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SUBSEMiGROUPS OF THE ADDITIVE POSITIVE INTEGERS 
JOHNC.HIGGINS 

Brigham Young University, Provo, Utah 

1. INTRODUCTION 

Many of the attempts to obtain representations for commutative and/or 
Archimedean semigroups involve using the additive positive integers or sub-
semigroups of the additive positive integers. In this regard note references 
[1] , [3] , and [4 ] . The purpose of this paper is to catalogue the results that 
are known and to present some new results concerning the homomorphic im-
ages of such semigroup s* 

2* PRELIMINARIES 

Let I denote the semigroups of additive positive integers* Lower case 
Roman letters will always denote elements of I, Subsemigroups of I will be 
denoted by capital Roman letters between J and Q inclusive. Results fol-
lowed by a bracketed number and page numbers refer to that entry in the ref-
erences and may be found there. Results not so identified are original and 
unpublished* 

Theorem 1* ([2] pp* 36-48) Let K be a subsemigroup of I, then 
i. There is k E I such that for n ^ k, n E K or 

ii. There is n E I, n > 1 such that n is a factor of all k E K* 
Proof* Suppose there exist klf • • • , k m E K such that the collection 

(k*s • • • , k m ) has a greatest common divisor 1. Let K? be the subsemi-
group of I generated by { kl9 k2§ * • * , k^} clearly* Kf C K, Let k = 2kt 

• k2 k ^ and for b > k, since the ge c*d„ of (k1§ • • • , k m ) is one 
we may find integers al% • . . , &m such that a^ + • • • + %nkm

 = *>• (Note: 
the c*i are not necessarily positive,,) We may now find integers qj and r-[ 
such that 

a. = q.k- ••• k. -k. ,- «** k + r. , 
i i 1 i - l i+ l m i 

where 0 -̂  r . ^ k- • •m k. - • • • k (i = 2, 3, • * *, m). Now let 
1 1 1-1 HI ' ' f 

225 
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Ci = at + (q2 + . . . + qm)k2k3 • • • k m , c. = r . , (i = 2, 3, • • • , m). 

We now have 

b = Ciki + c2ko + • . . + c k 11 * L m m 

We have chosen c. > 0 for i = 2, 3, • • • , m. But since 

c2k2 + . . . + c k = r2k2 + ••• + r k < kik? ••• k =s b, 
L L mm ^ ^ mm 1 Z m ' 

clearly cj ^ 0. Thus every b ^ k may be expressed as a linear combina-
tion of { k | j •9 e , k^J where only positive integral coefficients are used. 

If every finite sub collection of elements of K have g. c.d. greater 
than one, then clearly all of K have g. c.d. greater than one.] 

Corollary 1. ([2] p. 39). Every K is finitely generated. 
It is clear that there are essentially two types of subsemigroups of I: 
i. Those that contain all integers greater than some fixed positive in-

teger will be called relatively prime subsemigroups of I. 
ii. Any other is a fixed integral multiple of a relatively prime sub-

semigroup. 
Theorem 2. Let K, J be subsemigroups of I. Let the mapping K be 

a homomorphism from K" onto J. Then K is in fact an isomorphism of K 
onto J of the type; for k E K. (k)K = yk, where y is a fixed rational. 
number depending on K and J. 

Proof. Since, by Corollary 1, K and J are finitely generated, let 
(kj, • • • , k ^ ) be a generating set of K. Let (jj, • • • , j m ) be the images 
in J of (ki, • • • , k m ) under K. Clearly (jj, • • • , j m ) . Now generate J . 

OqJqjK = JqflqjK = fc-ji 

since K preserves positive integral multiples, but we also have 

(kiki)K = (ki)Kki = j ^ 

and 



1972] SUBSEMIGROUPS OF THE ADDITIVE POSITIVE INTEGERS 227 

kiJl = Jikt 

so that 

31 Aiki . ] 

Clearly for a given sub semigroup K not any rational number y will 
do. Note that.8 

Jl 
ji " k̂ ~ k i f 

but j . is an integer and9 k4 divides kie If the collection (kl9 • • • , k m ) 
have greatest common divisor equal to one9 then clearly y is an integer* If 
the collection (Iq, *e ° » k m ) have greatest common divisor n ^ 19 then 
Oq/n, • • • , k m / n ) generates a relatively prime subsemigroup of I, call it 
Kf, and K and J are such that 

K = nK\ L = ynK! , 

where yn is an integer. We have now shown; 
Corollary 2. Let K and J be subsemigroups of I. For J anyhomo-

morphic image of K5 K and J are integral multiples of a relatively prime 
subsemigroup 9 K?

9 of I. 

3e HOMOMORPHISMS 

The results of Section 2 make it clear that no subsemigroup of I has 
a proper homomorphic image contained in I. Let us now examine the proper 
homomorphic images of subsemigroups of I. 

Lemma 1, Let K be a relatively prime subsemigroup of I. Let ~ 
be a congruence defined on K and satisfying: 

^ x 9 y E K, x f y and x — y . 

Then? K/~ Is finite, 
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Proof, Since K is relatively prime there is a least k E K such that 
for all n ^ k, n E K, Suppose x < y and at y - x = m, Now* 

x + k «*' x + k + i m , i = 1, 2S 3, ° e s 

since by induction 

x + k ~ (x + m + k = y + k) 

and if x + k ~ x + k + i m , then 

x + k ~ x + h + (i + Dm 

by using the strong form of induction and adding k + (i)m to both sides of; 
x *- x + m. Clearly then, x + m + h + 1 is an upper bound for the order of 
K/~. ] 

Lemma 2, For K* k as in Lemma 1, let n be the least positive in-
teger such that: for x, y E K, x ~ y and x - y = n. Then9 for any cr 

d E K, if c ~ d5 c < d, d - c = m: we have d - c = jn„ 
Proof. (Let a be the least element of K such that a ~ a + n). We 

may find k ' E K such that c + kf > a + k. Thus by Lemma l f c + kf is in 
one of the classes determined by 

a + ks a + k + 1, • • • , a + k + n - 1 . 

Thus 

c + k T = a + k + j n + i ? 

and 

c + kf + m = a + k + jfn + V , 

but c + k ? + m ~ c + k !
9 and a + k + j f n + i ~ a + k + jn + V, but this gives 

a + k + i ~ a + k + i f . Thus9 i = if since n is the least positive integral 
difference of equivalent elements of K. ] 
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For finite homomorphic images of sub semigroups of I, call n, as de-
fined in Lemma 2, the period of the congruence. 

Lemma 3„ Let K9 k, n, a be as inLemma28 Let be a congruence 
on K such that for c ~ d, d > cs d - c G K , Then K / ^ has exactly n 
non-single ton classesa 

Proof. Let d - c = m. Then by Lemma 2, m = jn* We have jn E K 
and for p sufficiently large c + (p)jn > a + k* Thus? c + (p)jn ~ a + k +1 
for some i; 0 < i < n - 1. But since j n E K 9 c + (p)jn ~ c for p = 1-, 
2 s 3 9 ® ® ° * Thus c ~ a + k + i and the non-singleton classes may be rep-
resented by a + k, a + k + 1, • • • , a + k + n - l . ] 

If c is an element of a relatively prime K5 where c ~ a + k+ i 
(a,k being as in Lemma 2) then if ^ has period n we haves c = a + ki 
(mod n)„ This follows immediately from Lemma 2* 

Congruences on a relatively prime K which fail to satisfy the condi-
tions of Lemma 3 may be described as follows* There are the n classes 
represented by a + h? a + h + 1?

 e e ® ? a + h + n - 1 ; there are any number 
of singleton classes for elements between a + h and the least element of K* 
There may be finite non-singleton classes of elements between a + h and the 
least element of K, but from Lemma 3 no two elements in a finite class may 
differ by an element of K. 

4S SUBSEMIGROUPS OF CYCLIC SEMIGROUPS 

In this section we treat subsemigroups of finite cyclic semigroups* 
Let R be the finite cyclic semigroup of index r and period m, Elements 
of R will be represented by integers; R will be written additively* 

Lemma 1* Let T be the subsemigroup of R generated by the ele-
ments fy, t2, • •* , t, * If the greatest common divisor of {%9 t2s * • e , t, ,m} 
is one, then T contains the periodic part of Ra 

Proof* Let t? be the g*c8d* of {ty, t2, **°f t^}* By Theorem 1, 
Section 2, the subsemigroup of I generated by { t i / t f , t 2 / t !

9
 8 •• , tk/t?} con-

tains all integers greater than some fixed integer k„ But for some p all 
q > p are such that qtf > k* Now let 

(k + i)t? - r = (k + j)t' - r , 



230 SUBSEMIGROUPS OF THE ADDITIVE POSITIVE INTEGEES Apr. 1972 

then (nj - in)t! = nrm, but tf and m are relatively prime, Thus, m di-
vides nj - in.] 

The remainder of the subsemigroup of R generated by {fy, t2, e 8 e , 
t } is the intersection in R of the subsemigroup of I generated by the t. 
considered as integers. If the g. c.d. of {%, t29

 8 •8 , t ,m} = p > 1, then 
the subsemigroup generated contains m/p elements of the periodic part of 
R, and can thus be made isomorphic to a subsemigroup of the type described 
in Lemma 1 by changing the period of R to m/p. 

Finally, let K be the subsemigroup of I generated by {t j , t2, • • • , t, } 
considered as integers, where fy, t^, • • ' , t, E R a finite cyclic semigroup 
of index r and period m, and the g. c.d. of {fy, t2, • • • , t ,m} is one. 
Let Kf = K U N, where N is all of I greater than r. Clearly Kf is a 
subsemigroup of I. Let ~ be the relation; 

x, y G K ' , x~ry = x = y or (x, y ^ r and x = m y) . 

The relation ~ is a congruence on Kr. Now identify the elements of Kf/~ 
with the elements of the subsemigroup of R generated by {%,•••, t } in 
the natural way. We then have; 

Theorem 2. The semigroup K?/~ is isomorphic to the subsemigroup 
of R generated by {%, t2, • • • , t } . 

REFERENCES 

1. E. Hewitt and H. S. Zuekerman, "The Lj-Algebra of a Commutative 
Semigroup," Trans. Amer. Math. Soc. 83 (1956), pp. 70-97. 

2. J. Higgins, "Finitely Generated Commutative Archimedean Semigroups 
without Idempotent," Doctoral Dissertation, University of California., 
Davis, Unpublished (1966). 

3. M. Petrich, "On the Structure of a Class of Commutative Semigroups," 
Czechoslovak Math. J. 14 (1964), pp. 147-153. 

4. T. Tamura, "Commutative Nonpotent Archimedean Semigroup with Can-
cellation Law I , " Journal of the Gakugei, Tokushima University, Vol. VII 
(1957), pp. 6-11. 



PROPERTIES OF TR1BONACC1 NUMBERS 
C. C.YAlAVIGf 

Government College, IVIereara, Co org, India. 

1. INTRODUCTION 

Let us define a sequence of Tribonaeci numbers 

(1.1) {T }°° = {T (b, c, d; Ps Q9 R)}" 
n 0- n 0 

by 

(1.2) T = bT - + cT 0 + dT Q , 
n n-1 n-2 n-3 

where n denotes an integer ^3 and T0, Tl f T2 are the initial terms P9 Q8 

R re spec tii 
is given by 
R respectively. Then it is easy to show that the n term of this sequence 

(1.3) T = la11 + mbn + nr11 , v n 

where a, b, r are the roots of x3 - bx2 - ex - d = 0 and 1, m, n satisfy 
the following system of equations, viz. , 

(1.4) 1 + m + n = P s la + mb + ar = Qs la2 + mb2 + nr2 = K. 

Our aim is to study the properties of this sequence. The 9 special 
forms which we will refer are as follows: 

(i) { T ; 1 ; } = {T (bf c, d; 05 lf b)}0 , 
0 

(ii) ( T ^ = (T n (b , c, d; 1, 0, c)}~ , 

(iii) {-ifY = {Tn(b, c, d; 0, d, bd)}~ , 

(iv) { T f f = {Tn(b( c, d; 0, 0, 1)}" , 

231 
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(v) { T ^ } 0 0 = (Tn(b, c, d; 0, 1, 0)}~ , 

(vi) (T (6)}°° = {T (b, c, d; 1, 0, O)}0°° , 

(vii) (T^ 7 > T = (T n (b , c, d; 3, b , b2 + 2c)}", 

(viii) { T i 8 Y = (T
n

( 1 ' l s 1; °' *• 0 )^ ' 

(ix) { T J 9 ) } ° ° = {T (1, 1, lv 0, 0, 1)}" . 
n o n 

2. PROPERTIES OF ( T }°° 

Firstj we recall the following useful relations 9 viz. s 

1 = [{R - Q(b - a) + Pd/a}(b - r)] ~ D f 

(2.1) m = [{R - Q(b - b) + Pd/b}(r - n)] -J D , 

n = [{R - Q(b - r) + Pd/r}(a - b)] L D , 

where D = (a - b)(b - r)(a - r); 

(2.2) a = af + b / 3 , b - bf + b /3 s r = rT + b/3 , 

where af
f bf

 9 rf are the roots of the reduced cubic equations z3 + 3Hz + G = 0; 

(2.3) a< = A l / 3 + B l / 3 , b' = w A l / 3 + w 2 B l / 3
9 r> = w 2 A l / 3 + w B l / 3

9 

where A,B = {-G±\l (G 2 +4H 3 )} /2 ; 

(2.4) D - Df = 3(w - w2)\/(G2 + 4H3) , 

where 

D' = (a1 - b?)(b? - r?)(a? - r f)? H = - ( 3 c + b 2 ) / 9 and G =-(27d + 9bc + 2b3)/27. 
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Some ident i t ies will follow. 

Identity 1. F o r q, qu q2? q3 and u denoting posi t ive in t ege r s (where 
q > 2 ) s 

(2.5) 

q q-1 q-2 q+u 
T T T T 

ô  q r l c^-2 q1+u 
T T T T 

q2 ^z"1 Q2™2 q 2 + u 

L q - 1 V - 2 T q,+u 

Proof. Le t 

(2.6) T ( l ) T + T(2)' T + T ( 3 ) T T = 0 
n+1 q u+1 q-1 u q-2 q+u 

Replace q by q1$ q2 and qg in (2.6). Then we get 

- i l l ) rp , r p \ 2 ) rp rp W n 
Lu+1 qt u+1 q r l u q r 2 "o^+u 

^ « T ^ T ^ + T ® ^ + T f T v 2 - T v u •= 0 , 

(c) T ^ T + r p l ^ ) rp i r p W / r p 

u+1 q3 u+1 o^-l u qg-2 q +u 
= 0 . 

Clea r ly , on el iminat ing T ^ , T ^ and T^3 ) from (2.6), (2.7)a, 

(2.7)b and (2.7)c, the de s i r ed r e s u l t follows. Note the following pa r t i cu l a r 

cases* 

(2.8) 

rp rp rp rp 

q q-1 q-2 q+u 
rp rp rp rp 

q+1 q q-1 q+u+1 

T J.O T _Ll T 

q+2 q+1 q 
q+u+2 

rp rp rp rp 
q+3 q+2 q+1 q+u+3 

= 0 
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(2.9) 
"q+1 

q-1 q-2 2q 

Lq+2 q-1 

q-1 2q+l 

q '2 q+2 

q+3 q+2 q+1 x 2q+3 

= 0 

(2.10) 
q+1 

q-1 q-2 3q 

q+2 q+1 T 
V I 3q+l 

T 3q+2 

q+3 q+2 q-1 x 3q+3 

= 0 

Identity 2. F o r q9 q l s q2, 
(where q + qt = ru q + q2 = r 2 , 

, q3 and u denoting posi t ive in t ege r s 
, q + q9 = r 9 and q > 2), 

(2.11) 

jT2 
q 

T2 
r i 

T2 , q -1 
rp2 

Vi 

T2
 Q T2 T T - T T 0 •• q-2 q+u q q-1 q q-2 

T2
 0 T2 ^ T T 1 T T 0 •• r j - 2 rA+u r j r j - 1 rj r$-2 

q-2 q+u 
8 T QT ^ rA-2 r4+u 

T2 

r 9 

The proof i s left to the r e a d e r . 

Identi ty 3. F o r q, qj_s q2, q3 and u denoting posi t ive in t ege r s (where 

q + qt = r l 9 q + q2 = r 2 , q + q3 = r 3 and q > 2) if 

then 

A = T T + T - T - + T 0 T 0
 + T _«_ T _._ » 

q q A q r j q-1 r j - 1 q-2 r 4 - 2 q+u rj+u 

(2.12) 

A A A A 
qo mt qq2 qq3 

A A , A _,_ A qq-t r ^ r4+q2 r t , q 3 

A A ^ A ^ A qq2 V ^ r2+q2 r 2 , q 3 

A A ^ A _^ A qq3 r 3 + q i r3+q2 r 3 , q 3 

= 0 
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The proof is left to the reader. 

Identity 4. For q9 q^ q29 °°8
9 q9 and u denoting positive integers 

(where q + OJ = rl9 q + q2 = r2, • 8 9 , q + q9 = r9 and q > 2) if 

• D = rp2 rp2 -f T 2 T 2 + . • . + T T T T 
^ iqir1

 + S-lrj-l + + i q i q - l i r 1
i r 1 - l 

+ • • - + T 0T T QT , , q-2 q+u r t-2 ri+u 

then 

(2.13) 

B B B 
qo mt qq2 qq3 

qQi 
B B B 

><k Tl>% V S 

Bqq9 \ ^ Br95q2
 Br99q3 

B 
qq, 

B 
r i » q a 

r9^qo 

= o 

The proof is left to the reader. We proceed to construct a field closely 

associated with ( T } which may be called hereafter the "Tribonacci field*" 
& o 

The elements of this field are 

(2.14) XXJ 

Y * -2* n = Q9 1, 29 

For n ^ .3 9 these elements modulo X3 - bX2Y - cXY2 - dY3 are the 

second-degree polynomials 

(2.15) X11 _ -(1) ,(2) 
Y*" 

= TKX\ X2 + Tv% XY + dTl i ;
0 Y: (1) 

n - 1 n-r n-2 

In this field, if P = Y2
9 Q = XY and R = X2

9 then the above-cited 

properties hold true. 

