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SUBSEMIGROUPS OF THE ADDITIVE POSITIVE INTEGERS

JOHN C. HIGGINS
Brigham Young University, Provo, Utah

1. INTRODUCTION

Many of the attempts to obtain representations for commutative and/or
Archimedean semigroups involve using the additive positive integers or sub-
semigroups of the additive positive integers. In this regard note references
[1], [3], and [4]. The purpose of this paper is to catalogue the results that
are known and to present some new results concerning the homomorphic im-

ages of such semigroups.

2. PRELIMINARIES

Let I denote the semigroups of additive positive integers. Lower case
Roman letters will always denote elements of I. Subsemigroups of I will be
denoted by capital Roman letters between J and @ inclusive. Results fol-
lowed by abracketed number and page numbers refer to that entry in the ref-
erences and may be found there. Results not so identified are original and
unpublished.

Theorem 1. ([2] pp. 36-48) Let K be a subsemigroup of I, then

i. There is k &1 such that for n= k, n€ K or

ii, Thereis n€ I, n> 1 suchthat n is a factor of all k € K.

Proof. Suppose there exist ky, <=+, kyy € K such that the collection
(ky, +++, k) has a greatest common divisor 1. Let K' be the subsemi-
group of I generated by {ki, Ky, °*o, kpy} clearly, K'C K. Let k = 2k
«kye+ oee s ko and for b >k, sincethe g.c.d. of (ky, «-+, km) is one
we may find integers oy, +++, &m such that ogky + e« +omky = b, (Note:
the @ are not necessarily positive.) We may now find integers q; and 1j
such that

where 0 < ris kl-v- ki—l”' k ({i=2,3,°°°, m). Nowlet
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Cy =C¥1+(qZ+---+qn1)kzk3---km, Ci:ri’ (i=2, 3, **+, m).

We now have

= + + eoe + .
b ciki Cgk.g kam

We have chosen ¢ =0 for i =2, 3, °*+, m. But since
LY = 3 s e = LI =
Czkz + + karn I‘gkz + + I‘mkm = k1k2 k.m b,

clearly c¢; = 0. Thus every b = k may be expressed as a linear combina-
tion of {kq, ***, km} where only positive integral coefficients are used.

If every finite sub collection of elements of K have g.c.d. greater
than one, then clearly all of K have g.c.d. greater than one.]

Corollary 1. ([2] p. 38). Every K is finitely generated.

It is clear that there are essentially two types of subsemigroups of I:

i. Those that contain all integers greater than some fixed positive in-

teger will be called relatively prime subsemigroups of I

il. Any other is a fixed integral multiple of a relatively prime sub-
semigroup.

Theorem 2. Let K, J be subsemigroups of I. Let the mapping K be
a homomorphism from K~ onto J. Then K is in fact an isomorphism of K
onto J of the type; for k € K. &K =Yk, where 7y is a fixed rational
number depending on K and J.

Proof. Since, by Corollary 1, K and J are finitely generated, let
(ky, =+ kyy) be a generating set of K. Let (jy, <+, j;) be the images
in J of (&g, ++, kyy;) under K. Clearly (ji, ***, j;). Now generate J.

kiky JK = Kikq)K = Kijs
since K preserves positive integral multiples, but we also have
kiki K = (ki)Kky = jik

and
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kijh = jik

so that

1 /i |

Clearly for a given subsemigroup K not any rational number 7 will
do. Note that:

but ji is an integer and, ky divides k;. If the collection (ky, <--, ky,)
have greatest common divisor equal to one, then clearly 7V is an integer. If
the collection (ky, **+, ky;) have greatest common divisor n # 1, then
Gy /o, =, km/n) generates a relatively prime subsemigroup of I, call it
K', and K and J are such that

K = nK', L =vyK',

where 7¥n is an integer. We have now shown:
Corollary 2. Let K and J be subsemigroups of I. For J anyhomo-
morphic image of K, K and J are integral multiples of a relatively prime

subsemigroup, K', of I

3. HOMOMORPHISMS

The results of Section 2 make it clear that no subsemigroup of I has
a proper homomorphic image contained in I. Let us now examine the proper
homomorphic images of subsemigroups of I,

Lemma 1. Let K be a relatively prime subsemigroup of I Let ~

be a congruence defined on K and satisfying:

Bx, y € K, x #y and X ~y.

Then, K/~ is finite.
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Proof. Since K is relatively prime there is a least k € K such that
forall n=k, n € K, Suppose x <y andat y - x = m. Now,

XxX+k ~ x+k+im, i=1,2,8,
since by induction
X+k ~(x+m+k =1y+k)
and if x+k ~ x+k+im, then
x+k ~x+h+{(+1m

by using the strong form of induction and adding k + (i)m to both sides of:
X ~ x+m, Clearly then, x +m +h +1 is an upper bound for the order of
K/~. ]

Lemma 2. For K, k as inLemmal,let n be the least positive in-
teger such that: for x, y€K, x~y and x-y = n. Then, for any c,
d€K, if ¢c ~d, ¢c<d, d-c = m: we have d - ¢ = jn,

Proof. (Let a be the least element of K such that a ~ a +n). We
may find k' € K such that ¢ +k' > a +k. Thus by Lemma 1, ¢ +k' isin

one of the classes determined by
a+k, a+k+1, eev, a+k+n-1.

Thus
c+k' =a+k+jn+1i,
and
c+k +m =a+k+jn+i,

but c+k'+m ~c+k', and a+k+jn+i ~a+k+jn+i, but this gives
at+k+i~a+k+i', Thus, i = i' since n is the least positive integral

difference of equivalent elements of K. ]
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For finite homomorphic images of subsemigroups of I, call n, as de-
fined in Lemma 2, the period of the congruence.

Lemma 3. Let K, k, n, a be as inLemma2. Let be a congruence
on K such that for ¢ ~d, d >¢c, d-c &€K. Then K/~ has exactly n
non-singleton classes.

Proof. Let d -c = m. Then by Lemma 2, m = jn. Wehave jn € K
and for p sufficiently large c + (p)jn = a +k. Thus, c + (p)jn ~ a + k +i
for some i; 0 =i=n -1, But since ne K, c+@)jn ~c for p=1,
2, 3, °++. Thus ¢ ~a+k+i and the non-singleton classes may be rep-
resented by a+k, a+k+1, cee, a+k+n-1, ]

If c¢ is an element of a relatively prime K, where ¢ ~ a+k+ i
(a,k being as in Lemma 2) then if ~ has period n we have: ¢ = a + ki
(mod n). This follows immediately from Lemma 2.

Congruences on a relatively prime K which fail to satisfy the condi-
tions of Lemma 3 may be described as follows. There are the n classes
represented by a+h, a+h+1, ¢, a+h+n-1; there are any number
of singleton classes for elements between a +h and the least element of K.
There may be finite non-singleton classes of elements between a + h and the
least element of K, but from Lemma 3no two elements in afinite class may
differ by an element of K.

4, SUBSEMIGROUPS OF CYCLIC SEMIGROUPS

In this section we treat subsemigroups of finite cyclic semigroups.
Let R be the finite cyclic semigroup of index r and period m. Elements
of R will be represented by integers; R will be written additively.

Lemma 1. Let T be the subsemigroup of R generated by the ele-
ments tj, £y, co°, tk' If the greatest common divisor of {q, Ty 200y ’ck,m}
is one, then T contains the periodic part of R.

Proof. Let t' be the g.c.d. of {tys tgs oo, th}. By Theorem 1,
Section 2, the subsemigroup of I generated by { t /t, ty/tr, e, tk/t'} con-
tains all integers greater than some fixed integer k. But for some p all

g = p are such that qt' > k. Now let

(k+i)t'—rsm(k+j)t’—r,
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then (nj - in)t' = n'm, but t' and m are relatively prime. Thus, m di-
vides nj - in.]

The remainder of the subsemigroup of R generated by { ts tgy 00,
th} is the intersection in R of the subsemigroup of I generated by the ti
considered as integers. If the g.c.d. of {q, tg, *°°, tk,m} =p=>1, then
the subsemigroup generated contains m/p elements of the periodic part of
R, and can thus be made isomorphic to a subsemigroup of the type described
in Lemma 1 by changing the period of R to m/p.

Finally, let K bethe subsemigroup of I generated by {tl, tg, *°*, tk}
considered as integers, where t;, tp, *°°, th € R a finite cyclic semigroup
of index r and period m, and the g.c.d. of {ti, toy oo¢, th,m} is one.
Let K' = K UN, where N is all of I greater than r. Clearly K' is a
subsemigroup of I. Let ~r be the relation:

) .

X, yEK', X~y =X =y or x, y=r and x =Y
The relation ~r is a congruence on K'. Now identify the elements of K' /~r
with the elements of the subsemigroup of R generated by {tl, s, th} in
the natural way. We then have:

Theorem 2. The semigroup K' /~r is isomorphic to the subsemigroup
of R generated by {tl, tgy oo, h}'
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PROPERTIES OF TRIBONACCI NUMBERS

C.C. YALAVIGI
Government College, Mercara, Coorg, India.

1. INTRODUCTION

Let us define a sequence of Tribonacci numbers

o0 0
(1.1) {Tn}& ={T, b, c, & P, Q, R)}0
by
(1.2) Tn = bTm_1 + cTn_2 + dTn_3 ’

where n denotes an integer 23 and Ty, Ty, Ty are the initial terms P, Q,
R respectively. Then it is easy to show that the nt‘h term of this sequence

is given by

(1.9) T = 1a% + mb™ + nr®,
n

where a, b, r are the roots of x® -bx?-cx-d =0 and 1, m, n satisfy

the following system of equations, viz.,
(14) l+m+n="P, la +mb+ar = Q, la? + mb? + nr? = K.

Our aim is to study the properties of this sequence. The 9 special

forms which we will refer are as follows:

(1) {Tr(ll)}": = {T (b, c, &0, 1, BT ,
(id) {Tflz)}z’ = {T (b, c, & 1, 0, )}y ,
(iii) {Tf)}: = {T (b, ¢, d; 0, d, ba)}y ,
(iv) {Tr(14)}°: = {T b, c, &0, 0, V}7 ,

231
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W) {TI(IS)};O = {T,b, ¢, d; 0, 1, 0} »

(i) {TIfG)};o = {T b, c, & 1, 0, O,
(vii) {Tf*}»:’ = {T (b, ¢, d; 3, b, b + 20)}y,
(viii) {Tfls)};= {T @, 1,101, 0 ,

(ix) {Tfl9)}0°°= {T (1,150, 0, D}y .

2. PROPERTIES OF {Tn}0°°

First, we recall the following useful relations, viz.,

1=[{R-Qb-a+Pdajb-r1)] =D,
(2.1) m = [{R - Qb - b) + Pd/b}(r - n)] * D,
n=[{R -Qb-r)+Pd/r}a - b)] * D,
where D = (a - b)(b - r)(@a - r);
2.2) a=a +bf3, b =Db +b/3, r =1 + b/3,

where a', b', r' are the roots of the reduced cubic equations 73 +3Hz+G = 0;

@.9) ar = AY3.BY/3, oo wal3 i wl/3, o w2al/3 . yRl/3,
where A,B = {-G x+ (G +4H%)}/2;
(2.4) D - D' = 3(w - w)N(G? + 4H3) ,

where

D' = (@ - b")bh' - )@ - 1), H=-3c+b?)/9 and G = -(27d+9bc +2b?)/27.
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Some identities will follow.

Identity 1. For o, g, g, g3 and u denoting positive integers (where
q >2),

Tq Tq-—l Tq—2 Tq+u
Tq1 TO}1_1 Tqi_2 Tq1+u
(2.5) =0.
T T T T
a, q,-1 qy-2 gyt
T T T
Ay Ggm1 02 Tq3+u
Proof. Let
@ () 3) -
(2.6) Tor1 Tq * Turt Tqer * Ty Tgeg = Tgrn = 0

Replace q by q;. q, and q, in (2.6). Then we get

1 (2) (3) _
(2) Tu+1Tq1 * Tu+qu1_1 * Tu Tq1-2 - Tq1+u =0,

1) .. (2) (3) _
2.7 0 Tl qu + Tt Tq2—1 Ty Tq2-2 h Tq2+u =0
(c) T(l) T + T(z) T + T(3)T - T =0 .,

utl “qq u+l q3-1 u q3—2 q,*u

PR (1) 2) (3)
Clearly, on eliiminating Tu +1° Tu 1 and TUl from (2.6), (2.7)a,

(2.7b and (2.7)c, the desired result follows. Note the following particular

cases.

Tq Tq_1 Tq_2 Tq ™
T T T T
- +
2.8) q+l q q-1 qtutl| _ 0,
Tq+2 Tq+1 Tq Tq+l1+2
Tq+3 Tq+2 Tq+1 Tq+u+3
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(2.9)

(2.10)

(2.11)

PROPERTIES OF TRIBONACCI NUMBERS

[Apr.

