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A GENERALIZED FIBONACCI SEQUENCE 

P. S. FISHER 
Kansas State University, Manhattan, Kansas 

and 
E. E. KOHLBECKER 

SvlcMurray College, Jacksonville, Illinois 

Since the year 1202 when Leonardo Pisano originated the Fibonacci sequence, many in-
teresting resul ts have been obtained [4] a The sequence is usually defined 

F 0 = 0 Fi = 1 F = F , + F 0 for n ^ 2 . u 1 n n-1 n-2 

and it is a well-known fact that 

C 0" - fr i) 
In this paper we generalize the usual definition of the Fibonacci numbers and the matr ix r e -
lation., and exhibit some of the many relationships which hold for elements of the generalized 
sequence, 

Consider the following definitions for a generalized sequence. 
Definition 1. The k order Fibonacci sequence is a sequence which satisfies the fol-

lowing conditions: 
ae Fn = Fi = • - • = F, . = 0 and F . = 0 for all i 2= 1 u -1 k-1 - l 
b. F k _ x = 1 

k 
c, F = ) F . for n > k 

n / J n - i 
i=l 

If we relax the condition as specified in par t a of Definition 1, we obtain the following-
Definition 2. A sequence whose members (denoted ¥ . ) satisfy the following two con-
— ^ i 

ditions will be called a generalized k order Fibonacci sequence 
a. F*. = a. for 0 < i ^ k - 1 where a. is an arbi t rary number, 

l i i 

•? = " y ^ F ... . 
n Z^J n-1 

b. F n 
i=l 

We now define a sequence called the r auxiliary sequence of order k as a special case of 
the generalized k order sequence* 
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338 A GENERALIZED FIBONACCI SEQUENCE [Oct. 

Definition 3. A sequence which satisfies the following three conditions will be called an 
r auxiliary sequence of order k, where 1 ^ r ^ k - 2. 

a. A r = 0 for 0 < i < k - 2, i ^ r - 1 

b. A r = A.r , = 1 
r - 1 k-1 

c Ar = y v . 
n / J n-i 

for n ^ k . 
i i -1 

i=l 

In the following, the superscript of F. will be left off if it is c lear from the context 
that we a re concerned with the k order sequence. 

Property 1. F k = F ^ for 1 ^ j < 2(k - 1) k > 2 

Property 2. F ^ = ^ ( k - l ) + X f ° r ^ k > X 

Property 3. F ^ k = 2 k - 1 for all k ^ 2. 
r th 

Theorem 1. If A is an element in the r auxiliary sequence of order k, and if 
F. is an element of the corresponding k order Fibonacci sequence, then 

A r = F + F - + • • • + F ,i + F for n ^ k. 
n n n-1 n-r+1 n - r 

Proof. Let n = k, then we will show that 

(1) Al = F. + F. , + . . . + F. k k k«l k - r 

By Definition 1, 

(2) 2Xi 2 , 
JCV—X 

i=0 

and by Definition 2, 

k 
(3) \r - S X J 

3=1 

But since r is defined in the range 0 ^ r ^ k - 2 then there is an element A. . in (3) such 
that k - i = r - 1 . From the definition of A. we know J i 

r - 1 k-1 

and all the remaining elements are zero. Therefore 
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k 

yA
r. = 2 

3=1 

339 

and from (2) we have the desired result for n = k* 
Suppose that for k =s n ^ m the theorem is t rues then for n = m + l , we will also 

show the theorem is t rue. 

(4) A r .„ - > A r 

ni+1 ZmJ m+l- j m m-1 
3=1 

A r + A r „ + . . . + A1* ^ . m+l-k 

By hypothesis we can rewrite each element of (4) as follows: 

A = F + F 1 + - . . + F m m m - 1 m - r 
A r

1 = F - + F 0 + . . . + F -
m-1 m-1 m-2 m - r - 1 

A = F + F + • • • + F 
m+l-k r m+l-k m-k m + l - k - r 

and adding the columns we obtain 

Zmmd m - i + 1 ZmJ 

i=l 3=1 
m-j+1 

k k 
V F . + ••• + \ ^ F 
j=l 3=1 

r+1 

= F _,- + F + . . . + F ,-
m+1 m m-r+1 

A m+1 

which is the desired result . 
Lemma 1, The following three identities hold for elements of the auxiliary sequences 

for m 2: k and 1 < r ^ k - 2. 

A, 

B. 

Co 

A
r _ A

r - \ = F m m - 1 m 
A r - A ' " 1 = F 

m m m - r 
A r - A r , = - F i + F 

m m - 1 m - r - 1 m 

Theorem 2. If Q is the k X k matrix 

0 

0 

0 

0 
1 

1 

0 

0 

0 
1 

0 

1 

0 

0 
1 

0 •• 

0 --
1 . , 

0 •• 
1 e e 

• 0 

• 0 

- 0 

• 0 
. 1 

0 

0 

0 

0 
1 

0 

0 

0 

1 
1 



340 

then 

A GENERALIZED FIBONACCI SEQUENCE [Oct. 

Qn = 

n - 1 

"n+1 

A1 -n-1 
A1 

n 
A U 

F A1 

n+k-4 n+k-4 
F A1 

n+k-3 n+k-3 
F A1 

n+k-2 n+k-2 

n-1 

n 

n+k-4 
\r 
n+k-3 

n+k-2 

.k-2 
n-1 

^k-2 
n 

,k-2 
n+1 

n+1 

"n+2 

A k " 2 F 
n+k-4 r n+k-3 

Ak~2 F 
n+k-3 *n+k-2 

A k " 2 F 
n+k-2 n+k-1 

where n is a positive integer, and the F f s a re elements of the k order sequence and 
r th 

the A - a re the corresponding te rms of the r auxiliary sequence of that same order . 
Proof. This theorem can be proved by induction on n. With n = 2, Q2 is 

Q2 * 

0 0 1 0 

0 0 0 1 

0 0 0 0 

1 1 1 1 

1 2 2 2 

0 

0 

0 

1 

2 

0 

0 

1 

1 

2 

= 

A* 

F A1 
*k-2 k-2 
F A1 

* k - l A k - 1 
F, A} 

4"2 ', 
k-2 

A k - 2 
A k-2 A k - 1 
Ak-2 

k 

k - 1 

"k+1 

Supposing the theorem is true for 1 ^ n ^ m we can show it is true for n = m + 1. 

Q m + 1 = Q . Q m . 

m But examining the effect of multiplying Q with Q , it is obvious that the first k - 1 rows 
of Q cause row i (2 ^ i ^ k) to become row i - 1 of Q • The k row of Q is 

m 
obtained by summing the columns of Q , which using definitions 1 and 3 produces the de-
sired result . 

Theorem 3. If n = k, then 

2L$Fi Fn+k+l k - 1 +2l*<rlFn+i 
i= l i= l 

2>.--rfr*Z ;i - DF n+i 
i= l i* l 
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Proof. The sum of the f irs t n t e rms of the k order sequence will appear as an 
element in a matrix which represents the sum 

(1) 

i* l 

Qx 

in either the (l9k) or the (2,1) position* We rewrite (1) to obtain 

(2) ^ Q 1 = (Q - I.) ^ ( Q 1 1 - I) 
i = l 

where I is the (kX k) identity matrix. The inverse of Q - I shown in (2) can be shown to 
be 

(3) k - 1 

-(k - 2) -(k - 3) 
1 -(k - 3) 
1 2 

-(k - k) -(k - (k + 1)) 
-(k - k) -(k - (k + 1)) 
-(k - k) -(k - (k + 1)) 

-(k - k) -(k - (k + 1)) 
k - 1 -(k - (k + 1)) 

^n+1 If we multiply the f irst row of (3) against the last column of Q - Q we obtain the element 
in the ( l ,k) position which represents the desired sum 

2>. • 
i= l 

Z*> 
i = l i = l 

k - 1 

(4) 

r r Z - ( k - i - 1 ) ( F n + i - F i ) 

=1 

k 

i=l 

k k 

r r E 1 F n + i - l T T T E 1 F i 
i=l 

F„*rt + 2 + E "n+1 k 
i=l i=l 

n+k+1 i F n + i 
i= l 
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which is the desired result . The second form can be obtained by substituting in (4) the sum 

k 

JLmJ n+i 
i=l 

for F . - , and combining the two sums. 
Using the method given in the proof of Theorem 3, it is obvious that an expression sim-

i lar to that given in this theorem, can be given for the sum 

y j F . + . - for 1 < j - 1 < k and n > k 
i=l 

which is 

Z - / i+j-l k - l / j n+i k - 1 Z - f n+i 
i=l i=l i=j 

Theorem 4. If 0 < j < k - 1 and if n ^ k then 

n k k 

zLf Fki+j = ~ " T 2Lr * F nk+k- l " ^ F nk+ i - l " k - 1 
i=l i=l i=j+l 

Proof. Consider the sum 

n 

(1) ] T Qki 

i=l 

We can obtain the desired sum 

n 

2^ Fki+j 
i=l 

in the (k, j) position of the matrix representing the sum given in (1). 

n 
J ] Q

k i = Q k [ l + Q k
 + . . . +Q( n-1 ) k] 

(2) i=l 

= (Qk - I ) _ 1 Q k ( Q n k - 1) 
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The characterist ic equation of Q is 

. k k-1 k-2 
X - X - X X - 1 

343 

k-1 and since Q always has a factor Q - I5 we can write 

Q k _ 1 = (Q - I ) (Q k _ 1 + Q k " 2 + . . . + Q + I) 

However 

therefore 

and thus 

Q
k " l + Q k - 2 + e e m + Q + j = Q k 

Q k - 1 = Qk(Q - I) 

(3) (Qk - I )" 1 Q k (Q n k - I) = (Q - I)~1(Qn k - I) 

and upon multiplying the last column of Q - I with the j row of (Q - I)~ we obtain the 
desired result . 

Theorem 5. 

k-2 

F , = F - F + F F ,, m+n m - 1 n m n+k - l + Z A m - l n+i s 

i=l 

where m and n are nonnegative integers. 
Note. If k = 2 then F = F - F + F , -F which is a well-known result of the m+n m - 1 n n+1 m 

usual Fibonacci sequences 
Proof. F occurs in the matrix Q in the (2,1) or (l sk) positions. Since 

the required multiplication can be performed to yield the desired result . 
Theorem 6. If B is the matr ix 

A r 
'o 

Fi 
Aj 
A ! 

.k-2 
^0 

... Af 
Fi 

A^"2 F2 
,k-2 F3 

F A1 
*k-2 A k - 2 
F A1 
* k-1 ^ k - 1 

• K-2 •• 
• ALi •• 

Ak-2 
. Ak-2 

k-2 

F k - 1 
F k 
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r th 

where the A. , (1 ^ r ^ k - 2) a re the elements of the r auxiliary sequence of order k9 
and if Q~ is the matr ix 

"n-1 

" n-fk-3 

"n+k-2 

n-1 

Ar 
n 

n+k-

An+k-

.. 

•• 

-3 " 

-2 

• F n 

• \ + i 

n+k-2 

Fn+k-l_ 

then Q ~ B = Q~ where Q is the matr ix defined in Theorem 2. 
Proof. The proof is again done by induction upon n and is s imilar to that given in 

Theorem 2. 
Using the resul ts of Theorem 6 for the generalized Fibonacci sequence, it is possible 

to obtain theorems for this sequence corresponding to Theorems 3, 4, 5. These correspond-
ing theorems are stated here without proof. 

