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FIBONACCI REPRESENTATIONS 
* L. CARLiTZ end RICHARD SCOVILLE 

Duke University, Durham, Worth Carolina 
and 

V.E.HOGGATT, JR. 
San Jose State College, San Jose, California 

1, INTRODUCTION 

We define the Fibonacci number s as usual by means of 

F 0 = 05 Fi = 1, F ^ = F + F , (n > 1) . 
u s x n+1 n n - 1 

It i s known that eve ry posi t ive in teger N can be wri t ten in the form 

(1.1) N = F. + F, + . . . + F k , 
kA k 2

 K r 

where 

(1.2) kt => k2 > «»< > k r s= 2 

and r depends on N. We call (1.1) a Fibonacci r epresen ta t ion of N. More-

ove r by the theo rem of Zeckendorfs the r ep resen ta t ion (1.1) i s unique p r o -

vided the k. satisfy the inequali t ies 

(1.3) k. - k + 1 ^ 2 (j = 1, 2, -... , r - 1); k r > 2 . 

Such a r ep resen ta t ion may be called the canonical r epresen ta t ion of N. 

Now le t A, denot 

Then i t i s c l e a r that the 

Now le t A, denote the se t of posi t ive in t ege r s { N } for which k = k. 

A k (k = 2, 3 , 4, • •• ) 

* Supported in p a r t by NSF gran t GP-17071, 
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2 FIBONACCI REPRESENTATIONS [ j a n . 

constitute a partition of the set of positive integers* The chief object of the 
present paper is to describe the numbers in A, in terms of the greatest in-
teger function0 We shall show that 

(1.4) A 2 t = {abt"1a(n) | n = 1, 2, 3, • • - } (t = 1, 2, 3, • • •) , 

(1-5) A 2 t + 1 = ( b W ) | n = 1, 2, 3, • • • } (t = 1, 2, 3, • ••) , 

where 

(1.6) a(n) = [an], b(n) = |>2n] , a = (1 + \[S)/2 

and [x] denotes the greatest integer ^x. As is customary, powers and jux-
taposition of functions should be interpreted as composition. 

Moreover9 we shall show that 

A(2t, 2FT"2) = {abt"1a2(n) | n = 1, 2, 3, • • • } 

A(2t, 2t + 2) =. {ab^abfri) | n = 1, 2, 3, ••• } 

A(2t + 1, 2TT~3) = (bV^n) | n = 1, 2, 3, ••• } 

A(2t + 1, 2t + 3) = ( b W n ) | n = 1 , 2 , 3 , ' " } , 

where A(s9 s + 2) denotes the set of positive integers with canonical 
representation 

r k 1
 + - " + F k r

 + r 8 + 2 + F s 

while A(s5 s + 2) denotes the set with canonical representation 

F. + • • • + F, + F (k > s + 2) 
K.j[ Ky, S r 

Using any Fibonacci representation of N 

N = Fk1
 + Fk2

 + — + F k r 
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we define 

(1-7) e(N) = Vi + Vi + ,--+V1 ' 
The fact that e(N) Is Independent of the Fibonacci representation chosen for 
N was proved In [ 2 ] . 

The following theorems, which will be used in Section 4S were also 
established in [ 2 ]. 

Theorem 1. For every N, e(N + 1) ^ e(N) with equality if and only if 
N is in A2. (See [2J5 p„ 2163 Theorem 5 and proof,) 

Theorem 2. If N is In A2 then neither N - 1 nor N + 1 is In A2* 
(See [2] 9 pe 217? comments following Theorem 5.) 

2. THE ARRAY R 

As in [3] we form the 3-rowed array R as follows: In the first row 
we put the positive integers in natural order* We begin the second row with 
1. To get an entry of the third row9 we add the entries appearing above it in 
the first and second rows* We get further entries in the second row by 
choosing the smallest integer which has not appeared so far in the second or 
third rows0 

1 

1 

2 

2 

3 

5 

3 

4 

7 

4 

6 

10 

5 

8 

13 

6 

9 

15 

7 

11 

18 

8 

12 

20 

9 

14 

23 

10 

16 

26 

.. . 

Note that R is uniquely determined by the following properties: 

(2.2) Every positive integer appears exactly once in row 2 or row 3* 

(2.3) Each row is a monotone sequence. 

(2.4) The sum of the first two rows is the third row* 

Now also consider the 3-rowed array R!„ 
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1 

a<l) 

b(l) 

2 

a(2) 

b(2) 

3 

a(3) 

b(3) 

4 

a(4) 

b(4) 

. . . 

. . . 

where a(n), b(n) are defined by (1.6). Since a. + 1 = a2, properties (2.3) 
and (2.4) are obviously satisfied by Rf. To see that every number appears 
in Rf, let N ^ 2 be arbitrary. We will show that either a([N/a]) or 
b([N/a2]) is N - 1. Suppose not. Then they are both too small; that is , 

<x\N/a] < N - 1 

and 

a2 [N/a2 ] < N - 1 . 

Dividing the first inequality by a, the second by a2, remembering that 

i + i = i . 

a c? 

and adding5 we get 
[N/or] + [N/a2] < N - 1 . 

But this is a contradiction since N/a + N/#2 = N. 
Now to see that the ranges of a and b are disjoint, suppose for some 

numbers N, M and P , we had a(N) = b(M) = P. Then 

aN - 1 < P < aN 

and 

a2M - 1 . < P < a2M . 
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Again dividing and adding, we get 

N + M - 1 < P < N + M J 

a contradict ion. The fact that no number appea r s twice in the same row fol-

lows s imply because both a and a2 a r e g r e a t e r than 1. Note that (2.2) was 

proved using only the fact that a and a2 a r e i r r a t iona l and 

i + i = 1 . 

The r e su l t i s not new3 of c o u r s e 
We have es tabl i shed that R = Rf. 

3. SOME PROPERTIES OF a(n) AND b(n) 

In this sect ion we prove seve ra l equal i t ies involving the functions a(n) 

and b(n). In ou r proof we use only the p r o p e r t i e s (2.2), (2.3) and (2.4) of 

R(=Rf) from Section 2. Of c o u r s e , the equal i t ies could, with much m o r e ef-

f o r t be proved from the definitions (1.6). 

(3.1) N + a(N) = b(N) 

(3.2) b(N) = a(a(N)) + 1 

(3.3) a(N) + b(N) = b(a(N)) + 1 

(3.4) a(b(N)) = b(a(N)) + 1 

(3.5) a(N) + b(N) = a(b(N)) 

(3.6) b2(N) = aba(N) + 2 

(3.7) ab2(N) = b2a(N) + 3 
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(3.8) b r(N) = a b ^ a C N ) + F 2 (r = 1, 2, • • • ) 

(3.9) abr(N) = b r a ( N ) + F „ (r = 1, 29
 9 6 » ) 

(3.10) b r ( l ) = F 2 r + 1 (r = 1, 2, • • • ) . 

Proof. Equation (3,1) i s (2.4). F o r (3.2), note that in R9 in the th i rd 

row, to b(N), o r the second row to a (J) = b(N) - 1, occur al l the number s 

1, 2 , • • • , b(N). Hence J + N = b(N). The re fo re , by (3.1) J = a(N); that 

i s 9 a(a(N)) = b(N) - 1. Equation (3.3) comes from (3.1) and (3.2). To prove 

(3.4), note that b(a(N)) i s the a(N) en t ry in the third row of R, and 

a(b(N)) i s the b(N) en t ry in the second row. Then the total number of 

e n t r i e s i s a(N) + b(N) = b(a(N)) + 1. Hence b(a(N)) cannot be the l a r g e s t so 

a(b(N)) m u s t be and eve ry in teger ^b(a(N)) + 1 m u s t have appeared . Hence 

a(b(N)) = b(a(N)) + 1. Equation (3.5) i s obvious from (3.3) and (3.4). Equa -

tion (3.6) i s obtained by adding (3.2) and (3.4) and using (3.1) and (3.5). S im-

i l a r ly we get (3.7) by adding (3.4) and (3.6). Equations (3.8) and (3.9) a r i s e 

by induction. If we se t N = 1 in (3.8) we get 

b f t ^ d ) ) = a ( b r _ 1 ( l ) ) + F 2 r _ 1 , 

so9 by (3.1), 

O " 1 ^ = F 2 r - 1 • 

4. THE SETS Afc 

We begin with some p re l im ina ry t h e o r e m s . 

T h e o r e m 3. If N Is in A2, then N + 1 i s In A, with k odd. 
Proof. By T h e o r e m 29 

(4.1) N + 1 = F ^ + F k + . . . + F ^ k^ ^ 2 . 
' r r - 1 "k_ k„ ., k- r 

F o r convenience we le t 

N? = F. + . . . + F. 
k - k-

r - 1 1 
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Then 

FIBONACCI R 

N' + 1 = F. + W k r \-2 + F k r - 1 + N ' 

= F k -4 + F k -3 ^ F k -1 " N ' • 
r r r 

Continuing, we see that N + 1 is either 

F3 + F4 + F6 + • • - + F k _1 + W 
r 

or 

F2 + F3 + F5 + . . . + F k _x + W . 
T 

If the latter.,.. N would be in A3e Hence 

N = F2 + F4 + • • • + F k _1 + N? 

r 

and k is odd, 
r 
Theorem 4, If N and M are in A2 and e(e(N)) = e(e(M)), then 

N = M. 
Proof. Suppose N ^ M* If e(N) = e(M) then by Theorem 1, N and 

M are consecutive Integers and by Theorem 2 could not both be in A2e So 
suppose e(N) < e(M). Then by Theorem 1, e(N) is In A2 and e(M) = 
e(N) + 1. Hence by Theorem 3, e(M) Is in A^ with k odd: 

e(M) = F k + F k + ••• (kr odd) . 
r r - 1 

Let 

k +1 k -+1 
r r -1 

Now e(P) = e(M), but P is In Ak + 1 so P / M* Hence, by Theorem 1 
we must hav* 
the theorem, 
we must have P = M + 1. Hence k is odd, a contradiction. This proves 
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T h e o r e m 5. Le t Q. be the j l a r g e s t number in A2. Then 

e(e(Q )) = j . 

Proof. We can eas i ly see by induction that there a r e exactly F -

number s in A2 whose canonical r ep resen ta t ions involve only F 2 , F 3 , • • • , 

F , for le t C be that set of numbers ; i. e. , N E C if and only if 
n n ' n J 

N = F 2 + • • • + Ff e (kt < n) . 

We want to show that ca rd (C ) = F - and that if N 6 C , N < 
n n - 1 n 

F - . This i s eas i ly checked for smal l n. Suppose i t i s t rue up to n. Then 

C ^ = C U (C - + F _,, ) . n+1 n n - 1 n+1 

Since this union is disjoint , by the induction hypothes is , the conclusion fol-

lows readi ly . 
th The point i s that 1 + F + 1 (n > 3) i s the (1 + F - ) number in A2. 

But 

e (e ( l + F _ , , ) ) = 1 + F , , n+1 n - 1 

i . e . , the value of e(e(«)) on the (1 + F .. ) number of A? i s 1 + F - . ' n - 1 L n - 1 
Hence, s ince e(e(-)) is monotone and 1 - 1 on A2 (Theorems 1 and 

4), we see that e(e(0) s imply counts the m e m b e r s of A2; that i s , 

e(e(Q )) = j 

Now le t N. be defined by the r equ i r emen t s 

(4.3) e(N.) = i, e(N. -• 1) $ i 

(Set e(0) = 0, so that N4 = 1, N2 = 3, e t c . ) 
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Theorem 6. For any Ns e(a(N)) = N and e(b(N)) = a(n). The num-
bers (Nl5 N 2 J * * •) and (Qt + 1, Q2 + 1, -a *) are the second and third rows 
of the array R4. 

Proof. Note that by Theorem 1, e((Q. + 1) - 1) = e(Q. + 1) so that the 
sets {N.} and {Q. +1} are disjoint Furthermore? again by Theorem 1, 
together they exhaust all positive integers. Now to establish the theorem we 
only have to show property (2.4) of Section 2 and then that e(Q. + 1) = N.. 
Suppose for some j that the latter is false. Then, since 

e(e(Q. + 1)) .= e(e(Q.)) = j = e(N.; 

we must have 

e(Q. + 1 ) = N. + 1 
J J 

(since e(N. - 1) ^ j? by (4.3)). Furthermore N. must be in A2. There-
fore e(Q. +1) G A k , k odd, so that 

e(Q + 1) = F + - . + F k (k odd) . 
J r 1 

But then 

V 1 = Fk+ l + - " + F k 1 + l ( k r + 1 6 V e n ) -
J r 1 

Theorem 3 implies that Q. is not in A2, a contradiction. Hence e(Q. + 1) 
j J 

= N.. 3 
Now suppose 

N. = F. + F, + • • • + F. 
i k k - k-
J s s-1 1 

is the canonical representation of N.. Then, since Q + 1 is not in A2, 

V 1 = Fk+i + F k 1 + i + - - - + F k 1 + i • 
J s s-1 1 

so that 
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(4.4) j + N. = e(N.) + N. = Q. + 1. 
J J J J 

This proves the theorem. 
Theorem 7. We have A2 = a2(If) where II is the set of positive in-

tegers, Further, 

(4.5) A 2 t + 1 = bVdf) (t = 1, 2, 3, •••) 

and 

(4.6) A2 t - abt"1a(H) (t = 1 , 2 5 3 5 ^ . ) . 

Proof. We have seen that for any N, 

e(b(N)) = e(a2(N)) = a(N) . 

Hence since b(N) f a2(N) and Q.N+1 = b(N)9 we get Q N = a2(N). This 
shows that A2 = a2(M). Now suppose N is in A3. Then e(N) is in A2 

and e(N) = a2(M) for some M. Hence N is either ba(M) or a3(M). The 
latter is impossible since N is in A3, not A2« Hence A3 = ba(Bf). 

Continuing in this way? we complete the proof of the theorem by 
induction. 

5. SOME ADDITIONAL PROPERTIES 

Since 

(5.1) M = a (If) U b(M) 

it follows from Theorem 7 that 

GO 

(5.2) a(W) = U A9 f 
t=l M 

and 
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00 

(5.3) b * ) = U ^ A ^ . 

Again, by (5.1) 

(5.4) a2(M) = a2(W) U a2b(N) . 

By (3.2) 

a3(n) = ba(n) - 1 . 

Since 9 by (4.5), 

(5.5) ba(lf) = A3 , 

i t follows that 

(5.6) a30f) = A(2, 4 ) , 

where the r igh t m e m b e r denotes the se t of posi t ive in tege r s with canonical 

r ep resen ta t ion 

F
k l

 + ' - - + F k r
 + F 2 ( k r " 4 ) -

Thus by (5.4), we have 

(5.7) a2b(W) = A(2, 4) , 

where the r ight m e m b e r denotes the se t of posi t ive in tegers with canonical 

r ep resen ta t ion 

F + . . . + F k + F 4 + F 2 (kr > 5 ) . 
1 j , 

General ly if we l e t A(s , s + 2) denote the se t of posi t ive in t ege r s with 
canonical r epresen ta t ion 
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F. + • • • + F, + F ^ + F (k > s + 3) 
ki k s+2 s r 

1 r 
and A(s , s + 2) the se t with canonical r epresen ta t ion 

F, + • • • + F, + F (k > s + 2) 
ki k s r 

i r 

then we may s ta te 

T h e o r e m 8. F o r t ^ 1 we have 

(5.8) ab* -^OND = A(2t, 2t + 2) , 

(5.9) ab^abf lSf) = A(2t, 2t + 2) , 

(5.10) b ^ W = A(2t + 1, 2t + 3) , 

(5.11) bVbftf) = A(2t + 1, 2t + 3) 

The proof i s by induction on t. F o r t = 1, Eqs . (5.8) and (5.9) reduce 
to (5.6) and (5.7), respec t ive ly . Next by (5.5) 

(5.12) A3 = ba2(N) U babQW) . 

Le t n E ba2(N); then 

e(n) E a3(N) = A(2S 4) , 

that i s , 

e(n) = F 2 + €F 5 + • . . , 

where € := 0 o r 1. This impl ies e i ther 

n = F 2 + €F6 + ••• o r F 3 + €F 6 + • • • 

The f i r s t possibi l i ty cont rad ic t s (5.3), so that 
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(5.13) ba2dD C A(a 5 5 ) . 

Now take n bab(P)9 so that 

e(n) E a2b(N) = A(2, 4) , 

e(n) = F 2 + F 4 + €F 6 + • . . . . 

This impl ies e i the r 

n = F 2 + F 5 + €FT + • • • o r F 3 + F 5 + €F 7 + • - - . 

The f i r s t poss ibi l i ty cannot occu r , so that 

(5.14) bab(W) C A(33 5) . 

C lea r ly (5.13) and (5.14) prove (5.10) and (5.11) for t = 1. 

We now as sume that (5.8), • • °5 (5.11) hold up to and including the value 

t - 1. Let n e a b t ~ 1 a 2 W s so that 

e(n) E bt"1a2(M) . 