T T T
q q-1 "q-2 "2q
Tq+1 Tq Tq—l T2q+1
= ( .
Tq+2 Tq—l Tq T2q»+2 ‘
Tq+3 Tq+2 Tq+1 T2q+3
T T T T
q q-1 “g-2 "3q
Ten Tq Tgr Tsgn
= 0,
Tz Tgn Tq  Tagez
Tq+3 Tq+2 Tq-l T3q+3
Identity 2. For q, gj, Oy, ***, g3 and u denoting positive integers
(where q+q = 1y, Q+Qy = Ty, ¢+, Q+ Qg =g and q > 2),
T T2 T? T? TT T T T T
q “g-1 g-2 “gqtu Tq g-1 q q-2 q-2" qtu
2 2 2 2 oo
Tr1 Tr1—1 -2 '1r1+u TrlTri—l TriTri—Z Tri—ZTrﬁu -0
8 e e oo
Ty

then

(2.12)

The proof is left to the reader.

Identity 3. For q, ¢, dy, g3 and u denoting positive integers (where
qg+tq =y, q+tQ =Ty, q+Qsy = Iy and q >2) if

A
ag,

TT

q 1y

Qo
ag

qq,

> x> >
S S

Q9

a9
T, +q1
I'2+q1

Tyt

qg,
ryta,

+
rZ q2

> s >

rytq,

+ T 3Ty * ooyt

qd,
Ty Qg

Lys 0y

> > > >

T3 Qg

T q'HlTl‘i +u
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The proof is left to the reader.
Identity 4. For g, gy, g3, °**, g9 and u denoting positive integers
(where q+q =1, q+qy =1y, °**, q+qy = rg and q > 2) if
B = T2m2 4+ T2 T2 + eee +
agy qry q-1"r-1 TqTq—lTriTrrl

+ oeee +
Tq—ZTq+uTr1—2Tr1+u ?

then

B B B B e B
Qo qqi qqz qq3 qq9

B BI‘ B B L] B
(2.13) a9, 1% TGy Tyelg Q) = o,

B B B B .o B
A9y Tyody  Teedy Ty Tgs 0y

The proof is left to the reader. We proceed to construct a field closely
associated with {Tn}oo which may be called hereafter the '"Tribonacci field."

The elements of this field are

Xn

(2.14) n=20,1,2, 0,0,

For n >3, these elements modulo X3 - bX2Y - ¢XY2 - dY® are the

second-degree polynomials

X' _ ) @) @)
(2.15) e R T X2+ T2 XY +dT ) ¥ .

In this field, if P = Y2, Q = XY and R = X%, then the above-cited

properties hold true.

3. PROPERTIES OF {TI(14)}°:

For this sequence,
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(3.1) 1 = (- 1/D, m = (r - a)/D, n = (a - b)/D

and the nﬂfl member is given by

@ _ b-1a + @ -ab +@- bl

(3.2) n E-Hb - n&E -

or

5.3 @ o -r)@E b/ + @ - ) +b/3)% + @ - b +b/3)°
° n @ - b)b - r)E - r"

We simplify (3.2) and (3.3). Rewrite (3.2) as

T1(14) = [1‘n+1 - anr - brn + ban - rn+1 + rla + "t - abn]
: [@ - b - )@ - )]
1 @ - ale - b - @ - " - Y
@.4) T a-h g = o)l - s)

1 rn~an i
a-b } r-a T - b

This expression may be simplified as

n-1 1" -1)"
(3.5) @ _ x l1-@ ") 1-(r ")
° n a-b 1 - (a/7r) 1 - (/1)
or
Tr(14) == _1 5 {rn—la + 222 rn_3a3 +oeee + a1 (rn_lb
L P22, n33 ., -l )g
- grn"jl(a - b) + P2 - p?) e - ) e
3.6) - -
( +r(a1nl—1on 1)f
= rn—l + rn—z(a + b) + rn"?’(a2 + ab + b2} + aee

+ I.(an—z + an—3b oo 4 bn—Z) .
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Consider (3.3). Let

(3.7 A ={'G + \l((‘;2 + AJLH?’)fl/3 -G - NG + 4H3)z1/3

s By = g 5
Clearly,
(3.8) a' = A1 + By, bt = WA1 + W2B1 and b' = WzAi + wBy

On substituting for a', b' and r' from (3.8) in (3.3), we have

@ _

N {w - wA; + W2 - w)By J(Ay + By + b/3)" + {(w? - 1)A,

+ (W - 1)By} WAy + w2By +b/3)" + {1 - w)A; + (1 - w?)By} (w2Ay

+wB + b/3)%] < D

r=n
[Z nCo®/3 W - WAy + B) (A - By)
=0

+ (wAy + w2By )T [(w2Ay + WBy) - (A + By)] + (w2A; +wBy)"

X [(Ag +By) - (wAy +w2B)H| £ {3(w - w2)(a] - B]))
(3.9)

r=0

r=n
{Z nCr(b/3)n—r{(w - w¥) (A + By )r(Ai -By) + (A +B)

x [w2Aq +wBy) - (wA; + w?By)T ] + (w2A; + wBy ) (wA; + w2By)©

- (wA; +WBy ) w?A, +wB) )| 2 {3w - wt)(al - B)}

]

r=0

r=n
[ 1Co0/3) T {6v — wh)(Ay + By)T(Ag - By) + (A + By)

X [(w2Ay +wBy)T - (wA; +w2By)"] - (Af - AyBy +Bf) [(wA;

+wB, )r-l - (WA; + W2By )r-l]} = {3(W - WZ)(Af - Bzi; -

Since
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(WA +w2By)" - (w2Ay + wBi)r = N3i C iS—ls(s—l)/Z

(3.10)
X (A + By) 54y - B)®[1 - (-1)°]

for i = N-1, w=(1+iN3)/2 and w2 = (1 - in3)/3, (3.9) can be rewritten

as

r=n |
TI(:L) = Z ncr(b/s)n'r iN3A; + B))TA; - By) - (A + By)
r=0

S=r
N 3i Z .s-1,(s-1)/2 r-s s
X ['—2‘17' I‘CSI 3 s )/ (A1 + Bi) (A1 - B1)
=0

s=r-1
x (- (—1>S>}+ (8} - By + Bf)[ﬁr%i 2 a0l
2 s=0
x 36 V/2 4 gyl p8a - (1))
(3.11) + [3iN3 a2 - B}y
_I':S
= | 2 ,C,0/3" iy + BOT(A - B) - (A + By)
r=0
r=s
x| < rCSis_l?,(s_l)/z(Ai + B 5% - By)s
2 0
L r=

s=r-1
x 1 - (-1)3)] + (A} - ABy + B%)[—rl_-l- > r_1csis‘1
2
=0

x 3(s-1)/2(Ai + Bi)r—s—l(A1 -B)%1 - (1))

+ {34} - B))} .
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However on combining (2.3) and (3.2),

TI(14) = [{tw - WZ)Al/3 + (w? - W)Bl/g} (Al/3 + Bl/3 +b/3)"
ot - 0AY? + - 1)BY 3 wal/3 4 w2Bl/3 1 pygn

(3.12) +{a- wa?+q - we)st/ ! w2al/3 1+ wBl/3 4 b/3)™ ]
+ [3(w - w?)(A - B)]
O=n
-0
= GZ (b/3n nC 6L6 N
=0
where

=
|

r=k-1 -

(8k-3r-1)/3 _(3r+2)/3 .

3k = ,: 2. A B (3k03r+1'3kC3r+z)JT (B - A),
r=o

r=k
~ (3k+1-31)/3 _ (3r+1)/3 .
Lok = 2 A B (3k+1C3r 3k Capa )| = B - 4)
r=0
and
r=k-1
_ | L(Bk+3)/2  , (3k+3)/3 (3k-3r)/3
L3k+2 B - A * Z A
r=0
(3r+3)/3 _ .
B (5i+9C 349 3k+2C3p4s) | + B = A)
4, PROPERTIES OF {TI(15)}°:
Let

o6 _ (b -2 -+ b -bE-ab’+ - @ - b
n D

n+1

(4.1) [b{®b - ra® + ¢ - b + (@ - b)rn} -{( - 1ra

+ @ -ap™ s @-op™Y] 2D
@ @
n n+l
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(6)

This relation is useful in deriving expressions of T similar to those

of T(4)

5. PROPERTIES OF {TI(IG)}O(:

Proceeding as in previous section, it is easy to show that

©) _ 4r@

(5.1) T, el

)

Note that this equation connects up expressions of Tn in Section 3.

6. PROPERTIES OF {Tf)}w
0

In this Section, we state without proof the following identities:

(6.1) 2r{D - sa®) = 10210 - @) 4 T},
7 7 7 7
62 1 = 100D g0 (@) 1yey s
(7) 7 _ (7 (1) (7) (7) (7
(6.3) Tyntar =~ Tan = Tn+rT3n+3r - T TSn - T2n+2r[{(Tn+r)
- zT;QJrzr}/z] (7)[{(T(7)) - 2T§2}/2]
(7) (7)
+dir L o- T,
6.9 217 = s1Mr 4 6 - @™y = 1 Mar D - x M)y 4+ 6o
and
(7) (7,3 (7) (7) (7) (7) (7) (7)
(6.5) (Tn+r) (T ) = (}{Tnﬂ' 2n+2r }— Z{T 3n+3r ~ }
for d =

(=]
7. PROPERTIES OF {T(8)}

This section will give identities relating to {T(S)} and {Tf)}o:. They

are:

.9) ® _ ~9
(7.1) T, - T, =T g



1972] PROPERTIES OF TRIBONACCI NUMBERS 241

) 8 _ .9

(7.2) T+ T = T

9),2 (8)\% _ (9 09)
(7.3) (Tn ) - (Tn ) = Tn—3Tm+1 ’

9),% _ (9) © 9
(7.4) 20y = O+ o)
and

(9) 3) 9) (9)
(7.5) T, = (Tn+1) - (T ) .

8. PROPERTIES OF {T(g) }°°
This section will discuss the congruence properties of {T (9)} modulo

m, a positive integer. We note the following identity:

© _ 1O 10 ) ©9) 1 (9) 9) (9
(8.1) T = TuraTq * Tyar + Ty Toor * TanTaoz -

Some theorems concerning {T( ) (mod m) j will follow.

Theorem a. {T(9> (mod m)} is simply periodic.

Proof. For some n and a, let T(g)1 = (9) (mod m), Tlgg) = Tég)
(mod m) and Tr(i)l = Tg_)l (mod m). From these congruences, we obtain
(9) 9)
(8.2) n:l:t = T ot (mod m) ,

where t denotes an integer =2, Since m? pairs of terms are possible in

this series, {Tx(19) (mod m) };o must return to the starting values thus becom-

ing simply periodic. e,
Theorem b. For a prime factorization of m in the form m l'lp , the
o

period of { T (mod m)} is the lowest common multiple of all the periods

of

©) N T
{T.” mod p; )}0

Proof. Let k(m) denote the period of {Tr(lg) (mod m) }oo Then k(m) is
- 0

of the form
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i
cik(pi ),

where ¢ denotes a related constant. Therefore,

e,
k(m) = l.c. m.[k(pil)] .

)

Theorem c. For some ¢, if T(g) = 0 (mod m) and Tq+1 = 0 (mod m),
then the subscripts for which Tr(lg) = 0 (mod m) and TI(I?F)]. = 0 (mod m) form
simple arithmetic progressions.

Proof. Let

©) = 0O 9 9) (9)y1(9) ©
gt Tq’+2Tq+1 + (Tq'+1 + Tq, )Tq + Tq'+1 Tq—l

(8.3)
T(9) T(9)

g'+17g-1

(mod m) .

9)
2

For ¢ = q-1 and q, this congruence shows that T q = 0 (mod m)

and ngl)ﬂ = 0 (mod m). Similarly, we can obtain

2

)
3q T

3q+ 0 (mod m) ,

0 (mod m),

©)

©)
T 4qg+1

4q 0 (mod m), etc.

0 modm), T

Il
1

Therefore, it follows that n is of the form xq, x =1, 2, **+, so that n
and n+1 form simple arithmetic progressions.

Theorem d. Let H' = 3%H, G' = 3°G and (G')% + 4(H')? be a quadratic
residue for primes of the form 3t - 1. Then k(p) } ®? - 1).

