are
reflected exactly n times, is Fn+2'
Solution by J. L. Brown, Jr., Pemsylvania State University, Pennsylvania

All rays which experience exactly n reflections will emerge from the
same face, either top or bottom of the stack; furthermore, if those having n-1
reflections emerge from the top face, then those having n reflections will
emerge from the bottom face. Let us assume, without loss of generality that
the rays having exactly n reflections will emerge from the bottom face as

shown below for the case of two reflections.

- L |
) ); \/\ \ /\ \ - (\ Plate 1
2 { \ y \¥ \/\§ - E Plate 2
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Let @, be the number of distinct paths which have exactly n reflections. If
we consider any emergent ray which has had n reflections (n = 2), then it
must have had its last, or nth reflection from either face 0 or interface 1.
The number of distinct paths having the nth reflection at face 0 is equal to
the number of distinct paths reaching face 0 after n- 1 reflections, or

a Similarly, the paths whose nth reflection is at interface 1 must have

n-1°
had the (n - 1)th reflection at face 2, and the number of distinct pathsis then
equal to the number of distinct paths reaching face 2 after (n - 2) reflections,
or o o Since the two possibilities are mutually exclusive and exhaustive, we
have a =a, 1te o for n = 2. The initial conditions, oy = 1, o; = 2
establish that o = F for n = 0.

n n+2

FIBONACCI SUMS

B-9 Proposed by R.L. Graham, Bell Telephone Laboratories,Murray Hill,N.J.

Prove o 1
2 — =1
n=2 Fn—l Fn+1
and o
Fn
Z —— = 2

n=2 Fn—l Fn+1

where Fn is the nth Fibonacci number.

B-9 Solution by Francis D, Parker, University of Alaska,

Since
1 Fy Frer ~ Foo

1_ 1 1

Fn—1Fn+1 Fn—anFn+l Fn—anFm—l Fn—an FnFn+1

then

o1 _gfr o _ 1 ] fr_],(i_1
n=2 Fn—an+1 n=2 Fn—an FFne 1.1 1.2 1.2 2-3

Similarly,
Fy ne1” Fno1 1 1
F = F - F and
n-1" n+1 n-1"n+1 n-1 n+1
and
o F
s n WP_EJ [l_lJ [l_lJ+Ll_1J+...:_l_+L=2
no Fo T LT 2 173 275 378 F, T,
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Editorial Comment: The above solution to problem B-9 is a good example

of a principle found in many other problems in number theory, namely in form-
ing a sum, it is oftenhelpful to judiciously grouptheterms in a certainfashion.
An example of this may be found in proving the following theorem concerning

the divisor function 7(n). Prove t(n) is odd if and only if n is a square.
LUCAS-FIBONACCI IDENTITY
B-10 Proposed by Stephen Fisk, 'San Francisco, California.
Prove the '""de Moivre-type'" identity,
§ D .
L, + '\f5Fn\ i Lop * \/5an
2 ) 2
where Ln denotes the nth Lucas number and Fn denotes the nth Fibonaceci

number.

B-10 Solution by Charles Wall, Ft. Worth, Texas.

Since
Ln+'\E’Fn_an+Bn+an—ﬁri
2 - 2 >
where
_1++5 g = L= N
- 2 H) - 2 )
we have
P NE
(Ln+ '\/_5Fn> _w P Bnp+anp _ Bnp B an+ 5an
2 - - 2 - 2

B-11 Proposed by S.L.Basin,Sylvania Electronic Defense Laboratory,

Show that the hypergeometric function
n-1

Gx,n) = 2

k:

2Km + k) (x - 8
m-k-1) @kt D)

generates the sequence
3 = = .
G(z,n) = F2n’ n=1,2,3,

B-11 Solution by S. L. Basin, Sylvania Electronic Systems, Mountain View,
California and San Jose State College
n-1
z
k=0
where Un_l(x) are the Chebyshev polynomials of the second kind and

k k
25m + k! (- 1) _
B k-1 @k+Dr = Upa®
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1 n o .n
U () = —2—— {x+ ax?- 1) - x - N2 - 1Y)
n-1 P Xz -1 {

o) 2 {(R) - (2
Observing that

(558) - (258) ana (255 - (15B)
Unl( J_{l+~/5)2n_<1—\f5 }

Comment: Setting x = 3/2, the summation becomes

we have

R S SO i b
oo @RI m-k-1! T 2 \2k+ 1 triangle

See Fig. 1, page 24, October, 1963, Fibonacci Quarterly.