3. PROPERTIES OF {T ( 4 ) }°° 
n o 

For this sequence, 
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(3.1) 1 = (b - r ) /D, m = (r - a)/D, n = (a - b)/D 

and the n member is given by 

(3.2) .(4) = fo_- r)an + (r - a)bn + (a - b)rn 

"n fa"""- b)(b - r)(a -~rT~ 

or 

(3.3) T (4) = (bf - r')(a' + b/3)n + (r* - a')(bf + b /3) n + (af - bT)(rT + b/3)n 

n (a? ™ ^ ? J ( b r ^ 7 ^ a f - rf) — 

(3.4) 

We simplify (3.2) and (3.3). Rewrite (3.2) as 

_(4) r n+1 n , n . , n n+1 , n , un , n i 
T = | r - a r - br + ba - r + r a + rb - ab J 

-0 [(a - b)(b - r)(a - r ) ] 

= 1 l ( r - a ) 
a - b J "~ (r - b)(r - "~sT 

l ) ( r . b) - (r - a)(rn - b n ) 

- i n n n un 1 | r - a r - b 
r - b a - b 1 r - a 

(3.5) 

or 

This expression may be simplified as 

,(4) = r " " 1 1 - ( a r " 1 ) ' 
'n a - B J 1 - (a/rj" 

1 - (br ) °__(b7rr 

44) 
a - b 

1 n-1 ± n-2 2 x n-3 3 x ^ n-1 t n-1, 
r a + r a + r a + «•° + ra - (r b 

(3.6) 

, n-2, 2 , n-3, 3 ^ ^ , n - 1 , 
+ r b + r b + «• • + rb ) 

— ^ JrI1""1(a - b) + rn~2(a2 - b2) + r n"3(a3 - b3) + •• 
' , , n-1 , n - L 

+ r(a - b ) 
n-1 , n-2/ , ,v , n-3 / 9 , , ,' 2\ . r + r (a + b) + r (sr + ab + bz) + • • • 

z n-2 , n-3. , , , n-2 v 
+ r(a + a b + • • • + b ) . 
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Consider (3a3)9 Let 

237 

(3.7) A l = J -G^(G2
+4H3)^ 

Clearly, 

1 / 3 T, - i -G - N/(G2 + 4 H 3 ) } 1 / 3 
B]. - j g 

• \ 

(3.8) af = At + Bi, b! = wA4 + w2Bt and b? = w2At + wBt 

On substituting for aT, bf and rf from (3.8) in (3.3), we have 

T
n

4 ) = [{(w - w2 )At + (w2 - w)B1}(A1 + Bt + b/3)n + {(w2 - DAj 

+ (w - l)Bt} (wAt + w2Bt + b/3)n + {(1 - w)AA + (1 - w2 )Bj} (w2At 

+ wBi + b/3) n ] ^ D 

*r=n 
^ nCr(b/3)n- r{(w - w2)(At + Bi)r(Ai - Bt) 

+ (wAi + w2Bi ) r [(w2Aj + wBi) - (Ai + Bt)] + (w2At + wBi ) r 

(3.9) 
X [(Ai +Bt ) - (wAi +w2Bi)]} 

r=n 

^ {3(w-w2)(Ai3 - Bf)} 

2 nCr(b/3)n""r{(w - w2 )(Ai + Bi )r(Ai - Bi) + (At + Bt) 
r=0 

X [(w2AA + wBi ) r - (wAA + w2Bi ) r ] + (w2AA + wBi )(wAt + w2Bt f 

- (wAi + w%t )(w2Ai + wBi ) r } 7 (3(w - w2 )(A? - B?)} 

[r=n J 

£ n
c

r ( b / 3 ) n " r {(w - w2 )(At + Bi )r(Ai - Bi)'+ (At + Bi) 
r=0 

X [(w2Ai + wBi ) r - (wAt + w2Bi ) r ] - (Af - A4Bi + B?) [(w2Ai r - l i + wB 1 ) r " 1 - (wAi + w 2 B t ) r l]} 4 {3(w -w 2 )(A| -Bf)} 

Since 
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s=r 
(wAi + w2Bi ) r - (w2A4 + wBi ) r = M Y c i 8 - y s - 1 * / 2 

1 s=0 

X (AA + B i ) 1 7 " 8 ^ - B i ) S [ l - (-1)S] 

[Apr. 

for i = NPT, w = (1 +i\/3)/2 and w2 = (1 - iN/3)/3, (3.9) can be rewritten 
as 

.(4) 
r=n 
2 n C r ( b / 3 ) n " r jW^Ai + B1)r(A1 - ^ ) - (A4 + Bj) 
r=0 

s=r 
»2rCBi"-^»\+B1,'-Wl.Bl,« 

4 s=0 

X ( 1 - (- l ) a ) + (At2 - AtBi + B2) 
s=r-l 

î  y c i3-1 

„r-l - ^ r - l V s=0 

x a ^ - 1 ^ 2 ^ + B1)r-s-1(Ai - B l ) s ( i - (-i)s) 

(3.11) t [3iN/,3(Ai
3-B1

S)] 

r=s 
S n C r ( b / 3 ) n _ r l ( A i + B i ) r (Ai - ^ ) - (Aj + Bj) 
r=0 

X 
r=s 

iE^/'^^V^r-^-BOs 
r=0 

X (1 - (-1)") + (Al - AtBi + B?) 
s=r- l 

^r-1 Z^ r-1 C i s 
s-1 

s=0 ^ 

X S ^ - 1 ^ 2 ^ + B ^ ^ V - Bi)B(l - (-1)S) 

f {ml -4)} . 
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(3.12) 

However on combining (2.3) and (3.2) 9 

T f = [{(w - w ^ A 1 / 3 + (w2 - w m ^ V ^ + B ^ + b / S ) 0 

+ { (w2 - 1 ) A 1 / 3 + (w - 1 ) B 1 / 3 } (w A 1 / 3 + w 2 B 1 / 3 + b / 3 ) n 

+ { (1 - w ) A 1 / 3 + (1 - w2 ) B 1 / 3 } ( w 2 A l / 3 + w B 1 / 3 + b / 3 ) n ] 
-*• [3(w - w 2 ) ( A - B)] 
6=n 

= E */3 n _ 6nC6L6 > 
6=0 

where 

J3k 

"r=k-l 

r=o 

( 3 k - 3 r - l ) / 3 _ ( 3 r f 2 ) / 3 , r _ r v 
15 l 3k^3 r+ l 3 k ^ 3 r + 2 j f (B - A), 

J3k+1 

r=k 

E* 
r=0 

(3k+ l -3 r ) /3 ^ ( 3 r + l ) / 3 ( __ , 
^ v3k+l 3 r 3k+l 3 r + l ; ( B - A ) 

and 

J3k+2 

r = k - l 
B (3k+3)/2 _ A (3k+3) /3 + y ^ A ( 3 k - 3 r ) / 3 

r=0 

Le t 

( 3 r + 3 ) / 3 , r __ r v 
° l 3k+2^3r+2 3k+2 3 r + 3 ; 

J 
4. PROPERTIES O F { T ^ } ° ° 

n 0 

T ( B - A ) 

,(5) = (b - a ) ( b - r ) a n + (b - b)(r - a )b n + (b - r ) (a - b ) r n 

•n D 

(4.1) = [b{(b - r ) a n + (r - a )b n + (a - Wr11} - {(b - r); n+1 

n+1 n+l i + (r - a ) b n + 1 + (a - b ) r n + ± } ] ~ D 
= . (4) __ T (4 ) 

n n+1 
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(5) This relation is useful in deriving expressions of T w similar to those 

of T<4>. n 

,(6h 
"n ; 

Proceeding as in previous section, it is easy to show that 

5* PROPERTIES OF ( T ( }}°° 1 n % 

(4) Note that this equation connects up expressions of T in Section 3. 

6. PROPERTIES OF ( T 1 0 } ° ° 1 n \ n * 
In this Section, we state without proof the following identities; 

(6.1) 2(T<7) - 3dn) = T(7){2TQ
(7) - (T( 7 ) )2 + T^7)} , 

3n n l 2n n 2nJ ' 

(6.2) T<7) = T(7)T<7) - T J 7 ) [ { ( T ( 7 ) ) 2 - T<7)}/2] + dnT(7) . 
4n n 3n 2n L L n 2nJ/ J n ' 

,fi ov T(7) _ T(7) = T(7) (7) _ T(7) (7) _ (7) r(lT(7) ,2 

v°-°> x4n+4r 4n n+r 3n+3r n x3n x 2n+2rL l K n+r ; 

" ^S+,)/2] + T<7>[{(T<7))2 - 2 T 5 / 2 ] 
n(T(7) _ T ( 7 ) 

n+r n ? 

(6.4) 2T*7) = 3T( 7 )Ti7 ) + 6dn - (T( 7 ) ) 8 = T ^ f S T ^ - ( T ' 7 ' ) 2 } + 6dn 
3n n 2n n n l 2n n J 

and 
(an (r{V J ,T(7h3 - *rT(7)T(7) T(7) (7K «rT(7) T(7h 
{b'5} ( Tn+r} • ( Tn } " ^ T n+r T 2n+2r " T n T2n^ ~ ^ T 3 n + 3 r ~ " W 

for d = 1. 

co 

7. PROPERTIES OF { T ( 8 ) } 1 n Jo 
r (8)i °° r (9h°° 

This section will give identities relating to ( T ) and (T ) . They 
are: 

(7.1) T(9> - T( 8 ) = T ( 9 ) , , 
n n n-3 
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(7.2) 

(7.3) 
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(9) (8) _ „(9) 
n i n i n + l ' 

, (9) 2 (8) 2 _ (9) (9) (T n ) - (TQ ) - T n _ 3 T n + 1 , 
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( 7 . 4 ) 2 ( T (9) }
2
 = T(9 ){T(9_)3 + TWi} 

and 
,7.5, 4T«>Tf - ( I ^ ) ' - « « , ) • . 

88 PROPERTIES OF { T ( 9 H ° ° 

r (9V> oo 

This section will discuss the congruence properties of {T '} modulo 
mf a positive integer. We note the following identity: 

(8.1) T ( 9 ) = T(9> T ( 9 )
 + (T<9> + T(9>)T

(9> + T(9> T(9> . 
q+u u+2 q u+1 u ' q-1 u+1 q-2 

r (9) -> °° 
Some theorems concerning {T (mod m)} will follow 

r (9) i°° n ° 
Theorem a. ( T (mod m)} is simply periodic. (9) " n 0 (q) (q\ (q) 
Proof. For some n and a, let Tv ' = Tx % (mod m), TK ; = T 

— (9) (9) n " x n - 1 n a 

(mod m) and T ' = T ' (mod m), From these congruences, we obtain 

(8.2) T®. = T«» (mod m) , 

where t denotes an integer ^2e Since m2 pairs of terms are possible in 
r (9) 100 

this ser ies , ( T (mod m)) must return to the starting values thus becom-
ing simply periodic. e 

Theorem b. For a prime factorization of m in the form m = U $ the 
period of {T^ (mod m)}°° is the lowest common multiple of all the periods 
of 

,(9) 6-{ T f (mod p.1)} 

r (9) i°° Proofa Let k(m) denote the period of ( T (modm)} . Then k(m) is „ n o 
of the form 
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c J^p . 1 ) , 

where c. denotes a related constant. Therefore, 

e_. 
k(m) = 1. c. m. [<'>] 

(9) (9) 
Theorem c. For some q, if Tv = 0 (mod m) and T '' = 0 (mod m), 

~~ (9) q (9) q l 

then the subscripts for which T = 0 (mod m) and T ' = 0 (mod m) form 
simple arithmetic progressions. 

Proof. Let 

T( 9 i l + 1 B T<?> _T®> + (T<9> + T<?>)T<9> + T<9> T(9> q+q*+l qf+2 q+1 q?+l qf q q?+l q-1 
*8,3* (9) (9) = T 1 , ' T w - (modm) . qf+l q-1 

(9) For qf = q - 1 and q, this congruence shows that T ' = 0 (mod m) 
(9) q 

and T^ + 1 = 0 (mod m). Similarly, we can obtain 

T ! 9 ) = 0 (modm), T*9)
(1 = 0 (modm) , 

o q «jq+J-

T^9) .= 0 (modm), T^9)
+1 = 0 (mod m), etc. 

Therefore, it follows that n is of the form xq, x = 1, 2, • • • , so that n 
and n + 1 form simple arithmetic progressions. 

Theorem d. Let Hf = 32H, GT = 33G and (Gf)2 + 4(H!)3 be a quadratic 
residue for primes of the form 3t - 1. Then k(p) 1 (p2 - 1). 

Proof. Denote p2 by 3tf + 1. Then 
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fr-t ? 

L - 3 3 t f L - S3 t ? l£A 
ir=0 

( 3 t ' + l - 3 r ) / 3 

(8.4) 
B ( 3 r U ) / 3 f r 

X B l s t i + i c 3 t ' + l " 3 r - 3 t ' + l C 3 r + 1 ) 4- (B - A) 

= 3 3 t V 3 t ' + 1 ) / 3 B 1 / 3 - B( 3 t ' + 1 ) / 3A1/3) - (B - A) 
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(8.5) 

= 3H'UJ., (modp) 

T _ 3 3 t ' _ ,3t« 

r = t ' - l 

r=0 

B(3t»+3)/3 _ A(3t»+3)/3 

3t» +2 C 3r+2-3t ' +2 C 3r+3 * - (B - A) 

- 3 3 t ' ( B t , + 1 - A t , + 1 ) i ( B - A ) 

" U t ! + 1 ^ ^ ^ 

and 

_ 03t? 
L 3 t ' + 3 - 3 

r=t? 

E A ( 3 t * + 2 - 3 r ) / 3 B ( 3 r + 2 ) / 3 ( c 
3 r + l - 3 t ' + 3 C 3 r + 2 * 

r=0 

(8.6) (B - A) 

= 3
3 t ' ( A 2 / 3 B ( 3 t ' + 2 ) / 3 - B 2 / 3 A ( 3 t ' + 2 ) / 3 ) ^ ( B _ A ) (A 

= (1/3)(H')2U{., (modp) 

so tha t 

(8.7) 
and 

,(9) 

T§[!+1 s 3H'U' (mod p) 

,(9) 
T 3 t .+2 E H ' U t - + U t<+1 ( m 0 d P ) 

T 3 t ' + 3 - ( 1 / 3 ) + ( 2 / 3 ) U t ' + l + d/3^')2^, + 0-/3)WWt, (mod p) , 
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where 
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U' = -GfUf + (Hf)3Uf -n+i n n-1 

[Apr, 

for n = l , 2, . . . f Uj = 0 and u{ = 1. Since 

U3t-2 E ° imod& a n d U(3 t-2)+l s * ( m o d P>> 

we get 

Therefore 

.0) 

UJ, = 0 (modp)' and IP = i (m od p) 

(8.8) T^i+l = 0 (modp), T^J + 2 = 1 (modp) and T<J}+3 = 1 (mod p). 

These congruences imply 

T^J = 0 (mod p) and k(p) | (p2 - 1) . 

Theorem e. For primes of the form p = 3t - 1 where (G1)2 + 4(Hf)3 

is a quadratic nonresidues k(p) | (p8 - 1). 

Let p8 = 3tff + 1. Note that the proof of Theorem 4 holds with tf changed 
to t?f, etc. The proof is left to the reader. 

Theorem f. For primes of the form p = 3t + 1 where (Gf)2 + 4(Hf)3 is 
a quadratic nonresidue5 k(p) | (p2 - 1). 

Proof. Let p2 = 3t + 1. Then 
6=3t+l 

6=0 
3t+l C6I6 

= 33tL 3t+l 
r=t 

s 3 3t 

(8.9) 

k - A ( 3 t + l - 3 r ) / 3 (3r+l)/3 1 
/ '*-' K 3 t+ l u 3 r -3 t+ l C 3r+ l ' I 
lr=0 

T (B - A) 

s 3 ^ ^ ( 3 ^ 1 ) ^ 1 / 3 _ A l / 3 B ( 3 t + l ) / 3 ) / ( B _ A ) 

£ 3 3 t A l / 3 B l / 3 ( A t _ B t ) / ( B _ 

= 3H'U£ (modp) 
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6=3t+2 
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T 0 ) _ o3tT(9) 
•3t+2 3t+2 

,3t 

,3t 

Z (l/3) 3t+2-S 

6=0 
3 t + 2 C 6 L 6 

33t{(l/3)L,f+1 + L a t + J 

(8.10) = H?UJ. + 3' 3t 

3t+l ' ^3t+2-

r = t - l 
+ 

r=0 
B t + 1 - A t + 1

 + £ A (3 t -3 r ) /3 B (3 r+3) /2 

( 3 t+2 C 3r+2"3 t+2 C 3r+3 ) ^ ( B " A ) 

= WU[ + 3 3 t ( B t + 1 - A t + 1 ) / ( B - A) 

= H?U{. + Uj.+ 1 (mod p) 

and 

T (9 ) _ «3tT(9) _ 3 T 3 t + 3 = 6 X3t+3 " 

6=3t+3 
3t V ,, / o v 3 t+3-6 

3 t+3 C 6 L 6 

(8.11) 

E (1/3)' 
5=0 

3 3 t ( ( l / 3 ) 3 t + 3 L o + ( l / 3 ) 3 t + 2 L i + ( l / 3 ) 3 t + l L 2 

+ L 2 ( l / 3 )2L S f + 1 + ( 2 / 3 ) L 3 t + 2 + L 3 t + 3 } 

' r= t 
y * A ( 3 t + 2 - 3 r ) / 3 

.r=0 

J3t+1 

= (1/3) + (1/3)H'U> + (2/3)UJ+ 1 + 3 

, (3r+2)/3 

3t 

B v 
*3t+3 C 3r+l 3 t+3 C 3r+2 ) 

= (1/3) + (l /3)H«ir t + (2 /3 )U ' + 1 + 3 
3* 

f (B - A) 

{ A 2 / 3 B 2 / W - A*)/© - A)} 

= (1/3) + (1/3)H'UJ. + (2/3)Uj.+1 + (1/3)(H')2U{. (mod p) 

F o r the cons idered p r i m e s , i t i s e a sy to show that 

U3t+2 s ° ( m ° d p ) ' U (3 t+2) + l 5 ^ ( - H ' ) 3 } ( m ^ P ) ' 

<8-12> U2(3t+2) = ° ( m ° d p ) ' U 2(3 t+2) + l 5 ^ ( - H ' ) 3 > 2 ( m ° d p ) ' 

U t (3 t + 2) s ° ^ P * ' U t ( 3 t + 2 ) + l s ^ ( - H ' ) 3 > t ( m ° d p ) ' 
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so that 

U{. = 0 (mod p) and Uj.+1 = 2 s 1 (mod p). 

Therefore 

(8.13) T ^ ^ O(modp), T^J_2 = 1 (mod p) and T®?+3 = 1 (mod p)f 

(9) 
when Tg.7 = 0 (mod p) and the desired result follows. 