Theorem 7. 
n k 

E*. "Fn+k+l + F k + i + k ^ r Z i ( F
J 

,- - F . ) for n ^ k. n+1 l 
i=l i=l 

Theorem 8. If 1 < j < k - 1, and if n >: k, then 

k 

IX+] = F ^ X ^ n k + i " Fi) + E (Fnk+i " Fi> 
i = l i = l i=J 

and with j = 0, the expression becomes 

Z«J ki 
i = l 

k-1 

E 
i=l 

i (F . _,. - F . ) - (k - 2) (F, _,,,. - F. ) nk+i I (n+l)k k 

Theorem 9. 
k-2 

F = F F + F F + 
m+n m-1 n m n+k+1 

/ „/ m-1 
i = l 

F ,. for m , n ^ 1 n+i 

nd There are many known relations involving the elements of the usual or 2 order F ib -
onacci sequence. A partial l is t of these relations appear in [4] . However, when general-
izing many of these relations to the te rms of either the k order or the generalized k 
order sequence, the relations become quite involved; but in each case a corresponding for-
mula holds in the more general situation. 
[Continued on page 354. ] 



THE FIBONACCI GROUP AND A NEW PROOF THAT F _(5, } ^ 0 (mod p) 

LAWRENCE E.SOMER 
1266 Parkwood Drive, No. Merrick, New York 

It is fairly well known that F ,_, v = 0 (modp), where p is an odd prime; F is 
th p - w p ; p 

the p Fibonacci number, and (5/p) is the Legendre symbol. Three different proofs of 
this theorem are given in [1] , [2] , and [3]. 

My method of proof of this theorem is based on the restr icted periods of generalized 
Fibonacci sequences reduced modulo p and the existence of what I call Fibonacci groups 
modulo certain pr imes . 

Look at the congruence: a + ax = ax2 (mod p). This implies ax' ~ + ax = ax 
(mod p). Solving for x: x = (1 ± N/"5)/2 (mod p). Thus we can solve for x iff 5 is a 
quadratic residue of p > 2. If a = 1 (mod p), the recursion relation: a + ax = ax2 (mod 
p) will generate the successive te rms: (1, x, x2, • • • , x11, • • •)» and we will have a Fibon-
acci group. 

As an example of a Fibonacci group, solve x = (1 ± ^ 5)/2 (mod 11). We see x = 
(1 ±4) /2 (mod 11) = 4 or 8 (mod 11). If x = 4 (mod 11), we get the group (1, 4, 5, 0, 3) 
and if x = 8 (mod 11), we obtain the group (1, 8, 9, 6, 4, 10, 3, 2, 5, 7). In each case 
each term is the sum of the preceding two terms (mod 11) and is a constant multiple of the 
preceding term. 

Definitions. Let { H } be a generalized Fibonacci sequence (hereafter called G. F. S.) 
reduced modulo p; Et = a, H2 = b; H = H _1 + H _2 (mod p); p an odd prime. 

{H } is periodic modulo p. Let /z(a, b, p) be the period of the G. F. S. which begins 
with (a,b) modulo p. That i s , fx(a, b, p) is the least positive integer n such that H = 
H0 = H2 - Hi and H n + 1 = H1 (mod p). 

Also, let or (a, b, p) be the restr ic ted period of {H } (mod P). Thus, #(a, b, p) is 
the least positive integer m such that H = sHQ and H +1 = sH 1 (mod p) for some s. 
Let s(a, b, p) = s (mod p); s(a, b, p) will be called the multiplier of { H n ) (mod p). 

Theorem 1. If the initial pair (a,b) of {Hn} £ (0, 0), (a, a(l + \lb)/2), or (a, a(l -

\/"5)/2) (modp), then or (a, b, p) = a(l9 1, p), s(a, b, p) = s ( l , 1, p), and ti (a, b , p) = 

M(l» 1. P). 

Proof. Write out the Fibonacci ser ies reduced modulo p from F t to F ^ ^ y 
There will be / i( l , 1, p) consecutive pairs in this sequence if we count (F u , v, F - ) = (0, 1) 
(mod p) as a consecutive pair of te rms . If a pair (c,d) does not appear in this sequence, 
s ta r t another G. F. S. with this pair up to H , , y No pair will be repeated since each 
pair determines each term that follows and precedes by the recursion relation, and each 
G. F . S. is periodic modulo p. 

345 
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One can continue this process until all the p2 possible pa i rs are used up. We shall 
need three lemmas to finish the proof. 

Lemma 1. Any linear combination of two G. F. S. fs yields a G. F. S. 
Proof. Let ( G } , ( H }, be two G. F. STs. Then 

L nJ ' l nJ 

rG - + sH - + rG + sH = r(G - + G ) + s(H - + H ) = rG ,- + sH ,- , n-1 n-1 n n n-1 n n-1 n n+1 n+1 

and the recursion relation is still satisfied. 
Now, we can express any pair of t e rms (a,b) as (b - a): 

(F0, F t ) + a ( F l s F 2 ) = (b - a)(0,1) + a ( l , l ) = (b - a , a ) f J J j . 

Lemma 2. For all G. F . S. ( H } , 

( I W , l , p ) + l > H a ( l , l , p ) + 2 ) E s ( l , l , p ) ( a ,b ) ; a = H1? b = H2 , 

Proof. Let a(l, 1, p) = n. Then 

( F n j F n + l ) ~ s ( l , l , p ) ( F 0 , Tt) 
and 

( F n + 1 , F n + 2 ) s s ( l , l , p ) ( F 1 , F2) (modp), 

by definition. But 

(H ^ , H ^ 0 ) = (b - a)(F , F - ) + a(F ^ , F _,_„) n+1 n+2 n ' n+1 n+1' n+2 
= (b - a J s d . l . p X F o . F i ) + ( a ) s ( l , l , p ) (F i ,F 2 ) = s ( l , l , p ) ( a , b ) (modp). 

H i l a r y : ( H M( l , l ,p )+ l ' H /x ( l f l .p )+2 ) 5 ( a ' b ) > 

This proof is exactly the same as that for Lemma 2. It is interesting to note that this 
corollary implies that length of a Fibonacci group ^ / i( l , l , p ) . 

Lemma 3. If b ^ a(l ± ^ 5 ) / 2 , then #(a,b,p) = a?(l , l ,p) . (Note that if (a,b) = 
(F1? F2) = (1,1), then b ^ a(l •+. \H})/2 (mod p) since this implies that N/ 5 = +1. (mod p), 
which is false for p ^ 3.) 

Proof. Assume that this assert ion is false for some { H } , where b ^ a(l ± */5)/2. 
Let a(a ,b ,p) = n. By Lemma 2, n <f l : ( l , l ,p ) . Then 
( H n + l ' H n + 2 ) " s ( a ^ , p ) ( a , b ) = (b - a) (F n , F n + 1 ) + a (F n + 1 > F R + 2 ) (modp) . 

Let F - = x-FA = x and F 9 = y-F2 = y; x ^ y since n < a ( l , l s p ) . Then 
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p-w/p) 

H n + 2 _ s(a ,b ,p)b = b =
 ( b - a ) F n + l + a F n+2 

H n + 1 s(a ,b ,p)a a (b - a )F n + a F n + 1 

( b - a ) F n + 1 + a F n + 2 (b - a)x + ay , „ , 
" (b - a ( F n + 2 - F n + 1 ) + a F n + 1 " (b - a)(y - x) + ax ( m o d P>" 

Thus, 
b bx - ax + ay , , . 
a 5 by - ay - bx + 2ax < m o d P> ' 

I claim that neither a nor (by - ay - bx + 2ax = H - ) = 0 (mod p). If a E 0, then 
(a,b) = (0,0) o r (a,b) = (0,k), k ^ 0 (modp). The pair (0,0) is excluded by hypo the s i s , 
and if (a,b) = (0,k), {H } is a non-zero multiple of the Fibonacci sequence. Since the 
residues modulo p form a field, there are no divisors of 0 and a multiple of the Fibonacci 
sequence will have the same rest r ic ted period. Therefore n = <*(l,l,p) and we have a con-
tradiction. If H - = 0 (modp), the same argument leads to a contradiction. 

The congruence 

lb _ bx - ax + ay , , . 
a " by - ay - bx + 2ax ^ 

leads to the congruence 

b2(y - x) - ab(y - x) - a2(y - x) = 0 (mod p) . 

Dividing through by the non-zero (y - x) and solving for b , we obtain b = a(l ± N / 5 ) / 2 , a 
contradiction. Q. E.D. 

Corollary. If b £ a( l ± <s/"5)/2, then s(a,b,p) = s ( l , l , p ) and ^ ( a , b , p ) = ^ (a ,b ,p ) . 
This follows from Lemma 2, its corollary and Lemma 3. 
With the help of the three lemmas and their corol lar ies , Theorem 1 is now proved. 
We are now ready to prove the main theorem that F _/5/D\ = ° (mod p). Of the p2 

possible pa i r s of t e rms which appear in some G. F .S . reduced modulo p , one pair (0,0) 
forms the trivial sequence (0, 0, 0, • • • ) . We will now look at the p2 - 1 pai rs remaining. 

If (5/p) = 1, then there a re two solutions to the congruence: x = (1 ± \fE)/2, and we 
can form two Fibonacci groups. By Lagrange's theorem, each group has length (p - D / k j , 
(i = 1, 2). If we count the k. non-zero multiples of each group, there will be 2(p - 1) pa i rs 
of te rms in some non-zero multiple of a Fibonacci group. That leaves p2 - 1 - 2(p - 1) = 
(p - l ) 2 pa i rs remaining. 

We will say that two res t r ic ted periods belong to the same equivalence class if some 
pair of consecutive te rms of one restr ic ted period is a non-zero multiple of a pair of another 
res t r ic ted period reduced modulo p. In each equivalence c lass , there are p - 1 non-zero 
multiples of each res t r ic ted period. Suppose there a re k equivalence c lasses of res t r ic ted 
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periods of length a ( l , l , p ) . Then if (5/p) = 1, there will be (p - l ) 2 pa i rs in these equiva-
lence c lasses : (p - l)(k) • or(l , l ,p) = (p - l ) 2 , and af(l , l ,p) = (p - l ) /k . Since there are 
no divisors of 0 (mod p), only t e rms which are multiples of (p - l ) / k will be E 0 (mod p). 
In part icular , F . = 0 (mod p). 

If (5/p) = 0, then p = 5 and \]T> = 0 (modp). Thus, there is only one root of the 
congruence: x E (1 ± ^ 5 ) / 2 - x = 3 mod 5. This leads to the Fibonacci group (1, 3, 4, 2). 
Excluding the trivial pair (0,0), there a re p2 - 1 - (p - 1) pai rs which are not members of 
multiples of Fibonacci groups (mod p). Then p(p - 1) = (p - l)(k) • a ( l , l , p ) , and # ( l , l , p ) = 
p/k. This implies that F = 0 (mod p). 

If (5/p) = - 1 , there are no Fibonacci groups (mod p), and p2 - 1 = (p - l ) (k )a ( l , l , p ) . 
Thus, or(l , l ,p) = (p + l ) /k , and F + 1 s 0 (modp). Q. E. D. 

This theorem can easily be generalized. Let us define a Fibonacci-like sequence { J } 
as one which satisfies the recursion relation: J - = aJ + bJ -; a ,b positive integers. In 
accordance with the notation of Robert P. Backstrom [ 4 ] , I will call the Fibonacci-like s e -
quence beginning with ( l ,a) the pr imary sequence. If b ^ 0 (modp), then by the r ecur -
rence relation bJ0 = j 2 - a ^ = a - a(l) = 0, which implies that J0 = 0 (modp). Thus, if 
b ^ 0 (modp), the pr imary sequence ( j } will be absolutely periodic and J , , will be 
= 0 (mod p). It should be noted that only in multiples of a pr imary sequence will all but a 
finite number of pr imes (excepting possibly only those pr imes that divide b) divide some 
positive te rm of the sequence, 

We can form a Fibonacci-like group analogous to the Fibonacci group by solving the 
congruence: be + acx = ex2 (mod p) for x; x = (a ± ^ a 2 + 4b) /2 . As an example of such a 
group, if a = 1, b = 3, then a Fibonacci-like group exists iff (a2 + 4b/p) = (13/p) = 0 or 
1, if p = 17, then a solution of x = (1 ± \ /13) /2 = (1 ± 8)/2 (mod 17) is x = 13 mod 17, 
and this gives r i se to the Fibonacci-like group (1, 13, 16, 4). 