A LUCAS DETERMINANT

B-12 Proposed by Paul F. Byrd, San Jose State College, San Jose, Calif.

Show that

3 i 0 0 - 0 0
i 1 i 0 0

i 1 i 0 0

— >
el 0 0 i 1 0 0 n=1

0 0 0 1 i

0 0 . i 1

n
where Ln is the nth Lucas number given by L; = 1, Ly = 3, Ln+2 = Ln+1

+L, and i = N-1.
n
B-12 Solution by Marjorie Bicknell, San Jose State College, San Jose, Calif.

Let Dn denote the determinant of order n. Expanding the determinant

by its nth row we have, Dn = Dn—-l + Dn—2 with D; = 3, Dy = 4 so that Dn
=L

n+1°
Also solved by William A, Beyer, Los Alamos, New Mexico
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FIBONACCI CONTINUANT

B-13 Proposed by S.L. Basin.
Determinants of order n which are of the form,
Kn(b’ c,a) =

are known as CONTINUANTS

Prove that
K (b.0.a) = £ Ne? - aab)™?! - (¢ -NG? - aap)™']
*Vy -
n 2n+1 Ne? — 4 ab
and show, for special values of a, b, and ¢, that Kn(b,c,a) = Fn+1 .

B-13 Solution by Marjorie Bicknell, San Jose State College, San Jose, Calif.
Expanding Kn(b,c,a) by the nth row we obtain,

(1) K (b,c,a) = K b,c,a) - abK__,(b,c,2)
If u and v are the roots of the quadratic equation x? - cx + ab = 0, then

(c - Ne? - 4ab)

DO | =

2) u = %(c‘ + Nc? - 4ab), v =

Now Kn(b,c,a) = (unJr1 - vn+1)/ (u - v) by induction and Kn(b,c,a) N Fn+1
for values of a, b, and ¢ which yield the quadratic x2 -x -1, i.e., a=c =1,
and b = -1; a=-1 and b=c = 1; a=b=1i=~N-1 and ¢ = 1.

A LITTLE SURPRISE

B-14 Proposed by Maxéy Brooke, Sweeny, Texas and C.R. Wall,Ft.Worth, Tex

Show that
. o 0+l
0 _ 10 > U a0
n = gy 2nd n - 109
n=1 10 n=1 10
B-14 Solution by Charles Wall, Ft. Worth, Texas
3 (2]
Since - Fn & X
n=1 1-x-x2
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then
(=}
n 10 .10 10
2 F (D) =T 70-01 - 89 ~ 89
n=1
and ° (-.10) 10 10
n, _ ={-. _ . _ 4V
2 PR = 75750 - 61~ Tos ~ 109

Also solved by Dermott A. Breault, Sylvania, ARL, Waltham, Mass.
FIBONACCI SEQUENCE PERIODS

B-15 Proposed by R.B.Wallace, Beverly Hills,Calif.,and Stephen Geller,
University of Alaska, College, Alaska.
If Py is the smallest positive integer such that

Fn+pk = Fn mod (10k)

for all positive n, then Py is called the period of the Fibonacci sequence
relative to 10k. Show that Py exists for each k, and finda specific formula

for P asa function of k.

Editorial Comment: This problem is discussed in this issue in a paper by

Dov Jarden which is a reply to Stephen Geller's letter to the editor, p. 84,
April, 1963, Fibonacci Quarterly.

EDITORIAL ASSOCIATES (Cont.)

well as those who have the intention of doing so,
will receive recognition as Editorial Associates.
The Editor should be contacted by anyone who
wishes tobe associated with the Fibonacci Quar-

terly in this manner.
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