By the inductive hypothesis this gives 

e(n) E A(2t - 1, 2 t~T1) , 

that i s 3 

e(n) = F 2 t _ 1 + 6 F 2 t + 2 + - . - . 

This impl ies 

n = F 2 t + 6 F 2 t + 3 + " - ' 

so that 
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(5.15) abt"1a2(M) C A(2t, 2t + 2) . 

t - 1 Now take n G ab ab(N), so that 

e(n) G b t"1ab(N) . 

Hence by the inductive hypothesis 

e(n) G A(2t - 1, 2t + 1) , 

that i s s 

e(n) = F 2 t _ , + F 2 t + 1 + 6 F 2 t + 3 + • • • . 

This impl ies 

n = F 2 t + F 2 t+2 = €F 2 t + 4 + " e > 

so that 

(5.16) ab t" 1ab(M) C A(2t, 2t + 2) f 

In the next p l ace , take n G b a2(If) , so that 

e(n) G abt"1a2(M) , 

By (5.15) this gives 

e(n) G A(2t, 2t + 2) , 

tha t i s , 

e(n) = F 2 t + €F 2 t + 3 + . . . . 

Then e i ther 
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n = F + €F + •• • 
*2 t+ l CJ?2t+4 

o r 

n = F 2 + F 4 + . . . + F 2 t + €F 2 t + 4 

The second poss ib i l i ty i s ruled out, so that 

(5.17) ab* 1a2(M) C A(2t + 1, 2t + 3) 

Final ly take n E b a b ( H ) , so that 

e(n) E abfc 1 ab^T) 

Then by (5.16), 

e(n) E A(2t, 2t + 2) 

that i s 5 

e(n) = F 2 t + F 2 t + 2 + €F 2 t + 4 + 

Then e i the r 

2t+l 2t+3 2t+5 

o r 

n = F 2 + F 4 + - . . + F 2 t + F 2 t + 3 + €F 2 t + 5 + 

Again the second possibi l i ty i s ru led out, so that 

(5.18) t^abfll) E A(2t + 1, 2t + 3) 
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Combining (5.15), (5.16), (5.17), (5.18), it i s c l e a r that we have c o m -

pleted the induction. 

We define a function A(N) by means of Ml) = 0 and A(N.) = t , where 

N > 1 and t i s the sma l l e s t in teger such that 

(5.19) e^N) = 1. 

Theo rem 9. Le t 

(5.20) N = F k i + F k 2 + - . . + F k r , 

where 

k. - k . + 1 * 2 (j = 1, . . . , r - 1); k r > 2 } 

be the canonical r ep resen ta t ion of N. Then 

( k - 2 (r = 1) 
(5.21) A(N) = k ' „ x ( r ^ D 

Proof. 
1. r = 1. Clear. 
2. r = 2, N = F. + F. 

h k2 

' 2~2'- - ^k l -k2+2 T r 2 e ^ ( N ) = F t . , _ „ + F2 

k k - 2 k - 2 
e r ^ e £ (N) = F4 + F2 

3
k i - 3 ( N ) = F + F 

eki"2(N) = F3 

e k l _ 1 ( N ) = F2 = 1 
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3e r > 2. By indue tion. 
Let At denote the set of positive integers N such that 

(5.22) A(N) = t . 

Theorem 10. A, consists of the integers N such that 

(5.23) F t + 1 < N ^ F t + 2 . 

Thus 

(5*24) | A t | = F t . 

Proof. Let N satisfy (4.22) and assume that N has the canonical 
representation (5,20). By (5,21) the value N = F , + 2 satisfies (5*22), For 
all other values of N5 it Is clear that r > 1. Moreover since 

F 2 + F 4 + . . . + F 2 S = F 2 S + 1 - 1 , 

it is clear that N must satisfy 

(5.25) F t + 1 ^ N - F t + 2 . 

Conversely all N that satisfy (5*25) are of the form (5*20) with r > 1. This 
evidently completes the proof. 

Finally we state 
Theorem 11. Let {x} = x - [x] denote the fractional part of the real 

number x. Then 

(5.26) N e a(N) ^ 0 < — < i 

(5.27) N E b ( » «=* - < — < 1 . 
^ J 9 I 
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Proof. We reca l l that 

a(n) = [cm], b(n) = [a2n] . 

Thus N = b(n) is equivalent to 

a2n - N + € (0 < € < 1) , 

so that 

Ji _ ± 

Thus 

Converse ly if 

then 

Thus 

so that 

i a { 4 = i _ ± > i _ J, = i 

- ^ = m + 6, * < € < 1 
a' ,2 Of 

N = a2m + #2e , 

a2(m + 1) = N + a2(l - €) 
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Since 

a2(l - 6) < ^ h - I | = a _ 1 < l 9 

it follows that b(m + 1) = N* 

This p roves (5.27). The equivalence (5*26) follows from (5.27) s ince 

a(N) U b(M) = M . 

6. WORD FUNCTIONS 

By a word function (or briefly a word) Is meant any monomial in the 

a?s and b f s . It i s convenient to Include 1 a s a word. Clear ly if u, v a r e 

any w o r d s , then au f bv. Also if au = av o r bu = bv then u = v. It 

follows readi ly that any word Is uniquely r ep re sen ted a s a product of "p r imes 1 ' 

a3 b. 

We define the weight of a word by m e a n s of 

(6.1) p(l) = 0, p(a) = 1, p(b) = 2 

together with 

(6.2) p(uv) = p(u) + p(v) , 

where u , v a r e a r b i t r a r y words . Thus there i s exactly one word of weight 

1, two of weight 2, and th ree of weight 3. Let N denote the number of 

words of weight p. If w is any word of weight p , then, for p > 2, w = 

au o r bvs where u i s of weight p - 1, v of weight p - 2. Hence 

N = N , + N 0 (p > 2) . 
p p - 1 p -2 

It follows that 

(6.3) N p = F p + 1 (p * 0) , 
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the number of words of weight p i s equal to the Fibonacci number F - .. 

Consider the equation 

(6.4) uv = vu . 

We may a s s u m e without l o s s of genera l i ty that p(u) ^ p(v). It then follows 

from the unique factorizat ion p rope r ty that u = vz , where z i s some word. 

Thus vzv = v2z, so that zv = vz. Thus by an easy induction on the total 

weight of uv we get the following theorem. 

T h e o r e m 12. The words u , v satisfy (6.4) if and only if the re i s a 
r s 

word w such that u = w , v = w , where r , s a r e nonnegative in t ege r s . 
We show next that any word i s " a lmos t " l inea r . More p r ec i s e ly we 

prove 
T h e o r e m 13. Any word w of weight p i s uniquely r ep resen tab le in 

the form 

(6.5) u(n) = F a(n) + F , n - A 
p p - 1 u 

where A i s independent of n. 

Proof. We have 

b(n) = a(n) + n , 

a2(n) = a(n) + n - 1 , 

ab(n) = 2a(n) + n , 

ba(n) = 2a(n) + n - 1 . 

We accordingly a s sume the truth of (6,5) for words u of weight ^ p . 

The re a r e two c a s e s to cons ider , (i) if u = va? then v is of weight p - 1 , 

so that (6.5) gives 

v(n) = F p _ i a ( n ) + F p _ 2 n - Ay 

Hence 
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u(n) = va(n) = F^ -a2(n) + F a(n) - A 
P~x p—Z V 

= F a(n) + F , n - A - F , , p p - 1 v p-1 ? 

(ii) if u = vb5 v Is of weight p - 2, so that 

v(n) = Fp_2a(n) + F ^ n - Ay . 

Then 

u(n) = vb(n) = F^ 9ab(n) + F^ Mn) ~ A 
p — u P""^ V 

= Fp_2(2a(n) + n) + Fp_3(a(n) + n) - A^ 

= ( 2 F p -2 + F p - 3 ) a ( n ) + ( Fp-2 + F p - 3 ) n - Av 
= Fpa(n) + F ^ n - Ay . 

This completes the induetion* 
We now show that the representation (6.5) is unique. Otherwise the 

exist numbers r, s, t such that 

ra(n) + an = t . 

Taking n = 1, 2, 3 we get 

| r + s = t 

J3r + 2s = t 

\ 4 r + 3s = t 

and therefore r = s = t = 0„ 
Incidentally5 we have proved that A sa t i s f ies 

<6-6> \a = A v + V \b = \ 

where v is of weight p. Note that 
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Avab = Ava = Av + F p 5 Avba = Avb + Fp+1 = Av + Fp+1 ' 

Note also that (6.5) implies 

(6.7) Au = F p + 1 - u(l) . 

As an immediate corollary of Theorem 13 we have 
Theorem 14. For arbitrary words, u,v, we have 

(6.8) uv - vu = C , 

where C is independent of n. 
It may be of interest to mention a few special cases of (6.5): 

(6.9) ak(n) = Fka(n) + F ^ n - Ffc+1 + 1, 

(6.10) bk(n) = F2ka(n) + F ^ ^ n , 

(6.11) bk(n) = a2k(n) + F 2 k + 1 - 1 , 

(6.12) (ab)k(n) = F3ka(n) + F g ^ n - ^ F g ^ - 1) , 

(6.13) (ba)k(n) = Fgka(n) + F g ^ n - Fgk_1 , 

(6.14) (ab)k(n) - (ba)k(n) = i ( F g k _ 1 + 1) , 

(6.15) akbJ(n) = F2j+ka(n) + F 2 j + k _ i n - Ffc+1 + 1 . 

(6.16) bVfo) = F2j+ka(n) + F ^ n - F2j+k+1 + F 2 j + 1 , 

(6.17) akbj(n) - bjak(n) = F 2 j + k + 1 - F 2 j + 1 - Ffc+1 + 1 . 

7. GENERATING FUNCTIONS 

Put 
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<7-« *jw = E *n 

n€A. 
(j = 2, 3, 4, • • • ) . 

In view of (4.5) and (4.6), Eq. (5.1) Is equivalent to 

(7.2) 

and 

(7.3) 

Also it i s c l e a r that 

2 r « = £ ab a (n) 

n=l 

2 r+ l » - E . b a(n) 

n=l 

(7.4) r ^ = E *,w • 
j=0 

It follows from the definition of A that 

(7.5) tf>r(x) = x 1 + E *<« 
j=r+2 

(r = 2, 3, 4, • • • ) 

This evidently impl ies 

- F ~F 
(7.6) x r 0 r ( x ) - x r + V r + 1 ( x ) = 0 r + 2 (x ) (r = 2, 3 , 4 , • • • ) 

In p a r t i c u l a r , by (7.5), 
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2(x) = x 1 +]C^to 
**** J 
j = 4 

[Jan-

Combining this with (5.4), we get 

(7.7) (1 + x)02(x) + x03(x) = j -

It is convenient to define 

(7.8) ^ = J2 x' 
n=l 

a(n) 

Since the se t a (If) i s the union of the se t s a2(N) and ab( l l ) , it follows 

from (3.4) that 

(7.9) 0(X) = 02(X) + X0g(x) 

Therefore by (7.7), we have 

(7.10) x$2(x) = 1 - X 0(x) 

and 

(7.11) X ^ 3 ( X ) = _ * _ + (1 + x )0( x ) 

Making use of (7.5), (7.10) and (7.11) we can e x p r e s s all c/>.(x) in t e r m s 

of 0(x). F o r example , s ince 

- 1 -2 
X 02(X) - X 03(x) = 04(x) 9 

we get 
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(7.12) x404(x) = T - ^ - 4 - - (1 + x + x2)#c) . 
X —• x 

Generally we have 

(7.13) x r <pv(x) = ( - l ) r L - i _ - Br(x)<p(x)\ , 

where A (x), B (x) are polynomials that satisfy 

, Ar+2<x) = A r+ l ( x ) + X r + l A r ( x ) 
(7.14) [ r + 2 r + 1 F r + 1

 r 

Er+2< x ) = B r+ l ( x ) + x B r ( x ) 

together with the initial conditions 

' A2fe) = 1, A3(x) = 1, 
< B2(x) = 1, B3(x) = 1 + x 

It follows readily that 

(7.15) B (x) = 
F 

1 - x 
r 1 - x 

while 

F r - 1 
a(j) (7.16) xAr(x) = J^ x 

In conclusion we shall show that the function <£(x) cannot be continued 
across the unit circle. Indeed by a known theorem [1 , p. 315], either 0(x) 
is rational or it has the unit circle for a natural boundary. Moreover, it is 
rational if and only if, for some positive integer m, 
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H I , (7.17) (1 - xMi)0(x) = P(x) , 

where P(x) • is a polynomial. Clearly the coefficients of P(x) are rational 
integers. It follows that 

(7.18) x l i p (1 - x)</>(x) = C5 

where C is rationale On the other hand? if we put 

>w = E k c, x k 
k=l 

so that c. = 0 or 1, it is evident from (7.8) that 

n 
n 

"k ~ a 
k=l 
1>- ~ 

Since this implies 

lim- (1 - x)tf>(x) = i x = 1 a 

we have a contradiction with (7.18). 

8. APPENDIX 

In addition to the canonical representation (1.1) we have another rep-
resentation described In the following 

Theorem 15. Every integer N is uniquely represented in the form 

(8.1) N = F + - . + F k + F 2 k + 1 (k * 0) , 
i r 

where 
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k - k.+ 1 a 2 (j = 1, • • • , r - 1), k r - (2k + 1) a 2 . 

Proof. By (5.2), 

(8.2) a(M) = U A_. 
t=l * 

Hence, by the first proof of Theorem 6, 

" = V A 2 t - 1 
t=l 

This evidently p roves the theorem. 

We may r e fe r to (8,1) a s the second canonical r ep resen ta t ion of N. 

In view of T h e o r e m 15, we le t A„, ^ denote the se t of posit ive inte-

g e r s {N} of the form (8.1), Then the se t s 

zk-fl ~~ 

consti tute a par t i t ion of the posit ive In tegers . C lea r ly 

( 8 ' 3 ) • A 2 k + 1 = A 2 k + 1 (k = 1, 2, 3 , • • • ) , 

while 

(8.4) At = U AQf = aft)). 
t=l 2t 

F o r N E A1? if 

(8.5) N = F f c + . . . + F k + Ft 
l , r 

k. - k j + 1 ^ 2 (j = 1, • • - , r - 1), k r > 3 
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then clearly we may replace FA by F2 and (8.5) reduces to the first canoni-
cal representation,, In this case, then, N E A2. However, if k = 3 , the 
situation is less simple. For example 

8 = F6 = F5 + F3 + Fi . 

Generally, since 

F t + F 3 + F 5 + . . . + F 2 s _ 1 = F 2 g , 

it follows that if the number N has the second canonical representation 

N = F l + P l + . . . * F 2 g _ 1 + F k i + F k 2 + . . . , 

where 

k j + 1 - kj - 2 (J - 1). h - 2s + 2 , 

then N E A and conversely. 
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1. INTRODUCTION 

We define the Fibonacci and Lucas n u m b e r s a s usual by means of 

F 0 = 0, Fi = 1, F ^ = F + F - (n > 1) , 
" ' i » n+1 n n - 1 ' 

L0 = 2, Lt = 1, L . = L + L , (n > 1) . 
u x n+1 n n - 1 ' 

We reca l l that every posi t ive in teger N can be wri t ten uniquely in the form 

(1.1) N = F. + F. + . . . + F t 
H &2 K r 

where 

(1.2) k - k j + 1 > 2 (j = 1, 2, • . . , n - 1); k r > 2 . 

If A, denotes the se t of posit ive in tegers {N} for which k = k, it i s 

c l e a r that the se t s 

(1.3) | A j (k = 2, 3, 4, • - . ) 

consti tute a par t i t ion of the set of posit ive in tegers . We may re fe r to (1.3) 

a s a Fibonacci par t i t ion of the posit ive in t ege r s . It i s proved in [2 ] that the 

n u m b e r s in A, can be descr ibed in t e r m s of the g r ea t e s t in teger function. 

More p rec i se ly , if 

a = I (1 + N / 5 ) 

* Supported in p a r t by NSF Grant GP-17071. 

29 
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and we put 

(1.4) a(n) = [ a n ] , . b(n) = [a2n] , 

then we have 

(1.5) A 2 t = { a b ^ a d i ) | n = 1, 2, 3 , • • •} (t = 1, 2, 3 , • • •) , 

(1.6) A 2 t + 1 = {bfca(n) | n = 1, 2, 3 , -- » } (t = 1, 2, 3 , • • •) . 

As i s cus tomary , powers and juxtaposit ion of functions should be in te rpre ted 

a s composit ion. 

Turning next to r ep resen ta t ions a s sums of Lucas n u m b e r s , we show 

f i r s t that every posit ive in teger i s uniquely r ep re sen t ab l e . e i t he r in the form 

(1.7) N = L k j + . . - + L k r + L 0 , 

where 

(1.8) k ' = k j + 1 > 2 (j = 1, 2, • • - , r - 1); k r => 3 

o r In the form 

(1.9) N = L k j + . . • + L k r , 

where now 

(1.10) k - k j + 1 => 2 (j = 1, 2, ••• , r - 1); k f > 1 ; 

but not in both (1.7) and (1.9). 