As before, any arbi t rary Fibonacci-like sequence is the l inear combination of two p r i -
mary sequences. If (c,d) are two consecutive te rms of a Fibonacci-like sequence a n d { j } 
is a pr imary sequence, then 

(c,d) = (d - acMJo,^) + c(J l 3 J2) = (d - ac)(0, l) + c ( l , a ) = (d - ac •o»(!i)-
Let a2 + 4b = k. If b ^ 0 (mod p), p an odd pr ime, then by an argument analogous 

to the one above, we can prove the theorem: J _,, / , = 0 (mod p) if { J } is the pr imary 
sequence. 

If a ^ 0 (modp), b = 0 (modp), then solving the congruence: 

x E (a ± Nla2 + 4b)/2 = (a + N/ a 2 ) /2 (mod p) , 

we see that x = a or 0 (modp). Thus, the pr imary sequence generated by ( l ,a) will be 
a Fibonacci-like group and no positive term will be divisible by p. 
[Continued on page 354. ] 



THE COEFFICIENTS OF cosh x/cos x 

J.M. GANDHI and V.S. TAMEJA 
Department of Mathematics, Western Illinois University, Macomb, Illinois 

1. Gandhi [3] defined a set of rational integral coefficients S? by the generating 
function 

oo s x2n 
(1) cosh x _ Y ^ 2n 
1 ; cos x Z J (2n)t 

n=0 

The coefficients S? were the subject of much investigation by Carlitz [ l ] , [2], Gandhi 
[ 4 ] , [5] , Gandhi and Ajaib Singh [6] 9 Krick [7] , Raab [8] and Salie [9], In the present 
note we prove that 

(2) S 4 n + 2 = 52 (mod 100) for n > 0 

The proof of (2) involves some elementary but interesting resul ts . 
2. Gandhi and Ajaib Singh [6] proved that 

r= l 
<3> S4n+2 = 2 . r i

4 r ) ^ r + l 2 2 r S 4 n + 2 - 4 r
 + 2 4 n + 1 

Assume that (2) is true for any n > 0 and we shall prove that it is true for n + 5. Since S6, 
Si0, • • • , S 4 n _ 2 = 52 (mod 100), and S2 = 2, Eq. (3) yields 

S4n+2 * 5 2 

n-1 

E ( ^ r J ("1)r+l22r + ( 4 n 4 n ' ) ( - l > n + 1 2 2 n + 1 + 2 4 n + 1 (mod 100) 
r= l ^ ' 

n 
52 ' 

r=l 

E ( 4 n 4 r 2 ) ( " D r + 1 2 2 r + / 4 n
4 t 2 ) (-if+^fr - 52] + 2 4 n + 1 (mod 100). 

Since n > 0, the second te rm on the right is divisible by 100 and therefore 

349 



350 THE COEFFICIENTS: OF COSH X/COS X 

n 

s (** 2)< s 4 n « ' 5 2 > : i ~ . : ' H - D " 1 2 2 r * 2 4 » + 1 

r=l 

n 
(4) s 104 > ' f V 2>\ ( - D ^ V ^ 1 + 24n+1 * i o 4 £ ; ( 4 n

4 ; 2 ) ( - i > r + V 
r=l 

s 2 > *(** ,+ 2 \ ( - l ) r + 1 2 2 r
 + 2 4 n + 1 (mod 100) E /4n + 2 \ A 4r J r=l 

2A + 2 4 n + 1 (mod 100) 
where 

- E (*"*2) A = > : / ™ , : 4 ) ( - i ) r f l 2 2 t 

r=l 

We now evaluate the sum for A. Let u = (1 + i ) / N/2, then it can be verified that u4 

and Q8 = +1, where i = \ P L Now 

4n+2 
H , ,4n+2 x~^ /4n + 2\ r r 
(1 +WX) = 2J ( r j u x 

r=0 
and 

4n+2 
H .4n+2 v ^ / 4 n + 2 \ , l X r r r 
(1 - ox) = 2 ^ I r J (-1) w x 

r=0 

Adding these two expansions we get 

(5) (1 + a)x)4 n + 2 + (1 - cox)4114"2
 = y i /4n + 2 \ 2r x 2 r E /4n + 2 \ 2 

r=0 

In (5) replace x by NPTX to 

(6) (1 + N I - I M X ) ^ 2 + (1 - NT-lo>x)4n+2 y * A n + 2 \ ( _ 1 ) r u 2 r x 2 r liaid \ ^ A n + 2 \ , n , r 2 = L , [ 2r J ^ u 

r=0 

Adding (5) and (6) and letting x = \f2 it is easy to see that 
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(7) A = 1 - \ [(1 + u ^ + 2 + (1 - u ^ ) 4 n + 2
 + (1 + N /Zr«Ng) 4 n + 2 

+ (1 - ^ ^ 2 ) 4 n + 2 ] . 

Siace (o <s/2 = 1 + i, Eq. (7) becomes 

A = 1 - *. [(2 + D 4 n + 2 + ( " D 4 n + 2 + W 4 n + 2 + (2 - D 4 n + 2 ] = 1 -{ [(3 + 4 i ) 2 n + 1
 + (3 - 4 i ) 2 n + 1 - 2 ]. 

Using this expression for A, Eq. (4) becomes 

(8) S ^ ^ = 3 -4 - [ (3 + 4 i ) 2 n + 1 + (3 - 4 i ) 2 n + 1 ] + 2 4 n + 1 (mod 100) . 

Lemma 1. If a and j3 are integers, a £ 0 (mod 5) and if or = j3 (mod 100), then 
TC+20 a E jS (mod 100). However, if a = 2, then K must be greater than 1. 

Proof. Trivial. 
In view of Lemma 1, for n > 0, we have 

(9) 2 4 n + 1
 S 2 4 ( n + 5 ) + 1 (mod 100) . 

Then we prove that 

(10) ^{(3 + 4 i ) 2 n + 1 + (3 - 4 i ) 2 n + 1 } s H O + 4 i ) 2 n + 1 1 + (3 - 4 i ) 2 n + 1 1 } (mod 100) . 

It is easy to see that the above congruence holds for modulus 4 hence we need to prove that 

(3 + 4 i ) 2 n + 1
 + (3 - 4 i ) 2 n + 1 , (3 + 4 1 ) 2 n + 1 1

 + (3 - 4 i ) 2 n + 1 1 (mod 25) , 
o r 
(11) (3 + 4 i ) 2 n + 1 {(3 + 4 i ) 1 0 - 1 }+ (3 - 4 i ) 2 n + 1 {(3 - 4 i ) 1 0 - 1 } - 0 (mod 25) . 

By actual expansion we find that 

(12) (3 + 4 i ) 1 0 - 1 = 4(3 - 4i) (mod 25) 

and 
(3 - 4 i ) 1 0 - 1 = 4(3 + 4i) (mod 25) . 

Let 
(13) (3 + 4 i ) 2 n + 1 = c + id, (3 - 4 i ) 2 n + 1 = c - id . 

Expanding we find that 

E /2n + l \ 
{ 2r ) 

r=0 x ' 

3 2 n + l - 2 r ( _ 1 } r ? 
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and 

r=0 % / 

3 2n+l- (2r+l) ( _ 1 ) r 

Lemma 2. c £ 0 (mod 5) and d ^ 0 (mod 5). 
Proof. 

c = > ; i : : ; : j ( -2 ) 2 n + 1 - 2 r ( -D r (mod 5> - i L I 2r + I T 
r=0 % ' 

E /2n + l \ I 2r J 
r=0 > * 

0 2n+l -2r / 1Nr . , _x 2 (-1) (mod 5) 

(1 - 2 i ) 2 n + 1 H- (1 + 2 i ) 2 n + 1 , _ 

If c = 0 (mod 5) then since 5 = (1 + 2i)(l - 2i) and hence c = 0 (mod 1 + 2i), 
which is not true and hence c ^ 0 (mod 5). Similarly it can be proved that d ^ 0 (mod 5). 
Moreover from (13) we have 

(14) c2 + d2 = (25) 2 n + 1 E 0 (mod 25) . 

Since c ^ 0, d ^ 0 (mod 5) it is easy to see that (c,d) = 1 and hence there exist a num-
ber a such that 

(15) c E ad (mod 25) . 

Using (11) and (12), Eq. (10) simplifies to 

(16) 3c + 4d = 0 (mod 25) . 

Therefore to prove (10), we need to prove (16). Substitute (15) into (14) to get 1 + a2 = 0 
(mod 25) which yields that either (a) a = 7 (mod 25) o r (b) a = 18 (mod 25). We then 
prove that condition (a) can only be satisfied and thus will reject condition (b). Assume that 
(b) is satisfied, i. e. , c = 18d (mod 25) or 

(17) c E 3d (mod 5) . 

We show that (17) is impossible. We have proved that 
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(mod 5) . (1 - 2 i ) 2 n + 1
 + (1 H- 2 i ) 2 n + 1 

2i 

Similarly it can be proved that 

/n ^ 0 . ,2n+l , /n 0 - 2 n + l D s < 3 _ ^ i ) + (1 - 21) ( m o d 5 ) _ 

Substituting these expressions in (17) it can be easily proved that (17) will not even hold for 
modulus (1 + 2i) or (1 - 2i). Hence (17) is impossible and condition (b) cannot be satisfied. 
Therefore condition (a) has to be satisfied and hence c = 7d (mod 25). Using this congru-
ence we find that (16) is satisfied and hence we have proved the truth of (10). Using these 
resul ts and (9), from (8) we get S 4 n + 2 = S 4 n + 2 2 (mod 100). But S = 52 (mod 100) 
and therefore S4 + 2 2 = 52 (mod 100) and hence if (2) is true for n > 0 it is also true for 
n + 5. F r o m K r i c k f s [7] table for S2 up to S we find that (2) is true for n = 1, 2, 3, 
4. Also using (3) we verify that S22 = 52 (mod 100). Thus by the usual method of induction 
(2) has been established. 
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If a = 0, b ^ 0 (modp), then every term of the pr imary sequence from the second 
one on will be E 0 (mod p) and this sequence will satisfy the theorem since 

J ,. / , = J = 0 (mod p) . p-(k/p) p F ' 

If a = 0, b ^ 0 (modp), then we will get the sequence (1 ,0 ,b , 0 ,b 2 ,0 ,b 3
s O, ' • •) and 

every second term will be divisible by p. Thus, whether p - (k/p) = p + 1 or p - 1 , the 
theorem will be satisfied. 

I will close the paper by investigating which t e rms of pr imary sequence are divisible 
by the prime 2. If a ,b a re both odd, we obtain the repetitive sequence (1 ,1 ,0 , - • • )» and 

J 3 = J 2 + l E ° ( m o d 2 ) ' 
If a is odd and b is even, then { J } is a Fibonacci-like group (mod 2) and we get 

the sequence (1, 1, 1, • ' * ) . 
If a is even and b odd, we get the sequence ( l , 0 , l , 0 , l , 0 , - « - ) and J ? = J ? + 0 = 0 

(mod 2). 
If a ,b a re both even., we obtain the sequence (1 ,0 ,0 ,0 ,* ••) and J2 = 0 (mod 2). 
Note. The Fibonacci group was pointed out to me by Stan Per lo , currently a graduate 

student at the University of Michigan. 
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A NEW PRIMALITY CRITERION OF MANN AND SHANKS AND ITS RELATION 
TO A THEOREM OF HERMITE WITH EXTENSION TO FIBONOMIALS 

H.W.GOULD 
W. Virginia University, Morgantown, West Virginia 

1. INTRODUCTION 

Henry Mann and Daniel Shanks [4] have found a new necessary and sufficient condition 
for a number to be a pr ime. This cri ter ion may be stated in novel t e rms as a property of a 
displaced Pascal Arithmetical Triangle as follows* Consider a rectangular a r r ay of numbers 
made by moving each row in the usual Pascal a r r ay two places to the right from the previous 
row. The n + 1 binomial coefficients f M , k = 0, 1, •• • , n, a re then found in the n t h 

row between columns 2n and 3n inclusive. We shall say that a given column has the Row 
Divisibility Property if each entry in the column is divisible by the corresponding row number. 
Then the new cri terion is that the column number is a prime if and only if the column has the 
Row Divisibility Property. 
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The Displaced Array 

We wish to show here that by relabelling the a r ray it is easy to relate the new cri terion 
with a theorem of Hermite on factors of binomial coefficients. We shall also generalize to a 
displaced Fibonomial a r ray . The case for a rb i t ra ry rectangular a r rays of extended coeffi-
cients is treated. 