Proof. Denote p? by 3t'+1. Then
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r-t'

T 7 (3t1+1-31)/3
Lgpyg =3 DLgpyy =3 2 A

r=0

(3r+1)/3 .
(8.4) XB (3¢41C3r_spra1 Caprn){ ¥ B - A .

g3 (p CUHD/3E1/3 _ gBHD/3,1/3) . (5 7

3H'U}, (mod p) ,

L3t A (3t'+3)/3 (3t'+3)/3
Loy,g = 8 Loy = 8 B - A

r=t'-1

t-—r v+l .
’ Z AP (31:'+203r+2-3t'+zc3r+3)‘T B - A)

(8.5) ~

3t

1
3 (Bt 1

e S : RN

1l

U, (mod p)
and
r=t' / ,
_ .3t (3t1+2-31)/3 .. (31+42)/3
Lgysg 537 |, A B (54148 3p+1-3t143 Carsa)
0

+ B-4)
331:'(A2/3B(3t'+2)/3 _ BZ/SA(3t'+2)/3) (B - A)

(8.6)

(1/3)(H")?U}, (mod p) ,

so that

(9)

T3t' +1

3H'U£ (mod p)

8.7) @ o

sprag = H'UL + Uy (mod p)

and

9 _ v ) (H1) 210 o
T3t1+3 = (1/3) + (2/3)U 141 a/3)m )zUt' + (1/3)H Ut‘ (mod p) ,
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= - 3
where Uhey = -G'01 + @)U

for n=1,2,+--, Uy = 0 and U} = 1. Since

U'St__2 £ 0 (modp) and 'U'(St-2)+1 = 1 (mod p),
we get
U, = 0 (modp) and Uy = 1 (mod p).
Therefore
(8.8) Té?_l_l = 0 (mod p), Tégtz+2 = 1 (modp) and Tgi):3+3 = 1 (mod p).

These congruences imply

T:(),QJ = 0 (modp) and kip) | (? - 1).

Theorem e. For primes of the form p = 3t -1 where (G2 + 4(@")3
is a quadratic nonresidue, k) | (b - 1).

Let p® = 3t" + 1. Note that the proof of Theorem 4 holds with t changed
to t", etc. The proof is left to the reader,

Theorem f. For primes of the form p = 3t+ 1 where (G")2 +4®")3 is
a quadratic nonresidue, kip) | (2 - 1).

Proof. Let p? = 3t+1, Then

0=3t+1
9) _ .3t.09) _ .3t 3t+1- 0
Tgryy =3 tT3t+1 = 3% 3 3t+1C6%6
6:0
L3t
=3 L3t+1
r=t
.8t (3t+1-31)/3 _ (3r+1)/3
=3 24 B (3¢41%3r_3t+1C 3041
(8.9) r=0
(B - A)

33t(, (Bt+1)/351/3 AY3gBHD/3) 0

Hi

]

536, 1/351/3 B0 - 4)

3H'Ui'; (mod p) ,
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6=3t+2
3t 9)

.3t 3t+2-6
3 Tgyp =3 2, W3 3420616
(5=O

(9)
3t+2

3t
SH /85 + Lyt
r=t-1
(5.10) P 4 (3t-31)/3,(3r+3)/2

i

r=0

(3¢42C 549 3t42C3p43) + (B - A)

t+1 t+1

H'U} + 33(B )/ (B - A)

i

H'U' + Ui;+1 (mod p)

0=3t+3

©)  _ .36.09) _ .3t 34+3-0

Tog = 30Ty = 3 > s 05C 65
6=0

1]

+ Ly (1/3)%L + (2/3)L

St+1 sts2 * Lapas)

r=t
33t ZA(3t+2—3r)/3
r=0

(8.11) 1/3) + (1/3)H'U' + (2/3)U

1l

t+1

(3r+2)/3 _
B (3t+3c 3r+l 3t+303r+2) (B - A)

1/3) + 1/3)H'U' + (2/3)Ut+1 33

(8238235t _ Aty - A)

= (1/3) + (1/3)H'TL + (2/3)U

Ly + (1/3)E)7] (mod p)

For the considered primes, it is easy to show that

Ulgpegyss = (HDY) @modp)

2
(8.12) 0 (mod p), 2(3t+2)+1 = {(-H')} (modp),

Uyiste2) =

Ul (3p42) = © (mod p), U't(3t+2)+1 = {(- H|)3} (mod p) ,

245



246 PROPERTIES OF TRIBONACCI NUMBERS [Apr.

so that
U = 0 (mod p) and v =2% 21 (mod p)
t = P t+1 = = b
Therefore
9 _ 9) _ 9 _
(8.13) T3t+1 = 0 (mod p), T3t+2 = 1 (mod p) and T3t+3 = 1 (mod p),

when ng) = 0 (mod p) and the desired result follows.

Theorem g. For primes of the form p = 3t +1 where (G')? +4(H')?
is a quadratic residue, k(p) | (p® - 1).

Let pb = 3t' + 1. Note that the proof of Theorem f holds with t changed
to t', etc. The proof is left to the reader.
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NOTE ON THE CHARACTERISTIC NUMBER OF A SEQUENCE
OF FIBONACCI SQUARES

BROTHER ALFRED BROUSSEAU
St. Mary's College, California

Given a sequence of squares formed from the terms of a general Fibon-
acci sequence. It is proposed to set up a quadratic expression that will char-
acterize a given sequence of this type.

First let it be noted that since this is equivalent to an expression of the
fourth degree in Fibonacci numbers, the characteristic number would be a con-
stant that would not oscillate in sign., To find such an expression we may pro-
ceed as follows.

Let the original sequence be given by Hn = Ar" + Bs" where r and s
are the roots of the Fibonacci recursion relation. Then the square term

Gn = Hi = A2r2n + ZAB(rs)n + stzn .

We now calculate three expressions.

2 4 4n

G2 = A% 4 4n n_2n
4 4n

+ 6A2B2 + B's™ + 4A3B(rs) r o+ 4ABS(I‘S)SZ

G .G NS 4A2B2 + B4S4n + 2A3B[r2n_2 n+1 n—1r2n+2]

n-1"n+1
+ 2AB3 [(rs)n—lsZn+2 + (rs)n+182n—2]
+A2B2 [r2n-282n+2 + I,2n+2S2n—2]
G .G .. = A% 4a282 L A L oam [P
n-2"n+2 3, 2nt4, n-2 , 2n-4
+2AB° [s (rs) +s (rs)

+ Asz [r2n-4 SZn+4 + r2n+4: sZn—4]

n
n

(rs) + (rs)

n+2 +r2n+4( n-Z]

rs) rs)

n+2 ]

First let it be noted that the A2B* terms which end the expressions for Gn—l’
22 22 ; 3
G and Gn_an 49 are 7A?B? and 47A“B%, respectively. The AB° and

A3B terms of G, _ can be written together as

1Gn+1

AB(DP L [A22072 4 B2g20-2] 4 aap()™ ] AZ 2092, p2.2n42)

A similar expression can be obtained for the corresponding terms of Gn_zf
2_2n 2 2n

G .o If we let G;n = A"r™ + B”s” we have the following relations.
6% = a%*™ 4 B%™ 4 6a%8® + B 6

247
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_ A4 4n 4 4n 2,2 n-1_x
Gn—lGn+1 = A'r + B's  + 11A"B” + 6AB(-1) GZn
_ A4 4n 4 4n 2.2 n x
G, 9G4 = AT + B's™ +51A"B” +14AB(-1)" Gj
To eliminate all but the terms in A2B? we need three multipliers x,y,z sat-
isfying the relations x+y+z =0
-4x + 6y - 14z = 0
with the solution x:y:x = -20:10:10. Hence the required expression which gives
a characteristic number of a quadratic character is
2 =
2G ) - G 10h41 ~ Guglnag = k.
The value of this expression is K = -50A2B% = -2D? gince the characteristic

number of the original Fibonacci sequence is given by D = 5AB where D is
defined as H - HyHj .

If the initial terms of the sequence of squares are a,b,c, the next two
n+l 2Tn * zTn—l
the fourth and fifth terms are 2c +2b-a and -2a+ 3b +6c. We form K
from these beginning terms of the sequence and find an expression

K = 2a% - 2b%* + 2¢% - 2ab - 2bc - 6ac.
a, b, and c are related by the relation ~Nc = Na + Nb which becomes

a? + b? + c? - 2ab - 2bc - 2ca = 0.
@ P

terms are given by the recursion relation T - Tn—z' Hence.

FIBONACCI NOTE SERVICE

The Fibonacci Quarterly is offering a service in which it will be pos-
sible for its readers to secure background notes for articles. This will apply
to the following:

(1) Short abstracts of extensive results, derivations, and numerical
data.

(2) Brief articles summarizing a large amount of research.

(3) Articles of standard size for which additional background material
may be obtained.

Articles in the Quarterly for which this note service is available will
indicate the fact together with the number of pages in question. Requests for
these notes should be made to:

Brother Alfred Brousseau
St. Mary's College
Moraga, Calif. 94575

The notes will be Xeroxed.
The price for this service is four cents a page (including postage, ma-
terials and labor.)



ON SUMS OF FIBONACCI NUMBERS

P.ERDOS
Hungarian Academy of Sciences, Budapest, Hungary and University of Colorado, Boulder, Colorado
and
R. L. GRAHAM
Bell Telephone Lahoratories, Inc., Murray Hill, New Jersey

For a sequence of integers S = (84, sy, *++), we denote by P(S) the

set

00 0
Zeksk:€k=00r 1,Eek<°°.
k=1 k=1

We say that S is complete if all sufficiently large integers belong to P(S).
Conditions under which a sequence S is complete have been studied by a
number of authors. These sequences have ranged from the slowly growing
sequences of Erd6s [3] and Folkman [4] (s, = 0(n%)), the pclynomial and
near-polynomial sequences of Roth and Szekeres [9], Graham [5] and Burr
[1], to the near-exponential sequences of Cassels[2] (s, = 0 (exp (n/logn)))
and the exponential sequences of Lekkerkerker [7] and Graham [6] (sn =
[tozn] ). In this note, we investigate sequences in which each term is a Fib-

onacci number, i.e., an integer Fn defined by the linear recurrence

=F

L) per T Fp =0,

with Fy = 0, Fy = 1.

For a sequence M = (my, m,, ---) of nonnegative integers, let SM
denote the nondecreasing sequence which contains precisely my entries
equal to Fy. It was noted in [7] that for M = (1, 1, 1, **-), Sy is com-
plete but the deletion of any two terms of SM destroys the completeness.
Further, it was shown in [1] that for any fixed a, if M = (a, a, a, +-*)
then some finite set of entries can be deleted from SM so that the resulting
sequence is not complete. This result can be strengthened as follows (where
T denotes (1 + N5)/2).

249
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Theorem 1. If

2 mr =,
k=1

then some finite set of entries of SM can be deleted so that the resulting se-
quence is not complete.

Proof. The proof uses the ideas of Cassels [2]. Let |x|| denote
min |x - n| where n ranges overall integers. It is well known that Fn can

be explicitly written as

F_ = 2o -n™),

2
ToNE

Thus

™
g
I
™
=]
[
w;
2

|
s
B
N
]
=
—‘
]
5|
b
+
=

[
Gl
™ s

=

?+1) (_.,-)‘k"

p
k=1
o0
< %+ 1 ka‘r_k -
™5 o

by the hypothesis of the theorem. Hence, by deleting a sufficiently large in-

itial segment of S we can form a sequence S*M for which

M’
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> lstll < 1/4

£
sESM
But 7 is irrational so that for infinitely many integers m, we have
|mr| = 1/4.

The subadditivity of || -
This proves the theorem.
It follows in particular that if 1 <6 <t and m, = 0(9k) then S

k M
is not "'strongly complete,' i.e., the deletion of some finite set of entries

shows that such an m cannot belong to P(S*M).

from SM can result in a sequence which is not complete.

In the other direction, however, we have the following result.
Theorem 2. Suppose for some € = 0 and some kg, m = e'rk for
k > ki Then SM is strongly complete.

Proof. For a fixed integer t, let M' denote the sequence

(09 0, ¢o-, 0, mt+1’ mt+2’ "') .
t

It is sufficient to show that SM' is complete. We recall the identity

1) F F =L,F ,

n+2k + n-2k 2k n

where Lr is the sequence of integers defined by Ly,o = Ly + Ly, n= 0,
with Ly = 2, Iy = 1. It is easily shown that F = 7T and

r
L, = T
r

DN =

for r = 0. We can assume without loss of generality that t > k; and ETt

> 92, Choose ! =4/ and n> t+2{. We can form sums of pairs Floe®
n-2k .

F o from Spn to get atleast €r copies of Lo F, (by (1)) for 0 =k

n_
=/, Since eTn—ZfZ = e'rt > 2 then these sums can be used to form all the
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multiples an,

2k °
k=0
Since
Lr = % s ?
then we have formed all multiples an,
1Suse(z+1)1_n

5 .