Le t B0 denote the se t of posit ive in tege r s r ep resen tab le in the form 

(1.7) and le t B, denote the se t of posit ive In tegers r ep resen tab le in the form 

(1.9) with k = k. Then a s above the se t s r 

(1.11) B k fe = 0 , 1 , 2 , . . . ) 
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const i tute a par t i t ion of the posit ive in tegers which may be cal led a Lucas 

par t i t ion. In the next sect ion we shall prove the following. 

(1.12) B0 = {a2(n) + n | n = 1, 2, 3, • • • } , 

(1.13) Bt = (a2(n) + n - 1 | n = 1, 2, 3, • • • } , 

and 

(1.14) B 2 t + 1 = { a b t " 1 a ( n ) + a b ^ t n ) | n = 1, 2, 3, • • •} (t = 1, 2, 3, • . . ) , 

(1.15) B 2 t = { b t _ 1 a ( n ) + b W ) | n = 1, 2, 3 , • • • } (t = 1, 2, 3, • • •) . 

It i s not difficult to show that an in teger N i s in B0 if and only if i t is 

not r ep resen tab le in the form 

(1.16) N = L ^ + . . . + L k r , 

where 

ki => k2 - . . . > k r > 1 . 

Let ^(n) denote the number of In tegers ^ n that a r e not r ep resen tab le in the 

form (1.17). Hoggatt has conjectured that 

(1.17) „ (L n ) = F Q _ 1 

and that, for fixed k? 

(1.18) ^(kLn) = k F n _ 1 , 

if n is sufficiently l a rge . The conjecture (1.17) was proved by Kla rne r ; we 

shall prove (1.18) in Section 3 below. 
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2. SOME PROPERTIES OF THE LUCAS REPRESENTATION 

Let P be the set of numbers that can be written in the form (1.7) with 
kt ^ n, and let Q be those that can be written in the form (1.9) with kt ^ 
n. Then we have 

P3 = { 2 , 6 } 

Q3 = {1, 3, 4, 5} 

P4 = {2, 6, 9} 

Q4 = {1, 3, 4, 5, 7, 8, 10} 

(2.1) 

By induction we obtain the following theorem. 
Theorem 1. Every positive integer can be uniquely represented in 

either the form (1.7) or the form (1.9), but not both. Moreover, 

(2.2) P U Q = {1, 2, ••• , L ^ - 1} 
n ^n L ' ' ' n+1 J 

(2.3) card (P ) = F 
n ' n 

(2.4) card ( Q J = FR+2 - 1 . 

Proof. We will prove (2.2) —(2.4) and also 

(2.5) P n n Qn = 0 

by induction. Hence let us assume (2.2)-(2.5) up to and including the value 
n. Now by definition 

P n + 1 = P n U ^n- l+W 

V l = Q n U ( Vl + . L n + l> U < W 

and these unions are disjoint; if for instance, N €E P - + L - , then N > 
L + 1 and by (2.2) N $ P , etc. Hence 
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card (P ) = card (P ) + card (P - ) '= F -n+1 n n-1 n+1 

and 

ca rd (Q n + 1 ) = F n + 2 - l + F n + 1 - l + l F n + 3 - 1 

The other properties are easily checked. 
The following tree may aid the reader. 

n n 

0 2 

1 1 

2 3 

3 4 

5 2 

Q4 

We turn next to the relations (1.12) —(1.15). We make use of the func-
tion e defined in [1], The properties we need are the following (see [1] and 
[2]): 

(i) If 

N = F + . . . + p k k & 2, kj > k2 > • • • > k , 
ki 

then 

e ( n ) = F k , - 1 + '°° + F ' k r - l 

(ii) For every N9 

e(a(N)) = N 
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and 

e(b(N)) = a(N) . 

Theo rem 2. The following re la t ions hold. 

(2.6) B0 = {a2(n) + n | n = 1, 2, 3 , • • • } 

(2.7) Bt = {a2(n) + n - 1 | n = 1, 2, 3 , • • • } 

(2.8) B 2 t = { b ^ a f e ) +b t a (n ) In = 1, 2, 3 , . . . } (t = 1, 2, 3, • • •) 

(2.9) B 2 t + 1 = { a b ^ a f c i ) + a b W ) | n = 1, 2, 3 , • • •} (t = 1, 2, 3, - • •) . 

Proof. Let N be an a r b i t r a r y posi t ive in teger . By (1.5), we have 
a2(N) E A2. Hence 

(2.10) a2(N) = F 2 + €4F4 + • - . , 

where €. may a s s u m e the values 0 o r 1. Applying e twice, we get 

(2.11) N = Ft + €4 F 2 + ••• . 

Adding (2.10) and (2.11), we get 

(2.12) a2(N) + N = 2 + €4 L 3 + • • • E B0 . 

On the o ther hand, suppose 

(2.13) M = L0 + €3 L 3 + €4 L 4 + . . . 

i s in BQ. Let 

K = F 2 + €3 F 4 + €4 F 5 + . . . . 
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Since K E A2, by (1.5) K mus t be of the form a2(M) for some M. Also 
M = e2(a2(M)). Hence 

a2(M) = F2 + €3 F 4 + e 4 F 5 + • - . 

M = F4 + €3 F 2 + 64 F 3 + • • • 

and 

N = M + a2(M) . 

This p roves (2.6). Equation (2.7) is c l e a r from the definition. To prove (2.8), 

le t N be a r b i t r a r y . Then 

bta(N) E A 2 t + 1 , 

by (1.6), so 

b W ) = F2 t + 1 + €2 t + 3 F 2 t + 3 + . . . . 

Applying e twice and adding we get 

bta(N) + b'^CN) = L 2 t + e 2 t + 2 L 2 t + 2 + " • G B 2 t . 

Conversely, suppose N £ B„. , so that 

Put 

N = L 2 t + €2 t + 2 L 2 t + 2 + 

M = F 2 t + 1 + €2 t + 2 F 2 t + 3 + 

t 
Then, by (1.6), M = b a(K) for some K. Moreover , s ince 

e2(M) = b t ' 1 a ( K ) , 
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we have , 
N = b a(K) + b a(K) . 

This proves (2.8), and the proof of (2.9) is similar. 

3. PROOF OF HOGGATT'S CONJECTURES 

Theorem 3. An integer N is in B0 if and only if it is not represent-
able in the form 

(3.1) N = L. + . . . + Li , 

where 

(3.2) Ji > j 2 > . . . => j s > 1 . 

Proof. If 

(3.3) j t - j t + 1 > 2 (t = 1, • • • , s - 1) , 

then Theorem 3 is an immediate consequence of Theorem 1. Let u be the 
least positive integer such that 

In (3.1), replace 

û Wl X 

L. + L. by L. J l 
i i i +1 
Ju Ju+1 Ju 

and then repeat the process. Since 

L l + L2 + . . . + L k = L k + 2 - 3, 

we ultimately reach a representation of the form (3.1) that satisfies (3.3). 
This evidently proves the theorem. 
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Let v(n) denote the number of posi t ive in tege r s N ^ n that a r e 

r ep re sen tab le in the form (3.1), so that by the theorem jus t proved, ^(n) 

a lso the number of in tege r s ^n in B0. 

T h e o r e m 4. We have 

(3.4) v(n) = 

Proof. By Theo rem 2, 

B0 = {aa(k) + k | k = 1, 2, 3 , • • • } 

= {b(k) + k - 1 | k = 1, 2, 3 , 8 B 0 } . 

Thus v(n) i s the l a r g e s t in teger k such that 

b(k) + k ^ n + 1 . 

Since b(k) = [ < A ] , v{n) i s the l a r g e s t k such that 

[(a2 + l )k ] < n + 1 , 

that i s 9 the l a r g e s t k such that 

(a2 + l )k <• n + 2 . 

Thus (3.4) follows at once. 
T h e o r e m 5. We have 

(3.5) v(LR) = F n _ x (n => 1) . 

Proof. Since 

L n = an + pn (ap = -1) , 

it follows that 

n + 2 
a2 + 1 
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L + 2 n , fln , 0 n - 1 nn nn+t 
n = a + p + 2 _ a - 2 / 3 - / 3 

a2 + 1 a2 + 1 a ~ P 

J1"1 - A 1 -2/3 + ^n-1 - /3 n + 1 

= F n-

a - p 

_ 1 a2 + 1 

a • 

• 

- P 

It i s eas i ly verif ied that 

2 + fi11"1 
0 < ± - + P < i (n > 1) 

G/2 + 1 

T h e o r e m 6, Le t k be a fixed posit ive integer* Then 

(3.6) ^(kL ) = kF -
n n - 1 

for n sufficiently l a rge . 

Proof. We have 

kL + 2 . t n , nn. , rt , , n - 1 ^n+1^ n = k(or + p ) + 2 = k(a - p ) - 2, 

a2 + 1 a2 + 1 or - j3 

- t ^ " 1 - A1
 + k^11"1 - / 3 n + 1 ) - 2/3 

a - p a - p 

F o r n sufficiently l a rge it i s c l e a r that 

, / /Dn-1 0 n + l x 0 0 
0 < k<^ - ft ) - 2/3 < 

or - p 

so that 
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"kL + 2' 
n 

a2 + 1 
= kF n - 1 

This comple tes the proof of the theorem,, 

T h e o r e m 7„ We have 

(3.7) 

and 

v(5F ) = L -
n ' n - 1 

(n => 1) 

(3.8) ^(5kF ) = kL -N n n - 1 

for sufficiently l a rge n. 

Proof. To prove (3e7)9 note that 

5F + 2 , o\, n 0 ru , 0 , m / n-~l , D n+L 0 0 
n _ (a - j3)(a - /3 ) + 2 _ (a - /3)(# + jg ) - 2/3 

a2 + 1 aL + 1 a - f3 

11-X , n l 
= a + j3 

L(l - P2) 
2/3 

a - p 

Since 

L
n-i + p ~ tr^j 

0 < £n - - J ^ < l (n - 1) , 

(3.7) follows. 
Next to prove (3.8) we take 

5 k F n + 2 _ k(a - flfrn - J311) + 2 = k(a - p)^1* <3n+1) - 2/3 

aL + 1 a* + 1 a - p 

. , n - 1 , 0 n+l x 2/3 . / n - 1 , «n-lv , . 0 n 2/3 
k(Qf + p ) _ _ J ± ™ = k ( a + p ) + k/3 - ^ f y 
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Since 

0 < k i 3 n - - M , - 1 

for n sufficiently large, Eq. (3.8) follows at once. 
The last two theorems were also conjectured by Hoggatt. 

4. GENERATING FUNCTIONS 

Put 

(4.1) i/r.(0) = J ] x n (j = 09 1, 2, •••) 
n£B. 

3 

In view of Theorem 2, Eq. (4.1) is equivalent to 

A a3 ( n ) + n 
(4.2) ^0(x) =J2X 

n=l 

00 
//> o\ i / \ V* ' a2(n)+n-l 
(4.3) i|/t(x) = 2 ^ x 

n=l 

00 
ab a(n)+ab a(n) (4.4) ^t + 1(x) = J ] X a W + a D a W (t - 1) , 

n=l 

<4-5> *2t ( x ) = E x b t " l a ( n ) + b t a ( n ) <t * 1) . 
n=l 

Clearly 
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I|I0(X) = xi^(x) . 

41 

Also it is evident that 

(4.7) 

so that, by (4.6), 

T-fz-E-fcW • 
J=o 

(4.8) Yz~z = tt + x)t/»t(x) + 2 *jW • 
1=2 

In the next place it follows from the definition of A that 

(4.9) i/,r(x) = x 1 + X ) «VX) 

j=r+2 
(r 3= 1) 

This implies 

(4.10) x r ^ ( x ) - x r + 1 ^ . + 1 (x ) = ,|,r+2(x) (r £ 1) 

In particular, by (4.9), 

«/»i(x) = x 1 + £ ,/,.(x) 
j=3 

Combining this with (4.8), we get 

(4.11) 1 - x (1 + x + x2)i|<1(x) + xi|/2(x) 
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By means of (4.10) and (4.11) we can express all $.(x)9 j > 1, in 
terms of ^ ( x ) . The first few formulas are 

Xlf,2(x) = T_2L~ - (l + x + x2)i//1(x) 

x4i//3(x) = - —^— + (1 + x + x2 + x 3 ) ^ ) 
X -- X 

xty4fc) = ~ ~ - + ~ 4 *jW 

Generally we have 

L -3 rxA (x); 
(4.12) x r + i i//r(x) = ( - l ) r J _ E _ L Br(x)i|/1(x) 

where 

. A r+2 ( x ) = A r + l ( x ) + x T+\W (4.13) | r + 2 r + 1 L r 

Br+2(x) = B (x) + x XB fe) 

together with the initial conditions 

JA2(x) = 1, A3(x) - 1 

{B2(x) = 1 + x + x2, B3(x) = 1 + x + x2 + x3 

It follows that 

L r 
(4.14) B (x) = 1 " x 

r 1 - x 

while 
[Continued on page 70. ] 
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1. INTRODUCTION 

Let 

F<v = 0S Fi = 1, F _,, = F + F n (n > 1) . 
u 1 n+1 n n - 1 

It i s well known that eve ry posit ive in teger N can be uniquely r ep re sen t ed 

in the form 

(1.1) N = F. + F. + F. + 

where 

(1.2) ki ^ 29 k . + 1 - k. ^ 2 tt = l , 2, 3, • •• ) ; 

Equation (1,1) i s cal led the canonical r ep resen ta t ion of N. Le t A^ denote 

the se t of posi t ive in t ege r s N with kt = k in (1.1). It was proved in [ 2 ] 

that 

(1.3) A 2 t = a b ^ a W ) (t = 1, 2, 3 , •• •) , 

(1.4) A 2 t + 1 = b W ) (t = 1, 2, 3, • • • ) , 

where M denotes the se t of posi t ive in tegers and the functions a(n), b(n) 

a r e defined by means of 

(1.5) a(n) = [ o n ] , b(n) = [or2n], a = \(1 + <\/5) , 

* Supported in p a r t by NSF Grant GP-17071. 
43 
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and [x] denotes the g r e a t e s t in teger ^x . In the paper ci ted, cons iderable 

use is made of the function e(N) defined by 

This function was introduced in an e a r l i e r paper [ l ] . 

It i s na tura l to t ry to extend the r e s u l t s of [2] to Fibonacci number s of 

h igher o r d e r . F o r a number of r e a s o n s we l imi t ou r se lves in the p re sen t 

pape r to the number s defined by 

(1.7) G0 = 0, Gi = G2 = 1, G n + 1 = G n + G n _ 1 + GR_2 (n 2 2) . 

To begin with, we have the unique canonical r epresen ta t ion 

(1.8) N = ^ G 2 + €3G3 + €4G4 + . . . f 

where each €. is e i the r 0 o r 1 and now 

(1.9) €i€i + l€i + 2 = ° (i = 2, 3 , 4 , • • • ) . 

Corresponding to the function e(N) defined by (1.6) we introduce the function 

(1.10) f(N) = €2Gi + €3G2 + €4G3 + • • • . 

Moreover if 

(1.11) N = e[G2 + €̂ G 3 + €̂ G 4 + - . , 

where each € \ i s e i the r 0 o r 1, i s any represen ta t ion of N, then 

f(N) = € ^ + €̂ G 2 + €̂ G 4 + - . . 

Let C. denote the s e t of posi t ive in tegers { N } for which 6, i s the 

f i r s t nonzero 6. in (1.8). We obtain r e s u l t s analogous to (1.3) and (1.4), 

namely 
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(1.12) C 3 k + 2 = ac k a (N) U ackb(W) (k ^ 0) , 

(1.13) C 3 k + 3 = bcka(Jf) U bckb(N) (k ^ 0) , 

(1.14) C 3 k + 4 = c k + 1 a ( N ) U c k + 1 b ( N ) (k s> 0) . 

The functions a, b , c a r e defined in Section 3 below; we have been unable 

to find explicit formulas analogous to (1.5). We show, however , that the 

functions can be cha rac t e r i zed in the following way. They a r e s t r i c t ly m o n o -

tone functions whose ranges const i tute a disjoint par t i t ion of the posit ive in t e -

ge r s ; m o r e o v e r 

(1.15) b(n) = a2(n) + 1, c(n) = a(n) + b(n) + n . 

In addition to the canonical r epresen ta t ion (1.8), we find i t convenient 

to introduce a second canonical r ep resen ta t ion 

&-16> N = G 3 k + 1 + €3k + 2 G 3k + 2 + 

where k ^ 0 and as before 

6 i e i + l €i + 2 = ° (i ^ 3k + 1) . 

Moreover , making use of the represen ta t ion (1.16), 

a ( N ) = G 3 k + 2 + €3 k + 2 G 3 k + 3 + > - -

(1.17) {b(N) = G 3 k + 3 + €3 k + 2 G 3 k + 4 + . . . 

C ( N ) = G 3 k + 4 + e 3 k + 2 G 3 k + 5 + - - ' 

It i s because of these formulas for a(N), b(N), c(N) that (1.16) i s p a r t i c u -

l a r l y useful. 