355 
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2. THEOREMS OF HERMITE 

According to Dickson's History [2, p. 272] Hermite stated that 

(2.1) ^ 
(m 

and 

<"> Srri7Hr|(n) 

where (a,b) denotes the greatest common divisor of a and b. Proofs were given by 
Catalan, Mathews, and Woodall according to Dickson. What is more , there are extensions 
to multinomial coefficients and Ricci [5] noted that 

(2.3) -pr-j L--7 = 0 mod T r—; ? , where a + b + ••• + c = m . 
a. D. • • • c. ^a, D, * * , c) 

These theorems have been used in many ways to derive resul ts in number theory. For 
example, Eq. (2.1) gives us at once that 

0 
for each k with 1 ^ k ^ p - 1 provided that p is a pr ime. This has been used in various 
proofs of WilsonTs criterion and Fe rma t ' s congruence. From (2.2) we obtain at once that 

n + 1 m 
i. e. , the numbers generated by 

1, 1, 2, 5, 14, 42, 132, 429, 1430, ••• are all integers. This sequence, the so-called 
Catalan sequence, is of considerable importance in combinatorics and graph theory, and the 
reader may consult the historical note of Brown [l] for details . 

For the sake of completeness we wish to include proofs of (2.1) and (2.2) to show how 
easily they follow from the Euclidean algorithm. 

By the Euclidean algorithm we know that there exist integers A and B such that 

(m,n) = d = mA + nB . 
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Therefore 

ri (m - l)(m - 2) ••• fan - n + 1) / m \ A , / m - l \ _ _ 

so that, upon multiplication by m we have 

• ( - ) 

mE , 

from which it is obvious that 

f|(») 
as stated in (2.1). This is essentially Hermite fs proof [3, 415-416, Letter of 17 April 1889], 
Similarly, there exist integers C and D such that 

(m + l ,n ) = d = (m + 1)C + nD . 

Rearranging, 

d = (m - n + 1)C + (C + D)n . 

Therefore 
, m(m - 1) * • • (m -£ J ^ L = W c + ^ ^ C + D j c ^ F . a n l n t e g e r , 

whence on multiplying by m - n + 1 we have 

(m - n + 1)F , 

so that 
m n + 1 I (m\ 

I \[n) 

as stated in (2.2). HermiteTs proof may be applied to other s imilar theorems. 
The usefulness of Hermite !s theorems suggested to me that one might get par t of the 

resul ts of Mann and Shanks from them. 

3. FIRST RESTATEMENT OF THE CRITERION 

Leaving the a r ray arranged as before, it is easy to see that we may restate the con-
dition of Mann and Shanks in the form 
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(3.1) k = prime if and only if n ( n ) 
\k - 2ny 

for all integers n such that k /3 ^ n ^ k /2 . If we take all entr ies in the a r r ay other than 
the binomial coefficients to be zero , we can say nfor all n. M 

By Hermite 's theorem (2.1) we have in general 

I (k - 2n) (n,k - 2n) 

for all integers 2n ^ k ^ 3n. Equivalently, 

(n,k - 2n)(. " ) = nE , ^ k - 2n) 

for some integer E. Let k = pr ime. Then, except for n = k, nj'k, whence njte - 2n. 
But this means that njf(n, k - 2n), so that n must be a factor of 

\ k - 2n J 

The case n = k offers no difficulty since we are only interested in k /3 ^ n ^ k /2 . The 
converse, that k must be prime if n is a factor of 

( n ) 

for every n can be handled along the lines of [4]; 

1 ( n ) 
y k - 2n J 

when 2|k or 3|k so one must consider pr ime columns that occur for k of form 6j + 1. 

4. SECOND RESTATEMENT OF THE CRITERION 
Arrange the binomial coefficients in the usual array; k = 0, 1, • • • , n on the n row: 

1 

1 1 
1 2 1 

1 3 3 1 
1 4 6 4 1 

1 5 10 10 5 1 
1 6 15 20 15 6 1 
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It is easy to see that the criterion may be stated as follows: 

for every 

k = 0, l f 

(4.1) 2n + 1 = pr ime if and only if n - k f f _ ~ . 1 
I \̂ 2k + i y 

Since 2n ^ prime for n ^ 1 we may ignore the case whether 

»-H("ik)-
Again, Hermite !s theorem (2.1) is the clue for the proof that n - k is a factor when 

2n + 1 is a pr ime. For (2.1) gives us in general 

n - k 
(n - k5 2k TTj J ^2k + iy 

for all integers 0 ^ k ^ — 5 — . Equivalently? 

( 2
n k ' +

k l ) = ( n (n - k, 2k + D ( 2k + 1 j = ( n * k ) E ' 

for some integer E. Suppose 2n + 1 = pr ime. If n - k | 2k + 1, then n - k.J 2k + 1 + 
2(n - k), i. e. , n - k j 2n + 1, which is again impossible so that n - k^(n - k, 2k + 1), 
whence we must have 

n " k 2k + l ) a S d e s i r e d " 

5. QUESTIONS 

It would be of interest to see whether (2,2) implies any similar resul ts . We find in gen-

era l that 

and 

/ r o \ n - 3k j / n - k \ - n ^ i -̂ n - 1 
(5'2) (n - k i- i, 2k *1> I (2k + i j f 0 r ° * k * - S - • 

In (5.1) let n - 3k j (n - k + 1, 2k +1) . Then n - 3k | n - k + 1 and n - 3k | 2k + 1. 
But n - 3 k | n - k + l implies also n - 3k j n - k + 1 - (n - 3k) or again n - 3k J 2k + 1. 
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If then 2k + 1 = pr ime we again find that n - 3k must divide the binomial coefficient, and 
this gives us 

(5.3) 2k + 1 = prime implies n - 3k ( " * 1 for all n ^ 5k + 1 . (2k V l ) f01 

It is easy to find examples of composite 2k + 1 such that n - 3k is not a factor of the binom-
ial coefficient; e.g. , take k = 7 and n = 24: 

vT(s) 
Other possibilities suggest themselves. Letting n - 3k | (n - k + 1, 2k + 1) gives again 

n - 3 k | n - k + l whence also n - 3k j 3(n - k + 1) - (n - 3k) or n - 3k | 2n + 3. If we then 
take 2n + 3 = prime we again obtain a useful theorem. 

It seems clear from just these samples that the theorems of Hermite can suggest quite 
a variety of divisibility theorems, some of which may lead to cr i ter ia s imilar to that of Mann 
and Shanks. Whether any of these have any strikingly simple forms remains to be seen. One 
possibility suggested by (2.2) is that 

/ n + k - l \ 
V k / (n + k,k) f" £ " I = nE 

for some integer E, from which we may argue that under certain hypotheses n divides 

("i-1) 
Result (5.3) is related to a theorem of Catalan [2, p. 265] to the effect that 

ml n! J (m + n - 1): 

provided (m,n) = 1. 

Finally we wish to recall that some of the results here a re related to a problem posed 
by Erdos (with published solution by F. Herzog) [6] to the effect that for every k there ex-
is t infinitely many n such that (2n)!/nl(n + k)i is an integer (the case k = 1 yields the 
Catalan sequence). In fact Erdos claimed a proof that the set of values of n such that this 
ratio is not an integer has density zero. 

6. FIBONOMIAL TRIANGLE 

It is tempting to try and extend the primality criterion to a r rays other than the binomial. 
Consider the a r ray of Fibonomial coefficients ofHoggatt [7] displaced in the same manner as 
the a r ray of Mann and Shanks: 
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1 

3 
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6 

1 

11 

3 

5 

12 

1 

15 

1 

13 

15 

8 

14 

5 

40 

1 

15 

1 

60 

13 

16 

40 

104 

1 

18 

361 

19 

8 1 
260 260 104 
21 273 1092 

1 34 

Here the Fibonomial coefficients are defined by 

F F -n n-1 
F F * k * k - l 

•n -k+1 = 1 

where F ,- = F + F - , n-KL n n - 1 with F0 = 0, F4 = 1, being the Fibonacci numbers. In the dis-

placed a r ray , the row numbers are made to be the corresponding Fibonacci numbers. From 
the above sampling, as well as from extended tables, one is tempted to conjecture that a col-
umn number is prime if and only if each Fibonomial coefficient in the column is divisible by 
the corresponding row Fibonacci number. In other words, it appears that 

(6.1) k = prime if and only if F k - 2n for all k /3 < n < k/2 . 

Now as a mat ter of fact the exact analogue of Hermite 's (2.1) is t rue: 

(6.2) w: 
" m u 

1n 

The proof is an exact replica of Hermite 's proof. What is more , Eq. (2.1) holds true 
for perfectly arbi t rary a r rays in the sense defined in [8], That i s , take an arbi t rary sequence 
of integers A such that A0 = 0 and An f 0 for n ^ 1, and define generalized binomial 
coefficients by 

(6.3) I n / _ n n -1 n-k+1 

1M Vk-i-Ai 
with h = i 

If all of these turn out to be integers, then we have 
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A 
(6.4) ( A T A ) m ' n 

However, the corresponding form of (2.2) is in general false. The reason is that the step 

(A § 1, A ) = d = CA ^ + DA = C(A ^ - A ) + (D + C)A m+1' n m+1 n m+1 n n 

can be applied only if also 

m+1 n m-n+1 

or something close. Thus it is not at once clear that the Fibonomial Catalan numbers 

| 2n 
| n 
F n + 1 

are integers. The first few of these are in fact 1, 1, 3, 20, 364, 17017, etc. 
However, having (2.1) extended to (6.4) is a good result because in order to obtain a 

theorem such as 

(6.5) k = prime implies A k _ 2 v for all k /3 < n < k/2 

it is only necessary to be able to prove that 

(6.6) (A , A k _ 2 n ) = 1 when k = pr ime, and k /3 < n < k/2 . 

For the Fibonacci numbers this is easy because of a known fact that in general 

(6-7) <V V = F(a,b) • 

Thus we have (F , F, _2 ) = F / , 2 v so that for k = prime we know as in (3.1) that 
(n, k - 2n) = 1, and since FA = 1 we have the desired result. The Fibonomial displaced 
a r ray cri terion then paral lels the ordinary binomial case studied by Mann and Shanks. 

Quite a few standard number-theoretic resul ts have analogues in the Fibonomial case. 

7. FIBONOMIAL ANALOGUE OF HERMITE'S SECOND THEOREM 

Although we have just indicated that divisibility theorem (2.2) does not hold in general 
for the generalized binomial coefficients, we now show that it does hold for the Fibonomial co-
efficients. Thus we now prove that 
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F 

363 

" m-n+1 
(Fm+l' V 

We need to observe that (a - b,b) = (a,b). This follows, e. g. , from an easily proved 
stronger assert ion that (a + c,b) = (a,b) when b|c. This lemma is used to modify the 
proof given by Hermite for (2.2), as follows. Let (F - , F ) = d. Now, by (6.7) and our 
lemma, 

d = ( F m + l ' V = F ( m + l , n ) = F
( m - n + l , n ) = <Fm-n+l> Fn> = x F m - n + l + ^ 

for some integers x ,y . Therefore 

F F n m m - 1 
F F n . . . F 1 n n-1 1 

m-n+2 J m . , 
= x < n + y / n - l 

= E, some integer, 

and by multiplication with F - we obtain 

E-F m-n+1 

•'« i» l • whence F ,, / d is indeed a factor m-n+1 
A s a valuable corollary we get the fact that the Fibonomial Catalan numbers are inte-

gers; this follows at once from (7.1) by setting m = 2n, and noting that (F - , F ) = 1, 
so that we have 

(7.2) n+1 

The Fibonomial Catalan sequence 1, 1, 3, 20, 364, 17017, 4194036, ••• generated by 

2n 
UL 

n+l 

is the exact analogue of the familiar Catalan sequence 1, 1, 2, 5, 14, 42, 132, 429, 1430, 
4862, 16796, ••• generated by 

(n + 1) 

A brief history of the Catalan sequence is given in [1]. A nice proof of (6.7) is given in [9]. 
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8. SOME CONGRUENCES FOR PRIME FIBONACCI NUMBERS 

It is not known whether there exist infinitely many Fibonacci numbers which are p r imes , 
but we may easily obtain congruences which such pr imes satisfy. 