Theorem g. For primes of the form p = 3t + 1 where (Gf)2 + 4(HT)3 

is a quadratic residue, k(p) | (p8 - 1). 
Let p6 = 3tf + 1. Note that the proof of Theorem f holds with t changed 

to V, etc. The proof is left to the reader. 
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NOTE ON THE CHARACTERISTIC NUMBER OF A SEQUENCE 
OF FIBONACCI SQUARES 
BROTHER ALFRED BROUSSEAU 

St Mary's College, California 

Given a sequence of squares formed from the terms of a general Fibon-
acci sequence, It is proposed to set up a quadratic expression that will char-
acterize a given sequence of this type, 

Fi rs t let it be noted that since this is equivalent to an expression of the 
fourth degree in Fibonacci numbers 9 the characteristic number would be a con-
stant that would not oscillate in sign. To find such an expression we may pro-
ceed as follows, 

Let the original sequence be given by H = Ar + Bs where r and s 
are the roots of the Fibonacci recursion relation. Then the square term 

G = H2 = A 2 r 2 n + 2AB(rs)n + B 2
S

2 n . n n 

We now calculate three expressions, 

G2 = A 4 r 4 n + 6A2B2 + B V 1 + 4A3B(rs)nr2 n + 4AB3(rs)s2 n 

G ,G " = A 4 r 4 n + 4A2B2 + B 4 s 4 n
 + 2 A 3 B [ r 2 n - 2 ( r s ) n + 1

 + (rsf^v2^2 ] 

+ 2AB 3 [ ( t B ) n - 1 8 2 n - K i
 + ( r s ) n + 1 s 2 n - 2 ] 

, A 2 ^ 2 r 2n-2 2n+2 , 2n+2 2n-2-i + A B [r s + r s J 
G 9G = A 4 r 4 n

 + 4A2B2 + B 4 s 4 n + 2AB [ r 2 n - 4 ( r s ) n + 2 + r 2 n H 4 ( r s ) n - 2 ] 
+ 2AB3 [ s 2 n + 4 ( r s ) n - 2

 + s 2 n - 4 ( r s ) n + 2 ] 
, A 2 B 2 r 2n-4 2n+4 _,_ 2n+4 2n-4-, + A B [ r s + r s J 

Firs t let it be noted that the A2B2 terms which end the expressions for G - , 
G - and G nG n are 7A2B2 and 47A2B2

9 respectively. The AB3 and n+1 n-2 n+2 * J 

A3B terms of G - G +- can be written together as 

2 A B ( - l ) n - 1 [ A 2 r 2 n - 2
 + B 2 s 2 n " 2 ] + 2AB(-l) n - 1 [A 2 r 2 n + 2

 + B 2 s 2 n + 2 ] . 

A similar expression can be obtained for the corresponding terms of G 2* 
2 2n 2 2n 

G +2- If we let G* = A r + B s we have the following relations, 

G2 = A 4 r 4 n
 + B 4 s 4 n + 6A2B2

 + 4AB(-l)nG* n zn 

247 
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0 , 0 ^ = A 4 r 4 n + B 4 s 4 n + 11A2B2 + e A B W ^ G * 
n-1 n+1 2n 

Gn-2Gn+2 = ^ ^ + ***** + 5 1 A 2 B 2 + 1 4 A B ( - D n G | n ' 
To eliminate all but the terms in A2B2 we need three multipliers 'x ,y ,z sat-
isfying the relations x + y + z = 0 

-4x + 6y - 14z = 0 
with the solution x:y:x = -20:10:10. Hence the required expression which gives 
a characteristic number of a quadratic character is 

2 2G - G - G . - — G rtG , n ~ k . 
n n-1 n+1 n-2 n+2 

The value of this expression is K = -50A2B2 = -2D2 since the characteristic 
number of the original Fibonacci sequence is given by D = 5AB where D is 
defined as H | - HiHa . 

If the initial terms of the sequence of squares are a s b , c , the next two 
terms are given by the recursion relation T ,- = 2T + 2T i - T o0 Hence, & J n+1 n n-1 n-2 
the fourth and fifth terms are 2c + 2b - a and -2a + 3b + 6c* We form K 
from these beginning terms of the sequence and find an expression 

K = 2a2 - 2b2 + 2c2 - 2ab - 2bc - 6ac . 
as bj and c are related by the relation N/C = N/E + \/b which becomes 

a2 + b2 + c2 - 2ab - 2bc - 2ca = 0. 

FIBONACCI NOTE SERVICE 

The Fibonacci Quarterly is offering a service in which it will be pos-
sible for its readers to secure background notes for articles. This will apply 
to the following: 

(1) Short abstracts of extensive results , derivations, and numerical 
data. 

(2) Brief articles summarizing a large amount of research, 
(3) Articles of standard size for which additional background material 

may be obtained* 
Articles in the Quarterly for which this note service is available will 

indicate the fact together with the number of pages in question. Requests for 
these notes should be made to: 

Brother Alfred Brousseau 
St. Mary's College 
Moraga, Calif. 94575 

The notes will be Xeroxed. 
The price for this service is four cents a page (Including postage, ma-

terials and labor.) 



ON SUMS OF FIBONACCI NUMBERS 
P. ERDOS 

Hungarian Academy of Sciences, Budapest, Hungary and University of Colorado, Boulder, Colorado 
and 

R.L.GRAHAM 
Bell Telephone Laboratories, Inc., liyrray Hill, Hew Jersey 

For a sequence of Integers S = (sl9 s2» * • *), we denote by P(S) the 
set 

GO 00 

E €k V €k = ° o r ^ E\ 
k=l k=l 

We say that S is complete if all sufficiently large Integers belong to P(S). 
Conditions under which a sequence S is complete have been studied by a 
number of authors. These sequences have ranged from the slowly growing 
sequences of Erdos [3] and Folkman [4] (s = 0(n2))f the polynomial and 
near-polynomial sequences of Roth and Szekeres [9], Graham [5] and Burr 
[ l ] s to the near-exponential sequences of Cassels [2] (s = 0 (exp (n/logn))) 
and the exponential sequences of Lekkerkerker [7] and Graham [6] (s = 
[ta ] ) . In this note? we investigate sequences in which each term is a Fib-
onacci number9 L e„ , an integer F defined by the linear recurrence 

F_LO = F _ 1 _ i + F 5 n > 0 , 
n+2 n+1 n' 

with F0 = 0, F4 = 1. 
For a sequence M = (mls m2? •••) of nonnegative integers., let S M 

denote the nondecreaslng sequence which contains precisely m, entries 
equal to F , . It was noted in [ 7] that for M = (1, 1, 1, ***)f S M is com-
plete but the deletion of any two terms of S M destroys the completeness. 
Further, it was shown in [1] that for any fixed a, if M = (a, &9 a9 ***) 
then some finite set of entries can be deleted from S M so that the resulting 
sequence Is not complete. This result can be strengthened as follows (where 
T denotes (1 + N/"5)/2). 

249 
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Theorem 1. If 

[Apr. 

Emk 
k=l 

T k < oo, 

then some finite se t of e n t r i e s of S M can be deleted so that the resu l t ing s e -

quence i s not completee 

Proof. The proof u s e s the ideas of C a s s e l s [2 ] . Let ||x|| denote 

min Ix - n | where n r anges over all i n t ege r s . It i s well known that F can 

be explici t ly wr i t ten a s 

F = -J- (rn 
n JZ - r ) " n ) 

Thus 

£ llBTll = £ mkllFkHI 
sQS. M k=l 

= S m k " v - F 
k l | L k ' xk-f l l ! 

k=l 

^ 5 k=i 
m, 

(T2 + 1) ( _ T ) - k 

T2 + 1 

r\l5 2 m k r " k " °° 
k=l 

by the hypothesis of the theorem. Hence, by delet ing a sufficiently l a rge in-

i t ial segment of S M , we can form a sequence S* for which 
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|sr| | <- 1/4 
s e S M 

But r is Irrational so that for Infinitely many integers m? we have 

||mr|| > 1/4. 

The subadditivity of || • || shows that such an m cannot belong to P(S*L). 

It follows in particular that if 1 < 9 < r and m, = 0(0 ) then S M 

f: 
from S M can result in a sequence which is not complete, 

This proves the theorem, 
It follows in partici 

is not "strongly complete/1 i .e . , the deletion of some finite set of entries 
S M can result in a sequence which is not complete* 
In the other direction, however, we have the following result. 
Theorem 2. Suppose for some € ^ 0 and some k0s m, > £r for 

ko* Then S M is strongly complete. 
Proof. For a fixed integer t, let Mf denote the sequence 

(0, 0, . . . f 09 m t + r m t + 2 , . . . ) 

It is sufficient to show that SM? Is complete. We recall the identity 

<*> Fn+2k + Fn-2k = L 2k F n ' 

where L is the sequence of integers defined by Ln +2 = Ln+1 + L n 5 n ~ °9 

with L0 = 2, Lt = 1. It is easily shown that F r ^ TT and 

T > 1 r 
L r " 2 T 

for r ^ 0. We can assume without loss of generality that t > k0 and €r 
> 2. Choose £ >4/€ and n > t + 2# . We can form sums of pairs ^R+2^ + 

F _2, from SM? to get at least €r "" copies of L 2 . F (by (1)) for 0 < k 
^ #. Since €T > €T > 2 then these sums can be used to form all the 
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multiples uF 5 

Since 

k=0 

T > 1 r 

L r ~ 2 T • 

then we have formed all multiples uF , 

i ^ ^ €(£ + 1) n 

The same argument can be applied to the terms F - ?, (which are distinct 
from the terms previously considered) to form all multiples vF - , 

- ^ ^ €ft + 1) n+l 

Of course9 F and F - are relatively prime so that the set of integers of 
the form xF + yF - , x and y nonnegative integers, contains all integers 

^ F n F n+ l " F n ~ Fn+1 {cL [ 8 ] ) e F o r a n y i n t e g e r 

Nj = F n F n+ l - F n " Fn+1 + *• X * J * F n + 2 • 

the coefficients x. and y. in a representation 

N. = x.F + y.F ,. j j n J ] n+l 

certainly satisfy x. ^ F + - , y. ^ F . Thusf x.? y. < T < 2 T . Since 
u and v can range up to 
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then by using the multiples of F Q and F + 1 we have just considered* we 
can represent all the N., 1 ^ j ^ F n + 2 > as elements of P(SM ?). Finally, 
since we have used at most er11" copies of F ., 2 ^ i, in this process^ 
we still have available at least eCr11* - T*1""2) > i copies of F . t o use in 

* n+i 
forming sums in P(SM ?) . By adding sequentially a single copy of F + . , 
I = 2, 3, 4, *e • , to the N.» It is not difficult to see that all integers ^Ni 
belong to P(SM ?) . Thus, SM? is complete and the theorem is proved. 

It should be pointed out that the condition 

Z*»J 
-k 

m. T = °° 
k=l 

Is not sufficient for the comple teness of S M a s can be seen from the example 

in which 

m. 
i [ r k ] if k = 2n for 

Lk 0 otherwise 
some n 

However* the proof of Theorem 2 directly applies to show that if m / r is 
monotone and 

then S M is strongly complete. 
It would be of interest to investigate refinements of these questions. Of 

coursef similar results and questions arise for other P - V numbers be-
sides r but we do not pursue these here* 
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A GENERAL Q-WtATiiX 
jOHMivie 

University of California, Berkeley, California 

1. INTBODUCTION 

Let F be the n Fibonacci number and let 
n 

Q •a o-
This matrix has the interesting property that 

\ n n - 1 / 

In this paper, we introduce a general type of Q-matrix for the generalized Fib-
onacci sequence {f }9 and some of the Interesting properties of the Q-

n, r 
matrix are then generalized for these sequences,, An extension to the general 
linear recurrent sequence is also given* See [l] for more information on the 
Q-matrix proper. 

2a THE MATRIX Q r 

Recall that the Fibonacci numbers { F } are defined by F + = F + 1 

+ F , with F0 = 0, Fj, = 1. Now let us define the generalized Fibonacci se -

quences { f ^ } for r ^ 2 by fn,r = V l . r + ' ' ' + £n-r,r' w i t h f 0 , r = 

f = *** = f = o, f . = 1 . Note that r = 2 gives the Fibonacci 
l , r r - 2 § r ? r-l,r & 

numbers. 
Now define a matrix Q by 

Q = 
^r 

/no ... o I 1 0 1 . . . 0 
| ; o o i . . . o 
I • o oe9 o i 
\ 1 0 0 0 . - - 0 

255 
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Note that Q Is just the r - 1 Identity matrix bordered by the first column 
of lf s andlast row of 0ss. In order to motivate this definition* note that 

Fn+1 F n \ = / Fn+2 Fn+1 
F F J 2 I F ^ F 

n n - 1 / \ n+1 n 

We have thus defined Q so that this property holds for the matrix 

W l - i - j . r * ' 1 * i. i * r . 

Theorem 1. 

f f f 
n + r - l , r n+r-2 , r n 9 r 

r-2 r-2 r -2 
^n - 1 La f n+r-2- i , r La n+r-3~i5r ° *" La n-i-1,] 

i=0 i=0 

f f f 
n+r-2?r n+r-3 , r n - l , r 

(the general term is 

r - j 

"te Za n+r- i -k- l ? ] 
1=0 

Proof. Let r be fixed and use induction on n. This is trivially veri-
fied for n = 1, 2. Assume true for n5 and consider 

f f f 
n + r - l , r n+r-2 , r n, r 

r -2 r-2 r -2 
Qn+1 = Q n Q = J 2 ^ f

n +r -2- I 3 r la f n + r - 3 - i , r " ' la fn-i-l93 
r r r { 1=0 i=o i=o 

f f f 
n+r~2,r n+r-3 , r n - l , r 

(equation continued on next page.) 
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1 1 0 . . . 0̂  
1 0 1 . . . 0 
. 0 0 1 ••• 0 
: o . . . o i 
I O O O . . . oi 

f f £ 
n+i%r n+r»l ? r n+ l ? r 

r -2 r -2 r-2 
2-# n + r - i - l , r 2 j fn+r-2- i , r 2 ^ f n - i ? r = Q n + 1 9 

1=0 1=0 1=0 
9 @ o 

f f f 
n + r - l g r n+r-2 , r n f r 

which completes the proof of the theorem* 
We write this matrix In neater form by letting P = (f . . l 0 ), 1 

i, j < r$ where f is found by the recursion relationship,, Then 
•~n§ r 

£ £ 

n+r ? r n+ l , r 
P Qn = 

n+1, r n=r+2,r 

An interesting special case of our theorem occurs when r = 3, where 
the numbers (f 0 } are the so-called TribonaccI numbers of Mark Feinberg* 

3. APPLICATIONS 

We now develop some of the interesting properties of the matrices Q 
and P Qn.; 9 which in turn are generalizations of interesting properties of 
the matrix Q , which is the special case when r = 2S 

It is readily calculated that 

d e t ( P r Q ; ) = ( d e t P r ) ( d e t Q r ) n = K , ( 2 n « ) 0 r - l ) / 2 

For r = 2, we have the corresponding Fibonacci identity 

F F - F2 = ( - l ) n + 1 . 
n+1 n-1 n l ; 

The traces of Q and P Q are also readily seen to be 
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r / r - j \ r 
T r < } = E | E Wi-j-l.r J = ZlWl,r 

j = l \ i = 0 / j=l 

Tr(P Q n ) = f " + f n + e 6 e + f 
r * r n+r , r n+r-2 s r n-r+29r 

For r = 2S we have 

Tr(Qn) = F - + F _,, = L . ^ n-1 n+1 n 

r i*-™! The characteristic polynomial of Q i s x - x - • • • - x - 1, which 
is also the auxiliary polynomial for the sequence { f }* Since Q satisfies 

r r—1 9 

its own characteristic equation, Q = Q + • • • + Q .+ I , hence 

Q r
T

n = ( Q ^ 1 + • • • + Q / I ) n . 

Expanding by the multinomial theorem and equating elements in the upper 
right-hand corner yields 

f rn 9 r 
kt,°-° , k r 

ki +°• • +k =r i r 

For r = 2 9 we recover the familiar 

/Li hi ••• V fki+2k2+^»+(r-l)kr_l 9 3 

F *2n 
k=0 

Now consider the matrix equation Q = Q Q ; equating elements 
in the upper left-hand corner yields 

r / r - j 

m+n+r- l , r ^ 1 ^ m+r- j f r n+r-2- i 9 r 
j = l \ i = 0 



1972] A GENERAL Q-MATRIX 259 

and for r = 2S we have F m + n + 1 = F m + 1 F n + 1 + F ^ * Note that several 
other general identities can be obtained in this way. 

We now use the matrix Q^ to show that the product of two elements of 
finite order In a non-abellan group is not necessarily of finite order* This 
generalizes a counterexample given by Douglas LInd in [2], which results for 
r = 2„ Let 

1 -1 

S =1 • o 1 , 

r I . 0 

be elements of the group of Invertible square matrices, then 

R2 = S r + 1 = I , 
r r * 

so R and S are of finite order, but (R S ) = Q f I, for all n, by 
Theorem 1, so that R S Is not of finite order* r r 

It is of some interest to observe that the matrices Q give explicit ex-
amples of Anosov toral diffeomorphlsmso That i s , viewed as a linear map on 
H , Q preserves Integer points and is invertible with det ^ 1, hence i n -
duces a diffeomorphism on the quotient space B / Z . The hyperbolic toral 
structure follows, since Q has no eigenvalue of modulus 1, using an argu-
ment via the characteristic polynomial as In [3]. Any such Anosov toral dif-

feomorphism comes from, .a linear recurrent sequence whose auxiliary equa-
tion Is given by the polynomial of the diffeomorphism. 

48 THE GENERAL LINEAR RECURRENT SEQUENCE 

We now show how a Q-type matrix can be determined for the general 
r order linear recurrence relation 

u , = a -u , - + . . • + aAu 
n+r , r r - 1 n + r - l , r 0 n 9 r 

with initial values u. = b., i = 0, 1, • • • , r - 1, where b0? b l s *-% b 
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are arbitrary constants* This is done in a sequence of successive generaliza-
tions-

Define a sequence (f* } by f . = f* - + • • • + f * , with initial 
M l n , r J J n+r s r n+r-1 n*r values f*= b. , 0 < i < r - 1. (Note that b0 = bi = • • • = b n = 0S b „ 1 1 u ~i r _ 2 s r-1 

= 1 give the {f } defined previously.,) To find a Q-type matrix for the ns r 
{f* }f we need the following identity: 

f* = \ ^ b Y^f nsr Z-# i - lZ j n-j-l,i 
i=l j=l 

which is easily proved by induction on n. Now let B = (b - ••• bf i ) , then 

by our identity. Thus, we have the following Q-type matrix for our sequence 
If* } : 1 n 5 r j 

/ B Q 1 1 \ / f* ••• f* 
I ^ T \ j n+r f r n + l s r 

(Q*) n = 

\ -RO11"14"1 / \ f* " " f* 
V ^ r / V n + l . r V r + 2 9 r 

Now consider the sequences { u* } defined by 

*n+r?r = a r - l " h + r - l . r + a r - 2 U n + r -2 , r ' " ' ^ o t r ' 

with initial values u* = 09 0 < n < r - 2, u* = 1. As in Theorem 1, 
n? r r - i j r 

we have the following Q-type matrix for the sequence (u* }t 
n« r 
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/ U n+r - l , r Un%r-2,r • " U n , r 
r -2 r-2 r -2 

2-» a r~2 - l U n+r -2 - l , r 2-r a
r - 2 - i U n + r - 3 - i , / " *LJ a r - 2 - i U n - i - l , i 

1=0 1=0 i=0 

V a 0 U n + r - 2 , r a 0 Un+r-3,r * " a 0 U L l , r 

which Is proved by Induction on n. 
We nowpiece these two partial results together to derive a general Q-type 

matrix for the general linear recurrent sequence { u } defined in the begin-
ning of this section. To do this, we need the following identity: 

r i 
u = /] b. - / . a. . u* . 1 , 

n,r *-^ l - l ^-j 1-3 n - j - l , r 
1=1 j=l 

which is proved by Induction. As before, let B = (b - • • • b Q ) , then by our 
Identity, 

B(R*)n = (u _, ••• u ̂  ),••-, B(R*)n~r+1 = (u ̂  ... u ^ ) . 
% r' % n+r,r n+l,r r N n+l,r n-r+2,r 

Hence, we have the following. 
Theorem 2. 

