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FIBONACCI SEARCH WITH ARBITRARY FIRST EVALUATION 
CHRISTOPHWITZGALL 

Mathematics Research Laboratory, Boeing Scientific Research Laboratory 

ABSTKACT 

The Fibonacci search technique for maximizing a unimodal function of 
one real variable is generalized to the case of a given first evaluation. This 
technique is then employed to determine the optimal sequential search tech-
nique for the maximization of a concave function. 

1. INTRODUCTION 

A real function f: [a,b] -* R, where a < b is called 

(1.1) unimodal , 

if there are xs x E [ a , b ] such that f is increasing for x ^ x and non-
increasing for x ^ _x5 decreasing for x ^ x and nondecreasing for x ^ x 
(Fig. 1). 

o b 

Fig. 1 Example of a Unimodal Function 

(1.2) If f is unimodals then the interval [ x , x ] consists of all maxima of f. 
Proof, f is constant in [x9x ], since it is by definition nonincreasing 

for x ^ x as well as nondecreasing for x ^ x. If x < x , then f(x) < f(x) 
as f increases in [ a , x ] . If x > x , then f(x) < f(x) as f decreases in 
[ x , b ] . 

The definition of unimodality is chosen so as to guarantee that 

113 
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(1.3) Whenever a unimodal function f has been evaluated for two arguments 
xt and x2 with a ^ xt < x2 ^ b, then some maximum of f must lie in 
[x i ,b ] if f(xi) ^ f(x2) and in [a,x2] if f(x^ ^ f(x2) 

Proof. If f(xi) ^ f (x 2 ) , then xA and x2 cannot be both in that portion 
of the interval [a,b] in which the function decreases. In other words, x 
cannot lie to the left of x1# Thus x E [x 4 ,b ] , and x is a maximum of f by 
(1.2). Similarly, if f(xt) ^=f(x2), then x E [a,x2] . 

As the restriction of a unimodal function to a closed subinterval of [a ,b] 
is again unimodal, this argument can be repeated. Hence, a sequential search 
based on (1.3) will successively narrow down the interval in which a maximum. 
of f is known to lie. Such an interval is called the 

(1.4) Interval of Uncertainty. 

Kiefer [3] has asked the question of optimally conducting this search,, and 
answered it by developing his well known Fibonacci search. 

The Fibonacci search gives a choice of two arguments for which to make 
the first evaluation. But what happens if by mistake or for some other reason 
the first evaluation took place at some argument other than the two optimal 
ones? How does one optimally proceed from there? 

In this paper, we shall therefore ask and answer the question for an op-
timal sequential searchplan with given arbitrary first evaluation. The result-
ing technique is applied to improving on Fibonacci search for functions known 
to be concave. The technique may also be of interest in the context of stabil-
ity of Fibonacci search in the presence of round-off e r rors as studied by 
Overholt [6] and Boothroydt [l] (see also Kovalik and Osborne [4]). 

2. LENGTH OF UNCERTAINTY 

In what follows we assume that a = 0 and b = 1. Furthermore, we 
shall permit zero distances between two arguments of evaluation, interpret-
ing each such occurrence as evaluating the (not necessarily unique or finite) 
derivative of the function f. A more careful analysis would take into account 
the smallest justifiable distance € between arguments (Kiefer [ 3 ], Oliver 
and Wilde [5]). 
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By 

Lk(x), 0 < x < l , 

we denote the length to which the interval of uncertainty (1.4) can surely be 
replaced by k evaluations in addition to a first one at x. Extending a recur-
sive argument due to Johnson [ 2 ] , we obtain 

(2.1) Lk(x) = min |Mk(x), MR(1 - x)} , 

where 

M. (x) : = min max ) 
x<y<l | 

(1 - x)Lk .(HI). M f 
Proof. Let y denote the first function argument over which we have 

control. If x ^ y ^ 1, then the two possible intervals of uncertainty are 
[ 0 , y ] and [ x , l ] . The former contains the point of evaluation x. The best 
upper bound for the length of the interval of uncertainty after the remaining 
k - 1 evaluations is given by 

(2.2) yLk 4) 
Similarly, y is the evaluation point in [ x , l ] , leading to the best upper 
bound 

(2.3) o (1 - x)Lk *(Hi) 
Whether [0,y] or [ x , l ] is the first interval of uncertainty depends on the 
result of the evaluation at y: if f(y) ^ f(x), then [ 0 , y ] , if f(y) > f(x), 
then [ x , l ] . Hence the maximum Mk(x) of the two expressions (2.2) and 
(2.3) is the best result achievable if y is selected between x and 1. The 
expression 
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Nk(x) : = ^ m a x j x L ^ f ) . (1 - ^ ( f f - f ) } 

analogously describes the best result achievable if y is between 0 and x. 
Since we control the choice of y, we can choose the smaller one of these 
two expressions; and this gives 

Lk(x) = min {Mk(x), Nk(x)} 

Introducing for 0 ^ x ^ y < 1 , 

Sk(x,y) : = max f-^-ifrH^^fj. 
we have 

M, (x) = min S,(x,y), N, (x) = min S, (y,x) . 
x^y^ l O^y^x 

Now for 0 < x ^ y ^ 1 , 

(2.4) sk<x>y) = s k ( 1 - y. i - x ) . 

Therefore, N. (x) = M-(l - x), and (2.1) is proved. 
At the beginning, the interval of uncertainty is the entire interval in. 

which the function is to be examined. A single function evaluation at any 
point x does not change this situation. Hence 

L0(x) = 1 . 

We then have 

Mj(x) = min max {l - x,y} = max {l - x , x } = M^l - x) 
x<y<l 

Hence 
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(2.5) 

WITH ARBITRARY FIRST EVALUATION 

Lt(x) = max {1 - x,x} = J 1 - x for 0 < x < ^ 
x for 4; < x ^ 1 

F o r k ^ 2, we c la im (Fig* 2): 

(2,6) 

1 - x 
F k + 1 

for 0 < x < 
"k+2 

Lk(x) = | 

x - k 
for •= 

F k F k+2 

V 5 f°r 2 * X 
Lk+1 
?k+2 

x . k+1 _ _ -
; for = — < x < 1 , "k+1 "k+2 

where F4 = 1 , F 2 = 1, F 3 = 2, F 4 = 35 

Fibonacci n u m b e r s . 
" • • F k = F k - 2 + F k - 1 a r e 

U(x)4 

Fig. 2 Lk(x) for k = 0, • • • , 4 

Proof. The case k = 2 requires special treatment From (2.5), 
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y - x for (x,y) £ At : = jo < | < J } 

x for (x,y) G A2 : = j | s 5 < l j 4) 
(1 - x)Lt N 

y - x for (x,y) e Bt : = 0 < 1 — | < | 

1 - y for (x,y) G B2 : = \ ^ \—\ 

We are now able to determine S2(x,y) in each of the four regions A. Pi B. 
separately: 

Aj fl Bj : S2(x,y) = max jy - x, y - x} = y - x . 

At H B2 : S2(x,y) = max jy - x, 1 - y} = l - y . 

A2 fl Bj : S2(x,y) = x by (2.4) and (1 - y, 1 - x) G At H B2 . 

A2 Pi B2 : S2(x,y) = maxjx, 1 - yf = ^ ^ ^ y ^ 1 I x " 

The sets A, and B. are represented in Fig. 3. They are triangles formed 
by the line segments marked A. and B., respectively, and the correspond-
ing opposite corner of the square. The feathered lines are the minimum lines 
with respect to constant values of x, i.e., if proceeding vertically the inter-
section with the feathered lines marks a minimum. The function M,(x) is 
defined to be the value of this minimum. Hence 

L^iE if o < x < i 
M2(x) = [ 2 3 

If J * x 

By (2.1) we then have finally 
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y l 
1 i 

Bi 

B2 

01 

Ai 

y-x 

, ' i -y 

/ X 
I / 

1 / 

y 

A2 
v «<X 

si -"" X 
V -^ X 

v -̂  X y ^ X 

X 

L2(x) = 

Fig. 3 S2(x,y) 

4 " * if 0 ^ x ^ \ 
x l f 3 - X - 2 

1 - x if — < x 

x if -o — x 

in accordance with (2.6). 
The case k ^ 3 is now proved by induction over k. We have 

y L k - ^ ) 

F, 1 
J ^ for (x,y) E At : = 0 < f < ~ ^ ± 

F k y *k+l 

k»l 
for (x,y) E A2 : k-1 < x <= 1. 

V i y 

• 5 ^ - 5 for ( x , y ) E A 3 : = | * £ < , 
F k - 1 Z y Ak+1 

x 
F, 

for (x5y)E A4 : = = r ^ - ^ f ^ 1 
^k+1 y 
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(1 - x)L, fc.^) 

I^JL f0r (X,y) £ B l : = 0 < ±if-Z < 1 - Y < 1 M 
k+1 

— ^ for (x v) G Bo • = - ^ < 1 " X < I 
t o r [x,y) t i 5 2 . - _ - 2 

k - 1 k+1 

L : ^ for (x,y) G B j : = | ^. ^-=-J 
k - 1 

-£-?• for (x,y) £ B 4 : = _ _ - ^ 
k * k + l 

k+1 

^ * * 1 

We de te rmine S, (x,y) in all. regions A. D B. with i ^ j . F o r the r ema in -
K i j 

ing r eg ions , we use (2.4). 

Ai H BA : S (x,y) = max P ^ A ^LzJE = iL^JE 

AA H B2 : Sk(x,y) = m a x j ^ — , - p r ^ f =
 F " Y s i n c e (x>y) E B2 gives 

( k k-11 k - 1 

(1 - x ) F k _ x ^ (1 - y ) F k + 1 i and therefore (y - x j F ^ = (1 - x j F ^ 

- (1 - v ) * V i ^ (1 - y ) F . + 1 - (1 - y)F. , = (1 - y)F. . k - 1 k+1 k - 1 

Ax H B3 : Sk(x5y) = max ^ , ^ L ^ = ILlJL 
f k k - 1 ) k - 1 

A4 O B4 : S,(x,y) = max ^ , i ^ - Z = i ^ 

gives 1 - x ^ 2(1 - y) o r y - x ^ 1 - y , 

1 

since (x,y) E B4 

A2 H B2 : Sk(x,y) = m a x . ^ , ^ * _ 1 - y 
k - 1 * k - l k - 1 

max j x , 1 - y , 

A2 0 B3 : S, (x,y) = max T ^ — , ^ — * 
K ( * k - l * k - l ) 

^ s ince (x,y) G A2 
* k - l 

g ives 2x ^ y o r x ^ y - x 
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A2 H B 4 : S,(x,y) = max < ^ — , ^ ™ 1 > = ^ - ^ s ince (x,y) G A2 gives 
f ^ k - 1 *k ) *k 

2x - y < 05 and since (x,y) E B4 gives -xF , + y F . + 1 ^ F, 1 . 

Indeed? multiplying the f o r m e r inequality by F, and adding it to the 

l a t t e r gives xFf e + y F k _ 1 ^ F ^ . 

A3 H B 3 : S (x,y) = m a x | ^ - ^ , ^LZJLI = Zf-^ , 
K r k - 1 * k - l * k - l 

A 3 O B 4 : S. (x,y) = max y , —jr-^l = --jr-2- s i n c e ^ x ' ^ E B4 § i v e s 

( k - 1 k J k 
(1 - x ) F k < (1 - y ) F k + 1 , and therefore (y - x ) F k = (1 - x ) F k -
(1 - y ) F k * (1 - y ) F k + 1 - (1 - y ) F k = (1 - y ) F k - 1 

A4 H B 4 : Sk(x,y) = max j ^ - , ~ y = ^=- max {xs 1 - y} . 
? k k ) k 

The schemat ic r epresen ta t ion of S. (x,y) then i s given by Fig . 4„ T h e r e a r e 

b r eaks along the l ine x = 1 - y in a r e a s A2 D B2 and A4 n B4. The fea the r -

ed l ines a r e again those boundar ies of l inea r i ty regions at which S, d e c r e a s e s 

for fixed x. The absc i s sae of in te rsec t ion points of feathered l ines a r e t h e r e -

fore c r i t i ca l . The f i r s t one of these c r i t i ca l a rguments we denote by v. It 

i s the a b s c i s s a of the in te rsec t ion point of the l ine 

1 x *k+ l 

which s e p a r a t e s B$ from B2 s and the l ine 

(2.8) X - ^ ^ y F k+l 

which separates At from A2. Elimination of y yields 
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A2 A 3 

v i/3 w y2 

Fig. 4 S. (x,y) and Critical Arguments 

F * k - l 
F k + 1 + F k - 1 

The next critical argument clearly has the value 1/3. The third one, which 

we call w, is the intersection of the line 

(2.9) 1 - y = _ 
1 - x F k+1 

which separates B3 from B4, and the line 

F, 
(2.10) y F k+l 

which separates A3 and A4. Elimination of y yields 

k+2 
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The l a s t c r i t i ca l a rgument finally has the value 1/2. 
F o r 0 < x < v the v a l u e s of S, (x,y) at the in te rsec t ion of the v e r t i -

cal through x with the two feathered l ines (2.7) and (2.9) a r e potential m i n i -
m a . The equations of these l ines can be rewr i t t en as 

and 
Y F F ~~ F 
* k - l *k+ l *k *k+ l 

As these t e r m s also r e p r e s e n t the value of S, (x ,y) , we have 

1 - x 
M. (X; 

k W F k + i 

for 0 < x < v. 

F o r v ^ x < 1/3 local ly min imal points a r e to be found on line (2.9) 

and in the a r e a where S, (x,y) a s s u m e s the value x / F . - . Now x > v 

gives x F k + 1 > (1 - x ) F k _ 1 o r 

F F 
* k - l k+1 

Thus 

Mk(x) = ± p £ 

for v < x < 1/3. 
F o r 1/3 < x < w only the l ine (2.9) i s in te res t ing , and Mk(x) st i l l 

takes the value 

1 - x 
F k + 1 " 

F o r w ^ x ^ 1/2 and beyond the min imum is a s sumed within the e n -

t i re l ine segments which mee t s the a r e a in which S. (x,y) = x / F k . 
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Thus , finally 

F 
1 " x for 0 < x < k 

(2.11) Mk(x) = 
F k + 1 F k+2 

^ - for = < x < 1 
•*k k+2 

and (2.6) follows immedia te ly from (2.1). 

Note also that (2.11) impl ies 

(2.12) Lk(x) 
Mk(x) for 0 < x < | 

M k ( l - x) for | < x < 1 

3. SEARCH STRATEGY 

In the previous sect ion, y?e have de te rmined the opt imal length of un-

cer ta in ty L , (x ) , which can be achieved in k evaluat ions in addition to one 

evaluation at x EE [ 0 , 1 ] , We have yet to desc r ibe a s ea rch s t r a t egy which 

r e a l i z e s L, (x). This amounts to specifying the a rgument y of the f i r s t 

evaluation in addition to x. In view of (2.12), this r educes to de termining y 

such that M, (x) = S, (x,y) f o r g i v e n x between 0 and 1/2, a task which 

has been per formed a l ready while calculat ing M, (x). 

If o ^ x ^ v, then there a r e two optimal solutions y, s ince 

S, (x,y) = 1 

k , J F 
* k + l 

along both feathered l ines in Fig. 4. This non-uniqueness i s not su rpr i s ing . 
Indeed, if x = 0, then the evaluation at this a rgument does not contr ibute at 
all towards nar rowing the in terval of uncer ta in ty , and the optimal continuation 

i s just plain Fibonacci with one evaluation wasted. And in this case there a r e 

two opi 
points 

s t two optimal a rgumen t s , namely the f i r s t and second ( k - 1 ) o r d e r Fibonacci 
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F. - F. k-1 k 
F F 

k+1 *k+l 

F 
(3.1) If 0 < x < — -. - - , then any of the two (k - l ) s order Fibonacci 

k+1 V l 
points in the interval [x , l ] is an optimal evaluation point 

F. . xF. + F. . , k-1 M v k k - 1 
y i = x + - — - (1 - x) = — 

* k+1 * k+1 

F. xF, - + F. 
' k •/- v k - 1 k 

y 2 = X + , ^ _ (1 - X) = • — ~ 
* k+1 * k+1 

In both intervals v < x < 1/3 and 1/3 < x ^ w, the optimal solution 
y is unique. 

F k - i F k 
(3.2) If —-—~^=—— < x ^ •=• then the optimal evaluation point y is the 

* k+1 * k-1 * k - l st first (k - 1) order Fibonacci point of the interval [x, 1 ] . 

Finally, if w ^ x ^ 1/2, then the optimal solutions fill an entire 
interval. 

F 
(3.3) Let = < x ^ >̂. If y0 is such that x is the second (k - 1) or -

*k - l A 

der Fibonacci point in [0, y0 ], then all points in [1 - x,y0] are 
optimal evaluation points. 

The following rule will always yield an optimal solution: 

(3.4) Theorem. An optimal search strategy after an arbitrary first evalua-
tion at x0 E [a,b] is as follows. If c ^ x ^ d are such that [c ,d] con-
stitutes the interval of uncertainty after i additional evaluations, and if x 
is the argument for which the function has been evaluated already, then: 
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(i) If x lies between c and the first (k - i ) order Fibonacci points 
in [c ,d ] , then choose y as the first ( k - i ) order Fibonacci point in 
[ x , d ] . 

(ii) If x lies between the two (k - i ) order Fibonacci points of [c ,d ] , 
then choose y as the symmetric image of x in [ c ,d ] , i. e. , y = c + d - x. 