The same argument can be applied to the terms F K (which are distinct

n+i+2
from the terms previously considered) to form all multiples an +1°

1 =v = _________e(£2+ D el

Of course, Fn and FK1 41 ave relatively prime so that the set of integers of

the form an +yF x and y nonnegative integers, contains all integers

n+1’

> FF o -F-F (cf. [8]). For any integer

N, =FF . -F -F _+j, 1

j n" n+l n n+1 n+2 '’

the coefficients Xj and yj in a representation

N; = xFL T

n+l

. . n .
certainly satisfy xj = Fn+1’ yj = Fn‘ Thus, Xj’ yj =T < 277, Since

u and v can range up to

€L + 1) .

n
=
5 2T
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then by using the multiples of Fn and F][1 41 we have just considered, we

can represent all the Nj’ 1=j=TF as elements of P(SM, ). Finally,

n+2°’

. n- . L .
since we have used at most €7 copies of F 2 =i, in this process,

.
we still have available at least OE(Tn 2 _ ™ —2) r;+11 copies of Fn " to use in
forming sums in P(SM, ). By adding sequentially a single copy of L
i=2,3,4, °°, tothe Nj’ it is not difficult to see that all integers =Nj
belong to P(SM' ). Thus, SM' is complete and the theorem is proved.

It should be pointed out that the condition

0
E ka_k =

k=1

is not sufficient for the completeness of SM as canbe seen from the example

in which

_ [—rk] if k = 2" for some n
0 otherwise .

e
However, the proof of Theorem 2 directly applies to show that if m, / Tk is

monotone and

DS

then SM is strongly complete.

It would be of interest to investigate refinements of these questions. Of
course, similar results and questions arise for other P -V numbers be-

sides T but we do not pursue these here.
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A GENERAL Q-MATRIX
JOHN IVIE

University of California, Berkeley, California
1. INTRODUCTION

Let Fn be the nth Fibonacci number and let

Q =(} 3)

This matrix has the interesting property that

Inthis paper, we introduce a general type of Q-matrix for the generalized Fib-
onacci sequence {fn,r}’ and some of the interesting properties of the Q-
matrix are then generalized for these sequences. An extension to the general
linear recurrent sequence is also given. See [1] for more information on the

Q-matrix proper.

2. THE MATRIX Qr

Recall that the Fibonacci numbers {Fn} are defined by Fovo = Fpu
+ Fn’ with Fy = 0, F; = 1. Now let us define the generalized Fibonacci se-

quences {fn,r} for r =2 by fn,r = n—1,r+“' +fn-r,r’ with fO,r =
f = e =f =0, f = 1. Note that r = 2 gives the Fibonacci
1,r r-2,r r-1,r

numbers.

Now define a matrix Qr by

110 0
101 0
Q = ;001.--0
r 0 ... 01
1000 220
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Note that Qr is just the r - 1 identity matrix bordered by the first column
of I's andlast row of 0's. In order to motivate this definition, note that

Fn+2 Fn+1
n n-1 Fn+1 Fn

We have thus defined Qr so that this property holds for the matrix

(

n+r+1~i~j,r) =i j=r.

Theorem 1.

fn+r—1, T fn+r—2, r T fn, r
r-2 r-2 r-2
QY = fn+r-2—11, T E fn+r—3—i,r ot Z fn—i—l, T
r . . .
i=0 i=0 =0
fn+r—2:, T fn+r-3, r T fn—l, r

(the general term is

r-j
qjk; = an+r—i-k—1,r )-
i=0

Proof. Let r be fixed and use induction on n. This is trivially veri-

fied for n = 1, 2. Assume true for n, and consider

firt,r brroz,r fo,r
r-2 r-2 r-2
QP = Qlq = 2 fr_ai, ¢ ftr-soi,e " 20 foica, e .
r ror . . L
i=0 i=0 i=0
fn+1'—2, r fn+1r:—3, T U fn-l, T

(equation continued on next page. )
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110 -0

101 -0 0
1t . 001 0
T 0 ..s 01
1000 ... 0
n+r,r n+r-1,r fn+1 , T
r-2 -2 r_2
= E fn+r—1't—~1,r Z fn+r_2_jgr te Z fn—i,r - Qn+1 ,
i=0 i=0 1=0 T
fn+r‘19 r fn+r—2, r fn9 T

which completes the proof of the theorem.

We write this matrix in neater form by letting Pr = (fr—i-j 12,1

i, j=r, where f _— is found by the recursion relationship. Then
—ily

), 1=

f N i
n+r,r n+l, r

PrQr = . .

In+1,r f‘n:-'r+2,r

An interesting special case of our theorem occurs when r = 3, where

the numbers { fn 3} are the so-called Tribonacci numbers of Mark Feinberg.
9

3. APPLICATIONS

We now develop some of the interesting properties of the matrices Q?
and Pr QE, , which in turn are generalizations of interesting properties of
the matrix Qn, which is the special case when r = 2.

It is readily calculated that

n, _ n _ (2n+1) (r-1)/2
det (PrQr) = (det Pr}(det Qr) = (-1) .
For r = 2, we have the corresponding Fibonacci identity

Fz — (_1)n+1

FroanFnr — T .

The traces of QI; and PrQ?‘ are also readily seen to be



258 A GENERAL Q-MATRIX fApr.

r fr-j r
n, _ B .
TT(QI.) = Z E fn+1‘—i-j“1sr - E ]fn+r—'j—l, T
=1 \i=0 =1

f + coe + f

n _ -
Tr(PrQr) - fn-!-r,r + n+r-2,1 n-r+2,r °

For r = 2, we have

The characteristic polynomial of Qr is x' - xr'l -ees —x -1, which

is also the auxiliary polynomial for the sequence {fn r}' Since Qr satisfies
H
its own characteristic equation, Q:. = Qf_“l +oeoe + Qr + 1, hence

rmo_ r-1 n
Q=@ e +Q D",
Expanding by the multinomial theorem and equating elements in the upper

right-hand corner yields

£ = E LU
rn,r ey kil e kr! ky +2k2+‘ (X +(I‘-—1)kr_1, r
10 "5

k1.+' ootk =
T
For r = 2, we recover the familiar

n

Fon = 2o (E)Fk :

k=0

= QmQr;,: equating elements

. N - m-+n
Now ccnsider the matrix equation Qr r

in the upper left-hand corner yields

r r-j

fm+n+r—1,r = Z fm+r—j,r fn+r—2—i,r
=1 \{i=0
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and for r = 2, we have Fm indl = Fm 1 Frl 1 + Fan. Note that several
other general identities can be obtained in this way.

We now use the matrix Qr to show that the product of two elements of
finite order in a non-abelian group is not necessarily of finite order. This

generalizes a counterexample given by Douglas Lind in [2], which results for
r = 2. Let

-1 0 -1 -1

0
_ 1 1 1
Rr— 0 i Sr_ : 0
1 . 1
1 0

S0 Rr and Sr are of finite order, but (Rrsr)n = QIII_ #1, for all n, by
Theorem 1, so that RrSr is not of finite order.

It is of some interest to observe that the matrices erl give explicit ex-
amples of Anosov toral diffeomorphisms. That is, viewed as a linear map on
Br, QI; preserves integer points and is invertible with det # 1, hence in—
duces a diffeomorphism on the quotient space Rr/ Z*. The hyperbolic toral
structure follows, since erl has no eigenvalue of modulus 1, using an argu-
ment via the characteristic polynomial as in [3]. Any suchAnosov toral dif-

feomorphism comes from a linear recurrent sequence whose auxiliary equa-
tion is given by the polynomial of the diffeomorphism.

4, THE GENERAL LINEAR RECURRENT SEQUENCE

We now show how a Q-type matrix can be determined for the general

th . .
v order linear recurrence relation

u = a u + oo
n+r,r r-1 n+r-1,r 0O'n,r

with initial values u, = bi’ i=0,1, ¢+, r-1, where by, by, *°°, br—l
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are arbitrary constants. This is done in a sequence of successive generaliza-

tions.

Define a sequence {f;:,r} by fypp = g *o0c 40} o with initial
values fi*= bi’ 0=i=r-1. (Note that by =b = +e. = br_2 =0, br-l
=1 give the {fn r} defined previously.) To find a Q-type matrix for the

H

{f;“l r}’ we need the following identity:

r i

% =

L) DL Dt NP
=1 =1

which is easily proved by induction on n. Now let B = (br_1 cee b0 ), then

)

Lo ceo. pE n-r+l _ o ex
BQ, (fn—r+1’ ? fn,r)’ » BQ, (fn

n = o0 o
BQ, - (f:lﬂ',r frﬁl,r

),

eve f%
+H,r n-r+2,r

by our identity. Thus, we have the following Q-type matrix for our sequence

fl";’ r} :

n * R
B Qr fn+1c, r fn+1, T
x ) . =
@) :
n—1‘+1 * e %
B Qr fn+1, T fn—r+2, T

Now consider the sequences { uk r} defined by
9

* = u* + wk +oeee 4+ a uk
un+r,r Ar1 n+r-1,r ) n+r-2,r 0 n,r °’
with initial values u;‘; e 0, 0=n=r-2, u;‘j 1.r = 1. As in Theorem 1,
s -

2
we have the following Q-type matrix for the sequence {u;‘l‘ r}:
s
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u* * v k
ntr-1,r un+1c'—2, T Uln, r
r-2 r-2 r-2
n a u¥* * oo *
(R’;,) = 2 r-2-1"n+r-2-1,r Z ar-Z—iun+r—3—i, r 2 ar—z—iun—i-l, r

i=0 i=0 i=0

* * e *

aO un+r—2, r aO “n+r-3, T aO un—1, r

which is proved by induction on n,
We now piece these two partial results together to derive a general Q-type
matrix for the general linear recurrent sequence { u, r} defined in the begin-
9

ning of this section. To do this, we need the following identity:

r i
= *
UYn,r E bi—lz 85 Yn-j-1,r ’
i=1 =1

which is proved by induction. As before, let B = (br—l ces bO ), then by our
identity,

n —1 o 00 o0 0 * n_r+1 —3 o9 0
B(R;) (un+r,r un+1, r)’ ’ B(Rr) (un+1,r lln—r+2, r) °

Hence, we have the following.
Theorem 2.

% )1 » cos
n B(Rr ) un+r, T Up+1 , T

(Rr) = . =\ .
5 y-T+l cos
B(Rr) lln+1, r un-r+2, T

Thus, there is ageneral Q-type matrix for anylinear recurrent sequence.
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A CHARACTERIZATON OF THE FIBONACCI NUMBERS

SUGGESTED BY A PROBLEM ARISING IN CANCER RESEARCH
LESLIE E. BLUMENSON™*
Roswell Park Memorial Institute, Buffalo, New York 14203

1. INTRODUCTION

Cancerous growths consist of multiplying cells which invade the sur-
rounding normal tissue. The mechanisms wherebythe cancer cells penetrate
among the normal cells are little understood and we have been investigating
several mathematical models with a view to analyzing the movements of cells.
In one such model it was necessary to enumerate the number of distinct ways
a system of n cells could transform itself if adjacent cells are permitted to
exchange position at most one time. It is shown below that this is simply the

Fibonacci number Fn 41+ Fromthis characterizationa very simple argument

1°
leads to a general identity for the Fn’ No special knowledge of biology is re-
quired to follow the proofs and the words "person,' "jumping bean," etc.,

could be substituted for "cell. "

2. CHARACTERIZATION OF THE FIBONACCI NUMBERS

Consider a line of n cells

@) AjAgAg oo An-lAn
and suppose during a unit of time a cell either exchanges position with one of
its adjacent neighbors or remains fixed. It is assumed that each cell per-
forms at most one exchange duringthis time. Let Gn be the number of pos-
sible distinct arrangements of the cells after the unit of time. Then Gn =
Fn+1'

For n > 2 the number of distinct arrangements of (1) after unit time
(Gn) is equal to the number in which An did not exchange (Gn_l) plus the

number in which An exchanged with An_1 (Gn_z), i.e.,

*Supported by Public Health Service Research Career Development GrantNo.
5-K3-CA 34, 932-03 from the National Cancer Institute.
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(2) G, =G, 4 +G_

9
This is the well known recurrence relation for the Fibonacci numbers and
since Gy =1 = Fy, Gy = 2 = Fy it follows from (2) by induction on n that
Gn = Fn+1' We define for later use: Gy = Fy = 1, G_1 = F0 =0,

3. A GENERAL IDENTITY

In order to avoid as much as possible the typographical difficulties of
subscripted subscripts, the notation for the Fibonacci numbers and the Gn

will be modified as follows in this section:

Gm) = Gn’ F) = Fn“

Let N2 = 2 and My, My, °*°, M. all positive integers. Let S
i 2

N1 N N-1
be the set of 2 (N-1)-tuples (ky, kg, *°°, kN—l) where kj =0 or 1,
j=1,2,°¢, N-1. Then the identity is
N N-1
3) FZMJ,+1 =E F(Mi-kl+1)-F(MN-k.N_1+1)WF(MJ.—
=1 Sn_1 =2
k, , -k, +1),
-1 )

where the sum is taken over all the (N-1)-tuples in SN—l’ (For N = 2 the
product is defined to be 1.)
For N = 2, Eq. (3) reduces to the well known identity

(4) F(My + My +1) = FQM + DF(M, + 1) + FOL)FOM) .