/ B(R*)n 

\ B(R* )n" 
) • 

-r+l/ 

/ u , / n+r,r 

\ : 
\ u • • • 
V n + l . r 

n+1, r 

n- r+2, r 

Thus, there is a general Q-type matrix for any linear recurrent sequence. 
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A CHARACTERIZATON OF THE FIBONACCI NUMBERS 
SUGGESTED BY A PROBLEM ARISING IN CANCER RESEARCH 

LESLIE E.BLUMENSON'* 
Roswell Park Memorial Institute, Buffalo, Mew York 14203 

1. INTRODUCTION 

Cancerous growths consist of multiplying cells which Invade the sur-
rounding normal tissue. The mechanisms whereby the cancer cells penetrate 
among the normal cells are little understood and we have been investigating 
several mathematical models with a view to analyzing the movements of cells. 
In one such model it was necessary to enumerate the number of distinct ways 
a system of n cells could transform itself If adjacent cells are permitted to 
exchange position at most one time. It is shown below that this Is simply the 
Fibonacci number F - . From this characterization a very simple argument 
leads to a general identity for the F . No special knowledge of biology is r e -
quired to follow the proofs and the words "person," "jumping bean,f? etc. , 
could be substituted for "cell. " 

2. CHARACTERIZATION OF THE FIBONACCI NUMBERS 

Consider a line of n cells 

(1) AiA2A3 — A ,A 
1 L 6 n-1 n 

and suppose during a unit of time a cell either exchanges position with one of 
its adjacent neighbors or remains fixed* It is assumed that each cell per-
forms at most one exchange during this time* Let G be the number of pos-
sible distinct arrangements of the cells after the unit of time. Then G = 
F n+r 

For n > 2 the number of distinct arrangements of (1) after unit time 
(G ) is equal to the number in which A did not exchange (G - ) plus the n n ° n-1 
number in which A exchanged with A 1 (G 9 ) , i. e* , 

n n—x n—u 

^Supported by Public Health Service Research Career Development Grant No. 
5-K3-CA 34, 932-03 from the National Cancer Institute. 
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(2) G = G - + G 0 . 
n n - 1 n -2 

This i s the well known r e c u r r e n c e re la t ion for the Fibonacci n u m b e r s and 

s ince Gt = 1 = F 2 s G2 = 2 = F 3 it follows from (2) by induction on n that 
G n = F n + 1 8 W e d e f i n e f o r l a t e r u s e : G 0 = F l = x* G i = F Q = 0o 

3a A GENERAL IDENTITY 

In o r d e r to avoid as much as possible the typo graphical difficulties of 

subscr ip ted subsc r ip t s , the notation for the Fibonacci number s and the G 

will be modified as follows in th is sections 

G(n) = Gn § F(n) = F n 

Le t N2 = 2 and M^, M2§ •9 e , MM all posi t ive in t ege r s . Le t S N -
N - 1 be the se t of 2 (N-1)-tuples (kls k2? e e % ^ N - l ^ w n e r e k. = 0 o r 1, 

j = 1, 29 • * • , N - 1. Then the identity i s 

(' N \ N - 1 

S M j + 1 ) = E F(M1-k1 + l )«F(MN-kN_1 + l ) f fF(Mj-
Vl-kj + l ) 9 

where the sum is taken over all the (N- l ) - tup les in S N - . (For N = 2 the 

product i s defined to be 1.) 
F o r N = 2, Eq„ (3) r educes to the well known identity 

(4) F(Mt + M2 + 1) = F(Mt + 1)F(M2 + 1) + F(Mi)F(M 2 ) . 

It i s , of course 9 poss ible to prove (3) d i rec t ly from (4) by induction on N* 

However* the proof based on the charac te r i za t ion of Section 2 Is ex t remely 

s imp le , and a t the s a m e t ime may suggest new geomet r i c approaches for the 

analys is of mul t i -d imensional genera l iza t ions of the Fibonacci n u m b e r s . 

Consider a l ine of 
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N 

cells which, as in (1) are performing the type of exchange described in Sec-
tion 2. The number of distinct arrangements of this line after unit time is 

G ( | M j ) 

Now partition this group of cells before the exchanges occur in groups of M^ 
M2? * e s i M N ce l l s , 

(5) A ^ •. • A^lA\ . • . A>mAlAi . • . A ^ • •. A? A |
N . . . A ^ . 

If during the unit of time A* and Af exchange with each other then 
there are only G(Mj - 1) possible distinct arrangements for the first group 
of cells* Set k4 = 1 If these two cells do exchange and 1% = 0 if they do not 
exchange. Then there are G(Mj - kj) possible distinct arrangements for the 
first group of cells. Similarly! define k2 = 1 if A:* and Af exchange, 

ivi2 

k2 = 0 otherwise,, Then there are G(M2 - kj. - k2) possible distinct arrange-
ments for the second group of cells. Thus for each of the four possible val-
ues of the pair (kls k2) the number of distinct rearrangements of the first 
two groups of cells considered as a whole is 

G(Mt - M ' + G(M2 - kA - k2) f 

and the total number of distinct rearrangements for the two groups combined 
Is 

1 1 

(6) Yl J ) G(Mi - ki) + G(M2 - Iq - k2) 
ki=0 k2=0 

[Continued on page 292, ] 



LINEAR HOMOGENEOUS DIFFERENCE EQUATIONS 
ROBERT M.GIULI 

San Jose State College, San Jose, California 

1. LINEAE HOMOGENEOUS DIFFERENCE EQUATIONS 

Since Its founding, this quarterly has essentially devoted its effort to-
wards the study of recursive relations described by certain difference equa-
tions. The solutions of many of these difference equations can be expressed 
in closed form, not seldom referred to as Binet forms. 

A previous article [2, p. 41J offered a closed form solution for the 
linear homogeneous difference equation 

N 

(1.1) £ A j y ( t + j) = ° 9 

j=0 

where 

y(t) = a ; n < t < n + 1 ; n = 0, 1, 2, • • • 
n 

with the characteristic equation 

N 

(1.2) S A j z 5 = ° 
J=0 

expressed as 

N 
(1.3) TT(z - r.) = 0 

j=0 3 

with distinct roots r. . The method of solution involved the use of Laplace 
Transforms* It was noted after the appearance of that article that many 

265 
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linear homogeneous difference equations actually encountered in practice do 
not have distinct roots to the characteristic equation (1.2). In other words? 
Eq. (1.2) is often of the form 

M m . / M 

(1.4) TT(z - r . ) * = 0 [ N = ] T m. 
i=l 

where m. is the multiplicity of the root r. . 

1=1 

With respect to Laplace Transforms* the problem of handling multiple 
roots lies in the inversion of the transform Y(s). It has been suggested that 
the definition of a "Maclaurin Series" could be regarded as a transform pair 

t 
G(w) = E^ ( t ) ] IT 

t=o 
(1.5) 

y(t) = D^ [G(w)] | 
w w=0 

which has the property that the transform of y(t + j) is G •* (w). Since the 
solution of linear homogeneous differential equations is already well known 
when involving multiple roots [ l , p. 46] , it was a straightforward procedure 
to establish the form for the complementary problem for difference equations. 

The Laplace Transform of Eq. (1.1) given in [2, p. 44] is 

N j - 1 
s(j-k-l) E A j E a k e 

( 1 . 6 ) Y ( s ) = j e ^ L l t J z L _ k = 0 
N 

j=0 

and can be broken up into parts using the following theorem. 
Theorem 1. (The Heaviside Theorem) If 
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M 
m. 

(z - r. 
i=l 

then 

M mi 
p(z) = y , y . ^jj 

1 = 1 J = l 1 

where 

C . = Hm > X ... D * 1 ^ 4 (z - r.)3i . ij z ^ r . l m . - j ) ! z J Q(z) i | 

The reader can verify the formula for C by creating the expression being 
operated on5 and carry out the differentiation and limit. The essence of this 
theorem, however, is that the transform Y(s) can be expressed in the form 

s M " ' C 

1=1 ]=1 1 

The inverse of each of these terms is given by the next theorem. 
Theorem 2* 

XJ 0 - 0 r° -j+lf _ e s - 1 1_ 
s (es - v9 

where 

j . ] = 0 when n < j - 1 

(r represents an arbitrary root) 
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Proof, Since 

n=0 n 

( H ^ ) E (, ° x)^1 j+1 - s n 
C m 

n=j- l 

we need only show that 

E (,: xV-1 
n=j - l X 7 

j+1 - s n _ e 

(e - r ) J 

by induction. The formula is t rue for j = 1 s ince 

£ (re-S)
n = __L S 

c 
n=0 X - r e _ S ( e S " r ) 

Assume now that it holds for j = k, that i s 

E {r^y -k+1 - s n e s 

e ~ /J3 vk , - , (:e - r) 
n=k - l 

Differentiating once , t e r m - b y - t e r m , with r e s p e c t to r y ie lds 

E (k^y . , .v n-k - s n ke 
k + l ) r e 

i -s - (e - r ) 
n=k- l 
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o r 

n=k 

-sn 
/ s xk+l (e - r) 

and thus impl ies the t ruth of the formula for the (k + l ) s ca se s As a r e -

sult of this theorem s the m o r e genera l solution for the l i nea r homogeneous 

difference equation (1.1) i s given by 

M m i 

(1.8) y(t) ^Ec^.j-r 1 
i=l j=l 

where the C . a r e given (by Theorem 1) a s 

C . = l i m -7-™-——— _ 13 z ™^m. (m. - ])l z 

N k - 1 

1 _ m i J Jk=l K 1=0 
a„z 

k-i-1 

M 
T"T(z - r , ) 
k=l 

m. 
(z - r . ) J 

o r s by r e - o r d e r i n g the double summation according to z9 

N - l N 

m _i 1 21 S Ai \ -k-i2 

(1.9) C . = lim — ^ j ^ } \ ! ^ ^ ± ^ ^ 
x 13 z -> m ( m ~ - l n z ] M m 

(a - r . ) J 
I 

28 CONVOLUTION OF FIBONACCI SEQUENCES 

The following p rob lem re la ted to the previous d iscuss ion was brought 

to my attention by Prof, V* E* Hoggatt, Jr„ Init ial ly, we a r e given that a 

convolution of a Fibonacci sequence i s desc r ibed by 
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(2.1) H _,_„ - H _,, - H = F , 
n+2 n+1 n n 

where F is the famous n Fibonacci number . The prob lem is to find a 

c losed form (Binet form) for H . Since F sa t is f ies the re la t ionship 

( 2 ' 2 ) F n + 2 - F n + l - F n = ° -

Eq. (2.1) can be made homogeneous by substitution; that i s , Eq. (2.2) can be 
r e - w r i t t e n as 

<H
n +4 " H n + 3 " H n + 2> " ( H n + 3 " H n + 2 " H n + 1> " ( H n + 2 " H n + 1 " H n ) = ° 

o r j collecting t e r m s , 

(2.3) H ± - - 2H ± Q - H , 0 + 2H ± 1 + H = 0 . 
n+4 n+3 n+2 n+1 n 

Since F 0 = 0 and Fj_ = 1, the s ta r t ing values depending on HQ and Hi a r e 

Ho = H0 

Hi = Hi 

H2 = H0 + Hi 
H3 = 1 + H0 + 2Hi . 

The c h a r a c t e r i s t i c equation of the difference re la t ion (2.3) Is 

z4 - 2z3 - z2 + 2z + 1 = 0 

o r 

(z - a)Hz ™ /3)2 = 0 , 

where a Is the well known golden ra t io and jS i s the conjugate, 

1 + V5 A a 1 - A/5 
a = —-j^J-— and /3 = — n * -

[Continued on page 292. ] 

"2 and /3 g-



GENERALIZED FIBONACCI NUMBERS SN PASCAL'S PYRAMID 
V.E.HOGG ATT, JR. 

San Jose State College, San Jose, California 

1. INTRODUCTION 

It is well known that the Fibonacci numbers are the rising diagonals of 
Pascal1 s triangles. Harris and Styles [2] generalized the Fibonacci numbers 
to other diagonals* Hoggatt and BIcknell further generalized these to other 
Pascal triangles In [3]. Mueller In [5] discusses sums taken over planar 
sections of Pascal1 s pyramid. Here we further extend the results in [5] to 
many relations with the Fibonacci numbers. 

In [1] many nice derivations were obtained using generating functions 
for the columns of Pascal 's binomial triangle. Further results will be forth-
coming in [6]. The earliest results were laid out by Hochster in [7]. 

2e COLUMN GENERATORS 

The simple Pascal pyramid has column generators, when it is double 
left-justified, which are 

m+n x 
G 

on + nA 
\ n ) 

m,n ^ vHi+n+l 

These columns can be shifted up and down with parameters p and qe The 
parameter p determines the alignment of the left-most slice of columns and 
the parameter q determines the alignment of the slices relative to that left-
most slice* Now the modified simple column generators are 

pm+qn 
G. * 

/m + n\ 
i-JL-i 

m,n /- vHi+n+1 

We desire to get the generating function of the planar section sum se-
quence* Each such planar section now has summands which are all multiplied 
by the same power of x„ For Instance, 
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00 °° m+n 

( m n + n ) 

~ 0 ^ 0 tt - x > m + n + 1 nTo a - x ) - J ~ 0 (1 - x)< 

V V V n 7 = y^ xn j y^ xm (m + n\ 
~ ~ (1 - x)m+n+1 " ~ (1 - x)n+1 ~ . (1 - x)m V n / 

But 

£(») n 
m z 

z = — A ' ' (1 ~ Z) 
m=0 

so that 

£{mr) m z 
A ' ' (1 - Z) 

m=0 

Thus 

n=0 m=0 u 

m+n / , \ x #m + n \ 
_ x )m+n+l \ n ) = V xR • 

n=0 ( 1 " x ) 

OO 

V* _ x _ 

(1 - r^)" + 1 

1 _ V""* 0*1 n 

—n (1 - 2x) n + 1 1 - 3x ~ ~ n=0 v n=0 

which was to be expected as each planar section contains the numbers in the 
expansion (1 + 1 + l ) n . 

We next let p and q be utilized. 

00 00 

G = LJ I^J Gm9n = ~ —pT ~q 
n=0 m=0 l - x - x - x 

Here clearly when p = 2 and q = 3 we get 
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- o <* 2LJ n+l ? 

1 - X - X1 - X3
 n 

n=0 

the generating function for the Tribonacci numbers, 

T0 = 0, T l = 1, T2 = 1, and T ^ = T n + 2 + T n + 1 + T n 

If j on the other hand? we set p = 1 and q = 29 then 

1 - 2 x - x n=0 

the generating function for the Pell numbers, P0 = 09 Pt = 1, and P 2 

2P . + P . One can get even more out of this* n+l n to 

Let p = t + 1 and q = 2t + 1; then9 

G = ^ = J ] u(n; t.Dx11 

1 " x " x - x n=0 

the generating function for the generalized Fibonacci numbers of Harris and 
Styles [2] applied to the trinomial triangle whose coefficients are induced by 
the expansions 

(1 + x + x 2 ) n
? n = 0, 1, 2, ••• . 

See also Hoggatt and Bicknell [ 3 ] . 
Consider 

<*> / <*> mp+qn / m + n \ \ °° / °° _ _ ^m / \ 
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Let us now take every r slice In the general p?q case 

xqnr 
*-j rn+1 p qr 
n =0 (1 - x - x p ) 1 - x - x ± _ J L _ r 

(1 - x - x F ) 

r -1 ._ r -1 °o 
= 2 U(n;q\r)xn (1 - X - X P ) _, (1 - X - X P ) 

(1 - x - x P ) r - x r q (1 - x - x P ) r - x r ^ ? n=0 

where q! = r(q - l ) f which is the generating function for the generalized 
Fibonacci numbers of Harris and Styles U(n; q?

sr) as applied to the CONVO-
LUTION triangle of the number sequence u(n; p - 1,1) which are themselves 
generalized Fibonacci numbers of Harris and Styles in the binomial triangle. 
(See "Convolution Triangles for Generalized Fibonacci Numbers" [4]8) 

3„ THE GENERAL CASE 

In [5] Pascal 's pyramid In standard position has as Its elements in a 
horizontal plane the expansions of (a + b + c) 9 n = 0 9 l 9 2 l 3 , 9 * e with 
each planar section laid out as an equilateral lattice. In our configuration it 
is a right isosceles lattice. 

The general column generator is 

xpm+qn, 
G* 

L b m c n ( m +A 
m,n H xm+n+l 

(1 - ax) 

and it is not difficult to derive that 

JLJ L~J m9n 
n=0 m==0 1 - ax - bxp - cxq 

Thus by selecting the five parameters one can get many other known gen-
erating functions. 
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Example 1. a = 2$ b = 2, c = - 1 , p = 2 , q = 39 

G = -1 — = V F ^F _,_0xn 

1 - 2x - 2x2 + X3 ^ n+1 n+2 
n=Q 

Example 2* a = 1, b + c = 1 ? p = q = 2 9 then 

G = - — — L _ = ^ F w . M x 
1 - x - x2

 A 
n=0 

n 

One notes that the condition b + c = 1 al lows an infinitude of choices of inte-

g e r s b and c, 

Example 39 Let 

a = 3(1 - x 2 ) s b = 6, c = - 1 , p = 29 and q = 49 

then 

G = 
1 - 3x - 6x2 + 3x3 + x4

 A 
m=0 

(?) where I 1 a r e the Fibonomial coefficients. See H-78 and [ 8 ] , o r i t can be 

wri t ten as 

m=0 

The poss ib i l i t ies seem end less . 

