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FIBONACCI SEARCH WITH ARBITRARY FIRST EVALUATION
CHRISTOPH WITZGALL

Mathematics Research Laboratory, Boeing Scientific Research Laboratory
ABSTRACT

The Fibonacci search technique for maximizing a unimodal function of
one real variable is generalized to the case of a given first evaluation. This
technique is then employed to determine the optimal sequential search tech-

nique for the maximization of a concave function.

1. INTRODUCTION

A real function f:[a,b] — R, where a <b is called
(1.1) unimodal ,
if there are x, X € [a,b] such that f is increasing for x =x and non-

increasing for x = x, decreasing for x = x and nondecreasing for x = X
(Fig. 1).
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Fig. 1 Example of a Unimodal Function

(1.2) If f is unimodal, then the interval [x,x] consists of all maxima of f.
Proof. f is constant in [§,§], since it is by definition nonincreasing
for x =x as well as nondecreasing for x =X. If x <x, then f(x) < f(x)
as f increases in [a,x]. If x >X, then f(x) <f(x) as f decreases in
[x,b].
The definition of unimodality is chosen so as to guarantee that

113



114 FIBONACCI SEARCH [ Feb.

(1.3) Whenever a unimodal function f has been evaluated for twc arguments
x; and X, with a =xy< Xy =< b, then some maximum of f must lie in
[x4,b] if f(x4) = f(xy) and in [a,x,] if f(x;) = f(xy)

Proof. If f(xq) = f(x;), then x; and x; cannot be both in that portion
of the interval [a,b] in which the function decreases. In other words, X
cannot lie to theleft of x;. Thus X € [xy,b], and X is a maximum of f by
(1.2). Similarly, if f(x;) =f(x;), then x € [a,x,] .

Asthe restrictionof a unimodal function to a closed subinterval of [a,b]
isagain unimodal, this argument canbe repeated. Hence, a sequential search
based on (1.3) will successively narrow down the interval in which a maximum

of f is known to lie. Such an interval is called the
(1.4) Interval of Uncertainty.

Kiefer [3] has asked the question of optimally conducting this search, and
answered it by developing his well known Fibonacci search.

The Fibonacci search gives a choice of two arguments for which to make
the first evaluation. But what happens if by mistake or for some other reason
the first evaluation took place at some argument other than the two optimal
ones? How does one optimally proceed from there?

In this paper, we shall therefore ask and answer the question for an op-
timal sequential searchplan with given arbitrary first evaluation. The result-
ing technique is applied to improving on Fibonacci search for functions known
to be concave. The technique may also be of interest in the context of stabil-
ity of Fibonacci search in the presence of round-off errors as studied by
Overholt [6] and Boothroydt [1] (see also Kovalik and Osborne [4]).

2. LENGTH OF UNCERTAINTY

In what follows we assume that a = 0 and b = 1. Furthermore, we
shall permit zero distances between two arguments of evaluation, interpret-
ing each such occurrence as evaluating the (not necessarily unique or finite)
derivative of the function f. A more careful analysis would take into account
the smallest justifiable distance € between arguments (Kiefer [3], Oliver
and Wilde [5]).
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By
Lk(x), 0 =x =1,

we denote the length to which the interval of uncertainty (1.4) can surely be
replaced by k evaluations in addition to a first one at x. Extendinga recur-

sive argument due to Johnson [2], we obtain
(2.1) L (x) = min {M (x), M (1 - 0} ,

where

M (x) : = min max g(l - x)Lk_l(H>, yLk—l(%)z'

x=y=1

Proof. Let y denote the first function argument over which we have
control. If x =y =1, then the two possible intervals of uncertainty are
[0,y] and [x,1]. The former contains the point of evaluation x. The best
upper bound for the length of the interval of uncertainty after the remaining

k -1 evaluations is given by

X
(2.2) yLk-l(;) .

Similarly, y is the evaluation point in [x,1], leading to the best upper
bound

1 -
(2.3) . a- x)Lk_l(l—_§> .

Whether [0,y] or [x,1] is the first interval of uncertainty depends on the
result of the evaluation at y: if f(y) = f(x), then [O0,y], if f(y) > £f(x),
then [x,1]. Hence the maximum Mk(x) of the two expressions (2.2) and
(2.3) is the best result achievable if y is selected between x and 1. The

expression
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N, (x) : = mi L (%), a- 1—1)
oo min mesha(8) 0o (ES

analogously describes the best result achievable if y is between 0 and x.
Since we control the choice of y, we can choose the smaller one of these

two expressions; and this gives
Lk(x) = min {Mk(x), Nk(x)}

Introducing for 0 = x =y =1,

S X, y) : = max {(1 - X)Lk—l(H>’ yLk-l(%)}’

we have

M (x) = min S (x,y), N, x) = min S (y,x).
k x=y=1 k k O=sy=x k

Now for 0 =x=y =1,
(2-4) Sk(X3Y) = Sk(l -y 1-x).
Therefore, Nk(x) = Mk(l - x), and (2.1) is proved.

At the beginning, the interval of uncertainty is the entire interval in
which the function is to be examined. A single function evaluation at any
point x does not change this situation. Hence

Lo(X) =1.

We then have

Mi(x) = min max {1 - x,y} = max {1 - x,x} = M1 - x).
x=y=1

Hence
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_ _J1-x for 0=x=4}
(2.5) Li(x) = max {1 - x,x} = < for 4 =x =1
For k = 2, we claim (Fig. 2):
F
;—X for Osxst
k+1 k+2
F
X k
= for =x =1
Fy Flo 2
(2.6) Lk(x) =
F
k k+2
F
Fx for Fk+lsxsl,
k+1 k+2
where Fy =1, Fy =1, Fg=2, Fy =3, ", Fk = Fk—2+Fk—1 are the
Fibonacci numbers.
Li(x) 4 k=0
k=1
k=2
=3
=4
| ] -
0 1} x
Fig. 2 Lk(x) for k =0, «++, 4

Proof. The case k = 2 requires special treatment. From (2.5),
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y - x for (x,y) € Ay : = {0 .<.§.<_-1-}
y 2
X
ylyf = ) = ’
y 1 _x _
X for(x,y)eA2:=—2-—§--—1
_ 1 - 1
y-x for X,y) €EB: =0 S—Yl—x =3
1 -
(1 - X)Li(i_'__}y()
1 1 -
1 -y for (x,y) € By: =3 s__Xl_X <1
We are now able to determine S,(x,y) in each of the four regions Ai N Bj
separately:
A; N By : Sy(x,y) = max%y_x,y_x} =y-x
A1 N By: Sy(x,y) = max{y - x, 1 -y =1-y.
Az M B1 : Sz(X,y) = X by (2.4) and (1 - y,l o X) e A'.l N Bz .
. _ _ X if y=1-x
Ay N By: $y(x,y) = max{x, 1 -y} = {1 Sy if y=1-x°

The sets Ai and Bj are represented in Fig. 3. They are triangles formed

by the line segments marked Ai and Bj’ respectively, and the correspond-

ing opposite corner of the square. The feathered lines are the minimum lines

with respect to constant values of x,

i.e., if proceeding verticallythe inter-

section with the feathered lines marks a minimum. The function Mk(x) is

defined to be the value of this minimum. Hence
1 5 X §f 0 =x =
Mz(X) =
X if —% =x =

By (2.1) we then have finally

[ ot
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Y A
1 Ay A2
-~
//
-
yox X7
B] ///
//
/
/
//
// i
BQ /
/
/
/
/
/
o7 x

Fig. 3 Sy(x,y)

1 -x . 1
) lfOSXS§
x if%sxfl
2
LZ(X)— 1 2 H
1-x 1f—2-5x5—§
b4 if—g—Sxﬁl

in accordance with (2.6).

The case k = 3 is now proved by induction over k. We have

y - X _ X Fk—l
T for X, y)E Ay: =0 S—SF
k y k+1

F

X for X,y) € Ay: = LS

F yi= S F 2
k-1 k+1 Y

X
ml3) o
—_— y _

31; 2 for (x,y) € Ag: = % = ESFk
k-1 y k+1

X - Fk X

7 for %y € Ay: = 5 =z =1
k S
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LF_—X for (x,y) €EBy: = 0 = i :i = Fk_l
k k+1

1- Feaa _ 1 - 1

F_-l fOl’ (X,y) & Bz : = T = 1—_—)% = E
k-1 k+1

- 1-y\ .
a X)141&-1(1 - x) 7 .
L—_X for (X ) E B « = l < 1 _X < k
)y 3¢ = —

Fleq 2 1-x " Fpy

1-y F. 1
—+ for (x,y) € By: = === <1
Fk Fk+1 1 -x

We determine Sk(x,y) in all regions Ai N Bj with i = j. Forthe remain-

ing regions, we use (2.4).

Ay N By : S K,y =max§y_x,y—xé =¥y X
k Fk Fk Fk

- - 1 -y 1-y
AL N By: S (x,y) = maxgy =, g =
k Fre " Fra Fra

since (x,y) € B, gives

a - X)Fk_1 =1 - yF 1’ and therefore (y - X)Fk-l =(1 - X)Fk—l

k+
- (1 - y)Fk_l = (1 - y)Fk+1 - (1 - y)Fk_l = (1 - y)Fk .

-xX y-X
E]
Fe " Fr,y

= y - X
Fre

2

Ay NBy: Sk(x,y) = max%y

1l

1F— Y since (x,y) € By

Ay ﬂB4:Sk(x,y) = max}y -x 1-y
k

Fy Fi

gives 1 -x=2(1-y) or y-x=1-y,

1 -y 1
Ay N By: S (x,y) =max; X € = max x,l—y} s
k Fra’ Fia Fr1 !
Ay N By: S, (X,y) = max{—— , L2 X0 = Y =X gince (x,y) € A,
ke Feoa’ Fra Fra

gives 2x =y or X =y - X ,
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N

Ay N By: § (x,y) = max % x_1- 3’{ = 1F_ since (x,y) € A, gives

1T’ Ty Ik

2x -y = 0, and since (x,y) € B, gives XFp +yF 4 = F 4.

Indeed, multiplying the former inequality by F, and adding it to the

k
latter gives ka + yFk__1 = Fk—l .

ASQB3:S(X,y)=maX§u,y_X =¥ - X i
k Fer ” Fra P
Ag M By: 8 xy) = maxs-*YlT_—X- ) L 1; yg = }—F_—X since (x,y) € By gives
) k-1 k k
(1- X)Fk =Q- ){Fkﬂ’ and therefore (y - X)Fk = (1 - X)Fk -

(1 - Y)Fk = (1 - Y)Fk+1 - (1 - Y)Fk = (1 - Y)Fk_l

ES 1~Y§ _ 1
Fye

Ay OB4:Sk(x,y) = max o > o max {x, 1 - y}

The schematic representation of Sk(x,y) then is given by Fig. 4. There are
breaks along the line x = 1 - y in areas Ay N By and Ay M By. The feather-
ed lines are again those boundaries of linearity regions at which Sk decreases
for fixed x. The abscissae of intersection points of feathered lines are there-
fore critical. The first one of these critical arguments we denote by v. It

is the abscissa of the intersection point of the line

2.7) 1oy . kd

which separates B; from By, and the line

(2.8)

which separates A; from A,. Elimination of y yields
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h A

xY

|
T 1
Fig. 4 Sk(x,y) and Critical Arguments

Fra

Fepn * P

v =

The next critical argument clearly has the value 1/3. The third one, which

we call w, is the intersection of the line

(2.9) 1-y_ _k

which separates Bg from B,, and the line

(2.10)

<
!

k+1

which separates A; and A, Elimination of y yields
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The last critical argument finally has the value 1/2.
For 0 =< x =< v the values of Sk(x,y) at the intersection of the verti-
cal through x with the two feathered lines (2.7) and (2.9) are potential mini-

ma. The equations of these lines can be rewritten as

1 -y 1 -x

= and
Fieer Fin

As these terms also represent the value of Sk(x,y), we have

1 -x

Fra

M, (x) =

for 0 = x=v.
For v < x < 1/3 locally minimal points are to be found on line (2.9)
and in the area where Sk(x,y) assumes the value X/Fk-l' Now x = v

gives ka+1 = (1 - X)Fk-l or

X 2l—x
Fii Frn
Thus
1 -x
M (x) =
k Flen

for v=x=1/3.
For 1/3 = x = w only the line (2.9) is interesting, and M, (x) still
takes the value

For w =x = 1/2 and beyond the minimum is assumed within the en-

tire line segments which meets the area in which Sk(x,y) =x/ L
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Thus, finally

1F_Xfor OSXSFK
k+1 k+2
(2.11) Mk(X) = s
F
Fi for T k =x =1
k k+2
and (2.6) follows immediately from (2.1).
Note also that (2.11) implies
Mk(x) for 0= x = %—
(2.12) Lk(X) =
1
Mk(l—x) for Esxsl

3. SEARCH STRATEGY

In the previous section, we have determined the optimal length of un-
certainty Lk(x), which can be achieved in k evaluations in addition to one
evaluation at x € [0,1]. We have yet to describe a search strategy which
realizes Lk(x). This amounts to specifying the argument y of the first
evaluation in addition to x. In view of (2,12), this reduces to determining y
such that Mk(x) = Sk(x,y) for given x between 0 and 1/2, a task which
has been performed already while calculating Mk(X)'

If 0= x=yv, then there are two optimal solutions y, since

1 -x
8 (x,y) =
k Fa

along both feathered lines in Fig. 4. This non-uniqueness is not surprising.
Indeed, if x = 0, then the evaluation at this argument does not contribute at
all towards narrowing the interval of uncertainty, and the optimal continuation
is just plain Fibonacci with one evaluation wasted. And inthis case there are
two optimal arguments, namely the first and second (k- 1)St order Fibonacci

points
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F
F

k1 Fi
k1 Tkt

F

(8.1 ¥ 0<x<

k-1
T , then any of the two (k - 1)St order Fibonacci

k1 Feq

points in the interval [x,1] is an optimal evaluation point

F xF._ + F

o= x4 Fk—l a-x = kF k-1
k+1 k+1

F xF + F

Y2=X+Fk(1—x)= k_Fl k
k+1 k+1

In both intervals v=x= 1/3 and 1/3 = x =<w, the optimal solution
y is unique.
Fra Fi
7 T =x= T then the optimal evaluation point y is the
k+1 k-1 k-1

first (k - 1)St order Fibonacci point of the interval [x,1].

(3.2)

Finally, if w = x= 1/2, then the optimal solutions fill an entire

interval.

F

(3.3) Let Kk < X = % I yp is such that x is the second (k - l)St

k-1
der Fibonacei point in [0, yp ], then all points in [1 - x,yp] are

7 or-

optimal evaluation points.