Let F be a prime number. Then (F , F ) = 1 for 1 ^ n ^ m - 1. Thus from m m n 
(6.2) we obtain: 

(8.1) If F m = pr ime, then F J ^ l f o r l ^ n ^ m - l . 

This is a Fibonacci analogue of the fact that PI ( E j for 1 - k ^ p - 1 if p is a pr ime. 
Now, it is known [10] that 

(8.2) £ ( _ 1 ) k (k + l ) /2 j m F - - l _ k = 0 > m ^ 2 . 

k=0 ' 

This generalizes such relations as F ,- - F - F . = 0, F2 - 2F2 - 2F2 . + F2
 n = 0, & a+1 a a-1 a+1 a a-1 a-2 ' 

etc. See also Hoggatt [7]. Brother Alfred gives a useful table [10] of the Fibonomial coef-
ficients up to m = 12. Identity (8.2) may be used with (8.1) to obtain an interesting congru-
ence; for every term in (8.2) is divisible by F when F is a pr ime, except the first and 
las t t e rms . Thus we obtain the congruence: 

(8.3) If F = pr ime, then F m _ 1 = _ ( _ 1 )
m ( m + 1 ) / 2 p1*1"1

 ( m o d F ) m > 2 , 
m r » a a _ m m " » 

for all integers a. A special case is of interest . Let a = m + 1 and we get: 

(8.4) If F m = pr ime, then F™~* = _ ( _ D m ( m + 1 ) / 2 ( m o d F^)f m > 2 . 

Another resul t useful for deriving congruences is the identity 

2m+l 

where the L 's are Lucas numbers , defined by L0 = 2, Lj = 1, and L - = L + L _-. 
The identity was noted in Problem H-63 of Jerbic [11]. 

If we apply the extended Hermite theorem (8.1) to this, we obtain: 

m 
(8.6) If F 2 m + 1 = pr ime, then T T L £ k = 2 (mod F 2 m + 1 ) . 

k=0 
[Continued on page 372. ] 



A GENERALIZED FIBONACCI NUMERATION 

E.ZECKENDORF 
liege, Belgium 

The sequence of Fibonacci numbers is defined by F0 = 0, Fj = 1, and F 9 = F + 
n+2 n 

F ,- (n ^ 0), and it is well known that 

m 
(1) F = y i J , where m is the greatest integer s§(n - l ) / 2 . 

s=0 

It can be shown, if we allow negative values of the subscript n that 

(2) F = (-l)11"1 . F . 
-n n 

Any sequence satisfying the recurrence relation 

v n+2 n n+1 

is called a "generalized Fibonacci sequence. " As soon as the values of any two consecutive 
t e rms t = p and t - = q have been chosen, one can prove by induction that 

( 4 ) U = P - F s - l + ^ F s " * t n - s = ( P - F s + l - ^ V - ( - 1 , S ' 

Note that the subscript n is assumed to run from -<*> to + °o in the generalized Fibonacci 
sequences as well as in the sequence of Fibonacci numbers. 

a. Whenever t and t ,. have the same sign, all t e rms t (s ^ 2) a re positive n n+i n+s 
o r negative and their absolute value increases with s. 

Let us take, for example, the sequence t = a , where n £; (-oo, +<4 and a is a pos -
itive r e a i n u m b e r ^ls eve r^ te rm is positive and they increase to infinity. 

(Since ^ = 1, tt = a and t2 = a2, a must be the positive root of the "quadratic 
Fibonacci equation" a2 - a - 1 = 0, that i s , 

1 + <sf 5 

Note that the sequence t = |3 , where 

365 
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is the negative root, also satisfies the recurrence (3).) 
b. If one of the te rms t and t - is positive and the other negative, and if we a s -
that It I > It J , then I t , J = It I - It J and the following termshav^e alternated I n| J n+1) | n+2| | n| | n+l| & sume 

signs. 
Let us take, for example, the sequence t = j3 , where n c (-**>, +°°) and ]8 is neg-

ative and smaller than 1: the te rms of this sequence have alternated signs and their abso-
lute value tends to zero when n goes to infinity. 

c. In a generalized Fibonacci sequence where positive and negative t e rms alternate3 

if there is a term t ,- such that It , J > It I, both t ,., and t , 0 will have the same n+1 ! n+l| I nj n+1 n+2 
sign. So t - will s tar t an infinite sequence all of whose terms are either positive or neg-
ative, with their absolute values increasing to infinity. 

d. In a sequence with alternating positive and negative t e rms , if there is a te rm t ^ 
such that It J = It j , the next term is 0; the te rms of this sequence are clearly multiples 
of the Fibonacci numbers. 

Except the sequencex a and 0 defined above, the generalized Fibonacci sequences 
have those two infinite par ts ; the lower part with alternating terms decreasing in absolute 
value, followed by the upper part whose terms have the same sign and increase in absolute 
value. 

Let e denote any positive or negative real number. It can be shown that a sequence 
where to = a0 and fy = a1 + e has to s tar t with alternating positive and negative t e rms : for 
e arbi t rar i ly small , and for n large enough, in 

t = a-n + l-lf-1. e . F 
-n n 

€• F 
n 

^ -n > a 

On the other hand, a sequence where to = j3° and tj = jS1 + e ends with terms increas -
ing in absolute value, all of them being either positive or negative: for e arbi t rar i ly small 
and for n large enough, in 

t = j3n + c • F , I e • F n n j n 

We shall call n p r imary generalized Fibonacci sequences' ' those sequences which have 
at least one te rm equal to 1. It is no loss of generality to assume t0 = 1. (Among Fibonacci 
numbers , three (F - , Fj and F2) are equal to 1: any may be the chosen t0. ) For these 
sequences we may write t0 = 1, ti = q and (4) becomes 

(5) t s = Fs_x + q • F g and t_s = (F f l + 1 - q • F g ) • (-1)S . 

In this paper, we intend to express the natural numbers 1, 2, 3, • • • as sums of d i s -
tinct non-consecutive te rms of pr imary generalized Fibonacci sequences and we shall obtain 
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a coherent system of numeration that could be used in arithmetical operations. 
We assumed t0 = 1; all other te rms are still undetermined; they might all be posi -

tive or negative or they might alternate in sign, and their values might increase or decrease; 
the recurrent relation (3) will be the only rule. Thus their expression is of an algebraic na-
ture; the value of to only has been fixed. Any other given term may take different values 
and in general, it is not possible to determine the sum of several given t e r m s , when the s e -
quence they are taken from is unknown. We shall see that the groups of t e rms belonging to 
the Generalized Fibonacci Numeration constitute an exception. 

The natural numbers will be constructed by successive additions of the unit t0. More 
precisely, two rules will be used, one for consecutive t e r m s , namely t + t - = t 9 and 
the other for equal t e rms , namely 2 t = t + ( t - + t 0 ) = t ,- + t r t . M J x x x-1 x - 2 ' x+1 x-2 

Two different notations are possible for a number N. 
In the f irst one, let t be the te rm with the highest subscript and t that with low-

est subscript used in the expression of N. For each of these te rms and for all t e rms be-
tween t and t (taken from left to right), l e t u s u s e the digit 1 for the t e rms involved 
in the expression of N and the digit 0 for every other term. For convenience of reading, 
we shall distinguish by punctuation the digit corresponding to t0 and arrange the other digits 
in groups of four. 

In the second one, the te rms involved in the expression of N only a re listed as sub-
scripts of the le t ter t . 

For instance, both 10.0100.0.1001.01 and t6 j3 J_1,)_4? _6 will represent the number 
N = 23. 

Later on, when arithmetical operations are performed, it may be convenient to avoid 
the let ter t, the expression of N being then shortened to the sequence of subscripts of t . 

Applying these ru les , we write successively 

2 = to + to = tj_ 9 _2 

3 = t i , -2 + t0 = k,-2 
4 = t 2 j_2 + to = t 2 j 0 , - 2 
5 = t 2 , o , - 2 + t0 = t2 + (tx + t_2) + t_2 = t3 , - l , -4 
6 = t 3 s _ l 9 _ 4 + t0 = t 3 j l j _ 4 

7 = t 3 , l , - 4 + ^ = t4 9_4 

These numbers are the groups of te rms belonging to the Generalized Fibonacci Numeration 
(G. F . N . ) : they represent always the same number and they do not depend on the pr imary 
generalized Fibonacci sequence which has been chosen. The other groups of t e rms do not 
have this property. One should be able to recognize those part icular groups of t e rms , and 
so we shall describe them. 
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We have first to explain how the joined Fibonacci t e rms taken from various undeter-
mined sequences can yield the same value when added up in a formula of the G. F . N. 

The above formulas were constructed by successive additions of the unit t0 and, ac -
cording to (4) and (5), 

(6) to = F_! + q . F0 = 1 . 

Let us look for the part played by to = F_i = 1 and fy = q • F t = q, respectively in the 
construction of the numbers in the G. F . N. 

Formula (6) consists of two par t s : the first par t , F ~i = 1, generates the formula for 
N when the te rms t a re given the value F _... The par t played by t^ = q is 0; it is 
represented in to by q»F0 and in N by a s imilar expression, when the te rms t are given 
the value F . n 

Example a. For tfl = F ^ , t ^ g ^ _4 j_6 = 23: 

^ 3 , - 1 , - 4 , - 6 = T5 + F2 + F_2 + F_5 + F_7 

= F 7 + 2 F 5 according to (2) and 
= F 8 + F 3 = 23 . 

Example b. For t n = F n > t6 j 3 }_1 } _4j _6 = 0: 

t 6 ,3 , - i , -4 , -6 = F 6 + F 3 + F_i + F_4 + F_6 

= F 3 + Fj_ - F4 according to (2), then by adding F0 = 0: 
= F 3 + FA + F0 - F 4 = F 4 - F4 = 0 . 

We shall now describe the numbers in the G. F . N. The reader is advised to construct 
the table of the first 50 natural numbers represented by the subscripts of t. (This table can 
also be found hereafter . ) To be c learer , all t e rms with the same subscript will be written 
in the same column of the table when they are involved in the expression of several numbers. 

Description of the numbers in the G. F. N. Every number is built from one or more 
independent groups of t e rms . F i r s t we have to describe these groups. 

A. The symmetric groups contain 

a) the term to = 1, 
b) the symmetric pai rs with even subscripts (e.g., t2, _2, t 4 j - 4 , • • • )• These pairs 

stand for the numbers 3, 7, 18, • • • , that is the Lucas numbers L 2 . One or more sym-
metr ic group (e. g. , t6,0,-6» t S j 4 j _ 4 j _ 8 ) . 

When some symmetric pairs and the te rm to get together without gap, they 
form the saturated symmetric groups ( e . g . , t 6 j 4 > 2 ,o , -2, -4,-6)- These saturated groups 
stand for the numbers 4, 11, 29, • • • , that is the numbers L~ - . 