OO 

V * / F m + l F m + 2 F m + 3 \ 
G = 1J \——T^T~—) 

m x 

Consider 

4„ FURTHER RESULTS 



276 GENERALIZED FIBONACCI NUMBERS IN PASCALS PYRAMID Apr, 1972 

n=0 m=0 

x pm b m 
( m n + n ) ; n nq 

c x M 

(1 - ax) I (1 - ax) 

Now let1 s take every r slice* 

G (cxq) 
rn r -1 

(1 - ax - bxp) 
rn+l 

n=0 (1 - ax: - bxp) (1 - ax - bxp) - c r x r + q f 

where qf = q(r - 1). If c = 1, a = 29 b = - 1 , pf = r + q?
9 and p = 29 

then 

G = (1 - x) 2r-2 
(1 „ x ) 2 r „ X 2r + P ' 

Recall from [1] and [3] that 

H = - A j L ^ _ ^ = £ U(n; p,q)xn 

( 1 " x ) " x n=0 

for the generalized Fibonacci numbers in Pascal1 s triangle so that G is the 
generating function for H/(l - x) or 

n=0 
£ ) u(k; p \ 2r) 
k=0 

Another example; If a = 1 + x, b = 1, p = 39 c = l s then 

r - 1 
2 _ v 3 l (1 - X - X2 - X3) 

(1 - X - X2 - X3) - X" r+qf 

[Continued on page 293e ] 



MODULO ONE UNIFORM DISTRIBUTION OF CERTAIN 
FIBONACCI-RELATED SEQUENCES 

J. L.BROWN, JR. 
and 

R. L DUWCAN 
The Pennsylvania State University, University Park, Pennsylvania 

Let ( x . ) be a sequence of real numbers with corresponding frac-
tional parts {j3.} , where j3. = x. - [ x . l and the bracket denotes the great-
est integer function,, For each n ^ 1, we define the function F on [0 ,1 J 
so that F (x) is the number of those terms among j3ls • • • , jS which lie in 
the interval [0,x), divided by n. Then {XJ} is said to be uniformly d i s -
tributed modulo one iff lim F (x) = x for all x E [ 0 , l ] e 

n —* oo n w L J 

In other words, each interval of the form [0,x) with x E [0 ,1] , con-
tains asymptotically a proportion of the j3 f s equal to the length of the inter-
val, and clearly the same will be true for any sub-interval (a,]3) of [ 0 , 1 ] . 
The classical Weyl criterion [ 1 , p. 76] states that { x.} is uniformly dis-
tributed mod 1 iff 

n 0 . 
x _ 2U1KX. 

(1) lim i ) e J = 0 for all v > 1 . 
I I —#• OO n JmmJ 

5 = 1 

An example of a sequence which is uniformly distributed mod 1 is {nf}• Q, 
where f is an arbitrary irrational number,, (See [ 1 , p* 81] for a proof 
using Weylf s cr i ter ion ) 

C . -\ oo 

The purpose of this paper is to show that the sequence { In F ) and 
Tin L }°° are uniformly distributed mod 1. More generally, we show that if 
x nJ i 
( v }°° satisfies the Fibonacci recurrence 

Vn+2 = V n + 1 + V n 

for n ^ 1 with Yt = Kt > 0 and V2 = K2 > 0 as initial values, then 
(In V } is uniformly distributed mod 1. Toward this end, the following two 
lemmas are helpful. 
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Lemma 1. If {x.} is uniformly distributed mod 1 and \y.} is a 
sequence such that 

.lim (x - y ) = 0 , 
J - > oo J J 

( "N O O 

y.) is uniformly distributed mod 1. 
Proof, From the hypothesis and the continuity of the exponential func-

tion s it follows that 

( Zirivx. 2irivy.\ 
e J - e 3 j = 0 

But it is well known [2, Theorem B9 p„ 202 ], that if {y } is.a sequence of 
real numbers converging to a finite limit L9 then 

lim - 7 v. = L . 
n —• (so n JLJ r i 

Taking 

we have 

'J 
1 

Znivx. 2nivy. 
y. = e 3 - e 

, J ^ / 27Tî X Zltivy \ 
lim 1 Y I e 3 - e 3 I = 

Since 

27Ti^x. 
lim — jK e 3 = 

1 



1972] OF CERTAIN FIBONACCI-RELATED SEQUENCES 279 

by.Weyl's criterion, we also have 

27Ti^y. 
nlil3C1 J S e ^ = 0 

n —* oo n *~» 

and the sufficiency of WeylTs criterion proves the sequence { y.} to be uni-
formly distributed mod 1. 

Lemma 2, If. a is an algebraic number, then In a is irrational. 
Proof. Assume, to the contrary, that In a. - p/q, where p and q 

are non-zero integers. Then e P q = a, so that e p = cfi. But cfl is alge-
braic, since the algebraic numbers are closed under multiplication [ l , p. 
84], Thus. e p is algebraic, in turn implying e is algebraic. But e is 
known to be transcendental [ 1 , p. 25] so that a contradiction is obtained. 

Theorem. Let { v } be a sequence generated by the recursion for-
mula 

V = V + V 
n+2 vn+l n 

for n ^ 1 given that VA = Kj > 0 and V2 = K2 > 0. Then the sequence 
{in V 1 is uniformly distributed modulo one. 

Proof. The recursion (difference equation) has general solution 

Vn = Ctan + C2£n , 

where a,fi are the roots of the equation x2 - x - 1 = 0 and Cl9 C2 are 
constants determined by the initial conditions. Thus 

1 + 4d A o 1 - ^ a = ^ and 3 = „ 

while Cta + C2P = Kt and Cta2 + C2/32 = K2. Now, 

Vn - C ^ n | = |C2/3n| 
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OF CERTAIN FIBONACCI-RELATED SEQUENCES 

for n 2= l , so that, noting |j3| < 1 , we have 

Apr. 1972 

lim |V - Cian\ = 0 n —froo1 n 1 . 

Moreover, from the fact that { v } is an increasing positive sequence, 

1 -
Cta 

V 

V - C*ce 
n 1 

V i; \\ - ^ 
so that 

lim -̂ r— 
n 

n 
= 1 

Thus, 

or equivalently, 

(2) lim: [In (Cja ) - In V ] = 0 n —» ooL * n J 

Since or is algebraic (a2, = a + l ) , it follows from Lemma 2 that In c* 
is irrational and consequently [ 1 , p. 84] that 

n o * { n l n ^ = { l n (aQ)}i 

i s uniformly distributed mod 1. Then 

[Continued on page 294. ] 
{ln(Clan)}r 



NOTE ON SOME SUMMATION FORMULAS 
LCA'RLITZ 

Duke University, Durham, North Carolina 

In a recent paper [ l ] , the writer has proved the following multiple 
summation formula: 

(k + 2 s i + 3 s 2 •+• • • • • ) ! 

S i , s 2 j - • • , = 0 
* ' JLd stl s2! • • • (k +" Si. + 2s2 + • • • ) ! 

S l S2 k+1 
Uj U2 ••- • (J.+U1+U2 + —) 

2SJ+3S2+*0* l~Uj - 2 u 2 - 3 u 3 - — 
(1 + % +U9 + u3 + •••) 

(k = 0,l»2»-**h 

where the ser ies 

(2) ut + u2 + u3 + •••• , 

i s absolutely convergent but otherwise arbitrary. 
£1 the present note we should like to point out that (1) admits of the fol-

lowing extension: 

~ * (k + s0 + 2% +• 3s2 + • - • ) ! 
( 3 ) 2*~d s 0 ! S i l s 2 l - - - ( k + Si T T s a + • • • ) ! 

s 0 , s i J s 2 , ' e - = 0 

Sn Si S? 
UQ u i u2 *•• 

s0+2si+' •# 

(1 + U0 + Uj_ + U2 + • • •) • 

(1 + u0 + uA + u2 + • • • ) 
= 1 - Ui - 2u2.- S ^ T T T " (k = 0, 1, 2, • • • ) , 

where again the series'(2) is absolutely convergent 
^Supported in part by NSF grant GP-17Q31. 
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Proof of (3). By (1), 

k- f l k+1 / % kJ 2 
(1 -+'U0 + U j + U 2 + — ) X (1 + U j + U 2 + • ' . . ) / l +U^ + Ui - r U S + — \ 

1 - ux -. 2u2 - 3u3 - • • . " T "-"% ~-~ 2u2 - 3u3 - • • • \ .1 + uA + u2 + • • • / 

(k + 2s! + 3s2 + • • • ) ! uf1 uf2 • • • 

00 

/ ^ Si I s2! • • • (k + Si+ 2s 2 + • • • ) ! 2Si+3s2+-
Si, s 2 , • • • , = 0 (1 +Ui + u 2 •+ • • • ) 

1 + u0 + % + • • • \ 

1 + Ui + U2 + • • • I 

—^ (k + 2s t + 3s2 • + • • • ) ' . u f x u f 2 . . . 

2LJ Si!s2
f.- • • (k + Si +' 2s2 + . . . ) ! 2Si+3s2+- • • 

%, s 2 *• • •, =0 (1 + u0 + ut + • • •) 

y-k-2Si-3s2— • • - 1 

I 1 + u 0 + Ui + • • • • J 

J ^ ; (k .+ 2Si + 3s2• + --OS uf1 uf2 

/ * s4!s2t.-- '0s + Si + 2s2 + *'«Of. 2 s 1 + 3 s 2 + " -
Si ,S2 , -** ,=0 (1 + UQ +-Uj + • • • ) 

u0
so 50 / \ 

E l k + s0 + 2 s t + 3s 2 + • • A _ 
\ so / • so 

S0=0 (1 +Uo+Ui + — ) 

^ - ^ (k + s0 + 2si + 3s2 + • • • ) ! Uo° uf1 uf2 • • * 

£mmd s0!SiT.82!' • • (k + Si + 2s 2 + • • • J! ~ ~ " ~s0+2si+3s2+:" 
S 0 , S i , S 2 , - - - = 0 ( l + U o + U i + . - O 

T h i s evidently p roves (3). 

Exac t ly a s in [ 1 ] , we can show that (3) holds for a r b i t r a r y k , p r o -

vided we r ep l ace the coefficient 

(k + s0 + 2si + 3s2 + • • • )l 

%!Si!s2! • • • (k + si + 2s 2 + • • -Tl 
[Continued on page 291 . ] 



ADVANCED PROBLEMS AND SOLUTIONS 
Edited by 

RAYIVIOWDE. WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 

Send all communications concerning Advanced Problems and Solutions 
to Eaymond ED Whitney, Mathematics Department, Lock Haven State College 9 

Lock Haven* Pennsylvania 17745. This department especially welcomes 
problems believed to be new or extending old results. Proposers should sub-
mit solutions or other information that will assist the editore To facilitate 
their consideration, solutions should be submitted on separate signed sheets 
within two months after publication of the problems. 

H-192 Proposed by Ronald Alter, University of Kentucky, Lexington, Kentucky. 

If 

3n+l 

c = 
n 3=o 

{%: i ) M i , i • 

prove that 

c = 26 n + 3N , (N odd9 n > 0) 
n 

H-193 Proposed by Edgar Karst, University of Arizona, Tucson, Arizona. 

Prove or disprove: If 

x + y + z = 2 2 n + 1 - 1 and x3 + y3 + z3 = 2 6 n + 1 - 1, 

then 6n + 1 and 2 - 1 are primes. 

H-194 Proposed by H. V. Krishna, Manipal Engineering College, Manipal, India. 

Solve the Diophantine equations* 
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(i) x2 + y2 ± 5 = 3xy 
(il) x2 + y2 ± e = 3xy 9 

where 

e = p2 - pq - q2 

p ,q positive integers. 

SOLUTIONS 
BINET GAINS IDENTITY 

H-180 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 

(n + k)I F \^ ( n \ 3 _ \*^ (n + 

n 
Y ^ / n \ 3

 = « (n + k)I T 

£ S * ' ^ " ^ W ( a - 2k)! (2n"3k) ' 
th where F, and L, denote the k Fibonacci and Lucas numbers s respectively. 

Solution by David Zeitlin, Minneapolis, Minnesota. 

A more general result is that 

n 

« Ef^Ybn"kaV = V ^(n + k)l - bkak W2n-3k ' 
k=0 2k<n 

where W l 0 = aW ,- + bW , n = 0, 1, *•*. For a = b = 1, we obtain 
n+2 n+1 n 

the desired results with W, = F. and W, = L , . 
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Proof. From a well-known result t we note that 

(2) V ( t I"** " V '" * "" xk<X + I)""2" E (IP - E 
k=Q 7 2k=r-

Set x = (ay)/b in (2) to obtain: 

n 

E / n \ 3
u n - k k k \ ^ (n + k)I , k k k , , , v I k ) b a y = ẑ  r̂ r——f

 b a y ( a y + b) 
L _ A \ / o i ^ (k!)3(n - 2k)l 

k=0 • ' 2k^n ^ ( Q ~ 2k)I 

(3) 
k=0 x ' 2k<n 

Let a9fi be the roots of y2 = ay + b* Noting that W = CjQf + C2j8 , we ob-
tain (1) by addition of (3) for y = a and y = |8e 

Remarks,, If a = 2x§ b = - 1 , then with W. = T. (x), the Chebyshev 
polynomial of the first kind^ we obtain from (1) 

k=0 X 7 2k<n lKs) l n " m° 

For a = 2g b = 1, one may choose W. = P . , the Pell sequence. 
Let V0 = 2, Vi = a, and V k + 2 = aV k + 1 + bVfe. Then, from (1), we 

obtain the general result 

n 
^ ! < - i > m t l ^ i ° " k w m k + p 

k=0 

s S n " ^ ^ J ( ( - 1 ) m + l b m V
m ) Wm(2n-3k)+p 

for m5p = 0g 1, 
It should be noted that (1) is valid for equal roots* i. e* , a = /3. 

*JS Riordan, Combinatorial Identities, p* 41. 
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Also solved by F. D. Parker, A. G. Shannon, and the Proposer. 

SUM-ER TIME 

H-181 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Prove the identity 

E m n -

(am + en) (bm + dn) —r-r- = u w^ , v— . , 
m! nl (1 - ax) (1 - dy) - boxy 9 

m?n=0 
where 

u = x e - ^ - ^ y ) , v = ye-( c x 4 dy> 

Solution by the Proposer. 

m n 
/ J ( a m + cn)m(bm + dn)n ^ ~ 

m9n=0 

m n = £ (am + cn)m(bm + dn)n i j X - e-(am-*n)x-(bm-Hin)y 

m9n=0 
0 0 . o o 

u- TT «•—"•% 4 / n m 4 - r > n r -i ^—"H I r ( K m - l - r l m l 
= £ (am + cn)m(bm + dn)n ^ £ (-1)J ^ ^ £ (- l)k ( b m ^ , d l l ) , 

m9n=0 j=0 k=0 

m n 

E E £ E E w»i+lt(T)(k) ««•>-»•<*.-« m * - » * • » " 
m9n=0 j=0 k=0 

00 m n 

E l & E E w)m+n-j-k(T)(^)w+ «mw+»" 
m9n=0 j=0 k=0 

But 
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m n 
S m 

i=0 lr=n \ / \ / j=0 k=0 

m n m 

r = 0n=0 X 7 j=0 ^ ' 

£ ^)n"k(^) 
k=0 X ' 

,d r + s 

Since 

m m 
m) 
m) 

j=0 

we need only consider those terms in (*) such that 

[m + n - r - s ^ m 
1 r + s ^ n 5 

that is s r + s = n* 
We therefore get 

min(m,n) 
—.̂  / m \ / n \ m- r ,n- r / u \T 

= ™f"! V ( rJ( rJa d (be) f 
J» — AAA® AX 8 ^ 

mgn Z ^ 
r=0 

so that 
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oo 

V (am + c n ) m ( b m + d n ) n - V r -
m9n=0 

min(m,n) 

E m n \°«% f m \ / n \ m - r j i - r , , vi X y .L \ v){v)a d (bc) 
m,n=G r=0 

oo oo 

= £<bc^r z (m;r)(n;r)(-)m(dy)n 

r=0 m , n = r 

co 

= £ (bcxy) r ( l - a x ) - r _ 1 ( l - d y ) - 1 - 1 

r=0 

_1fi - rfvrMi _ „—^cxy = (1 - ax) * ( ! - dy)~ 
( (1 - ax)( l - dy) r = {(1 - ax)(l - dy) - bcxy) X 

ARRAY OF HOPE 

H-183 Proposed by Vemer £ Hoggatt, Jr., &/? Jose State College, San Jose, California. 

Consider the display indicated below. 

1 

1 1 

2 2 1 
5 4 3 1 

13 9 7 4 1 
34 22 16 11 5 1 

8 9 56 38 27 16 6 1 

Pasca l Rule of Format ion Except for P r e s c r i b e d Left Edge. 

(i) Find an express ion for the row s u m s . 

(ii) Find a genera t ing function for the row s u m s . 
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(ill) Find a generating function for the rising diagonal sums. 

Solution by the Proposer. 

i) An inspection of the array reveals that the row sums are F„ -
(n = 0, 1, 2, •••) 

ii) If the columns are multiplied by 1, 2$ 39
 9 e e sequentially to the 

right9 then the row sums have the generating function, 

(1 - x) (1 - x) 
(1 - 3x + x2) (1 - 2x) 

Thus the row sums are the convolution of the two sequences: 
a) Ai = 1, An = F 2 n + i (n - D and 
b) Bi = 1, B n = 2n-l (n > 1) . 

iii) The rising diagonal sums, E , are the convolution of the two 
sequences: 
c) C = F __x and 
d) Dn =\2a_* (n = 0 s l , 2 , . - . ) . 
Hence 

(1 - x)3 

(1 - x - x 2 ) ( l - 3x + x2) Q = 0 

FIBO-CYCLE 

LmJ n 

H-184 Proposed by Raymond £ Whitney, Lock Haven State College, Lock Haven, Pennsylvania. 

Define the cycle a (n = 1 , 2, •• •) as follows^ 

i) a = (1, 2, 3, 4, • • - , F ) , 
n II 

where F denotes the n Fibonacci number. Now construct a se-
quence of permutations 

00 

« * [ . (n = 1, 2, • • • ) 
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F F F 

(ii) a i + 2 = a i • x i + 1 (i - 1) . 
N n n n 

Finally9 define a sequence 

1 n n=l 

as follows: u is the period of 

OO 

Ft. 
i . e . , u is the smallest positive integer such that 

(iii) a 1+un = a 1 (i > N) . 
x n n v 

a) Find a closed form expression for u . 
b) If possiblej show N = 1 is the minimum positive integer for which 

iii) holds for all n = 19 29
 e e e . 

Solution by the Proposer. 

Since a is of order F , it follows that the exponents of a may be 
replaced by residues mod F and u is thus the period of the Fibonacci se-
quence mod F . Therefore uA = u2 = l s u3 = 3* Consider the Firs t n r e s -
idue classes of the Fibonacci seuqence9 mod F (n ^ 4); 1, 1, 2, 3, °oa

9 
st F 1 9(K The (n +1) residue class is F - = 1 + (F - - 1) and 

(2n - 1) class is 

F - + F - (F - - 1) = F2 , n-1 n-1 n-1 n-1 

However, 

F ^ = F + F n (n > 2) 
n+1 n n-1 N 

and 
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F , F ^ - F2 = (- l)n (n > 2) 
n-1 n+1 n 

Implies 

F2 - = (»l)n (mod F ) . n-1 i r 

If n is even (n ^ 4), we have F2 - = 1 (mod F ) and u = 2n* If n is ' n-1 n n 
odd (n > 4), F2 - = -1 (mod F ) and u = 4n@ 

From the above, it is obvious that N = 1 is the smallest positive Inte-
ger for which (III) holds for all n = 1, 2, * • 9 . It Is interesting to note that 

(un(n = 1, 2, • • •} fl ( F j n = 1, 2, • • •} = {F l f F4? F6 , FB, F12, — } . 