The following rule will always yield an optimal solution:

(3.4) Theorem. An optimal search strategy after an arbitrary first evalua-
tion at x, € [a,b] is as follows. If ¢ = x = d are such that [c¢,d] con-
stitutes the interval of uncertainty after ¢ additional evaluations, and if x

is the argument for which the function has been evaluated already, then:
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(i) ¥ x lies between c¢ and the first (k - i)th order Fibonacci points
in [e,d], then choose y as the first (k - !Z)th order Fibonacci point in
[x,d].

(ii) If x lies between the two (k - £)
then choose y asthe symmetric image of x in [c¢,d], i.e., y=c+d-x.

(iii) ¥ x lies between d and the second of thetwo (k - Jz)th order Fib-

onacci points in {c,d], then choose y as the second (k - !.)th order Fib-

th rder Fibonacei points of[c,d],

onacci point in [e¢,x].
We shall refer to any sequential search strategy in keeping with (3.1, 2,

3), in particular the rule described in Theorem (3.4), as

(3.5) Modified Fibonacci Search .

If the interior of the interval of uncertainty does not contain an argument at
which the function has been evaluated already, then the selection of the next
evaluation by modified Fibonacci search will be the same as in standard Fib-

onacci search.

4. SPIES

Intervals of uncertainty with nonoptimal evaluation points may be the
result of the following situation. Suppose in maximizing a function we avail
ourselves of the services of a "spy.'" This spy operates as follows: every
time an interval of uncertainty has been based on the results of prior evalua-
tions, he is consulted, and as a result of this consultation, the interval of un-
certainty may sometimes be further reduced (remaining an interval) without
additional evaluations. One cannot expect, however, that the remaining eval-
uation point (if there is any) is in optimal position within the new interval of
uncertainty.

In this case, there is a question whether the additional information
should be accepted. It is indeed conceivable that reducing the interval of un-
certainty and subsequently continuing from a non-optimal evaluation point
would in the final analysis lead to a larger interval of uncertainty than ignor-
ing the additional information and doing a straightforward Fibonacci search.

That this is not so, is essentially the content of the following.
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(4.1) Theorem. The optimal policy in the presence of an unpredictable spy is
to heed his advice and to proceed from the interval of uncertainty so achieved
by modified Fibonacci search with respect to the remaining evaluation point if
there is any.

Proof. Let [c,d] be the interval of uncertainty as determined by the
previous step of the search, and let [c,d], ¢ = ¢ =d =d, be the interval
of uncertainty after consulting the spy. As the spy is unpredictable, there
may be no further information forthcoming. This is the worst case, since
even if the spy is providing information, it need not be heeded. Thus all we
have to show is that we do not worse by proceeding form [c,d ] thanfrom any
other interval [c*,d*] with [c,d] D [c¢*,d* 1D [c,d].

Now let x be the evaluation point in [c,d]. Then we distinguish two
cases, depending on whether x € [c,d] or not. Suppose x € [c,d], then
x € [¢*,d*]. Working on the latter interval, the best we can guarantee in re-

maining steps is reducing the uncertainty fo

F
- - o*
d*F X for 0 <d§ _cc <F)Z (=: 1)
£+1 £+2
I
X - ¢ 4 x - c* 1
7, T F,,  ®-o 3 Tih)
- oF X - )
it C’Lz<'cfk—_?r> .
a - x 1 x - c* £+1
for 5 < = (=:1)
Fﬁ 2 dF - cf F£+2
x - c¥ Frn x - c*
T for + <d*—c*<1 (=:1)
£+1 1+2

For all x such that

x - c* and X -¢C
F - cF = -
d -c

are both in one of the four intervals Ii above,

(4.2) @ - c*)L£<§T—_—_—%;> =z @- 9L == f)
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Of the remaining twelve cases, we need consider only six, as
the others follow by symmetry. Let

is immediate.

e = g - of

and T: =d-=¢
X -6 1 and X-¢ _p . x-¢ _ ¥y
—F 1 —— &hiTF S F
u £+2
implies
& - x _ 5
x = .
v Fru2
Thus
#*F-x _ x-ct_ x-¢
Foa Fy Fy
—’i—l}ﬁeh and ==C€Eh:x-¢ = 5
u
gives x - ¢ = d - x. Thus
& -x _ x-c*_ x-¢c_ d-x
Fya Fy ¥y Fy
5%611 and == €L:F, = F, .
u
Thus
#-x _ x-c¢_ x-¢c_ x-¢
F =

£+1 F£ F F
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X - CF

F— €L and Z=S€k:x-C = 5
u
gives x - ¢ = d - x . Thus
x-c¢t_ x-¢c_ d-x
F, F, f
X - c¥ X -cC
TEIZ and — EI42F£+1Z Fﬂ
u
Thus
x—c*zx—sz—E
Fy Fy Ly
x - ¢* X ~-cC x - cF
—x— & I3 and Eli—x =
v u u F1+
implies
d*—x<F£—1
v Fy
Thus
d*—xzx—c*zx—z.
Fl F,€+l F,€+1

129

The case in which x € [¢,d] remains to be considered. Suppose x <

¢ < d. Since we proceed by standard Fibonacci in anyinterval of uncertainty

not containing x in its interior, starting with [c,d] is certainlybetter than

starting with [x,d] C [c,d], and we have already seen that [x,d] is better

than any interval between [c,d] and [x,d].
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A spy is called

(4.3) almost unpredictable

if for each subinterval [c*,d*] of the interval of uncertainty [c,d], which
results from the evaluation pattern, the spy has the option of reducing it only
to an interval [c,d] which contains [c*,d*]. Plainly, we still have

(4.4) Theorem. The optimal policy in the presence of an almost unpredict-
able spy is to heed his advice and to proceed from the interval of uncertainty
so achieved by modified Fibonacci search with respect to the remaining eval-

uation point if there is any.

5. CONCAVE FUNCTIONS

We shall see that a "spy" is available if the unimodal function to be max-
imized is known to be concave.
A function f: [a,b] = R is
(5.1) concave
in [a,b] if
fOx + 1Ly = MEx) + piy)
holds for all x,y € [a,b],A,4 = 0 and XA + g = 1. The function is
(5.2) strictly concave
if
fOx + py) > M(x) + pf(y)

holds for all x,y,A,u. which are as above and satisfy in addition x # y and
A,L = 0. We state without proof that
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(5.3) Every upper semicontinuous concave function on [a,b] is unimodal.

Without the additional hypothesis of upper semicontinuity, (5.3) does not
hold as there are concave functions without maximum on [a,b].

Now consider two points

Pi ;= (xi,f(xi ) Pj = (xj,f(xj ), X, < XJ. ,
of the graph
G : = jxfx) :x € [a,b]}

and let Lij be the straight line through Pi’ Pj' Concavity implies that the

graph of f does not lie below Lij in [xi,x.] and not above Lij in the re-

mainder of the interval [a,b]. Hence if five points of the graph G(f) ,
Pp: = (x0,£(xg))s *v°y Py = (x4,£(xy))
with
X = X < X9 < X3 < x4
and

frg) = fx), 1= 1,2,

are known, then that part of the graph G(f) that lies above [x;,x3] is con-
tained in the union of the two triangles Ay and A, formed by L, Ljs, Lipg and
Ly, Lgs, gy, respectively. £(x,) is a lower bound for the maximum value of

f. Therefore

(5.4) a maximum of f must lie inthe intersection of AjA, with the horizon-
tal through P,. (Fig. 5)
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Fig. 5 Bounding a Concave Function by Chords

The information that the function f is concave can thus be used in or-
der to reduce the interval of uncertainty.

In order to complete the description of the proposed search method for
concave functions, a few more conventions are necessary. At the ends of the
interval [a,b], we pretend that the function has value -oo and if it hasbeen
evaluated there, we pretend that there are two values for the same abscissa,
one of the values being infinite. Three evaluations will therefore reduce the
interval of uncertainty as indicated in Fig. 6.

We proceed to show that

(5.5) concavity is an almost unpredictable spy (4.3).

Proof. Suppose we have five points
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Fig. 6 Three Evaluations

where x; and x; may both coincide with the left end-point a, and similarly
x3 and x, may coincide with the right end-point b. For x, with i # 0,4,
we have finite function values f(xi), whereas f(x3) and f(x,) are possibly
infinite, provided xy = a or x4, = b, wespectively. We suppose further-

more that
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f(Xo) = f(le) = f(Xg) < f(Xg) < f(X4) .

Let [c,d] be the interval of uncertainty that results in view of concavity.
Observe that

X9 [ [C,d] .

Now select any x with ¢ = x = x5, x; <x, and assume that f(x)

satisfies
fx) = f(xy) + O(x - x;)

for some O with

f(xy) - fx1)

X=X

Then the new interval of uncertainty taking concavity into account will be of

the form [c,d], where

_ O0(x - x)(xy - X)
¢ T XTIy S I S ok - ® X

The difference ¢ - x measures the reduction of uncertainty due to concavity.

Now by definition of o,

O0x - x)(xg - %) B(xy - xq)2
M A AL AR S VTR

and the last term, independent of x, goes to zero as 0 goes to zero. In
other words, the contribution of concavity beyond unimodality becomes arbi-
trarily small as f(x) approaches f(x;) from below, without assuming it.

The symmetric argument canbe carriedout for x < x = d and x < x3.
This then will establish concavity as an almost independent spy.

[Continued on page 146. ]



SOME PROPERTIES OF THIRD-ORDER RECURRENCE RELATIONS

A.G.SHANNON*
University of Papua and New Guinea, Boroko, T. P. N. G.
and
A.F. HORADAM
University of New England, Armidale, Australia

1. INTRODUCTION

In this paper, we set out to establish some results about third-order re-
currence relations, using a variety of techniques.

Consider a third-order recurrence relation

(1.1) S, = PS, ; +Q, ,*RS, _; (@=4, § =0,

where P, Q, and R are arbitrary integers.

Suppose we get the sequence
(1.2) {Jn'}, when S =0, S, =1, and S5 = P,
and the sequence
(1.3) {Kn}, when S =1, S =0, and S5 = Q,
and the sequence
(1.4) {Ln}, when 8 =0, S, =0, and S3 = R .
It follows that

Ky =Jy - J1 Ky = Jg - PJy

and for n= 3,

*Part of the substance of a thesis submitted in 1968 to the University of New
England for the degree of Bachelor of Letters.
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(1.5) Kn = QJn—l + RJn-Z ’
and
(1.6) L, = RJn—l

These sequences are generalizations of those discussed by Feinberg [ 2], [ 3]
and Waddill andSacks [6].

2. GENERAL TERMS

If the auxiliary equation
x3-Px2-Qg-R =0
has three distinct real roots, suppose that they are given by «,f8,y.

According to the general theory of recurrence relations, Jn can be rep-
resented by

(2.1) 3, = APl 4 opptl C,yn—l ,
where

A = o B =
and

C = —n¥t
@-9B -1

(A, B and C are determined by Jy, Jy3, and Jjs.)

The first few terms of {Jn} are

@) = 0,1, P, P2 + @, PP + 2PQ + R, P!+ 3P%2Q + 2PR + Q.
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These terms can be determined by the use of the formula

[n/3] [n/2]

(2.2) E Z pt-3i-2j of

where anij satisfies the partial difference equation

(2-3) %nij ~ *n-1,4,7 T %n-2,1,§-1 © %n-8,i-1,j

a . = (n h j)
nO] J

~ <n - 21)
a . = .
nioc 1

Js = agP? + agy PQ + ag R
300 01 310

with initial conditions

and

For example,

PP+ 2PQ + R.

Formula (2.2) can be proved by induction. In outline, the proof uses the
basic recurrence relation (1.1) and then the partial difference equation (2.3).

The result follows because

[(a-1)/3] [(n-1}/2]
_ p-3i-2j
Pt 2 8 Z SERNL AL
[(n-2 /3 n/Z

_ n312]]
QJn Z E:n21]1 Q
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/3]  [(n-3)/2]

n-3i-2j j
§ : 2 : ah- 3,i—1,jP Q-

i=1

By using the techniques developed for second-order recurrence rela-

tions, it can be shown that

(24 (P+Q+R - 1)2Jr =J +A-Pg L+t A-P-QJ -1

n+3
r=1

It can also be readily confirmed that the generating function for {Jn} is
(2.5) E Jnxn = (1 - Px - Q< - Re%) 7
n=0

3. THE OPERATOR E

We define an operator E, such that
(3.1) EJn =J

n+l ’

and suppose, as before, that there exist 3 distinct real roots, «, B8,y of the

auxiliary equation
S .Px2-Q-R =0.
This can be written as

X-)x-Bx-9=&-px+qx -9 =0,

where
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and q = of .

The recurrence relation
In = PJn—l * QJn—Z * RJn~3
can then be expressed as
(E3 - PE% - QE - R)J =0 (replacing n by n + 3)
or
(3.2) (B2 - pE + )& - NJ =0,
which becomes

(3.3) (E2 - pE + Pu, =0

or

if we let

where {un} is defined by

(3.4) Woo = PU 4 - Qs n =0), u = 0, uy =1,

In other words,

(3.5) u = Jn+1 - ')/Jnl

and the extensive properties developed for {u_} can be utilized for {3}
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In particular,

2 _ . - n-1
(3.6) e R q

becomes
_ 2 _ - -
(Jn+1 'an) (Jn 'an—l)(Jn+2 an+1)
This gives us

2 _ _ 2 _
3.7 (Jn+1 Jan+2) + 7(J11+1Jn Jn+2Jn—1) * 72(Jn J

Another identity for {Jn} analogous to (3.6) is developed

Since
Jn = un—l +"'Jn—l
= lln—l * 7’(un-2 * Jn_Z)
= un 1 +'yun 2 * ')/Z(un 3 * Jn—3)
then
n
_ n-r
(3.8) Jn = E % u.q o
r=1

[Feb.

n-1

=4q

_ n-1
n+1Jn—1) = 4a

below as (4.4).

which may be a more useful form of the general term than those expressed

in (21) and (2.2).