(Actually, the sum of a symmetric pair and of the corresponding saturated sym-

metr ic group gives r i se to the next symmetric pair : t6 j_6 + t 6 j 4 j 2 j 0 , -2, -4, -6 ~ ^8, -8 •) 
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B. The asymmetric groups are distinguished by their extreme t e rms , the upper one 
with a positive odd subscript u(tu) and the lower one with negative and even subscript u + 1 
^-(u+1)^8 T ^ e i n t e r m e d i a t e t e rms characterize the variet ies of asymmetric groups: 

a) In the typical asymmetric group, all intermediate te rms have negative odd sub-
scripts following one another without gap from t 1 to t . v These numbers ar ise by 
adding the unit to to a saturated symmetric group: 

to + to = t i s _ 2 ; t 4 s 2 9 o s - 2 , - 4 + to = t 5 j _ l s _ 3 s _ g . 

b) In the usual asymmetric group, one or more intermediate t e rms have a positive 
subscript. These te rms replace the symmetric te rms with negative odd subscript. By ad-
ding the saturated symmetric group t , the intermediate te rm t0 - r e -

zn, zn— z, • • • , — zn zn-rl 
places the te rm with negative symmetric subscr ipt : 

^ , - 1 , - 3 , - 5 , - 7 , - 1 0 + t 4 9 2 , 0 s - 2 9 - 4 = ^ 9 , 59 - 1 s - 3 9 - 7 9 -10 «• 

So it is possible to get the asymmetric saturated group (e. g . , t9j 7j 5 j 391 $ _10) where all the 
intermediate t e rms have undergone this substitution. 

The intermediate te rms of the usual asymmetric group are the next ones: t - , 

^ 3 ' "° 9 ^ ( 1 1 - 2 ) " 

c) In the altered asymmetric group, the presence of an intermediate te rm with pos -
itive even subscript coincides with the suppression of the te rms of odd and lower subscript 
(hi absolute value). To change an asymmetric group to such an extent, one has to add the 
asymmetric saturated group, immediately pr ior to the new te rm with even subscript: 

t i l , 9 , - 1 , - 3 , - 5 , - 7 , - 1 2 + t5s 3,1,-6 = tl ls 9 j 6 j _ 7 ? _ 1 2 . 

C. The associated groups. We have seen that symmetric pa i rs can join with or with-
out tg in order to form symmetric groups. Symmetric pai rs may also surround the te rms 
of an asymmetric group: 

t6,-6 + ^ , 1 , - 4 = t 5 j 3 , l J _ 4 , - 6 • 

Usually, nothing of this type occurs with asymmetric groups: the presence of the in-
termediate t e rms prevents it. Yet in the altered asymmetric group, the interval between the 
new te rm with even subscript and the t e rms with negative subscripts left over, this interval 
may be adequate for another group of t e rms : 

t 9 , 6, - 7 , - 1 0 + ^ 4 , 0 , - 4 = t 9 j 6, 4, 0 , - 4 , - 7 , - 1 0 * 

Estimation of the numbers in the G. F. N. In presence of joined generalized Fibonacci t e rms , 
when we have identified a number of the G. F . N. , we have to find out its precise value. 
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A pr imary generalized Fibonacci sequence may be chosen so as to assign a fixed value to 
each term as we did with Fibonacci numbers. However, in the next step we had to add or 
subtract the t e rms with negative subscript, according to their parity. The difficulty in r e -
storing the formula is still more significant. 

Let us try to estimate these formulas by another method involving the t e rms with non-
negative subscript. The precise estimation of a number has to be made by a reckoning p ro -
cess , in spite of the undetermined value of the components. 

a) We did assign to to the value 1 and to the symmetric pa i rs the values 3, 7, 18, 
• • • , which are those of L2, L4, L§, • • • , in the sequence of Lucas numbers. Let us relate 
these values to the t e rms with positive subscript t2, t4, t6, ••• in these pa i r s . Then we 
may disregard the te rms with negative subscript and all the symmetric groups will be cor -
rectly estimated. 

b) Is it likewise possible to estimate the asymmetric groups? 
1. Let ti = 1, t3 = 4, t5 = 11, ••• in other words, the Lucas numbers Ll 9 L8, 

L5, • • •; these values were already assigned to the symmetric saturated groups; they 
are an underestimation for the typical asymmetric groups obtained by adding the unit 
t0 to the symmetric saturated groups. 

2. An intermediate term with positive subscript is substituted to the one with n e g -
ative subscript by adding a symmetric saturated — and thus correctly estimated — 
group. Hence the underestimation of the asymmetric group pers i s t s . 

3. When an underestimated asymmetric group is altered by adding an asymmetric 
saturated group that is likewise underestimated, an intermediate term with positive 
and even subscript appears: this te rm makes up for the two underestimations of one 
unit t0. 

As a matter of fact, the values Ll 9 L3, • •• , L 0 _1 have been assigned to the 
te rms with positive subscript fy, t3, •• • , t n and the value L to the new term 
with even subscript, t„ . Now, L ? - (Lx + L3 + • • • + L 2 _. ) = L0 = 2. 

Therefore, the altered asymmetric group is correctly estimated and the fore-
seen estimation of the number N is possible. 

i. To the existing t e rms with positive subscript, we assign the next values: to 
to the value 1; to the next t e rms fy, t2* t3, • •• , respectively, the values 
1, 3, 4, 7, • - • of the Lucas numbers. 

ii . It remains to add one unit to the sum of these estimations when the number 
N contains an unaltered asymmetric group. A single one only can exist in 
the expression for the number N. Therefore, this unit depends on the te rm 
with lowest positive subscript: when this subscript is odd, the unit has to be 
added. 

Expression of a natural number by the G. F . N. We now possess all required elements 
to find such an expression. Let us consider, for instance, the numbers 59 and 87. 
59 = t8 + t5 + 1 t5 being the t e rm with lowest positive subscript, the unit is needed 

to correc t the underestimation. 
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t8 belongs to the symmetric pair t8 „8; t5 belongs to the typical symmetric group t5 _j _3 _g6 

Hence the formula: t8 5 _4 _3 _6 _8 . 

87 = tq + 11 We cannot use t5: 5 being odd5 one unit more would be needed to 
correc t the underestimation, 

87 = t9 + t4 + 4 For the same reason, we cannot use t3 and the use of adjoining 
t e rms is not allowed. 

87 = t9: + t4 + t2 + 1 

87 = t9 + t4 + t2 + t0. 
The las t unit has to be t0 

t9 and t4 belong to the altered asymmetric group t9 4 - 5 7 to : h ^ d h belong to the 
saturated symmetric group t2 o -2 • Hence the formula: t9 j4 j2so,-2j-5s-7j-io» 

Remark. The recurrence relation (3) prevented us from using adjoining t e rms . An 
investigation of the numbers in the G. F . N. will show one more peculiarity of this numeration: 
t0 does never follow directly a t e rm with odd subscript. 

THE FIRST 50 GENERALIZED FIBONACCI NUMBERS. List of Subscripts. 
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5 
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7 
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9 

10 

11 
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13 

14 

15 

16 

17 

18 

19 
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5. 

5. 

: 5. 

5. 

5. 

6 . 

6 . 

6 . 

0 

1. . -2 

2 . 

2 .0 

3 

3 1. 

4 

4 .0 

4 1. 

4 2 . 

4 2 . 0 

. 

1. 

2 . 

2 .0 

3 

3 1. 

. 

.0 

1. 

-2 

-2 

-1 

. -2 

-2 

. -2 

,-1 

.-1 

-2 

-4 
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-4 
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-4 

-4 

-4 

-3 

-3 

-3 

-3 

-6 

. -6 

. -6 

. -6 

-6 

-6 

-6 

-6 

-6 

21: 

22: 

2.3: 

24: 

25: 

26: 

27: 

28: 

29: 

30: 

31: 

32: 

33: 

34: 

35: 

36: 

37: 

38: 

39: 

40: 

6 

6 

6 

6 

6 

6 

6 

6 

6 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

2 . 

2 .0 

3 

3 1. 

4 

, 4 .0 

. 4 1. 

, 4 2 . 

, 4 2 .0 

, 

1. 

2 . 

2 .0 

3 

3 1. 

4 

4 .0 

4 1. . 

4 2 . . 

4 2 . 0 . 

-1 

-1 

-1 

. 

-2 

-2 

-2 

-2 

-2 

-2 

-2 

-2 

-3 

-3 

-3 

-3 

-6 

-6 

-4. -6 

-4. -6 

-4. -6 

-4. -6 

-4. -6 

-4. -6 

-4. -6 

.-5 

.-5 

.-5 

.-5 

.-5 

.-5 

.-5 

.-5 

.-5 

.-5 

.-5 
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41: 7 
42: 7 
43: 7 
44: 7 
45: 7 

5. 
5. 
5. 
5. 
5. 3 

• • 
1. . 

2 . . 
2 . 0 . 

. . 

-1 

-1 

- 3 
-3 
-3 
-3 

-8 
-8 
-8 
-8 
-8 

46 
47 
48 
49 
50 
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[Continued from page 364. ] 

Example: F 5 = 5 and 2-3-7-18-47 = 35,532 = 2 (mod 5) . 

The congruence is reminiscent of the congruences of Wilson and Fermat . 
It is expected that many other interesting and novel consequences follow from the ex-

tended Hermite theorems (6.2) and (7.1) giving arithmetic information about Fibonacci, Lucas 
and other s imilar numbers. 
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DISTHIBUTION OF FIBONACCI NUMBERS MOD 5k 

HARALDNIEDERRE1TER 
Southern Illinois University, Carbondale, Illinois 

It was shown by L. Kuipers and Jau-shyong Shiue [2] that the only moduli for which the 
Fibonacci sequence \ F }, n = 1, 2, • • • , can possibly be uniformly distributed are the 
powers of 5. In addition, the authors proved the Fibonacci sequence to be uniformly d is t r ib-
uted mod 5, and they conjectured that this holds for all other powers of 5 as well. In this 
note, we settle this conjecture in the affirmative. Thus we show, in part icular , that the F ib-
onacci sequence attains values from each residue class mod 5 , and each residue class 
occurs with the same frequency. The weaker property of the existence of a complete residue 
system mod m in the Fibonacci sequence was investigated ear l ie r by A. P. Shah [3] and 
G. Bruckner [1]„ For definitions and terminology we refer to [2] . 

Theorem. The Fibonacci sequence { F } , n = 1, 2, *•» , is uniformly distributed 
mod 5 k for all k s> 1. 

Before we s tar t the proof, let us collect some useful prel iminaries . It follows from a 
result of D. D. Wall [5, Theorem 5] that { F }, considered mod 5 , has period 4»5 . 

n k 
Therefore it will suffice to show that, among the first 4»5 elements of the sequence, we 
find exactly four elements, or , equivalently, at most four elements from each residue class 
mod 5 . It will also be helpful to know that, for j ^ 1, the largest exponent e such that 
5 e divides (2j + 1)1 satisfies (see [4]): 

00 

(1) e 
i=l *- u - i=i 

We note the formula 

-i^r] «Eaf i = a-fL<i 

i=0 

with non-negative integers r , s, and t, and f n J = 0 for j > n, which can be quickly 
t \ / r~t-s r s 

verified by comparing the coefficients of x in (1 + x) = (1 + x) (1 + x) . 
Proof of the Theorem. We proceed by induction on k. For k = 1, the resul t was a l -

ready shown in [2] . Now assume that, for some k ^ 2 and every integer a, the congruence 
k-1 k-1 

F = a (mod 5 ) has exactly four solutions c with 1 < c ^ 4 • 5 . If n is a solution 
k k k-1 

of F s a (mod 5 ), 1 ^ n ^ 4 • 5 , then F = a (mod 5 ), hence by periodicity: 
k-1 n 

n = c (mod 4-5 ) for one of the four c f s . We complete the proof by showing that each k value of c yields at most one solution n. For suppose we also have F = a (mod 5 ), 
373 
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k lr-1 

1 < m ^ 4-5 , m = c (mod 4 .5 v ), and WLOG n > m. Then, in part icular , F = F 
k k-1 n m 

(mod 5 ) and n = m (mod 4e5 ). Using the well-known representation 

F = 2 n 

where ( 1 = 0 for r > n, we ar r ive at 

1 00 . . 