[Continued from page 282. ] 

NOTE ON SOME SUMMATION FORMULAS 

by 

S 0 + S 1 + S 2 ^ • • 

TT (k + St + 2s2 + 3s3 + . . . + I) 
i=l 

s0is1Is2t . . . 

REFERENCE 

1, L9 CarlitZg "Some Summation Formulas,M Fibonacci Quarterly, Vol. 9 
(1971), pp0 28-34. 
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[Continued from page 27G„ ] 
The solution is then given by Eq„ (1.8) as 

(2.5) H = Ctian + C^nc/1""1 + C21j3n + C22npR~1 

with the C given by Eq» (1.9). In practice, howeverf the C . are most 
J -U 

easily found by solving the set of simultaneous equations derived by applying 
the initial values, H0l Hl9 H2, H3, for n = 0, 1, 2S 3, The solution yields: 

H0 + —g.—. Hi + — (1 - 2a) ^11 

c i 2 

C21 

C22 

5 

= 1/5 

2 + a 
5 

= 1/5 

Ho + L ^ J 2 Hl + A {2a - 1) 

REFERENCES 

1. Gustav Doetsch9 Guide to the Applications of the Laplace and Z Trans-
forms; Van Nostrand Reinhold Company, New York* 1971. 

2. Robert M. Giuli9
 t?Binet Forms by Laplace Transform," Fibonacci Quar-

terly, Vol. 9, No. 1, p. 41. 

[Continued from page 264„ ] 

(If M2 = I5 i .e . , there is only one cell in the second group, then it cannot 
exchange with both A* and AA. The rearrangements corresponding to this 
case are eliminated in (6) since it occurs when !q = k2 = 1 and G(-l) = 0.) 

The remainder of the proof follows the same procedure. Define k. = 1 
i+1 

if A^, and At exchange, k. = 0 otherwise, 3 = 3, • • • , N - 1. For 
i N 1 •* 

each of 2 possible values of (k1? k2, 8 e e , ^N__1) the number of distinct 
arrangements of the N groups combined is 

N- l 
(7) G(Mi - ki) + G(MN - kN_x) • TTG(M. - k._x - k.) 

j=2 

[Continued on page 293. ] 
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[Continued from page 276. ] 
(where q? = r (q f ~l ) ) , which are the numbers u(n; q,r) in the Tribonacci 
convolution triangle I See [4]. 

REFERENCES 

1. V. E* Hoggatt, J r s , "A New Angle on Pascal1 s Pyramid/ ' Fibonacci 
Quarterly, Vol. 6 (1968), ppe 221-234. 

2„ V* C. Harris and C* C» Styles, MA Generalization of Fibonacci Numbers / ' 
Fibonacci Quarterly, Vol. 2 (1964), pp. 277-289. 

39 V. E, Hoggatt, J r . , and Marjorie Bicknell, "Diagonal Sums of General-
ized Pascal Triangles," Fibonacci Quarterly, Vol. 7 (1969), pp. 341-358. 

4. V. E. Hoggatt, Jre , "Convolution Triangles for Generalized Fibonacci 
Numbers," Fibonacci Quarterly, Vol. 8 (1970), ppe 158-171. 

5. Stephen Mueller, "Recursions Associated with Pascal 's Pyramid," Pi 
Mu Epsilon Journal, Vol. 4, No. 10, Spring 1969, pp. 417-422. 

6. Stanley Carlson and V. E. Hoggatt, J r . , "More Angles on Pascal 's Tri-
angle,M Fibo^ia^ci^Quar^erl^, to appeare 

7. Melvin Hochster, "Fibonacci-Type Series and Pascal 's Triangle," Pa r -
ticle, Vol. IV (1962), pp. 14-28. 

8. V. E. Hoggatt, J r . , "Fibonacci Numbers and Generalized Binomial Co-
efficients," Fibonac£i_Quaxt^ Vol. 5 (1967), pp. 383-400. 

[Continued from page 292. ] 

The total number of distinct arrangements of the N groups combined is ob-
tained by summing the expression in (7) over all possible values of (k1? k2, 

° ' s * ^N-1 ^ io e° ? o v e r t n e s e^ ^N_.I B •But t n e total number of distinct a r -
rangements is also equal to 

G(z>j 

The identity in (3) then follows from G(n) = F(n + 1). 



MODULO ONE UNIFORM DISTRIBUTION 
294 OF CERTAIN FIBONACCI-RELATED SEQUENCES Apr. 1972 
[Continued from page 280. ] 
is also uniformly distributed mod 1 and the mod 1 uniform distribution of 
In V then follows from (2) in conjunction with Lemma 1. q. e, d„ 

In F ) and (In L j are uniformly dis-
tributed mod 1. Here 

{ F J = {l, 1, 2, 3, . . .} and ( L J = (2, 1, 3, 4, • • •} 

are the Fibonacci and Lucas sequences, respectively,, 
Proof, Both sequences satisfy the recurs ion V 2 = V - + V for 

n ^ 1 with (Ki9 K2) = (1,1) for the Fibonacci sequence and (Kl9 K2) = 
(2,1) for the Lucas sequence, so that the result follows directly from the 
theorem. 

REFERENCES 

1. I. Niven, "Irrational Numbers," Carus Mathematical Monograph Number 
11, The Math. Assn. of America, John Wiley and Sons, Inc. , New York, 

2. P. R. Halmos, Measure Theory, D. Van Nostrand Co* , Inc., New York, 
New York, 1950, 
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SOME NEW NAIClSSISTiC NUMBERS 
JOSEPH S. HADACHY 

IVlouncI Laboratory, IVliamisbyrg, Ohio* 

^ Narcissistic number is one which can be represented as some func-
tion of its digits* For example, 

153 = I3 + 53 + 33
? 145 = 11 + 41 + 5! , and 2427 = 21 + 42 + 23 + 74 

are narcissistic numbers. One special class of these numbers? represented 
by the first example above, are called Digital Invariants. These are integers 

th which are equal to the sum of the n powers of the digits of the integers,, 
Extensive studies of digital invariants have been in progress during the past 
two years* Robert L. Patton, Sr* , Robert L„ Patton* J r . , and the author 
have completed the search for all digital invariants for n powers up to 
n = 15 and will publish the results in the near future. 

This short note reports on various narcissistic numbers other than dig-
ital invariants,, An abbreviated form for these numbers is used in Table 1. 

abc means 10pa + 10p 1 b + 10p 2c + • • • + lOp + q , 

where a, b5 c9 • • * , q are the digits of the integer and the number of digits 
is p + 1. That is s 

349 = 1Q2*3 + 10-4 + 9 . 

The general form is shown in the Table along with the known solutions, their 
discoverers, and some notes. Trivial solutions, 0 and 1, are not included,, 

The search for solutions to the first form 

/ i n , , n+1 , n+2 . v 
(abc • • • = a + b + c +***) 

*Mound Laboratory is operated by Monsanto Research Corporation for the 
Atomic Energy Commission under Contract No. AT-33-1-GEN-53* 
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shown In Table 1 is far from complete. If n = 1, a complete search would 
entail checking all integers less than 23 digits in length (more precisely, in-
tegers less than about 1,108 x 1021). There are comparable^ though larger, 
searches if n > 1. A WANG 700 Programmable Calculator took about five 
hours to find the list shown in Table 1, 

The search for the second solution to the form 

u a , ub , c , 
abc * * * = a + b + c + • • • 

took about one hour on an IBM 360/50 Computer, The factorial and subfactor-
ial forms were searched to check for the possibility of missed solutions,. In 
less than 15 minutes on the IBM 360/50 Computer the solutions shown were 
confirmed to be the only ones* 

A secondary search was made in isolated cases for recurring forms. 
For example: 

169: 1 1 + 6 1 + 9 1 = 36301 
31 + 61 + 31 + 01 + II = 1454 

II + 4! + 5 1 + 4 ! = 169 

or9 briefly, digital factorial 169 —• 36301 —*• 1454 —• 169 (3 cycles). Sim-
ilarly, digital factorial 871—*> 4 5 3 6 1 — • 871 (2 cycles), 

872 —> 45362—• 872 (2 cycles). 
No other recurring forms for digital factorials were founds but the 

cycle search was limited to five or less* There are undoubtedly many others 
with a greater number of cycles. 

A few recurring forms for the digital exponent form 

(abc • • • =' a + b + c + • • •) 

were found by sheer trial and e r ror on a WANG 700 Calculator. The initial 
integer in the following examples is the smallest member of the cycle series, 

Digital exponent 288 —> 33554436 — • • . . — > 140023 —->288 (58 cycles)* 
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Digital exponent 3439 —• 387420799 — • . . . _ • 53423 —* 3439 (52 cycles). 
Digital exponent 50119—> 387423618^- . . —>33601354-~->50119 (25 cycles). 

Searching for interesting integers is obviously endless! I hope some 
readers will warm up their pencils, calculators, or computers and search 
further into the Table and report any new additions — including forms not 
shown here. (Notes and discoverers are shown on the following page.) 

Table 1 
NARCISSISTIC NUMBERS 

D i s -
F o r m Solutions coverer Notes 

a b c . = a n + b n + 1 + q n + 2 + — 4 3 - 4 2 + 33 3 
63 = 62 + 33 3 
89 = 81 + 92 8 

135 = I 1 + 32 + 53 2 
175 = I 1 + 72 + 53 3 
518 = 51 + I 2 + 83 3 

598 = 51 + 92 + 83 2 
1306 = I 1 + 32 + 03 + 64 8 
1676 = I 1 + 62 + 73 + 64 8 B 
2427 = 21 + 42 + 23 + 74 8 
6714 = 63 + 74 + I 5 + 46 5 

47016 = 42 + 73 + 04 + I 5 + 68 5 
63760 = 63 + 34 + 75 + 66 + 0T 5 
63761 = 63 + 34 + 75 + 66 + I1 5 

542186 = 52 + 43 + 24 + I 5 

+ 86 + 6T 5 

abc = a11 + b n _ 1 + c11"2 + , - .. 24 - 23 + 42 7 
332 = 35 + 34 + 23 7 

1676 = I 5 + 64 + 73 + 62 7 ,B 
abc = aa + b b + cC + . . . 3435 = 33 + 44 + 3 s + 55 8 

438579088 = 44 + 33 + 88 + 55 + 77 

+ 99 + 0° + 88 + 88 6 A 

abc = a! + bl + ci + • • - 2 = 21 
145 = 11 + 41 + 51 8 

40585 = 41 + 01 + 51 + 81 + 51 4 
abc = !a + !b + ic + • • • 148349 = 11 +14 + 18 + 13 + 14 

+ IB 1 C 

Notes for this table are found on the following page. 
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A9 Since 0° is ^determinant, two assumed values were tested: 0° = 0 and 
0° = 18 There are no solutions using 0°-= 1, so the solution (438579088) 
shown assumes 0° = 08 

B8 1676 is most interesting: appearing in two places in this tablel 
C. In is the subfactorial n and is given by the formula.8 

- - - [ i - i j - • * - * • • • • • < - « • ' ( £ ) ] 

so that 10 = 0, SI = 0, 12 = 1, 13 = 2, 14 = 9, 15 = 44, and so on, 
The number shown in the Table is the only non-trivial solution for this 
forme 

DISCOVERERS 

1, Ron S* Dougherty9 in a letter to the author dated April 28, 1965* 
published in Mathematics on Vacation by J, Ss Madachy (Scribner?s Sons, 
1966), page 1676 

2, Dale Kozniuk, included in "Curious Number Relationships," Recreational 
Mathematics Magazine, No. 10, August 1962, page 428 

38 J0 A, EL Hunter, "Number Curiosities," Recreational Mathematics Mag-
azine, No. 13, February 1963, page 28* 

4e Leigh Janes, discovered in 1964 and published in Mathematics on Vaca-
tion (see [ l ] above) without proper credit, inadvertently* 

50 Joseph S, Madachy, discovered 1970 on WANG 700 Programmable Calcu-
lator . 

6. Joseph S„ Madachy, discovered 1970 on IBM 360/50 Computer 
79 Joseph So Madachy, discovered 1971 on Hewlett-Packard 9100B Program-

mable Calculator, 
8. UnknownB 



FIBONACCI MUMBEiS AMD WATER POLLUTION CONTROL 
ROLF A, DEliSWGIR 

University of Michigan, Ann Arbor, Michigan 

Consider a number of cities along a major water course which dis-
charge presently their wastes untreated to the stream* To control the pol-
ution of the waters they have the obligation to build treatment .plants. The 
major question i s , where should one build these plants to minimize the cost 
of pollution control ? Construction as well as operation costs of treatment 
plants exhibit large economies of scale, and therefore It Is generally econ-
omically advantageous to build one or more central treatment plants. Given 
one possible location for a treatment plant for each city, and the possibility 
to transport the waste waters from any city to another one, the problem 
arises of how many possible solutions there are. Due to the economies of 
scale It Is known that it would not be economical to "split" the waste flow of 
one city, that is , transport part of the waste upstream and part of it down-
stream. 

Consider two cities only: 

The number of possible solutions Is A(2) = 3; namely, a treatment plant at 
each city, one treatment plant at city 1, and finally, one treatment plant at 
city 2. 

Consider now 3 cities: 
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The Interconnecting s e w e r s between the c i t i e s a r e the only decis ion va r i ab l e s . 

Le t a ze ro Indicate no t r a n s p o r t between c i t i es , a 1 for u p s t r e a m t r a n s p o r t 

of w a s t e s , and a 2 for downs t ream t r anspo r t of w a s t e s . F o r n c i t i es there 

a r e (n - 1) connecting s e w e r s between the c i t i e s , each of which may take on 

3 values . So the total number of solutions would be 3 were It not for the 

economic r equ i r emen t that a ci ty may not s imultaneously t r a n s p o r t was te s 

u p s t r e a m and downs t ream. F o r t h r ee c i t i e s , the total number of solutions 

m a y be r ep re sen t ed a s follows: 

00 01 02 10 11 12 20 21* 22 

th The 8 solution indicated by an a s t e r i s k Is ru led out, since we do not allow 

t r a n s p o r t of was te wa te r f rom city 2 s imultaneously to 1 and 3. And thus 

the total number of economical solutions will be A(3) = 8. 

Cons ider now n c i t i e s : 

Le t A(n + 2) stand for the number of solutions for n + 2 c i t i e s , 

A(n + 1) for the number of solutions to n + 1 c i t i e s , and A(n) for the solu-

tions for n c i t i e s , 
Then, the following r e c u r s i v e re la t ion can be es tabl ished: 

A(n + 2) = 3A(n + 1) - A(n) . 

A(n) 

Th is re la t ion may be deduced by the following reasoning* Given the value of 

A(n + 1) , the adding of one ci ty i n c r e a s e s the number of solutions to 

3 • A(n + 1) 

s ince the new added sewer may a s s u m e the values of 0 , 1 , o r 2„ However, 

of this total number there a r e some which a r e not economical , namely , al l 

those which end in a 2 1 sequence. But the number of those i s exact ly A(n). 
[Continued on page 302. ] 



A NUMBER GAME 
J.WLODARSKI 

Pore Westhoweti, West Germany 

Preliminary condition for participation in the games elementary know-
ledge of arithmetic. 

1. First of all, give all participants of the game the same task, as 
follows: 

Build up a sequence of numbers with nine terms in which the first and 
the second term majrbe any arbitrary cipher and their sum should build 
up the third term of the sequence,, Every following term of the sequence 
is the sum of the two preceding terms (for Instance; starting with the 
numbers of 3 and 4 we have the sequence 3, 4, 7, 11, 18, °° • ) . 
29 Now put the Individual task for every participant of the game,9 

Divide the eighth or the ninth term of the sequence by the ninth or the 
eighth term, respectively (limit the result to two decimals behind the 
point!). Then multiply the received quotient by a small Integer, for 
instance: by 2, 3, or 5, etc. 
The final result of the computation can Immediately be told to every 
participant of the game as soon as he has finished his computation,, The 
participant is required only to state what ratio, i. e8 , 

8th term 9th term 
or 9th term 8th term 

was used and by what Integer It was multiplied* Since for any figures 
of the first two terms of the sequence the ratio 

8th term 
9th term 

equals 0*62 (roundly) and 

9th term 
8th term 
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equals 1.62 (both, quotients are an approximation to the "golden ra t io n -
value), it follows that the final result of the computation can easily be 
guessed. Thus for instance in the case 

8th term x 3 
9th term 

the answer should be 0o62 x 3 = 1086 and in the case 

9th term x 2 
8th term 

the answer is 1.62 x 2 = 3.24. 
If the properties of the recurrent sequences are unknown or too. 

little known to the participants of the game5 the guessing of the final 
results of their computations will have a startling effect. 

[Continued from page 300. ] 

FIBONACCI NUMBERS AND WATER POLLUTION CONTROL 

Upon generating the number of solutions for varying n the similarity 
of the series to the Fibonacci number series was noted. 

n 

A(n) 

1 

1 

2 

3 

3 

8 

4 

21 

5 

55 

6 

144 1 

And thus we concluded that the total number of economical solutions for n 
cities is 

A(n) = F 2 n , 

th 
where Ffc stands for the k Fibonacci number. This still does not indi-
cate which of the F 2 solutions is the most economical one? but places an 
upper bound on the total number of economical solutions to be investigated. 



FIBONACCI NUMBERS AND GEOMETRY 
BROTHER ALFRED BROUSSEAU 

St Mary's College, California 

The Fibonacci relations we are going to develop represent a special case 
of algebra. If we are able to relate them to geometry we should take a quick 
look at the way algebra and geometry can be tied together,, 

One use of geometry is to serve as an illustration of an algebraic rela-
tion. Thus 

(a + b)2 = a2 + 2ab + b2 

is exemplified by Figure 1. 

Figure 1 

A second use of geometry is to provide a PROOF of an algebraic rela-
tione As we ordinarily conceive the Pythagorean Theorem (though this was not 
the original thought of the Greeks) we tend to think of it as an algebraic rela-
tion on the sides of the triangle5 namely f 
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c2 =• a2 + b2 . 

One proof by geometry of this algebraic relation is shown In Figure 2„ 

a b b a 

Figure 2 

In summary, geometric figures may illustrate algebraic relations or they may 
serve as proofs of these relations. In our development, the main emphasis 
will be on proof though obviously illustration occurs simultaneously as well. 

SUM OF FIBONACCI SQUARES 

In the standard treatment of the Fibonacci sequence, geometry enters 
mainly at one points summing the squares of the first n Fibonacci numbers„ 
Algebraically., it can be shown by intuition and proved by induction that the 
sum of the squares of the first n Fibonacci numbers is 

n n+1 

But there is a geometric pattern which ILLUSTRATES this fact beautifully as 
shown In Figure 3„ 
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M l 1 I 

Figure 3 

The figure is built up as follows* We put down two unit squares which are the 
squares of Fj and F2« Now we have a rectangle of dimensions 1 by 2* On 
top of this can be placed a square of side 2 (F3) which gives a 2 by 3 rectangle* 
Then to the right can be set a square of side 3 (F4) which produces a rectangle 
of sides 3 by 5. On top of this can be placed a square of side 5 (F5) which 
gives a 5 by 8 (F5F6) rectangle, and so on. 