(iii) If x lies between d and the second of the two (k - i ) order Fib-
onacci points in [c ,d ] , then choose y as the second (k - i) order Fib-
onacci point in [ c , x ] , 

We shall refer to any sequential search strategy in keeping with (3.1, 2, 
3), in particular the rule described in Theorem (3.4), as 

(3.5) Modified Fibonacci Search . 

If the interior of the interval of uncertainty does not contain an argument at 
which the function has been evaluated already, then the selection of the next 
evaluation by modified Fibonacci search will be the same as in standard Fib-
onacci search. 

4. SPIES 

Intervals of uncertainty with nonoptimal evaluation points may be the 
result of the following situation. Suppose in maximizing a function we avail 
ourselves of the services of a "spy.T! This spy operates as follows: every 
time an interval of uncertainty has been based on the results of prior evalua-
tions, he is consulted, and as a result of this consultation, the interval of un-
certainty may sometimes be further reduced (remaining an interval) without 
additional evaluations. One cannot expect, however, that the remaining eval-
uation point (if there is any) is in optimal position within the new interval of 
uncertainty. 

In this case, there is a question whether the additional information 
should be accepted. It is indeed conceivable that reducing the interval of un-
certainty and subsequently continuing from a non-optimal evaluation point 
would in the final analysis lead to a larger interval of uncertainty than ignor-
ing the additional information and doing a straightforward Fibonacci search. 
That this is not so, is essentially the content of the following. 
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(4.1) Theorem. The optimal policy in the presence of an unpredictable spy is 
to heed his advice and to proceed from the interval of uncertainty so achieved 
by modified Fibonacci search with respect to the remaining evaluation point if 
there is any. 

Proof. Let [c,d] be the interval of uncertainty as determined by the 
previous step of the search, and let [c,d ], c ^ c ^ d ^ d, be the interval. 
of uncertainty after consulting the spy. As the spy is unpredictable, there 
may be no further information forthcoming. This is the worst case, since 
even if the spy is providing information, it need not be heeded. Thus all we 
have to show is that we do not worse by proceeding form [ c , d ] than from any 
other interval [c*,d*] with [c ,d] D [c*,d* ] 2 [ c , d ] . 

Now let x be the evaluation point in [c ,d] . Then we distinguish two 
cases, depending on whether x E [c ,d] or not. Suppose x E [ c , d ] , then 
x E [ c* , d* ] . Working on the latter interval, the best we can guarantee in r e -
maining steps is reducing the uncertainty to 

(d* - c*)L J X - C* 
d* - c* 

d* - x - A ^ x - c * for 0 <• F i+1 

X - C* 
F 

d* - x 

X - C* 

•i+1 

d* - c* 

for 

i+2 

x - c* _ 1 
F i + 1 d* " °* 2 

f I < x " c* < i + 1 

F„ 2 d* - c* F i+2 

for "i+1 _ x - c* 
F d* 
*i+2 

( = : I i ) 

(=: h) 

(=: Is) 

^F < 1 (='k) 

For all x such that 

X - C* and 

are both in one of the four intervals I. above, 

(4.2) (d* - c*)L ;{&£) * « " ̂ f f | ) 
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i s immedia te . Of the remain ing twelve c a s e s , we need cons ide r only s ix , a s 

the o the r s follow by symmet ry . Let 

u* : = d* - c* and ii : = d - c . 

— F 
x - c* ,_ T , x - c _ T x - c* ^ i 
—-^— E Ii and — — G I2 : * =£ ^ — 

u u u * i + 2 

impl ies 

# - x >
 F i 

u* F 

Thus 

d * - x > x - c* ^ x - c 
F F F 

X - C* ,_ T , X - C ^ _ T - . U 
u* G- I i and — — - E I3 : x - c > ^ 

gives x - c ^ d - x. Thus 

d* - x > x - c * > x - c > d - x 
F ~ F ~" F "~ F 
r i + l r i i i 

J L ^ E k ^ J L ^ E I4 : F | + 1 * Fi 

Thus 

d* - x ^ x - c * > x - c > x - c 
F ~~ F F ~~ F 

i + 1 i i i + 1 
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— - 3 — E I2 and — — E I3 : x - c > ^ 

gives x - c > d - x „ Thus 

Thus 

impl ies 

Thus 

x - c* ^ x - c ^ d - x 
F F F 

^ E I 2 a n d £_Z^E l 4 : F i * F 

u 

x - c* ._ x - c _ x - c 
F i F i F i + 1 

X — C .— T -« X ~" C ,— TT X ~~ C . 

u u u * i+ 

d* - x < F i - 1 
U * i + l 

d* - x ^ x - c * - ^ x - c 
F i + 1 F i + 1 

The case in which x (£ [c",d] r ema ins to be considered. Suppose x•< 

"c < d. Since we proceed by s tandard Fibonacci in any interval of uncer ta in ty 

not containing x in i t s in te r io r 9 s ta r t ing with [ c , d | is ce r ta in ly be t te r than 

s t a r t ing with [ x , d ] C [ c 9 d ] 9 and we have a l ready seen that [ x , d ] i s be t t e r 

than any in terval between [ c9 d ] and [ x , d] „ 
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A spy is called 

(4.3) almost unpredictable 

if for each subinterval [c* ,d*] of the interval of uncertainty [ c , d ] , which 
results from the evaluation pattern, the spy has the option of reducing it only 
to an interval [c ,d] which contains [c*,d*]. Plainly, we still have 

(4.4) Theorem. The optimal policy in the presence of an almost unpredict-
able spy is to heed his advice and to proceed from the interval of uncertainty 
so achieved by modified Fibonacci search with respect to the remaining eval-
uation point if there is any. 

5. CONCAVE FUNCTIONS 

We shall see that a "spy" is available if the unimodal function to be max-
imized is known to be concave. 

A function f : [a, b] —> R is 

(5.1) concave 

in [a, b] if 

f(Ax + jxy) > Af(x) + |ULf(y) 

holds for all x ,y E [a ,b] , A ,p. > 0 and A + JLL = 1. The function is 

(5.2) strictly concave 

if 

f(Ax + ]ULy) > Af(x) + jLLf(y) 

holds for all x,y,A^L which are as above and satisfy in addition x f y and 
A, jut > 0. We state without proof that 
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(5.3) Every upper semicontinuous concave function on [ a , b ] is unimodal. 

Without the additional hypothesis of upper semicontinuity, (5.3) does not 
hold as there are concave functions without maximum on [ a , b ] . 

Now consider two points 

P. : = (x.,f(x.)) P. : •= (x.,f(x.)), x. < x. , 
i l i j 3 3 i 3 

of the graph 

G(f) : = |(x9f(x)) : x E [a ,b]} . 

and let L.. be the straight line through P. , P.. Concavity implies that the 
graph of f does not lie below L.. in [x . 9 x . ] and not above L.. in the r e -
mainder of the interval [a ,b] . Hence if five points of the graph G(f) , 

P0 : = (x0,f(x0)), - ° , P4 : = (x4,f(x4)) 

with 

x0 < Xi < x2 < x3 < x4 

and 

f(x2) > f(x.)s i = 1, 2, 

are known, then that part of the graph G(f) that lies above [xl9x3] is con-
tained in the union of the two triangles A* and A2 formed by L 0 1 , L I 2 J L 2 3 and 
L12,L235L34, respectively. f(x2) is a lower bound for the maximum value of 
f. Therefore 

(5.4) a maximum of f must lie in the intersection of AjA2 with the horizon-
tal through P2. (Fig. 5) 
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Q X 0 X) x2 X3 X4 b 

Fig. 5 Bounding a Concave Function by Chords 

The information that the function f is concave can thus be used in or-
der to reduce the interval of uncertainty. 

In order to complete the description of the proposed search method for 
concave functions, a few more conventions are necessary. At the ends of the 
interval [ a , b ] , we pretend that the function has value -QQ and if it has been 
evaluated there, we pretend that there are two values for the same abscissa, 
one of the values being infinite. Three evaluations will therefore reduce the 
interval of uncertainty as indicated in Fig. 6. 

We proceed to show that 

(5.5) concavity is an almost unpredictable spy (4.3). 

Proof. Suppose we have five points 

a < Xo < Xl •<= x2 < x3 < x4 ^ b , 



1972] WITH ARBITRARY FIRST EVALUATION 133 

Interval of 
Uncertainty 

b = x4 

Fig, 6 Three Evaluations 

where x0 and x4 may both coincide with the left end-point a, and similarly 
x3 and x4 may coincide with the right end-point b. For x. with i ^ 0949 

we have finite function values f(x.)9 whereas f(x0) and f(x4) are possibly 
infinite, provided x0 

more that 
a or x4 = b5 respectively,, We suppose further-
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f(x0) <= f(Xl) < f(x2) < f(x3) < f(x4) . 

Let [ c , d ] be the interval of uncertainty that results in view of concavity. 
Observe that 

x2 e [c ,d] . 

Now select any x with c ^ x ^ x2, xt < x, and assume that f(x) 
satisfies 

f(x) = f(x2) + 5(X - x2) 

for some 6 with 

f(x2) - f(Xl) 
0 < 6 < 

x2 - X ! 

Then the new interval of uncertainty taking concavity into account will be of 
the form [ c , d ] , where 

6(x - xt)(x2 - x) 
° = X + I x 2 ) - f(Xl) - 6(x2 - x) > x * 

The difference c - x measures the reduction of uncertainty due to concavity. 
Now by definition of 6 , 

6(x - xt)(x2 - x) 5(x2 - x1)2 

~ f (x2) - f (xt) - 5 (x2 - X!) ~ f(x2) - f(xt) - 6(x2 - xt) 

and the last term, independent of x, goes to zero as 5 goes to zero. In 
other words, the contribution of concavity beyond unimodality becomes arbi-
trarily small as f(x) approaches f(x2) from below, without assuming it. 

The symmetric argument can be carried out for x2 < x ^ d and x < x3. 
This then will establish concavity as an almost independent spy. 
[Continued on page 146. ] 



SOME PROPERTIES OF THIRD-ORDER RECURRENCE RELATIONS 
A. G. SHANNON* 

University of Papua and New Guinea, Boroko, T. P. N. G. 
and 

A. F. HORADAIVS 
University of New England, Armidale, Australia 

1. INTRODUCTION 

In this pape r , we se t out to es tabl i sh some r e s u l t s about t h i r d - o r d e r r e -

c u r r e n c e r e l a t i ons , using a va r i e ty of techniques. 

Consider a t h i r d - o r d e r r e c u r r e n c e re la t ion 

(1.1) S = PS , + QS . + RS Q (n 2s 4), S0 = 0S n n - 1 ^ n - 2 n - 3 u 

where P , Q, and R a r e a r b i t r a r y in t ege r s . 

Suppose we get the sequence 

(1.2) { J ' } i when ^ = 0, S2 = 1, and S3 = P s 

and the sequence 

(1.3) {K } 5 when S* « 1, S2 = 0, and S3 = Q , 

and the sequence 

(1.4) { L } , when St = 0f S2 = 0, and S3 = R 

It follows that 

Kt = J2 - J i , K2 = J 3 - PJ 2 

and for n ^ 3, 

* P a r t of the substance of a thes i s submit ted in 1968 to the Univers i ty of New 
England for the degree of Bache lor of L e t t e r s . 

135 
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(1.5) K = QJ - + RJ 0 , 
n ^ n - 1 n -2 ' 

and 

(1.6) L Q = B J ^ . 

These sequences a r e genera l iza t ions of those d i scussed b y F e i n b e r g [ 2 ] , [3 ] 

and Waddill and Sacks [ 6 ] . 

2. GENERAL TERMS 

If the auxi l iary equation 

x3 - Px2 - Qx - R = 0 

has th ree dis t inct r ea l roots3( suppose that they a r e given by # , j3 ,y . 

Accord: 

r e sen ted by 

According to the general theory of r e c u r r e n c e r e l a t ions , J can be r e p -

(2.1) J n = Ac/1"1 + BJ311"1 + Cy11"1 

where 

~ (|3 - a)(y - aT> B ~ (y - P){a - fi) ' 

and 

C = (a - y)(j3 - y) 

(A, B and C a r e de te rmined by J j , J 2 , and J 3 . ) 

The f i r s t few t e r m s of { J } a r e 
L nJ 

(Ji) = 0, 1, P , P 2 + Q, P 3 + 2PQ + R, P 4 + 3P2Q + 2PR + Q2 . 
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These t e r m s can be de te rmined by the use of the formula 

[n/3] [n/2] 

* » ' « . - E E' E «».) pn~31~2)«' • 
i=0 j=0 

where a .. sa t i s f ies the pa r t i a l difference equation 

(2.3) a .. = a - . . + a 0 . . - + a „ • i • 
mj n - l , i , j n - 2 5 i ? j - l n - 3 , i - l , j 

with init ial conditions 

a . noj 

and 

a . 
nio 

F o r example , 

J 5 = a 3 0 0 P 3 + a 3 0 1 PQ + a310R 

= T>3 = Pd + 2PQ + R . 

F o r m u l a (2.2) can be proved by induction. In outl ine, the proof uses the 

bas ic r e c u r r e n c e re la t ion (1.1) and then the par t ia l difference equation (2.3). 

The r e su l t follows because 

[ (n - l ) / 3 ] [ (n - l ) / 2 ] 

»„•!- E »' E VM,,^-3'-2^ • 
i=0 j=0 

[(n-2) /3] [n/2] 

i=0 j= l 
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[n/3] [(n-3)/2] 

n-1 Z ^ L^j n - 3 , i - l , j 
i=l j=0 

By using the techniques developed for second-order recurrence rela-
tions, it can be shown that 

(2.4) (P + Q + R - 1) ^ J r = J n + 3 + (1 - P ) J n + 2 + (1 - P - Q)Jn + 1 - l . 
r=l 

It can also be readily confirmed that the generating function for { j } is 

oo 

(2.5) 2 J n x I 1 = x2(1 " P x ~ Qx2 " R x 3 ) ' 1 • 
n=0 

3. THE OPERATOR E 

We define an operator E, such that 

(3.1) E J
n
 = J n + l ' 

and suppose, as before, that there exist 3 distinct real roots, a, fi9y of the 
auxiliary equation 

x3 - Px2 - Qx - R = 0 . 

This can be written as 

(x - a)(x - j3)(x - y) = (x2 - px + q)(x - y) = 0 , 

where 

p ~ # + j 3 = P - y , 
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and q = aft . 

The r e c u r r e n c e re la t ion 

J = P J 1 + Q J 0 + R J 0 n n - 1 ^ n - 2 n - 3 

can then be expres sed a s 

(E3 - P E 2 - QE - R ) J = 0 (replacing n by n + 3) 

o r 

(3.2) (E2 - pE + q)(E - 7) J n = 0 , 

which becomes 

(3.3) (E2 - pE + q ) u n = 0 

o r 

n+2 ^ n+1 ^ n 

if we l e t 

( E - r ) j n = u n , 

where {u T is defined by 

(3.4) u n + 2 = p u n + 1 - qu n , (n > 0), u0 = 0, i^ = 1 

In o the r w o r d s , 

(3.5) u n = J n + 1 - y j n 

and the extensive p r o p e r t i e s developed for {u } can be uti l ized for { j }• 
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In pa r t i cu l a r ? 

(3.6) u2 - u . • u ,_, = q 
n n - 1 n+1 H 

becomes 

This gives us 

<3'7> <Jn+l " J n J n + 2 > + V n " Wn-1> + ^K " W n - 1 > = ^ • 

Another identity for { j } analogous to (3.6) is developed below a s (4.4). 
Since 

J = u - + y J -
n n - 1 r n - 1 

= u - + y(u 0 + J n ) 
n - 1 fV n-2 n -2 

= u i + y u 0 + y2(u 0 + J 0 ) n - 1 ' n -2 ' n - 3 n - 3 

then 

n 

(3.8) Jn = X ^ " V l • 
r = l 

which may be a m o r e useful form of the genera l t e r m than those exp res sed 

in (2.1) and (2.2). 

4. USE O F MATRICES 

Mat r i ces can be used to develop some of the p r o p e r t i e s of these sequences . 

In gene ra l , we have 
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P Q R' 

1 0 0 

0 1 0 

p 

1 

0 

Q 

0 

i 

R" 

0 

0 

2 "Ssl 

s2 

_SJ 
and so , by finite induction; 

(4.1) 
r s 

n s , 
n~l 

s n [_ n-2 

= 

P 

1 

0 

Q 

0 

1 

R" 

0 

0 

fn-3 
'S3] 

s2 

SiJ 

A gain j s ince 

p 

1 

0 

Q 

0 

1 

R 

0 

0 

j 

= 

P 2 + Q PQ + R PR 

P Q R 

1 0 0 

J 4 K4 RJ3 

J 5 K3 RJ 2 

J2 K2 RJi 

we can show by induction that 

(4.2) sn = 

p 

1 

0 

Q 

0 

l 

R" 

0 

0 

n | 

= 

J n+2 K n+2 R J n + l 

J n + 1 K n + 1 

J K 

The cor responding de te rminan t s give 

RJ 

RJ n - 1 

(4.3) ( d e t S ) n = R n 

n+2 

Tn-f-l 

J n 

K. n+2 RJ 

K n+1 
K 

n 

n+1 

RJ. 
n 

RJ. n - 1 

By the repeated use of (1.5), we can show that 
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and 

(4.4) 

n+2 

Jn+1 
J 

n 

K 'n+2 RJ 

K n+1 

K 
n 

n+1 

RJ 
n 

RJ 

n+2 

Tn+1 

J n 

which i s analogous to 

(4.5) 

n - 1 

n - 1 

n-2 

R2 

n+1 

Fn+1 

J n 

n - 1 

n+1 

J n 

T n -1 

R n-2 

u* - u - • u ,-n n - 1 n+1 
n - 1 

n+1 

J n 

n -2 n - 1 

for the s econd -o rde r sequence {u } defined above, (3.4). In the m o r e gen-

e r a l c a s e , we get 

S = ~ n 

n+3 n+1 n+2 

n+2 n+1 

L n+1 n - 1 

and the cor responding de te rminan t s a r e 

Sn+3 Sn+1 

n+2 n 

n+1 n - 1 

n+2 

n+4 = R n - 1 s 3 sA s 2 

s 2 s 0 S± 

Matrices can also be used to develop expressions for 

E ^n V ^Jl V ^ 

n! ' JLt n! ' Z-J n! 9 n=0 n=0 n=0 
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by adapting and extending a technique used by Baraka t [1] for the Lucas 
polynomials . 