2. PRELIMINARIES 

Let Q be the se t of non-negat ive Nrs- which can be wr i t ten canon-

ical ly in the form 
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(2.1) N = e2G2 + e3G3 + • • • + enGn . 

Then we have 

Q2 = {0 ,1} , Q3 = {0, 1, 2, 3} , 
(2.2) 

Q4 = {0, 1, 2, 3, 4, 5, 6 , . . . } 

We can see easily by induction that Q is a disjoint union: 

(2.3) Qn + (Qn_3 + Gn_1 + Gn) U (QQ_2 + Gn) U Q ^ 

and that 

(2.4) Qn = {0, 1, 2, • - . , G n + 1 - 1} . 

These remarks imply the following theorem. 
Theorem 1. Any positive integer N can be uniquely represented in 

the canonical form (2.1). 
Theorem 2. If N is given (not necessarily canonically) by 

N = €̂ G2 + €j G3 + ••• , 

then 

f(N) = €\Gt + €jG2 + . - . 

Proof. Given any representation €f = (€2, 63, •••) of N we obtain 
another representation s(€?) of N by choosing, in €9 the block of the form 
(1, 1, 19 0) that is farthest right and replacing it by the block (0, 0, 09 1). 
If there is no such block;, € T is canonical and we set s(€?) = €!. It is clear 
that sufficiently many applications of s will yield the canonical representa-
tion of N9 but it is also clear that 

(2.5) €̂Gj + €̂ G2 + ••• = s(€f)2Gi + s(€')3G2 +• • • • , 
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es tabl ishing the theorem* 

T h e o r e m 3» We have f(N + 1) — f(N), with equali ty if and only if 
N E C 2 , 

Proof. If N $ C2 then 

N = €3G3 + €4G4 + . . . 

and 

N + 1 = G2 + €3 G3 + • • • . 

Hence 

f (N + 1) = Gi + €3G2 + • • • = f(N) + 1 . 

If N G C2 then e i the r 

(a) N = G2 + G3 + €5G5 + - . . 

o r 

(b) N = G2 + €4G4 + • • • . 

In case (a) 

N + 1 = G4 + €5G5 + . - • 

and 

f(N + 1) = Ga + %Ga + . . . = f(N) . 

In case (b) 

N + 1 = G3 + €4 G4 + • •• 

and 
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f(N + 1) = G2 + €4 G 3 + . . . = f(N) . 

[Jan. 

This comple tes the proof. 

T h e o r e m 4. We have N - 1 <$ C2 if and only if N G C , , where k = 
2 (mod 3). 

Proof. If N E C2? the re i s nothing to p rove , so suppose N E C, , k 

^ 2; le t N have the canonical r epresen ta t ion 

N = G, + €. ,- G. ^ + k k+1 k+1 

Then we have 

'G0 + Gi + G 2 + (G4 + G5) + 

(2.6) Gk = Gi + G2 + G3 + (G5 + G6) + • 

lG2 +G3 + G4+ (G6 + G7) + • 

+ G k - 2 + G k - l k 

+ ( G k - 2 + G k - l 

0 (mod 3) 

) k = 1 (mod 3) 

+ ( G k _ 2 + G k _ x ) k = 2 (mod 3). 

Thus we see that only in the case k = 2 (mod 3) we have G. - 1 6£ C2 

T h e o r e m 5. The following ident i t ies hold for k => 2. 

J k - 1 
(2.7) f(Gk - 1) G k - 1 

G k - 1 " X 

k = 0 (mod 3) 

k E 1 (mod 3) 

k = 2 (mod 3) 

Proofo Making use of (2.6), we readi ly get (2.7). 

3. THE FUNCTIONS a, b , AND c 

In this sect ion we define th ree s t r i c t ly monotone functions on the p o s i -

tive i n t ege r s , which we display a s an a r r a y : 

(3.1) R 

1 

a( l ) 

b(l) 

c( l ) 

2 

a(2) 

b(2) 

c(2) 

3 

a(3) 

b(3) 

c(3) 

4 

a (4) 

b(4) 

c(4) 

5 

a(5) 

b(5) 

c(5) 

. . . 
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We begin by set t ing a( l ) = 1, b(l) = 2, c( l) = 4 , a(2) = 3 , and fill the 

r e s t of the a r r a y by induction. Suppose that columns 1 to n have been filled* 

and a lso that a(n + 1) i s known. Then we fill row a to column a(n + 1) in 

inc reas ing o r d e r with the f i r s t in tegers that have not appeared so far in the 

a r r a y . Then we le t b(n + 1) be the next in teger that has not appeared , and 

we set 

c{n + 1) = n + 1 + a(n + 1) + b(n + 1) . 

Thus we get 

n 

a 

b 

c 

1 

1 

2 

4 

2 

3 

6 

11 

3 

5 

9 

17 

4 

7 

13 

24 

5 

8 

15 

28 

6 

10 

19 

35 

7 

12 

22 

41 

8 

14 

26 

48 

9 

16 

30 

55 

10 

18 

It i s c l e a r from the definition of R that the r anges a(N), b(N), and 

c(N) a r e disjoint and exhaust the posi t ive i n t ege r s . We will now es tab l i sh 

seve ra l re la t ions between a9 b and c. 

T h e o r e m 6. F o r every posit ive in teger N, the following ident i t ies 

hold: 

(3.3) c(N) = a(N) + b(N) + N , 

(3.4) b(N) = a2(N) + 1 , 

(3.5) ab(N) = ba(N) + 1 , 

(3.6) c(N) = ab(N) + 1 = ba(N) + 2 . 

Proof. 1. ((3.3)) This i s the definition of c(N). 

2. ((3.4)) Let N be the f i r s t in teger for which (3.4) fai ls . 

Then we mus t have3 for some K < N, 
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c(K) - a2(N) + 1 and b(N) - a2(N) + 2 . 

Hence the array has the form 

K N a(N) 

a2(N) 

a2(N) + 2 

a2(N) + 1 

Now K + N + a(N) numbers have been entered. Since they must be the num-
bers 1, 29 • • • , a2(N) + 2, we get 

(3.7) K + N + a(N) = a2(N) + 2 . 

But 

K + a(K) + b(K) = c(K) = a2(N) + 1 . 

Therefore 

(3.8) a(K) + b(K) + 1 = N + a(N) . 

Now if we had a(K) < N3 we would have a2(K) < a(N), but from (3.8) we 
would have b(K) + 1 > a(N). However b(K) = a2(K) + 1 since (3.4) holds 
for K < N. This is a contradiction, since a(N) < b(K). In a similar way 
we contradict the supposition a(K) > N. Hence a(K) = N and we have 

K + N + a(N) = K + a<K) + a2(K) = K + a(K) + b(K) - 1 = c(K) - 1 = a2(N), 

contradicting (3.7). 

3. ((3.5) and (3.6)). Consider the array: 
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__N_ a(N) a2(N) b(N) 

ab(N) 
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. 

c(N) 

a2(N) 

ba(N) 

ba(N) -- 1 

Assume ba(N) > c(N). Then no number ^c(N) can be mi s s ing from the en -

closed port ion (since i t f s too la te to en te r It In any row). Hence In the en -

closed port ion we have at l e a s t the n u m b e r s 1, 2, ° - • , c(N), ba(N) - 1 and 

ba(N). However these a r e only N + a(N) + b(N) - 1 = c(N) - 1 e n t r i e s , a 

contradict ion. Hence ba(N) < c(N) and one number M < c(N) is mi s s ing 

from the enclosed port ion. Then we mus t have M = ab(N). Now M Is e x -

ceeded only by c(N), so we m u s t have ab(N) = c(N) - 1, ba(N) = c(N) - 2 

proving (3.5) and (3.6). 

We conclude this sect ion with a cha rac te r i za t ion of the a r r a y R. 

T h e o r e m 7. Let al 9 bt and ct be s t r i c t ly monotone functions whose 

ranges form a disjoint par t i t ion of the posi t ive i n t ege r s . Suppose fur ther that 

they satisfy (3.3) and (3.4). Then at = a, bA = b and ct = c. 

Proof. Clear ly 

b(N) = a2(N) + 1 > a2(N) > a(N) . 

Hence we mus t have a(l) = 1 and b(l) = a2(l) + 1 = 2. Then c ( l ) = 4, 

and fur ther s s ince b(N) > a ( N ) , a(2) = 3. 

Now by induction on the columns of the a r r a y formed by the functions 

a1? fy and c1? we see that it i s the a r r a y R. 

4. RELATIONS INVOLVING f 

Since every number appea r s in the range of f and f is monotone, the 

following definition m a k e s sense . F o r every N? we le t A(N) be defined as 

follows: 

(4.1) f(A(N)) = N; f(A(N) - 1) = N 
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We define B(N) by 

(4.2) B(N) = A(A(N)) + 1 

and C(N) by 

(4.3) C(N) = N + A(N) + B(N) . 

Theo rem 8. A(A(M) C C2 . 

Proof. Suppose for some N, A(A(N)) i s not in C2. Put (canonical 
r ep re sentation) 

A(A(N)) = G k + 6 k + 1 G k + 1 + . . . (k * 2 ) . 

Then applying f we get 

( 4 . 4 )
 A ( N ) = G k - l + €k + l G k + - - -

N = G k - 2 + € k + l G k - l + - - ' • 

By the definition of A and T h e o r e m 3 , A(A(N)) - 1 €£ C2, so by T h e o r e m 

4 , k = 2 (mod 3). But ne i the r i s A(N) - 1 in C2. Hence k - 1 = 2 (mod 

3). This i s a contradict ion and p roves the theorem. 

T h e o r e m 9. C2 = A(A(N)) U A(B(M)). 

Proof. Suppose A(B(N)) ££ C2. Put (canonical representa t ion) 

A(B(N)) = G k + ^ + 1 G k + 1 + . . . (k > 2 ) . 

As in the previous theo rem, we m u s t have k = 2 (mod 3) so that k ^ 5 and 

A(A(N)) + 1 = B(N) = G k _ 1 + €k + 1 G k + • • • . 

Hence 

A(A(N)) = ^ - 1 + 6 ^ + 

and, from T h e o r e m 5, 
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A ( N ) = Gk-2 + VlGk-l + - " -

Now again since A(N) - 1 <$ C2, we get k - 2 = 2 (mod 3), a contradict ion, 
T h e o r e m 1Q8 Let K be a r b i t r a r y and suppose K - 1 i s given canon-

ical ly by 

(4.5) K - 1 = e2G2 + €3G3 + • • • . 

Then 

'(4.6) A(K) = Gi + €2G3 + €3G4 + • • • 

(4.7) A(A(K) = G2 + €2G4 + €3 G 5 + •• • 

(4.8) C(K) = G4 + €2G5 + €3G6 + ••• 

Proof. F r o m the previous theo rem, the number 

P = G2 + €2G4 + €3 G 5 + . . . 

i s e i the r of the form A(A(L)) o r A(B(L)). Hence 

f(P) = Gi + €2G3 + €3G4 

i s e i the r of the form A(L) o r B(L). But f(P) - 1 $ C2, so f(P) cannot 

have the form B(L). Hence P i s 5 in fact, A(A(K)) and all of the re la t ions 

follow9 the th i rd using (4.2) and (4.3). 
T h e o r e m 11 . A = a5 B = b , C = c and for any in teger N9 

I f(a(N)) = N 

f(b(N)) = a(N) 

f(c(N)) = b(N) . 

Proof. We prove the f i r s t p a r t of the theorem by verifying the condi -

t ions of T h e o r e m 7. The second p a r t will be es tabl i shed incidentally in the 
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cou r se of the proof. Only the r equ i r emen t that A (NT), B(W) and C(N) be 

disjoint and exhaust ive i s not c l e a n 

Now A(A(N)) E C2 by T h e o r e m 8, so by T h e o r e m 39 

f(B(N) - 1) = f(A(A(N))) = f(B(N)) . 

Hence B(N) $ A(M) (and f(B(N» = A(N)). Now 

C(N) = N + A(N) + A(A(N)) + 1 . 

Le t (canonical representa t ion) 

A(A(N)) = G2 + €3G3 + €4G4 + - . . 

Then 

A(N) - 1 = €3G2 + €4G4 + - . , 

ands s ince A(N) - 1 (£ C2, It follows that e3 = 0. Applying f we get 

N - 1 = €3Gi + €4G2 + • • • , 

so that 

C (N) = 3 + F 2 + €3 G4 + €4 G5 + • • • 

= G4 + €4 G 5 + €5G8 + . . . 

This i s not n e c e s s a r i l y the canonical r ep resen ta t ion of C(N) but 

f(C(N)) = A (AON)) + 1 ( = B(N)) 

and 

f(C(N) - 1) = A(A(N)) + 1 . 
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Hence C(N) ^ A(N). Now suppose C(N) = A(A(M)) + 1 for some M, Then 

B(N) = A(A(N)) + 1 = f(C(n)) = A(M) , 

a contradict ion. Hence we have shown that A(N), B(N) and C(N) a r e 
d i s jo in t 

Now suppose N €f A(N) U B(N). Let (canonical representa t ion) 

(4.io) N = G k + e k + 1 G k + 1 + - - . . 

By T h e o r e m 9 this i s equivalent to assuming A(N) (J C2, that i s s 

(4.11) A(N) = G k + 1 + e k + 1 G k + 2 + . . . , 

and s ince , a lways , A(N) - 1 €f C2, we have k + 1 = 2 (mod 3)? that i s 5 

k = 1 (mod 3). 

F i r s t le t us cons ider the case k = 4S Then, If we put 

(4.12) K - 1 = C5G2 + €6G3 + • • • , 

we get5 by T h e o r e m 10, 

c(K) = N . 

Now suppose k > 4 ; k = 3t + 1, t > 1. Then le t s = t - 1 and set 

K = G 3 s+1 + €3 t+2 G 3s+2 + *"* 

= G_2 + (G_x + GQ) + ( G 2 + G s ) + - + < G 3 s - 1 + G3 8 ) + €3 t _ 2 G 3 8 + 2 . 

Now, applying T h e o r e m 10 to K - (G_2 + (G_1 + GQ)) f we get 

C(K - (G_2 + G_1 + GQ) + 1) 

= G4 + (G5 + G6) + . . . +(St-l + G 3 t ) +€3t + 2 G 3H2 + ' " 
= N. 



56 FIBONACCI REPRESENTATIONS OF HIGHER ORDER [Jan. 

This p roves the Theorem. 

5. THE SECOND CANONICAL REPRESENTATION 

Theorem 12. Eve ry posit ive in teger N can be wri t ten in a unique way 

in the form 

(5A) N = G 3 s + 1 + e 3 s + 2 G 3 s + 2 

where s ^ 0 and, as before , 6 . 6 . , - C . l 0 = 0. Moreover , 
i l+l i+2 ' 

( 5 - 2 ) a ( N ) = G 3 s + 2 + 6 3 s + 2 G 3 s + 3 + 

( 5 - 3 ) b ( N ) = G 3 s + 3 + 6 3 s + 2 G 3 s + 4 + 

and 

( 5 ' 4 ) C ( N ) = G 3 s + 4 + ^ s + 2 G 3 s + 5 + - - - • 

Proof. We saw in the proof of the previous theorem that an in teger 

M is of the form c(K) if and only if it is given canonically by 

M = G k + €k + l G k + l + • " ' ' k = 1 (mod 3). 

Hence for some s ^ 0, c(N) i s given canonically by 

C ( N ) = G 3 S + 4 + €3 s + 2 G 3 s + 5 + - - - • 

Apply f repeatedly to get the exis tence of the represen ta t ion and formulas 

(5.2) and (5.3). Now if we a s s u m e that N can be wr i t ten in two different 

ways in the form (5.1), we should obtain two different canonical r e p r e s e n t a -

tions of c(N). Hence the theorem is proved. 

We may call (5.1) the second canonical represen ta t ion . 
In view of the represen ta t ion (5.1), it is na tura l to l e t C,. - denote 

the set of in tegers r ep resen tab le in the form (5.1), for a fixed s. Then 
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c lea r ly 

57 

(5.5) 

while 

C3s+1 C3s-KL (s ^ 1) 

(5.6) q = U (cqlr+9 U c ^ ) 
k=0 3k+2 3k+3' 

Making use of the l a s t t heo rem, we obtain seve ra l formulas re la t ing 

a, b and c. The de ta i l s a r e s i m i l a r in all c a s e s so we will prove only two 

of the fo rmulas . 

T h e o r e m 13. The following formulas hold. 