4. USE OF MATRICES

Matrices can be used to develop some of the properties

In general, we have

of these sequences.
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Ss 'P Q@ R[S, P Q RJPE[Ss
S4 = 1 0 0 83 = 1 0 0 Sz
Ss 0 1 0[S, 0 1 0 Sy
and so, by finite induction,
+n-3
Sn P Q R Sg
4.1) Sn-l =1|1 0 Sy
Sn_2 0 1 0 Sy
Again, since
P Q@ R P2+Q PQ+R PR J, Ky RJg
1 0 = P Q R = J3 K3 RJZ
0 1 0 1 0 0 Jdy  K; RJy
we can show by induction that
n —
P Q R Jn+2 Kn+2 RJn+1
n = =
(4.2) § =11 0 0 Jn+1 Kn+1 RJn
0 1 0 g, K, RI 4

Inrz Fnee RIpsa

n _ o,n _
(4.3) (detS)” = R~ = I Ko RJ,
I K, RI 1

By the repeated use of (1.5), we can show that
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Jn+2 Kn+2 RJn+1 Jn+1 Jn Jn+1
= 2
Jn+1 Kn+1 RJn R Jn+1 Jn-l Jn
Jn Kn RJn—l Jn Jn-Z Jn—l
and
J1r1+2 Jn Jn+1
_ 5h=2
(4.4) Jn+1 Jn—l Jn = R
Jn n-2 Jn—l

which is analogous to
(4.5) ufl -u .-u = qn—1

for the second-order sequence {un} defined above, (3.4). In the more gen-

eral case, we get

Sn+3 Sn+1 n+2
_ _ oh-1
Sn = | She2 Sp 1| =8 &
Sn+l Sn—l Sn
and the corresponding determinants are
Sn+3 Spar Spez St S 5
_ h-1
2 Sn Sn 44 R S3 Sy Sy
n+1 Sn-l Sn S2 S &

Matrices can also be used to develop expressions for

ey

2 VK © L
n n n
PO D= T P

n=0 n=0 n=0

=]
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by adapting and extending a technique used by Barakat [1] for the Lucas
polynomials.
Let

a 2 3
X = lay 92 A3

agy agy ass
with a trace
P = aj +ap+ag, detX =R,

and

For example,

a 0 0
X=|0 B 0
0 0 vy

satisfies the conditions.

The characteristic equation of X is

A -PX-QA-R =0
and so, by the Cayley-Hamilton Theorem [4],

X3 = PX* + QX + RL

Thus
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Xt = PX® + QX? + RX

1l

{P* + QX? + (PQ + R)X + PR

and so on, until

n= 9
(4.6) X" =5 XR+K X+L L.

Now, the exponential of a matrix X of order 3isdefined by the infinite series

(4.7) e}‘é

1

1
2-(+2T§+... ,

[ [

= T +
g

where I is the unit matrix of order 3.
Substitution of (4.6) into (4.7) yields

©0 [=e] K
(4.8) e}~(=xzz —,n+X_$_ 2 +1y —
~ n! = n! ~ n!
Sylvester's matrix interpolation formula [5] gives us

(X - D - gD

X _ M
(4.9) e Z T Ry -y
)\1’A2’A3

where Ay, Ay, A3 are the eigenvalues of X.

Simplification of (4.9) yields

> {eMOy - 2)XE +eM0E - DX + Mgy 0 -2 5)1}

)‘1’)\2’)‘3
(4.10) X =

M - )9 = A3) (g - Ay)

By comparing coefficients of ,}v(n in (4.8) and (4.10), we get
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Z e)\i (Ag - )\2)

©o
ZJH _ A13A21A3
E =

=0 M:I;\_z[,?\g O\

=]

n
i

Z.O:L ) T eM s O - A)
n=0 TT(M - )

The authors hope to develop many other properties of third-order recur-

rence relations.
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Combining (5.5) with Theorem (4.4) yields

(5.6) Theorem. Using concavity as a spy in a modified Fibonacci search is
the optimal strategy for reducing the interval of uncertainty of concave

functions.

6, FINAL REMARKS

From the proof of Theorem (5.6), it is apparent that the proposed search
strategy for concave function is "min sup' rather than '"min max." I other
words, the problem is not well set. Indeed, it makes probably more sense
for concave functions to decrease the uncertainty in the value of the minimum
than in its locatioh.

A similar argument as was used for proving (5.5) can be employed to
show that for each € = 0 and each positive integer k there is a concave
function for which the reduction of uncertainty by optimal search is improved
byless than € over unimodal search. In general, however, the improvement
will be drastic, in particular if the function is well rounded, so to speak, and

has a maximum in the interior.
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DETERMINANTS AND IDENTITIES INVOLVING FIBONACCI SQUARES

MARJORIE BICKNELL
A. C. Wilcox High School, Santa Clara, California

Determinants provide an unusual means of discovering identities involv-
ing elements of any Fibonacci sequence. In this paper, a determinant rela-
tionship believed to be new provides the derivation of several seriesof identi-

ties for Fibonacci sequences.

1. THE ALTERNATING LAMBDA NUMBER

First is displayed the theorem which provides the foundation for what
follows. Only 3 x 3 determinants are discussed here, but the theorem is
given in general.

Theorem. Let A = (aij) and A* = (a"i‘j) be n x n matrices such that

& =a. + ()Mg .
1] 1]

Then
det A* = det A + k(detC) ,
where C = (Cij) is the (n - 1) x (n - 1) matrix given by

°j T %5 F %a,5a T R,y T A,
Proof. Successively replace the kth column by the sum of the (k- 1)St
and kth columns for k =n, n-1, ***, 2. Then successively replace the
K™ row by the sum of the (k - 1)5* and k™

The resulting determinant is

row for K =n,n-1, =°°, 2.

a1 + k a3y + 81y Ay *+ a3
A t+ ay Cyy Ci2 cee

= det A + k(det C)
ag + ay Ca1 Ca2

147
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by noting that the determinant on the left can be expressed as the sum of two
determinants by splitting the first column and then reversing the above steps
for the determinant which does not contain k in the upper left corner.

Specifically, the theorem says that, for n = 3,

la+k b-k c+k a b ¢

a+b+d+e b+c+e+f
d-k e +k f-k| =1{d e fl + k

d+e+g+h e+ f+h+i
g+k h-k i+k g h i

Definition. We agree to call det C of the theorem the alternating
lambda number of A, denoted by }\n(A).

The closely related lambda number of a matrix arisingwith the addition
of a constant k to each element of a matrix has been discussed in [1], [2],
and [3].

As an illustration of the theorem, evaluate det Wn for

2 2 2

Ln Ln+1 Ln+2
- 2 2 2

Wn Ln+1 Ln+2 Ln+3
2 2 2

I"n+2 Lh+s Ln+4c

where each element is the square of a Lucas number Ln, using the usual
Iy =1, Ly = 3, Ln+2 =L + Ln+1' The value of the analogous det W’;l
where Wr"; is formed from Wn by replacing Ln by the Fibonacci number
Fn’ defined by

Fy =F, =1, F_=F +F

n+2 n+ ?

has been given in [4] as 2(_1)n+1 . It is not difficult to calculate }\a(WI"l‘):

2 2 2 2 2 2
A (WH) = o Fnaa s Fna ¥ Fras ™ Pnee| _ [Mansz Tonss| _
a n 2 2 2 2 2 2
Fo TP T 2F e Fho P Fnig T 2F gl [Lonas Lonwa

Since
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n+1
5}.«‘121 = L; + (-1)" 4,
det (5W*) = det W_ + (-1)™ 4 (5w*)
n n a n
5%.2(-1)2 = get W+ 1" 14525

det W = (-1)2.58

2. DETERMINANTS INVOLVING SQUARES OF ELEMENTS
OF ANY FIBONACCI SEQUENCE

Consider the matrix

H2 H2 2

n n+1 n+2
= 2 2 2

(2.1) An Hn+1 Hn+2 Hn+3
2 2 2

Hiv  Hiz Hiyg

where each element is the square of a member of a Fibonacci sequence {Hn}
defined by

B =p H=0a Hyy=H, .

Since an identity for such Fibonacci sequences is
H]_Zl-[.g = ZHJ%I"'Z + 2H?1+1 - H%l 9

multiplying each element in columns two and three by (-2) and addingto col-

-H H? Column exchanges

i 2 2
umn one yields the elements -H n+4’ ~Hpis

n+3°
show that

det An = - det An+1 s
so increasing the subscript by one in An only changes the sign of det An’
and Idet Anl is independent of n. It is not difficult (just messy) to evaluate
det A , then, by picking a value for n, calculating members of {Hn} in
terms of p and ¢, and using elementary algebra. This method of calcula—
tion for 3 x 3 determinants whose elements are squares of Fibonacci num-

bers was given by Fuchs and Erbacher in [4].
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The results are
det A, = 2(-1%a? - pa - p?) = 2(-1)"D
(2.2) A M) = 5@ - pq - p) = 5D, ’
where DH is the characteristic number of the sequence (see [5]). If {Hn}

_ _ n+1
F= -1 and det An = 2(-1) .

The same method will allow the calculations of the values of several

other determinants which follow.

= {Fn}, the Fibonacci sequence, D

HY Ha  Hio

(2.9) detC = (H . EHA @ HI.|-= (-1)"64 D} :
Hie Hig  Hig
A,(C,) = 160 D

Continuing since also

Hn+4 Hn+2 = 2Hn+3 Hn+1 *+ ZH1r1+2 I-In - I_In+1 Hn-l ’
we obtain (2.4) and (2.5):
Hn+1 Hn—l Hn+2 Hn Hn+3 Hn+1
_ - ( n+l 3 .
(2.4) det Rn = Hn+3 Hn+1 Hn+4 Hn+2 Hn+5 Hn+3 (-1) 3 DH :
Horafnie HppsHois HpgeHpug
= 2
)\a(Rn) 5 DH .
Hn+1 Hn-l Hn+2 Hn Hn+3 Hn+1
_ _ n+1 3 .
(2.5) det Sn = Hn+4 Hn+2 Hn+5 Hn+3 Hn+6 Hn+4 = (-1) 96 DH :
I-In+7 Hn+5 Hn+8 Hn+6 Hn+9 Hn+7
= 2
}xa(Sn) 160 DH

Since
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2 = _y
Hy = HpyyHy g + D Dy
Equations (2.4) and (2.5) can be obtained in a second way with a minimum of

effort by using the alternating lambda number theorem. For example, to find
(2.5) using (2.3),

_ n
det Cn = det Sn + (-1) DH)\a(Cn)

64(-1)’“1)3H = dets + (—1)nDH (160 D2)
_ n+l 3
det s, = (-1)"""96DY

Also, notice that

2,(Cy) = A (5,) -

The identity

2 - 2 _ Q2 2
Hn+6 8Hn+4 8Hn+2 + Hn

allows one to use the method of Fuchs and Erbacher to find two more values:

Hi H31+2 H%1+4
(2.6) detB = |H, EH, EH., = (—1)n18D:I’_I :
Hl,y Hi Hig
A,(B,) = 9Dy [(178H2,, +13Dy]
H} Hi Hu
(2.7) mLe Hig  HIL = (D72MDy .

2 2 2
Hpviz  Hpaa Hpagl

+ . .
Compare (2.6) with the Fibonacci result (18) )" L as given in [6],
and notice that D"I"JI is afactor in each determinant value found in this section.
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In (2.6) and (2.7) the alternating lambda numbers are not independent of
n and hence are not useful in what follows. The alternating lambda number

for (2.6) is interesting in that it depends upon the center element of Bn .

3. IDENTITIES FOR MEMBERS OF ANY FIBONACCI SEQUENCE {Hn}

Before we can continue, we must standardize our sequences. For pur-
poses of forming a Fibonacci sequence, Hy = p and Hy = q are arbitrary
integers. But surprisingly enough, if enough terms are written, each sequence
has a subsequence of terms which alternate in sign as well as a subsequence
in which all terms are of the same sign. Since we want a standard way of
numbering the terms of these sequences in what follows, when we want the

characteristic number

D, = H} - HyHy - H

to be positive, then we take Hy, as the first member of the non-alternating
subsequence, and H; as the second member. When we want DH < 0, we
take H; as the first or third member of the non-alternating subsequence,
Note that Dy = 5 for {Hn} = {Ln}, and Dy = -1 for {Hn} = {Fn}. Now
we are ready to develop several identities which relate two Fibonacci sequences.

The identity

n+1 4

2 _ - 2
Ln + (-1) 5Fn

suggests that we seek an identity relating two Fibonacci sequences {Hn} and
{Gn}. Returning to (2.1), form matrix A~ with elements from {Hn} and
matrix A¥ with elements from {Gn}. If there exist two integers x and k
such that

n+1
X

2 _ - 2
Hn+(1) an s

then the alternating lambda number theorem and (2.2) provide
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n+l *
X\ a(kA ¥)

Il

det A+ (-1) det (kA% )

n+l

]

2(-1)’“13%I + (1" x(5kDZ,) 2(—1)nk3D3G
.- (D%I - k?’Di(‘})(z)

212
5k DGr

If —kDG = DH’
be a multiple of 5. A solution is given by k = 5, D

then x = 4DH /5. Since x must be an integer, DH must
H = 5(—-DG). Since 5
and multiples of 5 do occur as characteristic numbers, we have

9 _ n+1 fl:_ _ 2
(3.1) Hn + (-1) 3 DH = SGII ’

where {Hn} has the positive characteristic number D, and {Gn} has the

H
negative characteristic number DG = -DH /5.

An example of a solution is given by the pairs of sequences

{Hn} = {¢e., 13, -6, 7,1, 8, 9, *=}

and

{Gn} = {eee, 5, -1, 3,2, 5, 7, =+ }

or their conjugates

]

{m%} = {--+,8,-1, 7, 6,13, -}

and
{G*} = {"', 5, -2, 3, 1, 4, 5, "'}

n

Since Dy =55 >0, set Hy = 1 and Hf = 6, but since Dy = -11 < 0,
take Gy = 3 and Gj = 4. Using {Hn} and {Gn}, notice that

2 _ n+l1 - 9
(3.2) Hn + (-1) 44 5 Gn .
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Also note that

n n+2 n+1

and

Gn * Grn+2 = Hn+1 *

Above, {Hn} and {Gn} were found by simply referring to a table of
characteristic numbers. (See [5] and [7].) To write a pair of sequences
{Hn} and {Gn} to satisfy (3.1), let p > 0 be an arbitrary integer. Let z
be an integer such that

P 2z (mod 5) .

Then Hy = p and Hy = z gives D, = 5m for some integer m, and

H
gives {Gn} with D, = -m. The justification is simple, for if p = 2z (mod
5), then
Dy, = z2 - pz - p* = (z - pP)z +p) - pz

(5k - z)(3z) - 2z%2 = 15kz - 522 = 0 (mod 5) .

il
1l

The other statements follow by elementary algebra.

Solutions to (3.1) with DG = - Dy /5 for Hy =1, 2, +++, 7, °**, P,
*++ follow. In each case u,t =0, 1, 2, *°° ,

Two more identities relating the two Fibonacci sequences {Hn} and
{Gn} just described follow.