Le t 

X 

all a12 a13 

a21 a22 a23 

a3I a32 a33 

with a t r ace 

and 

F o r example , 

P = a u + a22 + a33, det X = R , 

Q = y a., a.. - a., a.. , (i ^ j) 

i , j= l 

X = 

"a 0 0" 

0 / 3 0 

0 0 y 

sa t i s f ies the conditions. 

The charac te r i s t i c equation of X is 

A3 - PA2 - Q X - R = 0 

and so , by the Cayley-Hamil ton Theo rem [ 4 ] , 

X3 = P X 2 + QX + RI 

Thus 
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X4 = P X 3 + QX2 + R X 

= (P2 + Q)X2 + (PQ + R)X + P R j : 

and so on, until 

(4.6) X n = J X2 + K X + L I 
~~ n ^ n -̂  n ^ 

Now, the exponential of a m a t r i x X of o r d e r 3 i s defined by the infinite s e r i e s 

(4.7) eS = i + ^ , x + A x + .. 

where I is the unit m a t r i x of o r d e r 3. 
Substitution of (4.6) into (4.7) yields 

(4.8) es = x ^ y j i + xy^ + iy ^ 
^ *—4 n! ~ L^j n! ^L^j n! 

n=0 n=0 n=0 

Sylvester1 s m a t r i x interpolat ion formula [5] gives us 

X _ ^ Al (S - A2D(X - A3I) 
(4"9) 6 " 2 - f 6 (At - A2)(Ai - A3) ' 

Ai 5 A2, A3 

where Ai, A2? A3 a r e the eigenvalues of X. 

Simplification of (4.9) yields 

E {eAjL(A3 - A2)X2 + eXl(A| - A | )X + eAlA2A3(A3 - A 2 > l } 
A|,A2,A3 

(4.10) e - = — — _ _ _ _ _ _ -
(Ai - A2)(A2 - A3) (A3 - Ai) 

By compar ing coefficients of X in (4.8) and (4.10), we get 
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Z e A i (A 3 -A 2 ) 

nT = 

n=0 Ai?xJfA« ^ " X*} 

\T^ Ln 

n=0 

S e X l A2A3(A3 - A2) 

TTcxt - A2) 

The authors hope to develop many o the r p rope r t i e s of t h i r d - o r d e r r e c u r -
rence re l a t ions . 

REFERENCES 
X 

1. R. Baraka t , "The Matr ix Opera to r e and the Lucas P o l y n o m i a l s , " 
Journa l of Mathemat ics and P h y s i c s , Vol. 4 3 , 1964, pp. 332-335. 

2. M. Fe inbe rg , MFibonacci - T r i b o n a c c i , " Fibonacci Quar te r ly , Vol. 1, 

No. 3 , 1963, pp. 71-74. 

3e M. Fe inbe rg , "New S l a n t s , " Fibonacci Quar te r ly , Vol. 2, 1964, pp. 223-

227. 

4. M. C. P e a s e , Methods of Matr ix Algebra , New York, Academic P r e s s , 

1965, p. 141. 
5. H. W. Turnbul l and A. C. Aitken, An Introduction to the Theory of C a n -

onical M a t r i c e s , New York, Dover , 1961, pp. 76, 77. 

6. M. E. Waddill and L. Sacks , "Another General ized Fibonacci Sequence," 

Fibonacci Quar te r ly , Vol. 5, 1967, pp. 209-222. 



146 [Continued from page 134. ] Feb, 1972 

Combining (5.5) with Theorem (4.4) yields 

(5o6^ Theorem. Using concavity as a spy in a modified Fibonacci search is 
the optimal strategy for reducing the interval of uncertainty of concave 
functions. 

6. FINAL-REMARKS 

From the proof of Theorem (5.6), it is apparent that the proposed search 
strategy for concave function is "min sup" rather than Tfmin max.f? In other 
words j the problem is not well set. Indeed, it makes probably more sense 
for concave functions to decrease the uncertainty in the value of the minimum 
than in its location. 

A similar argument as was used for proving (5.5) can be employed to 
show that for each e > 0 and each positive integer k there is a concave 
function for which the reduction of uncertainty by optimal search is improved 
byless than € over unimodal search. In general, however, the improvement 
will be drastic, in particular if the function is well rounded, so to speak, and 
has a maximum in the interior. 
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DETERMINANTS AND IDENTITIES INVOLVING FIBONACCI SQUARES 
MARJORIEBICKWELL 

A. C. Wilcox High School, Santa Clara, California 

Determinants provide an unusual means of discovering identities involv-
ing elements of any Fibonacci sequence. In this paper, a determinant rela-
tionship believed to be new provides the derivation of several series of identi-
ties for Fibonacci sequences. 

1. THE ALTEKNATING LAMBDA NUMBER 

Firs t is displayed the theorem which provides the foundation for what 
follows. Only 3 x 3 determinants are discussed here, but the theorem is 
given in general. 

Theorem. Let A = (a..) and A* = (at.) be n x n matrices such that 

a*. a.. + (~l)i+ jk 

Then 

det A* = det A + k(det C) 

where C = ( c . ) is the (n - 1) x (n - 1) matrix given by 

c . = a.. + a.,- .,- + a.,- . + a. .... . 
i] i] i+l,j-M i+l ,] 1,3+1 

Proof. Successively replace the k column by the sum of the (k-1) 
th and k columns for k = n, n - 1, e e e , 2* Then successively replace the 

k row by the sum of the (k 
The resulting determinant is 
k row by the sum of the (k - 1) and k row for k = n, n - 1, • • *, 2. 

an + k 
a21 + a1A 

a31 + a21 

an + a12 

Gil 

c 21 

at2 + a13 

c i 2 

C22 

147 

= det A + k(det C) 
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by noting that the de te rminan t on the left can be expressed a s the sum of two 

de te rminan t s by spli t t ing the f i r s t column and then r e v e r s i n g the above s teps 

for the de te rminan t which does not contain k in the upper left c o r n e r . 

Specifically, the theorem says that , for n = 3, 

a + k b - k c + k 

d - k e + k f - k 

g + k h - k i + k 

a 

d 

g 

b 

e 

h 

c 

f 

i 

+ k 
a + b + d + e b + c + e + f 

|d + e + g + h e + I + h + i 

Definition, We agree to cal l det C of the theorem the a l ternat ing 

lambda number of A, denoted by X (A). 

The c losely re la ted lambda number of a m a t r i x a r i s i ng with the addition 

of a constant k to each e lement of a m a t r i x has been d i scussed in [ l ] , [ 2 ] , 

and [3 ] . 

As an i l lus t ra t ion of the t heo rem, evaluate det W for 

wn = 

l~L2 

n 
T 2 

Ln+1 
T 2 

L n+2 

Ln+1 
T 2 
Ln+2 
Ln+3 

T 2 
n+2 

T 2 
n+3 

Ln+4 

where each e lement i s the square of a Lucas number L , us ing the usual 
L i = l , L2 = 3 , L i r = L + L ,.,. The value of the analogous de t W* 1 4 n+2 n n+1 & n 
where W* i s formed from W by replac ing L by the Fibonacci number n n J ^ & n J 

F , defined by 
n J 

F j 1 , n+2 n n+1 

has been given in [4] as 2( - l ) n+1 It is not difficult to calcula te X0(W*): 
a n 

Aa(W*) = 
F 2 + F 2

 0 + 2F2 

n+2 n+1 •n+1 + F 2
 n + 2F 2 

n+3 n+2 
•p2 + F 2 + 2F 2 F 2 + F 2 + 2F2 

^ n+1 * n+3 ** n+2 ^n+2 * n+4 ^ n+3 

L 2n+2 L 2n+3 

L 2n+3 L 2n+4 

= 5 

Since 
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5F^ = L^ + (~l)n+14 , 

det(5W*) = detW + (-i)n+149A (5W*) n n a n 
53°2(-l)n+1 = de tW n + (-l)n+14e52*5 

detW = (-l)n2»53 

2. DETERMINANTS INVOLVING SQUARES OF ELEMENTS 
OF ANY FIBONACCI SEQUENCE 

Consider the matrix 

149 

(2,1) A = n 

fH2 
n 

H2 
n+1 

n+2 

H 2 -
n+1 

H2 

n+2 

H2 
n+3 

H2 1 n+2 

n+3 

H2 
n+4 J 

where each element is the square of a member of a Fibonacci sequence { H i 
defined by 

Hi = p5 H2 = q9 H . n — H ,- + H n+2 n+1 n 

Since an identity for such Fibonacci sequences is 

H ^ g = 2H^+2 + 2H£+1 - H^ , 

multiplying each element in columns two and three by (-2) and adding to col-
umn one yields the elements ~H2

 3? " H n+4 9 ~Hn+5# C o l u m n exchanges 
show that 

det A = - det A ,., , n n+1 

so increasing the subscript by one in A only changes the sign of det A , 
and jdet A I is independent of n* It is not difficult (just messy) to evaluate 
det A s then, by picking a value for n, calculating members of {H } in 
terms of p and q9 and using elementary algebia* This method of calcula-
tion for 3 x 3 determinants whose elements are squares of Fibonacci num-
bers was given by Fuchs and Erbacher in [4]. 
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The results are 

(2,2) 
de tA n = 2 ( - i ) V - pq - p2) = 2(-l)nD|J 

Xa(An) = 5(q2 - pq - p2)2 = SD^ 

where JD^I is the characteristic number of the sequence (see [5]). If {H } 
= {F }, the Fibonacci sequence, D^ = -1 and det A = 2(- l ) n 

n r n 
The same method will allow the calculations of the values of several 

other determinants which follow. 

(2.3) detC = n 

[2 H2 

n n+1 
[2 H2 
n+3 n+4 

[2 H2 
n+6 n+7 

X (C ) = 
n n 

n+2 

H2
 n n+5 

H2
 Q 

n+8 
160 D2 

H 

= (-l)n64T>s
u 

Continuing since also 

n+4 n+2 

we obtain (2.4) and (2.5) 

H , A H , 0 — 2H ,oH ,- + 2H , <-» H — H . - H - $ 
- n+3 n+1 n+2 n n+1 n-1 

(2.5) 

de tR = n 

W = 

det S = 

H n + l H n - l 

H n + 3 H n + l 

H n+4 H n+2 
5 D ^ 

H n + l H n - l 
H n+4 H n+2 

H n+7 H n+5 

H ± „ H n+2 n 

H n+4 H n+2 

H n+5 H n+3 

H n + 2 H n 
H n+5 H n+3 

Hn+8 Hn+6 

H n+3 H n+l 

H n+5 H n+3 

H n+6 H n+4| 

H n + 3 H n + l 

H n+6 H n+4 

H n+9 H n+7 

Xa(Sn) = 160 Dfj 

( - l ) n + 1 3 D3 
H 

= ( - l ) n + 1 96D| I 

Since 
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H n = H n + l H n - l + ^ n D H ' 

Equations (2,4) and (2.5) can be obtained in a second way with a min imum of 
effort by using the a l ternat ing lambda number theorem,, F o r example , to find 
(2.5) using (2.3), 

d e t C n = d e t S n + ( - i r D H A a ( C n ) 

64( - l ) n D 3
H = d e t S n + (~lfDE(16QD2

E) 

d e t S = ( ~ l ) n + 1 9 6 D 3 
n ri 

Also s notice that 

W a n 

The identity 

H n + 6 = 8 H n + 4 " 8 H n + 2 + H n 

allows one to use the method of Fuchs and E r b a c h e r to find two m o r e values^ 

(2.6) det B = 
n 

K 
H n + 2 

H n + 4 

H2 
n+2 

H2 
n+4 

H2 , n+6 

H2 
"n+4 

H2 

n+6 
H n+8 

= ( - l ) n 1 8 I ^ ; 

X ( B J = 9 D H [ ( - l ) n 8 H 2 + 1 3 D „ ] 
a n ' H HJ 

(2.7) 

H2 
n 

Hn+6 

H2 
n+12 

n+2 

H2 
n+8 

H2 
n+14 

n+4 

H2 
n+10 

H2 
n+16 

= ( - l ) n 2 1 1 3 3 D | H 

Compare (2.6) with the Fibonacci r e s u l t (18) (-1) as given in [ 6 ] , 

and notice that D3 i s a factor in each de te rminan t value found in this sect ion. 
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In (2.6) and (2.7) the alternating lambda numbers are not independent of 
n and hence are not useful in what follows. The alternating lambda number 
for (2.6) is interesting in that it depends upon the center element of B . 

3. IDENTITIES FOR MEMBERS OF ANY FIBONACCI SEQUENCE \E } 

Before we can continue, we must standardize our sequences. For pur-
poses of forming a Fibonacci sequence. Hi = p and H2 = q are arbitrary 
integers. But surprisingly enough, if enough terms are written, each sequence 
has a subsequence of terms which alternate in sign as well as a subsequence 
in which all terms are of the same sign. Since we want a standard way of 
numbering the terms of these sequences in what follows, when we want the 
characteristic number 

D R = H2 - H2Hi - H? 

to be positive, then we take HQ as the first member of the non-alternating 
subsequence, and H* as the second member. When we want D H < 0, we 
take Hi as the first or third member of the non-alternating subsequence. 
Note that D^ = 5 for {H } = {L } , and D„ = -1 for {H } = {F }. Now H L nJ L n J ' H L nJ L nJ 

we are ready to develop several identities which relate two Fibonacci sequences. 
The identity 

L2 + (~l)n + 14 = 5F2 
n n 

suggests that we seek an identity relating two Fibonacci sequences {H } and 
{G }. Returning to (2.1), form matrix A with elements from {H } and 
matrix A* with elements from {G }. If there exist two integers x and k n n 
such that 

H2 + (- l)n + 1x = kG2 
n ' n 

then the alternating lambda number theorem and (2.2) provide 
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detAn + (-l)n+1xAo(kA* ) = det(kA*) n a n n 
2(-l)nD3I + (-l)n+1x(5k2D2

G) = 2 ( - l ) \ 3 D 3
G 

CD»J - k3DQ)(2) 

5k2 D2 

Ur 

If -kD,-, = DTT9 then x = 4DtT / 5 , Since x must be an integer, DTT must 
(jr H Jti H 

be a multiple of 5* A solution is given by k = 5, D^ = 5(-Dp). Since 5 
and multiples of 5 do occur as characteristic numberss we have 

(3.1) H^ + ( - l ) n + 1 | DH = 5 G£ , 

where {H } has the positive characteristic number D„ and {G } has the 
negative characteristic number D = -D„ / 5 . 

An example of a solution is given by the pairs of sequences 

{ H J = { . . . , 13, - 6 , 7, 1, 8, % - . . } 

and 

{Gn} = {. . . , 5, - 1 , 3, 2", 5, 7, ••• 1 

or their conjugates 

{H*} = {••-, 89 . - 1 , 7, 6, 13, •••} 

and 

{G*} = { • • • , 5, - 2 , 3, 1, 4, 5, . . . } . 

Since D = 55 > 0S set H4 = 1 and HJ = 6, but since D0 = -11 < 0S 

take Gi = 3 and GT = 4. Using {H } and { G J - , notice 
* * n n 

(3.2) H^ + ( - l ) n + 1 44 = 5 ( ? . 

that 
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Also note that 

H + H l 0 = 5G J.i n n+2 n-KL 

and 

G + G .rt -- H ,., » n n+2 n+1 

Above§ {H } and {G } were found by simply referring to a table of 
characteristic numbers. (See [5] and [7].) To write a pair of sequences 
{H } and {G } to satisfy (3.1), let p > 0 be an arbitrary integer. Let z 
be an integer such that 

p =? 2z (mod 5) . 

