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INTRODUCTION 

In o r d e r to cons ider Fibonacci number s , genera l ized Fibonacci n u m b e r s , 

Chebyshev polynomials , and other r e l a t ed sequences all under one heading we 

will d i scuss the sequences genera ted by the homogeneous l inear second o r d e r 

difference equation with constant coefficients, 

(1) u 0 ; u i ; u n + 1 - a u n + b u ^ , for n ^ 1 . 

F i r s t we note how the specia l c a se s a r i s e . If a = b = 1, then the genera l ized 

Fibonacci n u m b e r s , H , d i scussed by Horadam [2] a r e produced. F u r t h e r 

special izat ion leads to Fibonacci n u m b e r s , F , for u0 = 0, Uj = 1; to Lucas 

n u m b e r s , L , for u0 = 2, ut = 1. If a and b a r e polynomials in x, then 

a sequence of polynomials i s generated. In pa r t i cu l a r , If a = 2x and b = - 1 , 

then we have Chebyshev polynomials [ 1:10.11]— of the f i r s t kind, T (x), for 

u0 = 1, \it = x; of the second kind, U (x), for u0 = 1, ut = 2x. 

FIBONACCI-CHEBYSHEV RELATIONS 

Since the same difference equation can be used to genera te these ent i t ies , 

by an appropr ia te in te rpre ta t ion of a, b , u0? and u1? one then expects r e l a -

t ionships to exist between some of them. The Fibonacci and Lucas number s 

a r e r e l a t ed to the Chebyshev polynomials by the equations 

2 i ~ n T (i/2) - L ; i~n U (i/2) = F _ . n w ' n 3 n w ' n+1 

The second of these can be obtained, for example , by consider ing 

U0(x) = 1; Ui(x) = 2x; U n + 1 (x) = 2x l y x ) - V ^ x ) , 

substi tuting i /2 for x, and multiplying by i so that we have 
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U0(i/2) = 1; i ^ U i d ^ ) = 1; i" n " 1 U n + 1 ( i /2) = i"nUn(i/2) + i " n + 1 U n ^ ( i / 2 ) , 

which is the same as the Fibonacci sequence, 

Fj = 1; F2 = 1; F __ = F + F 1 , for n > 2 . 1 J ^ ' n+1 n n - 1 ' 

This close relation leads one to investigate sources for Chebyshev poly-
nomials in order to try to find not too familiar relations involving Fibonacci and 
Lucas numbers, and vice versa. One such standard source for identities in-
volving Chebyshev polynomials is Erdelyi, et ah [1:10.9, 10.11]. Most of the 
results which can be obtained were known as early as Lucas [3]; in fact, much 
of his discussion contains relations with trigonometric identities which lead, 
of course, to Chebyshev polynomial identities, since 

T (cos e) = cos n0 , U (cos 0) = sin (n + 1) #/sin i 

Some examples of such pairs of relations follow. 

m=0 * v ' * 

[ n / 2 ] / n _ m , 
m=0 

n [ n / 2 ] H , m . 
m ! (n - 2m) ! T (x) = S L 2 'til fr-V^-' (2x)n_2m [ I : " - " (22)1. 

n ' 2 ^ m! (n - 2m) ! v ' L v / J m=0 

= K2] n , n _ m 
n ^ n - m \ m 

m=0 

Examples of interesting generating functions are given by [1:10.11 (32), 
(33)] which for x = i / 2 , z = -iu lead to 

- I oo 
(2) 2~2 (1 - u - u2)%l - u/2 + (1 - u - u2) V = u"1 2 2~2 n ( 2 n ) F u11 

n=0 \ n / n 
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(3) 2"2 (i _ u _ u 2 } 4 { i _ u/2 + (1 - u - u2>n = s 2 - 2 n _ 1 f 2 n ) L u11 

If the s e r i e s (2) and (3) a r e mult ipl ied together a s power s e r i e s , then we 
have 

2~ i ( l - u - u V 1 = u - i z ( I 2 " 2 - 1
 k T f f ) ! i ^ ; 2 k l i , L , F t ) u n ;• n=0Vk=0 k ! k ! ( n - k ) ! ( n - k ) ! k n - k | 

However, th is i s a genera t ing function for F , 

2-1(1 - u - u2) = u"1 2 ( F / 2 ) u11 , 
n=0 

so that by equating coefficients and r e a r r a n g i n g somewhat we obtain 

J^hU-fcK-Jl s - ̂ J(2: 
Two examples of explici t formulas can be obtained by substi tuting X = 1, 

x = i / 2 into the second fo rms of [ 1 : 10.9 (21), (22)] , s ince C1 (x) = U (x), 

and simplifying. 

_, , , , m 2m + 1 / m + k + 1 \ . ,_vk 
F2m+1 = ™ kf 

* 2 m + l / m + k + l \ k . 
_Q m + k + 1 [ m - k / l ° ' ' 

^ . n ,m / m + k + l \ , _.k 
2m+2 * ;

 k ^ Q I m - k 

IDENTITIES FOR THE DIFFERENCE EQUATION 

In gene ra l , the solution to the l inear difference equation can be wri t ten 

(4) u n = {z£(uj - Z l u 0 ) - z?(Ui - z 2 u 0 ) } / ( z 2 - zt) 

provided z2 4= Zj a r e the roo t s of the c h a r a c t e r i s t i c equation z2 - az - b = 0. 
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(A suitable modification can be made for z2 = Zj by a passage to the l imi t — 

the formulas mus t be a l te red appropria te ly . ) An in te res t ing method of a r r iv ing 

at this i s given by I. Niven and H. S. Zuckerman [4: pp 90 — 92J0(This method 

can be extended to higher o r d e r difference equations and to non-homogeneous 

equations. F u r t h e r , it has an analog for differential equations. ) If the z ' s 

a r e exp re s sed in t e r m s of a and b and the resu l t ing binomials a r e expanded, 

then an a l te rna te form of considerable use i s obtained, 

/rx o _ n V n \ n - 2 k / o . , x k 
(5) u n = 2 u0 2 ( 2 k ) a (a2+4b) 

0 - n [<n -D/2 ] / Q \ n _ ! _ 2 k „ ic 
+ 2 (2Ul - au0) S U k + 1/ a ( * 

Here we can define sequences from the sums in (5), for n 2: 0. Let <p0 

= 0, (̂ j = 1; Xfl = 2, \ j = a so that 

o-n+1 [ ( Q"1 ) / 2I / n \ n - l - 2 k , , ^ . . . k 
(6) cpn = 2 ^ ( 2 k + l J a ( a + 4 b ) , 

(7) Xn = 2 s ^ k ) a ( a ^ + 4b) 

which cor respond , respec t ive ly , to the Fibonacci and Lucas number s . The 

general sequence, u , cam then be wri t ten as a l inear combination of t he se ; 

i . e . , 

(8) \ = 2 u o X n + 2 ( 2 U l " a u o ) ^ n • 

Since also from (4) we can wri te 

<Pn = ( z 2 " z i ) / ( z 2 " z i ) » 

\i = { ^ ( a - 2 z i ) - z ? ( a " 2 z 2 ) } / (z2 - z i ) > 

and since ZjZ2 = - b , a re la t ion between the <pfs and XTs can be obtained, 
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(9) X = acp + 2hcp - . ' n ^ n r n - l 

This genera l i zes a known formula, L = F + 2 F re la t ing the Lucas and 

Fibonacci n u m b e r s . The companion express ion , 5F = L + 2L becomes 

(a2 + 4b) <p = aX. + 2bX , . x ' n n n - 1 

These can then be used to e x p r e s s u in t e r m s of e i ther the cp's o r the Xrs; 

(10) un = *i<Pn + b u o V l , 

(a2 + 4b)un = (2bu0 + au 1 )X n + b(2ut - a u 0 ) X n _ 1 . 

One point of in t e re s t i s that the l i s t of ident i t ies given by Horadam [2] for 

h is genera l ized Fibonacci n u m b e r s , H , (u0, % a r b i t r a r y ; a = b = 1) will 
n ' 

y ie ld an analogous l i s t for the general c a s e , with suitable modifications of h is 

formula (1), and with the exception of his formula (16). This l a t t e r , " P y t h a -

gorean re la t ion , n i s based upon the identity 

H 2
 Q - 4H ± 1 H . - H 2 = 0 n+3 n+1 n+2 n 

for which the analog i s 

un+3 " a < 3 b + a 2)VlV2 " b3un = ( V ^ e ^ " a> -

where 

(11) e = u? - 2L\it\i0 - bu2 . 

Unless this ex t ra t e r m i s ze ro ; i . e . , unless b2 = a or u0z = uu the Py tha -

gorean re la t ion does not genera l ize . In the se t of ident i t ies for the genera l 

equation the special case <p in t roducedin (6) plays the s ame ro le with r e s p e c t 

to the u as do the Fibonacci numbers with r e spec t to the H . For example , 

(10) provides an extension of Horadam ' s (7); i. e. , if a = b = 1 so that u = 

H n and replac ing n by r + 1, then (10) becomes 
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H , - — HAF + HI F , - . r+1 u r v r+1 

Two further examples of how one can generalize Horadamfs formulas fol-
low. We consider his (8) and (12), several of the others being special cases of 
these. 

(8) H I _ = H . 1 F ' + H F _ L 1 ; 
7 n+r n-1 r n r+1 ' 

(12) H H ^ . - H H _,_ , ^ = (- l)n"SeF F ^ _, - . 
v ' n n+r+1 n-s n+r+s+1 v ' s r+s+1 

The general expressions are 

(12) u = bu „ <P + u <P „ . v ; n+r n - l ^ r n^r+l » 

(13) u u , , - - u u , , , i =• (-b) ecp w , , - , v ' n n+r+1 n-s n+r+s+1 ' YsY r+s+1 • 

where e is defined by (11); ^„ , by (6). 
Proof of (12). We can write, using (10) 

u ,- = aiu-icp + buncp ., ) + b(ut(^ - + bun<y? n ) n+1 v l v n u v n - l 7 v i r n - l u v n - 2 7 

and then replace hep __2 by <p - a.cp _1 and aut + bu0 by u2 to obtain 

u , -. = Uo <p + bui <P * . • n+1 ^Mi 1 Y n- l 

Hence, by induction, the generalization is obtained. The substitution of r + 1 
for n and n - 1 for r with a = b = 1 reduces this to the case for H f s . 

n 
Proof of (13). If the appropriate expressions from (4) are substituted in-

to the left side of this equation, and the result is simplified, the right side can 
then be obtained. Other formulas can sometimes be generalized in the same 
manner. 

The analog to Horadamfs (13), 

b2u3 + au3 , n - (a2 + b)u u2, ' =• (-b) e(au , - — bu ) , n n+1 x ' n n+1 v ' v n+1 n ' ' 

is more complicated. It reduces to 
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H 3 + K\ n = 2H H 2
± 1 + ( - l ) n e H , . n n+1 n n+1 x ; n - 1 

We note h e r e the mispr in t ; H . was omitted. 
n - 1 

GENERALIZED CHEBYSHEV POLYNOMIALS 

In (1) let a, b , u0, u.t r e p r e s e n t polynomials in x. Then u becomes a 

polynomial in x and the var ious formulas (5) — (13) can be in t e rp re t ed as 

formulas involving polynomials . F r o m (8) we note that these polynomials u (x) 

can be exp re s sed in t e r m s of " F i b o n a c c i / ' cp (x), and " L u c a s , " X (x), poly-

nomia ls . The polynomials cp (x) now play the s a m e special ro l e as the num-

b e r s cp ; for example , formula (12) becomes 

U n + l ( x ) = b < x ) u
n - i ( x ) ^ r ( x ) + u

n ( x ) ^ r + l ( x ) • 

The special case a(x) = 2x, b(x) = - 1 leads to the se t of polynomials , 
H (x), corresponding to the numbers H . We then have analogously from (8), 

Hn(x) = H0(x)Tn(x) + (Hi(x) - xH 0 (x ) )U n _ 1 (x ) , 

where T (x) = — X (x) and U .(x) = cp (x) a r e again the Chebyshev poly-

nomia ls . Other ident i t ies can be wri t ten by inspect ion from Horadam' s l i s t 

for these T genera l i zed Chebyshev" polynomials . 

We note finally that a generat ing function can be obtained in the usual 

manner . One a s su me s a form g(x,z) = 2u (x)z and obtains a re la t ion by 

using the difference equation. F o r the polynomials u (x) this is 

gn(x,z) = {u0(x) + (Ui(x) - a(x)u0(x))z} {1 - a(x)z - b (x )z 2 } - 1 . 

Hence the specia l c a s e s X (x) and cp (x) can be genera ted from 

g x (x ,z ) = {2 - a(x)z}{l - a(x)z - b(x)z2}"1 , 

g^(x,z) = z { l - a(x)z - b (x )z 2 } - 1 

REFERENCES 
See page 19 for the r e f e r ences to this a r t i c l e . 



HISTORY OF THE FIBONACCI QUARTERLY 

Toward the close of the year 1962, a small 
group of mathematicians in Northern California 
promoted the idea of an organization devoted to 
the study of Fibonacci numbers and related top-
ics. Almost simultaneously the Fibonacci Quar-
terly was conceived. Sponsored by a group of 
charter members who backed the project finan-
cially., the publication made its first appearance 
in the spring of 1963. 

At first, subscriptions came In slowly, but 
with some advertising and favorable notices in 
various magazines, especially t h e Scientific 
American, the tempo increased and, amazingly, 
continued strong all during the summer. As a 
result, September 1st saw the Quarterly with 
six hundred subscribers. By the close of 1963, 
the total should approximate the one thousand 
mark. 

To the editors, this response has been most 
heartening inasmuch as it seems to indicate that 
the mathematical public has looked with favor on 
this type of magazine and its subject matter — 
the famed Fibonacci numbers. 

CHARACTERISTICS OF THE QUARTERLY 

The Fibonacci Quarterly has a number of 
interesting features. The most obvious is the 
very specialized nature of its scope. The first 
natural reactions were: Will people subscribe 
to such a magazine of limited field? The r e -
sponse to this question is evident in the action of 
subscribers. Will it be possible to secure enough 

(Continued on p. 14) 
8 



FIBONACCI Nil 
MICHAEL J , WHINIHAN9 MEBFGRD SENIOR HIGH SCHOOL 

The termNim refers to any mathematical game in which two players r e -
move objects from one or more piles. Fibonacci Nim was invented by Dr. 
R. E. Gaskell of Oregon State University, and is a variation of One Pile [ l ]. 
In One Pile, two players alternately remove at least a, but no more than q 
objects from a pile of n objects, the winner being the player who removes the 
last object, where n is a variable integer, and a and q are predetermined 
integral constants. The strategy is to leave your opponent a situation where 
n = 0 modulo (a + q). This is a "safe position. " When n = i modulo (a + q) 
where i t 0, the position is "unsafe.?T 

An unsafe [2] position is defined as one in which at least one winning move 
is possible. A safe position is one in which there are no winning moves pos-
sible and every move on this position must make the position unsafe. 

In Fibonacci Nim, the determination of safe and unsafe positions is 
slightly more complex than in One Pile. 

RULES OF THE GAME 
The rules of Fibonacci Nim are the same as in One Pile with a = 1; but 

q, a constant in One Pile, is a variable in this game. On the first move, qt 

is equal to n - 1. After the first move, q is equal to twice the number of 
objects removed by the opponent on the (m - l)th move. Let r __. be the 
number of objects removed by a player on the (m - l)th move. Then: q = 
2r _ v For example, if n = 16, on the first move player A may remove up 
to 15. If he removes 3, player B may remove as many as 6, since q2 = 2r4 

= 2 - 3 = 6. If player B removes 4, then A may remove as many as 8, and 
so on. 

STRATEGY 
As in all Nim games, the strategy of Fibonacci Nim calls for the deter-

mination of safe positions. The simplest way to determine whether any given 
situation is safe is to first represent the number of objects left in a Fibonacci 
number system.* 

*See comment No. 1 at the end of this article. 
9 
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To r e p r e s e n t a given number n in the binary sys t em, the binary s e -

quence i s used , where b = b _., + b - , and ht i s defined as 1. Let the 

Fibonacci sequence be defined in the following way: f = f + f „, where 

f_A is defined as 0 and f0 as 1, f1 through f6 a r e then de te rmined as 1, 29 

3, 59 8 and 13. 

It i s general ly known that by using e i ther a 1 or a 0 in the nth digit 

from the left of the decimal point to r e p r e s e n t the p re sence or absence of b , 

any number may be r ep resen ted . Similar ly ? using fls f2, e tc . in p lace of 

b l s b 2 j e tc . , any number may be r e p r e s e n t e d in a Fibonacci number s y s t e m , 

if one r e m e m b e r s to s t a r t mark ing the l a rges t digits f i rs t . Thus , 8 i s a l -

ways r e p r e s e n t e d as 10000f and never as 1100,. o r 1011f . Notice that using 

this ru le not only makes the rep resen ta t ion of any given number unique, it also 

makes it imposs ib le for two l f s to appear in a number without at l eas t one 0 

separa t ing them.* 

In the rep resen ta t ion of any number n > 0 in the Fibonacci number s y s -

t e m , the re mus t be at l eas t one 1. Let the 1 that i s far thes t to the r ight on 

the mth move be F . If n - 19, = 101001,, F• = ft = 1, . If n = 18, 
m ten i ten ten = 101000P, F = f4 = 5. If. on the mth move, q < F , the si tuation Is f 4 9 * ^m m? 

safe. If q — F , the situation is unsafe, and the winning move is to r emove 
^m m ? f & -

exactly F objects . For example , if on the f i r s t move n = 10, = 10010f, 

qt = 9 and F 1 = 2. Since qt > F l s the situation i s unsafe and the winning 

move i s to r emove exactly 2 objects . If p layer A r emoves 2 objects , then for 

p layer B , n = 8 = 10000f5 q2 = 2rx = 4, and F 2 = 8. Since q2 < F 2 , 

the si tuation i s safe , and p layer B will lose unless p layer A makes a mis t ake . 