(5.7) 

a2 

ab 

ac 

ba 

b2 

be 

ca 

cb 

c2 

= 

= 

= 

= 

= 

= 

= 

= 

= 

b 

c 

a 

c 

a 

a 

a 

a 

-

-

+ 

-

+ 

+ 

+ 

+ 

2a • 

1 

1 

b + c 

2 

b + c - 1 

2b + 2c 

b + c - 3 

2b + 2c - 2 

f 3b + 4c 

Proof. To prove, for instance, that 

be = a + 2b + 2c , 

we suppose that 

(5.8) C ( N ) = G 3 s + 1 + €3s+2 G 3s + 2 + (s £ 1) 
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Then by Theo rem 12 

b c ( N > = G 3 s + 3 + e 3 S + 2 G 3 S + 4 + - - - ( s £ X) 

But, by applying f to c(N) we see that 

b ( N ) = G 3 s + €3 s + 2 G 3 S + l + ' " <s * « 

and 

a ( N ) = G 3 s - 1 + e 3 s + 2 G 3 s + - " ( S - 1 } 

Now the resu l t follows if we obse rve that 

G - + 2G + 2G - = G ^ n - 1 n n - 1 n+3 

Simi lar ly , to prove that 

b2 = a + b + c - l , 

suppose that 

C ( N ) = G 3 s + 1 + *fc+2G3s+2 + - " ( S & 1 } 

Then 

b ( N ) = G 3 s + e 3 S + 2
G 3 s + l + - " ( S * « 

and 

a ( N ) = G 2 s - 1 + % + 2 G 3 s + " - (s ^ I ) -

Now we wr i te b(N) in the second canonical form: 

b(N) = (G l + G2) + . . . + ( G 3 s _ 2 + G g ^ ) + e 3 s + 2 G 3 g + 1 + 
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Then 

b»(n) = (G, + G4) + . . . + (G 3 s + G 3 s + 1 ) + 6 3 g + 2 G 3 s + 3 + • • • . 

Hence 

b2(N) + 1 = b2(N) + G2 = a(N) + b(N) + c(N) . 

A word function (or s imply word) u is a monomial in a, b , c: 

(5.9) u = a ^ c 1 * • - . a i r b j r c k r , 

where the exponents a r e a r b i t r a r y nonnegative in tegers . Since au = bv, for 

example ? is imposs ib le , and au = av impl ies u = v, it follows that the 

represen ta t ion (5.9) i s unique. In o ther words factorizat ion into p r i m e e l e -

men t s a, b , c is unique. We define the weight of a word by m e a n s of 

p(a) = 1, p(b) = 2, p(c) = 3 

together with 

p(uv) = p(u) + p(v) , 

where u 9 v a r e a r b i t r a r y words . Let N denote the number of words of 

weight p. If u i s any such word then e i ther 

u = au1? u = bu2 o r u = cu3 , 

where 

p(u t ) = p - 1, p(u2) = p - 2, p(u3) = p - 3 . 

Hence 

N = N - + N 0 + N 0 (p > 3) . 
p p - 1 p -2 p - 3 F 
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Moreover 

N0 = Ni = 1, N2 = 2 

It follows that 

(5.10) N p = G p + 1 

Theo rem 14. The words u , v sat isfy 

(5.11) uv = vu 

if and only if there i s a word w such that 

r s 
u = w , v = w 

where r and s a r e nonnegative in t ege r s . 

Proof. The proof i s by induction on p(u) + p(v). We may a s s u m e that 

both u, v have posit ive weight. Also we may a s s u m e that p(u) ^ p(v). It 

then follows from (5.11) and unique factorizat ion that u = vz , where z i s a 

word. Thus (5.11) r educes to 

(5.12) zv = vz . 

Since p(zv) < p(uv), the inductive hypothesis gives 

r s 
z = w , v = w , 

r-J~s so that u = w 
F o r the next theorem we r e q u i r e , in addition to the weight of u, the 

degree of u, d(u), defined by 

(5.13) d(u) = i t + ji + kt + • • • + i r + j r + k r , 

where u is given by (5.9). We also define the in tege r s H by m e a n s of 
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(5.14) H0 = 05 Hi = 1, H2 = 2, H n + 1 = Hfl + H ^ + H n _ 2 (n^2) . 

It i s easy to show that 

(5.15) H = G + G -n n n - 1 

T h e o r e m 15. Let u be a word of weight p. Then 

(5.16) u(n) = Gp_3a(n) + Hp__3b(n) + Gp_2c(n) = A u , 

where A i s independent of n but depends on u. 

To have the theorem hold for all p ^ 1 we extend the definition of 

G , H for negative values of n. In pa r t i cu l a r , we have the following table 

of values 

n 

[ G 

H 

- 3 

- 1 

-1 

-2 

1 

0 

- 1 

0 

1 

0 

0 

0 

1 

1 

1 

2 

1 

2 

3 

2 

3 

It is now eas i ly verified that the theorem holds for the words a , b and 

c. We a s s u m e that (5.16) holds for words of degree k. Let u be an a r b i -

t r a r y word of degree k + 1. The re a r e th ree c a s e s according a s u = va, 

vb o r vc. Assume v has weight p. 

(i) F o r u = va , we have, by the inductive hypothesis and T h e o r e m 

13, 

u = va = G p - 3 " H Qba + g 0 c a p - 3 &p-2 

= G p - 3 ( b " X) + H p - 3 ( c " 2 ) + G p - 2 ( a + b + c - 3) - A y 

= G p -2 a + ( G p -2 + V3)b+(V3 + Gp-2) C (G Q + 2H Q + 3G Q + A ) p - 3 p - 3 p -2 v 

= G 0 a + H 0 b + G - c p-2 p -2 p - 1 (H + A ) . p v 

(ii) F o r u = vb, we have 
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u = vb = G Qab + H 0 b 2 + G 0 c b - A p - 3 p - 3 p -2 v 

= G^ „(c - 1) + H , ( a + b + c - l ) + G^ Q(a + 2b + 2c - 2) - A 
p—o p—o p—Zi V 

= (Gp_2 + H p - 3 ) a + ( 2 G p - 2 + H p - 3 ) b + ( 2 G p-2 + G p - 3 + H p - 3 ) C 

" GS-2 + Gp-3 + V3 + V 
G , a + H , b + G c - (G + A ) p - 1 p - 1 p p v 

(ii) F o r u = vc , we have 

u = vc = G Qac + H 0bc + G 0 c 2 - A p - 3 p - 3 p -2 v 

= G^ Q(a + b + c) + H Q(a + 2b + 2c) + G 0 (2a + 3b + 4c) = A 
p—o P~*J p—i4 V 

= (2Gp_2 + G p _ 3 + H p _ 3 ) a + (3Gp_2 + G p _ 3 + 2 H p _ 3 ) b 

+ (4G 9 + G Q + 2H Q )c = A p -2 p - 3 p - 3 v 

= G a + H b + G ^ - c - A P P P + l v 

Ava 

\ b 
Avc 

— 

= 

= 

H 
P 

G 
P 

Av 

+ 

+ 
\ 

\ 

This comple tes the proof. Incidentally, we have proved the following 

re la t ions : 

(5.17) 

where v i s of weight p . 

As an immedia te co ro l l a ry of the l a s t t heo rem, we s ta te : 

T h e o r e m 16. Let u and v be a r b i t r a r y words . Then the re i s an 
in teger C such that 

(5.18) uv - vu = C . 

6. AN ESTIMATE O F a(n) 

Let a be the r ea l root of x3 - x2 - x - 1 = 0 and le t p and y be the 

complex r o o t s , /3 = r e , y = r e " . Then we have 
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n+1 Qn+1 
(6.1) G ^ - o G = y " P 

n+1 n y 

which we can verify by taking n equal to - 1 , 0 and 1 and noting that both 
s ides of (6.1) satisfy the r e c u r r e n c e 

n+3 n+2 n+1 n 

If N i s given in the second canonical r e p r e s e n t a t i o n by 

(6.2) N = G 3 k + 1 + 6 3 k + 2 G 3 k + 2 + . . . (k s 0 ) , 

we have 

a(N) = G 3 k + 2 + e 3 k + 2 G 3 k + 3 + 

(6.3) {b(N) = G 3 k + 3 + €3 k + 2 G 3 k + 4 + 

c(N) = G 3 k + 4 + e 3 k + 2 G 3 k + 5 + 

Now a = 1.8, • ° • , so that |jS | = \y | = \[]Fy = \[T/a < 1. Then, using 

(6.1), (6.2), and (6.3) we get the following. 

T h e o r e m 17. The th ree sequences 

a(N) - [ a N ] , b(N) - | > 2 N ] , c(N) - [o^N] 

a r e all bounded. 

Next we prove 
T h e o r e m 18. The difference a(N) - [c*N] i s posi t ive infinitely often, 

negative infinitely often and 0 Infinitely often. 

Proof. If 9 we re a ra t ional mult iple of 2i? we should have , for some 

m9 

m+1 flm+l m+1 
y = p = r 

and, by (6.1), G - = aG «, But a i s i r r a t iona l so this i s imposs ib le . 
Hence for infinitely many k we mus t have 
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la A\ n r,n 3 k + 1 s i n { ( 3 k + 2)0 } > n ( 6 ' 4 ) G3k+2 " a G 3 k + l = r sin 0 ° • 

that i s , 

for infinitely many k. 

To get the second p a r t of the theorem we m u s t find an infinite number of 

in t ege r s N for which 

a(N) - arN < - 1 . 

Le t N have the form 

N = Gt + G3 + Gk , 

where k i s ve ry l a r g e . Then 

a(N) - <*N = G, - aGt + G4 - aGz + G k + 1 - j3Gk 

= 1 - a + 3 - 2a + G, ,- - #G. * -1 .4 . k+1 k 

This p roves the theorem. 

Final ly to prove that the difference vanishes infinitely often, it suffices 

to show that (compare (6.4)) 

x ^ 3k+l sin(3k + 2) < Q 
sin B 

for infinitely many values of n. This i s c l e a r s ince 0 < r < 1 and 9 i s an 

i r r a t iona l mult iple of 2TL 

Put 

7. GENERATING FUNCTIONS 
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(7.1) 

and 

<Ux) = X ) x " (k = 2, 3, 4, • • • ) 
n £ C , 

(7.2) &$k+lW = £ ^ (k = ° ' X> 2' "• > 
n£C 3k+l 

In view of (5.5) and (5.6), we have 

(7.3) ? * + i « = V + i W (k = 1, 2, 3, •••) 3 k + l v ' r 3 k + l 

and 

(7.4) flW = X>3k+2(X) + L ^3k+3(x) • 
k=0 k=0 

It i s evident that 

(7.5) 
k=2 

Also it follows from the definition of C, that 

G, 
*kw = x k i + £ * w 

j=k+2 

(7.6) 

+ x 
G k + G k + 1 1 + 

oo % 

j=k+3 
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F r o m (1.1) we get the r e c u r r e n c e 

k+1 k M , k+2 x /A . x kA / v v 
= X (1 + X )(0k(x) - X Pfc+gfc)) 

It i s a lso convenient to define 

(7.8) A(x) = £ xa<n), B(x) = J ] xMn)' C(X) = D X°(n) 

n=l n=l n=l 

so that 

(7.9) A(x) + B(x) + C(x) = X 

1 - x 

Moreover 

(7.10) A(x) = J ] 03k+2(x) > 3k+2v 

k=0 

(7.11) B(x) = ] T ^3k+3 ( x ) ' 
k=0 

(7.12) C(x) = £ ^ a k ^ W = F ^ I " ^ l ( x ) 

k=0 

Now by (7.1) and (1.12) 

^(x) = Exa2(n) + Exab(n) 
n=l n=l 
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Since 

a2(N) = b(n) - 1, ab(n) = c(n) - 1 , 

It follows that 

(7.13) x(j)2(x) = B(x) + C(x) . 

In the next p lace , by (1.13) 

ba(n) _,_ ^ xb2(n) *i« = Ex (n) + E 
n=l ri=l 

x-2C(x) + x - X V xa(n)+b(n) +c(n) 2C(x) + x " 1 2 
n=l 

Since 

AW = x;*a2(n)+sx&b(n)+E xac(n) 
n=l ii=l n=l 

= x 1A(x) + x 1B(x) + £ 

n=l 

a(n)+b(n)+c(n) 
x 

it follows that 

(7.14) x2(/)3(x) = xA(x) - B(x) 

By (1.1) 
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</>2(x) = x 

00 \ I °° 
f^4>.(X) H-X3[l + ^ j ( x ) 

j=4 I ( j=5 
OO 

= x + x3 + x$4(x) + (x + x 3 ) / (̂/>.(x) 

J=5 

X3 + X(/)4(X) + (X + X 3 ) j T - 5 _ - </>2(x) - 03(X) - </>4(X) . 

Combining this with (7.18) and (7.14), we get 

(7.15) x%(x) = x2n(x) - C(x) . 

In a s i m i l a r m a n n e r we get 

(7.16) x805(x) = -xA(x) + B(x) + (1 + x4)C(x) , 

(7.17) x15(jl)6(x) = (x + x8)A(x) - (1 + x2 + x7)B(x) - x7C(x) 

General ly i t can be shown that 

(7.18) \ - l x 0k(x) = Pi(x)A(x) + p2(x)B(x) + p3(x)C(x) 

where 

S k = Gi + G2 + • • - + Gk 

and Pi(x), p2(x), P3(x) a r e polynomials with in tegral coefficients. 

In the next p lace , exact ly a s in [ 1 , Sec. 7 ] , we can show that A(x), 

B(x) and C(x) cannot be continued analyt ical ly a c r o s s the unit c i r c l e . F o r 

the proof it suffices to use 

(7.19) 1 * V * , n V 1 1 n 

a(k)<n b(k)<n c(k)<n 
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which follow from Theorem 17. ladeedj we can show in this way that none of 
the functions can be continued across the unit circle. Moreover if we put 

0k(x) = 0j(x) +</>£b)(x) , 

where (compare (1.12)s (1.13)., (1.14)) 

3 a(n) ,a , , \ " ^ ,-~ -
< ^3k+3( x ) = LJ 

n=l n=l 

ja . v \™^ ac a(n) ,a , , \ " ^ be a(n) 

*°k+1*w. 4 + 2 « = Z - a o k b < 1 
n=l n=l 
E c^+1a(n) b \~"* 

' ^3k+2(x) = 2-rf 

ac b(n) , 
x N , and 

c xb(n) , b , . V"* bckb(n) ,b , , V ^ r 

^3k+3(x) = Z ^ X ' ^ W X ) =2-fX 

n=l n=l 

a b 
then neither </>,(x) nor <fe (x) can be continued across the unit circle. 

We can also show that A(x), B(x), C(x) do not satisfy any relation of 
the form 

(7.20) 4(x)A(x) + f2(x)B(x) + f3(x)C(x) = 0 , 

where £[(x), f2(x), f3(x) are polynomials. In the first place we may assume 
without loss of generality that the coefficients of ft(x) are rational (for proof 
compare [3, p. 1419 No. 151]) and that 

(7.21) (fi(x), f2(x), f3(x)).= 1 . 

Since (7.19) implies 

lim1 (1 - x)A(x) = ~ lim- (1 - x)B(x) = ~ ? lim- (1 - x)C(x) = —, 
x = i a x = L ^ x = l QZ 
[Continued on page 94. ] 
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F r - 1 

(4.15) Ar(x) = ^ a2(n)+n-2 
x 

n=l 

Note that by (4.15) and (4.3), we have 

l i m A (x) = x ibi (x) 
r—»oo r n 

in ag reemen t with (4.12) and (4.14). 

Exact ly a s in [ l ] i t can be shown that the function ^ ( x ) ha s the unit 

c i r c l e for a na tura l boundary. In view of (4,12) the s ame i s t rue of each of 

the functions & (x). 

It would be of i n t e r e s t to know whether the re i s any s imple re la t ion 

connecting I//-L(X) with 

oo 
a(n) 4>(x) =Y^X> 

n=l 

In p a r t i c u l a r , do the re exis t polynomials P(x) , Q(x), R(x) such that 

(4.16) P(x)0(x) + Q(x)*t(x) = R(x) ? 

5. FURTHER RESULTS 

In [3] the following a r e given: 

v(k~L ) = kF - , for n sufficiently l a rge ; 

u(5kF ) = kL - , for n sufficiently l a rge ; 

^ L * = F4n-1> (» * ^ Q " "<L22n-l> = F 4 n - 3 " X> <* * »'' 

^ F 2 n > = Vn-1' ( n * 2 ) ; v ( L n L n - l » = F 2 n - 2 * ( n * » • 

^ 2 n + l L 2 n - l > = F 4 n - 1 " X> ( n * 1 ) j ^ ( L 2 n + 2 L 2 n ) = F 4 n + 1 + X ' ( n * 1 ) ; 

*>(5F ) = L - , (n > 2); P ( 5 F 2 ) = F L - , (n > 3); 
n n - 1 v n n n - 1 9 

P(5F F _,, ) = F 0 , (n > 1); i/(5FQ F 0 0 ) = F , 0 - 1, (n > 1) . 
n n+1 2n 2n 2 n - 2 ' 4n-3 9 

[Continued on page 112. ] 
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1. INTRODUCTION 

Let N ^ 2 be a fixed integer. We wish to discuss various properties 
of sequences {v } (n = 09 ±1, ±29 -•-) of complex numbers satisfying the 
recurrence 

{1A) Vn+N = V-N-l + • • • + v n + l + v n (n = °> * > ±2> * ' " > 

We let IT be the set of sequences satisfying (1.1) and we let B) be the set 
of all sequences 5 (n = 0, ±1, ±2% • . .) which are non-zero on only a fin-
ite number of coordinates. For 5 G B and v G W we define 

6(v) =E8 n v n . 