The identity

n+l _ 2
LnLn-l-z + (-1) =35 Fn—l
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{H} {c,}
Dy (Hy, Hy) (G, Gy)
25t(t - 1) + 5 (1, -2 + 5t) (2t - 1, t)
25t% - 5 (2, 1 + 5t) (2t, 1 + t)
25t(t - 1) - 5 (8, -1 + 5t) 2t - 1,1 +t)
25t2 - 20 (4, 2 + 5t) (2t, 2 + t)
25t(t - 1) - 25 (5, 5t) @2t -1, 2 +t)
25t2 - 45 (6, 3 + 5t) (2t, 3 + t)
25t(t - 1) - 55 (7, 1 + 5t) (2t - 1, 3 + t)
25t% - 5u? (2u, u + 5t) (2t, u + t)

25t - 1) - 5(u® +u - 1) Qu+1,u + 5t - 2)

2t -1, u +1t)

suggests searching for an identity of the form

n+1 _ 2
x =k Gn+1

H H + (-1)

n n+2

The alternating lambda number theorem, (2.2) and (2.4) give

n+1 B * - sk
det Rn + (-1) x}\a(kAn) = det (kAn+1)
_ n+2 3 n+l 2 M2 _ n+1 33
3(-1) DH + (-1)" “x(5k -DG) = 2(-1) kDG
313 3
_ 2k DG + 3DH
* = 2,12
bk °DG
If kDG = DH’ then x = DH’ and we have the known identity
n+1 _ 9
(3.3) Han+2 + (-1) DH = Hn+1 .
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If kD, = -Dy, then x = Dy /5. Again let k = 5 since D, must be a

multiple of 5, yielding

n+1 _ 9
(3.4) Han 4o T (-1) DH /5 = 5Gn+1 s

where the characteristic number of {Gn} is -DH /5.
A final derivation is suggested by the identity

2 ! -
Ln + (-1) 5Fn+1 Fn—l

Proceeding as before using (2.2) and (2.4),

2 n_ _
H: + (-1)'x = kG G
n —
det An + (-1) x)\a(kRn) = det (kRn)

2(-D"DY, + (-1)"x(5k?D,) = (-1t 33D,

-3k®D3, - 2D3

G H
X = p— .
5k DG
If DH = —kDG, then x = DH /5, and if k = 5, we have
2 n =
(3.5) Hn + (-1) Dy /5 = 5Gn+1 Grn_1 s
where again D then x = -D and taking k =

e = Dy /5. 1If D, = kD
1 gives the known identity

G’ u’

9 n+l -
Hn + -1 DH Hoa Hn-l ?

which is the same as (3.3).
The possibilities are by no means exhausted by this paper.

REFERENCES
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[Continued on page 184.]




A GENERATING FUNCTION FOR PARTLY ORDERED PARTITIONS

L. CARLITZ*
Duke University, Durham, North Carolina

1. In a recent paper [1], Cadogan has discussed the function (Pk(n)
which satisfies the recurrence

together with

() dol) = p(n)
and
3 9, ) = 257 ( =1)

As usual p(n) denotes the number of unrestricted partitions of n, so that

= -1
@ D pws® = ﬁ - .
=0 n=

The object of the present note is to obtain a generating function for
(j)k(n). Put

(Dk(x) =Z¢k(n) =,

n=k

Dy = ) PRy - Z 9, x5

k=0 n,k=0

*Supported in part by NSF Grant GP-17031
157
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Then, by (1) and (3), we have

D) = 27N D (o w1 46 @ - D"
n=k+1
= Zk_l Xk + xz:d>k(xn)xn + xzdxk_l(n) P
n=k n=k

= S g @)+ xe W) -0 O - D
so that
(5) 1 - P = xdy(x) ,
(6) a1 - x)cbk(x,) = Zk—zxk = x(bk_l(x) &k =1).

It follows that

-]

[Feb.

d(x,y) = Ppx) + P(x)y +Z¢k(x) yk
k=2
= dolx) + 1—X_31E Dyx) + 7 L XZ{zk 255 4 XP, (x)}y
k=2
= Py(x) + T——;:Tk—; (D(X,Y)
We have therefore
a - X)‘Do(x) Xzyz
®(x,y) =i-x-xy +(1—X—Xy)(1-2xy)
@ o :
_ 1 -x X
T 1-x-xy H(l—x) (1—x—xy)(1-2xy)

n=1
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2. By means of (7) we can obtain an explicit formula for <1)k(x).

1-x xy \* £

T = 1 - Y = S S A

- X - Xy 1-x (l—x)k
k=0

and

T-x- Xy)(l ~oxy) T E PR Z(ZXY)

r=0
© k
-2 49
r+1
k=0 =0 a-
it follows that
k £2 kr2 k
(8) b, (x) = ————— Py(x) + —
k a - x)k —~d (1 - X)r+1
=0
Moreover, since
[>e)
1 _ ( T + s) s
T+l Z T ?
a-x s=0
Eq. (8) implies
n-k k-2
_ k+r-1 k-r-2{n -k +r
@ 9 ) = D ( . )p(n—k—r)+§ 2 ( r
r=0 =0
(=

For k =1, we have

)

159

Since
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n-1
(10) ) = Z p(n - 1)

r=0

as is evident from (5).

Replacing k by n -k in (9) we get

k n-k-2
_ n-k+r-1 n-k-r-2f(k +r
an 9, @ =) ( ; )p(k LEDIE ( . )
r=0 r=0
n=k + 2)
Cadogan [ 1] has derived the formula
k n-k-1
_ n-r-1 k+r -3\ n-k-r+1
D M Gt R D (e £
r=3 r=0
(12)
k-3 n-k-1
=Z(n-k+r—1)p(k_r)+ Z(k+r—3)2n—k—r+1 .
T r
r=0 r=0

B=k <n, n= 4)

To show that (11) and (12) are in agreement, it suffices to verify that

n-k-2

Z Zn—k-r-z(k + r\ﬁ

bst r J
n-k-1

(13) - Z 2n—k—r+1(k+£-3>_<nl—{1)_(E:i)_z(ﬁ:g)
r=0
n-k-2
- Z 2n—k—r+1<l<:+¥—3)_<nl—<2) _ 2<E:f)_4(§:§>
r=0 =k +2)

Since
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o n-k-2

§ : Xn—k—z § : 2n~k—-r—2<k;l.-r>
n=k+2 r=0
e [£e]
_Z<k+r>xr y Vo0 D 1
B T B k+1
=0 e i-x" Q- 2%
and

0

E n-k-2
X

$ e 0179 (52 e o(12)

n=k-+2 r=0
_ 8 _ 1 _ 2 _ 4
1-x052%0 29 - @-mf @-»t
_ 1
1 - »5a - 2x)

it is evident that (13) holds
3. Put

n
b = DG5S,
k=0

so that

Yoly) = 1, U@y =1+, Yoly) = 2+2y+2y2

Then by (1) and (3), for n = 2,

n-1
) = pl) +Z {90 -1 +¢ - HIyE 4 2P0
k=1
= pw) + @y 1 ® - pl - 1) + 3l 6 - h-2yi-ly ool o
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Thus

n-2 n
(14) ‘l’n(Y) = pn) - pln - 1) + (1 + y)(pn_l(y) + 2%y = 2).

For example,

o(y) 1+@0+y2+y2=2+2y+ 2y

Yi5(y) 1+ @+ 9@+ 2y + 2y%) + 29°

= 3 + 4y + 4y? + 4y° .

It is also evident from (14) that

@5 Y, = pw - pl - 1 + 2"+ 29 @) = 2)
and
(16) (1) = pk) - pl - 1) + (-" 272 (= 2.

The last two formulas are also implied by (7).
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FIBONACCI PRIMITIVE ROOTS

) DANIEL SHANKS
Computation and Mathematics Dept., Naval Ship B & D Center, Washington, D. C.

1. INTRODUCTION

A prime p possesses a Fibonacci Primitive Root g if g is a primi-

tive root of p and if it satisfies

(1) gt = g+1 (mod p) .

It is obvious that if (1) holds then so do

(2) @ =g+g (mod p) ,
(3 gt = g2+ ¢g? (mod p) ,

ete.
For example, g = 8 is one of the four primitive roots of p = 11 (the
others being 2, 6, 7), and g = 8 (only) satisfies {(1). Thus, its powers g

(mod 11) are
1, 8,9, 6, 4, 10, --- (mod 11)
and may be computed not only by
9 =8, 6 =98, 4 =98, " (mod 11) ,
but also, more simply, by
9 =8 +1, 6 =9 + 8, 4 =6 +9, - (mod 11) .
Thus the name: Fibonacci Primitive Root.

The brief Table 1 shows every p < 200 that has an ¥.P.R., and every

such g satisfying 0 < g <p that it possesses. By incomplete induction (a

163
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TABLE 1

e —2 2 g

5 3 71 63
11 8 79 30
19 15 109 11, 99
31 13 131 120
41 7, 35 149 41, 109
59 34 179 105
61 18, 44 191 89

fine old expression seldom used these days), we observe the following prop-

erties, all of which are easily proved in the next section.

A. Except for the singular p = 5, all p havingan F.P.R. are = 1
(mod 10).
B. Butnotall p = %1 (mod 10) have an F. P.R., since, e.g., p = 29

and 101 do not.

C. Except forthe singular p = 5, the numberof g in 6 <g < p, if
any, is 1 or 2 according as p = -1 or +1 (mod 4).

D. In the latter case, the two g satisfy

4 g Tg =pt1l.

2. ELEMENTARY PROPERTIES

The solutions of (1) are

(5) g == \/3)2_1 (mod p)

and therefore exist if, and only if, p =5, g=3, or p =10k +1, since
only these p have 5 as a quadratic residue. This proves A. For p = 29,
the two solutions of (1) are g = 6 and 24, but since these are also quad-
ratic residues of 29, they cannot be primitive roots, thus proving B. The

product of the two solutions (5) is given by
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(6) gi1g2 = -1 (mod p) .

Thus, if p = -1 (mod 4), one g is a quadratic residue and one g is not.
There can, therefore, then be at most one F.P.R. On the other hand, for

p = +1 (mod 4), consider
g2 = 'gfi

If gy is primitive, and gy is of order m, then
g = (1™,

Therefore, m is even, and so g, is primitive also. Thus, gy and g, are

both primitive, or neither is. This completes C. Finally,
(7) g +gy =1 (mod p)
and (4) follows from 0 <g < p.

3. THE ASYMPTOTIC DENSITY

Let F(x) be the number of primes p =x having an F.P.R. (We do
not distinguish inthis count whether p has one ortwo.) Then with 7(x) being

the total number of primes =x, we

Conjecture: As x- o,

@) E%;_ ~ 28 - 0.2657054465 -+
where
o0

= — —_1— = LRI
9) A pl =2l (1 oo 1)) 0.3739558136

is Artin's constant.
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Artin originally conjectured, cf. [1], [2, page 81] that if Va(x) is the

number of p =x having a as a primitive root, and if

a # b° > 1),
then
V&
(10) - A

Subsequently, [3] it was found that the heuristic argument was faulty for a =
5, -3, and infinitely many other a but it was still considered reasonable for
a=2,3, 6,7 10, etc. Both heuristically and empirically, Eq. (10) seems
correct for these a, and Hooley [4] recently proved that (10) is then true
provided one assumes a sufficient number of Riemann Hypotheses.

The heuristic argument for (8) is similar to that which leads to (10),
but we must modify two of the factors in (9). Consider the primes in the

eight residue classes

20k + 1, 3, 7, 9, 11, 13, 17, 19 .

Those in 20k + 3, 7, 13, 17 cannot have an F.P.R. For those in 20k + 11,
19 the factor

1 - 1
22 - 1)

in (9) must be deleted. This represented the probabilitythat a is not a quad-
ratic residue and therefore could be a primitive root. But for 20k + 11, 19,
one of g and g, must always be a quadratic nonresidue as we have shown
with (6). The factor

5(6 - 1)
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in (9) represented the probability that a is not a quintic residue and therefore
could be a primitive root. For 20k +9, 19 p has no quintic residues since
these p are not =1 (mod 5), and so this factor is deleted. For 20k + 1,

11, p is always =1 (mod 5), and the factor must be changed to

1—3-.

Therefore, the expected density of p in these eight residue classes
having an F. P.R. is the following:

20k + 1 16A/19 20k + 11 32A/19
20k + 3 0 20k + 13 0
20k + 7 0 20k + 17 0
20k + 9 20A/19 20k + 19 40A/19

As x- o, the eight classes of primes are equinumerous, and so (8) follows
from this table by averaging these densities. On the other hand, it is known

that the number of primes in
20k + 1, 20k + 9

will generally lag somewhat behind the other six classes since 1 and 9 are
quadratic residues of 20, cf. [5]. We therefore expect that the convergence
of F(x)/m(x) to 27A/38 will be mostly from above.

The empirical facts are given in Table 2.

TABLE 2
X F(x) & F(x)/m(x)
500 31 95 0.3263
1000 46 168 0.2738
1500 66 239 0.2762
2000 81 303 0.2673

2500 97 367 0.2643
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This seems thoroughly satisfactory.

It seems likely that one could transcribe Hooley's theory [4] to the
present variant, and thereby prove (8), assuming a sufficient number of
Riemann Hypotheses. But the theory in [4] is by no means simple, and this

transcription has not been attempted so far.

4. SEVERAL REFERENCES

Inclosing, we indicate three references related to the concept developed
here. The idea for a Fibonacci Primitive Root was suggested by Exercise 158
in [2, page 206]. It is shown there that if g is any primitive root of any

prime p, the sequence of first differences

11) gn+1 - gn (mod p)

is the same as the sequence

(12) g?d (mod p)

for some fixed displacement d. If, now, one has the first d powers of g:

d
1’ g! gzi...’g H

one can obtain all further powers additively from (11). Our construction here
forces d = 1 and therefore allows this additive computation ab initio.