PROOF 

To prove the s t ra tegy c o r r e c t , it must be proven that unsafe posi t ions can 

always be made safe and that safe posi t ions can only be made unsafe. 

FIRST RESULT 

Any unsafe posit ion can be made safe. 

By definition, on the mth move. F can be removed from an unsafe j » 5 m 

position. If F = n, then by removing F objects the game i s automatical ly 

won. If n > F then, from the definition of F , t he re i s another 1 , which m ' m* • ' 
i s the second 1 from the r ight . Let the Fibonacci number that this 1 r e p r e -

*See comment No. 2 at the end of this a r t i c l e . 
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sen ts be f, . Let the Fibonacci number that F r e p r e s e n t s be f.. It has a l -ls: m ^ i 
ready been shown that between any two l ' s in a Fibonacci r epresen ta t ion of a 

number , that the re mus t be at l eas t one 0. It follows that t he re i s a t l eas t one 
Fibonacci number g r e a t e r than f., but l e s s than f. . Let f. be the next F i b -

i k j 
onacci number after f.. It may or may not be the immedia te p r e d e c e s s o r of 
f
k-

m 

f. 
i 

2f. < 
l 

2f. 
i 

q m + l 

< f. 
3 

f. + f. 
3 i 

< f
k 

2F = 2f. m l 

V + i y fk 

has been removed. 

q m + l < F _, m+1 

But f, = F , . , after k m + 1 ' 

Thus , by removing F objects from an unsafe posit ion on the mth move , 

the posit ion will be safe on the (m + l ) th move. 

SECOND RESULT 

Any move from a safe posit ion mus t make it unsafe. 

Since any move on a safe posit ion on the mth move can never take as 

many as F objects , i t follows that F ,., < F . Let n on the mth move J m J 9 m+1 m 
equal c + F = c + f.. Let n on the (m + l) th move equal c + c, + F ' = 

H m i ' x m+1 c + Ci + 1 . Suppose CH + f, can be wri t ten in the form f. 1 + f. 0 + f. _ • • • 1 h l n i - l i -o i -5 
f + f If f. I s wr i t ten 1000000 • • • 9 i. e. , a 1 followed by i - 1 0 ' s , 

then ct + t i s wri t ten 101010- • -101 followed by enough 0fs to make i - l 

digi ts . The las t 1, by definition, r e p r e s e n t s f̂ . Let ff + f be the two i m -

mediate p r e d e c e s s o r s of f, . If f is added to c± + f, , i t is found that: 

101010 • • • 101000 • • • 
+ 100 •-• 

1000000 • • . 000000 • • 

In other words . GH + f, + f = f..* If CH + f, i s l e s s than f. - + f. 0 + f. > 5 2 h g i l h i - l i -3 i -5 
' ' ' + t , o + fi , it follows that c -, + L + f h+2 h? l h g 

*See comment No. 3 at the end of this a r t i c l e . 
fL , o + fi » it follows that c-, + L + f < f.. Therefore : 
h+2 h? l h g l 
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(1) r = f. - (ci + f. ) s> f w m i v l h/ g 

This means that any move that l eaves f, as F . mus t r emove at l e a s t f 
objects . 

f ^ f , 
g f 

2f ^ f- + f 

(2) 2f > f, 

q , _, = 2r ^m+1 m 

q m + l ~ 2 f g ( b y e ( * u a t i o n W ) 

q m + l ~ fh ( b y e ( ^ u a t i o n (2>) 
But 

f = F 
Lh m+1 ' 

q ., — F ... and the position i s unsafe. Thus any move on a s a f e p o s i -Hm+1 m + 1 ' J- J ^ 
tion makes it unsafe. 

GENERALIZED FIBONACCI NIM 

Suppose q = r - . Then the binary sys t em will de te rmine F (or ^ ^m m - 1 J J m v 
m o r e c o r r e c t l y , B ). Safe and unsafe posi t ions will be de termined in exactly 

the same way, and the proof pa ra l l e l s the one given above. If the binary s e -

quence i s cal led a Fibonacci sequence of o rde r 1, and the ord inary Fibonacci 

sequence is cal led a Fibonacci sequence of o r d e r 2, i s t he r e a formula for 

finding a Fibonacci sequence of o r d e r n that will satisfy a Fibonacci Nim game 
where q = n • r - ? Dr. Gaskell and the author have worked on t h i s p r o b -^m m - 1 ^ 
l em independently and have found two different methods of de termining an o r d e r 

n Fibonacci sequence. All of the sequences invest igated so far take the form 

of f. = f._1 + f._ , but as of yet no re la t ionship has been found between the 

o rde r of the sequence and p. 
REFERENCES 

1. Richard L. Frey (ed. ), The New Complete Hoyle (Philadelphia, David Mc-

Kay Company, 1947) pp. 705 — 706. 

2. Char les L. Bouton, ??Nim, A Game with a Complete Mathematical T h e o r y , " 

Annals of Mathemat ics , 1901 — 1902, pp. 35 — 39. 
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Comments 

1. While the proof makes use only of the fact that every Fibonacci number is at 
least as large as its immediate predecessor and of the recurrence property, 
fn = f -̂  + f

n_2> i* s n o u l d be noted that Lucas numbers cannot be substituted 
for Fibonacci numbers, because the number 2 cannot be represented in a 
Lucas number system using only l ?s and 0fs. One might define LA as 2 and 
L2 as 1 in order to make a Lucas number system, but this would invalidate 
the required property that every member of the sequence is at least a s large 
as its predecessor. 

2. (Editorial Comment) The uniqueness follows from Zeckendorf's Theorem. If 
the Fibonacci numbers uls u2, • • • are defined by \it = 1, u2 = 2, u = u 
4- u 0 , n ^ 3. n-2* 

Theorem. For each natural number N there is one and only one system 
of natural numbers i1? i2, ••• i , such that 

N = u. + u. + • • • + ui , and i ., > i + 2 for 1 ^ v < d. 
i j i 2

 1 d v +• 1 v 

3. This is an example of how the Fibonacci number system, canbe used to prove 
theorems about Fibonacci numbers. The example shown is a generalized form 
of the theorems concerning the sum of odd or even Fibonacci numbers. Another 
simple example is to find the sum of the Fibonacci numbers through f . One 
simply represents all the Fibonacci numbers through an arbitrary n, 5 for 
example, in the Fibonacci number system: l l l l l f . 11111, = 10101f + 1010,. 
Since 10101,= 100000 , -1 , and 1010, = 10000, - 1. , 11111, = 110000, f f ten f i ten' f f 
- 2, or 1000000, - 2. In other words, the sum of the Fibonacci numbers 
through fn = fn+2 

REQUEST 

The Fibonacci Bibliographical Research Center desires that any reader 
finding a Fibonacci reference send a card giving the reference and a brief de-
scription of the contents. Please forward all such information to: 

Fibonacci Bibliographical Research Center 
Mathematics Department, 

San Jose State College, 
San Jose, California 



CHARACTERISTICS OF THE QUARTERLY (Cont) 

material? Won't we eventually run out of ideas 
or become involved in meaningless repetition? 
So far in the first year, some three hundred and 
twenty pages of mathematics dealing mainly with 
Fibonacci numbers has been produced without 
undue strain. All the evidence points to the fact 
that there are still many potential writers and 
untold possibilities of development. 

However, to obviate the danger of narrow-
ness, the Fibonacci Quarterly is described of-
ficially as nA Journal Devoted to the Study of 
Integers with Special Properties.TT While we have 
not received much material of a non-Fibonacci 
nature to date, authors are invited to prepare a r -
ticles along this line and submit them to the edi-
tor for publication. 

A second characteristic of the Quarterly is 
that it aims to cater to a wide range of people. 
The first half of each issue (approximately 50 
pages) is devoted to mathematical developments 
and favors the professional mathematician or 
those more expert in the field. The second half 
(approximately 30 pages) is more expository and 
at a lower level of difficulty. The aim is to pro-
vide material that canbe read by those who have 
an acquaintance with mathematics and are in-
terested in it, but who do not claim to be pro-
fessionals. We suspect, however, that some of 
the more advanced readers will find this sec-
tion of value and a welcome relief from the stren-
uous activity of part one. 

(Continued on page 20. ) 
14 



LEONARDO FIBONACCI 
CHARLES KING, SAN JOSE STATE COLLEGE, SAN JQSE, CALIFORNIA 

The Fibonacci Quarterly receives its name from Leonardo of Pisa (or 
Leonardo Pisano), better known as Leonardo Fibonacci (Fibonacci is a contrac-
tion of Filius Bonacci, son of Bonacci). Leonardo was born about 1175 in the 
commercial center of Pisa. This was a time of great interest and importance 
in the history of Western Civilization. One finds the influence of the crusades 
stirring and awakening the people of Europe by bringing them in contact with the 
more advanced intellect of the East. During this time the Universities of Naples, 
Padua, Par is , Oxford,, and Cambridge were established, the Magna Carta signed 
in England, and the long struggle between the Papacy and the Empire was cul-
minated. Commerce was flourishing in the Mediterranean world and adventur-
ous travelers such as Marco Polo were penetrating far beyond the borders of 
the known world. 

It is in this growing commercial activity that we find the young Leonardo 
at Bugia on the Northern coast of Africa. Here the merchants of Pisa and other 
commercial cities of Italy had large warehouses for the storage of their goods. 
Actually very little is known about the life of this great mathematician. No con-
temporary historian makes mention of him, and one must look to his writings 
to find information about him. In the preface of his first and most important 
work, Liber Abbaci (I), Leonardo tells us that his father, the head of one of the 
warehouses of Bugia, instructed him to study arithmetic. In Bugia, he received 
his early education from a Moorish schoolmaster. 

Leonardo then traveled about the Mediterranean visiting Egypt, Syria, 
Greece, Sicily, southern France, and Constantinople. He met with scholars 
and studied the various systems of arithmetic then in use. Leonardo was per-
suaded that the Hindu-Arabic system was superior to the methods then adopted 
in the different countries he had visited and that it was even superior to the 
Algorithma and the method of Pythagorus. He busied himself with the subject 
and carried on his own research, intent upon bringing the Hindu-Arabic system 
to his Italian countrymen. The study and research in mathematics so absorbed 
him that he seems to have devoted his life to this pursuit and spent little time 
in commerce which was flourishing at that time and was the favorite occupation 

15 
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of his fellow citizens. Yet most of the applications Leonardo makes in his works 
are in the field of commerce. In one place, he gives a careful evaluation of the 
money systems of the countries of his travels. 

Leonardo returned to Italy about 1200 and in 1202 wrote Liber Abbaci (I), 
in which he gave a thorough treatment of arithmetic and algebra, the first that 
had been written by a Christian. The work is divided into 15 chapters. The 
chapter contents are given here to indicate the scope of the work: (1) Reading 
and writing numbers in the Hindu-Arabic system; (2) Multiplication of integers; 
(3) Addition of integers; (4) Subtraction of integers; (5) Division of integers; 
(6) Multiplication of integers by fractions; (7) Additional work with fractions; 
(8) Prices of goods; (9) Barter; (10) Partnership; (11) Alligation; (12) Solu-
tions of problems; (13) Rule of false position; (14) Square and cube roots; 
(15) Proportions, and Geometry and algebra. 

The last and most important chapter is divided into three parts; the first 
relates to proportions, the second to geometry and the third, to algebra. Each 
of the three parts begins with definitions and demonstrations credited to the 
Arabs, then Leonardo considers six questions , three simple and three complex, 
giving solutions for them. 

Leonardo, in 1228, gave a second edition of the Liber Abbaci which he 
dedicated to Michel Scott, astrologer to the Emperor Frederic II and author of 
many scientific works. Copies of this edition exist today. Leonardo profusely 
illustrated and strongly advocated the Hindu-Arabic system in this work. He 
gave an extensive discussion of the Rule of False Position and the Rule of Three. 
Leonardo did not use a general method in problem solving; each problem was 
solved independently of the others. In the solution of a problem he not only con-
sidered the problem as it might occur, but considered all of the variations of the 
question, even those that were not reasonable. 

In the Liber Abbaci, Leonardo states and gives the solution to the famous 
Rabbit Problem [1, Vol. 1, p. 285]. A pair of rabbits are placed in a pen to 
find out how many off spring will be produced by this pair in one year if each pair 
of rabbits gives birth to a new pair of rabbits each month starting with the second 
month of its life; it is assured that deaths do not occur. 

Leonardo traces the progress of the rabbits: The first pair has offspring in 
the first month: thus two pair. The second month there are three pair, the first 
reproducing in this month. In the third month there are five pair. Continuing 
in this manner through the twelve months. Leonardo gives the following table: 
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0 
P a i r s 

1 
F i r s t Month 

2 
Second Month 

3 
Thi rd Month 

5 
Four th Month 

8 
Fifth Month 

13 

Sixth Month 
21 

Seventh Month 
34 

Eighth Month 
55 

Ninth Month 
89 

Tenth Month 
144 

Eleventh Month 
233 

Twelfth Month 
377 

It is this sequence of numbers, 1,2, 3, 5, 8,13, • • • , that gives rise to the 
Fibonacci Sequence. 

Of the many problems of elementary nature in the Liber Abbaci, the fol-
lowing are given as examples. 

Seven old women are traveling to Rome and each has seven mules. On 
each mule there are seven sacks; in each sack there are seven loaves of bread: 
in each loaf there are seven knives; and each knife has seven sheaths. How 
many in all are going to Rome? 

A man went into an orchard which had seven gates; and there took a cer -
tain number of apples. When he left the orchard he gave the first guard half 
the apples he had and one apple more. To the second he gave half the remain-
ing apples and one apple more. He did the same in the case of each of the r e -
maining five guards f and left the orchard with one apple. How many apples 
did he gather in the orchard? 

A certain man puts one denarius at such a rate that in five years he has 
two denarii and in every five years thereafter the money doubles. How many 
denarii would he gain from this one denarius in 100 years? 

A certain king sent thirty men into his orchard to plant t rees . If they 
could set out a thousand trees in nine days, in how many days would thirty-six 
men set out four thousand four hundred trees? 

Many readers will recognize these problems. 
In 1220, Leonardo wrote Practica Geometriaes which he dedicated to 

Master Dominique s a person of whom there is no record. In this work Leonardo 
systematized the subject matter of practical geometry with a specialization in 
measurements of bodies. He included some algebra and trigonometry, square 
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and cube roots, proportions and indeterminate problems. The use of a survey-
ing instrument called the quadrans is included. The work is skillfully done 
with Euclidean rigor and some originality. 

Leonardo's reputation grew and from his writings it can be seen that he 
had a vast range of knowledge concerning Arabian mathematics and mathematics 
of antiquity, especially Greek. His treatment shows much originality, com-
pleteness and rigor. It is especially noted that his writings did not contain the 
mysticism of numerology and astrology that were so prevalent in the writing 
of his day. 

Because of Leonardo's great reputation, the Emperor Frederick II, when 
in Pisa (1225), held a sort of mathematical tournament to test Leonardo's skill. 
The competitors were informed beforehand of the questions to be asked, some 
or all of which were composed by Johannes of Palermo [1 , Vol. II, p. 227 ], 
who was one of Frederick's staff. This is the first case in the history of mathe-
matics that one meets with an instance of these challenges to solve particular 
problems which were so common in the sixteenth and seventeenth centuries. 

The first question propounded was to find a number of which the square 
when decreased or increased by 5 would remain a square (II)( ). The correct 
answer given by Leonardo was 41/12. The next question was to find by the 
methods used in the tenth book of Euclid a line whose length X should satisfy 
the equation x3 + 2x2 + 1 0 x - 2 0 = 0. Leonardo showed by geometry that the 
problem was impossible, but gave an approximation of the root 1.368808 1075 
• • • , which is correct to nine places. 

The third question was: 
Three men possess a certain sum of money, their shares in the ratio 

3:2:1. While making the division, they were surprised by a thief and each took 
what he could and fled. Later the first man gave up half of what he had, the 
second gave up one-third, and the third, one-sixth. The money given up was 
divided equally among them and then each man had the share to which he was 
entitled. What was the total sum? Leonardo showed that the problem was in-
determinate and gave as one solution 47 which is the smallest sum. 

The other competitors failed to solve any of these questions. Through 
the consideration of these problems and others similar to them, Leonardo was 
led to write his Liber Quadratorum (1225) [No. 1, Vol. II, p. 253] a brilliant 
and original work containing a well arranged collection of theorems from inde-
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terminate analysis involving equations of the second degree such as x2 + 5 = 
y2, x2 - 5 = z2. This work has marked him as the outstanding mathematician 
between Diophantus and Fermat in this field. 

Two or three works of Leonardo that are known are the Flos [1, Vol. II, 
p. 227J (blossom or flower), which contains the last two problems of the tour-
nament; the first problem is found in the Liber QuadratorumT and a Letter Jto 
Magister Theodoris -[1, Vol. II, p. 247], philosopher to Frederick II, relating 
to indeterminate analysis and to geometry. The last three works show clearly 
the genius and brilliance of Leonardo as a mathematician and were beyond the 
abilities of most contemporary scholars. 