It is, of course, possible to prove (3) directly from (4) by induction on N.
However, the proof based on the characterization of Section 2 is extremely
simple, and at the same time may suggest new geometric approaches for the
analysis of multi-dimensional generalizations of the Fibonacci numbers.

Congsider a line of
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N
n = M,
2 M
=1

cells which, as in (1) are performing the type of exchange described in Sec-

tion 2. The number of distinct arrangements of this line after unit time is

N

G EMJ.

=1

Now partition this group of cellsbefore the exchanges occur in groups of M,

My, °°*, MN cells.

1Al oAt aZaZ..oa2 alad... a3 L. aNAN AN
®) A +ee Ay AIAT oo AL ATAG o AD L eee AT A AMN.
i
M

1
there are only G(M; - 1) possible distinct arrangements for the first group
of cells. Set ky = 1 if these two cells do exchange and k; = 0 if they do not

If during the unit of time A and A% exchange with each other then

exchange. Thenthere are G(M; - ky) possible distinct arrangements for the
first group of cells. Similarly, define ky =1 if A%\/Iz and Ai’ exchange,
ko = 0 otherwise., Thenthere are G(M; - k; - kg) possible distinct arrange-
ments for the second group of cells. Thus for each of the four possible val-
ues of the pair (ky, ky) the number of distinct rearrangements of the first

two groups of cells considered as a whole is

G(M1 - k‘l) -+ G(M2 - k1 - kg) N

and the total number of distinct rearrangements for the two groups combined

is
1 1

6) 35 cy - k) + GO - Ky - k)
k1=0 k.2=0

[Continued on page 292, ]



LINEAR HOMOGENEOUS DIFFERENCE EQUATIONS

ROBERT M. GIULI
San Jose State College, San Jose, California

1. LINEAR HOMOGENEOUS DIFFERENCE EQUATIONS

Since its founding, this quarterly has essentially devoted its effort to-
wards the study of recursive relations described by certain difference equa-
tions. The solutions of many of these difference equations can be expressed
in closed form, not seldom referred to as Binet forms.

A previous article [2, p. 41] offered a closed form solution for the

linear homogeneous difference equation

N
(1.1) ZAjy(t +3) =0,
j=0
where
y®) =a ; n=t<n+1; n=20,1,2--

with the characteristic equation

N
. Az =0
(1.2) Z Jz

j=0

expressed as

N
(1.3) TT@-r) =0
j=0 !

with distinct roots Ty The method of solution involved the use of Laplace

Transforms. It was noted after the appearance of that article that many

265
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linear homogeneous difference equations actually encountered in practice do
not have distinct roots to the characteristic equation (1.2). In other words,
Eq. (1.2) is often of the form

M mi M
1.4) 'il:ll'(z -r) =0 N = Zmi ,

where m, is the multiplicity of the root T
With respect to Laplace Transforms, the problem of handling multiple
roots lies in the inversion of the transform Y(s). It has been suggested that

the definition of a '""Maclaurin Series" could be regarded as a transform pair

® t
Gw) = Z[y(t)] %’7-
t=0

(1.5)

y® = Dt [Gw)] l
w=0

which has the property that the transform of y(t +j) is G(j)(w). Since the

solution of linear homogeneous differential equations is already well known

when involving multiple roots [1, p. 46] , it was a straightforward procedure

to establish the form for the complementary problem for difference equations.
The Laplace Transform of Eq. (L.1) given in [2, p. 44] is

N j-1
34y X et
j
e® - 1] =1 k=0
(1.6) Y(s) -{ > gl - ,
E A.esj
j
i=0

and can be broken up into parts using the following theorem.
Theorem 1. (The Heaviside Theorem) If
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M m
Q) =D @ -1) ',
i=1

then
M
2220 ) S
Qlz) j
i=1 =1 @ - 13)
where

m,-j .
I 1 i’ yP(z) j
5 = 2B, T ot Dz 3@@7(7*-1‘1’%

The reader can verify the formula for Cij by creating the expreésion being
operated on, and carry out the differentiation and limit., The essence of this
theorem, however, is that the transform Y(s) can be expressed in the form

M ™

1.7) Y(s) = ess‘ L >3 j__, .

E j
=11 © - T)

The inverse of each of these terms is given by the next theorem.

Theorem 2.

L n I.n—j+1 _ e -1 1
j-1 s (es _ r)j ’

where

n _ -
(j—l)—o when n < j-1

(r represents an arbitrary root)
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Proof. Since

LKJ. n 1)r“‘3+1} = f ftyeStat
0

®©  n+l
= Z f ( " )rn_]ﬂe_Stdt
j-1
=0 n
0
-8 .
_[({1-e n n-j+1 -sn
"( s )E(j—l)r ¢
n=j-1
we need only show that
had .
() - o
i-1 s 3
n=j-1 €™ -1

by induction. The formula is true for j = 1 since

o0
n s
E (re—s) - 1 — = Sc
n=0 1 - re e” - 1)
Assume now that it holds for j = k, thatis
o0
Z ( n )rn-k+1 oS0 e®
k-1 s k
n=k-1 (€ -1

Differentiating once, term-by-term, with respect to r yields

o0
s
E (kri 1)(n -k + 1)rn_ke_Sn - ke

n=k-1 @ - n*
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or

[+2¢]
E n I,m—ke-sn - eS

k s k-+1 ’
n=k (™ - 1)

and thus implies the truth of the formula for the (k + 1)St case. As a re-

sult of this theorem, the more general solution for the linear homogeneous

difference equation (1.1) is given by

m,
M i
1.8) v = D> cij<j n 1>r1;1—3+1 ’

i=1 j=1

where the Cij are given (by Theorem 1) as

m.~j | e —
_ . 1 i k=1 =0 j
Ci5 = 2B, T o D s m_ @)
TT(Z - rk)
k=1
or, by re-ordering the double summation according to z,
N-1 N K
Aya Z
m.~j —t 10 k-1 .
_ i k=0 2=k+1 _ j
(.9 Cy = Jimy m D, B m &)
i -EMT(Z _ rk)
k=1

2. CONVOLUTION OF FIBONACCI SEQUENCES

The following problem related to the previous discussion was brought
to my attention by Prof. V. E. Hoggatt, Jr. Initially, we are given that a
convolution of a Fibonacci sequence is described by
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2.1) H H - Hn =F

n+2 ~ T n+l n

where Fn is the famous nth Fibonacci number. The problem is to find a
closed form (Binet form) for Hn. Since Fn satisfies the relationship

(2.2) F =0 ’

Fn+2ﬁ - Fn+1 T "n

Eq. (2.1) can be made homogeneous by substitution; that is, Eq. (2.2) can be
re-written as

My ~Hypyg - Hypp) = By g - H o -H ) - H o -H -0 )=0
or, collecting terms,
(2.3) Hn+4 - 2Hn+3 - Hn+2 + 2Hn+1 + Hn =0,

Since Fy = 0 and Fy = 1, the starting values depending on H, and H; are

Hy, = H,

H = H

Hy = Hy + Hy

Hy = 1 + Hy + 2H;

The characteristic equation of the difference relation (2.3) is
7h - 278 — 22+ 2241 =0
or
@z -2z -B? =0,

where « is the well known golden ratio and § is the conjugate, k

o = .1__“%‘@_ and B = 1 ~2 )
[Continued on page 292. ]



GENERALIZED FIBONACCI NUMBERS IN PASCAL’S PYRAMID

~ V.E.HOGGATT, JR.
San Jose State College, San Jose, California

1. INTRODUCTION

It is well known that the Fibonacci numbers are the rising diagonals of
Pascal's triangles. Harris and Styles [2] generalized the Fibonacci numbers
to other diagonals. Hoggatt and Bicknell further generalized these to other
Pascal triangles in [3]. Mueller in [5] discusses sums taken over planar
sections of Pascal's pyramid. Here we further extend the results in [5] to
many relations with the Fibonacci numbers.

In [1] many nice derivations were obtained using generating functions
for the columns of Pascal's binomial triangle. Further resultswill be forth—

coming in [6]. The earliest results were laid out by Hochster in [7].

2. COLUMN GENERATORS

The simple Pascal pyramid has column generators, when it is double

left-justified, which are

m+n (m + n
X n

G - m-An+l

m,n 1 - x

These columns can be shifted up and down with parameters p and q. The
parameter p determines the alignment of theleft-most slice of columns and
the parameter ¢ determines the alignment of the slices relative to that left-

most slice. Now the modified simple column generators are

Lpm+aqn (m r:r n)

m-+n+1

1 -x

We desire to get the generating function of the planar section sum se-

quence. Each suchplanar section nowhas summands which are all multiplied

by the same power of x. For instance,

271
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© o ° Join(m o+ 0 © n ©
D D i D]
a- X)m+n+1 a x)n+1 a - X)m n
n=0 m=0 n=0 "~ m=0
But
(o]
n
Z (m) Zm - 2 H)
n n+1
m=0 (1 - Z)
so that
0
E (m + n) m _ 1
n n+1
m=0 -2
Thus
0 0 + (2]
CY () e
m-+n+1 n n+l n+1
n=0 m=0 & = ¥ n=o 1 = (1 - T i(x)

1
»
[=]
F
=

0

- 1 =23nxn
1-3x —
n=0

which was to be expected as each planar section contains the numbers in the
expansion (1 +1 + 1)n.

We next let p and q be utilized.

0 oD
G=ZZG;1,H= 1p ; .

n=0 m=0 1-x-x-x

Here clearly when p = 2 and q = 3 we get
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0
1 n
G = =E T X

1 -x -x% - x° n+ = e
n=0

the generating function for the Tribonacci numbers,

Tg=0, Ty =1, T, =1, ad T =T +T  +T .

If, on the other hand, we set p =1 and g = 2, then

o0
1 n
G=——————==§P X,
1 - 2x - x2 n+l
n=0

the generating function for the Pell numbers, Py, = 0, P, = 1, and Pn 42 =

2P + P . One can get even more out of this.
n+1 n

Let p=t+1 and q = 2t +1; then,

[oe]

_ 1 - ) n

G = T = 2, Ul tx
1 -x-x - X n=0

the generating function for the generalized Fibonacci numbers of Harris and
Styles [2] applied to the trinomial triangle whose coefficients are induced by

the expansions

1 +x + x2)", n=20,1,2,-°°

See also Hoggatt and Bicknell [ 3].

Consider

0 © mptqn (m + n) o0 o0 b m -
n 3 X m+n X
E E m+n+l B Z Z[l - x:‘ ( n ) n+l °
X) 1-x

n=0 \ m=0 @ -
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Let us now take every rth slice in the general p,q case

[>e]
> x4 _ 1 _ 1
rn+l P qr
n=0(1—x-xp) 1 -x-Xx 1 - X -
a —x—xp)
pI‘—l pr—]_ o0
1 -x - 1-x -
a-x }ri) = ( X "’;) +':ZU(n;qv,r)xn,
(l—x—xp)—xrq (1—x—xp) - xd n=0

where q' = r(q-1), which is the generating function for the generalized
Fibonacci numbers of Harris and Styles U(n; o',r) as applied to the CONVO-
LUTION triangle of the number sequence u(n; p - 1,1) which are themselves
generalized Fibonacci numbers of Harris and Styles in the binomial triangle.

(See "Convolution Triangles for Generalized Fibonacci Numbers' [4].)

3. THE GENERAL CASE

In [5] Pascal's pyramid in standard position has as its elements in a
horizontal plane the expansions of (a +b + c)n, n=20,1, 2, 3, -+ with
each planar section laid out as an equilateral lattice. In our configuration it
is a right isosceles lattice.

The general column generator is

n
m+n+1

LPmtan m n (m + n)

(1 - ax)

and it is not difficult to derive that

o0 o0
G=3 D 6L, - - ;

_ ~ bxP -
=0 m=0 1 ax - bx cx

Thus by selecting the five parameters one can get many other known gen-

erating functions.
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Examplel. a =2, b =2, ¢ = -1,

n
G = = F F x .
1 - 2x - 2x2 + %8 ZO n+l" pt2

o0

n=

Example 2. a =1, b+c =1, p=q =2, then
o

G=———l——«=EFn+1xn.