We will call 5 6 B canonical if 

(1.2) 8. t 0 =£> 8. = 1 (i = 0, ±1, •••) 

and 

(1.3) S.5i+1 • • • 5 i + N- l = ° a = 0 ,±1 , •••) • 

We will say € and €? G D are equivalent (€ = €!) if €(v) = €'(v) for all 
v GR. 

We shall also have occasion to use the translation operator T on se -
quences from W or W defined by 

(1.4) (Tv)n = v n + 1 (v G D or V) . 

* Supported in part by NSF Grant GP-17031. 
71 
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The main theorem of the present paper is the following. 
Theorem A. Let € E J© have integral coordinates. Then either € or 

-€ is equivalent to a canonical element of H. 
We use this theorem first to generalize a result of Kl&rner's [4] for 

Fibonacci numbers to N order Fibonacci numbers P = {P } defined by 

(i) P E W 

W) P - ( N -2 ) = ••• = Po = 0, Pi = 1 . 

Theorem B. Let Kls K2, ••• , KN be positive integers. Then there 
The generalization is as follows: 
Theorem B. Let Kj, K2, • • • , I 

is a unique canonical 5 E II such that 

(1.5) K. = SCT1?) <i = 1, 2, . . . , N) 

If y is a root of 

/i r\ N N - l - A 
(1.6) x - x - • • • - . x - 1 = 0 

we let 7 De t n e sequence in W defined by 

(1.7) (7)n = 7 n • 

We let a be the largest positive root of (1.6). Note that a > 1. 
As a corollary to the main theorem we get 
Theorem C. A positive real number x is of the form 5(£) for some 

canonical 5 E H> if and only if, for some positive k and some integers Ql9 

Q2> • " » QN
 w e h a v e 

(1.8) akx = Qt + Q2<̂  + . . . +Q a N _ 1 . 

In Section 4, we assume that N = 3 and verify some conjectures of 
Hoggatt concerning certain functions introduced and discussed i n [ l ] , [2] and 
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[ 3 ] , The authors believe that the r e su l t s obtained in Section 4 for the case 
N = 3 a r e s t rongly indicative of those that might hold for l a r g e r values of 
N. 

2. PROPERTIES OF CANONICAL ELEMENTS 

T h e o r e m 1. Suppose 6 and € G H a r e canonical . Then e i the r 

6 - € o r € - 5 is equivalent to y G U . 

Proof. The non-ze ro coord ina tes of rj = 5 - € a r e l ' s and - l ' s . 

Suppose the f i r s t non-ze ro coordinate of Tj {starting from the left) i s - 1 , 

and le t 77. = 1 be the f i r s t 1. Now change rj to 0 and add 1 to each of 

^ k - 1 5 ^k -2 3 ° 8 ' 5 ^k-N* T ^ e r e s u ^ m S sequence is equivalent to 77, and 

since 6 and € a r e canonical , i t can be seen that not al l of ? ? k _ 1 + 1, •• • » 

77, _N + 1 a r e 0. Pe r fo rming this "change" repeatedly , we finally come to 

a sequence 7f equivalent to 77 all of whose non-zero coordinates a r e e i the r 

1 o r - 1 . This of cou r se impl ies that e i the r 77 o r -77 i s equivalent to a 

canonical e lement of D . 

T h e o r e m 2. Let € G H have integral coord ina tes . Then e i the r c o r 

-€ is equivalent to a canonical e lement of B . If the coordinates of € a r e 

non-negat ive then € i s equivalent to a canonical e lement of D . 

Proof. We se t € = € - e". The previous theorem shows that the 

f i r s t s ta tement of the p re sen t theorem follows from the second; so we a s s u m e 
+ 

€ = € . 

Now a s imple induction shows that i t i s enough to prove the following 

s ta tement : If € i s canonical , then € + x. is equivalent to a canonical e l e -

ment , where x- i s defined by 

(2.1) X.(V) = v. v G V . 

Note that € +Xi = € - X i _ 1 - • •• - X ^ ^ + X i + 1 = 7X
 + X i + 1 w h e r e , by 

T h e o r e m 1 e i the r yt o r -yt Is canonical . If -yt i s canonical , then again 
by T h e o r e m 1, 7- + X- -1 i s equivalent to a canonical e lement . Hence we 
m a y suppose y± i s canonical . Then we get 

* i ^ 1 + X i + 1
 s Y2 + * i + 2 

J 
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with yl9 y2j • • • canonical. But this is impossible for, if so, we would have 

(2.2) [€ + *.](£) > X.+n(£) = a1+Ii (n = 1, 2, • -•) . 

This completes the proof. 
Let P E f be the sequence defined by the initial conditions 

( 2 - 3 ) P-CN-2) = ••• = Po = 0; Pt = 1 . 

Theorem 3. Let K be a positive integer. Then there is a unique can-
onical 5 E II such that, for all n, 

(2.4) P K = V 6 . P . ± . 
n " I l+n 

i 

Proof. Let € E H be the sequence 
(2 5) € = / K n = ° 
^ n \ 0 otherwise 

Then by Theorem 2 there is a unique canonical 5 G B satisfying 

(2.6) c(v) = 6(v), v E ¥ . 

Letting v be translates of P we get (2.4) immediately since c(v) = v0K 
for any v E V. 

The uniqueness of 8 will follow if we can show that any y E W is de-
termined by its value on translates of P. We state this as a separate 
theorem. 

Theorem 4. W is N-dimensional as a complex vector space. It is 
N- l spanned by P, TP, • • • , T P. Moreover, the NXN matrix 

A. = |(TjP)nj (j = 0, 1, . . . , N - l ) 
(n = 0, i + 1, ••• , i + N - 1) 
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has determinant 

a+i 

75 

IM - f ^ T • 
Proof. The fact that V is N-dimensional is well-known, so the cal-

culation of the determinant will complete the proof: we have 

P. 
i 

p
i + i 

P i+n-1 

P i+1 

• i+2 

P i+n- l 

' l+n 

Pi+2n-2 

Adding the last N - 1 columns to the first, using the recurrence and inter-
changing columns we get 

(2.7) \ \ \ = <-i>N + 1!*1 + 1l '• 

But 

-(N-2) 

0 

0 

0 

1 

0 
0 
1 

1 

0 
0 

• 
. 

0 
1 

1 
1 

so that 

A-(N-2)I = <-*> 
N+l 

Hence 

IA .i • (<-»NT 
Theorem 5. Let v E V. Then 
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(2.8) v = v0TP + (Vi - v0)P + (v2 - vt - v 0 )T - 1 + . . . 

+ ( v ^ + . . . - vj - v0)T-( N"2 )P . 

Proof. Let 0 s j < N - 1, The j coordinate of the right side is 

v0Pj + 1 + (vt + v 0 ) P j + ••• + (v N - 1 Vl - V o J P . ^ ^ 

= v 0 ( P j + 1 - P . P._( N_2 )) 

+ v l ( P . - P ^ P._( N_2 )) 

+ \ ( P J + l - k PHN-2)) 

+ VN-2(Pj-(N-2)+l " P j - (N-2) ) 

+ VN-l(Pj-CN-2)) 

The coefficient of v. is non-zero only when j + 1 - k = 1, i. e. , only when 
k = j . In this case it is 1. 

We can generalize a theorem proved by Klarner for the Fibonacci num-
bers as follows. 

Theorem 6. Let Kl9 K2, K3, • • • , KN be positive integers. Then 
there is a unique canonical 6 such that 

(2.10) K. = 8(TjiP) (i = 1, 2, ••••, N) . 

Proof. It will be enough to find a canonical 8 satisfying 

(2.11) K. = S jT 1 " 0 ^" 1 ^ ] (i = 1, 2, • • • , N) 

because then a translate of 8 will satisfy (2.10). Let y be one of the N 
N N- l roots o f x - x - • • • - x - l = 0, and let 

(2.12) v = y . 

Then by the previous theorem, if 8 exists and satisfies (2.11) it must also 
satisfy 
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S(y) = K N + (y - D K ^ + • • • + ( r N _ 1 - y N " 2 - . 

(2.13) 

N - l N-2 
1 + y + . . . + y 1 + y + . . . +y" 

yN ^ N y N - l 

= K . T y - N + (KXT + K . T 1 ) y - ( N " 1 ) + . . . + ( K M + e B e + K 1 ) r - 1
9 N N A N - l ' N 

Hence we should define 6 to be the unique canonical form in D equivalent 

to |3 E D where j3 i s given by 

(2.14) h = 
K N + . . . + K. ( - N < i < - 1 ) 

0 (otherwise) 

Now 

/ \ N 

YTi-(N-l)p\ = £( (2.15) p [ T ^ - ^ P ) = > J (KN + • • • + K. J P . ^ . ^ D 

N / t 

- 2X Ep. 
t=l Vi=l 

•j+i-(N-l) I " K i 

3. FURTHER APPLICATIONS OF THE MAIN THEOREM 

We reca l l that a i s the l a r g e s t posi t ive root of 

N N - l x - x x - 1 = 0 

and 

a = ( . . . , a , 1, a, • • • ) 

Theo rem 7. Le t K be any posit ive in teger . Then there ex i s t s a 

unique canonical 5 E 11 such that 
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K = 5(£) . 

Moreover, 

K = 8<(P) . 

Proof. Choose 5 as In Theorem 3. Then 

8(£) = €(£) = K . 

Theorem 8. A positive real number x is of the form £>(a) for some 
canonical 6 E W if and only if, for some positive k and some integers Ql9 

Q2> ••• > QN we have 

(3.1) akx = Qi + Q2 a + • • • + Q cF'1 . 

Proof. Suppose first that x is of the form 8(a): 

(3.2) x = S €j^ 
j=-k 

Then 

k \ ^ . i+k 
a x ~ ~~ 

N-l and powers of a higher than, a can be successively reduced to lower 
powers eventually giving (3.1). 

Now suppose (3.1) holds. Let € E M be defined by 

Q . , - k < n < N - k - l 
(3.3) € =< n t k + 1

 f. . 
n I 0 otherwise 
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Then e i the r € o r -6 i s equivalent to a canonical e lement 5 E 1 , But 

€(a) = x > 0 . 

Hence we mus t have € = 8* 

4 . 

F o r the notation used in the r e m a i n d e r of the paper we r e f e r the r e a d e r 

to [3] . 

Let v (M) denote the number of number s n E C, such that n ^ M. 

T h e o r e m 9. If M $ C2 then 

(4.1) v2(M) = M - f(M) . 

More gene ra l ly 5 if 

M $ C2 U C3 U ••• U C r 

then 

(4.2) i>r(M) = f r" 2 (M) - f ^ M ) (r = 2, 3 , 4 , • • • ) . 

Proof. Le t 

K r = {K(^K $ C2 U C3 U . . . U C r } , r > 2 

r - 1 and let Kt = W. Then c l ea r ly f i s 1 - 1, onto and monotone from K r 

to 1» In part icular . , 

(4.3) c a r d J K J K E K ^ K ^ M} = f r" 1 (M) (r = 1, 2, • • •) . 

Hence 

v (M) = c a r d { K | K E C ; K < M} = ca rd { K ( K E K r _ 1 ? K < M} 

- ca rd {K|K E F ., K < M} = fr-2(M) - f r _ 1 ( M ) . 
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The following theorem is an immediate corollary. 
Theorem 10. We have 

(4.4) P2(G ) = G - G 1 = G Q + G Q (n > 3) 
^ n n n-1 n-2 n-3 

More generally 

(4.5) v (G ) = G ^ - G ^ = G + G , (n s> r + 1) . r n n-r+2 n-r+1 n- r n - r -1 

Theorem 11. Let k and r be fixed integers, k ^ 1, r ^ 2. Then 

(4.6) v (kG ) = k(G + G - ) 
r ' n n - r n - r -1 

for n sufficiently large. 
Proof. Using Theorem 3, we let 6 E 11 be canonical such that 

(4.7) kG = YlS.G.^ , (n = 0, 1, 2, •••) . 
n x - ' i i+n ' ' ' 

Hence for n sufficiently large we will have 

kG n S C2 U . . . U C r , 

so 

v (kG ) = fr"2(kG ) - fr""1(kG ) r n n n 

= S 5 i G
i + n _ ( r _ 2 ) ~ ^ 5 i G i + n - ( r - l ) 

= k G n - ( r -2 ) ~ k G n - ( r - l ) 
= k(G + G - ) . n - r n - r -1 

The last three theorems were conjectured by Hoggatt. 
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[Continued on page 94. ] 



SOME GENEIAL RESULTS ON REPRESENTATIONS 
V. E. HOGGATT, JR., and BRIAW PETERSON 

San Jose State College, San Jose, California 

DEDICATED TO THE MEMORY OF FRANCIS DE KOVEN 
1. INTRODUCTION 

Let P = {Pi9 P2? P39 ***} be any sequence of distinct positive integers, 
then 

^ TT(I + ^ j = m i i ^ n (i+xPi j = 2 RWX11 . 
i=l ^ ' i=l * ' n=0 

where R(n) is the number of representations of the integer n as the sum of 
distinct elements of P. If P. = 21"1 (i = 1, 2 , . • • • ) . then R(n) = 1 for 
all n ^ 0. Brown [1] has shown that if Pi = 1 and 

n 
Pn+1 * 1 + E P i • 

i=l 

then R(n) ^ 1 for all n ^ 0e Here we discuss some consequences of the 
condition 

n 

<"*> p
n+l " 1 + S p i ' 

• i=l 

Let PA = 1 , if equality holds for each n > 1, then P. = 21" , i > 1. If for 
some n, the inequality holds, then R(m) = 0 for some m > 0, which we 
call an integer which is non-representable by P* 

2, SOME GENERAL RESULTS 

The condition (**) guarantees that P. f P. for I f j . Further we may 
prove 

81 
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Theorem 1, Every positive integer N which has a representation by 
the sum of distinct elements of P, then that representation is unique. 

Proof, Clearly each P. is its own unique representation since the se -
quence is strictly increasing and P - > Pi + P2 + P3 + 8 *8 + P . Suppose N 
had two different representations 

k m 
N =Z>iFi s E w • 

i=l i=l 

where a. and jS. = 0 or 1 independently, with a, = p = 1. If m = k, 
then delete P = P. from each side and continue to do so step-by-step until 
the highest order term on the left is different from the highest order term on 
the right. Now assume P. > P . This is an immediate contradiction since 

43 k m 
P, > Pt + P2 + •e • + P m + • • • + P^„^9 thus both representations cannot rep-
resent N. This evidently proves Theorem 1. 

3. THE NON-REPRESENTABLE INTEGERS 

In certain cases, the integers which cannot be represented by sequence 
P can be described by a suitable closed form. See [3] and £4], however, 
that is not the general situation. 

Definition Let M(n) be the number of positive integers less than n 
which cannot be represented by the sequence P. 

Theorem 2. If 

i=l 

then 

M(P ^ ) = P _,_- - 2n 
n+1 n+1 

Proof. All the sums of the 2 subsets of { P i 3 P2, P3, • • • , P } 
distinct by Theorem 1. These sums are less than P , 1 > Pi + P2 + ' 9 * 
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+ P , thus n 

M t P n + l > = ( P n + l " 1 } " ^ " 1) = Vl - 2 n 

s ince P - - 1 is the number of posi t ive in tege r s < P - and the empty s u b -

se t y ie lds the non-posi t ive sum ze ro . In fact i t i s s imple to prove fur ther . 

Theo rem 3e M(Pi + P 2 + • • - + P ) = M(Pi) + • • • + M(P ). 

Proof* M(P j.1 ) = P , ^ - 2 n . Since Pi + P2 + • • • + p < P _ , then 
— • — n+1 n+1 J L n n+1 

all the in tegers between 

n 

i=l 

and P ., a r e non- rep r e sentable . Thus 

M(Pt + P2 + P3 + . - + Pn) = (Pn+1 - 2n) - b n + 1 -I E Pi J " X 

= P t + P 2 + P 3 + • e" + P n - (2n - 1) 

= Pi + P 2 + P 3 + " s e + P - (1 + 21 + 22 + • • • + 2R"1) 

= (Pi - 2°) + (P2 - 21) + (P3 - 22) + . . . + C.Pn - 211"1) 
n 

= £ M ( P . ) ' 
i=l 

which concludes the proof of Theo rem 3, 

4, M(N) FOR REPRESENTABLE N 

The main r e su l t in this sect ion i s the s ta tement and proof of 

T h e o r e m 4, If 

k 

i=l 

then 
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k 
M(N) = N - YJ a

i^~1 > 
i=l 

where each a. = 1 or 0. 
Proof. Let 

k 
N = X > i P i • 

i=l 

then P k ^ N < Pf e + 1 . Thus 

M(N) = (Pk - 2 k " 1 ) + M(N - Pfc) , 

by virtue 

n=0 i=l 

Informing these polynomials, the representations using only P1? P2, 
• • • , IV i are enumerated by the R(n) for n = 0 to n = Pj + P2 + • • • + 
P, - . The polynomial 

k-1 / P. \ 

which has degree n = q, has zeros behind this N. Thus, when the factor 

(1 + x^) 

is multiplied in, the R(n) between n > P. and n = Pt + P2 + • • • + P. are 
precisely those from n = 0 to n = P* + P2 + • • • + Pfc-1 followed by zero 
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up to P, - 1. Thus if we proceed by induction on the number of summands, 
we see the theorem is true for N = P. . Assume for all N having a repre-
sentation with precisely k - 1 summands is such that 

and 

then if 

then 

k-1 
N = E pi„ > 

3 = 1 J 

k - V i.-iv k~x i.-i 
M(N) = E ( Pi " 2 3 ) = N ~ E 2 J 

j = 1 \ li / j = i 

k 
N = E pi. 