The works of Leonardo Fibonacci are available in some universities in 
the United States through B. Boncompagni, Scritte di Leonardo Pisano, Rome, 
(1857-1862) [1]. The first volume contains the Liber Abbaci and the second 
volume contains Patricia Geometriaea the Flos, Letter to Magestrum Theo-
dorum. and Liber Quadratorum. A treatment of square numbers composed by 
Leonardo and addressed to the Emperor Frederick II seems to have been lost. 
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CHARACTERISTICS OF THE QUARTERLY (Cont) 

A third feature is the open-ended nature of 
the publication, Readers are definitely invited 
to participate in mathematicizing—solving prob-
lems, working up articles, continuing discus-
sions that have been left unfinished, etc. Writers 
do not have to wait endlessly before their ar t i -
cles appear in print. An idea canbe propounded 
in one issue and a development resulting from 
it may appear in the next. This lends an element 
of interest and continuity that is badly lacking in 
most other mathematical publications. 

The unified nature of the subject matter 
means that after awhile a steady reader will be-
come conversant with what is being discussed in 
the magazine. He will be able to understand and 
appreciate more and more of each succeeding 
issue andmay eventually find himself a publisher. 

THE FIBONACCI ASSOCIATION 
So much effort has been put into launching 

the Fibonacci Quarterly that the Fibonacci As-
sociation which sponsors this publication has 
momentarily taken a secondary place. But plans 
are afoot for a regular type of organization and 
activity. Already, two Fibonacci conferences 
have been held at San Jose State College and it 
is expected that these will become a regular 
feature of the organization. 

The overall picture at the present time is 
somewhat as follows. Members of the Fibonacci 
Association would, of course, receive the Fib-
onacci Quatrterly. In addition, they would be 

(Continued on page 40) 
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ON THE PERIODICITY O.F THE LAST DIGITS 
OF THE .FIBONACCI NUMBERS 

DOV JARDEN, JERUSALEM, ISRAEL 

In the FIBONACCI QUARTERLY volume 1, number 2, page 84, Stephen 
P. Geller announced some empirical data on the periodicity of the last digits 
of the Fibonacci numbers 1, 1, 2, 3, 5, ••• . Using a table of the first 571 
Fibonacci numbers, published by S. L. Basin and V. E. Hoggatt, Jr . in REC-
REATIONAL MATHEMATICS MAGAZINE issue number 11, October 1962, pp. 
19 - 30, he brought out the fact that the last (units) digit of the sequence is per i -
odic with period 60, and that the last two digits are similarly periodic with 
period 300. Setting up an IBM 1620 he further found that the last three digits 
repeat every 1,500 times, the last four every 15,000, the last five every 150,000,, 
and finally after the computer ran for nearly three hours a repetition of the last 
six digits appearedat the 1,500,000th Fibonacci number. Mr. Geller comments: 
"There does not yet seem to be any way of guessing the next period, but per-
haps anew program for the machine which will permit initialization at any point 
in the sequence for a test will cut down computer time enough so that more data 
can be gathered for conjecturing some rule for these repetition periods. " 

I would like to purse half the money necessary to run a computer that will 
supply the next periods I know. However, since I know the exact period of any 
number of last digits, the money of the whole world will not suffice. The next 
period is 15,000,000. Generally the following theorem holds: 

Theorem 1. The last d > 3 digits of the Fibonacci numbers repeat every 
15»10 " times. 

The proof is based on the following theorems from the theory of Fibonacci 
numbers. 

Notation. A(n) — the period of the Fibonacci sequence relative to n. 
a(n) — the least positive subscript of the Fibonacci numbers 

divisible by n (known as "rank of apparition" of n). 
{a,b, • • •}— the least common multiple of a, b, • • • . 

Theorem 2. A(n) exists for each whole positive n. 
Theorem 3. If n = p1

1p2
2 * • • P-, is the canonical decomposition of n 

into different prime-powers (p1? p2, ' * ' > P^ being different primes and dj, 
d2, • • • , d, being positive integers), then 

21 
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AGO 4A(^),A(V2^),...,A[^) 

Theorem 4. For any odd prime p and whole positive d, 

according as 

A(pd) = a (p d ) , 2a(p d ) , or 4a(pd) 

a(p ) = 2, 0, or ±1 (mod 4) 

For d ^ 3, 

A(2d) = 2a(2d) 

Theorem 5. For d > 3, a (2 d ) = 3 . 2 d 2 . 
For any whole positive d, a( 5 ) = 5 . 
Proof of Theorem 1. Obviously Geller's problem is equivalent with the 

one of determining the period of the Fibonacci sequence relative to 10 for any 
whole positive d ^ 3. Now, by the above theorems, 

A(10d) - A(2d5d) = {A(2d), A(5d)} 
= {2a(2d), 4 a ( 5 d ) j 
- {2- 3 • 2 d ~ 2 , 4 - 5 d } 
= 4 {3 . 2 d " 3 , 5d} 
= 4 - 3 . 2d~3 • 5 d 

= 15 • lO*"1 . 

INOTICE TO ALL SUBSCRIBERS!.1! 

Please notify the Managing Editor AT ONCE of any address change. The Post] 
|Office Department, rather than forwarding magazines mailed third class, sends 
them directly to the dead-letter office. Unless the addressee specifically r e -
quests the Fibonacci Quarterly be forwarded at first class rates to the new ad-
dress , he will not receive it. (This will usually cost about 30 cents for first-
class postage.) If possible, please notify us AT LEAST THREE WEEKS PRIOR| 
to publication dates: February 15, April 15, October 15, and December 15 



SOME- .REMARK'S ON-CARLITZ' FIBONACCI ARRAY 

CHARLES R, WALL, TEXAS CHRISTIAN UNIVERSITY, FT. WORTH, TEXAS 

Recently in this journal [Vol. 19 No. 2S pp. 17—27] Carl i tz defined a 

Fibonacci a r r a y . Among the p rope r t i e s not included in his d iscuss ion a r e the 

following summation formulas : (Recall u n = F ;u., = F *u = u . +u ^ ) 
0?n n ' l ,n n+2' r ? n r - l , n r-2,n' 

r 
(I) 2 u = | [(r + 1)L . - F 1 1 , 

' „ r - n . n 5 L ' r+1 r+1 J 9 

n=0 * 

n=0 9 

(HI) 2 ' ( T) u = | [ 2 r + 1 L , - 2 1 , 
• ; ^ 0 V n / r -n 9 n 5 L r+1 J * 

r , i / \ f 0 if r odd or r = 0 
(IV) y (-1) r u = < o c ( r - 2 ) / 2 . , / o T+ 
v ; - o ^ n ' r - n * n 1 2 • 5X " if r / 2 e J 

The s imi l a r i t i e s between the formulas above and the four below should be noted: 

2 F F = f [ r L - F 
n r - n 5 L r i n=0 

r r 0 if r odd 
2 (-1) F F = < „ ., 

n ' n r - n | F if r even 
n=0 I r 

r 
E ( M F F - | [ 2 r L - 2 1 , 

A n n r - n 5 L r ' * 
n=0 \ ; 

r i / \ f 0 if r odd or r = 0 
f / " 1 ' C ) F n F r - n = { 2 • 5 ( r ~ 2 > / 2 if r / 2 e J + 

n=0 

Because of an overabundance of p rope r t i e s in Car l i t z ' d iscuss ion, we may 

genera l ize his a r r a y in two ways , taking Et = p , H2 = p + q s 

23 
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H '= H + H n . n+1 n n - 1 

We make no at tempt to genera l ize all h is r e s u l t s , but consider only the s imp le r 

ones . Arabic numera l s r e f e r r i ng to formulas co r respond to those in Car l i tz 1 

a r t i c l e . 

I. FIRST GENERALIZATION 

We define 

(l f) 

(2!) 

GA = H 0,n n 

G l , n " Hn+2 ' 

as the f i r s t two rows of the genera l ized a r r a y G. Fo r r > 1 we define G 

by means of 
r . n 

(3?) 

It follows that 

G = G , + G 0 rp i r - l , n r - 2 , n 

G pu + qu .. ^ r , n ^ r , n - l 

and 

(4!) G 
r ,n 

G -. + G 0 r , n - l r9n~2 

F r o m these p rope r t i e s Table I i s easi ly computed. 
Table I 

ARRAY G 

•v. n 

0 
1 
2 
3 
4 

0 

q 
p + q 
p + 2q 
2p + 3q 
3p + 5q 

1 

P 
2p + q 
3p + q 
5p + 2q 
8p + 3q 

2 

p + q 
3p + 2q 
4p + 3q 
7p + 5q 
lip + 8q 

3 

2p + q 
5p + 3q 
7p + 4q 
12p + 7q 
19p + llq 

4 

3p + 2q 
8p + 5q 
lip + 7q 
19p + 12q 
30p + 19q 



1963 ] SOME REMARKS ON CARLITZ' FIBONACCI ARRAY 25 

The symmet ry proper ty (5) obviously fails s ince G0 t 4= Gt 0 . 
If we put 

GO 

(6!) g j x ) - 2 G^ x11 

n=0 * 

we find that 

(*•) go(x) = q + PX - ^ , g,W = E^JL±^ 
1 - X - X2 1 - X - X2 

We also have 

(8?) g r (x) = g r ^ ( x ) + g r „ 2 (x ) , 

so that 

H + xH _,, + q ( F - xF , ' 
/r,.v , . r r+1 ^" r r + 1 ' 
(9?) g j x ) = 

Putt ing 

we have 

r 1 - x - x2 

00 • °° r n 
g(xsy) = 2 2 G x y 

r=0 n=0 

- H + yH + q ( F r - y F r + 1 ) r 
g(x,y) = s • x 

r=0 1 - y ~ y2 

so that 

(li.) g(x,y) - ?L±IL1^^L±^ 
(1 - x - x2) (1 - y - y2) 

It appears that 

(13f 
G i, i - G = (-1) (p - q) 

r + l , r - l r , r x . Xl H / 

G , L l - G = (-l)rp r-l,r+l r,r f * 
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Indeed, following Carlitz' procedure we find that 

(14') 

(15') 

G r + 2 , r -2 " Gr,r = ^ + ± * " 2<*> 
G r -2 , r + 2 " G r , r = . ("D^ 1 <P + «D 

G r + 3 , r - 3 " Gr,r = ^ < * " «» 
G r - 3 , r + 3 " G r , r = <-!>*<* +2«I> 

and, in general, 

G - G ( - l ) r + S + 1 F (F p - F , q) 
n f i f , / r+s , r -s r , r ' s v s s+1^1' 

G - G = (-if s LF H 
r -s , r+s r , r ' s s 

From (16f) we note that 

(5T) G = G + (- l ) n F q 
x ' r ,n n.r v ' r -n ^ 

We also note that 

n-1 J 2 . F H if n even 
(17f) 2 G = < 0 ^ n n „ ., , , . 

r=0 r ' r 1 2 - F n + l H n - l " q l f n o d d 

Among the elementary properties that do not generalize are (10) and (12); 
however, the latter failure is the basis for the second generalization. The 
summation formulas in the introduction generalize as 

r 

<r> S G r -n ,n = ! V? + D L r + l " F r + 1 JP + I f 2 ( r + D L r + F r + l l * ' n=0 

(n*> 2 ( - D n G r _ n n = q F r , 
n=0 ' 

(HI') 2 ( T ) G = \ [2r+1L ±1 - 2]p + |- f2r+1L + 31 q , 
n_Q \ n / r-n,n 5 L r+1 ^ 5 l r ' H ' 
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' q If r = 0 

(IV') 2 ( - i f ( i W n n = < 5 ( r ~ 1 ) / 2 . q if r odd 
n = 0 Vn / r - n » n ) vC(r-2)/2 . , r T+ 

V. (-2p + q)5v ; / if ^ €j 

II. SECOND GENERALIZATION 

We define 

(12") H = H H + H , 
' r , n r n r+n 

It immedia te ly follows that 

(1") HA = H (q + 1) , 
v ; 0sn n ^ ' ? 

(2") H- = pH + H _ 
x ; l , n ^ n n + 1 

(3TT) H = H - + H • 
v ' r , n r - l , n r - 2 , n 

(4") H = H - + H 0 , 
v ; r ? n r , n - l r , n - 2 * 

(5Tf) H = H 
x ; r , n n , r 

See Table II for a r r a y H. We also note that 

H = p2 F F + q 2 F . F _ , + p q ( F F - + F , : r , n r n ^ r - 1 n - 1 . * ^ v r n - 1 r - 1 

pF , + qF , . ^ r+n ^ r+n -1 

We put 

(6") h (x) = L H x n 

. n=0 r ' 

and see that 

(7") h0(x) = — , ht(x) = 
Ho,o + x H - i , o H o i + x H - l , i 

1 - X - X2 1 - X - X2 
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Table II 
A r r a y H 

r ^"\^ 

0 

1 

2 

3 

4 

0 

q2 

+q 

pq 
+P 

q2 

+pq 
+P 
+q 

q2 

+2pq 
+2p 
+q 

2q2 

+3pq 
+3p 
+2q 

1 

pq 
+p 

P2 

+P 
+q 

p2 

+pq 
+2p 
+q 

2p2 

+pq 
+ 3p 
+2q 

3p2 

+2pq 
+5p 
+3q 

2 

q2 

+pq 
+ P 
+q 

p2 

+pq 
+2p 
+q 

P 2 

+q2 

+2pq 
+3p 
+2q 

2p2 

+q2 
+3pq 
+5p 
+3q 

3p2 

+2q2 

+5pq 
+8p 
+5q 

3 

q2 

+2pq 
+2p 
+q 

2p2 

+pq 
+3p 
+2q 

2p2 

-fq2 

+3pq 
+5p 
+3q 

4p2 

+q2 

+4pq 
+8p 
+5q 

6p2 

+2q2 

+?pq 
+13p ' 
+8q 

4 

2q2 

+ 3pq 
+3p 
+2q 

3p2 

+2pq 
+5p 
+3q 

3p2 

+2q2 

+5pq 
+8p 
+5q 

6p2 

+2q2 

+7pq 
+13p 
+8q 

9p2 

+4q2 

+12pq 
+21p 
+13q 

But by (3n) we have 

(8??) h r (x) = h r - 1 ( x ) + \ „ 2 ( X ) • 

so that 

(9") h (x) = -2* -
1 - X - X2 

Putting 

h(x,y) = 2 2 H x r y n 

r=0 n=0 z »n 
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we have TT TT °o f-T + y.H . 
u/ \ 0,T J - l , r r 

• h(x,y) = 2 l *- x 
r=0 1 - y - y2 

(11") 
= q ( l + q) + (P - q ) ( l + q)(x + y) + xy (p2 - p + 2q + 2pq + q2) 

(1 - x - x2) (1 - y - y 2 ) 

F r o m (12!f) we have 
H , ~ H = H , H - H 2 

r + s , r - s r s r r+s r - s r 
so that 

(13") H _ , - H - (~ l ) r e , 
x ' r + l , r - l r s r } ? 

(14?f) H r + 2 s r - 2 ~ H r s r = ^ ' e -

<15"> W - S - Hr,r = ( ™ 1 ) r e 4 • 
(16ft) H , - H - ( _ i ) r + s + 1

 e F 2 , 
' r + s , r ~ s T$T ' s * 

where e = p2 - pq - q2. 
The summat ion formulas previously r e f e r r e d to genera l ize as 

d") I H = (r + l ) H r + q H r - f F r + f [ (H + H >p + & + H 
n=0 * 

r J 0 If r odd 
(IIn) 2 (~ l ) n H = / q ( F , + qF j_1 + 2pF ) , ' 
v ; _ n r~-nsn \ ^ r - 1 r+1 ^ r ' J 

1 1 - 0 U (p - p 2 ) F ^ if r even 

( i n"> = J n ) H r -n»n = ^ r + \ P^Vl + H r -1> + ^ r + H r -2> " 2 e J 
r 
2 

n=0N 

f 0 if r odd 

(IV") 2 ( " i f ( n ) H
r ~ n n = { q + q2 if r = 0 

- ° U / S l - 2 * 5 < r - 2 > / 2 if r / 2 6 j 

AYvVWVVW''̂ V\\WX\VVV\Vy<WV\ 



RECIPROCALS OF GENERALIZED FIBONACCI NUMBERS 

DMITRI THORO, SAN JOSE STATE COLLEGE 

One of the oldest p rocedures for the numer ica l solution of f (x) = 0 i s 

the c l a s s i ca l r egu la falsi method. This " ru l e of fa lse posi t ion" i s given by the 

i te ra t ion 

x - f (x ) - x f (x . ) n - 1 v n ; n v n - 1 ; 

Xn+1 " f ( x ) - f ( x - ) 

where x4 and x2 a r e the init ial e s t ima tes . (It may be noted that the regula 

falsi method i s simply inve r se l inear in terpola t ion . ) 

F o r the innocuous equation x2 = 0, this i te ra t ion reduces to 

x . x n - 1 n x n+1 x ., + x n - 1 n 

If we define the genera l ized Fibonacci numbers by 

Ft = a, F 2 = b , F 3 = a + b , F 4 = a + 2b, • • • 

F = F + F 
n+2 n+1 V 

i t immedia te ly follows that with s ta r t ing values x1 = l / a , x2 = l / b , th is appl i-

cation of regula falsi y ie lds the r ec ip roca l s of the genera l ized Fibonacci num-

b e r s s ince 

F F 
i+1 i+2 
1 - + T , — F . , , + F . l f t F . F . , - F . | 0 i+1 i+2 i+3 

l + l 1+2 

A W M V W W ^ ^ 
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FIBONACCI EXPONENTIALS AND GENERALIZATIONS 
OF HERMITE POLYNOMIALS 

K. W. GOULD WEST VIRGINIA UNIVERSITY MORGANTOWN, W. VAo 

Little seems to be known about series of the form 

OO 

(1) 2 A x F n 

A n 

n=0 
or 

OO 

(2) 2 A x L n 

A n 

n=0 

where the exponents are Fibonacci and Lucas numbers, respectively, defined 
by 

n , n /ox _, a - b T n , , n , , 
(3) F = 7—- , L = a + b , a + b . 
v ' n a - b 9 n ' 

It may therefore be of interest to point out that Fibonacci exponentials are 
intimately related to some generalizations of Her mite polynomials [1]. The 
existence (or non-existence) of certain generating functions for these generalized 
Hermite polynomials would possibly shed some light on series of the type (1) 
and (2). 

r In the paper [ l ] ,a function H (x, a,p) was introduced by the definition 

(4) Hj(x,a ,p) = ( - l ) n x - a e P x r D ^ ( x a e - P x r ) , 

which gave the generating function 

(5) (i-^V^-^-.Z ^Rr 
V x } n=0 n! n , Hn (x,a,p) . 