In [6], W. Schooling gives a curious method of computing logarithms

based on the fact that all powers of
0 = (1 +~N5)/2
can be computed additively:

+1,

<
N
1

=¢t+ 09,
[Continued on page 181. ]



AN INTERESTING SEQUENCE OF NUMBERS
DERIVED FROM VARIOUS GENERATING FUNCTIONS

PAUL §. BRUCKMAN
San Rafael, California

The following development, to the best of the author's knowledge, is
new. At any rate, it is original and very interesting. We begin by defining

the function

) flx) = 1/(1 - x)N1 + x

This may be thought of as the generating function of a power series in
x, whose coefficients we are to determine. Thus, we seek the values of the
coefficients Ak’ where

That this representation is valid may be seen by observing that 1f(x) is
expressible as the product of the two functions (1 - x)_1 and (1 +x)°%, each

of which is of the same form as (2). In fact,

© s K
@ @-01=Y <, ad a+x7-= }:(ﬁf) (&) <
k=0

Therefore, it follows that

L)

i=0

From the foregoing expression for Ak’ it is evident that

169



170 AN INTERESTING SEQUENCE OF NUMBERS DERIVED [Feb.

k
2k 1
(5) Ak = Ak—l + (k) (—Z> s Ao =1 .
Recursion (5) may be expressed in the form
k-1
~ 2k-1 2k - 2\ [/ 1
(6) Ag = Ber K ( k-1>(“21>

If, in recursion (6), we multiply throughout by (2k)/2k - 1, and if, in
recursion (5), we replace the subscript k by k -1, we may add the two re-
sults, thereby eliminating the factorial term. Upon simplification, this pro-
cess yields the following recursion, which involves three successive values

of Ak:

(7) 2kA, = A 1t 2k - 1A

k k- k-2 °

This is valid for k = 2, 3, 4, ---, and if we affix the values A; =1 and
Ay =%, we have fully characterized the coefficients A .
We shall now define the sequence of numbers Bk’ such that for each

non-negative integer Kk,
(8) B, =2 .kl.A
Substituting this definition in recursion (7),

2kB B, 2k - DB,
K = +

27 . k! zk’l(k -1 zk"z(k -2

If we multiply this result throughout by Zk_l - (k - 1)1, we obtain:

(9) B = B

" L+ Gk - D@k - 2)B,

k-

Recursion (9), plus the initial conditions By = By = 1, completely
characterize the coefficients Bk' Furthermore, from (9), it is evident that
all the Bk's are integers. Upon application of (9), for the first few values

of k, we obtain the following values:
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BoEBlzl, B2=7, B3=27,

B, = 321, By = 2,265, By = 37,575, B; = 390,915,

etc. We may summarize the results thus far derived in the following form:

® k
(10) f2x) = 1/ - 2 NT 7 2% = ) B =
k=0
where
K i
ok 2i\ / 1
B, = 2 'k’E(i)(“Z>
i=0

What struck the author as interesting was the fact that the sequence of
numbers Bk appears in other power series, derived from generating func-
tions of totally different form from (10).

Specifically, we will demonstrate that

X ©0
2k+1
_ x*/2 ~u? _ X
(11) g(X) = e f e du = E Bk -(m N
0 k=0
and
® 2k+1
= -1 2 = 2 X
(12) B =t x/NT - = ) (B T
k=0

Let y = g(x). I we differentiate y, as defined in (11),

X
2 _x2 2 S _x2
y'=eX/2.eX+xex/2feudu=ex/2+xy,

(@)

Differentiating again, we obtain
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_x2 52 _x2
x2/2 _Xex/z x2/2

y' = —xe +xy! by = + xe + X%y +y = (1 + x2)y.

Next, we observe that g(x) is an odd function of x. This is demon-
strated by replacing x with -x and the dummy variable u with -u in(11),
which yields g(-x) = -g(x).

Therefore, g(x) may be expressed in the form

Negative powers of x are excluded, for otherwise g(x) would be discontin-
uous at x = 0, along with the first and higher order derivatives. However,
it is readily seen that g(0) = 0, g'(0) = 1, and g'(0) = 0,

We will use these conditions to develop a recursion involving the coef-

ficients Ty If we differentiate the series expression for g(x),

o0 oo
a3 g = 3 @k+ D, 2K enm) = 3 2keek + x5
k=0 k=1
We use the differential equation y" = (1 +x2®)y derived above, which
becomes transformed to the following relationship:
(=] (=) ©0
2k+1 2k-+1 2k+1
(14) }: 2k + 2)(2k + 3)rk+1x o= E X + Z . 1 X .
k=0 k=0 k=1

If we equate the coefficients of similar powers of x, we obtain:

=1 +r

(15) ry = 61y 2k + 2){(2k + 3)r c i

1 g i k=1,2,8,-

Using the condition g'(0) = 1, we see that ry; = 1, and therefore,

=

ry =
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We now define the sequence of numbers Rk such that, for every non-negative
integer Kk, Rk = (2k +1)! I Substituting this definition in recursion (15),
and multiplying throughout by (2k + 1)}, we obtain:

(186) R = R

o + 2k(2k + )R

also, Ry =Ry = 1

k k-1’

But if we replace k by k-1 in (16), we obtain precisely the same re-
cursion as (9). Since the initial values of R, are identical to those of B,
we conclude that Rk = Bk for all values of k, and the validity of (11) is
established.

The proof of (12) is similar, though somewhat more complicated. We
begin by squaring both sides of (9), and solving for Bk-l Bk_2 :

2 _ g2 _ 12 _ 2)2R2
an s B _ Bk Bf 4 2k - 142k - 2) By o
k-1"k-2 2(2k - 1)k - 2)
Next, we may multiply (9) throughout by Bk—l’ obtaining
= B2 - -
(18) B, B, = Bl  +(2k - )@k - 2)B_ B, , .

If, in (18), we substitute the expression derived in (17) for Bk—l Bk-z’
and the corresponding expression for Bk Bk-l obtained by increasing the
subscript from k -1 to k, we arrive at a recursion which involves only the

squares of successive Bk’s. Upon simplification, this becomes

2 = 2 2 2
Bl = (kP + 2k + 1)(B} + 2k(2k + 1B} )
(19) - (2k - 2)%2k - 1)%2k(%k + 1)B} ,

Next, we observe that h(x) is an odd function of x, continuous at x =

0. Therefore, as before, h(x) may be expressed in the form

Z s X2k;+1
k
k=0
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As before, we will develop a recursion involving the s 's. If we let

k
z = h(x), as defined in (12), we differentiate as follows:

1
o = a - XZ)-%- 1 + xz)—1 + x tan x - 1 - xz)_% _ @ - x2)72 + Xz
1 - x2 1 + x? 1 - x?
Differentiating again,
-3/2

VAL

1
x(1 + x2)(1 - x?) - 2x(1 - x%)72 et - x%)(xz' + z) + 2x27

A+ =) 1 - =2)?

From the first differentiation,

(1 _ X2)";% - (1 + Xz)(Z' _ X7 )

1 - x2

Substituting this result in the second differentiation, we eliminate all irrational

functions of x, and upon simplifying the result:
(200 (@ +x2)1 - x2) 20 + 43 - Dz + (@2xt - 8 - Dz = 0 .

In the series expression for h(x), there will be no loss in generality

if we make the substitution S = Sk + (2k +1)!, Then
[~} [+e] [>)
x2k+1 XZK X2k+l
2= D08 ek Y C 2 SkwmRr T Y Sen GEEIN
k=0 k=0 k=0

Each term in differential equation (20) may be expressed in series form
by means of the latter expressions. Using the method of equating coefficients
(the development is omitted here, in the interest of brevity), we arrive at the

following recursion:

— 2 2
(21) Sk+1 = (4k* + 2k + 1)Sk + 2k(2k + 1)(4k? + 2k + 1)Sk-1
- 2k(2k + 1) (2k - 1?2k - 2)%8,_,
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valid for k = 0, 1, 2, 3, ***. But this recursion is of the same form as
(19), and becomes identical to it if 8, = Blz{ for all non-negative values of k.
It remains to show that such is the case for the initial values, where k = 0
and 1. We observe that h(0) = 0, and from the first-order differential equa-
tion, h'(0) = 1. But we see from the series expression for z' that h'(0) =
Sy = 1. From (21), we readily obtain the values S; = 1, S, = 49, S3 = 729,
etc. This establishes the truth of (12).

We have overlooked the question of convergence in the manipulation of
the foregoing infinite series. A more rigorous treatment would only have
served to detract interest from the remarkable properties of these series
which link them together. It may be demonstrated, however, that f(x) and
h(x) are convergent within the interval (-1,1), excluding the end points;
g(x) converges for all real values of x.

The purpose of this paper was to demonstrate the validity of (10), (11)
and (12). Now that this has been accomplished, it would be desirable to de-
duce some properties for the coefficients Bk' The remaining portion is de-
voted to the derivation of several such properties and relationships.

We begin by noting that g(x) and h(x) are expressible as the products

of two functions, as is the case with f(x). By application of Maclaurin's

formula,
o0 X oo
2k 2k+1
x2/2 x -u? 3 k x
= 3 K e du = 37N G -
k=0 : [§) k=0
Multiplying these two series term-by-term, we obtain:
o0
2k+1
g = D x g
k=0

where

€ i
Z (1)
C = > T
k s 7l - i@ + 1)
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But, as we have already shown, ¢ = Bk + (2k +1)!. Therefore, we

are led to an alternate expression for Bk :

k i
(21{ + 1)
(22) Bk ZJ< > 21 + 1
- k! k=0

In a similar fashion, we may derive an expression for Bf{ by using the

component functions of h(x):

©0

2k+1
-1 _ k x .
tanx = D0 (D" ey
k=0

a - xz)_% = Z (2&() (X/Z)Zk

k=0
Therefore,
hx) = Z dk x2k+1 ,
k=0
where

. k-i (2.1
d = (""1) 1
k 2k - 21 +1 2i

i=

But, since dk = Bf{ + (2k + 1)!, we are led to the expression:
K i

1
- k. , 2i 1
(23) Bf = (-DF@k + 1 )] ( i)Zk —2i 1
i=0
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We may also express each Bk in the form of a definite integral as

follows:

First, we define the polynomial Pk(x) by the following summation:

: ifk) 2
@4) Bl = 30 () (1>m—1‘
i=0

If we differentiate,

k
P =) (-1>i<‘§> x
i=0

But the latter expression is equivalent to the binomial expansion for (1 -x2 )k.

Noting that Pk(O) = 0, we may integrate and obtain:

x
f (1 - uz)k du

(o}

(25) Pk(x)

Next, we observe that

P, (\2)

Kk )
- k\ (-2)*
sz<i>zi e

i=0
Comparing this with the expression for Bk in (22), we obtain:

. N2
(26) B, = 2k + 1)t [ a- w2)¥ du
2‘k+12‘ Kkt ©

Next, we prove the following property:
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(2m)!

m

27) Bk is divisible by
]
27 m!

, where m isthe greatest integer in 4(k +1).

If we multiply (5) throughout by zkk! and apply relation (8), we obtain

the recursion

28) B, = 2kB . + (KR _ o p
K ko1 Ny

k
1t (-1) (1+350 «++ « (2k - 1)) .

Recursion (28) may be expressed in the following alternative forms, de-

pending on whether k is even or odd:

(28a) B2m = 4mB2m_1 + 1:3:5¢ «vv «(4m - 1)

(28b) BZm+1 = (4m + 2)B2m - 1:3¢5¢ «vo < (4m + 1) .

We may now prove (27) by induction. Let us first assume that (27) is

true for k = 2m, i.e., B2m is divisible by 1:8:5+ ¢+« .(2m - 1). Then,
by (28b), B2m+l is divisible by 1:3:5* -:. - (2m + 1). But this is equivalent
to the assertion of (27), where k = 2m + 1. Now, if we replace m by m +1

in (28a), we see that B2m+2 is also divisible by 1:3.5¢ «+. +(2m + 1). This,
in turn, is equivalent to the assertion of (27), where k = 2m + 2. This es-
tablishes the inductive chain. Since (27) is true for k = 0, it is therefore
true for all values of k.

The readers are invited to discover anyother properties of the sequence
Bk which they feel might be of interest. It is the belief of the author that a
deeper analysis of this series of numbers, though perhaps not of any lasting
value, might be a source of recreation for those who derive pleasure from

such studies.

APPENDIX
DERIVATION OF EQUATION (21)

In addition to the series expressions for the derivatives of h(x), we

will need the following expressions:
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x%z

3

Z!

X

x5z!

x2zm

xdzn

xbzn

FROM VARIOUS OPERATING FUNCTIONS

o0
2k+1
(2 x
2 Sk + 1) BEF I
k=1

* W 21
-2 Se_oZk + D Gy
k=2
[~}
2k+1

- (3) _x
= Z Sk—l (Zk + 1) m
k=1

[}

~ (5) X2k+1
= :Z: Sg2@k + D mr—yy
k=2

[~

2k+1
_ (2) x
= :E: S Gk + D G
k=1
® 2k+1
_ “4) x
= :E: S-1 @+ DT Gy
k=2
® 2k-+1
X

_ (6)
=2 S,k + D Gk I

k=5

In the foregoing, the symbol (2k + 1)(r) represents

2k + 1)2k)(2k ~ 1)k - 2) -+- Rk +1 - (r - 1)) =

Equation (20) may be expressed in the following manner:

1 - x2 - x4

@2k + 1)
Gk +1 - 1)}

- x6)z" + (4x5 - 4x3)z' + (2xt - 3x2 - 1)z =

0.

179
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Substituting the previous expressions in the latter equation, we obtain:

= 2kt (2 251
2 Se BETI S 2k + 1 ey
k=0 k=1
* 2k+1 2k+1
4) x 6) x
-2 Sk + 1) TE+ T D Spgl2k + 1) BE 1)
k=2 k=3
(=]
2k+1 2k+1
(5) x 3) x
+ D 48,k + 1) TETD - 2 45 1@k + 1) BE I
k=2 k=1
* 2k+1 2k-+1
4) x (2) x
+, 28 @k +1) BET D - D B @k DY ey
k=2 k=1
!
S e - 0 -
k=0

If we equate like coefficients, we obtain the following recursions:

Si—S():O; 52—681—24:80—1880—5120;

S; - 208, - 1208, + 4808, - 2408, + 2408y - 608, - S, = 0;

if k=3, 4, 5, =+,

Sup - K2k + 1) + 1)§ - 2k(k + QS

k41
vk + D@k - 9@k - 4 + 4@k -3 + 28, = 0,

where

Qk = (2k - 1)(2k - 2) + 42k - 1) + 3,

Upon simplification, these results become:
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(21) Sk+1 (4k? + 2k + 1)Sk + 2k(2k + 1)(4k? + 2k + 1)Sk-1

- 2k(k + D2k - D2k - 2’5, ,

balid for k =0, 1, 2, **° ,

-
[Continued from page 168. ]

FIBONACCI PRIMITIVE ROOTS

etc. Of course, that is (abstractly) the same thing we are doing in (2), (3).

In [7], Emma Lehmer examines the quadratic character of
6 = 1+ ~5)/2 (mod p) .

If 0 is a quadratic residue of p, butnot a higher power residue, then all
quadratic residues can be generated by addition. In our construction, 6 is

a primitive root and generates the quadratic nonresidues also.