Then Hj = p and H2 = z gives D„ = 5m for some integer m9 and 

n - 2 z " P n - 2P + z 

5 ^ 5 

gives {G } with Bn = -m. The justification is simple, for if p = 2z (mod 
n vj 

5), then 

D = z2 - pz - p2 = (z - p)(z + p) - pz 

= (5k - z)(3z) - 2z2 = 15 kz - 5z2 s 0 (mod 5) 

The other statements follow by elementary algebra. 
Solutions to (3.1) with D = - D R / 5 for Et = 1, 29 • • • , 79 • • • , ps 

e8° follow. In each case u s t = 0, 1, 2, ••• , 
Two more Identities relating the two Fibonacci sequences {H } and 

{G } just described follow, 

The identity 

L L J 0 + ( - l ) n + 1 = 5 F 2 , n n+2 ' n-1 
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D H 

25t(t -

25t2 

25t(t -

25t2 

25t(t -

25t2 

25t(t -

1) + 

- 5 

1) -

- 20 

1) -

- 45 

1) -

5 

5 

25 

55 

{H } 
nJ 

(Hi, H2) 

(1 , - 2 + 5t) 

(2, 1 + 5t) 

(3, - 1 + 5t) 

(4f 2 + 5t) 

(5, 5t) 

(6, 3 + 5t) 

(7, 1 + 5t) 

{G } nJ 

(Gjs G2) 

(2t - 1 , t) 

(2t, 1 + t) 

(2t - 1, 1 + t) 

(2t, 2 + t) 

(2t - 1, 2 + t) 

(2t, 3 + t) 

(2t - 1, 3 + t) 

25t2 - 5u2 (2u, u + 5t) (2t, u + t) 

25t(t - 1) - 5(u2-+ u - 1) (2u + 1, u + 5t - 2) (2t - 1, u + t) 

suggests searching for an identity of the form 

HnHn+2 + ( - 1 ) n + l x = k G n + l 

The alternating lambda number theorem, (2.2) and (2.4) give 

det H + (- l)n + 1x A (kA* ) = det (kA* ) 
n a n n~rx 

3(-l)n + 2Djj + (~l)n+1x(5k2*D2
G) = 2(-l)n+1k»D», 

2k3D^ + 3D3 

Ur JH. 
X = — — — — 

5k2-D^, 
If kD^ = D^j then x = D„ , and we have the known identity 

G H xl 

<3'3> H n H n + 2 + < - « n + l n H = Hn+1 • 
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If kDG = - D J J , then x = D» / 5 . Again let k = 5 since D H must be a 
multiple of 5, yielding 

(3-4) Vn-KJ + ( " 1 ) n + 1 V B " 6tfn+l ' 

where the characteristic number of { G } is »D„ / 5 . 
n H 

A final derivation is suggested by the identity 

L2 + ( - l ) n = 5F ^ F - . n n+1 n-1 

Proceeding as before using (2.2) and (2.4), 

Hn + <-»** = k G n + l G n - l 
detA + (-l)nxA (kR ) = det (kR ) 

n a n n 
2(-l)nD3 + (-l)nx(5k2D2 ) = (_l)n+13k3DS 

JH. Ur Ur 

-3k3D3 - 2D3 

Ur Jti 
X = — — — • 

5k2 D2 

If Du = -kD^, then x = DTT / 5 , and if k = 5, we have 
II Ur H 

(3.5) H^ + ( -Dn D H / 5 = S G ^ G ^ . 

where again D^ = -D„ / 5 . If D„ = kD^, then x = ~DH, and taking k = 
1 gives the known identity 

H2 + ( - l ) n + 1 D„ = H ^-H - , 
n H n+1 n-1 

which is the same as (3.3). 
The possibilities are by no means exhausted by this paper. 
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[Continued on page 184.] 



A GENERATING FUNCTION FOR PARTLY ORDERED PARTITIONS 
LCARLITZ* 

Duke University, Durham, North Carolina 

1. In a recent paper [ l ] , Cadogan has discussed the function 0.(n) 
which satisfies the recurrence 

(1) 0k(n) = 0k(n - 1) + 0k_1(n - 1) (n > k ^ 1) 

together with 

(2) <Mn) = pta) 

and 

(3) 0fe(k) = 2k~X (k ^ 1) . 

As usual p(n) denotes the number of unrestricted partitions of ns so that 

00 

(4) ]Cp ( n ) x I 1 = T l ( i -xI1) 

n=0 

The object of the present note is to obtain a generating function for 
0k(n)9 Put 

*kw = Z A ( n ) x n •• ' k v 

n=k 

n k 
®{x$j) = y ^ ^ k ( x ) y k = ^ 0 k (n )x n y 

k=0 n,k=0 

*Supported in part by NSF Grant GP-17031 

157 
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Then, by (1) and (3), we have 

OO 

<Dk(x) = 2 k _ 1 x k + Y^ ^ k
( n " 1] + \-l(n " 1)}Kn 

n=k+l 

OO OO 

= 2k-1 xk + x^* k (x n )x n
 + «2*k-lW x n 

n=k n=k 

= 2 k ~ 1 x k + xd^(x) + xct>k_1(x) - 0k_1(k - l )x k , 

so that 

(5) 

(6) 

(1 - x)*j(x) = x#o(x) , 

(1 - x)<t»k(x) = 2 k _ 2 x k = x<t>k_1(x) 

It follows that 

(k >1) 

*(x,y) = 4>0(x) + ^(xjy + ^ * k ( x ) yk 

k=2 

OO 

= *0w + j ^ *0w + r ^ r S { 2 k " 2 x k + x * k _ i ( x ) > y k 
k=2 

= «W + W~-•*£ - xy) + T^x «*«'*> ' 

We have therefore 

(1 - x)(t>0(x) x 2 y 2 

®&>y) = l _ x - xy" + (1 - x - xy)(l - 2xy) 
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2. By means of (7) we can obtain an explicit formula for <J>, (x). Since 

1 - x = / i _ xy \ 
1 - x - x y ^ 1 - x J 

-1 _ y xkyk 

and 

r r 
(1 - x - xy)(l - 2xy) £^ ( __ a 

r=0 ; s=0 
i f e - * ^ / I ^ r \ r + ^ ^Lrn^i 

ZLJX y Z-# 

k . 
2 k " r 

I A A ( 1 ™ X ) 

k=0 r=0 

it follows that 

k t ^ 9k-r-2 k 

Moreover, since 

<i-)r+1 n (
r: °y 

Eq. (8) implies 

« • k w-E( k t r 1 ) * - ' - - *£*~ a ( - " ' k + r ) 
r=0 r=0 

(k > 2 ) 

For k = 1, we have 
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n-1 

(10) 0:l(n) = ^T P(n - r) 
r=0 

as is evident from (5)8 

Replacing k by n - k in (9) we get 

n-k-2 
(11) 

r=0 " ' r=0 

K n-k-2 
rk t„\ \ " ^ / n - k + r - l \ ,. x , V^ 0n-k-r-2/k + r\ *n-kW = Z^V r ) p ( k - r ) + L, 2 ( r J 

(n s> k + 2) 

Cadogan [1] has derived the formula 

r=3 N ' r=0 x 

(12) 

= g /» - k + r - l)p ( k _ r) + W k + r - sWl 
r=0 r=0 ^ 

(3 < k < n, n ^ 4) 

To show that (11) and (12) are in agreement, it suffices to verify that 

n-k-2 
V ^ n - k - r - 2 / k + r \ 

r=0 

n-k-1 

(13, -2'^"1(k+r,)-(V)-(E:;)-'(l:a') 
r=0 

n-k-2 
-£*> 4 ~«( k + r - , ) - ("; , ) - , ( - i ' ) - 4 ( - i> 

r _ 0 (n a k + 2) 

Since 
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n-k-2 
161 

y ^ xn"k~2 y ^ 2n~k~2 > 2fk + r^ 
i=k+2 r=0 

oo oo 

= ^ ( k ; r ) x r ^ 2 n x n 

r=0 ^ ' n=0 (1 - x)k+1(l - 2x) 

and 

oo in—k~2 

Zfk"2 J E *"k-in ( k + r j - f ; 2 ) - »(E : i) -«(J: J) 
(1 - x) k _ 2 ( l - 2x) (1 - x ) k + 1 (1 - x)k (1 - x ) k _ 1 

(1 - x)k + 1( l - 2x) 

it is evident that (13) holds 
3. Put 

•^ = XA ( n ) y k ' 

so that 

k=G 

*o(y) = 1» *i(y> = 1 + y. ^2(y) = 2 + 2 y + 2y2 

Then by (1) and (3), for n > 29 

n-1 
i//n(y) = P(n) + £ } {^(n - 1) + ^ ( n - D}y k + 211"1 y11 

k=l 

= p(n) + ^ n - 1 ( y ) - p(n - 1)) + y G / ^ t y ) - 2n""2y11"1) + 2 n ^ y11 
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(14) ^ ( y ) = p(n) - p(n - 1) + (1 + y J ^ C y ) + 2 n " 2 y11 (n s= 2). 

F o r example! 

^2(y) = 1 + (l + y)2 + y2 = 2 + 2y + 2y2 

t/i3(y) = 1 + (1 + y)(2 + 2y + 2y2) + 2V3 

= 3 + 4y + 4y2 + 4y3 

It i s also evident from (14) that 

(15) ifjn(l) = p(n) - p(n - 1) + 2 n ~ 2 + 2 ^ n - 1 ( y ) (n ^ 2) 

and 

(16) ^ ( - 1 ) = p(n) - p(n - 1) + ( - l ) n 2 n " 2 (n > 2) . 

The l a s t two formulas a r e also Implied by (7). 

REFERENCE 

1. C. C* Cadogang
 f?On P a r t l y Orde red Pa r t i t i ons of a Pos i t ive In teger , " 
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FIBONACCI PRIMITIVE ROOTS 
DAWiELSHAWKS 

Computation and Mathematics Dept, Wavat Ship R & 0 Center, Washington, D. C. 

1. INTEODUCTION 

A p r i m e p p o s s e s s e s a Fibonacci P r imi t ive Root g if g i s a p r i m i -

tive root of p and if i t sa t i s f ies 

(1) g2 = g + 1 (mod p) . 

It i s obvious that if (1) holds then so do 

(2) g3 = g2 + g (mod p) , 

(3) g4 = g3 + g2 (mod p) , 

e tc . 
F o r example j g = 8 is one of the four pr imi t ive roo t s of p = 11 (the 

o the r s being 29 65 7), and g = 8 (only) sa t i s f ies (1). Thus s i t s powers 8 

(mod 11) a r e 

1, 85 95 6, 45 10, • - • (mod 11) 

and m a y be computed not only by 

9 = 82
? 6 = 9-8, 4 = 9»8? • • • (mod 11) , 

but a lso 5 m o r e s imply , by 

9 = 8 + 1, 6 = 9 + 85 4 = 6 + 9, • • • (mod 11) . 

Thus the name: Fibonacci P r imi t i ve Root. 
The brief Table 1 shows eve ry p < 200 that has an F . P . R. , and eve ry 

such g satisfying 0 < g < p that i t p o s s e s s e s . By incomplete induction (a 

163 
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E_ 
5 

11 

19 

31 

41 

59 

61 

g 
3 

8 

15 

13 

7, 35 

34 

18, 44 

TABLE 1 

P 
71 

79 

109 

131 

149 

179 

191 

g 
63 

30 

11, 99 

120 

41, 109 

105 

89 

fine old expression seldom used these days), we observe the following prop-
ert ies , all of which are easily proved in the next section. 

A9 Except for the singular p = 5, all p having an F. P. R. are = ±1 
(mod 10). 

B. But not all p = ±1 (mod 10) have an F. P.R. , since, e. g. , p = 29 
and 101 do not. 

C. Except for the singular p = 5, the number of g in 0 < g < p, if 
any, is 1 or 2 according as p = -1 or +1 (mod 4). 

D. In the latter case, the two g satisfy 

(4) g l + g2 = p + 1 . 

2. ELEMENTARY PROPERTIES 

The solutions of (1) are 

(5) g = (1 ± N/5")2_1 (mod p) 

and therefore exist if, and only if, p = 5, g = 3, or p = 10k ± 1, since 
only these p have 5 as a quadratic residue., This proves A. For p = 2 9 , 
the two solutions of (1) are g = 6 and 24, but since these are also quad-
ratic residues of 29, they cannot be primitive roots, thus proving B. The 
product of the two solutions (5) is given by 
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(6) gAg2 - -1 (mod p) . 

Thus 9 if p = -1 (mod 4), one g is a quadratic residue and one g is not 
There can, therefore, then be at most one F. P. R9 On the other hand, for 
p = +1 (mod 4), consider 

g2 = -gi™1 • 

If gi is primitive, and g2 is of order m, then 

gi s (-1) . 

Therefore, m is even, and so g2 is primitive also. Thus, gA and g2 are 
both primitive, or neither is. This completes C„ Finally, 

(7) gA + g2 = 1 (mod p) 

and (4) follows from 0 < g < pe 

3. THE ASYMPTOTIC DENSITY 

Let F(x) be the number of primes p ^ x having an F* P. R. (We do 
not distinguish in this count whether p has one or two*) Then with TT(X) being 
the total number of primes ^x, we 

Conjecture: As x->oo, 

(8) ^ H - - -^~~ = 0,2657054465 ••• , 

where 

00 

(9) A = M f1 - „ / * ix ) = 0.3739558136 : IJ i1 - F^T)) 
is Artin?s constants 
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Ar t in or iginal ly conjectured, cf. [ 1 ] , [2, page 81] that if v (x) i s the 

number of p ^ x having a a s a pr imi t ive root , and if 

a $ b n (n > 1) , 

then 

v (x) 
(10) - * ~~ A . 

77 (X) 

Subsequently, [3] i t was found that the heur i s t i c a rgument was faulty for a = 

5, - 3 , and infinitely many o ther a but i t was st i l l considered reasonable for 

a = 2, 3 , 6, 7, 10, e tc . Both heur i s t i ca l ly and empi r i ca l ly , Eqe (10) s e e m s 

c o r r e c t for these a, and Hooley [4] r ecen t ly proved that (10) i s then t rue 

provided one a s s u m e s a sufficient number of Riemann Hypotheses . 

The heur i s t i c a rgument for (8) i s s i m i l a r to that which leads to (10), 

but we mus t modify two of the fac tors in (9). Cons ider the p r i m e s in the 

eight res idue c l a s s e s 

20k + 1, 3 , 7, 9, 1 1 , 13 , 17, 19 . 

Those in 20k + 3, 7, 13 , 17 cannot have an F . P . R. F o r those in 20k + 1 1 , 

19 the factor 

1 2(2 - 1) 

in (9) must be deleted. This represented the probability that a i s not a quad-
ratic residue and therefore could be a primitive root. But for 20k + 11 , 19, 
one of gj and g2 must always be a quadratic nonresidue as we have shown 
with (6). The factor 

1 1 
1 - 5(5 - 1) 
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In (9) represented the probability that a Is not a quintic residue and therefore 
could be a primitive root For 20k + 9, 19 p has no quintic residues since 
these p are not = 1 (mod 5), and so this factor is deleted* For 20k + 1, 
11, p is always = 1 (mod 5), and the factor must be changed to 

1 
5 " 

Therefore, the expected density of p in these eight residue classes 
having an F. P. R. is the following: 

20k + 1 

20k + 3 

20k + 7 

20k + 9 

16A/19 

0 

0 

20A/19 

20k + 11 

20k + 13 

20k + 17 

20k + 19 

32A/19 

0 

0 

40A/19 

As x-> QO , the eight classes of primes are equlnumerous, and so (8) follows 
from this table by averaging these densities* On the other hand, it is known 
that the number of primes in 

20k + 1, 20k + 9 

will generally lag somewhat behind the other six classes since 1 and 9 are 
quadratic residues of 20, cf. [5]. We therefore expect that the convergence 
of F(x)/7T(x) to 27A/38 will be mostly from above. 

The empirical facts are given in Table 2* 

X 

500 

1000 
1500 
2000 
2500 

F(x) 

31 
46 

66 

81 

97 

TABLE 2 

95 

168 

239 

303 

367 

F(X)/TT(X) 

0.3263 
0.2738 
0.2762 
0,2673 
0e2643 
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This s e e m s thoroughly sa t i s fac tory , 

It s e e m s l ikely that one could t r a n s c r i b e Hooley?s theory [ 4 ] to the 

p r e sen t var ian t , and thereby prove (8), assuming a sufficient number of 

Riemann Hypotheses. But the theory in [ 4 ] i s by no means s imple , and th is 

t r anscr ip t ion has not been at tempted so far. 

4. SEVERAL REFERENCES 

Inclos ing , we indicate th ree r e f e r ences re la ted to the concept developed 

h e r e . The idea for a Fibonacci P r imi t i ve Root was suggested by E x e r c i s e 158 

in [2, page 206] . It i s shown the re that if g i s any pr imi t ive root of any 

p r i m e p3 the sequence of f i r s t differences 

(11) g n - g n (mod p) 

i s the same a s the sequence 

(12) g n " d (mod p) 

for some fixed d isp lacement d. If, now, one h a s the f i r s t d powers of g: 

one can obtain all fur ther powers additively from (11). Our const ruct ion he re 

forces d = 1 and therefore allows this additive computation ab initio. 

In [ 6 ] , W. Schooling gives a cur ious method of computing logar i thms 

based on the fact that all powers of 

<p = (1 + \ / l}) /2 

can be computed additively: 

cp2 = cp + 1 , 

cp* = cp2 + cp , 

[Continued on page 181. ] 



AN INTERESTING SEQUENCE OF NUMBERS 
DERIVED FROM VARIOUS GENERATING FUNCTIONS 

PAULS.BRUCKIViAW 
San Rafael, California 

The following development, to the best of the author's knowledge, is 
new. At any rate, it is original and very interestinga We begin by defining 
the function 

(1) f(x) = 1/(1 - x) sjTTx . 