This expansion gives at once in a formal sense 

(6) / n = eP(a-b)Fn = Q m " ( a ^ ^ ^ 

where p9x satisfy p(a - b) = log x. 
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Therefore we have 

(7) Z Anf/n = a s i S j ^ L . 2 A n t % ( a , m , p ) , 
.n=0 n v r > / k=0 *" n=0 n K 

from which it is evident that it would be desirable to establish simple generat-
ing functions of the sort 

00 

(8) Gj = £ A n t n H ^ ( a , m , p ) 
11=0 

for the generalized Hermite polynomials. 
. For the Lucas numbers we have 

x L n = x a B . x*>n = e P a n . ePbn , with p = log x , 

and, formally, we have from (5) 

(9) eP a n = S f r H?(at0,p) . 
k=0 K- K 

Consequently we find 

(10). xL« , ^ | y 2Q ( J
k ) ( g ) J H ^ ( a . 0 . p ) I I k - J < b . 0 . p ) . 

With this approach to a series of the type (2) we should next have to find bilinear 
generating functions of the form 

(11) G2 * 2 AntnHI!(a9u,p)HJJ(b,v,p) , 
n=0 J 

which seem difficult to obtain. Of course this is not the only way to relate the 
Lucas numbers to the H functions, but it is suggestive of new avenues of 
research, 

One may readily verify (as was found in [1]) that an explicit formula for 
the H functions is 

(12) HNx,a ,p) = < - l ) V s p
k * _ z l ' 1 ) [ } )[ n J • 

•k=0 *• j=0 
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In (7) m Is a p a r a m e t e r and we may take m = 0 for our pu rposes . Thus 
we find 

S A n t n H j ( a . 0 . P ) 
n=0 

(13) 
k s S °® n 

s=0 ..•^O^K 
so that we should have to find some rea l ly s imple sum for a s e r i e s of the type 

n=0 

and this a lso s e e m s difficult. In the case A = 1 (for all n) i t i s poss ib le to 

sum this s e r i e s as follows. 

In genera l 

(15) 2 f(jn) = h Z 2 w S n f ( n ) 5 with oo. = e 2 r r l / j . 
n=0 J s= l n=0 J J 

This gives the summat ion formula 

(too.) 
< l , 5 ^ 1 , 

0 0 / • \ • -i J ( t o o . ) 

(,., « ; ^ - « — ^ a , | t | 
n=0 N ' J s= l (1 - tco.) 

J 

so that in pr inciple we have a (complicated) genera t ing function for (13). 

Another di rect ion in which we may go to find generat ing functions i s s u g -

ges ted by the second general iza t ion of Hermi te polynomials given in [ 1 ] . By 

definition 

(17) gT
n (x,h) = e h D l " x n , D = D x , 

and this yie lds the generat ing function 
oo YL 

(18) e t x + W r = 2 t- gr ( x > h ) _ 
n=0 
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Thus in a formal sense 
00 k 

(19) eP^n = e ~ a z S jL. g* (z,p) . 

Two such expansions, with parameters a and b, might be multiplied 
together or perhaps combined with the expansion (9) in order to obtain generat-
ing functions involving Fibonacci and Lucas numbers as exponents. It seems 
clear that what is needed is a collection of interesting and simple generating 
functions for the generalized Hermite polynomials. It is hoped to offer further 
results in this direction in a later paper. 
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LINEAR RECURRENCE RELATIONS — PART II 
JAMES A. JESKE, SAN JOSE STATE COLLEGE 

1. INTRODUCTION 

By applying the exponential generat ing function t ransformat ion 

00
 fn 

(1.1) Y(t) = 2 y ^7 , ; w _ J n n 
n=0 

we der ived in P a r t I of this a r t i c l e [1 ] an explicit formula for the genera l so lu-

tion of the homogeneous l inear r e c u r r e n c e re la t ion 

k . k 
(1.2) L 1 (E)y = 2 a. EJ y = 2 a .y . = 0 , 

k ; n . A 1 J n • n J n+J 

where the coefficients a. were cons tan ts , and the t rans la t ion opera tor E^ was 

defined by 

E j y n = y n + j (5 = 0 , 1 , . . - . k ) . 

In the p r e s e n t p a r t of this a r t i c l e , we d i scuss the non-homogeneous r e c u r r e n c e 

re la t ions having var iab le coefficients. 

2. EXPLICIT SOLUTION 
OF A NON-HOMOGENEOUS RECURRENCE RELATION 

We consider the l inear non-homogeneous r e c u r r e n c e re la t ion 

k 
(2.1) 2 a. y . = L, (E) y = b 
x ' - ^ 1 n+i kv ; J n n 

with constant coefficients, and where the roo t s r l s r 2 , • • • , r, of the c h a r a c -

t e r i s t i c equation L, (r) = 0 a r e all dist inct. Multiplying both s ides of (2.1) by 

t n / n ! and summing over n from 0 to 00 yield the t r ans fo rmed equation 

(2.2) Lk(D)Y = B(t) , [ D = ^ 

where 
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(2.3) B(t) = 2 b £ . 
n=0 

Now (2.2) is an ordinary Linear differential equation whose genera l solution i s 

k r . t 
(2.4) Y(t) - Y (t) + 2 c e 1 , 

p i=l 1 

where , by the method of var ia t ion of p a r a m e t e r s , the pa r t i cu l a r solution Y (t) 

can be e x p r e s s e d by 

f p ( t / .~, Li! ( r . ) ~ nf * ^ i= l k x i ' n=0 0 

k r j t ^ b * 
(2.5) Y( t ) = 2 ^ T T - ^ % ~J J S

n e"riS ds 

or 
00 ,n k r . n - 1 b 

(2.6) Y (t) = 2 ~ 2 T7T—^ 2 — ^ 
P 1 n . ., L! (r. ) p+1 
^ n=l i= l r v i ; p=0 r . 

^ 1 

Since y = Y (0), we immediate ly find that 

k k r . n - 1 b 
(2-7) yn = * c i r " + 2 L [ t ) 2 -p?r 

1=1 1=1 kx 1 ; p=0 r . 

i s the genera l solution of the r e c u r r e n c e re la t ion (2.1). The case where L, (r) 
= 0 has repea ted roo t s maty be t r ea t ed in a s im i l a r way and i s left to the r e a d e r . 

3. LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS 

A general izat ion of the r e c u r r e n c e re la t ion (1.2) with constant coefficients 

i s the equation 

(3.1) 2 P . ( n ) y , . = 0 , 

where P.(n) a r e polynomials of degree q. in the independent d i s c re t e var iab le 

n. If the exponential generat ing function (1.1) i s applied to (3.1), we obtain the 

differential equation 
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k , 
(3.2) 2 P . ( 0 ) Y U ) - 0 

j=0 J 

where <p i s the opera to r 

(3.3) cp=t D = t ~ 

and where , by definition, 

J m 
3.4 P . (n) = s a n 

J m=0 

Equation (3.2) i s an immedia te consequence of the following theorem which can 

easi ly be es tabl ished by mathemat ica l induction: 

Theorem 3.1. The exponential generat ing function for the sequence 

{ n m y n + . } i s given by 

(3.5) 0 m Y ( j ) ( t ) = 2 n m y ^ , (j = 1 , 2 , . . - ; m = 0 , 1 , . • - , ) 
n=0 J * 

where <p is defined by (3.3). 

Since the theory of differential equations is r i c h e r in special formulas 

and techniques than the corresponding formulas and techniques in the theory of 

r e c u r r e n c e r e l a t i ons , equation (3.2) resu l t ing from the application of the ex-

ponential generat ing function may be more amenable to an explicit solution than 

the original re la t ion (3.1). We i l lu s t r a t e this fact with the following examples : 

4. EXAMPLES WITH VARIABLE COEFFICIENTS 

The Bes se l functions J (x) of o r d e r n satisfy the r e c u r r e n c e re la t ion 

(4.1) x y
n + 2 ( x ) " 2 ( n + 1 ) y n + l ( x ) + X y n ( x ) = ° ' 

which i s a very special ca se of (3.1) with k = 2, P2(n) = x, P^n) = -2(n + 1), 

P0(n) = x. Equation (3.2) thus yie lds the differential equation 

(4.2) (x - 2 t )Y n - 2 Y! + x Y = 0 , 

which has the pa r t i cu l a r solution 
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(4.3) Y = J0 (^x2 - 2tx) , 

where JQ(Z) is BessePs function of zero order defined by [2] 

00 . m 2m 
(4.4) J0(z) = S - t i ^ . 

m=0 4 (m! )2 

Thus, we find 

Y = J 0 ( ^ ^ t x ) = S H> J* 2 - 2tx> 
m=0 4 (m! )2 

.m 2m m 00 , 1vm 2m m / \ / 0, \ n 
2 ^ X 2 m (-Dn " I 

m=0 4m(m! )' n=0 U ' V x ' 
n °° , _ m /• x 2m 

I 2 i=k 
n=0 x " ' m=n 4 " - ^ ( D ' J L <=£(?)&? 

or finally 

(4.5) ¥ = 2 ^ 2 - y ^ x 
n = 0

 n-' j=o 2 2 j + n j ! (j + n).» 

By definition of the generating function (1.1), we therefore have 

°° /_iJ 2J+n 

(4-6) y„(x) - J (x) = 2 - t £ L x 
J=0 2 2 j + n j ! (j + n)! 

As a final example, we consider the second-order recurrence relation 

(4.7) yn+2(x> - 2 x y n + i ( x ) + 2 ( n + 1 ) y
n

( x ) = ° 

which is satisfied by the Hermite polynomials H (x) of degree n, with initial 
values 

(4.8) y0(x) = 1, y,(x) = 2x . 

The transformed equation of relation (4.6) is the differential equation 
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(4.9) Y?f - 2(x - t)Yf + 2Y = 0 

with conditions Y(0,x) = 1 and Yf(0,x) = 2x. Solution of (4.8) is 

(4.10) Y(t,x) = eX* . e" ( x" t ) 2 = e
2 t x ~ t 2

 $ 

and expansion of the right side thus yields 

[n/2] ( _ 1 ) m ( 2 x )n-2m 
(4.11) Y = 2 t v f , 0 ,. 

n « m (n - 2m ? 

n=0 m=0 v ; 

where [n/2] means the integral part n/2. From the definition of the expo-
nential generating function (1.1), it is seen that 

W2} (-nmn> (2x)n"2m 

(4.12) y = H (x) = 2 ( i) n. {Ax} _ 
v ' J n n w . m (n - 2m 

m=0 ' 
is the explicit solution of the recurrence relation (4.6) 

5. REMARKS 

The Laguerre polynomials9 and in fact most of the important special func-
tions of mathematical physics, satisfy a second-order recurrence relation of 
the form 

(5.1) [A2(x) + nB2(x)]yn+2(x) + [A^x) + nB1(x)]yn+1(x) + [A0(x) + nB0(x)]yn(x) = 0 

whose coefficients are linear in the independent real variable n. Explicit solu-
tions for them, by the method of generating functions, may be obtained as in 
the above two examples. The method of generating functions can also be easily 
applied to solve certain partial recurrence relations. In part III of this article 
we shall show how this may be done and give examples of solutions involving 
Fibonacci arrays . 

REFERENCES 
See page 34 for the references to this article. 



THE FIBONACCI ASSOCIATION (Cont) 

invited to attend two annual Fibonacci confer-
ences, the present locale being Northern Cali-
fornia. However, members who live at a distance 
would be able to share in this activity by means 
of a duplicated publication that would appear sub-
sequent to the conference. This same publica-
tion would likewise be a news organ in which 
members of the Association would be able to 
share their Fibonacci experiences and plans with 
others in the group. 

Finally, there is the matter of library prlvi-
liges. Brother Alfred, Managing Editor of the 
Quarterly, is presently producing a library of 
photostats of Fibonacci articles. Already, most 
of the pertinent references inDickson!s History 
of the Theory of Numbers have been covered 
and the ultimate objective is to Include all avail-
able Fibonacci publications. Members of the 
Association would be allowed to borrow this 
material without charge. This should provide a 
great boon to many who are not in a position to 
examine such works in libraries close at hand. 
It should also provide an opportunity for research 
even to those living in somewhat remote places. 

The annual fee for membership in the Fib-
onacci Association (and this includes subscrip-
tion to the Quarterly) is $5.00. 

jThe Fibonacci Association invites Educational Institutions to apply for Academic 
Membership in the Association. The minimum subscription fee is $25 annually. 
(Academic Members will receive two copies of each Issue and will have their 
names listed in the Journal,,) j 
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.FURTHER 'APPEARANCE OF THE FIBONACCI SEQUENCE 
A. F. HORADAM,- UNIVERSITY OF NEW ENGLAND, ARMIDALE9N.S.W., AUSTRALIA 

Besides the widespread use of Fibonacci's sequence in Mathematics gen-
erally , and the occurrence of the sequence in such diverse fields as electrical 
network theory and biology (e. g. , in the botanical phenomenon of phyllotaxis 
and the genealogical tree of the male bee [1]), there are certain non-scientific 
contexts in which its appearance may be of interest. 

Both instances to which I shall refer in a moment involve not only the 
Fibonacci sequences but the ratio known as the Golden Section which has exer-
cised a powerful influence on men's minds down the ages, and about which there 
is considerable literature. The idea of the Golden Section, probably of Pytha-
gorean origin,, is stated by Euclid (Book 2, proposition 11, according to the 
standard Heath translation) in the following problem: ?tTo cut a given straight 
line so that the rectangle contained by the whole and one of the segments is equal 
to the square on the remaining segment. n A little calculation reveals that for 
a segment of unit length, the division (Golden Section) occurs at the irrational 
point distant X = (N/5 - l ) /2 = .62 from the origin, i. e. , X is a solution of 
the equation x2 + x - 1 = 0. 

Now 
X = lim / n 

n_oo I F n + i 

V / H 

lim I n 
\ n+1 / 

where F is the nth term of the ordinary Fibonacci sequence and H is the 
nth term of the generalized Fibonacci sequence [2 ]. Hence the link between 
the Golden Section and the Fibonacci sequence. 

Psychologists have found by experiment that aesthetically the most pleas-
ing rectangle is the one whose sides are in the ratio X: 1 - X = (\/5 - 1): (3 
- N/5) = 1:X. Recognizing this aspect of beauty, the ancient Greeks some-
times constructed temples according to these proportions. 

A more subtle appreciation of the aethetic qualities of the Golden Section 
is detailed by Hambidge [3 ] in his study of Greek vases. After searching in-

41 



42 FURTHER APPEARANCE OF THE FIBONACCI SEQUENCE [Dec. 1963] 

quiries concerning the bases of design in nature and in arts he concludes that 
the T'principle of dynamic symmetry" manifest in shell growth and in leaf dis-
tribution in plants was known only to the Egyptians and the Greeks. By meticu-
lous measurements of objects of ancient art , such as Egyptian bas-reliefs and 
Greek pottery, Hambidge exhibits the constant but hidden occurrence of the 
Golden Section. 

No less meticulous has been the very recent detailed research of Professor 
G. E. Duckworth [4 ] , of Princeton, into the structural patterns and proportions 
used by Vergil in the Aeneid. In carefully analyzing the literary architecture 
of this epic, Duckworth discovers, quite by accident, the basic mathematical 
symmetry which Vergil consciously used in composing the Aeneid. This is a 
reminder that ancient poetry was intended to be heard and that, like music, as 
Duckworth points out, harmony and mathematical proportion appeal to the ear 
and the imagination. 

In his investigations, he gives evidence that 
(i) Other poets of Vergil1 s era, e. g. , Catullus, Lucretius, Horace and 

Lucan, used the Fibonacci sequence in the structure of their poems; 
and 
(ii) Besides the frequent occurrence in the Aeneid of the Golden Section 

for the ordinary Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 
— , Vergil also frequently used several Fibonacci sequences, name-
ly, those which In my notation [2] would be labelled H12 (the Lucas 
sequence) H13, H14, H15, H23, H34, H45, H67. 

This latter discovery raises a very important point. We are told that 
Vergil was a serious student of Mathematics. Duckworth produces evidence to 
show that Vergil, and other poets of his time, were familiar with the Golden 
Mean and the Fibonacci sequences, a fact which suggests that the Greek and 
Roman mathematicians knew about the Fibonacci sequence, though there is no 
record that this is so. [Have we therefore given our Association t h e correct 
name?] 

Like the work of Hambidge, the minutiae of the painstaking scholarly r e -
searches of Duckworth and his fellow-workers reveal a fascinating modern 
tendency, namely, the successful search for the mathematical expression of 
beauty and form (and sometimes of chaos). Their discoveries pose a problem 

(Continued on p. 46) 



ON THE ORDERING OF FIBONACCI SEQUENCES 
BROTHER U. ALFRED, ST MARY'S COLLEGE, CALIFORNIA 

We may define a Fibonacci sequence by taking any two relatively prime 
integers and employing the relation 

n n-1 n-2 
to extend the sequence to subscripts going to plus infinity or subscripts going 
to minus infinity. Evidently, since any two successive terms of a given se-
quence define the sequence, there appears to be at first glance an element of 
confusion in the situation. How may this be obviated and how, once it is r e -
moved, is it possible to arrange Fibonacci sequences according to some ra -
tional order? Such are the questions that will be answered in this short paper. 