REFERENCES

1. Helmut Hasse, Vorlesungen tiber Zahlentheorie, Springer-Veriag, Berlin,
1950, pp. 68-69.

2. Daniel Shanks, Solved and Unsolved Problems in Number Theory, Vol. 1,
Spartan, New York, 1962.

3. D. H. Lehmer and Emma Lehmer, '"Heuristics, Anyone?,'" Studies in

Mathematical Analysis and Related Topics, Stanford University Press,
Stanford, 1962, pp. 202-210,

4, Christopher Hooley, ""On Artin's Conjecture,' Crelle's Jour., Vol. 225,
1967, pp. 209-220.

5. Daniel Shanks, ""Quadratic Residues and the Distribution of Primes,"
MTAC, Vol. 13, 1959, pp. 272-284.

6. W. Schooling, "A Method of Computing Logarithms by Simple Addition,"

Napier Tercentary Memorial Volume, Longmans, London, 1915, pp. 337-
7. Emma Lehmer, "On the Quadratic Character of the Fibonacci Root,"
Fibonacci Quarterly, Vol. 5, 1967, pp. 135-138.

<



TABLE OF INDICES WITH A FIBONACCI RELATION

BROTHER ALFRED BROUSSEAU
St. Mary's College, California

Inpreparing tables of residues for indices of primitive roots the follow-
ing situation was noted for the modulus 109. The primitive root, 11, has
residues as shown corresponding to indices as given on the borders of the
table. Thus the residue of 11 to the index 82 is 36.

RESIDUES OF POWERS OF 11 MODULO 109

L 1 2 B8 4 5 6 T 8 9
0 11 12 23 35 58 93 42 26 68
1 94 53 38 91 20 2 22 24 46 70
2 77 84 52 27 79 106 76 73 40
3 4 44 48 92 31 14 45 59 104 54
4 49 103 43 37 80 8 88 96 75 62
5 28 90 9 99 108 98 97 86 74 51
6 16 67 83 41 15 56 71 18 89 107
7 87 85 63 39 102 32 25 57 82 30
8 3 33 36 69 105 65 61 17 78 95
9 64 50 5 55 60 6 66 72 29 101
10 21 13 34 47 81 19 100 10 1

It is noteworthy from the early entries of the table that each succeeding entry
is the sum of the two that precede it. This relation can be verified for the
entire table if the sums are taken modulo 109. Clearly this is an unusual sit-
uation for a table of this kind. The questions that come to mind are: Is this
something very extraordinary? Under what conditions does a table of this
type have this Fibonacci property?

Since the entries inthe table are residues of successive powers of some
quantity x, the conditions that must be fulfilled aretwo: (1) x must satisfy

the relation

182
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or what is equivalent presuming that (x,p) = 1 as must be the case for a

primitive root,

x2 = x +1 (mod p)

(2) x must be a primitive root modulo p.

The first condition leads to the congruence

@2x - 1) 5 (mod p)
so that a necessary condition is that 5 be a quadratic residue of p. This
means that p is a prime of the form 10n + 1. The solutions of this quad-
ratic congruence for primes of this type fulfill the first requirement. It is
necessary, however, to determine whether they are primitive roots.

The results of this investigation for primes of the required form up to
300 are shown in the table below.

PRIME SOLUTIONS  PRIMITIVE ROOTS

11 4, 8 8

19 5, 15 15

29 6, 24

31 19, 13 13

41 7, 35 7, 35
59 34, 26 34

61 44, 18 44, 18
71 9, 63 63

79 50, 25

89 10, 80

101 23, 79

109 11, 99 11, 99
131 12, 120 120

139 76, 64
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larl

TABLES OF INDICES WITH A FIBONACCI RELATION  Feb. 1972
149 104, 41 41
151 28, 124
179 105, 75 105
181 13, 169
191 103, 79
199 138, 62
211 33, 179
229 148, 82
239 16, 224 224
241 52, 190 52, 190
251 134, 118 134
269 198, 72 198, 72
271 17, 225 255
281 38, 244

The conclusion would seem to be that this phenomenon is not particu-

y uncommon and that there is a straightforward method of determining

additional instances of this type.

—<

[Continued from page 156. |
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1963, pp. 51-52.
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ADVANCED PROBLEMS AND SOLUTIONS

Edited by
RAYMOND E. WHITNEY
Lock Haven State College, Lock Haven, Pennsylvania

Send all communications concerning Advanced Problems and Solutions
to Raymond E. Whitney, Mathematics Department, Lock Haven State College,
Lock Haven, Pennsylvania 17745. This department especially welcomes
problems believed to be new or extending old results. Proposers should sub-
mit solutions or other information that will assist the editor. To facilitate
their consideration, solutions should be submitted on separate signed sheets

within two months after publication of the problems.

H-189  Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Show that
o0
PR by) "5y 28 1
tst(r + ! 2r+3s+1
rs=ors(r g 4P 1 - ay - by’
H]

H-190 Proposed by H. H. Ferns, Victoria, British Columbia.

Prove the following

2'F n (mod 5)
n

2an 1 (mod 5) ,

where Fn and Ln are the nth Fibonacci and nth Lucas numbers, respect-

ively, and r is the least residue of n -1 (mod 4).

H-191  Proposed by David Zeitlin, Minneapolis, Minnesota.

Prove the following identities:
185
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2n . n
k=0 ) o (320 - 2k)!
2n+1 ; n
() 2 (2“; 1) Ly = Fy . (2n +1 + k) n+lk
=0 ' o &3@n + 1 - 2k)
2n . n
() <2n> F. =TF Z @n + k! on-k
K/ Bk I )sten - 2k):
k=0 k=0 ¥ !
2n+1 . n
2n +1 @n +1+K! nk
@ ( ) -1 ok
lg) k 2k 2n+1 g::o &)¥@n + 1 - 2K

where Fn and Ln denote the nth Fibonacciand Lucas numbers, respectively.

SOLUTIONS
KEEPING THE Q's ON CUE

H-176  Proposed by C. C. Yalavigi, Government College, Mercara, India.

In the "Collected Papers of Srinivas Ramanujan," edited by G. H.
Hardy, P. V. Sheshu Aiyer, and B. M. Wilson, Cambridge University Press,
1927, on p. 326, Q. 427 reads as follows:

Show that (corrected)

Provide a proof.

Solution by Clyde A. Bridger, Springfield, llinois.

A typical term on the left-hand side can be written as
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m e—ZmTr qu

1 - e—2m7r 1 - qu

This suggests a logarithmic derivative of a product. A suitable well-known

product is

0
1) Q=11]a-d¢m.
m=1

(See Harris Hancock, Theory of Elliptic Functions, p. 396, Dover, 1958)

where (loc cit p. 107)
(2) q = exp (-7K'/K) ,
in which K and K' have the same relation to elliptic functions as 27 has
to trigonometric functions. For example, for the sine-amplitude function,
we have

snfu + 4K + 2iK') = snu
and for the sine function,

sin x + 27 = sinx.

Define K itself as the complete elliptic integral of the first kind

/2
3) K = f de
0

N1 - k2 sin%¢p

with modulus k. Let K', L, and L' be complete elliptic integrals of the
first kind with moduli k', ¢, £', respectively.

The problem now is to find something that contains Q, and K. On
page 400 (Hancock) appears
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1 11
&)z = 3324 QQ;, Q@Q3 =1,

and
1 Q ‘/'———
T _ o Bumr
<5 7 kk
Then
i 1 K
(4) Q) = zﬁ(kkm/?r_”

is the starting equation.

Suppose that the four elliptic integrals are connected by

nK' _ Lt
(5) -2

K

with k2 +k'2 =1 and #£+4'2 = 1, (Arthur Cayley, AnElementary Treatise
on Elliptic Functions, p. 45, Dover, 1961.)

Then
L
@) qn = e L
and
n % 11
(4" @11 a- ™) = Fao J—Eﬁ
m=1

If we divide Eq. (4) by Eq. 4')and let n 1, we should get 1 = 1.
Of the conditions to do this, putting

(6) £ = k' and 4" = k
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gives a suitable form in n only. We find from Eq. (3) that
(7) L =K' and L' = K.
Then Eq. (5) becomes

(5") K/K' = Nn .

Equation (2) becomes

2m) q = e_w/'\[—ﬁ

and Eq. (2') becomes

& = e—Tr/\[ﬁ

We can now write the quotient of Eq. (4) by Eq. (4') as

o-M/12Nny _ -em/Nmy g Ny g 6/

®) _ nJ;e-m/Yl/lz(l _ e—2mfﬁ)(1 B e““”‘fﬁ)a _ e-smfﬁ)”_

Both are infinite products. We now differentiate thislogarithmically with re-

spect to n to have

-2m/Nn -4m/Nn
T 1 - 24| —& 4+ _2e — 4 e
24n\n 1 e—Zﬂ/fx/E 1 e—41r/'\/n
©) 1 . e—271r\/—n' e—417\/'ﬁ
= In 1 - 24} + + oo
24Nn 1 - e-zw‘ﬁ 1 - e_zmﬁ

This reduces readily to
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1 - 24 Z m/(ezm’”/'\/-ﬁ 1) +

m=1

(9"

m

+ n[l - 24 Z m/(ezmﬂ"\/H - 1)] = 6+/n

m=1
Now let n — 1. We find the correct solution to be

1 1
+ + Foeee = o= o —
T AT 24 " Sm

We have followed Ramanujan's development and have filled in a number
of gaps because his procedure is quite esoteric.

Also solved by the Proposer, who used the reference cited in the problem to pick it up at (9°).

PARTITION

H-177  Proposed by L. Carlitz, Duke University, Durham, North Carolina. (corrected)

Let R(N) denote the number of solutions of

N =P +F +or 4 F r =1,2,3, ),
where

k= kg= -0 = krz 1
Show that
M) RE,Fom) = BE4Fop) = @ -mFy +Fypy @=m),
(2) R(FZnF2m+1) = (n - m)F2m+1 n > m),
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& R onaFomer) = @ - WFyp = m,
@) R(F} ) = ROEFY ) = Fy o h=1).
Solution by the Proposer. (See reference below. )
The Proposer has proved that if
N For * Forws * Fores ™ 7" F Fogiar g k=1,
then
(*) R(N) = kFZr -Fyr
Also the same result holds for
N = Foper * Fopas 77"+ Fopurs (e =1)
1. Since
F2nF2m - F2n—2m+2 * F2n-—2m+6 s F2n+2m—2 n=m),
it follows from (*) that
RFopFom) = @ -m+ V¥ - Fomp
= (n - m)F2m + FZm—l = m).
Since
Fons1¥am = Fan-om+s © Fanamer *°°° T Fopsoma @ =W
it follows that
REFonaFom) = RFypFon)

L. Carlitz, '""Fibonacci Representations,' Fibonacci Quarterly, Vol. 6, pp.
193-220.
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2. It is proved in Theorem 1 of the paper cited above that if

N =F  +F ++F ,

ky ky
where
ky = ky > = kr = 2,
then
(%) R(N) = R(Fki—krﬂ toeee + Fkr-l'kr+1)

1
' ([5 kl‘] i 1)R(Fk1-kr+2 * * Flep_g-kpt2)

and in particular if kr is odd, then

) RO) = RO, 4+ oo + B 1) -
Since
FonFom#1 = Fansom-1 * Fantam-3 7" *Fan_om+3’ * Fan-am
(n > m),
it follows from (*# and (***) that
R Fome) = By * Py g +oer #F) + 0 -m - D) RE,
+eee + F5)
= (o - m)R(F4m + F4m-4 4 oeee + F4)
—_ — >
= (n - m)(ZF2m - Fzm_z) = (n - m)F2m+1 (n m).
3. Since
FonaFam+1 = Fantom * Fonsom-a =" * Fan_omea) " Fapomer @M
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it follows from (**) and (**) that

RE i Fome) = BFoniom-1 " Fantom5 * " " Fon_omss) " Fop_om)
= Ry TPy g v PP T @-m - DR, 7
+.e0 + Fp)
= (n_m)R(F4m+F4m_4+... + Fy)
= @-m)Fy g (0= m).
4, Since
2 = .
Fontl = Tgn * Fgp g+ oo 7F) + Ty
we get
2 = .o
R(FG 1) = Bl g ¥ Fyp g+ oo +F5)
-R(F4n2+F4n_6+ +Fy)
= Fop = Fang = Fopng 0=1.
Similarly, since
2 = .
Fon = Fano T Fapg *0r tF2 s
we have
2 =
RFsy) = Fang w=1)

WHAT'S THE DIFFERENCE ?

H-178 Proposed by L. Carlitz, Duke University, Durham, North Carolina.

2
+
L (m n)
m,n m

Put
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Show that an satisfies no recurrence of the type

r S
‘ZZ Cj,kam_j’n_k =0 m=r, n=s) ,
j=0 h=0

where the cj K and r,s are all independent of m,n.

Show also that L. satisfies no recurrence of the type
H

T n
ZECj,kam_j nk - ° m =r, n =0,
=0 k=0

where the cj K and r are independent of m,n.
k]

Solution by the Proposer.

1. Assume that

r S
&) Z Z .k ®m-j,n-k ~ ° fm=r, n=g),
=0 k=0

where c. k and r,s are independent of m,n.

H]

o0}
_ m _n
Fx,y) = Z am,nx y .
m, n=0
Then we have
1
@) Fx,y) = {0l - x - y)? - 4xy}"?

Indeed,
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1
2

1l

{0 -x-y2 -4} - a -x-y)‘lzl-—ﬁl’-—(

a-x-y?

k

2k (xy)
k @-x-y

Ms

2k+1

=
1l
o

(e 2]
2k k 2k + n n
k&) E hn &*y
=0

I
WE

>~
Il
o

[o o] (e o]
_ 2k k 2k+m+n m+n m _n
—Z k (xy) Z m+n m =Y
k=0

m,n=0
0 min(m,n)
_ m_n (m + n)!
- 2 xy Z KK (m - Kt @ - K
m,n=0 k=0

The inner sum is equal to

CAZ OO - (=)

which proves (2).)
Now

r S r S r S
22 cj,kxjku(X’y) =22 cj,kxj 7" 2 2 qm,n < y"
j=0 k=0 j=0 k=0 m=0 n=0

oo

m n
y ’

Il
o
w

m,n
m,n=0

where
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b'm,n - Ecj,k am—j,n—k
ik
By (1), we have
bon =0 m=r, n=r),
so that
r s
i k
(3) Z Z Cj,kx vy F(x,y)
=0 k=0
r-1 = e s-1 r-1 s-1
- m n mn m n
E me,nx y Z me,nx y Z Z bm,nx y -
m=0 n=0 m=0 n=0 m=0 n=0

For fixed m, am,n is a polynomial in n, hence bm,n is also a poly-

nomial in n. Similarly, for fixed n, bm n is a polynomial in m. Conse-
?

quently, each of the sums

r-1 oo o0 S-1

m n \ m n
Zzbm,nx Yo Ebm,nX y
m=0 n=0 m=0 n=0

is a rational function of x,y. Hence, by (3), F(x,y) is a rational function
of x,y. This contradicts (2).
2. Assume that

r n
4) Z Z cj,kam—n,n—k =0 m =r, n=0).
j=0 k=0

Then as in 1, we have
[Continued on page 202. ]



FIBONACCI MAGIC CARDS

BROTHER ALFRED BROUSSEAU
St. Mary’s College, California

According to the well-known theorem of Zeckendorf, if adjacent mem-
bers of the Fibonacci sequence (1, 2, 3, 5, 8, 13, *-+) are not allowed in
the same representation, then eachpositive integer canbe expressed uniquely
as the sum of one or more Fibonacci numbers. On the basis of this unique
representation theorem, each integer is associated with just certain Fibon-
acci numbers. For example: 35 = 34 +1; 51 = 34 +13 + 3 + 1.