_ _ 52
1 X - X n=0

275

One notes that the condition b + ¢ = 1 allows an infinitude of choices of inte~

gers b and c.

Example 3. Let

a =31 -x%), b=26, ¢c= -1,

o]
1]

2, and q = 4,

then

o0
_ 1 _ m+ 3\ _m
G - -2 ()
m=0

1 - 3x - 6x2 + 3x3 + x4

where II? are the Fibonomial coefficients. See H-78 and [8], or it can be

written as

©0

G = E Fm+1Fm+2Fm+3 o
- 1.1-2 °

m=0

The possibilities seem endless.

4, FURTHER RESULTS
Consider
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z"é i Xpmbm (m I-ll- n) A nd

m n+1
n=0 m=0 @ - ax) @ - ax)
th ..
Now let's take every r— slice:
© q rn p r-1
_ (cx™) _ (1 - ax - bx")
G = Z rn+l T ar
n=0 (1 - ax - bx") 1 - ax - bxP) - x4

where ' =q(r-1). fc=1, a=2, b=-1, p =1r+q', and p = 2,
then

o - a - X)2r—2
a - X)Zr _ X21‘+p'
Recall from [1] and [3] that

-1 ©
@ - X)q n
H = = u(n; p, g)x

q p+q
1-x"*-x =0

for the generalized Fibonacci numbers in Pascal's triangle so that G is the

generating function for H/(1 - x) or

© n
G = E Eu(k; p's 20)fx" .

n=0 \ k=0

Another example: If a =1+x, b=1, p=3, ¢ =1, then

r-1

I S
G = 1-x-x x%) ,

r t
1 -x - x% - x3%) —xr+q

[Continued on page 293. ]



MODULO ONE UNIFORM DISTRIBUTION OF CERTAIN
FIBONACCI-RELATED SEQUENCES

J. L. BROWN, JR.
and
R. L. DUNCAN
The Pennsylvania State University, University Park, Pennsylvania
Let {x.}oo be a sequence of real numbers with corresponding frac-
tional parts { Bj}:o’ where Bj = xj - [xj] and the bracket denotes the great-
est integer function. For each n =1, we define the function Fn on [0,1]
so that Fn(x) is the number of those terms among By, **°, Bn which lie in
the interval [0,x), divided by n. Then {XJ}T is said to be uniformly dis—
tributed modulo one iff lim F (x) = x forall x € [0,1].
nN—0 n
In other words, each interval of the form [0,x) with x € [0,1], con-
tains asymptotically a proportion of the Bn's equal to the length of the inter-
val, and clearly the same will be true for any sub-interval (o,B8) of [0,1].
The classical Weyl criterion [1, p. 76] states that {xj}c;o is uniformly dis-
tributed mod 1 iff

n
2mivx.,
. 1 i o
) nh_glwﬁze =0 forall v =1.
j=1

An example of a sequence which is uniformly distributed mod 1 is {nf}:=0,
where ¢ is an arbitrary irrational number. (See [1, p. 81] for a proof
using Weyl's criterion. )

' The purpose of this paper is to show that the sequence {ln Fn}o: and
{In Ln}oio are uniformly distributed mod 1. More generally, we show that if

0 . s
{Vn} satisfies the Fibonacci recurrence
1

Vn+2 - Vn+1 * Vn
for n = 1 with V; =K;> 0 and V, = Ky, > 0 as initial values, then

{in Vn};o is uniformly distributed mod 1. Toward this end, the following two
lemmas are helpful.
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o0 co
Lemma 1. If {Xj}i is uniformly distributed mod 1 and {yj} is a
1

sequence such that

R, &5 - ) = 0

then {yj}‘;o is uniformly distributed mod 1.
Proof. From the hypothesis and the continuity of the exponential func-
tion, it follows that

2mivx, 2mivy, \
Jim e J - e Jj=0.

] =0

But it is well known [ 2, Theorem B, p. 202], that if {711} is a sequence of

real numbers converging to a finite limit L, then

Taking
2mivx, Zﬂiuyj
'yj = e - € s
we have
"/ omivx 2mivy
1 j i) =
Jim 23 (L)
1
Since
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by Weyl's criterion, we also have

and the sufficiency of Weyl's criterion proves the sequence { yj }:o to be uni-
formly distributed mod 1.
Lemma 2. If o is an algebraic number, then ln o is irrational.
Proof. Assume, to the contrary, that lna = p/q, where p and q
are non-zero integers. Then ep/q = a, so that e =o% But o9 is alge-
braic, since the algebraic numbers are closed under multiplication [1, p.
84). Thus, eP is algebraic, in turn implying e is algebraic. But e is.
known to be transcendental [1, p. 25] so that a contradiction is obtained.
Theorem. Let {Vn}:o be a sequence generated by the recursion for-
mula ‘
v

=V +V

n+2 n+l n

for n= 1 given that V; =K; > 0 and V, = K; = 0. Then the sequence
{ln Vn}w is uniformly distributed modulo one.
1

Proof. The recursion (difference equation) has general solution

v, = Cd +Cy",

where «@,B are the roots of the equation ®-x-1=0 and Cy, Cy are

constants determined by the initial conditions. Thus

a=1+2~/5 and le-xf’g

while Cja+Cyf = Ky and Cjo? + CyB8% = K, Now,

|V, - Cd"| = |c,8"
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for n= 1, so that, noting || <1, we have

280 Apr. 1972

plim [V - il = 0.

Moreover, from the fact that { Vn}:o is an increasing positive sequence,

Cian Vl’l - Cla’n 1 n
- = = = -
1 v v K1 Vn Cia' l ’
n n
so that
Cian
nh—I»noo Vv =1.
n
Thus,
/ C«‘O'n
n1—+oo lnk v =0 ’
n.
or equivalently,
. n -
(2) n1_1_131‘“3[1n Co) - ann] =0,

Since o is algebraic (o? = o +1), it follows from Lemma 2 that ln
is irrational and consequently [1, p. 84] that

{nma)y ={m )]

is uniformly distributed mod 1. Then

{In C™}Y
[Continued on page 294. ]



NOTE ON SOME SUMMATION FORMULAS

L. CARLITZ .
Duke University, Durham, North Carolina .

In a recent paper [1], the writer has proved the following multiple

 summation formula:

(k + 25 + 35, + +++ )

[+.9]
@ Lo Sl syl (K + 5 + 28, F oo b
Si!szi."’=0

Si 8y

W U ee- (1+u1+u2-+---)k+1

28§+385+e e “ic Uy - 2uy ~ g — ==
A+uy +uytugtere) _
k= 0:1:2"."):

-where the series
) , u tuy tug e,
is absolutely convergent but otherwise arbitrary.

In the present note we should like to point out that (1) admits of the fol-

lowing extension:

o
: (k + 5y + 28 + 385 + oo N
(3) 2 : sozsil;szl..u(k-l—si+232+--.)[
50,51,52,...=0
s s
uoouisiufz---

Sot2syte
(1 +uy vy +uyt+oeve)

+
(1+u0+u1+u2+---)k1
= : k= 0,1,2, ¢~
T -ty - 2Uy -~ SUg — +e» ( ? )

where again the series (2) is absolutely convergent.
*Supported in part by NSF grant GP-17031.
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Proof of (3). By (1),

_F 3.5
(1+u0+u1+u2+---)k1 (1+u1+u2+---)k+1 (1+!10+u1+;13+-’- k2
1—u1—2u2—3u3—---=1—u1—2u2—3ug—--- T+ +ug+see ’

~ had ( + 28 + 3sg + o)t uisiuzsz---
- Z Sytsgtere (Ktsy+ 289+ 2 )! 281 +3Sgte +
Si,SZ,---’zo ‘ (1 +u1+u2+.,.)
1+uyg+u +°° k+1
T+ tuy +---
0
(k+251+3$2+"')! U.isiuzsz-.-
- Z o osylsplece (ks + 285 F.es)! 254389 t* < *
8-13525-.-,=0 ('_l_ +1_1ﬁ+u1 +...)
~K-25;-389~< e+ ~1
uy 1 2
1_1+u0+u1+~-
% k + 2;;1 +.38y + + o)t uisi uzsz‘
T Lg . Siieglrer&Fsy F28y e )l ’ 28{+35,+ + *
158, +5=0 : I +uy +uy +e--)
) Sq
.Z k+So+281+3Sz+’*’\ o
8o ) So
Sp=0 (1 +ug+uy +eee)
® ' + 1 Sp 51,52
- < (k + 5§ + 28 + 359 F ¢+ )} gl ugt ug? e
a ya) S0iS;1Sg  (K+S T283F+e ) Sqt2stosyte e
S(S13S9,° ¢ +=0 @ +uy+uy+e--)

This evidently proves (3).
Exactly as in [1], we can show that (3) holds for arbitrary k, pro- °

vided we replace the coefficient

'(k + 8y + 28 + 35y + o)l

solsyiggl vor (K + 5y + 259 + ¢+ )}
[Continued on page 291. ]




ADVANCED PROBLEMS AND SOLUTIONS

Edited by
RAYMOND E. WHITNEY
Lock Haven State College, Lock Haven, Pennsylvania

Send all communications concerning Advanced Problems and Solutions
to Raymond E. Whitney, Mathematics Department, Lock Haven State College,
Lock Haven, Pennsylvania 17745, This department especially welcomes
problems believed to be new or extending old results. Proposers should sub-
mit solutions or other information that will assist the editor. To facilitate
their consideration, solutions should be submitted on separate signed sheets

within two months after publication of the problems.

H-192 Proposed by Ronald Alter, University of Kentucky, Lexington, Kentucky.

i
3n+1
_ . 6n + 3 j
°n T Z (Zj + 1>('11) ’
j:
prove that
o =2%%3y, N odd, n = 0.

H-193  Proposed by Edgar Karst, University of Arizona, Tucson, Arizona.

Prove or disprove: If

X+y+z=22n+l~_1 and x3+y3+z3=26n+1_1’

then 6n +1 and 26n+1 —= 1 are primes.

H-194  Proposed by H. V. Krishna, Manipal Engineering College, Manipal, India.
Solve the Diophantine equations:
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() x> +y2 + 5 = 3xy
(1) 2 +yte = 3xy,
where
e =p-pq-¢,
p,q positive integers.
SOLUTIONS

BINET GAINS IDENTITY
H-180  Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Show that

Z m+ K o
W@ - 2k o)

Ny
—
B
~—
W’#
|

k= 2k=n

- 3

50 <n) L = (n + k)! L ,
Lot \ k k Z &)@ - 2k)! (2n-3k)

k=0 2k=n

where Fk and Lk denote the kth Fibonacciand Lucas numbers, respectively.

Solution by David Zeitlin, Minneapolis, Minnesota.

A more general result is that

n

n\3 . .n-k k _ (n + k)t k k
D M ) R A D TR
=0 2k=n ' - :
where Wn+2 = aWn+1 +an, n=0,1,°°°., For a=Db =1, we obtain

the desired results with Wk = Fk and Wk = Lk‘
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Proof. From a well-known result* we note that

n
@) Z (§>3Xk _ E o+ ko, qyn-Zk

3
= s KD - 2k

Set x = (ay)/b in (2) to obtain:

n
@) Z<E>3bn—kakyk - (x; tIL kR koo pyne2k
= ey K@ - 2k

Let @, be the roots of y? = ay +b. Noting that W, = Ciozn + Czﬁn, we ob-
tain (1) by addition of (3) for y = o and y = .

Remarks. If a = 2x, b = -1, then with Wk

= Tk(x), the Chebyshev

polynomial of the first kind, we obtain from (1)

n
@ Z(ﬁ)s(—n“‘k(zx)ka(x) = 3 BB g, o,
k=0 ok=n 7@ - 2KN

For a =2, b =1, one may choose Wk = Pk’ the Pell sequence.

Let Vp =2, V4 =a, and Vk+2 = aVkJr1 +ka. Then, from (1), we
obtain the general result
n
-k
n\3_k m+1, m|"
2 (k) sz(‘l) b g Wonk+p
=0
9
(5) vk
= Z '(n?’ + k)!' ((—1)m+1mem ) Wm(Zn—3k)+p
ok=n (k!)° (n-2k)!

for m,p =0, 1, =°°.
It should be noted that (1) is valid for equal roots, i.e., o = f.

*J. Riordan, Combinatorial Identities, p. 41.
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Also solved by F. D. Parker, A. G. Shannon, and the Proposer.

SUM-ER TIME
H-181 Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Prove the identity

0

m_n
m nuv o_ 1
Z (am + cn)” (om + dn) T s - @) hay

m,n=0

where

Solution by the Proposer.