It is a remarkable fact that every Fibonacci sequence has two parts: the 
one going to the right with all the signs the same may be called the mono tonic 
portion; the other going to the left with signs alternating may be denoted the 
alternating portion. The sequence will be designated positive or negative ac-
cording as the monotonic portion has all terms plus or minus respectively. 
However9 since a negative sequence may be obtained from a positive sequence 
by changing the signs of all terms , It will be sufficient In what follows to con-
sider the positive sequence. 

Starting, then, with two positive terms a and b with a < b, we work 
back to a! = b - a; if this is less than a, we next form aM = a - af; and so 
on. Evidently, this process cannot be continued indefinitely and so we finally 
arrive at a term which is greater than the term which follows it. Once this 
occurs, the next term to the left is negative and from then on the signs alternate. 

It is important to note that In this process we have arrived at a smallest 
positive term which has the characteristic that it is less than one-half the fol-
lowing positive term. This property of the smallest positive term is unique in 
the monotonic portion of the sequence. Let us call this smallest non-negative, 
f0, and the subsequent term, f1# We thus have an unambiguous means of rep-
resenting the Fibonacci sequence by giving these two terms: (f0, fj), 

If we had started with a positive term and a negative term, as long as 
terms alternate In sign ingoing to the right in the sequence, the absolute values 
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d e c r e a s e In magnitude. Since this cannot go on indefinitely, t he r e mus t come 

a t e r m which i s of the s a m e sign as the preceding t e r m . F r o m then on the s e -

quence i s monotonic. E v i d e n t ^ the second t e r m in the monotonic port ion of 

the sequence i s a min imum for that p a r t of the sequence and so once m o r e i t i s 

poss ib le to r e p r e s e n t the sequence according to the min imum t e r m and the t e r m 

that follows it . 

Now that a unique represen ta t ion of each Fibonacci sequence has been 

achieved, i t might appear des i rab le to have some method of a r rang ing these 

sequences in o r d e r . One means of doing so i s by the use of the quantity 

D = fif-i - fg = f? - fjfo - f02 

which i s c h a r a c t e r i s t i c of any given sequence. Intuitively i t appears that for 

any sequence 

f _ u i f i ~ f 2 = ("l)nD n+1 n - 1 n x ' 

Suppose th is to be t rue to n. Then 

f _^0f - f * - f _ f + f2 - f 2 = f2 - f 1 f , = ( - l ) n + 1 D 
n+2 n n+1 n+1 n n n+1 n n+1 n - 1 ' 

so that the formula i s seen to hold by mathemat ica l induction. 
Fo r any given value of f ls, s ince 

D = f\ - f0(f! + f0) 

and s ince 

f0 < f t / 2 , 

i t follows that 

D > f? - fjCfi + f j / 2 ) / 2 

o r 

D > f? / 4 

Accordingly, by cons ider ing success ive values of ft and the var ious Fibonacci 

sequences that may be assoc ia ted with these va lues , i t i s poss ib le to a r r i v e a t 
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ce r t a in knowledge r ega rd ing the Fibonacci sequences that may be assoc ia ted 
with allowed values of D. This information i s s u m m a r i z e d for values of D 
up to 1000 in the following table. 

TABLE OF FIBONACCI SEQUENCES 
HAVING A GIVEN VALUE OF D 

D SEQUENCES 

0,1) 
1,3) 
1,4) 
1,5) 
1,6) 
2,7) 

(2,5) 
(3,7) 
(4,9) 
(2,8) 
(5,11) 

8), (6,13) 
9), (5,12) 
10), (4,11) 
9), (7,15) 

7) 

,11 
,10 
,11 

(4,13 
(1,11 

,13 
,12 
,13 
,14' 
,15 
,16 

(1,13 
(5,17 

,14 
,15 
,16 
,17 
,15 
,19 
,17 
,16 
,19 
,17 
,19 
,17 
,22 
,19 
,25 
,22 
,21 
,23 

),(5,13) 
),(8,17) 
),(7,16) 
),(5,14) 
),(9,19) 
),(7,17) 
), (10,21) 
),(9,20) 
:),(8,19) 
),(7,18) 
),(6,17) 
), (11,23) 
),(7,19) 
) , (12,25) 
), (11,24) 
), (10,23) 
),(9,22) 
), (5,18), (8,21), (13,27) 
),(7,20) 
), (11,25) 
), (14,29) 
•), (9.23) 
), (13,28) 
'), (H,26) 
), (15,31) 
),(8,23) 
'), (13,29) 
), (11,29) 
), (16,35) 
), (19,39) 
), (15,34) 

D 

431 ( 
439 ( 
445 ( 
449 ( 
451 ( 
461 ( 
479 ( 
491 ( 
499 i 
505 1 
509 ( 
521 i 
541 { 
545 ( 
551 
569 
571 
589 
599 
601 
605 
619 
631 
641 
649 
655 
659 
661 
671 
691 
695 
701 
709 
719 
739 
745 
751 
755 
761 
769 
779 
781 

SEQUENCES 

5,24), (14,33) 
6,25), (13,32) 
7,26), (12,31) 
8,27), (11,30) 
3,23), (9,28), (10,29), (17,37) 
1,22), (20,41) 
2,23), (19,40) 
7,27), (13,33) 
9,29), (11,31) 
1,23), (21,43) 
4,25), (17,38) 
5,26), (16,37) 
3,25), (19,41) 
8,29), (13,34) 
,1,24), (10,31), (11,32), (22,45) 
[5,27), (17,39) 
[2,25), (21,44) 
[3,26), (7,29), (15,37), (20,43) 
[1,25), (23,47) 
[9,31), (13,35) 
[4,27), (19,42) 
[5,28), (18,41) 
[6,29), (17,40) 
(7,30), (16,39) 
(1,26), (8,31), (15,38), (24,49) 
(9,32), (14,37) 
(10,33), (13,36) 
(11,34), (12,35) 
(2,27)(5,29), (19,43), (23,48) 
(3,28), (22,47) 
(7,31), (17,41) 
(1,27), (25,51) 
(4,29), (21,46) 
(11,35), (13,37) 
(6,31), (19,44) 
(3,29), (23,49) 
(7,32), (18,43) 
(1,28), (26,53) 
(8,33),(17,42) 
(9,34), (16,41) 
(2,29), (11,36), (14,39), (25,52) 
(5,31), (12,37), (13,38), (21,47) 
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D 

809 
811 
821 
829 
839 
841 
859 
869 
881 
895 
899 

SEQUENCES 

(7,33), (19,45) 
(1,29), (27,55) 
(4,31), (23,50) 
(9,35), (17,43) 
(5,32), (22,49) 
(11,37), (15,41) 
(3,31), (25,53) 
(1,30), (7,34), (20,47), 
(8,35), (19,46) 
(2,31), (27,56) 

. (28,57) 

(5,33), (10,37), (17,44), (23 ,51) 

D 

905 
911 
919 
929 
941 
955 
961 
971 
979 
991 
995 

SEQUENCES 

(11,38), (16,43) 
(13,40), (14,41) 
(3,32), (26,55) 
(1,31), (29,59) 
(4,33), (25,54) 
(9,37), (19,47) 
(5,34), (24,53) 
(11,39), (17,45) 
(6,35), (13,41), (15,43), (23, 52) 
(1,32), (30,61) 
(7,36), (22,51) 

By adopting the convention that for s eve ra l sequences having the s a m e value of 

D, the o rde r ing will be de termined by which has the s m a l l e r value of f0, i t b e -

comes poss ib le to give the Fibonacci sequences a p r e c i s e a r r angemen t . The 

f i r s t few m e m b e r s would be as follows: 

8^0,1) , S2(l ,3) , S3(l ,4), S4(2,5), S5(l ,5) , S6(3,7), S7(l ,6) , 

S8(4,9), e tc . 

The above approach in r epresen t ing Fibonacci sequences and o rde r ing 

them i s al l by way of suggestion. The re a r e doubtless other ways of achieving 

the s ame objective. It would be very helpful if additional p roposa l s were a i r ed 

before a final s t andard i s adopted. 

FURTHER APPEARANCE OF THE FIBONACCI SEQUENCE 
(Cont. from p. 42) 

for the c l a s s i c i s t , no l e s s than for the h i s to r ian of Mathemat ics . "Measu re 

and s y m m e t r y , " o b s e r v e d Soc ra t e s , " a r e beauty and v i r tue all the world over . " 
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ADVANCED PROBLEMS AND SOLUTIONS 
EDITED BY VERNER E, HOGGATT9 JR0, SAN JOSE STATE COLLEGE 

Send all communicat ions concerning Advanced P r o b l e m s and Solutions to 

Ve rne r E. Hoggatt, J r . , Mathemat ics Depar tment , San Jose State College, San 

J o s e , California. This depar tment especial ly welcomes p rob lems bel ieved to 

be new or extending old r e s u l t s . P r o p o s e r s should submit solutions o r other 

information that will a s s i s t the edi tor . To faci l i tate the i r cons idera t ion , so lu -

t ions should be submit ted on sepa ra t e signed sheets within two months after 

publication of the p rob l ems . 

H-24 Proposed by the late Morgan Ward, California Institute of Tech-
nology, Pasadena, California. 

Let cp (x) = x + x 2 /2 + . . . + x n / n , and let k(x) = k (x) = ( x p _ 1 - l ) / p , 

where p is an odd p r i m e g r e a t e r than 5. (The function k(x) i s cal led the 

"quotient of F e r m a t " in the l i t e r a tu r e . ) Let P = P be the rank of appari t ion 

of p in the sequence 0 , 1 , 1 , 2 , 3 , 5 , - - \ , F , (so P1 3 = 7, P7 = 8 and so on). 
Then 

Fp = 0 mod p2 

if and only if 

0 ( p „ 1 ) / 2 ( 5 / 9 ) = 2k (3/2) mod p . 

H-25 Proposed by Joseph Erbacker and John A. Fuchs. University of 
Santa Clara, andF.D* Parker, Suny, Buffalo, N.Y. 

P r o v e : 
D = I a.. I = 36, for all n , 

n I ij I 

where 
a.. = F 3 . . . ( i , j = 1,2,3) 

IJ n+i+j-2 x J j 

H-26 Proposed by Leonard Carlitz, Duke University, Durham, N,C 

L e t R k = ^ w h e r e b r s = ( k + 1 - s )> * e n s h 0 W R k = ( a r s > S U c h 

that 
47 
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a = V f r 7 M( k + J " r ) F k ^ r ~ s + J F r + s - 2 - 2 J F J 
r s V J A s - 1 - j ) n-1 n n+1 

H-27 Proposed by Harlan L. Umansky, Emerson High School, Union City,N*J. 

Show that 

Fk = ̂ ( -^Vsk-sj + ^ k ^ . k " 4 • 

H-28 Proposed by H.W. Gould, West Virginia University, Morgantown, W/eVa, 

Let C.(r,n) be the number of numbers, to the base r (r — 2) with at 
most n digitsf and the sum of the digits equal to j . 

Sum the series: 
OO 

y rs i \ ji^rn-n-i ^ C. (r , n) aJ b J 

j=0 J 

SOLUTIONS 

TRINOMIAL COEFFICIENTS 

H-9 Proposed by Olga Taussky, California Institute of Technology, 
Pasadena, Calif, 
Find the numbers a , where n > 0 and r are integers, for which 

the relations 
a + a -, + a 0 = a , _. n , r n , r - l n $ r -2 n+ l , r 

and 
fO r 4= 0 

a =6 =1 
o. r o . r 1 n A 

? * V. 1 r = 0 
hold. 
Solution by the proposer* 

It can be shown that a is the coefficient of x In the expansion of 
(l + x + x2)n

s 

This is certainly true for n = 0 and It follows for n > 0 by using the 
generating functions 

v r 
2^ a x 
r n f r 

For9 multiplying this sum by (1 + x + x2) and using the recurrence re la-
tions it follows that 
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(1 + x + x2) 2 a x r = 2 a , x r . 
r n , r r n + l s r 

This p roves the a s se r t ion . 

SOME FIBONACCI SUMS 

H - 1 0 Proposed by R,L. Graham, Bell Telephone Laboratories, Murray Hill, 
New Jersey 
Show that oo oo n+1 

2J •=— = 3 + 2 -p -p —p- • 
n=l n n=l n n+1 n+2 

Solution by Leonard Car l i tz ? Duke Univers i ty , Durham, N. C. 

00 ., °° F o o F . F - . ~ F 2 oo / n xn 
v J L _ y n

 = y n - 1 n+1 n (-1) 
o F : F J M t F , F F , - ^ F - F F , - s 

2 n 2 n - 1 n+1 2 n - 1 n n+1 2 n - 1 n n+1 
oo F so F - F — , 

n = 2 ^±l__nzl = 2 1 . 1 = 1 + 1 = 2 2 F n - l F n + l 2 F n - l F n + l 2 \ F n - 1 F n + 1 / F l F 2 

oo oo n 
y _ £ _ _ O . y _ , ! L - ± i _ 

F ~ ° ^ ^ T? F F 
I n 2 n - 1 n n+1 

Also solved by Zvi Dresne r , 

FIBONACCI AND FOURIER 

H-ll Proposed by John L.Brown,Jr,.Ordnance Re search Laboratory, The 
Pennsylvania State University, University Park, Penna, 

Find the function whose formal F o u r i e r s e r i e s Is 

co F sin nx 
f(x) - 2 ~ , 

n=l n! 

where F i s the nth Fibonacci number . n 

Solution by Lucile Morton, Santa Clara , Calif. 

. . v co . . n n oo z(cos x+i sin x) Vl (cos x + i s m x z ^ cos nx n 
e \ / _ 2 - • l = 2 j z 

n=0 n! n=0 n* 
OO 

, . „ sin nx n 
+ 1 2 j — z 

There fore 
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z cos x . , . N _ s in nx n e s m (z s m x) = 2 ;— z 
n=0 

Recal l ing 
F n = - 4 - (an - /3n) , where a = (1 + \fe)/2 and jS = (1 - \ fe)/2, 

then 
r / . I r a c o s x . . . v 8 cos x . , n. . x-\ 
f(x) = -T3 <! e s m (a s m x) - e^ s m (/3 s m x)> 

and 
00 . . a cos x . . . . , B cos x . /n . v s m nx T g(x) = e s m (a s m x) + e^ s m (J3 s m x) = £ i - L 

Also solved by the p ropose r . 
A CURIOUS SEQUENCE 

H - 1 2 Proposed by D.E, Thoro, San Jose State College,San Jose,Calif. 

Find a formula for the nth t e r m in the sequence: 

1 , 3 , 4 , 6 , 8 , 9 , 1 1 , 1 2 , 1 4 , 1 6 , 1 7 , 1 9 , 2 1 , 2 2 , 2 4 , 2 5 , - • • . 

Solution by Malcolm Tal lman , Brooklyn, N. Y. 

N 

1, 3, 4 , 6, 8, 9 ,11 ,12 
1 4 , 1 6 , 1 7 , 1 9 , 2 1 , 2 2 , 2 4 , 2 5 

M <; 2 7 , 2 9 , 3 0 , 3 2 , 3 4 , 3 5 , 3 7 , 3 8 
4 0 , 4 2 , 4 3 , 4 5 , 4 7 , 4 8 , 5 0 , 5 1 

Let M = 8m + 1,2, 3*, 4, 5, 6, 7, 8 
N M = 13m + 1,3 ,4*, 6, 8, 9 ,11 ,12 

What i s the 19th t e r m ? M = 19 = 8 x 2 + 3 * , thus N19 = 13 x 2 + 4* = 30. 

Also solved by Maxey Brooke and the p ropose r . 

Edi tor ia l Comment: If Tt = 1, T2 = 3 , T3 = 4, T4 = 6, T5 = 8, T6 = 

9, T7 = 11 , T8 = 12, then T g m + k = 13m + T k , k > 0, m = 1 , 2 , 3 , - • • . 

A MATRIX DERIVED IDENTITY 

H - 1 3 Proposed by H.W.Gould, West Virginia University,Morgantown, W.Va, 
and Verner E.Hoggatt,Jr,,San Jose State College,San Jose,Calif, 

Show that = I / r x r - j j 
n . n V j / k -1 k n+ i - rk 

See p. 65 of "A P r i m e r for the Fibonacci Numbers—Part III,rT Oct. , 1963, Fibonacci 

Quar te r ly . 
Also solved by Leonard Car l i tz and Mer r i t t E l m o r e . 
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IDENTITY FOR FIBONACCI CUBES 

xi-14 Proposed by David ZeitlinfMinneapolisfMinnesota, and F.D.Parker, 
University of Alaska, College, Alaska. 

Prove the Fibonacci identity 

F 3 _ 3 F 3 _ 6 F 3 + 3 F 3
x 1 + F 3 = 0 . n+4 n+3 n+2 n+1 n 

Solution by Maxey Brooke , Sweeny, Texas . 

F r o m "Fibonacci F o r m u l a s , " page 60, Apr i l , 1963, Fibonacci Quar te r ly , one 
obta ins , from pa rag raph 3 , 

(1) F 3 ' + F 3 - F 3 , = F 0 
v ' n+1 n n - 1 3n 

and the c o r r e c t e d ve rs ion of Jekuthiel Ginsburg ' s identity t h e r e i s 

(2) F 3 - 3 F 3 + F 3
 0 = F n 

v ; n+2 n n-2 3n 

Multiplying equation (1) through by 3 and equating the new left s ide of (1) to the 

left s ide of (2) and simplifying yie lds 

F 3
 0 - 3 F 3 , - 6 F 3 + 3 F 3 , + F 3

 0 = 0 . n+2 n+1 n n - 1 n-2 

Also solved by J. A. H. Hunter , Zvi D r e s n e r and the p r o p o s e r s . 