Accordingly, if one places on a set of cards those integers which have
a given Fibonacci number as a component, one creates a set of magic cards
with the following property. Let someone select all the cards inthe set which
contain a certain integer. Knowing the particular Fibonacci number associ-
ated with each card, it is then possible to add these numbers together and
thus be able to say what the selected integer was.

The following sets of integers provide the numbers for each card, the
smallest number on the card being the Fibonacci number which is a component
of each of the integers onthe card. One couldpossibly conceal the trick more

effectively by a random distribution of the numbers on each card.

Card 1
1, 4, 6, 9, 12, 14, 17, 19, 22, 25, 27, 30, 33, 35, 38, 40, 43, 46, 48, 51,

53, 56, 59, 61, 64, 67, 69, 72, 74, 77, 80, 82, 85, 88, 90, 93, 95, 98

Card 2
2, 7, 10, 15, 20, 23, 28, 31, 36, 41, 44, 49, 54, 57, 62, 65, 70, 75, 78,

83, 86, 91, 96, 99

Card 3

3, 4, 11, 12, 16, 17, 24, 25, 32, 33, 37, 38, 45, 46, 50, 51, 58, 59, 66,
67, 71, 72, 79, 80, 87, 88, 92, 93, 100

197
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Card 4

5, 6, 7, 18, 19, 20, 26, 27, 28, 39, 40, 41, 52, 53, 54, 60, 61, 62, 73, 74,
75, 81, 82, 83, 94, 95, 96

Card 5
8, 9, 10, 11, 12, 29, 30, 31, 32, 33, 42, 43, 44, 45, 46, 63, 64, 65, 66,

67, 84, 85, 86, 87, 88, 97, 98, 99, 100

Card 6
13, 14, 15, 16, 17, 18, 19, 20, 47, 48, 49, 50, 51, 52, 53, 54, 68, 69, 70,
71, 72, 73, 74, 75

Card 7

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88

Card 8
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54

Card 9
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88

Card 10
89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
B oo s J
CORRECTIONS TO A FIBONACCI CROSTIC
H. 104 should be 102
J. needs two 144
In diagram O 81 should be G 81
F 93 should be E 93



THE LAMBERT FUNCTION

) WRAY G. BRADY
Slippery Rock State College, Slippery Rock, Pennsylvania

The sum of certain reciprocal Fibonacci series canbe summed in terms

of the so-called Lambert series or Lambert function:

[ o]
n
- Z _ n
L) = ) —— =Y ",
n=1 - n=1
where Tn is the number of divisors of N*¥. For example, let
1 -5
B = — s
[~}
RN L(___3 SER Y (TR | RN TP
k=1 2K

or to generalize:

Z 1l - V5[L(Emp) - Lemp)] ,

F
k=1 2km

for an integer m, such that m = 0.

In this note, we tabulate the Lambert function for selected real values
of z. The results are given in the table below. The calculations were made
by machine evaluation. The graph of the approximation polynomial to IL.(z)

is shown on the following page.

*Konrad Knopp, Theory and Application of Infinite Series, Harper, New York.
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z Lz L(-z)
.95 19.7372 4.7378
.90 14.4885 3.1728
.85 10.6987 2.0953
.80 7.9593 1.3565
.75 5.9724 .8513
.70 4,5224 .5066
.65 3.4550 .2720
.60 2.6605 .1130
.55 2.0615 .0062
.50 1.6035 -.0645
45 1.2482 -.1096
.40 .9687 -.1363
.35 . 7464 -.1493
.30 .5667 -.1518
.25 4211 -.1456
.20 .3017 -.1316
.15 .2035 -.1103
.10 1223 -.0817
.05 0553 -.0452
.00 .0000

L(z)
—2.0
~1.0
. . . Z
-1 - 0 5 1

S><%



FIBONACCI ONCE AGAIN

J. A. H. HUNTER
88 Bernard Avenue, Apt. 1004, Toronto 180, Canada

Many popular-type math teasers are based on the concept that may be
expressed symbolically as:

X = Y -x2.
Examples are:

34 68 682 - 342

216 513 5132 - 2162

The true algebraical representation, of course, is:

10X + ¥ = ¥* - X2
Y having n digits including any initial zero. For example, with n = 6, we

have:
2230 047276 = 472762 - 2230%

Working recently on such examples, it seemed interesting to determine
the limiting minimal value of the ratio Y:X, that is of Y/X. This proved
quite simple, the derivation being as follows:

For very large values of n we may take the maximum value of Y as
being 102,

Hence we have

108x + 10% = 102 - x? .

Solving for X,

201
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2n

oX = -10" + 102" + 2102" _ 4.10"

2

-10" + A 510°" - 2.10"

Again for very large values we may ignore 410" in the expression

under the square-root sign, so having, as n — o,

92X —-10" + 10°NF ,

n
X 10 («/’25 - 1)

Hence
X/Y = (N5 - 1)/2, Y/X->®5+1)/2 .
Fibonacci again!
It may be noted that with n = 6, the greatest value of Y (giving the
minimal X:Y ratio) gives

569466 945388 = 9453882 - 5694662 .

And for this we have Y/X = 1.6601 --- .,

<
[Continued from page 196. |
r o r-1 m oo o0
i Knie oy = m k n
IDIENEL S LS IEIDIELD DD DR D DENEIE 45
§=0 k=0 =0  j=0 k=0 n=0

It follows that F(x,y) is rational in x, again contradicting (2).

Remark. We note that ann does satisfy recurrences of the type

[Continued on page 217. ]



A NOTE ON PYTHAGOGEAN TRIPLETS

HARLAN L. UMANSKY
Emerson High School, Union City, New Jersey

A Pythagorean triplet is defined as a, b, ¢, in which a2 +b% = c2,
It is well known that, where u and v are any two integers, a = u® - v?,
b = 2uv, and ¢ = u? + v2

Triplets like 9, 40, 41, and 133, 156, 205, are of particular interest
because a + b is also a square. Not all Pythagorean triplets possess this
property; for example, 3, 4, 5, and 20, 21, 29.

I have found that, x and y being any two integers, Pythagorean trip-
lets possessing this property can be generated where u = x% + (x +y)? and
v = 2y(x +y). Then

1. a= u? - v = 4x! + 8x% + 4x%y? - 4xy® - 3yt

1l

I b = 2uv = 8x%y + 1l6x%y? + 12xy° + 4yt

1. c = u + v2 = 4x + 8x3y + 12x%y? + l2xy® + 5yt
2

v. a+b = @x2+ 4xy + y?)
2

V. b +c = @x2+ 4xy + 3y?)

In triplets like 3, 4, 5, and 5, 12, 13, where u = v +1, there is
the further property that a? = b +c. Of the triplets in the series in which
a® = b +c, only certain triplets possess the property that a +b is also a

square. The first six such triplets are listed below:

vz b c
5 4 9 40 41
29 28 57 1,624 1,625

169 168 337 56,784 56,785
203



204
985 984
5,741 5,740
33,461 33,460

A NOTE ON PYTHAGOREAN TRIPLETS

[Feb.

1,969 1,938,480 1,938,481
11,481 65,906,680 65,906,681
66,921 - 2,239,210,120 2,239,210,121

The series of u's (5, 29, 169, 985, -++) is a recurrent series which

is defined as

where uy =1 and u
Since the generator

it can be expressed as the

5,

u=x%+ (x+y?,

sum of two squares:

= 12+ 22 =5

= 22+ 52 =29

= 5%+ 122 = 169

= 122 + 292 = 985

= 292 + 702 = 5741
= 702 + 1692 = 33,461

As expressed in this manner, the series of u's forms the recurrent series

4
‘Ug

ug

Uy
Us

Ug

12 + 22 = 5

22 + (1 +22)2% = 29

52 + (2 + 2'5)% = 169

122 + (5 + 2:12)%2 = 985

292 + (12 + 2:29)% = 5741
702 + (29 + 2-70)2 = 33,461
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Pythagorean triplets possessing the properties that (1) a2 = b +c¢ and
that (2) a +b is a square can be derived in another way.
For a triplet to possess the first property, the necessary and sufficient

condition is that u = v + 1:

W - v?) = 2uv +u? + v

-~
sl\ﬁ
I
<N
~
|

= (+v

w-vi=u+v

wu-viu+v) =u+v
u-v =1

u=v+1,.

We already know that for a triplet to possess property (2),

u=x*+ (x +y)?

and

v = 2y(x +y) .

Since u =v +1, set

X+ x+y?=2yx+y +1.

Then

(symbolized by 1) and
+2x? - 1

<
1]
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(symbolized by k).
Substituting

in Egs. I, I, OI, IV, and V, we find that

a = 4y? + 4yl + 1

12y + 16y°%1 + 8y% + 4yl

b =
c=b+1
a+b = 2y + 4yl + 1)
b +c = (4y* + 4yl + 1)

Now

2
Wfye 1
N3

is integral for 1, 7, 41, 239, ***. This is a recurrent series which is de-

fined as

where r; =1 and ry = 7. Substituting alternately the positive and negative

values of
y-e+1
Y2
in a, b, ¢, we obtain the desired triplets.

Substituting y = +N2x% - 1 in Egs. I, II, II, IV, and V, we find that

[Continued on page 212. |



A GENERALIZED GREATEST INTEGER FUNCTION THEOREM

ROBERT ANAYA and JANICE CRUMP
San Jose State College, San Jose, California

Theorem:
where

and [x] is the greatest integer contained in x.
Proof. For k =1,

[ +1—F
I_aFn 2] "n+l

See [1, Thm. III]. The Binet form for the Fibonacci numbers is

n n
Fn _a -b ,
NE
where
a=1+'\/_5-andb=1_'\/_5
2 2
Thus
akF _ n+k _ bnak n+k _ bnak _ bn+k + bn+k
n NG NG
) an+k _ lon+k . IOn+k _ bnak
NE] NI}
n ak - bk n
= Ta P \THE /)T Tk TP Rk
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See [2]. Therefore,

k 1 _ 1 n
aFn+—2-—Fn+k+(§-ka).

The next step is to prove that ankI <L, n=k, k =2 Since n =k, let
n = k for a fixed k. When n = k, Iankl will have its largest value. As
n —oo, Ibnl — 0 monotonically. When k is even:

‘bkF | _ bk(ak _ bk)] _ wa)< - 2K - p 2k
— H]
k NE NG N5
since ab = -1. The sequence
1- bzk
NG
is monotone increasing, and also
2k _
lim ___.1 —.—._ = _1_. - _l_. < %
k = ! «NB NH NG
Thus,
n -1
0 =|b Fkl "3
for even k. Now for odd k, we have
lbkF I A R T s
k NG NG 5|
since ab = -1. Here we are considering k =3, 5, 7, ***. When k = 3,

b2k = 18 2 0.055726 :
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and as k increases, bzk gets smaller rapidly and

( 1 bzk
NG
becomes smaller. Therefore, if
a1 - b2k _1
NG 2

for k = 3, then itis less than 1/2 for any odd k greater than 3. Thus:

P BT
NB NS
If
‘—_I_L_b.z_k. <l
5 2
then
|1+b2kl<_2'\/§ or —52—2<b2k<'\f52-2

Since N5 is approximately 2.2361, the upperboundisapproximately0.1181,

and since

b = b = 0.055726 ,

then certainly

2k NG - 2
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Therefore:

A GENERALIZED GREATEST

for all odd k, and, moreover,

for all k =2 and n = k. Finally, since we know that

we have

n
e

i.n
Ib Fk|

1

-z < pF, <

2

A
o] =

<

Do =

<

Do) =

[N

k

Multiplying by -1 and adding 1/2, we have

Since

(i)

implies that

+
[\

1

n
0<§—ka<1.

1 n
2

=-b'F =0,

k

_ 1 n
= Frk +<'2' -b Fk)

1
2) - Fn+k

[Feb.
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Also, since
1
<§ - ank> <1,
.. 1 n k
(ii) Fn+k+<§-ka) < F g *t1l ad aF +5 <F + 1.

Therefore, combining (i) and (ii), we obtain

n+k n 2 n+k

or

k 17 _
[a Fn+-2-:l = Fn-l-.k .

REFERENCES

1. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin

Company, Boston, 1968, pp. 34-35.

2. V. E. Hoggatt, Jr., John W. Phillips, and H. T. Leonard, Jr., ""Twenty-
Four Master Identities," The Fibonacci Quarterly, Vol. 9, Feb., 1971,
pp. 2-5.

REMARK

With the aid of an ingenious programmer, Galen Jarvinen, it seems

reasonable that

k 11 _
[a Ln+§] = Ly
and in general that

k 11 _
[a Hp * E] = Mok
with n somewhat greater than k.
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a = 8x2 + 4xk - 3
b = 48x% + 32x%k - 32x% - 12xk + 4
c=hb+1

a+b = (4x% + 4xk - 1)2

b +c (8x% + 4xk - 3)2

Now i-Vsz -1 in integral for 1, 5, 29,169, ***, a recurrent series
that has already been defined. Substituting alternately the positive and nega-

tive values of -.F\,sz -1 in a, b, ¢, we obtain the desired triplets.
Several minor but interesting relationships may be noted in conclusion.

Since

u=x+(x+y?,

it follows that

u=x*+(x+k?=4x%+2xk -1

12+ (1L +y)2 =2y +2yl +1,

=l
1l

and, since v =u -1,

and

u=‘/-%-(a+b+1).

L e oo J



BACK-TO-BACK: SOME INTERESTING RELATIONSHIPS
BETWEEN REPRESENTATIONS OF INTEGERS IN VARIOUS BASES

J.A.H. HUNTER
Torento, Ontario, Canada
and
JOSEPH S. MADACHY
Mound Laboratory, Miamisburg, Ohio

A back-to-back relationship between integer representations is one in
which the representation of an integer in one base is the reverse of its rep-
resentation in some other base. Finding such integers and bases is elemen-
tary, but the concept does not ‘appear to have received any attention in the

literature. A double back-to-back relationship goes one step further: the

base indices (written in scale 10 notation) are also the reverses of each other.