5=0 V ' 

k-1 k-1 

j=0 V I ] = o \ / 

4 . 5^" ! ^ 
Since 2 = 1 (mod 5 ) by the Eule r -Fermat Theorem, we get 

k-1 

(3) V > l L \ \ - (™$\ , 0 (mod 5k) ^ ( ^ , ) - ( , ^ ) - . 

We claim that, for j — 1, the corresponding term in this sum is divisible by 5 . By (2): 

2j+l 

^ ((„••!)-(„-•)) - g •• (" 1 % ••?.,) • 

We look at 5J ( n ~ m ) . From (1) we see that cancelling out 5Ts from it against 5-* leaves 
* 1 ' k -1 

at least one power of 5 in the la t ter number. Since there is a factor 5 in n - m, we 
get the desired divisibility property. Thus, from (3), we a re left with the term correspond-

k k-1 
ing to j = 0: n - m = 0 (mod 5 ' ) . Together with n = m (mod 4«5 ), this implies n -s k m (mod 4-5 ) or n = m. 
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A DISTRIBUTION PROPERTY OF THE SEQUENCE OF FIBONACCI NUMBERS 

LAWREWCE KUIPERS and JAU-SHYOWG SHSUE 
Southern Illinois University, Carhondale, Illinois 

Let { F } (n = 19 2, • • «) be the Fibonacci sequence. Then in order to prove the main 
theorems of this paper we need the following lemmas (see [2] ). 

Lemma 1. Every Fibonacci number F, divides every Fibonacci number F , for n = 
1, 2f . - . 

Lemma 2. (F , F ) = F , v where (x,y) denotes the greatest common divisor of m n (m,n) J & 

the integers x and y. 
Lemma 3. Every positive integer m divides some Fibonacci number whose index does 

not exceed m2. 
Lemma 4. Let p be an odd prime and f- 5. Then p does not divide F . 
Proof of Lemma 4. According to [1] , p. 394, we have that either F - or F - is 

divisible by p. From the well known identity F - F - - F2 = (-1) , we derive that p V F . 
Definition 1. The sequence of integers ( x } (n = 1, 2, • • • ) is said to be uniformly 

distributed mod m where m ^ 2 is an integer, provided that 

..Jim ~ • A(N, j , m) = — , 
N - + « N J m 

for each j , j = 0 , l , • • • , m - 1, where A(N, j , m) is the number of x , n = 1, 2, • • • , 
N, that a re congruent to j (mod m). 

Theorem 1. Let { F } (n = 1, 2, • • • ) be the Fibonacci sequence. Then { F } is 
uniformly distributed mod 5. 

Proof. Let all F (n = 1, 2, •• •) be reduced mod 5. Then we obtain the following 
sequence of least residues: 

1, 1, 2, 3, 0, 3, 3, 1, 4 , 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2, 3, , -•-

Obviously, this sequence is periodic with the period length 20. Now evidently 

^ i r n ^ A . A(N, j , 5) = | for j = 0, 1, 2, 3, 4 , 

or , { F } is uniformly distributed mod 5. 
Theorem 2. Let { F } (n = 1, 2, • • • ) be the Fibonacci sequence. Then { F } is not 

uniformly distributed mod 2. 
Proof. This follows from the fact that the sequence of least residues of { F } is 1 , 1 , 

0, 1, 1, 0, - . . 
375 
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Theorem 3. Let { F } (n = 1, 2, • • • ) be the Fibonacci sequence. Then { F } is 
not uniformly distributed mod p for any prime p > 2 and ^ 5 . 

Proof. Let p be a prime >2 and ^ 5. Because of Lemmas 3 and 4 there exists a 
positive integer t ^ p such that F, = 0 (mod p). We may suppose that t is the smallest 
positive integer with this property. By Lemma 1, we have F, , = 0 (mod p) for k = 1, 2, 
• • • . Now there does not exist a positive integer q with kt < q < (k + l)t (k = 1, 2, • • •) 
such that F = 0 (mod p)f for otherwise there would exist an r (0 < r < t) with F = 0 
(mod p), which can be seen as follows. Let there be a q with the aforementioned proper-
ty, then by virtue of Lemma 2, we would have 

(FkfV = F(kt,q) = ° ( m ° d P>" 

Now write q = kt + r (0 < r < t) and therefore 

(kt,q) = (kt, kt + r) = (kt,r) < r < t . 

Because of the above property of t we have that 

A(N, 0, p) = 

where [a] denotes the integral par t of a, and A(N, 0, p) is related to the Fibonacci se -
quence (see Definition 1). Let 

»-r?i '*' 
with 0 < r < t. Then 

and therefore 
A(N, 0, p) = ILz_£ 

so 

-L.A(N, 0, p) = i - j L , 

N 1 ^ ^ - A ( N » ° . P> = T ( t * P ) 

for any prime p ^ 2 and f 5. Hence { F } is not uniformly 'distributed mod p for any 
prime p > 2 and ^ 5. 

Theorem 4. Let { F } (n = 1, 2, • • • ) be the Fibonacci sequence. Then ( F } is 

not uniformly distributed mod m for any composite integer m > 2 and m ^ 5 (k = 3, 

4, • • • ) . 
Proof. Suppose that { F } is uniformly distributed mod m for some composite inte-

ger m as indicated in the theorem. According to a theorem of I. Niven [ 3 ] , Theorem 5.1, 
[Continued on page 392. ] 



PERFECT N-SEQUENCES FOR N, N + . l , AND N + 2 

GERALD EDGAR 
Boulder, Colorado 

Frank S. Gillespie and W. R. Utz [ 1 ] define a (generalized) perfect n-sequence for m 
(where n ^ 2, m ^ 2) to be a sequence of length mn in which each of the integers 1 , 2 , 
3, • • • , m occurs exactly n times and between any two occurrences of the integer x there 
are x entr ies . Examples of perfect 2-sequences are numerous: 3 1 2 1 3 2 for m = 3 
and 4 1 3 1 2 4 3 2 for m = 4 are the simplest. However, the author knows of no perfect 
n-sequence if n > 2 . 

No perfect n-sequence for m exists if m < n [1]. (This is a direct corollary of 
Lemma 1, below.) It will be proved here that no perfect n-sequence for m exists if m = n, 
m = n + 1, or m = n + 2 (except for the perfect 2-sequences for 3 and 4), extending the 
resul t slightly. 

In a perfect n-sequence for m, if x is an integer and 1 ^ x ^ m, then there are n 
x ' s in the sequence. The positions in the sequence will be numbered, in order , starting at 

Hi 

the left, 1, 2, 3, • • • , mn. Let np(x, i ) n mean M the position of the i occurrence of the 
integer xM. The first occurrence of an integer will have special significance; let P = 
p(x , l ) . 

Example. In the sequence 1 7 1 2 6 4 2 5 3 7 4 6 3 5, p(6, l ) = P 6 = 5, p(4,2) = 11, 
P2 = 4, etc. 

Note that p(x,i) is meaningful if 1 < x < m and 1 ^ i < n, and P is meaningful 
if l < x ^ m. 

In a perfect n-sequence for m 

(1) p(x,i) = P + (x + l)(i - 1) (1 < x < m; 1 < i < n ) 

which follows from the recursive formula (for i > 2) 

(2) p(x,i) = p(x, i - 1) + (x + 1) . 

Theorem 1. There is no perfect n-sequence for n. 
Proof. Assume such a sequence exists . Then it has n2 entr ies . Also 

p(n,n) = P n + (n + l)(n - 1) = P n + n2 - 1 

so that P must be 1. n 
It is impossible that 1 < P - ^ n; otherwise p(n - 1, P - ) and p(n, P - ) a re 

meaningful and 
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p(n - 1, P . ) = P - + nP - - n = p(n, P . ) * ' n-1 n-1 n-1 F ' n-1 

using (1) and P = 1. But this is impossible since an n and an n - 1 cannot occupy the 
same position. 

It is impossible that n + 1 ^ P -, otherwise p(n - l ,n) ^ n2 + 1, but the largest 
position is n2. 

Now 1 ^ n - 1 ^ n (since n ^ 2) so that P - is a positive integer, and we have a 
contradiction. 

Theorem 2. There is no perfect n-sequence for n + 1, except the perfect 2-sequence 
for 3. 

Proof. Assume such a sequence exists . Then there a re n(n + 1) = n2 + n entr ies . 
Also, 

p(n + 1, n) = P n + 1 + n2 + n - 2 

so that either P n + 1 = 1 or P = 2. If P = 2, then p(n + 1, n) = n2 + n, the last 
position, but since a perfect sequence taken in reverse o rder is still a perfect sequence, this 
case is symmetrical to the case P - = 1. Hence only the case P - = 1 need be 
considered. 

It is impossible that 1 < P < n; otherwise p(n, P ) = p(n + 1, P ). It is impossible 
that n + 2 < P ; otherwise p(n, n) ^ n2 + n + 1. Therefore the only possibility is P = 
n + 1. Now we have P n + 1 = 1 and P = n + 1. 

It is impossible that 1 ^ P - ^ n - 1; otherwise p(n - 1, P - + 1) = p(n, P - ) . 
It is impossible that n + 1 ^ P 1 ^ 2n; otherwise p(n - 1, P - - n) = p(n, P - - n). It 
is impossible that 2n + 1 ^ P _..; otherwise p(n - 1, n) ^ n2 + n + 1. Therefore the only 
possibility is P _- = n. 

It is impossible that l ^ P 0 < n - 1; otherwise 
n-^ 

p(n - 2, P n 2 + 1) = p(n - 1, P n _ 2 ) . 

It is impossible that n ^ P :^2n - 1; otherwise 

p(n - 2, P n 2 - n + 1) = p(n - 1, P n 2 - n + 1) . 

It is impossible that 2n ^ P Q ^ 3n - 2; otherwise 
n— u 

p(n - 2, P n 2 - 2n + 1) = p(n - 1, P n 2 - 2n + 2) . 

It is impossible that P 0 = 3n - 1; otherwise p(n - 2,n) = p(n,n). It is impossible that 
3n ^ P 0; otherwise p(n - 2,n) :> n2 + n + 1. If n f 2, then 1 ^ n - 2 ^ n and P 0 n-2 v ' ~~ ' n-2 
is a positive integer, a contradiction. The only possibility i s therefore n = 2. 
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From these two theorems some patterns can be seen. They a re formulated in the fol-
lowing lemmas. 

Lemma 1. In a perfect n-sequence for m, if l ^ n - r ^ m , then 

P ^ mn - n2 + nr - r + 1. n - r 

In part icular , in a perfect n-sequence for n + i, P ^ n r + in - r + 1. 
Proof. If P > mn - n2 + n r - r + 1, then p(n - r ,n) > mn, which is impossible 

since the largest position is mn. 
Lemma 2. In a perfect n-sequence for m, if P and P - are meaningful, then i t 

is impossible that 

(3) P x + 1 + (i - l)x + (2i - 2) < P x < P x + 1 + (i - l)x + (i - 2) + n 

for any integer i > 1, or that 

(4) P x + 1 + (i - l)x + (i - 1) =s P x ^ P x + 1 + (i - l )x + (21 - 3) + n 

for any integer i ^ 1. 
Proof. Assuming (3) to hold (with i ^ 1), we have 

(5) P x + 1 + (i - l)x + (2i - 2) ^ P x 

(6) P x 2= P x + 1 + (i - l)x + (i - 2) + n. 

It follows from (5) and (6), respectively, that 

(7) P x + 1 + (i - l)x + (i - 1) ^ P x 

(8) P x ^ P x + 1 + (i - l )x + (2i - 3) + n. 

F rom (5) and (8) follows 

(9) 1 < P x - P x + 1 - ix + x - 2i + 3 < n , 

and from (7) and (6) follows 

(10) 1 < P x - P x + 1 - i x + x - i + 2 < n . 