M(N) = |P . - 2 k J + M|N - P. J 

^k + E ( p i - 2lj i 
1=1 X 3 7 

P. - 2 
r 

2 J 

which evidently proves the theorem by mathematical induction. This completes 
the proof of Theorem 4* 
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5a SOME GENERAL REMARKS 

The foregoing theorems are applicable to a large class of sequences. 
The restriction 

n 
Pn+1 * 1 + Z > i 

i=l 

in particular, fits u0 = 0 and Uj = 1, while 

u LO = ku ^ + u n ^ 0, k > 2 . 
n+2 n+1 n J 

The Pell sequence is the special case when k = 2e 

Theorem 5. If P< = 1, P2 = k, and P ^ = kP __ + p n >' 1, then 
1 ? * s n+2 n+1 n ' 

m 

m+1 ~~ Z - J i 
i=l 

It is true that, if S = Pi + P2 + • • • + P , then 

n+2 n+1 2 1 n n+1 1 n n 

From P , 0 - kP (1 = P and P? - kPi = 09 we assert n+2 n+1 n l 1 

P ^ = kS - P + P. = 1 + S + (k - 2)P + kS , . n+1 n n 1 n n - n-1 

Since k ^ 2, the proof would be complete by induction provided it holds for 
n = 19 which one sees as follows: 

1 
P2 = k ~ 1 + E P l = 2 ' 

i=l 

This completes the proof of Theorem 5. 
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Another l a rge family of sequences Is given by P 0 = 1, Pj = 1 

= P n + 1 + k P ^ for n > 05 k > 29 It Is not difficult to es tabl i sh 

T h e o r e m 6, If P t = 1, P2 = k + 1, and, for n ^ 0, 

P , 0 = P t 1 + k P , n+2 n+1 n $ 

then 

n+1 JLJ i 
i=l 

Proof. We proceed by Induction. V\ = 1 and P 2 = k + 1, thus P 2 

+ 1 for k ^ 2* Now a s s u m e 

m - 1 
P > i + y p. 

m A-J i 
i=l 

for m = 2$ 3 , • • * , n, then 

P ^ = P + k P - = P + P - + (k - 1)P -n+1 n n-1 n n - 1 n - 1 

£ p
n

 + pn-i + (1 + E p J + < k - 2 > p
n - i 

1 + E Pi + (k - 2 ) P n - l • 1 
i=l 

C lea r ly 

n 

n+1 JLJ 1 
1=1 

for k ^ 2S n ^ 1, This concludes the proof of T h e o r e m 6* 
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We add a couple of m o r e sequences to show wehaven ? t captured them al l . 
fin 

Le t P = F . (F is the n Fibonacci number . ) Then, s ince n uW n 

F„ + F . + • • • + F 0 + 1 = F 0 ,- < F 0 ^ 
2 4 2n 2n+l 2n+2 

so that h e r e , too, 

P n + 1 " X + S Pi 
i=l 

So does P = F 0 - , n > 1, n 2 n - l J 

6. A FINAL CONJECTURE 

Conjecture. Le t H^ and H2 be d is t inct posi t ive i n t ege r s , sequence H, 

genera ted by H „ = H - + H n ^ l , then condition (*) yields R(n) such 

that R(H ) is independent of the choice of H* and H2-
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GENERALIZED ZECKENDORF THEOREM 
V.E.HOGGATTJR. 

San Jose State College, Sao Jose, California 

DEDICATED TO DR. E. ZECKENDORF 
1. INTRODUCTION 

The Zeckendorf theorem states that every positive integer can be 
uniquely represented as the sum of distinct Fibonacci numbers if no two con-
secutive Fibonacci numbers are used in any given sum. 

D. E. Daykin [1] proved the converse of the Zeckendorf theorem. 
Keller [2] generalized the Zeckendorf theorem and proved a restricted con-
verse for monotone increasing integer sequences. Hence we generalize the 
Zeckendorf theorem in a different way and also get a restricted converse. 
This leaves two open questions as to validity of the unrestricted converse 
theorems. 

2. THE GENERALIZED ZECKENDORF THEOREM 

Theorem 1. Let U0 = 05 Ut = 1, and U n + 2 = kU n + 1 + U Q (n > 0, 
k > 1), then every positive integer N9 has a unique representation in the 
form 

N = €iUi + €2U2 + • • • +€ U , i i i i n n 

where 

€4 = 0, 1, 2, 3, •• • , or k - 1 

et = 0, l s 2S 3, • • • , or k 

If €. = k, then e. - = 0 
I i - l 

i ^ 2 

First we prove two useful lemmas. 
Lemma 1. (i) U2 n = k ( U ^ ^ + - • • + U3 + U4) 

( i i ) U2.n+1 = k (U2n + ' " + U*} + * 
89 
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Proof of the Lemma. (The proof will proceed by induction.) 

Ui = 1, U2 = k, and U3 = k2 + 1 

from r e c u r r e n c e . 

( i ) U2n+2 = k U 2 n + l + U 2a 

= k{ku2n + ku2n_2 + • •. + ku2 + i} + { k u ^ + ku2 n_2 + • • • + ku3 + ku t } 

= tf^n^n-l* + ( k U 2n-2 + U2n-2> + • • • + <kU2 + * i ) + 1} 

= k { U 2 n + l + U 2 a - l + - - - + U, + l } 
= k^U2n+l + U 2n -1 + • • • + u 3 + U1J" > s i n c e u i = 1- E n d o f P r o o f o f G)-

( i i ) U 2n + 3 = k U 2n + 2 + U 2n + 1 
= k { k U 2 n + 1 + • • • + kU3 + k U j + k { U 2 n + • • • + U 2 )} + 1 

= k { ( k U 2 n + 1 + U 2 n ) + (kU 2 n _ 1 + U 2 n _ 2 ) + • • • + (kU3 + U 2 )} + 1 + k2Ut 

= k { U 2 n + 2 + U2n + - - - + U4 + k U j + 1 

= k { U 2 n + 2 + U 2 Q + ••• + U 4 + U2} + 1, since Ut and U2 = k. 

Lemma 2. 

^ n - 1 = k ( U 2 n - l + - ' - + U 3 ) + ( k " 1 ) U i 

^ n + l " 1 = k ( U 2 n + U 2 n - 2 + - - - + U 2 > 

Proof of Lemma 2. Both p a r t s follow eas i ly from L e m m a 1. We need 

to know the maximum admiss ib le sum using U^, U2, • " ' , U m , subject to 

the coefficient cons t ra in t s of Theorem 1. 

V - 1 = k < U 2n- l + U 2 n - 3 + " - + U l ) - 1 

= k ( U 2 n - l + U 2 n - 3 + - - - + U»> + ( k " 1 ) U * ' 

Thus the maximum admissible sum using 

u t , u2, us, •••, u 2 a _ 1 
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is U 2 n - 1. Now, 

U 2 n + 1 - X = k ( U 2 n + U 2n -2 + " " + U* + U2) • 

Thus the maximum admiss ib le sum using 

Ui, U2J U3, • • - , U 2 Q 

is u
2 n + 1 - 1, s ince U2 has coefficient ks U4 can have only coefficient 

z e r o . 

Proof of the Theorem. The proof will proceed by induction. V e r i f i c a -

tion for s = 1, m < U2 = k impl ies n = n.• Uj. Assume eve ry in teger 

n < U - has a unique admiss ib le represen ta t ion using only Ul s U2, U3, 

U . The max imum such represen ta t ion has sum U - - 1 by Lemma 2. 

Thus U - is i ts own unique represen ta t ion . F o r the r ep resen ta t ions for 

numbers 

j U s + l " n? * ( j + 1 ) U s + l X " 3 - k " 2 

we s imply add j U - to the r ep resen ta t ions for 1 ^ n ^ U - to get a 

unique represen ta t ion . The coefficient of U can be k s ince the coefficient 

of U , - "̂  k. In the in terval 
s+1 

k U s + 1 "= n " " U s + 2 • 

the r ep resen ta t ions cannot contain U thus the g r ea t e s t admiss ib le r e p r e -
s 

sentat ion uses Ui, U2, • • • , U 1 whose maximal admiss ib le sum is U - 1. 
s—i s 

Thus we add to kU - a unique represen ta t ion for n ^ U - 1. Thus we 

have now covered the in terval U - < n < U + 2 and fu r the rmore each such 

const ructed represen ta t ion is UNIQUE. The proof of the Theorem is c o m -

plete by mathemat ica l induction. END OF PROOF. 
3. THE RESTRICTED CONVERSE 

TO THE GENERALIZED ZECKENDORF THEOREM 
r 1°° Definition: F o r fixed in teger K ^ 1, a sequence {V } of posi t ive 

in tegers will be called a Zeckendorf K - b a s i s (or briefly a K-bas is ) if every 

posi t ive in teger n has a unique rep resen ta t ion in the form 
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m 

<« - = E e i v i • 
i=l 

where the coefficients €. satisfy constraints 

i = 0, 1, • - . , K - 1 

(2) \ 6 . = 0, 1, ••• , K for i ^ 2 

e. - = 0 if e. = K for i ^ 2 l - l i 

A representation in form (1) with coefficients satisfying (2) will be called 
admissible. 

Lemma 3. If {V } is a K-basis with K ^ 2, then V. f V for j 
L n J i j ' n J 

f n, 1 ̂  j , n < 0 ° . 
Proof. Obvious from uniqueness requirement. (For K = 1, V* = V ?̂ 

but Vi has a zero coefficient in any admissible representation.) 
r i°° 

Lemma 4. If {V } is a non-decreasing K-basis, then V for n ^ 2 
is characterized as the smallest positive integer not representable inadmis-
sible form using only Vi, V2, " "" , V - . 

Proof. Let N = smallest positive integer not capable of being rep-
resented in admissible form using only Vl5 V2, • • * , V _-. If N > V , 
then V would have two admissible representations, thereby contradicting 
uniqueness. On the other hand, if N < V , then N itself would have no M n n n 
admissible representation (recalling {V } is non-decreasing). 

r 1°° n 

Theorem 2. Let {V } be a non-decreasing K-basis with K ^ 1. 
Then defining V0 = 0, we have 

(3) V ,_ = KV x 1 + V for t i > 0, K > 1 . 
n+2 n+1 n 

Proof. Since K = 1 corresponds to Zeckendorf's theorem, we may 
confine our attention for K ^ 2. Then {V } is strictly increasing by 
Lemma 3. Clearly V± = 1, and Lemma 4 in conjunction with the coefficient 
constraints (2) implies V2 = K [since e{V^ can represent only the integers 
1, 2, . . - , K - I j . 
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For fixed K ̂  2, let {U } be the sequence defined by U0 = 0, Uj. 
= 1 and Un + 2 = KUn + 1 + U Q for n ̂  0. Then V0 = U05 Vt = U1? V2 = U2. 
Now, assume as an induction hypothesis that Vj = Uj for i = 1, 2, ° ° • , n, 
where n ̂  2. We wish to show V - = U - . Contained in the proof of the 
generalized Zeckendorf theorem is the fact that the smallest integer not rep-
resentable by an admissible combination of Ui, U2, e ° • , Un is U -. Since 
U. = V. for i = 1, 8 ' • , n, Lemma 2 implies V ,- = U ,- and the theorem 

i i 9 ^ n+1 n+1 
is established. 

I wish to thank John L. Brown, J r . , for the details of the restricted 
converse theorem. 
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we get 

i fi(l) + - f2(l) + -i. f3(i) = o . 
a2 c? 

This evidently implies 

fi(l) = f2(l) = f3(l) = 0 , 

which contradicts (7.21). 
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The Fibonacci numbers F are defined by the recurrence relation 
n J 

Fi = F2 = 1 , 

F = F - + F 0 (n > 2) . 
n n-1 n-2 

Every natural number has a representation as a sum of distinct Fibonacci 
numbers, but such representations are not in general unique, When con-
straints are added to make such representations unique, the result is 
Zeekendorfs theorem [1], [5], Statements of Zeckendorffs theorem and its 
converse follow.CAlpha i s an integer . , ) 

Theorem. (Zeckendorf). Every natural number N has a unique rep-
resentation in the form 

n 
N = Ew • 

where 0 < a < 1 and if a = 1, then a = 0. 
Theorem. (Converse of Zeckendorfs Theorem) ([1], [3]). Let 

{ x f 

be a monotone sequence of distinct natural numbers such that every natural 
number N has a unique representation in the form 

n 
N = E*k x k • 

i 

where 0 < <x < 1 and if ca, ^ = 1» then a, = 09 Then 
95 
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{x f = {F }°° . L n1! L nJ
2 

There are generalizations of Zeckendorfs theorem for every mono-
r i°° 

tone sequence {x } of distinct natural numbers for which x± = 1. The fol-
lowing theorem is the first of many such generalizations. 

Theorem 1. Let the numbers x be defined by the recurrence relation 
n J 

xt = 1, x2 = a, 

x = m-i x . + m? x 0 fn > 2) , 
n 1 n-1 L n-2 s ' ' 

where mj > 0, m2 > 0, and a > 1. Then every natural number N has a 
unique representation in the form 

N = 2>k*k 

where a >: 0 and if a, ^ ml5 or, . = m4 for 1 < i < p. 

i) and p is odd9 then a, < m2 ; 
ii) p is even, and k ^ 1, then a, < mA ; 

iii) p is even, and k = 1, then at < a. 

The special case mt = m2 = 1, a = 2 is Zeckendorfs theorem, and 
the case m2 = 1, a = mA is a generalization proved by Hoggatt.(5ee p»89) 

Proof. We prove the existence of a representation by induction on N. 
For N < x 2 , we have N = Nxl9 Take N ^ x2 and assume representability 
for 1, 2, • • • , N - 1 . Since jx } is a monotone sequence of distinct nat-
ural numbers, any natural number lies between some pair of successive ele-
ments of {x } . More explicitly, there is a unique n ^ 2 such that x < N 
^ x -. First let N < mixn. There are unique integers m and r such 
that 

N = mx + r , n 
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where 0 < m < mt and 0 < r < x . If r = 0, then N = mx , whereas 
if r > 0, then the induction hypothesis shows that r is repre sen table. Thus 
N is representable* Now let N ^ m^x . Since 

x ,- = m-x + m0x -
n+1 I n 2 n-1 

for n ^ 23 there are unique integers m and r such that 

N = m.x + m x - + r , 1 n n-1 

where 0 ̂  m < m2 and O ^ r ^ x -. If r = 0, then 
L n-1 

N = m-x + mx . , 
1 n n-1 

whereas if r > 0S then r is representable. Thus N is representable. 
Now use the induction principle. 

To prove the uniqueness of this representation, it is sufficient to prove 
that x is greater than the maximum admissible sum of numbers less than 

n & 

x according to constraints (i)-(iii). We prove this by induction on n. For 
n = 1, this is obviously true. Take n ^ 1 and assume that the sufficient 
condition is true for 1, 29 • • - , n - 1 . From 

n n n-1 

E KX2i-2 + ( m 2 " 1 ) x2i-3> = EX2i-l " E*2i-1 = X2n-1 " *' 

n n n-1 

E { m l X 2 i - l + { m2 " 1 ) x2i-2> = E x2i " E x 2 i = x 2 n - a , 

we obtain the identities 
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n 

x2n-l = L Hx2i-2 + ( m 2 - 1)x2i-3> + X ' 
(1) 2 

n 
x2n = 2 HX2i-l + (m2 " 1 ) x2i-2} + ( a " 1 ) x l + 1 ' 

The induction hypothesis together with (1) shows that x is g r e a t e r than the 

maximum admiss ib le sum of number s l e s s than x . Now use the induction 

pr inc ip le . 

The 

fined by the r e c u r r e n c e re la t ion 

Theorem 1 can be extended to the case where the n u m b e r s x a r e de-
n 

Xi = 1 , x n = an(2 <= n < q) , 

q 
X n = E m k V k fe - q) , 

where m* "> 05 m, ̂  0 for 1 < k < q, m -*- 0, and 1 < a < a ,n for 1 k M? q n n+1 
1 < n ̂  q. Eve ry na tura l number N has a unique represen ta t ion in the form 

N = S ai-Xi 
k k 9 

1 

where a. ^ 0 and o ther cons t ra in t s s im i l a r to those in T h e o r e m 1 a r e added. k 
F o r example , if or . ,- = m. for 1 ^ k < p < q, then a _ < m . If F n-k+1 k F MJ n-p+1 p 
p = q. then a , . < m . These cons t ra in t s mus t be modified to fit the F MJ n-q+1 q 
initial conditions a . The proof of this extension follows that of Theo rem 1 

and uses the identity 
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n - 1 

q n - r 

q-1 n 
= 1L* mi y ^ x • j + (m -1) y^ x . 