©o

m n
Z (am + cn)™(pm + dn)™ —um,—;;

m,n=0

o

Z (am + cn)™(bm + dn)" ——L];(1 = o~ (am-+en)x-(bm+dn)y

m, n=0
[+

= Z (am + cn) " (bm + dn)® Z( 1)) lam+en)? (am+cn) ]E( 1y (m-+dn) - (bm+dn)

ln|
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m n
mon = 200 (—1)m+n'j‘k(?)<§> (aj + ck)™ () + di)™

=0 k=0

wn
Il

(%)

m n m
Z Z (111(‘1)(2)am—r0rbn-sds 2 (c1)™-d (rjn)l.mm—r-s

r=0 n=0 j=0

n
. Z (_Dn-k(a) e .

k=0

Since
m
m-jfm\.t _ 0 t < m)
2. 1) (j)J —;ml ¢ =m °
j=0

we need only consider those terms in (¥) such that

m-+n-r-s =m
r+s = n °’
that is, r+s = n.
We therefore get
min(m,n)
S, = min! z I]I[‘l)(I];)am_rdn_r(bc)r .
9
r=0

so that
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o
m n

Z (am + cn)™(bm + dn)™ ;ln! X!

m,n=0

min(m,n)

Z B0 \Z (T)(I;)am_rdn_r(bc)r

m,n=0 r=0

]

©co 0

= Z (bexy)® Z (m: r) (n : I‘)(a}()m(dy)n

r=0 m,n=r

= D bexy)"@ - axF A - ap Y
r=0

-1
= a-axta - dy)'lgl T ;)x%% - dy)%

{@ - ax)(@ - dy) - bexy} -1

ARRAY OF HOPE

H-183  Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California.

Consider the display indicated below.

1

1 1

2 2 1

5 4 3 1

3 9 7 4 1

34 22 16 11 5 1
89 56 38 27 16 6 1

Pascal Rule of Formation Except for Prescribed Left Edge.

(i) Find an expression for the row sums.

(ii) Find a generating function for the row sums.
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(iii) Find a generating function for the rising diagonal sums.

Solution by the Proposer.

i) An inspection of the array reveals that the row sums are F

2n+1
(n = 0’ 1’ 2, -.n)
ii) If the columns are multiplied by 1, 2, 3, =*- sequentially to the
right, then the row sums have the generating function,
a-x  0-x%
1 -38x +x%) (1 - 2x)
Thus the row sums are the convolution of the two sequences:
a) Ai = l, An = FZIH‘]. (Il = 1) and
b) B =1, B =201 = 1)
iii) The rising diagonal sums, En’ are the convolution of the two
sequences:
c) c,=F , oand
d) D =F, ; @=0,1,2 ).
Hence
(=]
1 - x)° -
=3, EX .

2 2
1-x-x2)Q - 3x + x%) n=0

FIBO-CYCLE

H-184  Proposed by Raymond E. Whitney, Lock Haven State College, Lock Haven, Pennsylvania.

Define the cycle @ n=1, 2, ---) as follows:
1) an= (19 2, 3, 4, ~°°, Fn) s

where Fn denotes the nth Fibonacci number. Now construct a se-

quence of permutations

[e3 B (n =1, 2, ton)
)=
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(ii) i+2 _ i i+l

a, =a X i =1 .

Finally, define a sequence

{u}”

n=1

as follows: u, is the period of

©0
F,
1
,a/n
{ }i=1

i.e., u, is the smallest positive integer such that
F F

iy _ i :
(iii) @, @, i =N).
a) Find 2 closed form expression for u_.

b) If possible, show N = 1 is the minimum positive integer for which
iii) holds for all n =1, 2, ***,

Solution by the Proposer.

Since @ is of order Fn, it follows that the exponents of @ may be
replaced by residues mod Fru and u is thus the period of the Fibonacci se-
quence mod Fn. Therefore w3 = uy = 1, uy = 3. Consider the First n res-
idue classes of the Fibonacci seugence, mod Fn h=4); 1,1,2, 3, -,
F .,0. The (@ +1)St residue class is F =1 + (F - 1) and

n-1 st n-1 n-1
(2n - 1)7" class is

— w2
n-1 n-1 “"'n-1 " 1 =F :

However,

Fog =F +F 4 @ = 2)

and
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2 _ n
Fn-1Fn+1 - Fp = (-1) o= 2

implies
2 = (-t
Fn—l = (-1)7 (mod Fn)

If n iseven (n= 4), we have Fi_l =1(modF ) and u =2n. If n is
2 —_ =
odd (n> 4), Fn-l = -1 (mod Fn) and u 4n,
From the above, it is obvious that N = 1 is the smallest positive inte-

ger for which (iii) holds for all n =1, 2, °**. Itis interesting to note that

{unln =1, 2, } n {Fn‘n =1, 2, } = {Fi’ Fy, Fgo Fy, Fyo, } .
R ey oo 4
[Continued from page 282. ]

NOTE ON SOME SUMMATION FORMULAS

by

SO+SI+S2+' oe

Ii (k+51+252+3S3+-..+i)
i=1

S(ﬂSiESZ'. oo

REFERENCE

1. L. Carlitz, "Some Summation Formulas,' Fibonacci Quarterly, Vol. 9
(1971), pp. 28-34.

L e s o



292 LINEAR HOMOGENEOUS DIFFERENCE EQUATIONS [Apr.

[Continued from page 270. ]
The solution is then given by Eq. (1.8) as

_ n n-1 n n-1
(2.5) Hn = CuO{ + Cizna' + Cziﬁ + szI]B
with the Cij given by Eq. (1.9). In practice, however, the Cij are most
easily found by solving the set of simultaneous equations derived by applying
the initial values, H,, H;, Hy, Hz, for n = 0, 1, 2, 3, The solutionyields:

3 -« 2a - 1 2
Cyy = —5— Hy +—5 Hy + 5= (@1 - 20)
Cyy = 1/5
_ 2+« 1 - 2o 2
CZ]. = 5 Ho + 5 Hi + 55-(2a/ - 1)
022 = 1/5
REFERENCES

1. Gustav Doetsch, Guide to the Applications of the Laplace and Z Trans-

forms, Van Nostrand Reinhold Company, New York, 1971.
2. Robert M. Giuli, "Binet Forms by Laplace Transform," Fibonacci Quar-

terly, Vol. 9, No. 1, p. 41.
<<

[Continued from page 264. ]

(@If My =1, i.e., there is only one cell in the second group, then it cannot

exchange with both A?Mi and Ai” . The rearrangements corresponding to this

case are eliminated in (6) since it occurs when k; = kg = 1 and G(-1) = 0.)
The remainder of the proof follows the same procedure. Define kj =1

if A%VI- and Aiﬂ exchange, kj = 0 otherwise, j =3, -+, N-1. For

each o} ZN_l possible values of (ky, kg, **°, kN-l) the number of distinct

arrangements of the N groups combined is
N-1
(7) GOy - ki) + GOy - Ky 4) - EG(MJ. -k g - k)

[Continued on page 293. ]
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[Continued from page 276, ]
{where q' = r(q'-1)), which are the numbers u{n; q,r) in the Tribonacei

convolution triangle! See [4].

REFERENCES

1. V. E. Hoggatt, Jr., "A New Angle on Pascal's Pyramid," Fibonacei
Quarterly, Vol. 6 (1968), pp. 221-234,

2. V.C. Harrisand C, C. Styles, "A Generalization of Fibonacci Numbers,"
Fibonacci Quarterly, Vol. 2 (1964), pp. 277-289,

3. V. E. Hoggaftt, Jr., and Marjorie Bicknell, "Diagonal Sums of General-
ized Pascal Triangles,' Fibonacci Quarterly, Vol. 7 (1969), pp. 341-358,

4, V. E. Hoggatt, Jr., "Convolution Triangles for Generalized Fibonacci
Numbers, " Fibonacci Quarterly, Vol. 8 (1970), pp. 158-171,

5. Stephen Mueller, "Recursions Associated with Pascal's Pyramid," Pi
Mu Epsilon Journal, Vol. 4, No. 10, Spring 1969, pp. 417-422.

6. Stanley Carlson and V. E. Hoggatt, Jr., "More Angles on Pascal's Tri-

angle, " Fibonacci Quarterly, to appear.

7. Melvin Hochster, ""Fibonacci-Type Series and Pascal's Triangle,' Par—
ticle, Vol. IV (1962), pp. 14-28.

8. V. E. Hoggatt, Jr., ""Fibonacci Numbers and Generalized Binomial Co-
efficients, " Fibonacci Quarterly, Vol. 5 (1967), pp. 383-400.

e PG

[Continued from page 292. ]

The total number of distinct arrangements of the N groups combined is ob-
tained by summing the expression in (7) over all possible values of (ky, ko,

coe, kN—l)’ i.e., over the set S But the total number of distinct ar-

N-1°
rangements is also equal to

G E M,
=1

The identity in (3) then follows from G(@) = F{n + 1),

e i
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[Continued from page 280, |
is also uniformly distributed mod 1 and the mod 1 uniform distribution of

In Vn then follows from (2} in conjunction with Lemma 1. q.e.d.

o0 0
Corollary. The sequences {ln ]E‘n}1 and {ln Ln}i are uniformly dis-
tributed mod 1. Here

g} ={1,2,8 -} ana {L}=1{21,814 -3

are the Fibonacci and Lucas sequences, respectively.

Proof. Both sequences satisfy the recursion, Vn 42 Vn +1 +Vn for
n= 1 with (K, K3} = {1,1) for the Fibonacci sequence and (K4, Ky) =
(2,1) for the Lucas sequence, so that the result follows directly from the
theorem.

REFERENCES

1. I. Niven, "Irrational Numbers,'” Carus Mathematical Monograph Number

11, The Math. Assn. of America, John Wiley and Sons, Inc., New York,
2. P. R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York,
New York, 1950.
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SOME NEW NARCISSISTIC NUMBERS

JOSEPH S. MADACHY
Mound Laboratory, Miamishurg, Ohio*

A Narcissistic number is one which can be represented as some func-
tion of its digits. For example,

153 = 1% + 5% + 33, 145 = 1! + 4! + 5!, and 2427 = 2! + 42 + 23 + 74

are narcissistic numbers. One special class of these numbers, represented

by the first example above, are called Digital Invariants. These are integers

which are equal to the sum of the nth powers of the digits of the integers.
Extensive studies of digital invariants have been in progress during the past
two years. Robert L. Patton, Sr., Robert L. Patton, Jr., and the author
have completed the search for all digital invariants for nth powers up to
n = 15 and will publish the results in the near future.

This short note reports on various narcissistic numbers other than dig-

ital invariants. An abbreviated form for these numbers is used in Table 1.
abc +++ means 10Pa + 10p_1b + 10p—20 + oo + 10p + q,

where a, b, ¢, *=+, q are the digits of the integer and the number of digits
is p +1. Thatis,

349 = 10%3 + 104 + 9,

The general form is shown in the Table along with the known solutions, their
discoverers, and some notes. Trivial solutions, 0 and 1, are not included.
The search for solutions to the first form

(abc «-» = a" + b][l+1 + 2 cee)

*Mound Laboratory is operated by Monsanto Research Corporation for the
Atomic Energy Commission under Contract No. AT-33-1-GEN-53.
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shown in Table 1 is far from complete. If n = 1, a complete search would
entail checking all integers less than 23 digits in length (more precisely, in-
tegers less than about 1,108 x 102 ), There are comparable, though larger,
searches if n >1. A WANG 700 Programmable Calculator took about five
hours to find the list shown in Table 1.

The search for the second solution to the form

a b c
abc e =a +b +c + e

took about one hour on anIBM 360/50 Computer. The factorial and subfactor-
ial forms were searched to check for the possibility of missed solutions. In
less than 15 minutes on the IBM 360/50 Computer the solutions shown were
confirmed to be the only ones.

A secondary search was made in isolated cases for recurring forms.

For example:

169: 1! +6! +9! 36301
3! +6! +3! +0!+ 1! 1454
10 +4!1 +5! +4! = 169

or, briefly, digital factorial 169 —> 36301 — 1454 —169 (3 cycles). Sim-
ilarly, digital factorial 871 —> 45361—> 871 (2 cycles),
872 —> 45362— 872 (2 cycles).

No other recurring forms for digital factorials were found, but the
cycle search was limited to five orless. There are undoubtedly many others
with a greater number of cycles.

A few recurring forms for the digital exponent form

(@bc +++ = a° b2+ cee)

were found by sheer trial and error on a WANG 700 Calculator. The initial
integer in the following examples is the smallest member of the cycle series,

Digital exponent 288 —> 33554436 —» <+ —> 140023 —> 288 (58 cycles).
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Digital exponent 3439 —3 387420799 —» +0. —> 53423 —»> 3439 (52 cycles).
Digital exponent 50119—387423618~%:«+ —#33601354~+50119 (25 cycles).