This may be thought of as the generating function of a power series in 
x, whose coefficients we are to determine. Thus, we seek the values of the 
coefficients A. , where k 

(2) ^y = 2 \ x i k 
A, X 

k 
k=0 

That this representation is valid may be seen by observing that f(x) is 
-1 -̂  

expressible as the product of the two functions (1 - x) and (1 + x) 2, each 
of which is of the same form as (2).' In fact, 

k
 k (3) (1 - X)"1 = £ x k , and (1 + x ) ^ = ^(fjU) * 

k=0 k=0X 

Therefore, it follows that 

(4) Ak 

1=0 

From the foregoing expression for A, , it is evident that 

169 
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\ - v i • (?) (4) • An = 1 

Recurs ion (5) may be expressed in the form 

(6) A = A l k - 1 / 2 k - 2 \ / l \ k _ 1 

W A k A k - 1 2k \ k - l ) \ 4 j 

If, in r ecu r s ion (6), we multiply throughout by (2k)/2k - 1, and if, in 

r ecu r s ion (5), we rep lace the subscr ip t k by k - 1, we may add the two r e -

su l t s , thereby el iminat ing the factor ial t e rm. Upon simplif icat ion, this p r o -

c e s s yie lds the following r e c u r s i o n , which involves th ree success ive values 

of A, : 

(7) 2 k A k = A k _ x + (2k - l ) A k _ 2 . 

This i s valid for k = 2, 3, 4 , • • • , and if we affix the values A0 = 1 and 

Aj = \ , we have fully cha rac t e r i zed the coefficients A, . 

We shall now define the sequence of number s B, , such that for each 

non-negative in teger k, 

(8) B k = 2 k . k! . A k . 

Substituting this definition in r ecu r s ion (7), 

2 k ' B k „ B k - 1 , ( 2 k - 1 ) B k - 2 m 

2 k • k! 2 k " 1 (k - 1)1 2 k " 2 (k - 2)! 

k -1 If we mult iply this r e su l t throughout by 2 • (k - 1)! , we obtain: 

(9) B k = B k _ x + (2k - l)(2k - 2 ) B k _ 2 . 

Recurs ion (9), plus the initial conditions B0 = BA = 1, completely 

cha rac t e r i z e the coefficients B. . F u r t h e r m o r e , from (9), it i s evident that 

all the B, Ts a r e in tegers . Upon application of (9), for the f i r s t few values 

of k, we obtain the following va lues : 



1972] FROM VARIOUS GENERATING FUNCTIONS 171 

B0 = B! = 1, B2 = 7, B3 = 27 , 

B4 = 321, B5 = 2,265, B6 = 37,575, B7 = 390,915 , 

etc. We may summarize the results thus far derived in the following form: 

_ k 
(10) f(2x) = 1/(1 - 2x) sjl + 2x = 2 J \ £T > 

k=0 

where 

B k = 2 k . k '£(")# 
What struck the author as interesting was the fact that the sequence of 

numbers B, appears in other power ser ies , derived from generating func-
tions of totally different form from (10). 

Specifically, we will demonstrate that 

(11) 

and 

(12) 

g(x) 

h(x) = 

X 
= e 

= tan 

0 

-v-vi • 

du 

- x2 = 

oo 

= E B k 
k=0 

OO 

E (Bk)2 

k=0 

2k+l 
X 

(2k + 1)! J 

2k+l 
X 

(2k + 1)! 

Let y = g(x). If we differentiate y, as defined in (11), 

x 
x2/2 -x2 ^ x2/2 f -u2 , -x2/2 ^ 

yT = e • e + xe I e du = e + x y 

Differentiating again, we obtain 
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-x 2 /2 , . , - x 2 / 2 , -x 2 /2 , 2 , /i , 2\ 
y" = - x e + xyf + y = -xe + xe + x^y + y = (1 + x*)y. 

Next, we observe that g(x) is an odd function of x. This is demon-
strated by replacing x with -x and the dummy variable u with -u in (11), 
which yields g(-x) = -g(x). 

Therefore, g(x) may be expressed in the form 

£ 2k+l r. x k 
k=0 

Negative powers of x are excluded, for otherwise g(x) would be discontin-
uous at x = 0, along with the first and higher order derivatives. However, 
it is readily seen that g(0) = 0 , gT(0) = 1, and g!(0) = 0. 

We will use these conditions to develop a recursion involving the coef-
ficients r, . If we differentiate the series expression for g(x), 

as) g'(x) = j ^ ( 2 k + 1 ) \ x 2 k ' gn^x) = X2k(2k + i ) rkx 2 k"1 • 
k=0 k=l 

We use the differential equation yfT = (1 +x2)y derived above, which 
becomes transformed to the following relationship: 

(14) 2 < * + 2)(2k + 3 ) r k + 1 x 2 k + 1 = £ r k x 2 k + 1
 + £ r ^ * 2 " * 1 

k=0 k=0 k=l 

If we equate the coefficients of similar powers of x, we obtain: 

(15) r0 = 6r l 5 (2k + 2)(2k + 3) r k + 1 = rR + r k _ r if k = 1 ,2 ,3 ,— 

Using the condition gf(0) = 1 , we see that r0 = 1, and therefore, 

1 
r* = 6 * 
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We now define the sequence of number s R, such that , for eve ry non-negat ive 

in teger k, R^ = (2k + 1)! r, . Substituting this definition in r ecu r s ion (15), 

and multiplying throughout by (2k + l)f„, we obtain: 

(16) R k + 1 = R k + 2k(2k + l ) R k ; also5 R0 = Rt = 1 . 

But if we rep lace k by k - 1 in (16), we obtain p rec i s e ly the same r e -

curs ion a s (9). Since the init ial values of R, a r e identical to those of B, , 

we conclude that R, = B, for all va lues of k, and the validi ty of (11) is 

es tabl ished, 

The proof of (12) i s s i m i l a r , though somewhat m o r e complicated. We 

begin by squar ing both s ides of (9), and solving for B, _1 B, _~ : 

_ B*. - B2
k_± - (2k - l)2(2k - 2 ) 2 B | ._ 2 

( 1 7 ) B k - l B k - 2 = — ~ ~ " 2 ( 2 k - l)(2k ^W " 

Next, we may mult iply (9) throughout by B. - , obtaining 

( 1 8 ) B k B k - l = B k - 1 + ( 2 k " 1 ) ( 2 k " 2 ) B k - l B k - 2 • 

If, in (18), we subst i tute the express ion der ived in (17) for B ^ _ 1 B, ~, 

and the cor responding express ion for B, B, - obtained by inc reas ing the 

subsc r ip t from k - 1 to k, we a r r i v e at a r ecu r s ion which involves only the 

s q u a r e s of success ive B. fs* Upon simplif icat ion, this becomes 

B k+1 = ( 4 k 2 + 2 k + 1 ) ( B k + 2 k ( 2 k + 1 ) B k - l ) 

( 1 9 ) - (2k - 2)2(2k - l)22k(2k + D B £ _ 2 . 

Next, we observe that h(x) i s an odd function of x , continuous a t x = 

09 The re fo re , a s before , h(x) may be exp res sed in the form 

2 k̂ 
k=0 

2k+l 
Si X 
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As before, we will develop a recursion involving the s, f s . If we let 
z = h(x)9 as defined in (12), we differentiate as follows: 

+ - * * . , _ (1 - x2)2 • (l + x 2 ) " 1 + x t a n ^ x - (1 - x2)"^ _ (1 - x2) ^ 
Z — ' — ——————— 

1 - X2 1 + X2 1 - X2 

Differentiating again, 

.. _ x(l + x2)(l - x 2 ) " 3 / 2 - 2x(l - x2)"2
 A (1 - x2)(xz' + z) + 2x2z 

(1 + x2)2 (1 - x2)2 

From the first differentiation, 

(1 - X 2 )" 2 = (1 + X2 {' - r^) • 
Substituting this result in the second differentiation, we eliminate all irrational 
functions of x, and upon simplifying the result: 

(20) (1 + x2)(l - x2)2z" + 4x3(x2 - l)z» + (2x4 - 3x2 - 1) z = 0 . 

In the series expression for h(x), there will be no loss in generality 
if we make the substitution s, = S, + (2k + 1)1. Then 

V \ J W V **V 

% x 2 k + 1 x 2 k x 2 k + 1 

Z-J sk (2k + i ) i ' zf = zJ sk Wn 5 z" = S sk+i WTTy.' 
k=0 k=0 k=0 

Each term in differential equation (20) may be expressed in series form 
by means of the latter expressions. Using the method of equating coefficients 
(the development is omitted here, in the interest of brevity), we arrive at the 
following recursion: 

(21) S k + 1 = (4k2 + 2k + l )Sk + 2k(2k + l)(4k2 + 2k + D S ^ 
- 2k(2k + l)(2k - l)2(2k - 2)2Sk_2 
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valid for k = 0, 1, 2, 3, 8 0 e„ But this recursion is of the same form as 
(19) 9 and becomes identical to it if S. = B? for all non-negative values of k. 
It remains to show that such is the case for the initial values, where k = 0 
and 1. We observe that h(0) = 0, and from the first-order differential equa-
tion, h!(0) = 1. But we see from the series expression for z? that hT(0) = 
S0 = 1. From (21), we readily obtain the values St = 1, S2 = 49, S3 = 729, 
etc. This establishes the truth of (12). 

We have overlooked the question of convergence in the manipulation of 
the foregoing infinite series* A more rigorous treatment would only have 
served to detract interest from the remarkable properties of these series 
which link them together,, It may be demonstrated, however, that f(x) and 
h(x) are convergent within the interval (-1,1), excluding the end points; 
g(x) converges for all real values of x. 

The purpose of this paper was to demonstrate the validity of (10), (11) 
and (12). Now that this has been accomplished. It would be desirable to de-
duce some properties for the coefficients B. . The remaining portion is de-
voted to the derivation of several such properties and relationships. 

We begin by noting that g(x) and h(x) are expressible as the products 
of two functions, as is the case with f(x). By application of Maclaurin?s 
formula, 

e 
?/« 2k r 2 i 2 k + l 

x 2 / 2 _ ^ x _ , f -u* = v 1 /_i^k * / e ^ d u ^ W ) 1 

— A-f ' J ^ (2k + 1)k! 

k=o 2 ke i k=o 
Multiplying these two series term-by-term, we obtain: 

^ = E k 
k=0 

2k+l c. x 

where 

k 
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But, as we have already shown9 c, = B, + (2k + 1)1. Therefore, we 
are led to an alternate expression for B, : 

k 
(99) T* - ( 2 k + 1 ) l V (k\ (-2^ 
(22) Bk ~ - T k - ~ 2 * I i)(2TTTy • 

z . R. k=:Q / 

In a similar fashion, we may derive an expression for B? by using the 
component functions of h(x): 

tan" 

(1 -

-1 
X 

X 2 ) 

k=0 

4 = -

(-D 

OO 

PA 

. 2k+l k x 
2k + 1 ; 

'ikVx/2)2k 

k=o 

Therefore, 

2k+l a, x k 
k=0 

h(x) = S dk X 

where 

\ - £ -^ » M k Z-* 2k - 2i + 1 02i 
i=0 2 

But, since d, = B? + (2k + l ) t , we are led to the expression: 

(23) Bg. = (-l)k(2k l}' Z-r V i J2k - 2i + 1 
i=0 
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We may also express each B k in the form of a definite integral as 
follows: 

First , we define the polynomial P.(x) by the following summation: 

^ pk<x> = E l-jtywTI 

If we differentiate 9 

£ M>'(i)*2' P^(x) = ^ ' ' - * ' - i - 2 i 

i=0 

But the latter expression is equivalent to the binomial expansion for (1 -x 2 ) . 
Noting that P, (0) = 09 we may integrate and obtain: 

x , 
(25) Pk(x) = J (1 - u2)Kdu 

Next 9 we observe that 

Pk0s/2") = ^ 2 /L/\ i I 2i • + 1 
i=0 X / 

Comparing this with the expression for B, in (22), we obtain: 

(26) Bk -&JJX f ( l - u ^ d u . 

Next, we prove the following property: 
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(27) B, is divisible by -i-222i , where m is the greatest integer in A[k + 1). 
K 2mml 

If we multiply (5) throughout by 2 k! and apply relation (8), we obtain 
the recursion 

(28) B k = 2kBk_x + ( - l ) k - & = 2 k B
k „ i + (-l)k(l»3-5 (2k - 1)) . 

Li K-a 

Recursion (28) may be expressed in the following alternative forms, de-
pending on whether k is even or odd: 

(28a) B 2 m = 4 m B 2 m 4 + 1-3-5 (4m - 1) 

(28b) B
2 m + 1 = (4m + 2 )B 2 m - 1.3-5. . . . . (4m + 1) . 

We may now prove (27) by induction. Let us first assume that (27) is 
true for k = 2m, i .e . , B2 is divisible by 1-3-5 (2m - 1). Then, 
by (28b), B 2 +- is divisible by 1.3-5 (2m + 1). But this is equivalent 
to the assertion of (27), where k = 2m + 1. Now, if we replace m by m + 1 
in (28a), we see that B„ + 2 is also divisible by ls3.5« • • • • (2m + 1). This, 
in turn, is equivalent to the assertion of (27), where k = 2m + 2. This e s -
tablishes the inductive chain. Since (27) is true for k = 0, it is therefore 
true for all values of k. 

The readers are invited to discover any other properties of the sequence 
B, which they feel might be of interest. It is the belief of the author that a 
deeper analysis of this series of numbers, though perhaps not of any lasting 
value, might be a source of recreation for those who derive pleasure from 
such studies. 

APPENDIX 
DERIVATION OF EQUATION (21) 

In addition to the series expressions for the derivatives of h(x), we 
will need the following expressions: 



1972] FROM VARIOUS OPERATING FUNCTIONS 179 
OO 

2k+l x2z = E \-i^ + !)(2) m (2k + 1): 
k=l 

^ = E sk_2
(2k + 1)(4) m 

2k+l 

(2k + 1)! 
k=2 

2k-KL 

** = E w* + D ( 3 ) ^ ^ 
k=l 

_ /Rv 2k+l 
c5z» = V s . 0(2k + l ) l 5 ) - ^ k - 2 v " ' (2k + 1)1 

k=2 

_ . , . 2k+l 

k=l 

*4z" = E w 2 k +1)(4) w?ij! 
k=2 

_ (ft. 2k+l 
x6z" = S sk-2<2k + 1)(} wnyr • 

k=3 

(r) In the foregoing, the symbol (2k + 1) r e p r e s e n t s 

(2k + l)(2k)(2k ~ l)(2k - 2) . - (2k + 1 - (r - 1)) = ^ ^ ^ r ) , 

Equation (20) m a y be exp res sed in the following manner : 

(1 - x2 - x4 - x 6 ) z " + (4x5 - 4x3)z ' + (2x4 - 3x2 - l ) z . = 0 .. 
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Substituting the previous exp re s s ions in the l a t t e r equation, we obtain: 

_ x
2 k + 1 ^ -* (2) 2 k + 1 

*-** Sk+1 (2k + 1)! ~ Z J S k ( 2 k + 1] (2k + 1)1' 
k=0 k=l 

2k+l , ... 2k+l 
My) x £ sk_l(2k + i)W jjrTTSi + E W 2 k + 1)( W+TJ! 

k=2 k=3 

,.v 2k+l , , 2k+l 
+ E 4W2 k + «(6) jfcnp. ~ E 4sk-i(2k +1)(} Tsmjr 

k=2 k=l 

V ^ (4) x 2 k + 1 ^ > (2) x 2 k + 1 

+ E 2Sk-2(2k + « W (2TTTP. " E 3Sk-i(2k + X) T^TTJi 
k=2 k=l 

" 2 k + l 

- Es- x k (2k + 1)1 
k=0 

If we equate l ike coefficients, we obtain the following r e c u r s i o n s : 

SA - S0 = 0; S2 - 6Si » 24S 0 - 18S0 » Si = 0; 

S3 - 20 S2 - 120 Si + 480 S0 - 240 Si + 240 S0 - 60 ^ - S2 = 0 ; 

if k = 3 , 4 , 5, • • • , 

S k + 1 - (2k(2k + 1) + l ) S k - 2k(2k + D Q ^ ^ ! 

+ (2k + l ) ( 4 ) ( (2k - 3)(2k - 4) + 4(2k - 3) + 2)SR_2 = 0 , 

where 

Qk = (2k - l )(2k - 2) + 4(2k - 1) + 3 . 

Upon simplif icat ion, these r e s u l t s become: 
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(21) S k + 1 = (4k2 + 2k + l ) S k + 2k(2k + l)(4k2 + 2k + l ) S k _ 1 

- 2k(2k + l)(2k - I)2(2k - 2 ) 2 S k _ 2 , 

balid for k = 0, 1, 2 , 8 o e . 

[Continued from page 168. ] 
FIBONACCI PRIMITIVE ROOTS 

e tc . Of c o u r s e ? that i s (abstractly) the s ame thing we a r e doing in (2), (3)B 

In [ 7 ] , E m m a L e h m e r examines the quadrat ic c h a r a c t e r of 

0 = (1 •+ \ / 5 ) / 2 (modp) . 

If 6 i s a quadrat ic res idue of p , but not a h igher power r e s idue , then all 

quadrat ic r e s idues can be genera ted by addition. In our cons t ruc t ion , 9 i s 

a p r imi t ive root and gene ra t e s the quadrat ic nonres idues a lso . 
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TABLE OF INDICES WITH A FIBONACCI RELATION 
BROTHER ALFRED BROUSSEAU 

St Mary's College, California 

In preparing tables of residues for indices of primitive roots the follow-
ing situation was noted for the modulus 109. The primitive root5 11, has 
residues as shown corresponding to indices as given on the borders of the 
table. Thus the residue of 11 to the index 82 is 36. 