* - ^ k JLJI qi-r-k q L*°*d q i -

a - 1 q-r 
q-r-1 J q-r-1 

a q-r 
fa -11 q-r 
Laq-r- l . 

a 
q-r-

a , -1 q-r-1 

2 q-r-2 \̂  q~r [aq-r-lJ ^ ^ / 
xt + 1 

q - r - 1 J 

(0 < r < q) 

Sta tements of two specia l c a s e s and the proof of the second one follow. 

Theo rem. (Daykin [3]). Let the n u m b e r s x be defined by the r e c u r -

rence re la t ion 

x n = n ( l < n < q) 5 

X = X ., + X 
n n - 1 n -q 

(n > q) . 

Then eve ry na tu ra l number N has a unique represen ta t ion in the form 

N = Eakx
k> 

where 0 ^ a, ^ 1 and if a , i = 1> then a. ,. = 0 for 0 ^ i < q - 1 . 
k k+q-1 k+i M 

T h e o r e m 2. Let the number s x be defined by the r e c u r r e n c e re la t ion 

xn = (m + l / ' V < n < q), 

x = m I P x , (n > q) 
n A»J n -k M 

Then eve ry na tura l number N h a s a unique represen ta t ion in the form 

N = J>, 
i 

k x k ' 
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where 0 ^ a. ^ m and if a. ,. = m for 1 < i < q, then a. < m. 
k k+i M' k 

Proof. Following the proof of Theorem 1, we prove the exis tence of a 

r ep resen ta t ion by induction on N. F o r N ^ x , we have 

q-1 

1 

where 0 < a. < m. Take N ^ x and a s s u m e represen tab i l i ty for 1, 2, 

• • • , N - 1. The re i s a unique n ^ q such that x ^ N < x - . Since 

q-1 

x ~~ m / x 
n+1 La n -k 

0 

for n ^ q, the re a r e unique in t ege r s p , m T , and r such that 

p - 1 
N = m j> x . + mTx + r , JLa n -k n - p 

0 

where 0 < p < q, 0 < mT ^ m , and 0 < r < x . If r = 0, then 
r 4J > n _ p 

p - 1 
""" I ~r ill .A. 

k n-p 
N = m / ^ x , + mTx 

0 

w h e r e a s if r ^ 0, then r i s r ep re sen tab l e . Thus N i s r ep resen tab le . 
Now use the induction pr inc ip le . 

To prove the uniqueness of this r ep resen ta t ion , we prove that x i s 
g r e a t e r than the max imum admiss ib le sum of number s l e s s than x a c c o r d -
ing to the cons t ra in t s by induction on n. F o r 1 < n ^ q, we have 

n - 1 n -1 
m # X ) x k = m E (m + 1)k"1 = (m + 1)11"1 " X ^ (m + 1)n_1 = x n ' 

1 1 
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Take n •/* q and assume that the sufficient condition is true for n - q. Then 

x = m n E x . + (m - l)x + x , n-k n-q n-

The induction hypothesis shows that x is greater than the maximum admis-
sible sum of numbers less than x . Now use the induction principle. 

Zeckendorf s theorem can be further generalized to cases where the 
numbers x are defined by recurrence relations with negative coefficients. 

Theorem 3. Let the numbers x be defined by the recurrence relation 
n J 

xt = 1, x2 = a5 

x = m-x - - m0x 0 (n > 2) , 
n 1 n-1 2 n-2 N 

where 0 < m2
 < m^ and a > m2. Then every natural number N has a 

unique representation in the form 

n 
N = E*kxk 

where 0 < a, < n^ for k > 1, 0 < at < a9 and if ^ k + D + 1 = m i - !> 

\ + i = mi - m2 - 1 

for 1 < i < p 3 and 

(i) k > 1, then a. < m-j_ - m2 ; 
(ii) k = 1, then ĉ  < a - m2 . 

The proof, which will not be given, follows that of Theorem 1 and uses 
the identity 
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n-2 
x n = (mt - l )x n _ 1 + (mt - m2 - 1) ^ x. + (a - m2 - l)xt + 1. 

2 

The converse of Zeckendorf's theorem can be generalized to include as 
special cases the converses of the generalizations of Zeckendorf's theorem 
given so far. 

r i°° 
Theorem 4. Let {x } be a monotone sequence of distinct natural 

numbers such that every natural number N has a unique representation in 
the form 

N = I X xk 

where a, ^ 0 and other constraints on {<\} are added such that the rep-
representation of x is itself. Then {xj- is the only such sequence. 

n r V r i00 

Proof. Assume the sequences {x } and {y } both satisfy the hy-
potheses, where 

{x r = {y }iN 
L nJ

A
 lJnJi 

and y - ^ X N+1 * T n e n 3^+1 ^ a s a u n iQ u e representation as a sum of num-
bers x , each of which in turn has a unique representation as a sum of num-
bers y , where n ^ N. On the other hand, y N - obviously represents it-
self and, thus, y N + 1 has two representations in terms of numbers y . This 
contradicts the uniqueness of representation, and we conclude that 

w : - <*£ 
Theorem 4 does not include the converse of the following generalization 

of Z ec kendo rf 's theorem. 
Theorem (Brown [2]). Every natural number N has a unique repre-

sentation in the form of 
[Continued on page 111. ] 



REPRESENTATIONS OF.INTEGERS AS SUMS OF FIBONACCI SQUARES 
ROGER O'COWWELL* 

San Jose State College, San Jose, California 

1. COMPLETENESS 

If elements of a sequence can be selected9 with each element being 
selected at most once? such that their sum is a given integer, then this inte-
ger is said to have a representation with respect to the sequence,, A sequence 
of positive integers is complete if and only if every positive integer has at 
least one representation with respect to the sequence 

Consider the sequence of Fibonacci squares: 

1, 1, 4, 9, 25, 64, • • • . 

Clearly this sequence is not complete as there are no representations for 3, 
7, 8, 12, and infinitely many other integers* Let us now consider using 
two copies of the sequence of Fibonacci squares. Consider the sequence 

1, 1, 1, 1, 4, 4, 9, 9, 25, 25, 64, 64, •• • . 

A few simple calculations will lead one to suspect that we now have a com-
plete sequence. This can be proved using the following theorem given by 
Brown [1]. 

Theorem 1. Let {a. } be a non-decreasing sequence of positive inte-
gers with at = 1. If 

n 

vi * 1 + E\ 
k=l 

then the sequence { a, } is complete. 
* Student, now in El Cajon, California! 

103 
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Let us now define our sequence so that the notation will be s i m i l a r to 

that used in Theo rem 1. Let 

*2k-l F k J a 2 k F k 

Then we have 

2m m 

Y V = 2 V F ? = 2F F (1 {-a k Z—4 k m m+1 
k=l k=l 

2 m - 1 2m-2 
a. + F 2 = 2F - F + F 2 = F k m m - 1 m m 2m 

k=l k=l 

Theo rem 2. The sequence of two of each of the Fibonacci squa re s i s 

complete . 

Proof. Let n be even with n = 2m. Then we mus t show that 

o r that 

2m 
a2m+l " X + E ak 

k=l 

F 2 ^ < 1 + 2F F ^ 
m+1 m m+1 

F o r m ^ 1, 

F < F 
m - 1 m 

F - + F < 2F m - 1 m m 

F ^ ^ 2F m+1 m 
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F2 ^ 2F F (1 
m+1 m m+1 

F2 , ^ 1 + 2F F _,- . m+1 m m+1 

The case for n odd is handled In a similar manner to complete the proof. 
Theorem 3, Exactly one of the first six elements of the sequence {a, } 

can be deleted without loss of completeness. 
This theorem is proved by showing that If one F2 Is deleted^ with 

n — 4, then there is no representation for the Integer F2 - - 1. Further3 

one shows that if any two of the first six elements are deleted., then com-
pleteness Is again los t The proof Is completed by showing that if. any one of 
the first six elements is deleted., It is still possible to find enough represen-
tations to establish a foundation for mathematical Induction. 

Let 

2B BASIC LEMMAS 

P(x) = [ J (1 + x*j) = ]T R(k) xk , 
j=l k=0 

2n 2 F n F n+l 
P2n(x) =J7 ( l H " X a j ) = 2 R2n(k)xk 

j=l k=Q 

2n-l F2n 
P2n-1« =TT ( 1 + X a j ) = 2 R 2n- l ( k ) x k 

j=l k=Q 

where a. Is an element from our sequence. Then R(k) Is the number of 
representations of k as a sum of Fibonacci squares* Paralleling the method 
used by Klarner [2] we can prove the following lemmas. 

Lemma 1. 

(a) RQ (k) = R„ (2F F M - k), 0 < k < 2F F :1 
2n 2n n n+1 " n n+1 
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(b) R^^k) = B ^ f f ^ - k), 0 ^ k ^ F2n . 

Lemma 29 

(a) K2n+1(k) = R2n(k)5 0 ^ k ^ F ^ + 1 - 1 

<» R2n+l(k> = R 2 n ^ + R2n<k " F U > • Fn+1 * k * 2 F n F n + l 

(c) R0 . (k) = R0 (k - F2 ), 2 F F ± 1 + l < k ^ F 0 ± 0 , 
2n+l 2n n+1 n n+1 2n+2 

Lemma 3. 

( a ) R 2n ( k ) = R 2n- l< k ) ' ° * k * F n ~ X 

<b> R 2 n < k > = R 2 n - l ( k > + R2n-l<k " F n> ' F n S k £ F2n 

(c) RQ (k) = R0 ,(k - F2 ), F 0 + 1 ^ k ^ 2F F ± 1 . 
' 2n 2n-l n 2n n n+1 

Lemma 4. 

(a) R2n(k) = R(k)5 0 < k ^ F ^ + 1 - 1 

(b) R0 (k) = R(2F F ,- - k), F 0 + 1 < k < 2F F ± 1 . 
' 2n n n+1 ' 2n n n+1 

Lemma 5. 

(a) R2n+1(k) = R(k), 0 - k * F^+1 - 1 

(b) R2n+1(k) = R(2FnFn + 1 -k) + R(k - F^+ 1) , n * 2 , 

Fn+1 a k S 2 F n F n + l 

(c) R „ , , ( k ) = R ( F 0 l 0 - k), 2F F ^ + 1 2 k < p 
' 2n+l 2n+2 " n n+1 2n+2 

Lemma 6. 
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R ( F n F n + l " k ) = R ( F n F n + l + k ) ' n * 2 ' ° s k S F
a - lVl ~ X • 

L e m m a 7. F o r n ^ 3 , 

(a) E(k) = 2R(k - F 2 ) + R(2F F - - k) , F 2 ^ k ^ 2F F , 
n n n - 1 n n n - 1 

(b) R(k) = 2R(k - F 2 ) , 2F F - + 1 < k < 2F 2 - 1 ^ N n n n - 1 n 

(c) R(k) = R(2F F ^ - k) , 2F 2 < k < F 2
 t 1 - 1 . w N N n n+1 n n+1 

L e m m a ? can now be used to prove many rep resen ta t ion t heo rems s u g -

gested by a table of values for R(k), with 0 < k < 25,000. 

3. REPRESENTATION THEOREMS 

T h e o r e m 4. 

R(F F ^ ) = 2R{F - F ) , n > 3 . 
N n n+1 n -1 n 

Proof, F o r n > 3, 

2F F , + 1 < F F ^ < 2F 2 - 1 . 
n n - 1 n n+1 n 

Using L e m m a 7(b), we have 

R(F F ,- ) = 2R(F F . - F 2 ) 
N n n+1 N n n+1 n 

= 2R(F \F ^ - F 1 ) v nL n+1 nJ 

= 2R(F F - ) . N n n - 1 

T h e o r e m 5. 

R(F F ^ ) = 3.211"1 . 
N n n+1 

Proof. F r o m the table of va lues we have 
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n = 1: R ( F 1 F 2 ) = 3 = 3-2° 

n = 2: R ( F 2 F 3 ) = 6 = 3-21 

n = 3: R ( F 3 F 4 ) = 12 = 3-22 

which gives us a ba s i s for induction. Now a s s u m e the s ta tement holds for 
n = k. Then 

R ( F k W = 3-2k_1 • 

By Theo rem 4, 

R ( F k + i W = ^ k W = 2'3-2k"1 = 3'2k-

We have shown that if the s ta tement i s t rue for n = k, then it i s a lso t rue 

for n = k + 1. The re fo re , by induction, the proof i s complete . 

In a thes i s on this subject forty-four t heo rems such a s t heo rems four 

and give w e r e proved and another nine w e r e suggested. 

4. MAXIMUM AND MINIMUM VALUES OF R(k) 

Since by T h e o r e m 5, 

R(F F _,, ) = 3 - 2 n _ 1 , n n+1 J 

we see that R(k) i n c r e a s e s without bound. However, max imum and min imum 

values of R(k) can be found in each in terval 

F 2 < k < F2
 t 1 - 1 . n n+1 

T h e o r e m 6. F o r 

F 2 < k < F 2 ,- - 1 , 
n n+1 

the max imum value of R (k) i s R (F F , J , 
n n+1 
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This theo rem is proved by induction. 
T h e o r e m 7. F o r 

109 

F 2 < k < F 2
 (1 - 1 , n n+1 

the min imum value of R(k) i s R(k) = 3, where 

k = 2 2i 
i=l 

F 2 < k < F 2 - 1 
*2n K *2n+l x ' 

k = 2 V ^ F 2 , F 2 < k < F 2 

* JLJ r 2i+l ? * 2n+l K * 2 i= l 
2n+2 

By inspect ing the table we see that th ree i s the min imum value of R (k) 

for all k included in the table. L e m m a 7 a s s u r e s us that no l a t e r values of 

R(k) will be l e s s than th ree . Induction i s used to show that R(k) = 3 a s 

specified above. 

5. SIMPLE REPRESENTATIONS 

A s imple rep resen ta t ion i s a represen ta t ion in which each Fibonacci 

square i s used a t mos t once. Since F 2 = F 2 = 1 we will allow two ones to 

be included in a s imple represen ta t ion . By d is t inc t s imple r ep resen ta t ions 

we mean r ep resen ta t ions whose e lements a r e not identical . 

Ri - Ff + 

i=l 

and 

R? = F | 2>k 
i= l 

k. 
i 

(k. 3) 
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a r e taken to be the same s imple represen ta t ion since when the r e p r e s e n t a -
2 2 

t ions a r e actually wr i t ten out we cannot dist inguish between Ft and F 2 . 

Theo rem 8, An in teger has a t mos t one s imple represen ta t ion . 

Proof. Let 

I = F? + F? + . . . + F? 
Ji 32 Jn 

be a s imple represen ta t ion for I. 

v1 
E F? = F . - F . ^ F? 

1 3 - 1 J 3 
. - Jn Jn Jr. 
1=1 

Hence F? m u s t be used in a s imple represen ta t ion for I. S imi lar a rgu-

men t s show that each F?. m u s t also be used. 
3i 

Theorem 9. Eve ry represen ta t ion of F F - i s s imple . 

Proof. Recal l that 

1 + 1 + 4 + 9 + — + F 2 = F F ,-
n n n+1 

(i) Using our sequence the re a r e 1 9 I ways to se lec t the two ones and two ways 

to se lec t each succeeding summand. The re fo re , the number of s imple r e p -

resen ta t ions i s 

*) - 2 n - 2 = 6-211-1 = 3-211-1 

F r o m Theo rem 5, we have 

R(F F ^ ) = 3-211"1 . n n+1 

Note that we have 3s 2 s imple r ep resen ta t ions and a total of 3-2 " r e p -
resen ta t ions for F F - . Hence, eve ry represen ta t ion for F F - i s 
s imple . 
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A s a result of Theorem 9 we have the following theorem, which may be 
called a Non-Four-Square Theorem. 

Theorem 10. There does not exist a finite number n such that every 
positive integer can be represented as a sum of at most n Fibonacci squares. 

69 VALUES OF m SUCH THAT R(k) f m 

Using Lemma 7 and mathematical induction, it is possible to prove 

R(k) f 5, E(k) ± 7, R(k) f 13 

for any positive integer k. It is suggested that there are an infinite number 
of integers m such that R(k) f- m for any positive integer k. 

Further expansion of these ideas is contained in [3], 
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n 

2 

where 0 ^ a. ^ 1 and if a ,- = 0, then a, - 1. k k+1 k 
Zeckendorfs theorem provides the representation of N in terms of the 

minimum number of distinct Fibonacci numbers^ and Brownfs theorem pro-
vides the representation of N in terms of the maximum number of distinct 
Fibonacci numbers. 
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