Searching for interesting integers is obviously endless! I hope some
readers will warm up their pencils, calculators, or computers and search
further into the Table and report any new additions — including forms not

shown here. (Notes and discoverers are shown on the following page. )

Table 1
NARCISSISTIC NUMBERS
Dis-
Form Solutions coverer Notes
abCeeo =an+bn+1+qn+2+... 43 =42 + 33

3
63 =62 + 33 3
89 = 8l + 92 8
135 =11 + 32 + 58 2
175 =11 + 72 + 53 3
518 = 5t + 12 + 88 3
598 = 5! + 9% + g8 2

1306 =11 + 32 + 03 + 64 8

8
8
5
5
5
5

1676 = 1! + 62 + 73 + 64 B
2427 =21 + 42 + 23 + 74
6714 =63 + 74+ 15+ 48
47016 =42 + 7% + 04 + 15 + 68
63760 = 65 + 3% + 75 + 66 + 07
63761 =63 + 34+ 75 + 65+ 17
542186 = 52 + 43 + 24 + 15
+ 86+ 67 5
abe = o + b1 4 M F 24 =.23 + 4% 7
332 =35 + 34 4+ 23 7
1676 = 15 + 64 + 7% + 62 7 B
abc = o + B2 +c® 4. 3435 = 33 + 44 + 3% + 5 8
438579088 = 44 + 33 + 88 + 55 + 77
+99+00+88+88 6 A
abe = al + bl +cl +eeo 2=2!
145 =11 + 4} + 5} 8
40585 = 41 + 0! + 5 + 81 + 5! 4
abc = la+tb+1lc+eos 148349 =11 +14 + 18 + 13 + 14
g 1 C

Notes for this table are found on the following page.
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A. Since 00 is indeterminant, two assumed values were tested: 0° = 0 and
0% = 1. There are no solutions using 0° =1, so the solution (438579088)
shown assumes 00 = 0,

B. 1676 is most interesting: appearing in two places in this table!

C. !n is the subfactorial n and is given by the formula:

In = n! [1_111 +% '?1:‘ +...+(_1)n(n_1£-)]

so that 10 =0, 11 =0, !12=1, !13=2, 14=9, !5 =44, and so on.
The number shown in the Table is the only non-trivial solution for this

form.

DISCOVERERS

1. Ron S. Dougherty, in a letter to the author dated April 28, 1965,
published in Mathematics on Vacation by J. S. Madachy (Scribner's Sons,
1966), page 167.

2. Dale Kozniuk, included in "Curious Number Relationships,' Recreational

Mathematics Magazine, No. 10, August 1962, page 42.

3. J. A. H. Hunter, "Number Curiosities,' Recreational Mathematics Mag-

azine, No. 13, February 1963, page 28.

4, Leigh Janes, discovered in 1964 and published in Mathematics on Vaca—

tion (see [1] above) without proper credit, inadvertently.

5. Joseph S. Madachy, discovered 1970 on WANG 700 Programmable Calcu-
lator.

6. Joseph S. Madachy, discovered 1970 on IBM 360/50 Computer.

7. Joseph S. Madachy, discovered 1971 on Hewlett-Packard 2100B Program—
mable Calculator.

8. TUnknown.



FIBONACCI NUMBERS AND WATER POLLUTION CONTROL

ROLF A. DEININGER
University of Michigan, Ann Arbor, Michigan

Consider a number of cities along a major water course which dis-
charge presently their wastes untreated to the stream. To control the pol-
ution of the waters they have the obligation to build treatment plants. The
major question is, where should one build these plants to minimize the cost
of pollution control? Construction as well as operation costs of treatment
plants exhibit large economies of scale, and therefore it is generally econ-
omically advantageous to build one or more central treatment plants. Given
one possible location for a treatment plant for each city, and the possibility
to transport the waste waters from any city to another one, the problem
arises of how many possible solutions there are. Due to the economies of
scale it is known that it would not be economical to 'split' the waste flow of
one city, that is, transport part of the waste upstream and part of it down-
stream.

Consider two cities only:

[’j

R R T

The number of possible solutions is A(2) = 3; namely, a treatment plant at
each city, one treatment plant at city 1, and finally, one treatment plant at

city 2.

Consider now 3 cities:
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The interconnecting sewers between the cities are the onlydecision variables.
Let a zero indicate no transport between cities, a 1 for upstream transport
of wastes, and a 2 for downstream transport of wastes. For n cities there
are (n - 1) connecting sewers between the cities, each of which may take on
3 values. So the total number of solutions would be 311—1

economic requirement that a city may not simultaneously transport wastes

were it not for the

upstream and downstream. For three cities, the total number of solutions

may be represented as follows:
00 01 02 10 11 12 20 21* 22

The Sth solution indicated by an asterisk is ruled out, since we do not allow
transport of waste water from city 2 simultaneously to 1 and 3. And thus
the total number of economical solutions will be A(3) = 8.

Consider now n cities:

Let A(n + 2) stand for the number of solutions for n + 2 cities,
A(n + 1) for the number of solutions to n + 1 cities, and A(n) for the solu-
tions for n cities.

Then, the following recursive relation can be established:

An + 2) = 3A(n +1) - A(n) .

This relation may be deduced by the following reasoning. Given the value of

A(n + 1), the adding of one city increases the number of solutions to

3:-An + 1)

since the new added sewer may assume the values of 0, 1, or 2. However,
of this total number there are some which are not economical, namely, all

those which end in a2 21 sequence. But the number of those is exactly A(n).
[Continued on page 302. ]



A NUMBER GAME

J. WLODARSKI
Porz Westhoven, West Germany

Preliminary condition for participation in the game: elementaryknow-
ledge of arithmetic.

1. Firstof all, give all participants of the game the same task, as
follows:

Build up a sequence of numbers with nine terms in which the first and

the second term maybe any arbitrary cipher and their sum should build

up the third term of the sequence. Every following term of the sequence

is the sum of the two preceding terms (for instance; starting with the

numbers of 3 and 4 we have the sequence 3, 4, 7, 11, 18, +--).

2, Now put the individual task for every participant of the game:

Divide the eighth or the ninth term of the sequence by the ninth or the

eighth term, respectively (limit the result to two decimals behind the

point?). Then multiply the received quotient by a small integer, for

instance: by 2, 3, or 5, etc.

The final result of the computation can immediately be told to every

participant of the game as soon ashe has finished his computation. The

participant is required only to state what ratio, i.e.,

8th term 9th term

9th term °¥ 8th term

was used and by what integer it was multiplied. Since for any figures

of the first two terms of the sequence the ratio

8th term
9th term

equals 0.62 (roundly) and

9th term
8th term

301
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equals 1.62 (both quotients are an approximation to the "golden ratio'-
value), it follows that the final result of the computation can easily be

guessed. Thus for instance in the case

8th term x 3
9th term

the answer should be 0.62 x 3 = 1.86 and in the case

9th term x 2
8th term

the answer is 1.62 x 2 = 3.24,
If the properties of the recurrent sequences are unknown or too.
little known to the participants of the game, the guessing of the final

results of their computations will have a startling effect.
B

[Continued from page 300. ]

FIBONACCI NUMBERS AND WATER POLLUTION CONTROL

Upon generating the number of solutions for varying n the similarity
of the series to the Fibonacci number series was noted.

n l 1 2 3 4 5 6 |

Aw |1 3 8 21 55 144 |

And thus we concluded that the total number of economical solutions for n
cities is

Al = an R

where Fk stands for the kth Fibonacci number. This still does not indi-

cate which of the F2n solutions is the most economical one, but places an

upper bound on the total nhumber of economical solutions to be investigated.
B e s



FIBONACCI NUMBERS AND GEOMETRY

BROTHER ALFRED BROUSSEAU
St. Mary’s College, California

The Fibonacci relations we are going to develop represent a special case
of algebra. If we are able to relate them to geometry we should take a quick
look at the way algebra and geometry can be tied together.

One use of geometry is to serve as an illustration of an algebraic rela-

tion. Thus

(@ + b)2 = a2 + 2ab + b?

is exemplified by Figure 1.

Figure 1

A second use of geometry is to provide a PROOF of an algebraic rela-
tion. As we ordinarily conceive the Pythagorean Theorem (though this was not
the original thought of the Greeks) we tend to think of it as an algebraic rela-

tion on the sides of the triangle, namely,

303
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c? = a’ + p? .,

One proof by geometry of this algebraic relation is shown in Figure 2.

Figure 2

In summary, geometric figures may illustrate algebraic relations or they may
serve as proofs of these relations. In our development, the main emphasis

will be on proof though obviously illustration occurs simultaneously as well.

SUM OF FIBONACCI SQUARES

In the standard treatment of the Fibonacci sequence, geometry enters
mainly at one point: summing the squares of the first n Fibonacci numbers.
Algebraically, it can be shown by intuition and proved by induction that the
sum of the squares of the first n Fibonacci numbers is

Fn Fn+1 .

But there is a geometric pattern which ILLUSTRATES this fact beautifully as

shown in Figure 3.
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Figure 3

The figure is built up as follows. We put down two unit squares which are the
squares of Fy and Fy;. Now we have a rectangle of dimensions 1 by 2. On
top of this can be placed a square of side 2 (F3) which gives a 2 by 3rectangle.
Then to the right can be set a square of side 3 (Fy) which produces a rectangle
of sides 3 by 5. On top of this can be placed a square of side 5 (Fy) which
gives a 5 by 8 (F5Fg) rectangle, and so on.

This is where geometry begins and ends in the usual treatment of Fib-
onacci sequences. For if one tries to produce a similar pattern for the sum of
the squares of any other Fibonacci sequence, there is an impasse. To meet

this road block the following detour was conceived.
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Suppose we aretrying to find the sum of the squares of thefirst n Lucas
numbers. Instead of starting with a square, we put down a rectangle whose
sides are 1 and 3, the first and second Lucag numbers. (Figure 4 illustrates

the general procedure.) Then on the side of length 3 it is possible to place

D TE = T T - T1(Tp - Ty)

Figure 4

a square of side 3: this gives a 3 by 4 rectangle. Against this can be set a
square of side 4 thus producing a 4 by 7 rectangle. On this a square of side
7 is laid giving a 7 by 11 rectangle. Thus the same process that operated for
the Fibonacci numbers is now operating for the Lucas numbers. The only dif-
ference is that we began with a 1 by 3 rectangle instead of a 1 by 1 square.
Hence, if we subtract 2 from the sum we should have the sum of the squares

of the first n Lucas numbers. The formula for this sum is thus:
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n
2 = -
0 S - 1, -2
k=1

Using a direct geometric approach it has been possible to arrive at this alge-
graic formula with a minimum of effort. By way of comparison it may be
noted that the intuitional algebraic route usually leads to difficulties for students.

Still more striking is the fact that by using the same type of procedure
it is possible to determine the sum of the squares of the first n terms of ANY
Fibonacci sequence. We start again by drawing a rectangle of sides T; and
T, (see Fig. 4). On the side T, we place a square of side T, to give a rec—
tangle of sides T, and Tj3. Against the T3 side we set a square of side T3
to produce a rectangle of sides T3 and T,;. The operation used in the Fib-
onacci and Lucas sequences is evidently working again in this general case,
the sum being TnTn 41 if we end with the nth term squared. But instead of
having the squre of Ty as the first term, we used instead TyT,. Thus it is

necessary to subtract

TyTy - T}

from the sum to arrive at the sum of the squares of the first n terms of the

sequence. The formula that results is:

2 = = -
(6) DT =TT - Ty(Ty - Ty) =TT . - TyTy .

ILLUSTRATIVE FORMULAS

The design in Figure 1 for (a + b)? = a? + 2ab +b? can be used to illus-
trate Fibonacci relations that result from this algebraic identity. For exam-

ple, Formulas (2), (3), and (4) could be employed for this purpose. Thus

FZ

2 — 2
L F n+1Fn-1 * n-1

n n+1+2F
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This evidently leads to nothing new but the algebraic relations canbe exempli-
fied in this way as special cases of a general algebraic relation which is de-
picted by geometry.

LARGE SQUARE IN ONE CORNER

We shall deal with a number of geometric patterns which canbe employed
in a variety of ways in many cases. In the first type we place in one corner of
a given figure the largest possible Fibonacci (or Lucas) square that will fit in-

to it. Take, for example, a square whose side is Fn' (See Fig. 5.)

n-2 L

n-3

n-1

n-3
2 - 2 2 2
Fn Fn—l * 3Fn—2 +2 kz=:1 Fk

Figure 5

This being the sum of Fn—l and Fn_z, a square of side Fn—l can be put in-
to one corner and its sides extended. In the opposite corner is a square of
side Fn_z. From the two rectangles canbe taken squares of side Fn_2 leav-

ing two smaller rectangles of dimensions Fn—Z and Fn—3' But<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>