This is where geometry begins and ends in the usual treatment of Fib-
onacci sequences,, For if one tries to produce a similar pattern for the sum of 
the squares of any other Fibonacci sequence, there is an impasse. To meet 
this road block the following detour was conceived, 
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Suppose we are trying to find the sum of the squares of the first n Lucas 
numbers. Instead of starting with a square, we put down a rectangle whose 
sides are 1 and 3, the first and second Lucas numbers,, (Figure 4 illustrates 
the general procedure.) Then on the side of length 3 it is possible to place 

E T2 = T T 
k=l nAn+l M 

Figure 4 

1"! (T2 - Ti ) 

a square of side 3: this gives a 3 by 4 rectangle. Against this can be set a 
square of side 4 thus producing a 4 by 7 rectangle. On this a square of side 
7 is laid giving a 7 by 11 rectangle. Thus the same process that operated for 
the Fibonacci numbers is now operating for the Lucas numbers. The only dif-
ference is that we began with a 1 by 3 rectangle instead of a 1 by 1 square. 
Hence, if we subtract 2 from the sum we should have the sum of the squares 
of the first n Lucas numbers. The formula for this sum is thus: 
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(5) E LL = W i - 2 

k=l 

Using a direct geometric approach it has been possible to arrive at this alge-
graic formula with a minimum of effort. By way of comparison it may be 
noted that the intuitional algebraic route usually leads to difficulties for students* 

Still more striking is the fact that by using the same type of procedure 
it is possible to determine the sum of the squares of the first n terms of ANY 
Fibonacci sequence. We start again by drawing a rectangle of sides Tj, and 
T2 (see Fig. 4). On the side T2 we place a square of side T2 to give a r e c -
tangle of sides T2 and T3. Against the T3 side we set a square of side T3 

to produce a rectangle of sides T3 and T4* The operation used in the Fib-
onacci and Lucas sequences is evidently working again in this general case, 

th the sum being T T _. if we end with the n term squared* But instead of 
having the squre of TA as the first term9 we used instead TiT2. Thus it is 
necessary to subtract 

TiT2 - T? 

from the sum to arrive at the sum of the squares of the first n terms of the 
sequence* The formula that results 1st 

n 

^ E T k = T n T n+l " T l ( T * - Ti> = T n T n + l " T ^ 
k=l 

ILLUSTRATIVE FORMULAS 

The design in Figure 1 for (a + b)2 = a2 + 2ab + b2 can be used to illus-
trate Fibonacci relations that result from this algebraic identity. For exam-
ples Formulas (2), (3), and (4) could be employed for this purpose. Thus 

L2 = F 2
X 1 + 2F x 1 F , + F2 -n n+1 n+1 n-1 n-1 
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This evidently leads to nothing new but the algebraic relations can be exempli-
fied in this way as special cases of a general algebraic relation which is de-
picted by geometry. 

LARGE SQUARE IN ONE CORNER 

We shall deal with a number of geometric patterns which can be employed 
in a variety of ways in mway cases. In the first type we place in one corner of 
a given figure the largest possible Fibonacci (or Lucas) square that will fit in-
to it. Take? for example, a square whose side is F . (See Fige 5.) 

V2 

1 Fn-3 

F n - 1 

I 

n-2 

F2 

n 
F2

 n + 3F2
 0 n-1 n-2 

n-3 

k=l 

Figure 5 

This being the sum of F ^ and Fn__2? a square of side F . can be put in-
to one corner and its sides extended. In the opposite corner is a square of 
side F . From the two rectangles can be taken squares of side F 0 leav-

YL—u n-Z 
ing two smaller rectangles of dimensions F 9 and F Q. But by what was 

n—& n—o 
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found In the e a r l y p a r t of this discussion* such a rec tangle can be r ep re sen t ed 
a s the sum of the f i r s t n - 3 Fibonacci s q u a r e s . We thus a r r i v e a t the 
formula.8 

n - 3 
(7) F 2 

n 
F 2

 1 + 3F2
 0 + 2 V * F 2 

n - 1 n™2 *-Ji k 
k=l 

A s a second example , take a square of s ide L = 

Fig . 6.) 
F n + l + Pn-r ( S e e 

"n-1 •n-2 

I 

~F 

• 

F n+1 

i 

•2 _ 
n-2 

F* + 5 F 2 , + 2 £ F 2 
n+1 n - 1 *-* k 

K—1 

Figure 6 
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In one corner is a square of side F .. and in the opposite a square of side 
F._ ^ 9 The rectangles have dimensions F„ . „ and F, . 19 The rectangles have dimensions F , 1 and 

n—i n+i -n-r But F + 1 equals 
2F 1 + F 9 by (3)f so that each rectangle contains two squares of side F -n~x n—u n—1 
and a rectangle of sides F 1 and F 0« Thus the following formula re suits: 

n~x H—A 

(8) L2 
n F n + 1 + 5 F n - l + 

n-2 
2E 

k=l 
CYCLIC RECTANGLES 

A second type of design leading to Fibonacci relations is one that maybe 
called cyclic rectangles. Take a square of side T. n+19 a general Fibonacci 
number8 Put in one corner a rectangle of sides T and T ^ (Fig. 7). The 

Ln-1 

T n-2 [ 

n+1 

T2 = 4T T , + T2
 0 n+1 n n-1 n-2 

Figure 7 
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process can be continued until there are four such rectangles in a sort of whorl 
with a square in the center. This square has side T Vl 0 r Tn-2' 
Accordingly the general relation for all Fibonacci sequences results: 

0) T n + 1 = 4 T n T n - l + T n - 2 ' 

As another example of this type of configuration consider a square of 
side L and put in each corner a rectangle of dimensions 2F - by F , 

n ^ b n-1 J n 
(See Fig, 88) 

2F n-1 

F 1 n-3 

L2 = 8F F - + F2
 Q n n n-1 n-3 

Figure 8 

Again, there is a square in the center with side 2F n _ 1 - F n or F^_ 1 - F n _ 2 

= F oe Hence: n-3 

(10) L2 = 8F F n + F2 o n n n-1 n-3 
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OVERLAPPING SQUARES IN TWO OPPOSITE CORNERS 

[Apr* 

Cons t ruc t a square whose side i s T + 1 which equals T + T - . In two 

opposite c o r n e r s place s q u a r e s of side T (Fig* 9). Since T is g r e a t e r 

n - 1 

T 
n -2 

n+1 

T2 
n+1 2T2 + 2T2 , n n - 1 n-2 

F igure 9 

than half of T - it follows that these squa re s m u s t over lap in a square . The 

T _2 . The en t i re square i s composed of side of this square i s T - T -M n n - 1 
two squa re s of side T and two s q u a r e s of side T n - l e But since the a r e a of 
the cen t ra l square of side T 0 h a s been counted twice , it m u s t be subt rac ted 

n ~ dt 
once to give the p r o p e r r e su l t . Thus: 

(11) T2 
n+1 2T2 + 2T2

 n n n - 1 n-2 ' 

a r e su l t applying to all Fibonacci sequences . 
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Example 2. Take a square of side F = 2F 1 + F 0 . In opposite 
n+x n.—x n—A 

c o r n e r s , place squa re s of side 2 F n _ r (See Fig, 10). Then the over lap square 

2 F 
n - 1 "n-2 

"n+1 

"n+1 = 8F2 - + 2F' n - 1 n-2 n -2 

F igu re 10 

in the cen te r has side 2F - - F Q = F ., + FM 0 = L _. Thus-
n - 1 n - 2 n - 1 n - 3 n - 2 

(12) F 2 = 8F2 - + 2F2
 0 - L2

 0 
n+1 n - 1 n-2 n-2 

Thi rd example . A square of side L = F - + F 1 ha s a cen t ra l over -

lapping square of side F - - F - = F . Accordingly.9 

(13) L2 = 2F2
 M + 2F 2 , - F 2 

n n+1 n - 1 n 
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Final example. In a square of side L = 2F - + F , place in two 
opposite corners squares of side 2F ... The overlap square in the center has 
side 2F n-1 F = F n n-1 

F n -2 = F n - 3 ' {See Fi& n - > 

2F 

Hence: 

L2 = 8F2 , + 2F2 - F2
 0 n n-1 n n-3 

Figure 11 

(14) L2 
n 8F2 - + 2F2 - F2

 Q n-1 n n-3 

NON-OVERLAPPING SQUARES IN FOUR CORNERS 

Consider the relation T _,- = 2T i + T 0 . 
n+1 n-1 n-2 

Each side of the square 
can be divided into segments T - , T _„, T - in that order (Fig. 12). 
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n-l xn-2 

1 

x n - l 

n+l 

T2 
n+1 

4T2 + 4x T 0 + T2 „ n - l n - l n -2 n -2 

F igure 12 

T h e r e a r e now four squa re s of side T n _ x in the c o r n e r s , a square of side 
T rt in the cen te r and four rec tang les of d imensions T 1 and T 9 . F r o m 

n-2 I 1 ~ x ii-A 

(15) T2 
x n + l 

4T2 + 4T T + T2
 n 

4 i n - l n - l n-2 n-2 

which appl ies to ALL Fibonacci sequences8 

OVERLAPPING SQUARES IN FOUR CORNERS 

We s t a r t with F = F + F - and put four squa re s of side F in 

the c o r n e r s (Fig. 13)8 C lea r ly there i s a g r e a t deal of overlapping. The 
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F n - 2 

J F n - 1 

I F n + 1 , 

F n + 1 " 4 F n - 4 F n - l F n - 2 " 3 F n - 2 

Figure 13 

square at the center of side F - F .. = F 0 is covered four times; the four ^ n n-1 n-2 
rectangles are each found in two of the corner squares so that this rectangle 
must be subtracted out four times. The central square being covered four 
times must be subtracted out three times. As a result the following formula 
is obtained: 

(16) F2 = 4F2 - 4F , F 0 - 3F2
 0 

n+1 n n-1 n-2 n-2 

OVERLAPPING SQUARES PROJECTING FROM THE SIDES 

We start with the relation L = F + 2F - and divide the side into 
n n n-1 

segments F .., F , F - in that order (Fig. 14). On the F segments 
build squares which evidently overlap as shown. The overlap squares in the 
corners of these four squares have a side F - F - = F 0 while the central M n n-1 n-2 
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• n - 1 n - 1 

j n-2 

F n-3 

L2 
n 4F 2 + 4F 2 -n n - 1 4F 2

 0 + F2
 0 n -2 n - 3 

F igure 14 

squa re has a side L„ - 2F^ = F M ± 1 + F n 1 ^ n n n+1 n - 1 2F„ : 2F 1 - F = F 1 n - 1 n n - 1 c n - 2 
= F n-3° 

Taking the overlapping a r e a s into account gives the re la t ion: 

(17). L2 = 4F 2 + 4F2 -n n n - 1 4F 2
 0 + F 2

 Q n -2 n - 3 

FOUR CORNER SQUARES AND A CENTRAL SQUARE 

A square of side F - 2F - + F n has i t s s ides divided into s e g -n - 1 n -2 to 

: - , F oS F - in that o r d e r (Fig. 15). In each c o r n e r s a square n - 1 n -2 n - 1 & ^ 
of side F - is cons t ruc ted . Then a cen t ra l ly located square of side L „ 

i s const ructed . It may be wondered where the idea for doing this came from* 

Since 
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' n - 1 n-2 n - 1 

n-2 

•n+1 

F 2 - 4F2 + 4^2 + L 2 
n+1 n - 1 n - 2 n-2 

F igu re 15 

4F 2
 Q n - 3 

L n - 2 = F n - 1 + F n - 3 = F n - 2 + 2 F n - 3 • 

it follows that such a square would projec t into the c o r n e r s q u a r e s in the 

amount of F Q9 thus giving th ree sc n—o 
lap into account l eads to the formula: 

amount of F Q9 thus giving th ree s q u a r e s of this d imension. Taking o v e r -n—o 

(18) F 2 , = 4 F 2 , + 4F2 + L 2 _ 4 F 2 
n+1 n - 1 n -2 n-2 n -3 

CONCLUSION 

In this a l l too brief sess ion we have explored some of the re la t ions of 
Fibonacci n u m b e r s and geomet ry . It i s c l e a r that the re i s af ie ld for developing 

[Continued on page 323. ] 



PROPORTIONS AND THE COMPOSER' 
HUGO WORDED 

11 Mendelssohn St., Roslindale, SVIassaohusefts 

Music is a combinatorial a r t It is a combinatorial art operating in 
time. 

Music is not, technically., a creative art in the sense that sculpture is . 
No resource such as a solid mass of tone exists from which a composer can 
carve out a musical composition in the way that a sculptor executes a statue 
from a block of stone. The piano keyboard, for instance, embraces 88 notes. 
Were these 88 notes struck all at once the result would be a sort of tonal 
"fence" consisting of 88 layers. Any or all of these notes can be utilized in 
whatever vertical or horizontal combinations meet a composer1 s specific a r -
tistic requirements. Thus, creativity in music is achieved through the ingen-
ious combining of pre-established sounds within a limited spectrum of complex 
tonal effects. 

Music differs from painting and sculpture in that it operates in time 
rather than in space. In this respect it is more closely allied to poetry. 
Poetry, likewise, is a combinatorial art. Its raw material is words instead 
of musical sounds. But a basic difference does exist. Words are encumber-
ed by meaning which restr icts their combinatorial sequences. A musical 
sound is by itself entirely devoid of meaning. From this point of view no 
combinatorial restrictive factor exists. 

It is in the combinatorial structure of music that proportions become 
artistically pregnant. 

If a composer is to be credited with as highly developed a sense of dis-
cipline as a painter or sculptor, it must be assumed that his initial concept 
towards a new composition is a pre-determined time span. Such a time span 
can be defined in terms of minutes, measures or notes. Should the projected 
composition be incidental music for a film the time span will have been e s -
tablished for him, leaving no available options. Essentially the same prob-
lem confronts a painter executing a mural within a given area. And the iden-
tical problem must be solved by the writer preparing a script for a radio or 
television drama with a fixed format. 

319 
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Let us formulate a specific compositional problem; namely, a piano 
solo in a fairly quick tempo with a performance time of three minutes9 twenty 
seconds. (So far nothing is being said about the content* mood, or style of 
the projected composition,,) 

First Decisions Tempo 
If the tempo is determined by a metronome setting of 96 for a quarter-

note, 96 quarter-notes per minute will make 320 quarter-notes in the com-
position. With four quarter-notes per measure, this tempo decision will r e -
sult in a composition 90 measures long. Herewith is established a definite 
commitment as to the outside dimensions of the projected compositional 
exercise. 
Second Decision; Principal Division of Form Resulting from Firs t Decision 

For the beginner in the use of proportions a time span embracing 80 
one-measure units presents an extremely elementary problem; merely par-
tition it into two sections of 30 and 50 measures, respectively, thereby 
achieving a simple 3:5 proportion. Likewise, it can be split into 50 and 30 
measures, thereby reversing the proportion. Thus, two simple form plans 
become available for artistic exploitation: 

30 measures + 50 measures 
or 

50 measures + 3 0 measures . 

Both of these forms can, of course, operate at once. One might determine 
the harmonic plan and the other the shape of the melody. A variety of har-
monic and melodic applications of a proportion and its retrograde operating 
concurrently will inevitably occur to an enterprising and inventive composer. 

Third Decision: Subdivision of Overall Form Plan 
Resulting from the Second Decision 

At this level, the opportunities for ingenuity in the formal utilization of 
proportions is greatly increased. Several summation series can function 
concurrently in sophisticated time exploitation. For example, let us con-
sider the extremely simple 30 + 50 measure form division developed under 
the second Decision. The opening 30-measure section can be subdivided into 
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18 + 12 m e a s u r e s In the Fibonacci propor t ion of 3:2. On the o ther hand, the 

5 0 - m e a s u r e sect ion can be subdivided into 19 + 31 m e a s u r e s in the s e r i e s . 

2 i 5 : 7 : 12^ : 1£ : 31 : 50 : 81 , e tc . 

T h u s , we now have a form divided as follows? 

30 m e a s u r e s : 50 m e a s u r e s 
18 + 12 1 9 + 3 1 

Now the 12 m e a s u r e s of the opening 3 0 - m e a s u r e sect ion r e l a t e s in the same 

s e r i e s with the 1 9 - and 3 1 - m e a s u r e divis ions of the closing 5 0 - m e a s u r e s e c -

tion. Thus 9 the form i s evolving into m o r e complex re la t ionsh ips : 

30 m e a s u r e s (3 : 5) 50 m e a s u r e s 

(3 : 2) 

18 + 12 

12 + 19 + 31 . 

In this l ight , the 12 m e a s u r e s at the end of the opening 3 0 - m e a s u r e sect ion 

becomes a kind of ?!pivot!! re la t ing the two different summat ion s e r i e s . 

Four th Decision: Trea t ing the subdivisions resu l t ing from the th i rd Decision 

Added formal sophist icat ion can be achieved, and thereby g r e a t e r d i v e r -

si ty o r complexity — whichever may be de s i r ed , by subdividing the sec t ions 

shown above a t the Thi rd Decision Into s m a l l e r units e i the r within the s e r i e s 

a l r eady in operat ion o r by introducing a new series, , F o r Ins tance , the initial 

18 m e a s u r e s of the opening 3 0 - m e a s u r e sect ion of the fundamentally b inary 

form lends itself to a 7 + 11 o r 11 + 7 Lucas divis ion, and since 7 is a l -

so opera t ive in the s e r i e s mentioned under the Th i rd Decis ion, it would be 

quite easy to visual ize how a sys temat ica l ly r e c u r r i n g 7 - m e a s u r e ph ra se 

could a lmos t automat ical ly become a c h a r a c t e r i s t i c feature in the design of 

the en t i r e composit ion. 

The above i s an ex t r eme ly e l emen ta ry p rob lem. And the formal so lu-

tion i s equally e lementa ry . Any compose r with a bit of Imagination and 
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structural ingenuity can think of many ways to divide and subsequently sub-
divide a time span of any given number of units. 

The second area in which proportions are useful is in the musical con-
tent of a given form as distributed in its various sections and subdivisions. 
Listed herewith are a few of the distribution possibilities: 

(1) kinds of harmonies 
(2) duration of harmonies 
(3) dissonance effects 
(4) rests and textures 
(5) registers and ranges 
(6) tonalities. 

To illustrate, under the Third Decision there is evolved a 12-measure sub-
division that serves as a f?pivotn span that is common to two different sum-
mation series. If this is treated in terms of the series given under the Third 
Decision, it will be seen that it can be readily fragmented into 5 + 7. Some 
possibilities for exploiting this diminutive time span are 

(1) 5 major triads + 7 minor triads, or vice versa 
(2) 5 triads + 7 chords of the 7 , or vice versa 
(3) 5 measures containing two chords + 7 measures containing one 

chord, or vice versa 
(4) 5 measures having no discords + 7 measures containing discords, 

or vice versa, etc. 
This list of proportion possibilities can be extended as long as the composer 
has within his technique sufficient contrasting resources to originate addition-
al complementary relationships. 