RESIDUES OF POWERS OF 11 MODULO 109 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

94 

7 

4 

49 

28 

16 

87 

3 

64 

21 

1 

11 

53 

77 

44 

103 

90 

67 

85 

33 

50 

13 

2 

12 

38 

84 

48 

43 

9 

83 

63 

36 

5 

34 

3 

23 

91 

52 

92 

37 

99 

41 

39 

69 

55 

47 

4 

35 

20 

27 

31 

80 

108 

15 

102 

105 

60 

81 

5 

58 

2 

79 

14 

8 

98 

56 

32 

65 

6 

19 

6 

93 

22 

106 

45 

88 

97 

71 

25 

61 
66 

100 

7 

42 

24 

76 

59 

96 

86 

18 

57 

17 

72 

10 

8 

26 

46 

73 

104 

75 

74 

89 

82 

78 

29 

1 

9 

68 

70 

40 

54 

62 

51 

107 

30 

95 

101 

It is noteworthy from the early entries of the table that each succeeding entry 
is the sum of the two that precede it. This relation can be verified for the 
entire table if the sums are taken modulo 109. Clearly this is an unusual sit-
uation for a table of this kind. The questions that come to mind are: Is this 
something very extraordinary? Under what conditions does a table of this 
type have this Fibonacci property? 

Since the entries in the table are residues of successive powers of some 

quantity x, the conditions that must be fulfilled are two: (1) x must satisfy 

the relation 

182 
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n+1 n , n-1 , . x 

x = x + x (mod p) 

or what is equivalent presuming that (x,p) = 1 as must be the case for a 
primitive root5 

x2 s x + 1 (mod p) 

(2) x must be a primitive root modulo p. 
The first condition leads to the congruence 

(2x - I)2 = 5 (mod p) 

so that a necessary condition is that 5 be a quadratic residue of p. This 
means that p is a prime of the form lOn ± 1. The solutions of this quad-
ratic congruence for primes of this type fulfill the first requirement. It is 
necessary, however, to determine whether they are primitive roots, 

The results of this investigation for primes of the required form up to 
300 are shown in the table below. 

RIME 

11 

19 

29 

31 

41 

59 

61 

71 

79 

89 

101 

109 

131 

139 

SOLUTIONS 

45 
5, 

6, 

19, 
7, 

34, 

44, 

9, 

50, 

10, 

23, 

11, 
12, 

76, 

8 

15 

24 

13 

35 

26 

18 

63 

25 

80 

79 

99 

120 

64 

PRIMITIVE R 

8 

15 

13 

7, 35 

34 

44, 18 

63 

11, 99 

120 
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149 

151 

179 

181 

191 

199 

211 

229 

239 

241 

251 

269 

271 

281 

104, 

28, 

105, 

13, 
103, 

138, 

33, 

148, 

16, 

52, 

134, 

198, 

17, 

38, 

41 

124 

75 

169 

79 

62 

179 

82 

224 

190 

118 

72 

225 

244 

41 

105 

224 

52, 

134 

198, 

255 

190 

72 

The conclusion would seem to be that this phenomenon is not particu-
larly uncommon and that there is a straightforward method of determining 
additional instances of this type. 

[Continued from page 156., ] 

2. Marjorie Bicknell and Verner E. Hoggatt, J r . , "Fibonacci Matrices and 
Lambda Functions/ ' Fibonacci Quarterly, Vol. 1, No. 2, April, 1963, 
pp. 47-52. 

3. J. E. Walton and A. F. Horadam, "Some Properties of Certain Gener-
alized Fibonacci Matrices," Fibonj£cj__^uaxterjy, Vol. 9, No. 3, May, 
1971, pp. 264-276. 

4. Brother Alfred Brousseau, Problem H-8. Solution by John Allen Fuchs 
and Joseph Erbacher* Fibonacci Quarterly, Vol. 1, No. 3, October, 
1963, pp. 51-52. 

5. Brother U. Alfred, "On the Ordering of Fibonacci Sequences," Fibonacci 
Quarterly, Vol. 1, No* 4, December, 1963, pp. 43-46. 

6. Brother Alfred Brousseau, Problem H-52, Solution by V. E. Hoggatt, J r . 
Fibonacci Quarterly, Vol. 4, No. 3, October, 1966, p. 254. 

7. New book of number Uheory tables, to be published by the Fibonacci 
Association. 



ADVANCED PROBLEMS AND SOLUTIONS 
Edited by 

RAYMOND E.WHITNEY 
Lock Haven State College, Lock Havers, Pennsylvania 

Send all communications concerning Advanced Problems and Solutions 
to Raymond E. Whitney, Mathematics Department, Lock Haven State College, 
Lock Haven, Pennsylvania 17745. This department especially welcomes 
problems believed to be new or extending old results. Proposers should sub-
mit solutions or other information that will assist the editor. To facilitate 
their consideration, solutions should be submitted on separate signed sheets 
within two months after publication of the problems. 

H-189 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 

(2r + 3s)! (a - b y ) r b S y r + 2 s 

r!s!(r + 2s)f. ,.. ^ ,2r+3s+l 
r > s = 0 0- +y> 1 - ay - b y 2 

U-J9Q Proposed by H. H. Ferns, Victoria, British Columbia. 

Prove the following 

2 r F = n (mod 5) 

2 rL = 1 (mod 5) , 

where F and L are the n Fibonacci and n Lucas numbers, respect-
ively, and r is the least residue of n - 1 (mod 4). 

H-191 Proposed by David Zeitlin, Minneapolis, Minnesota. 

Prove the following identities: 
185 
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2n n 

(a) 

(b) 

Y > / 2 n \ 3 ^ (2n + k)t , n - k 

gw 2k 2\?„ «'<--« 
2 n + l / x n 
Y* (2n + 1 | 3

T -p y ^ (2n + 1 + k)! n+ l -k 

~ l k ' 2k ' 2n+1 to w3^ +1 - 2 k > ! 

2n 

2^ I k] F2k = F 2n 2 ^ ,. f.3/0 OI .f 
k==0 \ / k = 0

( k l ) ( 2 n " 2 k ) I 

(c) > - m * = F o > ; - J ^ L ± _ M [ _ 5n-k 

2 n + l n 
Mv \ ^ /2n + l\3 -p T V 1 (2n + 1 + k)! -ii-k 

til where F and L denote the n Fibonacci and Lucas n u m b e r s , respec t ive ly . 

SOLUTIONS 

KEEPING THE Q's ON CUE 

H-176 Proposed by C. C. Yalavigi, Government College, Mercara, India. 

In the "Collected P a p e r s of Sr inivas Ramanujan,M edited by G. H. 

Hardy, P . V. Sheshu Aiyer , and B. M. Wilson, Cambr idge Univers i ty P r e s s , 

1927, on p . 326, Q. 427 r e a d s a s follows: 

Show that (corrected) 

1 , 2 _, 3 , 1 1 
2tt - 4TT - 6?r - 24 877 * 

e - 1 e - 1 e - 1 

Provide a proof. 

Solution by Clyde A. Bridgerf Springfield, Illinois. 

A typical t e r m on the left-hand side can be wr i t ten a s 
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, -2m77 2m 
m e m q -2m7T - 2m 

e 1 - q 

This sugges t s a logar i thmic der iva t ive of a product . A suitable well-known 

product i s 

00 

(i) Q0 = T T d - q2m) • 
m = l 

(See H a r r i s Hancock, Theory of El l ipt ic Funct ions , p . 396, Dover , 1958) 

where (loc c i t p . 107) 

(2) q = exp (-77K!/K) f 

in which K and Kf have the same re la t ion to el l ipt ic functions a s 27T has 

to t r igonomet r ic functions., F o r example , for the s ine-ampl i tude function, 

we have 

sn(u + 4K + 2iK T ) = sn u 

and for the sine function, 

sin (x + 2TT) = sin x . 

Define K itself a s the complete el l iptic in tegra l of the f i r s t kind 

.7T/2 
(3) K = J d $ 

Vl - k2 0 is/l _ k* fiin2 sm^cf) 

with modulus k. Let K ! , L , and Lf be complete ell iptic in tegra l s of the 

f i r s t kind with moduli k f , i , if, r espec t ive ly . 

The prob lem now is to find something that contains Q0 and K. On 

page 400 (Hancock) appea r s 
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(kk.)12 = i ' qMQiQ, , QiQ2Q3 = 1 . 

and 

i Qo / K , 
Q2 

Then 

(4) q12Q0 = 26(kk'Wir 

is the starting equation. 

Suppose that the four elliptic integrals are connected by 

¥ - £ • 
with k2 +kf 2 = 1 and i2 + I T 2 = 1. (Arthur Cayley, An Elementary Treatise 
on Elliptic Functions, p. 45, Dover, 1961.) 

Then 

7TLT 

(2T) q = e 

and 

(4<) q ? 2 T l ( l - q 2 n m ) = 2 T ( t f ) ^ 

If we divide Eq. (4) by Eq. (4T) and let n 1, we should get 1 = 1. 
Of the conditions to do this, putting 

(6) Jt = kf and V = k 
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gives a sui table form in n only. We find from Eq. (3) that 

189 

(7) L = K! and L< = K . 

Then Eq. (5) becomes 

(50 K/KT = \ln 

Equation (2) becomes 

(2") q = e 
-Tr/\ln. 

and Eq. (2f) becomes 

n -TT/\JR 
q = e 

We can now wr i te the quotient of Eq. (4) by Eq. (4?) a s 

e-7r/12N/H(1 _ e - 2 i r A / n ) ( 1 _ e - 4 i r / ^ ) ( 1 _ e - 6 i r / ^ } 

(8) = n V 7 ^ 7 1 2 " - 0-2ir^ (1 - e - ' ^ M l - e - 4 7 ^ n ) ( l - e - 6 7 r N r n ) . 

Both a r e infinite p roduc t s . We now differentiate this logar i thmica l ly with r e -

spect to n to have 

(9) 

2 4 n ^ n 

4n 

1 1 - 2 4 
-2TT/N/II 0 -47r/\Tn 2e 

-27r/Nin r -4n/\ln. x — e x — e 

24N/1I 
1 - 2 4 

-27TNfn -4ir\fn 

-2ir\/n . -47TNfn 
1 - e 1 - e 

Th i s r educes readi ly to 
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1 - 24 £ m / ( e 2 m 7 T / ^ n - 1) + 
m=l 

(9') 
+ n 1 -24 ^ m/(e2 m W n- 1)1 = *£-

m=l J 

Now let n -+ 1. We find the correct solution to be 

1 + 2 _ + 3 + _ 1 1 
e - l e - l e - 1 

We have followed Ramanujan?s development and have filled in a number 
of gaps because his procedure is quite esoteric. 

Also solved by the Proposer, who used the reference cited in the problem to pick it up at (9f). 

PARTITION 

H-177 Proposed by L Carlitz, Duke University, Durham, North Carolina, (corrected) 

Let R(N) denote the number of solutions of 

N = Fk, + F k , + " ' + F k r <r = 1 . 2 , 3 , . . . ) , vr 

where 

h ^ k2 > • •. > k => 1 

Show that 

« E < F 2n F 2 m > = R<F2n+iF2m> = ( n " m ) F 2 m + F 2m-1 ( n fe m ) • 

® E ( F 2 n F 2 m + l ) = <n " m ) F 2 m + l ( n " m ) • 
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( 3 ) R ( F 2 n + l F 2 m + l > = ( n " m ) F 2 m + l ( n * m ) • 

(4) R ( F | n + 1 ) = R(F ' 2 n ) = F ^ O i ^ l ) . 

Solution by the Proposer. (See re fe rence below.) 

The P r o p o s e r has proved that if 

N = F 2 k + F 2 k + 4 + F 2 k + 8 + ' ' ' + F 2 k + 4 r - 4 ( k * X) • 

then 

« B(N) = k F 2 r - F 2 r _ x 

Also the s ame r e su l t holds for 

N = F 2 k + l + F 2 k + 5 + " - + F 2 k + 4 r - 3 ( k fc X) ' 

1. Since 

F F = F + F + . 9 0 + F (n ^ m) , 
*2n 2m 2n-2m+2 *2n~2m+6 * 2n+2m-2 l11 m / ' 

i t follows from f ) that 

R ( F 0 F 0 ) = (n - m + 1)FQ - F 0 0 2n 2m 2m 2m-2 

= (n - m ) F 0 + F„ - (n > m) . 
x ' 2m 2 m - l 

Since 

F 2 n + l F 2 m = F 2 n - 2 m + 3 + F 2 n - 2 m + 7 + • ' ' * + F 2 n + 2 m - l ( n * m ) ' 

it follows that 

E ( F 0 ^F0 ) = R ( F 0 F Q ) v 2n+l 2m 2n 2m 

L7 Carl i tZj "Fibonacci R e p r e s e n t a t i o n s , " Fibonacci Qua r t e r ly , Vol. 6, pp„ 
193-220. 
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2. It i s proved in Theo rem 1 of the paper cited above that if 

N = F. + F. + • • • + Fb- , kj k2
 K r 

where 

H ^ *2 

then 

( * ) R ( N ) = R ( V k r ^ l + ' - - + F k r . l - ^ 1 > 

+ ([ikr] " j B V k ^ + ••• +Fkr-i-kr+2) . 

and in pa r t i cu l a r if k i s odd, then 

(***) R(N) = R ( F k - 1 + *•• + F k r - l ) • 

Since 

F F = ( F + F + . . . + F ) + F 
2n 2m+l i r 2 n + 2 m - l r 2 n + 2 m - 3 r 2 n - 2 m + 3 / *2n-2m 

(n ^ m) , 

i t follows from (* $ and (***) that 
R ( F 0 F 0 , . ) = R(F/I + F . A + • • • + F . ) + (n - m - 1) R ( F , _,, v 2n 2m+l 4m 4m-4 4 ' 4m+l 

+ F 5 ) 
( n - m ) E ( F 4 m + i 4 m _ 4 + . . . + F 4 ) 

= ( n " m ) ( 2 F
2 m " F 2 m - 2 ) = <n " m ) F 2 m + l <Q * m ) . 

3. Since 

F 2 n + l F 2 m + l ( F 2n+2m + F 2 n + 2 m - 4 + * ' ' + F2n-2mH-4* + F 2 n - 2 m + l ( n > m ) » 



1973 ADVANCED PROBLEMS AND SOLUTIONS 193 

i t follows from (***) and '(**) that 

R ( F 2 n + l F 2 m + l ) " R ( F 2 n + 2 m - l + F 2 n + 2 m - 5 + ' ' ' + F 2 n - 2 m + 3 ) + F 2 n - 2 m ) 

R ( F 4 m + F 4 m - 4 + • - + F 4 ) + fe - m - D R O T ^ + 
+ F 5 ) 

= ( n - m ) R ( F 4 m + F 4 m _ _ 4 + . . . + F4) 

= (n - m ) F 2 m + 1 (n > m) . 

4. Since 

we get 

F l n + 1 = ( F 4 n + F 4 a - 4 + - - - + F 4 > + F 2 

^ 2 1 1 + 1 > = R < F 4 n - l + F 4 n - 5 + " - + F 3 ) 

= R < F 4 n - 2 + F 4 n - 6 + " - + F 3 > 

= F 2 n - F 2 n - 2 = F 2 n - 1 <n a X ) 

S imi lar ly s s ince 

F 2 n = F 4 n - 2 + F 4 n - 6 + * * * + F 2 • 

we have 

R * F 2n> = F 2 n - 1 ( n * X) 

WHAT'S THE DIFFERENCE? 

H-178 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Put 

(m + n j ' 
m J 
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Show that a satisfies no recurrence of the type 
m,n J ^ 

r s 
7 7 c. , a . , = 0 (m ^ r5 n ^ s) , 
j=0 h=0 

where the c. . and r, s are all independent of m,n. 
Show also that a satisfies no recurrence of the type 

m,n J F 

r n 
/ C 5 2 c. , a . , = 0 (m ^ r , n > 0) , 
j=0 k=0 

where the c. . and r are independent of m,n. 

Solution by the Proposer. 

1. Assume that 

r s 
(1) V ] Y ^ c. . a . . = 0 <m > r , n > s) , 

L-j C~d j , k m - j , n - k ' 

j=0 k=0 

where c. , and r , s are independent of m,n. 
00 

F(x,y) = J^ a m / f f l y ° 
m,n=0 

Then we have 

(2) F(x,y) = {(1 - x - y)2 - 4 x y p . 

Indeed, 
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_1 
{(1 - x - y)2 - 4 x y H = (1 - x - y)" 1 ) 1 - ^ f 2 

( (1 - x - y)2 | 

E 2 k (xy)K 

k=0 (1 " x - y) 

= E t **>" E n̂" n (X + *>* 
k=0 n=0 

00 00 
2k 

m + n m E 2k / sk \~* 2k + m + n m + n m n 
k M 2^J ™ + n ™ x y 

k=0 m,n=0 

oo min(m,n) 

k! k! (m - k)! (n - k)t * E m n \""* (m + n)l x y L — 
m5n=0 k=0 

The inner sum is equal to 

oo 
fm + n\ V^ /m\ / n \ (m + nY \ m )L. [k){k) = \ m ) > 

which proves (2).) 
Now 

i : £ cjikXjy
kF(x,y). £ £ v J / £ £ v,n *° y» 

j=0 k=0 j=0 k=0 m=0 n=0 

= V b x: 
Lmji m , n 

m,n=0 

m n 
' y 

where 
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b = / c. , a . , 
m,n JLJ. j , k m-j9n-k 

By (l)j we have 

b = Q (m > r, n > r ) , 
m,n N 9 

so that 

r s 

<3) X) E c j , k x 3 y F(x>y> 
j=0 k=0 

r - l x oc s-1 r -1 s-1 

= y y b xm
y
n - y y b xY-yvb x

m
y
n 

1-J £^d m9n J xL^ £«j m9n J Z ^ JL*# m5n J 

m=0 n=0 m=0 n=0 m=0 n=0 

For fixed m9 a is a polynomial in n, hence b is also a poly-
m9n r J m9n ^ J 

nomial in n. Similarly, for fixed n9 b is a polynomial in m. Conse-
quently, each of the sums 

r - l oo oo s-1 

E v ^ , m n v ^ ^ K m n 
JLJ m,n ^ J Z ^ Z»J m9n ^ 

m=0 n=0 m=0 n=0 

is a rational function of x9y„ Hence, by (3), F(x9y) is a rational function 
of x,y. This contradicts (2). 