Examples of single and double back-to-back relationships are:

16982 = 96128

Table 1 gives all solutions for integers that have 2, 3, or 4 digits in
base-10 notation. The reader may feel tempted to find examples with 5 or
more digits. Table 2 lists some of the known double back-to-back examples,
leaving a wide open field for the computing-minded enthusiast.

For single back-to-backs we concentrated on finding reverses for base-
10 cases. Without that restriction there would be an unlimited number of ex-

amples, such as:
74:13 = 4:722

3595 = 5313

If A, B, C, **+, represent the digits of an integer N, in base b no-

tation, we seek relationships of the form:

* Mound Laboratory is operated by Monsanto Research Corporation for the
Atomic Energy Commission under Contract No. AT-33-1-GEN-53.
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(1) N = (A)B)C) -+ M)y = M) -+ (C)B)A) ,

or solutions to the equation

d d-3

11092 4 ca0d3 4.l 4

= M.bd_l <+ oo

2) A-10

.+ CbP+Bb +A,

where d represents the number of digits in N. For 2-digit cases we have:

@A)B)yy = B)A)
or

(3) 10A + B = bB + A

The solution of (3) is obviously a simple matter. Somewhat more ted-

ious, the 3-digit cases entail integral solutions of
4) 100A + 10B + C = b2C + bB + A,

Both the 2-digit and 3-digit cases were found by hand. The lists were
checked and confirmed as complete with a Hewlett-Packard 9100A program-
able calculator — this taking barely two minutes. The same calculator dis-
covered all the 4-digit cases in less than 90 minutes.

The problem of solving Eq. (2) may appear formidable, but there are
limits which reduce the amount of numerical work. For a 3-digit case the
largest base to be considered is 31. This is so because with b = 32, we
must have a 4-digit case since 322 = 1024. Similarly the maximum bases
for 2, 4, 5, and 6 digits would be 82, 21, 17, and 15, respectively.

Finding solutions for double back-to-backs is more complicated since
both the representations and the bases must be in reverse relationship. If
a, b, c, -++, represent the digits of the bases written in base-10 notation,

we have



1972] BACK-TO-BACK 215

Table 1
SINGLE BACK-TO-BACKS

2-Digit
1310 = 314 5110 = 1546 8210 = 2837
2ljp = 1249 53y = 3By 831y = 38y
2319 = 327 61y = 1655  84yp = 48y
3lyg = 1393 6249 = 2653 869 = 683
4l = 1437 6319 = 3619 91y = 19g
4210 = 2449  Tlyy = 17g 9330 = 39y
431y = 3443 T3y = 3Ty
4610 = 64:7 8110 = 1873

3-Digit
1905, = 091y T4y = 47744
37110 = 17316 834:10 = 4:3814
4:4:110 = 14:4:19 88210 = 28819
4:4:510 = 54:4:9 91210 = 21921
51110 = 11522 96110 = 16928
55110 = 15521

4-Digit
080110 = 10809 329010 = 092315
1090, = 0901y 5141;p = 14154,
154:010 = 04:5119 7721—10 = 127719
2116y, = 6112, 9471,y = 1749,

(5)  (ABIC) *++ Dy aon.. . )

= (M) +v- (C)(B)(A)(m) <« {c)(b){(a)

In order to keep computation within reasonable limits, examples were
sought with bases of only two or three digits. A 3-digit integer representa-

tion with a 2-digit (in scale-10) base would involve the equation
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6) A[@®)]% + B(a)b)] +C
= C[(@]2 + B[b)@)] + A .

For example, if A =1, B=6, C =9, a =8, b =2, we have:
1[82]% + 6[82] + 9 = 9[28]% + 6[28] + 1 = 7225 ;

that is,

16982 = 96128

In Table 2 are listed examples of double back-to-backs. All those in
the second part of Table 2 were found by us without calculator aid.

Variations on this type of recreation are endless. Some of the simpler
ones could provide classroom enrichment material without entailing too much
time on computation. This type of number search could also add zest to the

current emphases on modular arithmetic in the so-called '"new mathematics. "

Table 2
SOME DOUBLE BACK-TO-BACKS

05191 = 15019
144:'13 = 4:4:137
16932 = 96128

50843 = 80534

If terms in parentheses are considered as single '"digits" in the givenbase we

may have examples such as:

WA2)(Ny = (71)(12)(1)y3
(1)(10)(10)yy = (10)(10)(1)y4
(6)(10)(L5)qy = (15)(10)(6)yy
(10)(0)(16)g3 = (16)(0)(10)34
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(12)(20)(30), = (30)(20) (12} 44

(17)(10)(33)

(33)(10) (17) 45
(18)(30)(45)y, = (45)(30)(18)4
(19)(25)(37)gy = (37)(25)(19) 44

(21)(40)(41)gy = (41)(40)(21) 44

(38)(88)(104) 95 = (104)(88)(38)y5
(47)(13)(91)g5, = (91)(13)(47)y53
(94)(26)(182)35, = (182)(26)(94)y53
<@
[Continued from page 202.]

m n

E E Cj,kam-—j,n—k =0 (m +n >0).

j=0 k=0

However this is true of arbitrary 2 n with ay # 0. We may define c, Kk
’ Je

by means of

-1
oo o
m_n _ ik
Z qmn X Y B Z Sk Y
m, n=0 j. k=0

Late Acknowledgements. David Klarner solved H-168 and H. Krishna solved
H-173.
Commentary on H-169. The theorem is false. Let a = F, .o, b=c¢c=

1} = _ 2 = {_ m _
Fopepr 4= Fope Thus from F__.F . -F (-1)™, we have ad - bc

= -1, while ab+ecd = (Fy oFo oy +FyFonia) = Fopulona = Fanse
However, let N = F, # F, ., sothat Fj+l =F, ,F, , and NZ+1
is composite. CONTRADICTION.
The Editors, V. E. Hoggatt, Jr., and R. E. Whitney
GG




ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A.P. HILLMAN )
University of New Mexico, Albuquerque, New Mexico

Send all communications regarding Elementary Problems and Solutions
to Professor A. P. Hillman, Dept. of Mathematics and Statistics, University
of New Mexico, Albuquerque, New Mexico 87106. Each problem or solu-
tion should be submitted in legible form, preferably typed in double spacing,
on a separate sheet or sheets, in the format used below. Solutions should
be received within three months of the publication date.

Contributors (in the United States) who desire acknowledgement of re-
ceipt of their contributions are asked to enclose self-addressed stamped

postcards.

DEFINITIONS
The Fibonacci Numbers F[1 and the Lucas Numbers Ln satisfy

F "'Fn, Fo = 0, F1 =1 and Ln+2=Ln+1+Ln, L0=2, L1 = 1.

n+2 Fn+1

PROBLEMS
B-226  Proposed by R. M. Grassl, University of New Mexico, Albuquerque, New Mexico.

Find the smallest number in the Fibonacci sequence 1, 1, 2, 3, 5,

that is not the sum of the squares of three integers.

5-227 Proposed by H. V. Krishna, Manipal Engineering College, Manipal, India.

Let Hy, Hy, Hy, -++ be a generalized Fibonacci sequence satisfying
H . o,=H 4+H (and any initial conditions Hy = q and H; = p). Prove
that
FyH3 + FZHG + F3H9 R FHH3H = FnFn+1H2n+1 .

B-228 Proposed by Wray G. Brady, Slippery Rock State College, Slippery Rock, Pennsylvania.
Extending the definition of the Fn to negative subscripts using

218
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)n~1

F_n = (-1 Fn .
prove that for all integers k, m, and n
k m n —
-D°F,F o+ COTFRF + DF F =0,

B-229  Proposed by Wray G. Brady, Slippery Rock State Callege, Slippery Rock, Pennsylvania.
Using the recursion formulas to extend the definition of Fn and Ln to

all integers n, prove that for all integers k, m, and n

n —_
+ P F o+ (DL F =0

B-230  Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California.
Let {Cn} satisfy

C n+4

and let

Prove that {G_} satisfies G, = G 4 *G, -

B-231  Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California.

A GFS (generalized Fibonacci sequence) Hy, H;, Hy, -+ satisfies the

same recursion formula

as the Fibonacci sequence but may have any initial values. It is known that

2 = (-1
Han+2 - Hn+1 1)% ,

where the constant ¢ is characteristic of the sequence. Let {Hn} and {Kn}
be GFS and let
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Cn - HOKn * H1Kn—1 + HZKn—Z Hoeee HnKO

Show that

Cn+2 = Cn+1 * Cn + C;'n ’

where { G, } is a GFS whose characteristic is the product of those of {Hn}
and {K }.

SOLUTIONS
GENERALIZED FIBONACCI IDENTITY

B-208  Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California.
Let

FO = 0’ F1 = 1, Fn+2 = Fn+1 + Fn’ LO = 2’ Li = 1, Ln+2 = Ln+l +Ln.

Prove both of the following and generalize:

2 = 2 - 3 = - n
(2) Fn+2 3Fn+1 Fn 2(-1)

2 - 2 _ 12 = 1\
(b) Ln+2 = 3Ln+1 Ln 10(-1)" .

Solution by David Zeitlin, Minneapolis, Minnesota.

In the paper by David Zeitlin, "Power Identities for Sequences Defined

by Wn+2 = de+1 - an," this Quarterly, Vol. 3, No. 4, 1965, Pp. 241-255,
it is shown on page 251, Eq. (4.5) that

+1
@) HE , - 3HZ, . +HI = 2(-1"" @} - By H, - H}) ,
where
ni2 = Hn+1+Hn’ n=20,1,

Thus, (1) gives (a) for Hn = Fn and (b) for Hn =L
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Alsa solved by Richard Blazej, Herta T. Freitag, Ralph Garfield, J. A. H. Hunter, C. B. A. Peck, A. G.
Shannon, and the Proposer.

FURTHER GENERALIZATION

B-209 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California

Do the analogue of B-208 for the Pell sequence defined by

Py =0, Py =1, Pn+2 = ZPn+1 + Pn’ and Qn = Pn + Pn—l'
Solution by David Zeitlin, Minneapolis, Minnesota.

In the paper quoted in B-208, there is given Eq. (3.1) on p. 245 which
states that

@) W; 19 " (@ - 2c)W§1 q F c2w§1 = 2cn+1(wf - dAWW; + cW2) ,

where

Wn+2 = de+1 - an.

Thus, for d = 2, ¢ = -1, and W, = Pn’ (1) gives

2) P2

2 2 — _ n+1
2 T 6Pn+1 + Pn 2(-1) .

Since

Qn+2 ZQn+1 * Qn ’

we obtain from (1) for d = 2,

¢ = -1, and WnEQn, Q =1, @ =1,
(3) @, - 6Q%, + QY = 4(1)"

Also solved by Herta T. Freitag, Ralph Garfield, A. G. Shannon, and the Proposer.
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B-210  Proposed by Guy A. R. Guillotte, Montreal, Quebec, Canada.
Let Fy = Fy =1 and Fn+2 = Fn+1 + Fn' Prove that S > 803/240,
where
_ 1 1 1
S = i + i + T + .

Solution by Peter A. Lindstrom, Genesee Community College, Batavia, New York.

Consider the finite sum Sn’ where

S, = (U/Fy) + (1/Fy) + -+ + (A/F)

Then one finds that

= 6 9 2
24053 = 240 + 240 + 120 + 80 + 48 + 30 +18ﬁ+11‘2‘1‘+ 7-ﬂ

20 62 96+1 7

tdgs t 255t 11 233

and hence 240S;3 > 803. Then S > S;3 > 803/240.

Also solved by R. Garfield, C. B. A. Peck, and the Proposer.

FIBONACCI WITH A GEOMETRIC PROGRESSION

B-211  Proposed by V. E. Hoggatt, Jr., San Jose State College, San Joss, California. (Corrected)

Let Fn be the nth term in the Fibonacci sequence 1, 1, 2, 3, 5, **-.

Solve the recurrence

Dn+1 - 2Dn * F2n+l

subject to the initial condition Dy = 1.
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Composite of solutions by Herta T. Freitag, Hollins, Virginia, and R. Garfield, Callege of Insurance,
New York, New York.
The condition Dy = 3 is unnecessary and is indeed false since the re-

currence gives Dy = 2Dy + Fg = 2-1 +2 = 4,
By writing a few terms in the Dn sequence it is easy to show that

lp, + 2872p, 4 oo 4 2F +F

n n-
= +
D 2Dy + 2 2n-1 2n+1 °

n+1

Using the Binet formula and summing geometric progressions, we find that

Dn = F2n+2 -2

It is easier to prove this by mathematical induction than to check the details.

Also solved by the Proposer.
A QUESTION WITH MANY ANSWERS

B-212  Proposed by Tomas Djerverson, Albrook College, Tigertown on the Rio.
Give examples of interesting functions f and g such that

fm,n) = glm + n) - glm) - gn) .
(One example is f(m,n) = mn and

gn) = (g) = nln - 1)/2.)

EPS Editor's Note. We tabulate some of the submitted answers as follows:

Solver fm,n) g(m)
Proposer mn (I;l) = m@m - 1)/2
Herta T. Freitag mn m(m + ¢)/2, c constant
Herta T. Freitag g(m)gn) ™ 1, r constant
John W. Milsom 2mn m?
John W. Milsom Smn{m + n) m3
Phil Mana log (mn-: n) log(m?!)
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UNFRIENDLY SUBSETS ON A LINE OR CIRCLE

B-213  Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Given n points on a straight line, find the number of subsets (including
the empty set) of the n points in which consecutive points are not allowed.

Also find the corresponding number when the points are on a circle.

Solution by Theodore J. Cullen, Cal Poly, Pomona, California.

Let Tn be the solution for the line. It is easily seen that F; = 2 and
Ty = 3. For n= 3, let p be an extreme point, i.e., p has onlyone neigh-
bor. Then the subsets can be divided into two types, those with p absent
and those with p present. Clearly there are Tn
Tn_z of the second type, so that

1 of the first type and

Therefore T = F for n =1, where F; = Fy =1 and
n n+2 .

Fn - Fn—1 * Fn—z
for n = 3, the Fibonacci numbers.
Let Vn be the solution for the circle. One can check that Vy = 2,
Vy =3, V3 =4. For n= 4 let p be any fixed point, and again consider
subsets with p absent and then p present. The numbers of these are Tn_1

and Tn-S’ respectively, so that

the nth Lucas number.

Also solved by Sister Marion Beiter, Herta T. Freitag, and the Proposer.