But, the above listings do not imply merely a one-dimensional divi-
sion. Suppose a composer decides on five major and seven minor triads, 
utilizing two contiguous numbers in the series quoted under the Third De-
cision., Now comes the problem of selecting the horizontal arrangement of 
the five major and seven minor triads within the pre-determined twelve 
measures. Since this choice can be made only from the available number of 
placements, the process is one of selection rather than creativity. Herewith 
comes into play an intriguing aspect of the combinatorial art: namely, the 
systematic choice of effect placements within a time span. The Chorale 
harmonizations of Bach demonstrate ra re genius in this respect. 
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The third area for proportion utilization is in the vertical arrangement 
of chordal and dissonance effects* Since the compositional exercise under 
consideration is a piano piece, it is idiomatic to maintain a large number of 
notes in motion for effective performance results* 

Suppose§ then5 that in the first section of the piece that three notes were 
assigned to the left hand and five to the right. which arrangement can be in-
verted for contrast. In the second section* greater activity may be devised 
for increased in teres t This is obtainable by increasing the number of notes 
to* let us say* five and eight still in the Fibonacci series or to another series 
such as Lucas1 four and seven. To heighten the organization further, the 
notes assigned to each hand could be proportionately divided between con-
cords and discords* 

These are mere clues to a kind of organizational thinking that is avail-
able to composers,, It would* of course, be impractical to maintain such 
rigid internal organization throughout an entire composition, although there 
are movements in Bach where this does actually occur. It is more likely that 
such a plan would constitute a norm from which the composer can deviate. 
either systematically according to intentions or whimsically and freely* 
Above all5 a systematic substructure must leave the composer unfettered and 
free* Any technique must be a help to the composer, never an obstacle to be 
conquered* Thus* it is quite possible that the proportion scheme from which 
a composition has its arising may never be definitely identified through the 
conventional academic processes* 

[Continued from page 318* ] 
FIBONACCI NUMBERS AND GEOMETRY 

geometrical ingenuity and thereby arriving simply and intuitively at algebraic 
relations involving Fibonacci numbers, Lucas numbers and general Fibonacci 
numbers* It appears that there is a considerable wealth of enrichment and dis-
covery material in the general area of Fibonacci numbers as related to 
geometry* 

Reports of other types of geometric designs that lead to the discovery of 
Fibonacci formulas would be welcome by the Editor of the Elementary Section 
°^ ^ e Quarterly* • o - ^ - o - ^ 



A NUMBER PROBLEM 
M.S. KLAMKIN 

Scientific Research Staff, Ford IVIotor Company, Dearborn, IVIIctiigan 

In a recent note (this Journal, Vol. 4 (1971), p. 195), Wlodarski gives 
two solutions for the problem of determining the smallest number ending in 6 
such that the number formed by moving the 6 to the front of the number is 
equivalent to multiplying the given number by 6e Here we give a more com-
pact solution and answer* 

If the given number is represented by 

N = a0»10n + a^lO11"1 + ••• + a ^10 + 6 , 

then 

I = 6[ lO n + 1 - l ] /59 . 

By Fermat fs theorem, ap"" = 1 (mod p), and thus 

(1) I = 6[l058 - l J /59 . 

Since it can be shown that 1029 = -1 (mod 59), it follows that the number in 
(1) is the least one with the desired property* 

There is no need to assume the number ends in 6„ For if the number 
ended in 7, then 

I - 7(1058 - l) /59 

would satisfy the deleted conditions but would be larger, 
A similar example and solution for the case 6 is replaced by 9 had 

been given by the author previously* * 

•M. S.. Klamkin, "On the Teaching of Mathematics so as to be Useful," Educ« 
Studies in Math9 , Vol. 1 (1968), pe 1408 
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A LUCAS NUMBER COUNTING PROBLEM 
BEVERLY ROSS* 

San Francisco, California 

Marsha l l Hall, J r * , [ l ] p roposes the problem: Given 

S1§ S2, • - . , S n § S. = (I, I + 1, I + 2) 

(reduced mod 7, r ep re sen t ing 0 as 7)5 show that there a r e 31 different 
s e t s , formed by choosing exact ly one e lement from each or iginal se t and in -
cluding each number from 1 to 7 exact ly once. 

The p rob lem of how many new se t s can be formed from this type of 
group of se t s can be genera l ized in t e r m s of the Fibonacci and Lucas numbers* 

Given s e t s 

Sl f S29 • • - , Sn S S. = (i, i + 1, i + 2) 

(reduced mod n , r ep re sen t ing 0 as n ) , the number of new se t s (for all 

n ^ 4 ) formed by choosing one e lement from each or iginal set , including 
th each number from 1 to n exact ly once i s L + 2 , where L is the n 

Lucas number , 

Li == 1. Lo = 3 , L = L ., + L rt • 1 5 L % n n - 1 • n - 2 

Fi = 1, F 2 = 1, F = F 1 + Fn 0 . 1 ' L n n - 1 n-2 

L = F - + F _,, . n n - 1 n+1 

One m o r e Fibonacci identity i s needed: 

l + l + l + 2 + 3 + 5 + - - - + F o = F - . 
n -o n - l 

The number of s e t s shall be counted by a r rang ing the se t s in ascending o r d e r 

(base n + 1) to avoid mi s s ing any poss ib le s e t s , A s e r i e s in a group of s e t s 

* Student a t Lowell High School when this was writtenT 
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which begin with the same number and are not determined by the first two 
numbers. The base set of a series is the set with all elements after the first 
arranged in ascending order; e. g. 9{ 2, 39 4, 59 69 7, 89 9S l} . 

The set beginning with 1, 2? is obviously determined. 
The first base set is { 1, 3S 4S 5, • • • , n9 2}, 
The 2 at the end of the set canft be chosen from any other setf so the 

first change which can be made must be the interchange of the n and the n -
1. There can be no other sets between them because there are no numbers 
less than n - 1 in the last two original sets; e.g., 9 19 39 49 59 69 79 8, 2 
is changed to: 1, 39 49 5, 6, 89 79 2. 

The interchange of n - 1 and n - 2 would create one new set. 
The interchange of n - 2 and n - 3 would create two new sets (iso-

morphic to the first two of the ser ies , but with the n - 2 and n - 3 
reversed). 

For the set (29 39 4, 59 69 79 89 l } , the first 3 interchanges create 
the sets 

{2 9 39 49 5, 69 79 89 l } 
{ 2 9 3 9 49 59 69 79 1 , 8} 
{ 2 , 39 49 59 69 89 79 l } 
{ 2 , 39 49 5, 79 69 8S l } 
{ 2 , 39 49 59 79 69 19 8} 

(The last 2 sets are similar to the first 2 except for the interchange 
of 7 and 6.) 

th 
The new sets created by the 5 interchange are: 

{29 39 59 49 69 79 89 l } 
{29 39 59 49 69 79 1, 8} 
{29 39 59 49 69 89 79 l } 
{29 39 59 45 79 69 89 l } 
{29 39 5, 49 79969 1, 8} 

The sets are similar to those created by the first 3 interchanges but 
with the 5 and 4 interchanged. 
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An interchange involves only two elements. All elements after those 
th two are left unchanged* Therefore the i interchange creates as many new 

sets as all the interchanges before i - 1 did, 
The i - 1 interchange creates as many new sets as all interchanges 

before i - 2* The number of new sets before the i - 2 interchange plus the 
number of sets created by the i - 2 interchange equals the number of sets 
created by the i - 1 interchange* Therefore the number of sets created by 
the i interchange is equal to the number of sets created by the i - 1 inter-
change plus the number of sets created by the i - 2 interchange* 

There are n - 3 interchanges in the first series. 
There are n - 2 interchanges in the second series because the posi-

tion of the 1 is not determined,, 
The set beginning with 3 , 4 , is determined,, 
There are n - 3 interchanges in the third series because the inter-

change of 2 and 4 would produce a determined set* 
The number of sets in the first series is: 

1 + 1 + 1 + 2 + 3 + 5 + - - - + F 0 = F . 
n-3 n-1 

The number of sets in the second series is: 

1 + 1 + 1 + 2 + 3 + 5 + - - - + Fn__2 = F n 

The number of sets, in the third series is : 

1 + 1 + 1 + 2 + 3 + 5 + - - - + F o = F 1 
n—o n—x 

The number of determined sets is 2„ 
The sum is: 

F - + F + F - + 2 
n-1 n n-1 

= F ^ + F . + 2 
n+1 n-1 

= L + 2 n 
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CORRIGENDA 
FOR 

ON PARTLY ORDERED PARTITIONS OF A POSITIVE INTEGER 
Appearing in the Fibonacci Quarterly, May* 1971 

Lines 3 and 4 of Proof of Theorem 1, page 330, should read: 
"Then each VI (j f 1) which has the same components as V! (in a 

different order) will give the same partition of n as V. after rearrange-
ment, hence, • • •.?f 

The last line of page 330 should read: (1 ^ r ^ n - 1). 
The third line of the Proof of Theorem 3, page 331, should read: 

U = (ulf u2s ••• , u r ) E [U] . 
On page 331, the second line of expression for & (n) should read: 

n-2 \ 

In Table 1, page 332, values for <fit are: 
(p1 . 1, 2, 4, 7, 12, 19, 30, ••• 

The first two lines of the Proof for Lemma 1, page 333, should read: 
" Proof. 

n-j-1 

L _ ( j - ; t r ) - -

- ( . - -0 -
r=0 

/ n _ 2 \ 
1 + 1 

C. C. Cadogan 
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DEFINITIONS 

F0 = 0S Ft = 1, F n + 2 = F n + 1 + Fn ; L0 = 29 L l = 1, L n + 2 = L n + 1 + L ^ 

PROBLEMS PROPOSED IN THIS ISSUE 

B-232 Proposed by Guy A R. Guillotte, Quebec, Canada. 

In the following multiplication alphametic, the five let ters , F , Q, I, N, 
and E represent distinct digits. The dashes denote not necessarily distinct 
digits. What are the digits of FINE FQ ? 

FQ 
FQ 

FINE 

B-233 Proposed by Harlan L Umansky, Emerson High School, Union City, N. J. 

Show that the roots of 

F .x2 - F x - F ,- = 0 n-1 n n+1 
329 
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are x = -1 and x = F - / F _-. Generalize to show a similar result fc 
all sequences formed in the same manner as the Fibonacci sequence. 

B-234 Proposed by W. C. Barley, Los Gatos High School, Los Gatos, California 

Prove that 

1} = 2F3 , + F3 + 6F . F 2 . n n-1 n n-1 n+1 

B-235 Proposed by Phil Mam, University of New Mexico, Albuquerque, New Mexico. 

Find the largest positive integer n such that F is smaller than the 
sum of the cubes of the digits of F . 

B-236 Proposed by Paul S. Bruckman, San Rafael, California. 

Let P denote the probability that, in n throws of a coin, two consec-
utive heads will not appear. Prove that 

P = 2"nF ^ . n n+2 

B-237 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. 

Let (m,n) denote the greatest common divisor of the integers m and 

n. 
(i) Given (a,b) = 1, prove that (a 2 +b 2 , a2 + 2ab) is 1 or 5. 

(ii) Prove the converse of Part (i). 

APOLOGIES FOR SOME OMISSIONS 

Following are some of the solvers whose names were inadvertently 
omitted from the lists of solvers of previous problems: 

B-197 David Zeitlin 
B-202 Herta T. Freitag, N. J. Kuenzi and Robert W. Prielipp 
B-203 Herta T. Freitag and Robert W. Prielipp 
B-206 Herta T. Freitag 
B-207 Herta T. Freitag 
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SOLUTIONS 

LUCKY 11 MODULO UNLUCKY 13 

B-214 Proposed by R. M. Grass/, University of New Mexico, Albuquerque, New Mexico. 

L e t n be a random posit ive integer* What i s the probabil i ty that L 
has a r e m a i n d e r of 11 on division by 13? [Hint: Look at the r e m a i n d e r s for 
n = 1, 2 , 3 , 49 55 6, • • • . ] 

Composite of solutions by Paul S. Bruckman, San Rafael, California, and Phil Mana, Albuquer-
que, New Mexico. 

Let R be the r e m a i n d e r in the division of L by 13„ Then n n J 

E n + 2 s R n + 1 + R n ( m o d 1 3 ) • 

Calculat ing the f i r s t 30 values of R , one finds that R29 = 1 = Ri and R30 = 

3 = Ro„ It then follows from the r ecu r s ion formula that R IOO = R . The 
L n+28 n 

only n ! s with R = 1 1 and 1 ^ n ^ 28 a r e n = 59 99 and 14. Hence, in 

each cycle of 28 t e r m s , the r e m a i n d e r 11 o c c u r s exact ly 3 t i m e s , The re fo re , 

the r equ i r ed probabi l i ty i s 3 /28 . 

Also solved by Debby Hesse and the Proposer. 

QUOTIENT OF POLYNOMIALS 

B-215 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Prove that for all posi t ive in tegers n the quadrat ic q(x) = x2 - x - 1 

i s an exact d iv i sor of the polynomial 

T* / \ 2n T n , / - via P (x) = x - L x + (-1) n n 

and es tab l i sh the na tu re of p (x)/q(x). [Hint? Evaluate pn(x)/q(x) for n = 

1, 29 3 , 49 5.] 

Solution by L Carlitz, Duke University, Durham, North Carolina. 

Let a5/3 denote the roo ts of x2 - x - L Since L = a + B , i t i s c l e a r 
n r 9 

that 
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2n T n t , _ 
O (x) - X - V + ^ (xn - «n)(xn - A 

n x2 - x - 1 ( x - a)(x - p) 

is a polynomiaL 
To find the coefficients of Q (x) we put 

Qn(x) =s^- r - 1 2 / ) 
r=0 s=0 

r n - r -1 v ^ rts n-s-1 . „ x 

2n-2 / * 2n-2 

E l 2n-k-2 \-% r f l s \ V " 2n-k-2 

E a M = 1. x ck • 
k=0 y r+s=k / k=0 

T^XI9 s<n ' 
say* Then for k ^ n - 1, 

c 
k+1 Qk+1 

r+s=k 

For k ^ n9 we have 

n-1 2n-k-2 

r=k-n+l j=0 

= ( - l ) k - n + 1 F 9 . . . 
2n-k-l 

Also solved by Paul S. Bruckman, Ralph Garfield, G. A R. Gui/iotte, Herta T. Freitag, David Zeitlin, and 
the Proposer. 

A NONHOMOGENEOUS RECURSION 

B-2W Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Solve the recurrence D ,- = D + L0 - 1 for D , subject to the 
n+1 n 2n n J 

initial condition Dj = 1. 
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Solution by David Zeitlin, Minneapolis, Minnesota. 

Since D0 = 0 and 

n-1 

S L2k = X + L2n-1 9 

k=0 

we have,, with n replaced by k in the recurrence, 

n-1 
D n = E (Dk+X " V 

k=0 

= -n + 1 + LQ i 2n-l 

Also solved by Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, G, A. R. Guillotte, and the Proposer. 

MODIFIED PASCAL TRIANGLE 

B-217 Proposed by L Cariitz, Duke University, Durham, North Carolina. 

A triangular array of numbers A(n,k) (n = 0, 1, 29 •e % 0 < k < n) 
is defined by the recurrence 

A(n + l ,k) = A(n, k - l ) + (n + k + l)A(n,k) (1 < k < n) 

together with the boundary conditions 

A(Q,0 ) = nl , A(n9n) = 1 . 

Find an explicit formula for A(n9k)* 

Solution by Paul S. Bruckman. 

Let A(n,k) = (nl/kl )B(n,k). Substituting this expression in the given 
recursion, we obtain 

n-1 n-1 

k=0 k=0 
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[(n + 1) t/kS ]B(n + l ,k) = [n!/(k - 1)1 ]B(Q, k - 1) 

+ [(n + k + l )nl /kt]B(n,k) . 

Multiplying throughout by kt/nl gives us 

(n + l)B(n +-1, k) = kB(n, k - 1) + (n + k + l)B(n,k) 

or 

(1) (n + l)[B(n + 1, k) - B(n, k)] = k[B(n9 k - 1) + B(n, k)] . 

Next we demonstrate that recursion (1) is satisfied by 

B(nf k) = (A . 

Since 

*•+»[(n")" (0]=<n+4- OK*1)-
Also, 

=<°n • 
Therefore, 

Bfe. k) = ( ^ 

satisfies (1). The boundary conditions for this B(n,k) are B(n50) = 1 = 
B(n,n)9 which lead to the desired boundary conditions for 

KK) 
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A(n9k) = (n!/k!)B(n9k) = B f M = (n - k ) l / * Y = (n I )2 . 
k l \ k / V V (n-k)I(k!)2 

Also solved by David Zeitlin and the Proposer. 

ARCTAN OF A SUM EQUALS SUM OF ARCTANS 

B-218 Proposed by Guy A. R. Gui/lotte, Montreal, Quebec, Canada. 

Let a = (1 + \f5)/2 and show that 

A r c t a n S [ l / ( a Fn-KL + F n ) ] = S A r c t a n ( 1 / F 2 n + 1 ) 

n=l n=l 

Solution by L Carlitz, Duke University, Durham, North Carolina. 

Since aF + - + F = a and 

E 1 = 1 - i 

n+1 a(a - 1) ' 
n=l 

the stated result may be replaced by 

(*) I = E arctan 1 
F2n+1 n=l 

Now 

1 . 1 * F 2n F2n-KL arctan •=— - arctan = = arctan -=—-
F 2n *2n+l 1 + 

F2nF2n+l 

F 
*2n-l . 1 

= arctan •=—= —•—=• = arctan 
F2nF2n+l + X F2n+2 



336 ELEMENTARY PROBLEMS AND SOLUTIONS Apr, 1972 

using the well-known identity F
2 n - l F 2n+2 " F2nF2n+l = l 9 H e n c e 

1 1 1 
arc tan •=—— = arc tan — • arc tan 2n+l 2n 2n+2 

Take n = k, k + 1, k + 2, " • • and add the resulting equations, We get 

CO 

/ arctan = - — - = arctan =—- . 
, F2n+1 F2k 

n=k 

In part icular f for k = 1 , this reduces to (*). 

Also solved by Paul S. Bruckman, David Zeitiin, and the Proposer, 

HILBERT MATRIX 

B-219 Proposed by Tomas Djerverson, Albrook College, Tigertown, New Mexico. 

Let k be a fixed positive integer and let a0, %, ee • , aĵ  be fixed real 
numbers such that, for all positive integers n. 

a0 at a, 
n n + 1 n + k 

Prove that a0 = â  = e • • = a^ = 08 

Solution by David Zeitlin, Minneapolis, Minnesota. 

For n = 1, 2, • • » , k + 1, we have a homogeneous system of (k + 1) 
linear equations in the k + 1 unknowns; a$9 a^, 8 0 ° , a^. The coefficient 
matrix is the well-known Hilbert matrix, which is non-singular. Thus, the 
determinant of the system is non-zero; and so, by Cramer1 s rule, a0 = â  = 
a2 = . . . = a k = o. 

Also solved by Paul S. Bruckman and the Proposer. 