2. Assume that 

(4) Y ] 7 c . , a i = 0 (m ^ r9 n ^ 0) 
*--* £ ^ j5k m-n,n-k 
j=0 k=0 

Then as in 15 we have 
[Continued on page 202. ] 



FIBONACCI MAGIC CAtBS 
BROTHER ALFRED BROUSSEAU 

St IVlary's College, California 

According to the well-known theorem of Zeckendorf, if adjacent mem-
bers of the Fibonacci sequence (1, 2, 3, 5, 8, 13, e B e ) are not allowed In 
the same representation then each positive integer can be expressed uniquely 
as the sum of one or more Fibonacci numbers* On the basis of this unique 
representation theorem, each integer is associated with just certain Fibon-
acci numbers. For example: 35 = 34 + 1; 51 = 34 + 13 + 3 + 1. 

Accordingly, If one places on a set of cards those integers which have 
a given Fibonacci number as a component, one creates a set of magic cards 
with the following property* Let someone select all the cards in the set which 
contain a certain integer. Knowing the particular Fibonacci number associ-
ated with each card, it is then possible to add these numbers together and 
thus be able to say what the selected integer was. 

The following sets of integers provide the numbers for each card, the 
smallest number on the card being the Fibonacci number which is a component 
of each of the integers on the card. One could possibly conceal the trickmore 
effectively by a random distribution of the numbers on each card. 

Card 1 

1, 4, 6, 9, 12, 14, 17, 19, 22, 25, 27, 30, 33, 35, 38, 40, 43, 46, 48, 51, 

53, 56, 59, 61, 64, 67, 69, 72, 74, 77, 80, 82, 85, 88, 90, 93, 95, 98 

Card 2 

2, 7, 10, 15, 20, 23, 28, 31, 36, 41, 44, 49, 54, 57, 62, 65, 70, 75, 78, 

83, 86, 91, 96, 99 

Card 3 

3, 4, 11, 12, 16, 17, 24, 25, 32, 33, 37, 38, 45, 46, 50, 51, 58, 59, 66, 
67, 71, 72, 79, 80, 87, 88, 92, 93, 100 

197 
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Ca rd 4 

5, 6, 7, 18, 19, 20, 26, 27, 28, 39, 40 , 4 1 , 52, 53, 54, 60, 6 1 , 62, 73 , 74, 

75, 81 , 82, 83, 94, 95, 96 

Ca rd 5 

8, 9, 10, 1 1 , 12, 29, 30, 3 1 , 32, 33 , 42 , 4 3 , 44, 45 , 46 , 63, 64, 65 , 66, 

67, 84, 85, 86, 87, 88, 97, 98, 99, 100 

Card 6 
13 , 14, 15, 16, 17, 18, 19, 20, 47, 48 , 49 , 50, 5 1 , 52, 53, 54, 68, 69, 70, 
7 1 , 72, 73 , 74, 75 

Ca rd 7 

2 1 , 22, 23 , 24, 25, 26, 27, 28 , 29, 30, 3 1 , 32, 33 , 76, 77, 78, 79, 80, 8 1 , 

82, 83, 84, 85, 86, 87, 88 

Ca rd 8 

34, 35, 36, 37, 38, 39, 40, 4 1 , 42 , 43 , 44, 45 , 46 , 47 , 48 , 49 , 50, 5 1 , 52, 

53 , 54 

Ca rd 9 
55, 56, 57, 58, 59, 60, 6 1 , 62, 63 , 64, 65, 66, 67, 68, 69, 70, 7 1 , 72, 73, 

74, 75, 76, 77, 78, 79, 80, 8 1 , 82, 83, 84, 85, 86, 87, 88 

Card 10 
89, 90, 9 1 , 92, 93 , 94, 95, 96, 97, 98, 99, 100 

CORRECTIONS TO A FIBONACCI CROSTIC 

H . 1 0 ^ s h o u l d b e 1 0 2 

J . n e e d s t w o 1V+ 

I n d i a g r a m 0 81 s h o u l d b e G 81 

F 9 3 s h o u l d b e E 9 3 



THE LAMBERT FUNCTION 
WRAY G. BRADY 

Slippery Rock State College, Slippery Rock, Pennsylvania 

The sum of certain reciprocal Fibonacci series can be summed in terms 
of the so-called Lambert series or Lambert function: 

L(z) = E 7 ^ = E v>n. 
i i - z -i 

n=l n=l 

where T is the number of divisors of N*. For example 9 let 

£=^r^ 

oo 

k=l 

or to generalize: 

Y * _ l _ = ^5[L(2mi3) - L(4m/3)] f 
T88: J?2km k= l 

for an integer m9 such that m > 0. 

In this note, we tabulate the Lambert function for selected real values 
of z. The results are given in the table below. The calculations were made 
by machine evaluation. The graph of the approximation polynomial to L(z) 
is shown on the following page, 

*Konrad Knopp, Theory and Application of Infinite Series, Harper, New York, 
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z 

.95 

.90 

.85 

.80 

.75 

.70 

.65 

.60 

.55 

.50 

.45 

.40 

.35 

.30 

.25 

.20 

.15 

.10 

.05 

.00 

L 
z 

19.7372 

14.4885 

10.6987 

7.9593 

5.9724 

4.5224 

3.4550 

2.6605 

2.0615 

1.6035 

1.2482 

.9687 

.7464 

.5667 

.4211 

.3017 

.2035 

-1223 

.0553 

.0000 

_ _ _ 

(-z) 
4.7378 

3.1728 

2.0953 

1.3565 

.8513 

.5066 

.2720 

.1130 

.0062 

-.0645 

-.1096 

-.1363 

-.1493 

-.1518 

-.1456 

-.1316 

-.1103 

-.0817 

-.0452 

L(z) 

-1 -V—""o .5 1 



FIBONACCI ONCE AGAIN 
J. A. H. HUNTER 

88 Bernard Avenue, Apt. 1004, Toronto 180, Canada 

Many popular-type math teasers are based on the concept that may be 
expressed symbolically as: 

(X)(Y) = Y2 - X2 . 

Examples are: 

34 68 = 682 - 342 

216 513 = 5132 - 2162 . 

The true algebraical representation, of course, is: 

10-X + Y = Y2 - X2 

Y having n digits including any initial zero. For example, with n = 6, we 
have: 

2230 047276 = 472762 - 22302 . 

Working recently on such examples, it seemed interesting to determine 
the limiting minimal value of the ratio Y:X, that is of Y/X. This proved 
quite simple, the derivation being as follows: 

For very large values of n we may take the maximum value of Y as 
being 10-. 

Hence we have 

10Q X + 10n = 10?2 - X2 . 

Solving for X, 

201 
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2X = - 1 0 n + / l 0 2 n + 4 -10 2 n - 4-10n 

= - 1 0 n + N / 5 - 1 0 2 1 1 - 4 .10 n 

Again for very l a rge values we may ignore 4-10 in the express ion 

under the s q u a r e - r o o t sign, so having, as n-+oo, 

2 X - * - 1 0 n + 1 0 V 5 , 

i. e. , 

v 10 n (V5 - 1) X-> . 

Hence 

X/Y -* (NT5 - l ) / 2 , Y/X -* (NT5 + l ) / 2 . 

Fibonacci again! 

It may be noted that with n = 6, the g r e a t e s t value of Y (giving the 

min imal X:Y ratio) gives 

569466 945388 = 9453882 - 5694662 . 

And for this we have Y/X = 1.6601 • • • . 

[Continued from page 196. ] 

r 00 r - 1 m 00 00 

j=0 k=0 m=0 j=0 k=0 n=0 

It follows that F(x ,y) i s ra t ional in x , again contradict ing (2). 

Remark . We note that a does satisfy r e c u r r e n c e s of the type 

[Continued on page 217. ] 



A NOTE ON PYTHAGOGEAN TRIPLETS 
HARLAN L UMANSKY 

Emerson High School, Union City, New Jersey 

A Pythagorean triplet is defined as a, b , c, in which a2 + b2 = c2. 
It is well known that, where u and v are any two integers, a = u2 - v2, 
b = 2uv, and c = u2 + v2. 

Triplets like 9, 40, 41, and 133,156,205, are of particular interest 
because a + b is also a square. Not all Pythagorean triplets possess this 
property; for example, 3, 4, 5, and 20, 21, 29. 

I have found that, x and y being any two integers, Pythagorean tr ip-
lets possessing this property can be generated where u = x2 + (x + y)2 and 
v = 2y(x + y). Then 

I. a = u2 - v2 = 4x4 + 8x3y + 4x2y2 - 4XV3 - 3V4 

II. b = 2uv = 8x3y + 16x2y2 + 12xy3 + 4y4 

HI. c = u2 + v2 = 4x4 + 8x3y + 12x2y2 + 12XV3 + 5V4 

0 2 
IV. a + b = (2x2 + 4xy + y2) 

2 
V. b + c = (2x2 + 4xy + 3V2) 

In triplets like 3, 4, 5, and 5, 12, 13, where u = v + 1, there is 
the further property that a2 = b + c. Of the triplets in the series in which 
a2 = b + c, only certain triplets possess the property that a + b is also a 
square. The first six such triplets are listed below: 

u v a b c 

5 4 9 40 41 

29 28 57 1,624 1,625 

169 168 337 56,784 56,785 
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985 984 1,969 1,938,480 1,938,481 

5,741 5,740 11,481 65,906,680 65,906,681 

33,461 33,460 66,921 2,239,210,120 2,239,210,121 

The series of ufs (5, 29, 169, 985, • • •) is a recurrent series which 

is defined as 

u = 6u - - u rt , n n - 1 n-2 

where u0 = 1 and ut - 5. 

Since the gene ra to r 

u = x2 +• (x + y)2 , 

it can be expres sed a s the sum of two s q u a r e s : 

u:l = l 2 + 22 = 5 

u2 = 22 + 52 = 29 

u3 = 52 + 122 = 169 

u4 = 122 + 292 = 985 

u5 = 292 + 702 = 5741 

u8 = 702 + 1692 = 33,461 

As exp res sed in this m a n n e r , the s e r i e s of uTs fo rms the r e c u r r e n t s e r i e s 

ut = I 2 + 22 = 5 

u2 = 22 + (1 + 2-2)2 = 29 

u3 = 52 + (2 + 2-5)2 '=• 169 

u4 = 122 + (5 + 2-12)2 = 985 

u5 = 292 + (12 + 2-29)2 = 5741 

u6 = 702 + (29 + 2-70)2 = 33,461 
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Pythagorean triplets possessing the properties that (1) a2 = b + c and 
that (2) a + b is a square can be derived in another way. 

For a triplet to possess the first property, the necessary and sufficient 
condition is that u = v + 1: 

2 
(u2 - v2) = 2uv + u2 + v2 

2 
(u2 - v2) = (u + v) 

U2 - V2 = U + V 

(u - v)(u + v) = u + v 

U - V = 1 

U = V + 1 . 

We already know that for a triplet to possess property (2), 

U = X2 + (x + y)2 

and 

v = 2y(x + y) . 

Since u = v + 1, set 

x2 + (x + y)2 = 2y(x + y) + 1 . 

Then 

(symbolized by 1) and 

= s / ^ 

y = ±\/2x2 - 1 
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(symbolized by k). 
Substituting 

in Eqs. I, II, HI, IV, and V, we find that 

a = 4y2 + 4yl + 1 

b = 12y* + 16y3l + 8y2 + 4yl 

c = b + 1 

a + b = (2V2 + 4yl + l)2 

b + c = (4y2 + 4yl + l)2 

Now 

± # ^ 

is integral for 1, 7, 41, 239, • • •. This is a recurrent series which is de-
fined as 

r = 6r - - r 0 , n n-1 n-2 ' 

where rA = 1 and r2 = 7. Substituting alternately the positive and negative 
values of 

..Tar 
+. V2?1 

in a, b, c, we obtain the desired triplets. 

Substituting y = ±*/ix2 - 1 in Eqs. I, II > HI, IV, and V, we find that 
[Continued on page 212. j 



A GENERALIZED GREATEST INTEGER FUNCTION THEOREM 
ROBERT ANAYA and JANICE CRUMP 

San Jose State College, San Jose, California 

Theorem: 

[*\+k] = Fn+k' n £ k ' k £ 1 ' 
where 

1 + N/5 
a = — 7 T - — 

and [x] is the greatest integer contained in x. 
Proof. For k = 1, 

F 
n+1 " 

k • I] -
See [1, Thm. I l l ] . The Binet form for the Fibonacci numbers is 

n ,n 
F = a " b 

^ 5 

where 

1 + NT5 , , 1 - N T S 
a = —« and b = —x 

Thus 
, n+k , n k n+k , n k , n+k , ,n+k 
k-r, a - b a a - b a - b + b 

a F = • = • ! 

n NT5 ^ 

= a n + k - b n + k _, b n + k - b n a k 

NT5 NTS 

b " fe4 r« = F ,. - b" 1 ~ " M 1= F M - b V n+k V K/-F / n+k k 
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See [2], Therefore, 

[Feb. 

a F +77 n 2 n+k ( i - *•*) 
The next step is to prove that b F, 
n = k for a fixed k. When n = k, 
n—>oo, b —>0 mono tonic ally. When k is even: 

< ^, n 2> k, k ^ 2. Since n ^ k, let 
b FjJ will have its largest value. As 

A. = b k ( a k - b k ) 
N/"5 

= (ba)k - b 2 k 

N/5 
= i - b 2 k 

N/5 

since ab = - 1 . The sequence 

1 - b 2k 

^5 

is monotone increasing, and also 

2k 
lim 

k - •oo 

1 - t) 
N/5 N/5 N/5 2 

Thus, 

0 < b F, 2 

for even k. Now for odd k, we have 

k F 1 X k = 
J k , k u k x b (a - b ) 

N/15 
= 

, . ,k u 2k (ab) - b 
N/5 

= - i - b 2 k 

N/5 

since ab = - 1 . Here we are considering k = 3, 5, 7, " • •. When k = 3, 

b 2 k = b 6 - 0.055726 ; 
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2k and as k i n c r e a s e s , b gets s m a l l e r rapidly and 

209 

-1 - b' 2k 

\J5 

becomes smaller. , The re fo re , if 

-1 - b 2k 

N/5 

for k ?=•' 3S then i t i s l e s s than 1/2 for any odd k g r e a t e r than 3. Thus : 

-1 - b 2k 

N/5 

1 + b 2k 

N/5 

If 

-1 - b' 2k 

N/5 
< I 

2 9 

then 

1 + b 2k \/5 • N / 5 - 2 ^ , 2 k ^ N/5 - 2 

Since N/5 i s approximate ly 2.23619 the upper bound i s approximate ly 0e 1181, 

and since 

b 2 k = b 6 = 0.055726 , 

then ce r ta in ly 

0 < b 2k ^ N/5 - 2 
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Therefore: 
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bkF, 

for all odd k, and, moreover, 

b V 2 

for all k 2 2 and n £: k. Finally, since we know that 

b V 2 ' 

we have 

1 < b
nF < i 

2 D * k 2 

Multiplying by -1 and adding 1/2, we have 

Since 

0 < | - b n F k < 1 

I " b X * ° > 

(i) 

implies that 

a k F + | = F + 1 bV/ 
n 2 n+k \ 2 k j 

An+lj > Fn+k ' 
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Also, since 

(i -"%) - > • 

Therefore, combining (i) and (ii), we obtain 

F ^ <= akF + i < F ^ + 1 n+k n 2 n+k 

or 

rakF + n = F . 
[ n 2J n+k 

REFERENCES 

1. V. E. Hoggatt, J r . , Fibonacci and Lucas Numbers, Houghton Mifflin 
Company, Boston, 1969, pp. 34-35. 

2. V. E. Hoggatt, J r . , John W. Phillips, and H. T. Leonard, J r . , "Twenty-
Four Master Identi t ies/ ' The Fibonacci Quarterly, Vol. 9, Feb . , 1971, 
pp. 2-5. 

REMARK 

With the aid of an ingenious programmer, Galen Jarvinen, it seems 
reasonable that 

[a\ + ! ] = L n * • 
and in general that 

[a\ + I ] = Hn+k • 
with n somewhat greater than k. 
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a = 8x2 + 4xk - 3 

b = 48x4 + 32x3k - 32x2 - 12xk + 4 

c = b + 1 

a + b = (4x2 + 4xk - l)2 

b + c = (8x2 + 4xk - 3)2 . 

Now ±\2x 2 - 1 in integral for 1,5, 29, 169, • • ' , a recurrent series 
that has already been defined. Substituting alternately the positive and nega-
tive values of ±^2x2 - 1 in a, b, c, we obtain the desired triplets. 

Several minor but interesting relationships maybe noted in conclusion. 
Since 

u = x2 + (x + y)2 , 

it follows that 

u = x2 + (x + k)2 = 4x2 + 2xk - 1 

u = I2 + (1 + y)2 = 2y2 + 2yl + 1 , 

and, since v = u - 1, 

a + b = 2u2 - 1 , 

and 

u = y | ( a + b + 1) . 