SOME CHOICE IDENTITIES 

H-16 Proposed by H.W.Gould, West Virginia University,Morgantown,W.Va. 

n x n ~x Define the ord inary Hermi te polynomials by H = (-1) e D (e ) . 

oo n 

(i) 2 H (x/2) ^~ = 1 , 7 „ n 7 n! ' 
n=0 

Show that 

00 n 
(ii) 2 H (x/2) £ - F = 0 

n=0 n n ! n 
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00 x11 2 
(III) X H (x/2) ^ L = 2 e ' X 

7
 n n ' n! n 9 

n=0 
where F and L a r e the nth Fibonacci and nth Lucas n u m b e r s , respec t ive ly . 

Solution by Zvi D r e s n e r , Tel-Aviv, I s r ae l . 

(i) 

Xn \ X, 
S H i ~77 I —7 = e^ 

n=0 n[ 2 l n ! 

x0 

I n=0 x=x0/2 

x0 x0 

y" y 
The sum in b r a c e s on the r igh t i s the expansion of e about the point + 

with x = - x 0 / 2 . Hence 
2 J 

2 H„ 
n=0 

n 
x0 \ x0 

n 2 
e + x 0 / 4 ( e - . 0 x * / 4 \ 

= X 

(ii) In the s a m e way (a = 1 + \I5 1 - N/5 and F n = - ^ ( « n - / 3 n ) ), 

x ° \ x ° 1 x^ /4 J °° D n e ~ x ' 
2 H — — F = - i - e X ° / 4 / 2 ^ -x0af - (-x0/3)n)) 

x=x0/2 

JLe*o 
^5 

/4{e-(^)!„e-(^#)!} • = 0 . 

(iii) Similar ly (L = a + /3 ) 

x0 \ x 0 
2 H ( — — L n \ 2 / n n n=0 x ' 

S/4 n ~x^ D e 

n=0 n: 
x=x0/2 

( -Xoa)"+ (-x0iS: 

= e x S / 4 ( 2 e - 5 x o 2 / 4 ) = 2 e ^ . 

Also solved by L. Carl i tz and the p ropose r . 

Correc t ion to P rob lem H-20 in the October i s sue 

H - 2 0 ( C o r r e c t e d ) P r o p o s e d by Ve mei~j E.Hoggatt,Jr.and Charles H.King, 
San Jose State Co I lege, San Jose,California. 

If Q 
1 1 
1 0 show D ( e Q

lj 

where D(A) is the de terminant of ma t r ix A and L i s the nth Lucas number . 

AWWyvywyVWy^^ 



OYING RABBIT PROBLEM .REVIVED 
BROTHER U. ALFRED, ST. MARY9S COLLEGE, CALIFORNIA 

In the first issue of the Fibonacci Quarterly the following problem was 
proposed [1 ]. Suppose that in the original Fibonacci rabbit breeding problem, 
we allow for the dying of rabbits. Those that are bred in February, for example, 
begin to breed in April and continue breeding monthly through February of the 
following year. At the end of this month they die. What would be the formula 
for the number of pairs of rabbits at the end of n months for n ^ 1 3 ? 

Originally 9 it was thought that the rabbits removed would constitute a se -
quence which could be readily identified with an expression involving Fibonacci 
numbers. But after several attempts by a number of people it appeared that it 
would be difficult to arrive at an answer by straightforward intuition. The fol-
lowing development will indicate why this is so. 

First of all we shall set down a table showing how the rabbits propagate 
over a two-year period. It will be noted that the original table values for the 
case in which rabbits do not die are positive while a negative term is introduced 
to show the effect of allowing rabbits to die. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Breeding 
Rabbits 

0 
1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 -
233 -
377 -
610 -
987 -
1597 
2584 
4181 

1 
1 
3 
5 
10 
- 18 
- 33 
- 59 

Non-] Breeding 
Rabbits 

1 
0 
1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 -
233 -
377 -
610 -
987 -
1597 
2584 

1 
• 1 

3 
5 
10 
- 18 
- 33 

Bred 
Rabbits 

0 
1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 -
233 -
377 -
610 -
987 -
1597 
2584 
4181 

1 
1 
3 
5 
10 
- 18 
- 33 
- 59 

Dying 
Rabbits 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
-1 
0 
-1 
-1 
-2 
-3 
-5 
-8 
-13 

Rabbits 
End of Month 

1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 - 1 
377 - 2 
610 - 4 
987 - 8 
1597 - 15 
2584 - 28 
4181 - 51 
6765 - 92 
10946 - 164 

53 
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Breeding n 
Rabbits 

21 6765 - 105 
22 10946 - 185 
23 17711 - 324 
24 28657 - 564 

Non-Breeding 
Rabbits 

4181 - 59 
6765 - 105 
10946 - 185 
17711 - 324 

B r e d 
Rabbits 

6765 - 105 
10946 - 185 
17711 - 324 
28657 - 564 

Dying 
Rabbits 

- 2 1 
-34 
-55 
-89 

Rabbits 
End of Month 

17711 - 290 
28657 - 509 
46368 - 888 
75025 - 1541 

F o r the sake of convenience, a table of the negative values i s formed with 

a shift of number ing, the first row in the new table cor responding to n = 14 in the 

old. 

n-1 

15 
28 
51 
92 
164 
290 
509 
888 
1541 

The following re la t ions m a y b e noted apar t f rom those impl ic i t in the c o l -

umn headings . 

a , - = a + a .. + F n+1 n n - 1 n 

T = 2a + a - + F n n n - 1 n 

Using the re la t ion for a - we obtain the following success ion of 

r e l a t ions . 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

1 
3 
5 
10 
18 
33 
59 
105 
185 
324 
564 

1 
1 
3 
5 
10 
18 
33 
59 
105 
185 
324 

1 
3 
5 
10 
18 
33 
59 
105 
185 
324 
564 

1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 

a< = 1 

a2 a,t + a0 + Ft = 2 + Ft 

a3 = a2 + aj + F2 = 3 + Ft + F2 

a4 = a3 + a2 + F 3 = 5 + 2 F t + F 2 + F 3 

a5 = a 4 + a 3 + F 4 = 8 + SFt + 2F 2 + F 3 + F 4 

a6 = a5 + a4 + F 5 = 13 + 5Ft + 3F2 + 2F 3 + F 4 + F 5 

a7 = a6 + a5 + F 6 = 21 + 8Fi + 5F 2 + 3F3 + 2F 4 + F 5 + F 6 

It i s c l ea r that a formula involving Fibonacci number s i s emerg ing . Fo r ex -

ample , a7 can be wri t ten: 
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a7 = F8 + F6Fj + F 5 F 2 + F 4 F 3 + F3 F4 + F2 F5 + Ft F6 

and in general, it could be shown by mathematical induction that: 

n-1 
a = F ., + 2 F, F , n n+1 fe~ k n-k 

The problem then reduces to finding a formula for the summation on the right. 
Using the roots r and s of the equation x2 - x - 1 = 0 in terms of which: 

where 

r = 

n n r - s 

1 + \fe 

and 

and 

T n , n 
Ln = r + s 

s = 
^ 

we have 

F k F n - k 
f k k. , n-k n-k. 
(r - s ) ( r - s ) 

n n k k , n-2k n-2k, 
r + s - r s (r + s ) 

k k k 
But r s = (-1) since r s , the product of the roots of the given equation, is 
the constant term - 1 . Thus 

F k F n - k 
L + ( - l ) k + 1 L „. 

n v ' n-2k 

This is the expression that must be summed from 1 to n - 1 over k. How-
ever, since the first part L 7 5 does not involve k, it is essentially a con-
stant taken n - 1 times so that this part of the sum becomes (n - 1)L / 5 . 
The second half is 

i n 2 1 ( l)k+1 L - i 
5 * {1) n-2k ' 5 

k=l 

n-2 n-4 n-6 n-8 ' •n+2 

F - + F Q - F 0 - F _ + F C + F „ n-1 n-3 n-3 n-5 n-5 n-7 
+ ^ ^ - n + S + <"1>nF-nf J 
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It will be noted that all terms cancel out except the f irst and last and since 
( ~ l ) n F M = F - . t h e total of the summat ion is 2F . / 5 . Thus the value x ; -n+1 n ~ l s n-1 / 
of a i s given by the express ion 

a = F , + n n+1 
ilLzJl L + l_sdL 

5 n 5 

Substituting L = F _. + F -, this can be t r ans fo rmed to & n n+1 n - 1 ' 

a = ™ n 5 (n + 4) F , + (n + 1) F n v ; n+1 l ; n - 1 

As a check, for n = 75 this becomes 

1/5 [ 1 1 - 2 1 + 8 - 8 ] 59 

After sui table t r ans format ions one can find a value of T equal to 
n 

1/5 (3n + 1 0 ) F n + 1 + (n + 6) F n 

Reconver t ing back to our or ig inal notation, the solution of the dying rabbit prob-

lem can be exp re s sed as follows (n ^ 13): 

F M - 1/5 (3n - 29)F - 0 + (n - 7) F 1 . 
n+1 L n""12 n"*13 
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PHYLLOTAXIS 
SISTER MARY de SALES McNABB, GEORGETOWN VISITATION PREPARATORY SCHOOL 

When Nehemial Grew remarked in 1682 that ?ffrom the contemplation of 
plants, men might be invited to Mathematical Enquirys, ??[5] he might not have 
been thinking of the amazing relationship between phyllotaxis and Fibonacci num-
ber s9 but he could well have been; for the phenomenon of phyllotaxis, literally 
?rleaf arrangement/ ' has long been a subject of special investigation, m u c h 
speculation, and even heated debate among mathematicians and botanists alike. 

By right it is the botanists who deserve the credit for bringing to light the 
discovery that plants of every type and description seem to have their form ele-
ments, that is , their branches, leaves, flowers, or seeds, assembled and a r -
ranged according to a certain general pattern; but surely even the old Greek and 
Egyptian geometers could not have failed to observe the spiral nature of the archi-
tecture of plants. Many and varied and even contradictory are the theories on this 
fascinating phenomenon of phyllotaxis, but it would be beyond the scope of this 
paper to investigate them here; instead we shall simply try to describe the man-
ifestation of it in the interval-spacing of leaves around a cylindrical stem,.in the 
florets of the sunflower and, finally, in the scales of fir cones and pineapples. 

Before we proceed to consider the actual arrangement of the form ele-
ments, however, it is interesting to note the relationship between the number 
of petals of many well-known flowers and the Fibonacci numbers. Two-petaled 
flowers are not common but enchanter fs nightshade is one such example. Seve-
ral members of the i r is and the lily families have three petals, while five-
petaled flowers, including the common buttercup, some delphiniums, larkspurs 
and columbines, are the most common of all. Other varieties of delphiniums 
have eight petals, as does the lesser celandine, and in the daisy family, squalid 
and field senecio likewise have eight petals in the outer ring of ray florets. 
Thirteen-petaled flowers are quite common and include the globe flower and 
some double delphiniums as well as ragwart, corn marigold, mayweed, and 
several of the chamomiles. Many garden and wild flowers, including some 
heleniums and asters , chicory, doronicum, and some hawk-bits, have twenty -
one petals, while thirty-four is the most common number in the daisy family 
and is characteristic of the field daiseys, ox-eye daisies, some heleniums, 
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gaillardias, plantains, pyrethrums, and a number of hawk-bits and hawkweeds. 
Some field daisies have fifty-five petals, and Michaelmas daisies often have 
either fifty-five or eighty-nine petals. It is difficult to trace this relationship 
much further, but it must be remembered that this number pattern is not neces-
sarily followed by every plant of a species but simply seems to be character-
istic of the species as a whole. 

Fibonacci numbers occur in other types of patterns too. The milkwort 
will commonly be found to have two large sepals, three smaller sepals, five 
petals and eight stamens, and Frank Land 4 reports that he found a clump 
of alstroemerias in his garden in which one plant had two flowers growing on 
each of three stalks and that, where the three stalks grew out from the top of 
the main stem, a whorl of five leaves grew out radially; while another plant 
had three flowers on each of five stems with a whorl of eight leaves at the base 
of the flower stalks. 

The Fibonacci number pattern, . however, which has received the most 
attention is that associated with the spiral arrangement of the form elements 
of the plants. In its simplest manifestation it may be observed in plants and 
trees which have their leaves or buds or branches arranged at intervals around 
a cylindrical stem. If we should take a twig or a branch of a tree, for instance, 
and choose a certain bud, then by revolving the hand spirally around the branch 
until we came to a bud directly above the first one counted, we would find that 
the number of buds per revolution as well as the number of revolutions itself 
are both Fibonacci numbers, consecutive or alternate ones depending on the 
direction of revolution, and different for various plants and trees. If the num-
ber of revolutions is m and the number of leaves or buds is n, then the leaf 
or bud arrangement is commonly called an m/n spiral or m/n phyllotaxis. 
Hence in some trees , such as the elm and basswood, where the leaves along a 
twig seem to occur directly opposite one another, we speak of 1/2 phyllotaxis, 
whereas in the beech and the hazel, where the leaves are separated by one-third 
of a revolution, we speak of 1/3 phyllotaxis. Likewise, the oak, the apricot, 
and the cherry tree exhibit 2/5 phyllotaxis, the poplar and the pear 3/8, while 
that of the willow and the almond is 5/13. Much investigation along these lines 
seems to indicate that, at least as far as leaves and blossoms are concerned, 
each species is characterized by its own particular phyllotaxis ratio, and that 
almost always, except where damage or abnormal growth has modified the 
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arrangement, the ratios encountered are ratios of consecutive or alternate 
terms of the Fibonacci sequence. 

When the form elements of certain plants are assembled in the form of a 
disk rather than along a cylindrical stem, we have a slightly different form of 
phyllotaxis. It is best exemplified in the head of a sunflower, which consists 
of a number of tightly packed florets, in reality the seeds of the flower. Very 
clearly the seeds can be seen to be distributed over the head in two distinct 
sets of spirals which radiate from the center of the head to the outermost edge 
in both clockwise and counterclockwise directions. These spirals, logarithmic 
in character, are of the same nature as those mentioned earlier in plants with 
cylindrical stems, but in those instances, the adjacent leaves being generally 
rather far apart along the stem, it is more difficult for the eye to detect the 
regular spiral arrangement. Here in the close-packed arrangement of the head 
of the sunflower, we can see the phenomenon in almost two-dimensional form. 
As was the case with the cylindrical-stemmed plants, the number pattern ex-
hibited by the double set of spirals is intimately bound up with Fibonacci num-
bers. The normal sunflower head, which is about five or six inches in diameter, 
will generally have thirty-four spirals winding in one direction and fifty-five in 
the other. Smaller sunflower heads will commonly exhibit twenty-one spirals 
in one direction and thirty-four in the other or a combination of thirteen and 
twenty-one. Abnormally large heads have been developed with a combination 
of fifty-five and eighty-nine spirals and even a gigantic one at Oxford with eighty-
nine spirals in one direction and a hundred and forty-four in the other. In each 
instance the combination of clockwise and counterclockwise spirals consists of 
successive terms of the Fibonacci sequence. 

One other interesting manifestation of phyllotaxis and its relation to the 
Fibonacci numbers is observed in the scales of fir cones and pineapples. These 
scales are really modified leaves crowded together on relatively short stems, 
and so, in a sense, we have a combination of the other two forms of the phenom-
enon; namely, a short conical or cylindrical stem and a close-packed arrange-
mentwhich easily enables us to observe that the scales are arrangedin ascend-
ing spirals or helical whorls called par astichies. In the fir cone, as in the sun-
flower head, two sets of spirals are obvious, and hence in many cones, such 
as those of the Norway spruce or the American larch, five rows of scales may 
be seen to be winding steeply up the cone in one direction while three rows wind 
less steeply the other way; in the common larch we usually find eight rows 
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winding in one direction and five in the other, and frequently the two arrange-
ments cross each other on different parts of the cone. In the pineapple, on the 
other hand, three distinct groups of parastichies may be observed; five rows 
winding slowly up the pineapple in one direction, eight rows ascending more 
steeply in the opposite direction and, finally, thirteen rows winding upwards 
very steeply in the first direction. The fact that pineapple scales are of i r -
regular hexagonal shapes accounts for the three sets of whorls, for three dis-
tinct sets of scales can consequently be contiguous and, hence, constitute a dif-
ferent formation. Moreover, Fibonacci numbers manifest themselves in still 
another way in connection with the scales of the pineapple. If the scales should 
be numbered successively around the fruit from the bottom to the top, the num-
bering being based on the corresponding lateral distances of the scales along 
the axis of the pineapple, we would find that each of the three observable groups 
of parastichies winds through numbers which constitute arithmetic sequences 
with common differences of 5, 8 and 13, the same three successive Fibonacci 
numbers observed above. Thus a spiral of the first group would ascend through 
the numbers 0, 5, 10, • • • ; one of the second group through the numbers 0, 8, 
16, • • • ; and, finally, a spiral of the third group would wind steeply up the pine-
apple through the numbers 0, 13, 26, • • • . 

In all these many and varied ways, then, in the number of petals possessed 
by different species of flowering plants, in the interspacing of leaves o r buds 
around a cylindrical stem, in the double spirals of the close-packed florets of 
sunflowers, and in the ascending spirals or parastichies of the fir cone and the 
pineapple, we have encountered number patterns which again and again involve 
particular terms of the Fibonacci sequence. These Fibonacci number patterns 
or combinations occur so continually in the varied manifestations of phyllotaxis 
that we often hear of the "law" of phyllotaxis. However, it must be admitted 
that not all four-petaled flowers are so rare as the four-leaf clover's reputed 
to be and that other combinations also occur, notably in those species exhibiting 
symmetrical arrangements. Moreover, in the cases of fir cones and some large 
sunflowers, where the spiral number pattern can be verified more carefully, 
deviations, sometimes even large ones, from the Fibonacci pattern have been 
found. If this is at all disturbing to the modern botanist, it is not at all so to 
the Fibonacci devotee, for whom the whole phenomenon, if not a "law," is at 
least, in the words of H. S. M. Coxeter [1 ] , a fascinatingly prevalent tendency! 