BACK-TO-BACKs SOME INTERESTING RELATIONSHIPS 
BETWEEN REPRESENTATIONS OF INTEGERS IN VARIOUS BASES 

J.A.H.HUWTER 
Toronto, Ontario, Canada 

and 
JOSEPH S. MADACHY 

Mound Laboratory, Miamisburg, Ohio 

^ back-to-back relationship between integer representations is one in 
which the representation of an integer in one base is the reverse of its rep-
resentation in some other base. Finding such integers and bases is elemen-
tary , but the concept does not appear to have received any attention in the 
literature. A double back-to-back relationship goes one step further: the 
base indices (written in scale 10 notation) are also the reverses of each other. 
Examples of single and double back-to-back relationships are: 

7310 = 3722 

16982 = 96128 

Table 1 gives all solutions for integers that have 2, 39 or 4 digits in 
base-10 notation. The reader may feel tempted to find examples with 5 or 
more digits. Table 2 l ists some of the known double back-to-back examples9 

leaving a wide open field for the computing-minded enthusiast. 
For single back-to-backs we concentrated on finding reverses for base-

10 cases. Without that restriction there would be an unlimited number of ex-
amples 9 such as: 

7413 = 4722 

3526 = 53^ 

If A, B9 C9
 9 • • 9 represent the digits of an integer N9 in base b no-

tation 9 we seek relationships of the form: 

* Mound Laboratory is operated by Monsanto Research Corporation for the 
Atomic Energy Commission under Contract No. AT-33-1-GEN-53. 
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(1) N = (A)(B)(C) - . . (M)10 = ( M ) . . . (C)(B)(A)b , 

or solutions to the equation 

(2) A-IO*1"1 + B-10d"2 + - C 1 0 d " 3 + . . . +M 

= M - b ^ 1 +' • • • + C-b2 + B-b + A , 

where d represents the number of digits in N. For 2-digit cases we have: 

(A)(B)10 = (B)(A)b 

or 

(3) 10A + B = bB + A 

The solution of (3) is obviously a simple matter. Somewhat more ted-
ious, the 3-digit cases entail integral solutions of 

(4) 100A + 10B + C = b2C + bB + A . 

Both the 2-digit and 3-digit cases were found by hand. The lists were 
checked and confirmed as complete with a Hewlett-Packard 9100A program-
able calculator — this taking barely two minutes. The same calculator dis-
covered all the 4-digit cases in less than 90 minutes. 

The problem of solving Eq. (2) may appear formidable, but there are 
limits which reduce the amount of numerical work. For a 3-digit case the 
largest base to be considered is 31. This is so because with b = 32, we 
must have a 4-digit case since 322 = 1024. Similarly the maximum bases 
for 2, 4, 5, and 6 digits would be 82, 21, 17, and 15, respectively. 

Finding solutions for double back-to-backs is more complicated since 
both the representations and the bases must be in reverse relationship. If 
a, b, c, • • • , represent the digits of the bases written in base-10 notation, 
we have 
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Table 1 
SINGLE BACK-TO-BACKS 

2-Digit 

215 

131 0 

211 0 

23j.o 

31io 

41 1 0 

4210 

43io 
4610 

= 

= 

= 

= 

= 

= 

= 

= 

314 

1219 

327 

1328 

1437 

2419 

3413 

647 

511 0 

5310 

61i0 
6210 

6310 

71io 
7310 

811 0 

= 

= 
= 

= 

= 

= 
= 
= 

1546 
3516 

I655 
2628 

3619 

1^64 
3722 
1873 

8210 

8 3 i 0 

8410 

8610 

91 1 0 

93i0 

= 

= 

= 
= 

= 

= 

283 7 

3825 
481 9 

6813 

1982 

3928 

3-Digit 

19010 = 0912 1 77410 •= 47713 

3711 0 = 1731 6 83410 = 4381 4 

4411 0 = 14419 88210 = 28819 

445 i 0 = 5449 91210 = 21921 

5111 0 = 11522 9611 0 = 16928 

5511 0 = 15521 

4-Digit 

080110 = 10809 329010 = 0923i9 

109010 = 0 9 0 % 51411 0 = 141516 

154010 = 04511 9 77211 0 = 127719 

211610 = 61127 94711 0 = 174919 

(5) ( A ) ( B ) ( C ) - ( M ) ( a ) ( b ) ( c ) . . . ( m ) 

= ( M ) - . . ( C ) ( B ) ( A ) ( m ) . . . ( c ) ( b ) ( a ) m 

In order to keep computation within reasonable limits, examples were 

sought with bases of only two or three digits. A 3-digit integer representa-

tion with a 2-digit (in scale-10) base would involve the equation 
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(6) A[(a)(b)] 2 + B[(a)(b)] + C 

= C[«b)(a)]2 + B[(b)(a)] + A . 

F o r example , if A = 1, B = 6, C = 9, a = 8, b = 2 , we have: 

1 [ 8 2 ] 2 + 6 [82] + 9 = 9 [ 2 8 ] 2 + 6 [28] + 1 = 7225 ; 

that i s , 

16982 = 9612 8 

In Table 2 a r e l i s ted examples of double back- to -backs . All those in 

the second p a r t of Table 2 were found by us without ca lcu la tor aid. 

Var ia t ions on this type of r ec rea t ion a r e end les s . Some of the s imp le r 

ones could provide c l a s s r o o m enr ichment m a t e r i a l without entai l ing too much 

t ime on computation. This type of number s ea r ch could also add z e s t to the 

cu r r en t emphases on modula r a r i thmet ic in the so-ca l led "new mathemat ics . T t 

Table 2 
SOME DOUBLE BACK-TO-BACKS 

0519 1 = 15019 

14473 = 441 3 7 

16982 = 9612 8 

50843 = 80534 

If t e r m s in pa r en the se s a r e cons idered as single "d ig i t s " in the given base we 

may have examples such a s : 

(1) (12) (7)3! - (7)(12)(1)13 

(1) (10) (10)^ = (10)(10)(1)14 

(6)(10)(15)M = (15)(10)(6)47 

(10)(0)(16)43 = (16)(0)(10)84 
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(12) (20) (30) 74 = (30)(20)(12)47 

(17) (10) (33)64 = (33)(10)(17)46 

(18)(30) (45) r4 = (45)(30)(18)47 

(19) (25) (37)64 = (37) (25) (19)46 

(21)(40)(41)64 = (41) (40) (21)46 

(6)(149)(17)251 = (17)(149)(6)152 

(19)(44)(52)251 = (52)(44)(19)152 

(38)(88)(104)251 = (104)(88)(38)152 

(47)(13)(91)352 = (91)(13)(47)253 

(94)(26)(182)352 = (182)(26)(94)253 

[Continued from page 202.] 

m n 

E V c. , a . . = 0 (m + n -> 0) . 
j=0 k=0 

However this i s true of arbitrary a „ with a00 ^ 0. We may define c, , 
m , n j»K-

by means of 

00 

m,n=0 J j9k=0 

Late Acknowledgements, David K l a r n e r solved H-168 and H. Kr i shna solved 

H-173. 
Commenta ry on H-169. The theorem is false . Le t a = F ^ + 2 , b = c = 

F 2 n + 1 ' d = F 2 n T h u s f r 0 m F m + l F m - l " F m = ^ ^ W e h a v e a d " b C 

= - 1 , while ab + cd = ( F 2 n + 2 F 2 n + 1 + F 2 n F 2 n + 1 ) = F 2 n + 1 L 2 n + 1 = F 4 n + 2 . 

However, let N = F 2 n t F 4 n + 2 > so that F ^ + l = F ^ F ^ and tf + 1 

i s composite. CONTRADICTION. 
The Editors, V. E. Hoggatt, J r . , and R. E. Whitney 



ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by 

A. P. HILLMAN 
University of New Mexico, Albuquerque, New Mexico 

Send all communications regarding Elementary Problems and Solutions 
to Professor A. P. Hillman, Dept. of Mathematics and Statistics, University 
of New Mexico, Albuquerque, New Mexico 87106. Each problem or solu-
tion should be submitted in legible form, preferably typed in double spacing, 
on a separate sheet or sheets, in the format used below. Solutions should 
be received within three months of the publication date. 

Contributors (in the United States) who desire acknowledgement of r e -
ceipt of their contributions are asked to enclose self-addressed stamped 
postcards. 

DEFINITIONS 

The Fibonacci Numbers F and the Lucas Numbers L satisfy 
n n J 

F ^0 = F ^ + F , F0 = 0, Fi = 1 and L l 0 = L (1 +L , L0 = 2, L, = 1. n+2 n+1 n' u 1 n+2 n+1 n9 u ' 1 

PROBLEMS 

B-226 Proposed by R. M. Grass!, University of New Mexico, Albuquerque, New Mexico. 

Find the smallest number in the Fibonacci sequence 1, 1, 2, 3, 5, • • • 
that is not the sum of the squares of three integers. 

B-227 Proposed by H. V. Krishna, Manipal Engineering College, Manipal, India. 

Let H0, Hi, H2, - , o be a generalized Fibonacci sequence satisfying 
H 2 = H - + H (and any initial conditions H0 = q and HA = p). Prove 
that 

F l H 3 + F2H6 + F3H9 + • • • + F n H 3 n = F n F n + 1 H 2 n + 1 . 

B-228 Proposed by Wray G. Brady, Slippery Bock State College, Slippery Bock, Pennsylvania. 

Extending the definition of the F to negative subscripts using 

218 
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F - n = ^ ~ \ • 

prove that for all integers k, m, and n 

(-l)kF F . + ( - l ) m F. F + (-l)nF F. = 0 . 
n m-k k n-m x m k-n 

B-229 Proposed by Wray G. Brady, Slippery Rock State College, Slippery Rock, Pennsylvania. 

Using the recursion formulas to extend the definition of F and L to & n n 
all integers n, prove that for all integers k, m, and n 

(-l)kL F . + (-l)mL. F + (-l)nL F. = 0 . 
n m-k k n-m m k-n 

B-230 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. 

Let {C } satisfy 

C ^ - 2C ^o - C ^ + 2C _,, + C = 0 n+4 n+3 n+2 n+1 n 

and let 

Gn = Cn+2 " Cn+1 " C n ' 

Prove that {G } satisfies G . „ = G .- + GM . L nJ n+z n+1 n 

B-231 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. 

A GFS (generalized Fibonacci sequence) H0, Hl9 H2, ••• satisfies the 
same recursion formula 

® H = H + H 
n+2 n+1 n 

as the Fibonacci sequence but may have any initial values. It is known that 

HnHn+2 " H n + 1 = ^ • 

where the constant c is characteristic of the sequence. Let {H } and {K } 
be GFS and let 
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C = HAK + ELK - + HQK 0 + . . . + H L . n O n 1 n-1 2 n-2 n 0 

Show that 

n+2 n+1 n n 

where {G } is a GFS whose characteristic is the product of those of {H } 
and {Kn}. 

SOLUTIONS 

GENERALIZED FIBONACCI IDENTITY 

B-208 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. 

Let 

F0 = 0, Fi = 1, F ^ = F ^ + F , L0 = 2, L, = 1, L ^ = L . + L . u » i » n+2 n + l n u 1 n+2 n+1 n 

Prove both of the following and generalize: 

(a) F* = 3F* - F3 = 2( - l ) n 

n+2 n+1 n 

(b) L* = 3L* - L2 = 10(- l ) n . 
n+2 n+1 n v 

Solution by David Zeitlin, Minneapolis, Minnesota. 

In the paper by David Zeitlin, "Power Identities for Sequences Defined 
b y Wn+2 = d W n+l " c Wn9 ? f t h i s Q u a r t e r l y » Vol. 3, No. 4, 1965, pp. 241-255, 
it is shown on page 251, Eq. (4.5) that 

( 1 ) Hn+2 - 3 H n + l + Hn = 2(-l)n+1(H? - H l H o - H§) , 

where 

H 0 = H , , + H , n = 0, 1, 
n+2 n+1 n 

Thus, (1) gives (a) for H s F and (b) for H = L . , & n n n n 
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Also solved by Richard Blaze/, Herta T. Freitag, Ralph Garfield, J. A. H. Hunter, C. B. A. Peck, A. G. 

Shannon, and the Proposer. 

FURTHER GENERALIZATION 

B-209 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California 

Do the analogue of B-208 for the Pell sequence defined by 

P0 = 0, Pi = 1, P ^ = 2P ^ + P , and Q = P + P , . u ' i » n+2 n+1 n ^n n n-1 

Solution by David Zeitlin, Minneapolis, Minnesota. 

In the paper quoted in B-208, there is given Eq. (3el) on p„ 245 which 
states that 

(1) W^+2 - (d2 - 2c)W^+1 + c2W^ = 2cn+1(wf - dW0Wi + cW2) , 

where 

n+2 n+1 n 

Thus, for d = 2, c = - 1 , and W = P , (1) gives 

<2> K+2 - 6 P U + p i = 2 ( - 1>n + 1 • 
Since 

%+2 = 2 ( V l + Q n • 

we obtain from (1) for d = 29 c = - 1 , and W"n = Qn? Q0 = 1, Qi = 1, 

(3) Q^+2 - 6Q^+1 + <£ = 4(-l)n . 

Also solved by Herta T. Freitag, Ralph Garfield, A. G. Shannon, and the Proposer. 
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SUMMING OF FIBONACCI RECIPROCALS 

B-210 Proposed by Guy A. R. Guillotte, Montreal, Quebec, Canada. 

Let Fi = F 2 = 1 and F ^ = F n + 1 + F . P rove that S > 803/240, 
where 

• - * • * • * • 

Solution by Peter A. Lindstrom, Genesee Community College, Batavia,New York. 

Consider the finite sum S , where 
n ' 

S n = ( 1 / F t ) + (1 /F 2 ) + . . . + ( 1 / F n ) 

Then one finds that 

240 S^ = 240 + 240 + 120 + 8 0 + 4 8 + 30 + 1 8 ^ + 1 1 ^ + 7 - ^ 

+ 4 * ° + 2 ^ + 1-51+ 1-Z-
55 * 89 144 L 233 ' 

and hence 240 S^ > 803. Then S > Sj3 > 803/240. 

>4/«? solved by R. Garfield, C. B. A. Peck, and the Proposer. 

FIBONACCI WITH A GEOMETRIC PROGRESSION 

B-211 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. (Corrected) 

Let F be the n t e r m in the Fibonacci sequence 1, 1, 2, 3 , 5, 

Solve the r e c u r r e n c e 

D _ = 2D + F 0 J / l n+1 n 2n+l 

subject to the init ial condition D4 = 1. 
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Composite of solutions by Herta T. Freitag, Ho//ins, Virginia, and R. Garfield, College of Insurance, 

New York, New York. 

The condition D2 = 3 i s unnecessa ry and is indeed false s ince the r e -

cu r r ence gives D2 = 2DA + F 3 = 2-1 + 2 = 4. 
By wri t ing a few t e r m s in the D sequence i t i s easy to show that 

D n+1 2nD1 + 2 n 1 F 3 + 2 n 2 F 5 + • • • + 2F 0 „ , + F r 2 n - l 2n+l * 

Using the Binet formula and summing geomet r ic p rog re s s ions 9 we find that 

n 2n+2 

It i s e a s i e r to prove this by mathemat ica l induction than to check the de ta i l s . 

Also solved by the Proposer. 

A QUESTION WITH MANY ANSWERS 

B-212 Proposed by To mas Djerverson, Albrook College, Tigertown on the Bio. 

Give examples of in te res t ing functions f and g such that 

f(m,n) = g(m + n) - g(m) - g(n) . 

(One example i s f(m,n) = mn and 

g(n) n(n - l ) / 2 . 

E P S Editor1 s Note. We tabulate some of the submit ted a n s w e r s a s follows: 

g(m) Solver 

Proposer 
Herta T. Freitag 
Herta T. Freitag 
John W. Milsom 
John W. Milsom 

f(m,n) 

mn 
mn 

g(m)g(n) 
2mn 

3mn(m + n) 

Phil Maria ^ ( m » n ) 

(™) - mto - l)/2 
m(m + c ) / 2 , c constant 

r m - 1, r constant 

m 2 

m° 

log(m!) 
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UNFRIENDLY SUBSETS ON A LINE OR CIRCLE 

B-213 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Given n points on a straight line, find the number of subsets (including 
the empty set) of the n points in which consecutive points are not allowed. 
Also find the corresponding number when the points are on a circle. 

Solution by Theodore J. Cullen, Cal Poly, Pomona, California. 

Let T be the solution for the line. It is easily seen that Ft = 2 and 
T2 = 3. For n ^ 3, let p be an extreme point, i.e., p has only one neigh-
bor. Then the subsets can be divided into two types, those with p absent 
and those with p present. Clearly there are T - of the first type and 
T _2 of the second type, so that 

T = T n + T n n-1 n-2 

Therefore T = F l 0 for n ^ 1, where Fi = Fo = 1 and n n+2 L L 

F = F - + F 0 n n-1 n-2 

for n ^ 3, the Fibonacci numbers. 
Let V be the solution for the circle. One can check that Vi = 2, 

n * 
V2 = 3, V3 = 4. For n ^- 4 let p be any fixed point, and again consider 
subsets with p absent and then p present. The numbers of these are T _1 

and T ~> respectively, so that 

V = T , + T 0 = F _ L 1 + F i = L' , n n-1 n-3 n+1 n-1 n 

the n Lucas number. 

Also solved by Sister Marion Belter, Herta T. Freitag, and the Proposer. 