[References for this article are found on page 71. ] 



THE "GOLDEN M H O " AND THE FIBONACCI NUMBERS 
IN THE WOULD O.F ATOMS 

Jo WLODARSKI 

In the world of atoms there are four fundamental asymmetries. They 
appear 

• In the structure of atomic nuclei of protons and neutrons, 
• In the distribution of fission fragments by mass number resulting from 

the bombardment of most heavy nuclei by thermal neutrons, 
• In the distribution of numbers of isotopes of even stable elements, 
• Li the distribution of emitted particles in two opposite directions at 

MweakM nuclear interactions. 
It turns out that the numerical values of all these asymmetries are equal 

approximately the f!golden ratio" (TTg. r. n) and the numbers forming these nu-
merical values are sometimes Fibonacci or "near" -Fibonacci numbers as 
follows: 

1. The number of protons Z in the lightest stable nucleus as a rule is 
equal the number of neutrons N. When the atomic number Z in-
creases, the proton-neutron ratio in the nucleus Z/N decreases to 
about 0.6. 

A practical stable nucleus, found in nature may possess a maximum of 
92 protons and 146 neutrons (nucleus 92U238). The ratio of both these numbers 
Z/N is equal to 0.630 and differs from the ,?g. r. fT-value (if we limit the n g . r e -
value to three decimals behind the point) by 0.012 only. 

2. It is known that symmetrical fission of most heavy nuclei by slow neu-
trons is very rare . For example, in the case of 92U235 + QYL1 the 
atomic mass of fission-fragments A = 118 happens in only about 
0.01 of all cases. The most common event in this case is a splitting 
into two fragments with mass numbers in the range 89— 99 and 144— 
134 respectively. The mass numbers 89 and 144 appearing in 
the nuclear reaction 

235 1 89 144 t 

92U143 + 0 n l - * 3 6 ^ 5 3 + 5 6 B a 8 8 + 3(onl ) 

belong to two neighboring terms in the Fibonacci sequence. The ratio 
of 89/144 = 0.618056- • • yields one of the best approximations to the 
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ffg. r. "-value found in nature. The same ratio of 89/144 in the world 
of plants yields, for example, the distribution of sees-spirals on the 
disk of the sunflower. 

It is interesting that the number of protons and neutrons of fission-
fragments in above nuclear reaction is also one of the Fibonacci or "near"-
Fibonacci numbers as the following table shows. 

Table 1 

Nucleon-numbers 

number of protons 
number of neutrons 
mass-number 

Compound 
Nucleus 

92 

144 

236 

Fission 
Fragments 

36 

53 

89 

56 

88 

144 

Terms of 
Fibonacci Sequence J 

89 

144 

233 

34 

55 

89 

. 55 
89 

144 

Remarks: 

• We have to consider the amount of 3 (on the average) emitting neutrons 
• A variety of other pairs of nuclei, as Kr - Ba pair, may be produced in 

the above nuclear reaction, but this pair is one of the most abundant. 

3. When the atomic number Z of elements in the periodic table in-
creases, the number of isotopes of even stable elements also in-
creases little by little and reaches a maximum (10 isotopes) at Z = 
50. Behind Z = 50 the number of isotopes of even elements grad-
ually decreases with the advancing atomic number. With that the 
whole row of stable elements in the periodic table is divided in the 
ratio 32 : 50 = 0.640. The last value differs from the "g. r. "-value 
by 0.022 and 

4. The recent (1957) discovery of parity non-conservation at "weak" 
interactions showed that: 
a. The ^-decay of polarized neutrons is a process with an asym-

metrical feature. The result of an experiment decisive for vio-
lation of the parity principle at the "weak" interactions was as 
follows: [1] 

m Intensity of /3-emission parallel to neutron spin -
' Intensity of ^-emission antiparallel to neutron spin" 

This ratio lies in the range of the "ga r. "-value. 
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b . Var ious types of the hyperon-decay a r e also p r o c e s s e s with an 

a s y m m e t r i c a l feature . A s e r i e s of exper iments was pe r fo rmed 

at some l abora to r i e s in o rde r to invest igate the dis tr ibut ion of 

emi t ted p a r t i c l e s . Thereby i t was found that upward emiss ion 

p reva i l ed over downward emiss ion . 

In the following table , some data of these exper iments (colums 2, 3) and out of 

that computed values (columns 4, 5) a r e given: 

Table 2 

Exper iment 
No. 

1 f 2 ] 
2 [ 3 ] 

3 [ 4 ] 

The Emit ted P a r t i c l e s 

Number in the direct ion 
down 

138 

81 

105 

up 

215 

129 

158 

Ratio of 
d /up 

(roughly) 

0.642 

0.628 

0.665 

Divergence of 
the Ratio of 
d/up F r o m 
n g . r . f T-value 
by (roughly) j 

0.024 

0.010 

0.047 

Final ly i t would appear that a Nobel Pr ize -winning English chemis t and phys ic i s t 

F . W. Aston [5] probably was the f i r s t who showed the appearance of the 

Fibonacci number s in the world of a toms . He observed that al l the a toms with 

atomic number Z in the range 1 to 30 have the gaps r ep resen t ing the m a s s 

number s of a toms which e i ther ent i re ly a r e non-exis tent in na ture o r too r a r e 

to be found. If one takes the r e c u r r i n g s e r i e s 2, 3 , 5, 8, 13, 2 1 , 34, 55, — 

then the f i r s t 7 of these t e r m s co r respond to the miss ing m a s s n u m b e r s , but 

the re la t ion b r e a k s down at Mn55 and again at Y89. 

REFERENCES 

1. Phys . Rev. 107, 1731 (1957) 

2. Phys . Rev. 108, 1102 (1957) 

3. Phys . Rev. 108, Footnote 1103 (1957) 

4. Phys . Rev. 108, 1353 (1957) 

5. Fe W. Aston, Isotopes (second Edition, 1924) 

/y*yyyywyyyyyy*^^ 



SUBSCRIPTION FOR THE FIBONACCI QUARTERLY 

The annual subscription price for the Fib-
onacci Quarterly is $4,00 per year regardless 
of where the subscriber may live. Renewals and 
new subscriptions for 1964 are now being taken. 

We realize, however, that most people like 
to have a complete set of a magazine and so we 
are going to make every effort to see that Vol-
ume 1 (1962) is available to those who want it. 
Again, the price for the entire volume (four i s -
sues) Is $4.00. (See inside front cover.) 

SUSTAINING MEMBERS 

The production of a mathematics magazine 
of any type on the basis of subscriptions alone 
is not easy of accomplishment. The financial 
problems Involved are considerable. Thus, a 
supplementary income is a desideratum. The 
original charter members provided the impetus 
for the Quarterly by their contributions. Such 
help will be furnished on a continuing basis by 
means of SUSTAINING MEMBERS who will make 
an annual donation of $10.00. In addition to r e -
ceiving all title privileges of membership, these 
sustaining members will be given recognition in 
each issue of the Fibonacci Quarterly. 

EDITORIAL ASSOCIATES 

Apart from financial assistance f the Fib-
onacci Quarterly requires a contribution of ideas 
and talent for its continuance and development. 
Those who are active in writing Fibonacci ar t i -
cles for the Quarterly or other publications, as 

(Continued on p. 80) 
64 



A PRIMER FOR TIE FIBONACCI NUMBERS — PART IT 
Vo E. HOGGATT, JR, AND I. Do RUGGLES, SAN JOSE STATE COLLEGE 

1. INTRODUCTION 

In the p r i m e r , P a r t III, i t was noted that if V = (x,y) i s a two-dimensional 

vec tor and A i s a 2 by 2 ma t r i x , A = f a J , then V1 = AV i s a two-

dimensional vec tor , V1 = (x?,yf) = (ax + by, ex + dy). He re , V and c o n s e -

quently Vf, a r e exp re s sed as column vec to r s . The ma t r i x A i s said to t r a n s -

form, or map , the vec tor V onto the vector Vf. The ma t r i x A i s cal led the 

mapping ma t r i x o r t rans format ion mat r ix . 

2. SOME MAPPING MATRICES 

The ze ro m a t r i x , Z = ( J , maps every vector V onto the ze ro 
0 0 

The identity ma t r i x , I = ( ) maps every vec tor V onto itself; that 

vec tor <p = (0,0) 

The id 

i s , IV = V. 

The m a t r i x B = f J maps vec to r s V = (k,-k), (k any r e a l n u m b e r ) , 

onto the ze ro vec tor <t>. Such a mapping as de te rmined by B i s cal led a many-

to-one mapping. 

If the only vec tor mapped onto <p i s the vec tor <p itself, the mapping i s 

a one- to-one mapping. A ma t r i x A de te rmines a one- to-one mapping of two-

dimensional vec to r s onto two-dimensional vec to r s if, and only if, det A 4= 0. 

If det A 4= 0, for each vector U, the re ex i s t s a vec tor V such that AV = 

U. Note, however , that for m a t r i x B above, B ( 1 = ( 2 + ? )• T n e r e i s 

no vector V such that BV = (0,1). 

3. GEOMETRIC INTERPRETATIONS OF 2x2 MATRICES 
AND 2-DIMENSIONAL VECTORS 

As in P r i m e r III, the vector V = (x,y) i s i n t e rp re t ed as a point in a r e c -

tangular coordinate sys tem. Thus the geomet r ic concepts of length, d i rec t ion, 

slope and angle a r e assoc ia ted with the vector V. 

A non-ze ro s ca l a r multiple of the identity ma t r i x , kl , maps the vector 

U = (a,b) onto the vec tor V = (ka,kb). The length of V, |V| , i s equal to |k | 

|u|. There is no change in slope but if k < 0 the sense or direction is reversed. 
65 
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The matrix f 1 J maps a vector onto the reflection vector with respect 
to the line through the origin with slope one. Note that different vectors may 
be rotated through different angles! 

1 1 0 \ The matrix ( J preserves the first component of a vector while an-
nihilating the second component. Every vector U = (x,y) is mapped into a 
vector on the x-axis. 

The matrix R = I . n a\ rotates all vectors through the same 
\sin 9 cos 6) & 

angle Q (theta), in a counterclockwise direction if theta is a positive angle. 
There is no change in length. This seems to contradict the notion of a matrix 
having vectors whose slopes are not changed but in this case the characteristic 
values are complex; thus, there are no real characteristic vectors. 

4. THE CHARACTERISTIC VECTORS OF THE Q-MATRIX 

The Q matrix f 1 J does not generally preserve the length of a vec-
tor U = (x,y). Also s different vectors are in general rotated through different 
angles. 

The characteristic equation of the Q matrix Is 

X2 - X - 1 = 0 
with roots 

1 + N/5 , , 1 - '\/5 Xi = —2 and X2 = —^ 

which are the characteristic roots, or eigenvalues, for Q. 
To solve for a pair of corresponding characteristic vectors consider 

i i ) G ) - > ( J ) • * • * * • • 
Then 

(1 - X)x + y = 0 . 

Thus, a pair of characteristic vectors are 

Xt = (XlXjx) , j Xt\ * 0 , 
with slope 

\/5 - 1 I I 
mi = ^— and X2 - (X2x,x), j X21 ^ 0 , 

with slope 
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What happens when the ma t r ix Q2 i s applied to the c h a r a c t e r i s t i c vec to r s 
Xt and X2 of ma t r ix Q? Since 

Q2Xj = Q(QX1) = Q(XXi) = XQXt = \2Xt 

c lea r ly Xt i s a c h a r a c t e r i s t i c vec tor of the ma t r ix Q2 as well as a c h a r a c t e r -

i s t i c vec tor of ma t r ix Q„ The cha rac t e r i s t i c roots of Q2 a r e the squa re s of the 

c h a r a c t e r i s t i c roo t s of m a t r i x Q. In genera l if Xj and \ 2 a r e the c h a r a c t e r -

i s t ic roo t s of Q then X t and X 2
 a r e the cha rac t e r i s t i c roo t s of Q . But the 

c h a r a c t e r i s t i c equation for Q i s 

X2 - (F Ll + F n )> + (F . F . - F 2 ) = 0 . v n+1 n - l ; v n+1 n -1 n ' 

Recal l ing that L = F ^ + F ^ F . F 1 - F 2 = ( - l ) n , and L 2 = 5F2 + & n n+1 n - 1 8 n+1 n - 1 n v ; ' n n 

4 ( - l ) n
s i t follows that , s ince lt = a = (1 + \Td)/2 and X2 = P = (1 - V5)/2, 

a
n = l^ = (L + \ / 5 F ) / 2 and /5n = \n

2 = (L - NTSF ) / 2 . 

5. FIBONACCI AND LUCAS VECTORS AND THE Q MATRIX 

Let U = (F , - 9 F ) and V = (L - s L ) be denoted as Fibonacci and n x n+ l s n . • n n+1* n ' 
Lucas v e c t o r s , respec t ive ly . We note 

,n+l 
| U n | 2 = F n + 1 + K - F 2 n + 1 m d | V n | 2 = L n + 1 + L n = < 5 F n + l + ^ 4 + 5 F n 

+ ( -D n 4) = 5 ( F ^ + 1 + F^) = 5 F 2 n + 1 . 

It i s well known that the s lopes of the vec to r s U and V (the r a t i o s 

F / F .. and L / L ) approachthe s lope , (\T5 - l ) / 2 , of the c h a r a c t e r i s t i c 

vec to r , Xl0 

Since Q Q = Q , i t i s easy to verify that 

F F + F F = F 
m+1 n+1 m n m+n+1 

by equating e lements in the upper left in the above ma t r ix equation. In a s i m i -

l a r manner i t follows that 

y T? + -p T? = F 
m+1 n+2 m n+1 m+n+2 

F . F + F F 1 = F J m+1 n m n - 1 m+n 

Adding these two equations and using L ,-, = F 2 + F i t follows that 

F x 1 L ^ + F L = L J ^ . m+1 n+1 m n m+n+1 
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From the above identities it is easy to verify that 

Q n + l v 0 = Q V n = V l 
Qn + 1U0 = QUn = U n + 1 

QnV = V 
^ m m+n+1 ' 
Q l l u m = U m + n + l • 

6. A SPECIAL MATRIX 

Let P = ( 2 " ), then from 

L ± 1 = F ± 1 + 2 F , L = 2 F . - F n+1 n+1 n ' n n+1 n 
5F ^ = L ^ + 2 L ,5F = 2L x 1 - L n+1 n+1 n ' n n+1 n 

it follows that 

PU = (F x 1 + 2F , 2F x 1 - F ) = V n n+1 n* n+1 n ' n 
PV = (L ^ + 2L , 2L ^ - L ) = 5U n v n+1 n* n+1 n ' n 

Also 

P2Qn = 5Qn 

D ( ^ n + 1
L ^ ) = D(P)D(Qn) = 5 ( - l ) n + 1 

V n n-1 / 

We now discuss two geometric properties of matrix P. Let U = (x,y), 
|Ul2 = x2 + y 4 0. 

PU = (x + 2y, 2x - y) |PU|2 = 5(x2 + y2) = 5|u|2 

Thus matrix P magnifies each vector length by \/5. 
If t a n a = y/x, we say a = Tan y/x, read " a is an angle whose tan-

gent is y/x.? ! Let tan » = y/x and tan/3 = (2x - y)/(x + 2y). From tan (a+ p) 
= (tan a + tan j3)/(l - tan a tan /3) we may now see what effect P has on the 
slope of vector U = (x,y). 
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Now (recalling x2 + y2 + 0 says x and y are not both zero at the same 
time.) 

tan (a + fi) = tan fTan"1 * + Tan"1 ^ - ^ ) = ^ 2 + J2) 

Thus, since x2 + y2 £ 0, then 

tan (a + /3) = 2 . 

What does this mean? Consider two vectors A and B, the first inclined at 
an angle a with the positive x-axis and the second inclined at an angle /S with 
the positive x-axis and the angles are measured positively in the counterclock-
wise direction. The angle bisector, ip , of the angle between vectors A and 
B is such that a - ip - #- p whether or not a is greater than (3 or the other 
way around. Solving for ip yields 

* = (a + /5)/2. 

Thus ip is the arithmetic average of a and p. Also we note that a + ft = 2ip. 
The tangent of double the angle is given by 

tan 2ip = (2 t an^) / ( l - tan2^) . 

Let 
+ / *̂ 5 - 1 
tan^= —5 , 

then it is an easy exercise in algebra to find tan 2^ = 2, but tan (a + /3) = 2, 
therefore we would like to conclude that the angle bisector between vectors U 
and PU is precisely one whose slope is fs/5 - l ) /2 , but this is the slope of 
X1? the characteristic vector of Q. Can you show that Xt is also a character-
istic vector of P? 

We have shown 
Theorem 1. The matrix P = f „ - j maps a vector U = (x,y) into a 

vector PU such that 

(1) | P ( U ) | = Vs |ul 

and 
(2) The angle bisector of the angle between the vector U and the vector PU 
is X b a characteristic vector of Q and P. Thus Matrix P reflects vector 
U across vector Xt. 
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T h e o r e m 2. The vec to r s U n and V a r e equally incl ined to the vec tor 

Xj whose slope i s Cs/5 - l ) / 2 . 
Coro l la ry . The vec to r s V a r e mapped into vec to r s ^ 5 U by P and 

the vec to r s U a r e mapped into V by P . n ™ n J 

7. SOME INTERESTING ANGLES 

An in te res t ing theo rem is 

T h e o r e m 3. r ^ 
j L \ n 

Tan (Tan™1 L / L . - Tan™1 ~^S = 1^~-
\ n / n + 1 Ln+2j F2n+2 

klfl Tan { Tan L F /F . - Tan x F . / F „ \ = -^ 
^ n / n+1 n + 1 / n + 2 j F £ n + 2 

Theo rem 4. 

m ~1 n , ..xm+l m - 1 1 
Tan •= = 2 (-1) Tan n+1 m=l 2m 

We proceed by mathemat ica l induction. For n = 1, i t i s easy to verify Tan""1! 

= T a n " 1 ( l / F 2 ) . 

Assume t r u e for n = k, that i s 

F k 
rp - 1 k , i x m + l ^ - 1 1 
Tan •= = 2 (-1) Tan — k+1 m=l 2m 

But, by Theorem 3 , 

Thus , if 

F F k 
™ - l r k+1 rp - 1 k ,_ « - 1 (-1) 
Tan := = Tan ^ — + Tan ^ f 

k+2 k+1 2k+2 
F k 

m - 1 k , _ m + l ^ - 1 1 
Tan = 2 (-1) Tan -—• 

k+1 m = l 2m then 

T a n - 1 ^ = I ( - l ) m + 1 T a n " 1 J L _ + T a n - 1 ± l t 
k+2 m=l 2m 2k+2 

k+1 
= 2 ( - l p , J L T a n F 

m = l 2m 
- 1 - 1 k k+2 

because Tan (-X) = -Tan X and (-1) = (-1) and the proof i s complete . 

vm+l m - 1 1 
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8e AN EXTENDED RESULT 

Theorem 5. The s e r i e s 

A = 2 ( - l ) m + 1 T a n " 1 X 

m=l 2m 

converges and A = Tan (N/S - l ) / 2 . 

Proof: Since the s e r i e s is -an a l ternat ing s e r i e s , and, s ince Tan"" X i s 
a continuous inc reas ing function, then 

T a n " 1 ^ - i - > T a n " 1 ~^— and T a n " 1 0 - 0 . 
2n 2n+2 

The angle A mus t l ie between the pa r t i a l sums S N and S N for every N > 2 

by the e r r o r bound in the a l ternat ing s e r i e s , but S^ = Tan" 1 ( F
N / F ). Thus 

the angles of U N and U N - lie on opposite s ides of A. By the continuity of 
T a n ^ X then 

l i m T a n " 1 (F / F , n ) = A = T a n " 1 (N/S - l ) / 2 . 
n-*oo v n / n + 1 ; v ' 

Comment: The s ame r e su l t can be obtained simply from 

"^5 - 1 Which slope gives a be t t e r numer ica l approximation to — - — , F / F or 
& n / n~i _L 

L / L ? H m m m ? 
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EXPLORING THE FIBONACCI REPRESENTATION OF INTEGERS 
BROTHER U. ALFRED, ST. MARY6S COLLEGE, CALIFORNIA 

Every integer maybe represented as the sum of Fibonacci numbers or as 
a single such number. What is being considered in this investigation is the 
smallest number of different Fibonacci numbers required in the representation 
of an integer. For example, 125 is the sum of 89 + 34 + 2. This seems to be 
the smallest number of Fibonacci numbers required to represent 125. 

The following question is being proposed: Is it possible to setup an upper 
limit to this minimum number of Fibonacci numbers required to represent any 
integer? Possibly, there are many approaches to a solution, but one particular 
line of development will be indicated here. 

We need first of all some notation. A well known symbol is the square 
bracket [] which means "the greatest integer in. " Thus 

[6.3] = 6; [5] = 5; [17/3] = 5 . 

Along with this we are going to introduce a similar notation to mean "the 
greatest Fibonacci number in.,f Thus 

[63 J* = 55; [189/4]* = 34; [13]* = 13 

One way to solve the proposed question may be indicated by the following par-
tially stated theorem: 

Theorem. The maximum number of different Fibonacci numbers required 
to represent an integer N for which [N]* = F is given by [] . The answer 
in the bracket is some function of n. Explorers who find this result are en-
couraged to report their solution. In addition, there is a line of proofs that 
could be formulated to show that the theorem holds in general. 

The above investigation will be reported in the April, 1964, issue of the 
Fibonacci Quarterly. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 
EDITED BY So L. BASIN, SYLVANIA ELECTRONIC SYSTEMS, MT. VIEW, CALIF. 

Send all communications regarding Elementary Problems and Solutions 
to Se L8 Basin, 946 Rose Ave. , Redwood City, California. We welcome any 
problems believed to be new in the area of recurrent sequences as well as new 
approaches to existing problems. The proposer must submit his problem with 
solution in legible form, preferably typed in double spacing, with name(s) and 
address of the proposer clearly indicated. Solutions should be submitted with-
in two months of the appearance of the problems. 

B-24 Proposed by Brother U.Alfred,St.Mary's College, Calif, 

It is evident that the determinant 

I F F F 1 
n n+1 n+2 

\ T? Tp T? J 
n+1 n+2 n+3 

F F F 
I n+2 n+3 n+4 | 

has a value of zero. Prove that if the same quantity k is added to each ele-
ment of the above determinant, the value becomes (-1) k . 
is 95 Proposed by Brother U, Alfred. 

Find an expression for the general term(s) of the sequence T0 = 1, Tj = 
a, T2 = a, • • • where 

T2n = YTZ "* T2n+1 = T 2n T 2n- l • 2n-2 

B-26 Proposed by 5.L-Basin,SyIvania Electronic Systems,Mt.View,Calif. 

Given polynomials b (x) and B (x) defined by 

b0(x) = 1, B0(x) = 1 

bn(x) = xBf l - 1 (x) + bn_1(x) (n > 1) 

B n (x) = (x + 1) B n + 1 (x) + bn_1(x) (n > 1) 

73 
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show that 

b (x) = P 0 (x) nv ' 2n ' 

and 

where 

M 

B (x) = P 0 ^ (x) n ' 2 n + l v ' 

>.«-[I](V).[^ 
being the g r ea t e s t in teger l e s s than or equal to -r- . 

B-27 Proposed by D.G. Cross, Birmingham, England* 

Let x = cos 0, [ z ] i s the g rea t e s t in teger contained in z . 

cos 0 = x 

cos 20 = 2x2 - 1 

cos 30 = 4X3 - 3x 

cos 40 = 8x4 ~ 8x2 + 1 

cos 50 = 16x5 - 20x3 + 5x 

cos 60 = 32x6 - 48x4 + 18x2 - 1 
N 

n 0 = P (x) = 2 A. x n + 2 ~ 2 j (N = [ ( n + l ) / 2 ] i s cos 
3 = 1 J 

g r e a t e s t in teger function.) 
Show 

(i) V = 2n 

(ii> V,n+1 = 2V,n-Aj,n(i = 1 . 2 . - N - 1 ) 
(iii) P n + 2 ( x ) = 2 x P n + 1 ( x ) - P n (x) 

N 
(iv) If A = 2 | A . I, then A ^ 0 = 2A _ + A . v ' n . -.1 inl» n+2 n+1 n 

3=1 J 

Note: (At = 1, A2 = 3 , 7 = A3 = 2A2 + At = 2 • 3 + 1). 

B-28 Proposed by Brother U. Alfred, 
Using the nine Fibonacci number s F 2 to F 1 0 ( 1 , 2 , 3 , 5 , 8 , 1 3 , 2 1 , 3 4 , 5 5 ) , 
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determine a third-order determinant having each of these numbers as elements 
so that the value of the determinant is a maximum. 

B - 2 9 Proposed by A.P. Boblett, U.S. Naval Ordnance Laboratory, 
Corona, California. 

Define a general Fibonacci sequence such that 

F t = a; F2 = b; F = F 0 + F - n > 3 1 ' L s n n-2 n-1 
n n+2 n+1 

Also define a characteristic number, C, for t h i s sequence, where C = 
(a + b)(a - b) + ab. 

Prove: 
F , , F , - F 2 = (-l)nC, for a l ln . n+1 n-1 n • ' 

SOLUTIONS 

Solutions to Problems B6 and B9 through B15, Vol. 1, No. 2, April, 1963 

SOME REFLECTIONS 

B - 6 Proposed by Leo Moser, University of Alberta, Edmonton, Alberta, 

Light rays fall upon a stack of two parallel plates of glass, one ray goes 
through without reflection, two rays (one from each interval interface opposing 
the ray) will be reflected once but in different ways, three will be reflected 
twice but in different ways. Show that the number of distinct paths, which are 
reflected exactly n times, is F _. 

Solution by J. L. Brown, Jr . , Pennsylvania State University, Pennsylvania 

All rays which experience exactly n reflections will emerge from the 
same face, either top or bottom of the stack; furthermore, if those having n - 1 
reflections emerge from the top face, then those having n reflections will 
emerge from the bottom face. Let us assume, without loss of generality that 
the rays having exactly n reflections will emerge from the bottom face as 
shown below for the case of two reflections. 
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Let a be the number of dis t inct paths which have exactly n ref lec t ions . If 

we consider any emergen t ray which has had n ref lect ions (n ^ 2), then i t 

m u s t have had i t s l a s t , o r n ref lect ion f rom e i ther face 0 o r in terface 1. 

The number of d is t inct paths having the n ref lect ion at face 0 i s equal to 
the number of dis t inct paths reaching face 0 after n - 1 re f lec t ions , o r 

a - . S imi la r ly , the paths whose n ref lect ion i s at in terface 1 mus t have 

had the (n - l ) th ref lect ion at face 2, and the number of dis t inct pa ths i s then 

equal to the number of dis t inct paths reach ing face 2 after (n - 2) re f lec t ions , 

o r a o. Since the two poss ib i l i t ies a r e mutually exclusive and exhaust ive , we n—^ 
for n ^ 2. The ini t ial condi t ions, aQ = 1, at = 2 

0. 

have a n - 1 n -2 
es tab l i sh that a = F for n 

n DrZ 
FIBONACCI SUMS 

B-9 Proposed by R.L. Graham, Bell Telephone Laboratories.Murray Hill,N.J. 

Prove °° -

and 
F F n=2 n - 1 n+1 

= 1 

where F i s the n n 
th 

n=2 n - 1 n+1 

Fibonacci number . 

B-9 Solution by F r a n c i s D. P a r k e r , Univers i ty of Alaska. 

Since ^ -̂  -̂  
n+1 n - 1 

F F n - 1 n+1 F F F n - 1 n n+1 F F F n - 1 n n+1 F , F n - 1 n F F _ n n+1 

then 

I l 
n=2 n - 1 n+1 

2 
n-2 F , F n - 1 n F F t 1 n n+1 

JL _ JL 
L l 1-2 

J_ __1^ 
1-2 2-3 

S imi la r ly , 

n+1 "n-1 
F F n - 1 n+1 F F n - 1 n+1 n - 1 n+1 

2-3~3.5 

and 

and 

TP F n=2 n - 1 n+1 

" l 1" 
sJ. 2 + "I r 

1 3_ 
+ " i i"1 

2 5_̂  
+ "1 1* 

3 8_ • = 2 
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Editorial Comment: The above solution to problem B- 9 is a good example 
of a principle found in many other problems in number theory, namely in form-
ing a sum, it is often helpful to judiciously group the terms in a certain fashion. 
An example of this may be found in proving the following theorem concerning 
the divisor function r(n). Prove r(ri) is odd if and only if n is a square. 

LUCAS-FIBONACCI IDENTITY 

B-10 Proposed by Stephen Fiskf 'San Francisco, California.. 

Prove the nde Moivre-type" identity, 
L + V5F \ P L + \/5F 

n n \ _ np np 
2 ) 2 

where L denotes the nth Lucas number and F denotes the nth Fibonacci n n 
number. 

B-10 Solution by Charles Wall, Ft. Worth, Texas. 

Since T f r T , 
L + v5 F n , nn , n 0n 

n n _ a + (3 + a - [3 
2 ~ 2 where 

we have 

i + 'sTs R. i - \Ts 
2 ' P 2 

L + s/5 F \ P np , ^np , np 0np L + 'Vs F n_ n | _ np a^ + p^ + a^-fi^ np np_ 
~ a 2 2 

B - l l Proposed by S,L.Basin,Sylvania 'Electronic Defense Laboratory, 

Show that the hypergeometric function 

rt \ - V 2k(n + k)? (x - l ) k 

~ k=0 fa-k-1)-' (2k+ 1)! 

generates the sequence 
G ( f • n ) = F2n' n = 1-2'5''-- • 

B - l l Solution by S. L. Basin, Sylvania Electronic Systems, Mountain View, 
California and San Jose State College 

v 2 (n + k)! (x - 1) _ _ 
k=0 ( n ' k " 1 ) ! ( 2 k + 1 ) ! " n _ 1 

where U - (x) are the Chebyshev polynomials of the second kind and 
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U ,(x) n-r W^T7 
{(x + <Jx2 - i f - (x - ^ x 2 - l ) n } 

"-(DvU 3 + 4~5\U _ (3 - \T5 

)') 
Observing that 

we have 

-s) . (i^)!
 and (i^a). (i. 41 

^(D-Mi^f 1 - \T§ 2n 
2 j ( 2n 

Comment: Setting x = 3 /2 , the summation becomes 

n - 1 
2 (n + k)! n - 1 

k = Q (2k + 1)! (n - k - 1). k = Q 

n + k 
r ~ 2 ( 2k + 1 )~ F 2 n 

' Ris ing d iagona ls \ 
of P a s c a l ' s j 

t r iangle / 

See Fig. 1, page 24, October , 1963, Fibonacci Quar te r ly . 

A LUCAS DETERMINANT 

B-12 Proposed by Paul F . Byrd, San Jose State College, San Jose, Calif. 

Show that 

n+1 

3 

i 

0 

0 

0 

0 

i 

1 

i 

0 

0 

0 

0 

i 

1 

i 

0 

0 

0 • 

0 • 
i ' • • 

1 • 

0 • 

0 • 

V 0 

0 

V 0 
0 

1 
i 

0 

0 

0 

0 

i 

1 

n ^ 1 

where L i s the nth Lucas number given by L< = 1, L2 = 3 , L l 0 = L t 1 
n to J l L n+2 n+1 + L , and i = N/~-1 . n ' 

B-12 Solution by Mar jor ie Bicknell , San J o s e State College, San J o s e , Calif. 

Let D denote the de te rminant of o r d e r n. Expanding the de te rminant 

by i t s nth row we have . D = D - + D „ with D1 = 3, Do = 4 so that D 
J ' n n - 1 n-2 x * L n 

Also solved by Will iam A. Beyer , Los Alamos , New Mexico 
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FIBONACCI CONTINUANT 

B-13 Proposed by S.L, Basin, 

Determinants of o r d e r n which a r e of the fo rm, 

7 9 

K n ( b , e , a ) -

a r e known a s CONTINUANTS 

c a 0 0 0 
b c a 0 0 
0 b c a 0 
0 0 b c a 

P rove that 

K n ( b , c , a ) = (c + ^ c 2 - 7 a b ) n + 1 - (c - * 4 2 - 4 a b ) n + 1 

2 n + 1 Vc2 - 4 ab 

and show, for special values of a, b , and c, that K ( b , c , a ) = F 

B-13 Solution by Mar jor ie Bicknell , San Jose State College, San J o s e , Calif. 

Expanding K ( b , c , a ) by the nth row we obtain, 

(1) K n ( b , c , a ) = c K n _ 1 ( b , c , a ) - a b K n _ 2 ( b , c , a) 

If u and v a r e the roo t s of the quadrat ic equation x2 - ex + ab = 0, then 

(2) u = Q"(C' + ^ c 2 - 4 a b ) , v = — (c - Vc2 - 4ab) 

Now K ( b , c , a ) = (u - v ) / (u - v) by induction and K (b , c , a ) = F -

for values of a, b , and c which yield the quadrat ic x2 - x - 1, i. e. , a = c = 1 , 

and b = - 1 ; a = - 1 and b = c = 1; a = b = i = N/-1 and c = 1. 

A LITTLE SURPRISE 

B_14 Proposed by Maxey Brooke, Sweeny, Texas and C.R. Wall,Ft.Worth,Tex 

Show that 
OO - p ( - l ) n + 1 F . 
V n 10 -. y 
2, = —- and ^ — 

n=l 10 n=l 10 
B-14 Solution by Char les Wall, Ft . Worth, Texas 

n 10 
109 

Since 2 F x11 = 
n=l n 1 - x - x2 
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then 

r n i . i ) 1 - .10 - .01 .89 89 
n=l 

and 

L n ^ -*•) J i + .10 - .01 1.09 109 n=l 

Also solved by Dermot t A. Breaul t , Sylvania, ARL, Waltham, Mass . 

FIBONACCI SEQUENCE PERIODS 

B - 1 5 Proposed by R.B.Wallace, Beverly Hill s, Call f'..„ and Stephen Geller, 
University of Alaska, College, Alaska. 

If p, i s the s m a l l e s t posi t ive in teger sueh that 

F ^ = F mod (lO1*) n+p k n ; 

for al l posi t ive n , then p, i s cal led the per iod of the Fibonacci sequence 
k r e l a t ive to 10 . Show that p, exis ts for each k, and find a specific formula 

for pi as a function of k. 

Edi tor ia l Comment: This problem i s d i scussed in this i s sue in a paper by 

Dov J a r d e n which i s a reply to Stephen Ge l l e r f s l e t t e r to the edi tor , pe 84, 

Apr i l , 1963, Fibonacci Quar te r ly , 

EDITORIAL ASSOCIATES (Cont.) 

well as those who have the intention of doing so9 

will r ece ive recognit ion as Edi tor ia l Assoc ia t e s . 

The Edi tor should be contacted by anyone who 

wishes to be assoc ia ted with the Fibonacci Q u a r -

t e r ly in this manner . 

R E N E W Y O U R S U B S C R I P T I O N ! ! ! 
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