FixiaJly, we have 

(11) p(x, P x - P x + 1 - ix + x - 2i + 3) = p(x + 1, P x - P x + 1 - i x + x - i + 2), 
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which is meaningful by (9) and (10). But (11) is obviously false, hence (3) cannot hold if i ^ 
1. The proof of the second half is identical. 

Corollary to Lemma 2. If P and P - a re meaningful, then either 

P x + 1 + (i - l)x + (i - 2) + n < P x < P + ix + 2i 

for some i ^ 1, or 

P x + 1 + (i - Dx + (2i - 3) + n <• P x < P x + 1 + ix + i 

for some i ^ 0. 

Theorem 3. There is no perfect n-sequence for n + 2, except the perfect 2-sequence 
for 4. 

Proof. This sequence has n2 + 2n entr ies . By Lemma 1, the only possibilities for 
P n + 2 are (case I) P n + 2 = 1, (case II) P n + 2 = 2, and (case III) P n + 2 = 3. 

Case I. P n + 2
 = 1" B y Lemma 1 and the Corollary to Lemma 2, the only possibilities 

for P + 1 a re (case IA) P + 1 = n + 1 and (case IB) P - = n + 2. 
Case IA. P - = n + 1. By the lemmas , the only possibilities for P are 1, n - 1, 

n, n + 1, and 2n + l . But P = 1 is impossible; otherwise p(n, l ) = p(n + 2 , l ) ; P = 
n + 1 is impossible; otherwise p(n, 1) = p(n + 1,1). Therefore there a re three possibilities: 
(case IA1) P = n - 1, (case IA2) P = n, and (case IA3) P = 2n - 1. 

Case IA1. P = n - 1. The possibilities for P - are n - 2 , 2 n - l , 3 n - l , and n F n-1 
3n. But n even is impossible; otherwise p(n,n/2) = p(n + 2, n/2); so n is odd; P = 
n - 2 is impossible; otherwise p(n - 1, (n + l ) /2) = p(n + 1, (n - l ) /2) ; P = 3n - 1 is 
impossible; otherwise p(n - l ,n ) = p(n + l ,n) ; P - = 3n is impossible; otherwise 

p(n - 1, (n - l ) /2) = p(n + 1, (n + l) /2) ; 

Therefore P - = 2n - 1. The possibilities for P _2 are n - 1 , 4n - 2, and 4n - 1. But 
P = n - l is impossible; otherwise p(n - 2,1) = p(n, l ) ; P = 4n - 2 is impossible; 

H—A n—a 
otherwise (noting that 1 ^ (n + 3)/2 ^ n since n ^ 2 and n is odd) 

p(n - 2, (n - l ) /2) = p(n, (n + 3)/2) ; 

P _ = 4n - 1 is impossible; otherwise p(n - 2,1) = p(n - 1,3). But 1 < n - 2 ^ n (since 
n ^ 2 and n odd) so that P is a positive integer, which is a contradiction. Therefore 
case IA1 is impossible. 

This first case indicates the methods used. The others are treated similarly. The 
other cases a re : 
[Continued on page 392. ] 



THE CASE OF THE STRANGE BINOMIAL IDENTITIES OF PROFESSOR MORlARTY 

H.W.GOULD 
West Virginia University, Morgantown, West Virginia 

nMy dear fellow,n said Sherlock Holmes, as we sat on either side of the fire in his 
research l ibrary at Baker Street, "combinatorial identities are infinitely s t ranger than any-
thing which the ordinary mortal mind can devise. If we could fly out of that window hand-in-
hand, hover over some of the r a r e geniuses of mathematics, however, and peep in at the 
queer formulas boiling in their bra ins , the strange relations and inverse connections, vast 
chains of implications, we should see some very singular and ineluctable identities. More-
over, they form a beautiful order . n 

!'And yet I am not convinced of i t , " I answered. "The formulas which appear in the 
l i terature a re so numerous and diverse that I must quite agree with my old friend John 
Riordan [17, p. v i i ] who has often spoken of the protean nature of combinatorial identities. 
He has said that identities are both inexhaustible and unpredictable; and that the age-old 
dream of putting order in such a chaos is doomed to fa i lure ." 

nA certain judicious selection must be made in order to exhibit the order which inheres 
in this subject," remarked Holmes. "This is wanting in research journals , where s t r e s s is 
placed on novelty and abstraction and the history of the subject is quite often laid entirely 
aside. A good detective of identities, however, remembers and re t r ieves numerous facts 
from the d isar ray of identities. This requires vast concentration and attention to detail. 
Depend upon it, behind every identity there is a whole history. As unofficial adviser to 
everyone who is puzzled by combinatorial identities, I come across many strange and b izar re 
formulas, none perhaps more strange than those formulas discovered by the infamous P r o -
fessor Moriar ty ." 

Holmes had now risen from his chair , and was standing before one of the enormous 
bookcases in his l ibrary , a l ibrary reputed to be filled with case histories of every binomial 
identity ever brought to t r ia l . I could tell from his stance that he was about to embark on a 
story which would be both interesting and educational. He began speaking: 

"Professor Moriarty first gave his formulas in the form of a dual pairs 

« E(2p?i1^)(p^)°(2np"p)22n-2p 

k=0 
and 

n - P 
(9\ V1/ 2n VP + k \ - n / 2 n - P \ 92n-2p 
(2) ZA2p + 2k^ k j " 5 7 p ( P J 2 
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I am indebted to E. T. Davis [7, p . 71] for calling them to my attention. Davis wri tes in a 
footnote that "We shall call these the identities of James Moriarty, since we do not know any 
other source from which such ingenious formulas could have come. See TThe Final P rob-
l e m , ' The Memoirs of Sherlock Holmes. "Here I have corrected formula (2) in that Davis' 
version would have 2p + k instead of the cor rec t 2p + 2k, something immediately obvious 
to an old combinatorial detective! I may say that I have also changed his summation va r i -
able from Tsf to fkT because my mind is stamped this w a y . . . it simplifies things. " 

Holmes paused and pulled out another book. He continued: 
"The facts of Moriartyfs life are well documented. Sabine Baring-Gould [3, pp. 2 1 -

23] has given them in a few l ines . You see , Mo r iar ty was my own teacher. As you know 
we developed into arch-enemies . Moriartyfs mathematical work is summarized by Baring-
Gould as follows: 

"At the age of twenty-one — in 1867 — this remarkable man had written a treat ise 
on the binomial theorem which had a European vogue. On the strength of it — and be -
cause of certain connections his West of England family possessed — he won the math-
ematical chair at one of the smal ler English universi t ies. There he produced his 
magnum opus — a work for which, despite his la ter infamy, he will be forever famous. 
He became the author of fThe Dynamics of an Asteroid ' . " 

It i s c lear from the further remarks given about this monumental work that a genius such as 
Moriarty could be responsible for formulas such as (1) and (2). Professor Davis, in a le t -
ter dated 29 July 1963, told me how elusive he found the proofs of (1) and (2) and could find 
no explicit reference in the l i tera ture . Actually there are many references, as will be clear 
in the l i s t given below. 

Moriarty was a mas te r of disguise, and here we do find Riordan's remark about the 
protean nature of the identities pertinent. But it needs just a little care to see through the 
fabric. Replace k by k - p and the two formulas become 

(3) > . i : : ; ] i : i = r " ; F i 2 2 n " 2 p S(-0C)-M k==p 

and 

(4) > I Z II : ) = O ^ T : I "" " * 122n"2p E/2n\/k\ = n _ / 2 n - p \ , 

k=p 

and in this form they appeal more to my experienced eye. As a mat ter of fact two slightly 
more general such formulas may be found in [12] where formulas (3.120) and (3.121) a re as 
follows: 

|V-)0p-2)(v) 
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and 
[n/2] 

(6) £(i)0p-(V)^ 
I f irst came upon (5) and (6) while studying elementary matr ix theory. I was trying to 

determine the n power of a 2-by-2 matr ix. If fy and t2 denote distinct character is t ic 
roots of such a matrix M5 then it is easy to prove that 

n _ n , n - l _ j i - 1 
(7) Mn - I — F M-lj—^ |M|I, i M l - t t t , . 

where | M| = det(M) and I is the identity matr ix 

(s o-
On the other hand, by successively multiplying M times itself, one is led to conjecture and 
prove by induction that in fact 

(8) M11 = M ^ (-l)k | M | k ( n " I ' Mftt + t2rl~2i 

k=0 * ' 

[¥] 
| M | I £ ( - i ) k |M| k ( n - k - 2 W + t 2 ) 

k=0 V / 

Upon equation (7) and (8) we obtain a single identity 

[n/2] . tn+l _ ^n+1 
o) ] T (-Djfn - j W t ^ t t + t2)n"2j = 2

 k_k , t2 * tt . 
j=0 V / 

Separating out the even and odd index t e rms in the binomial expansion it is easy to obtain 

y / n + l \ k . (1 + ^ z ) n + 1 - (1 - N ^ ) n + 1 
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and we also have 

IV2] . [n/2] § . k 

k=0 ^ ' k=0 x ' j=0 v / 

[n /2] [n/2] 

E^EU^Y*)-
j=0 k=j X A / 

More elegantly, we have proved that 

(10) 
[n/2] [n/2] , v M v ,n+l .n+1 

l2 " 4 
L x x / * j L x x / ^ j , \ / \ 

E.^E (it1! 0 
j=0 k=j X / \ / 

t2 " tj 

where fy = 1 + N/X + 1, fy = 1 - N/X + 1. Since we have in this case fy + t2 = 2, ttt2 = -x , 
we may apply (10) to (9) when % + t2 = 2, and the resul t by equating coefficients of powers 
of x is the identity 

n/2] £ 

Efr^p-^V) 
which is precisely formula (5) above. A natural companion piece may be found, and I use 
what I call an even and odd index argument to do this. 

Indeed, write 

[n/2] 
S = 

Now 

so that we have 

:-= ^ ( i + + l i ) . 0 ) ' 
\2kj + \^2k + 1 / = \Zk + l) 

[n/2] . . . [n/2] [ n / 2 ] , . . . 

g(i)B-5(.*M-§(-0O) 
Look at the second sum on the left: If n is odd [n/2] = [(n - l ) / 2 ] ; but if n is even [n/2] 
= [(n - l ) / 2 ] + 1. It follows readily that we have proved 
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[n/2] / 

g (i)(l) - ̂  - ^ - ̂ ( V ) - ^ ('-}->) 

in other words, we have proved formula (6) above. 
The above proof was first obtained by me in the year 1950. It may or may not be or ig-

inal, as it is very difficult to guarantee originality9 Formulas (5)-(6) a r i se naturally in the 
study of trigonometric identities. In the disguised forms (3) and (4) you will also find them 
in such studies. Glocksman and Ruderman [10] gave inductive proofs of (5) and (6). They 
have an interesting footnote calling attention to a pending Sherlock Holmes tale about these 
strange relations of Professor Moriarty, so that my present r emarks are long overdue. 

Trigonometric proofs are implicit in Bromwieh [5, Chapter 9 ] . Such proofs are bound 
up with the well-known expansions 

[n/2] f . 

(11) c o s n x = J^ ( - 1 ) 3 ( n j " 3 ) 5 "T3 2 n ~ 2 j ~ 1 (cosx)1 1"^ 
i=0 * ' 

and 
[n/2] 

(12) ^ I V x 1 ^ = Z ( - l ) J ( n : J ) 2 2 n - 2 j ( c o s x ) n - 2 J . 
j=0 V / 

See also Deaux [8] who works in r eve r se , using (6) to prove (11). Formula (1), with 
n replaced by n / 2 , was posed by Andre [l] and the solution given in 1871 by one More t -
Blanc suggests that this may be one of Moriar ty 's French disguises. Briones [4] was e v i -
dently unaware that the summation (6) could be done in closed form, as he ca r r i e s the sum 
around consistently in unsummed form. Kaplansky, in a review of a paper of Gonzales del 
Valle [11], res ta tes the author 's formula in our form somewhat like (1 ) . . . but note a few dif-
ferences. This same related formula of Gonzales del Valle occurs in [13]. Fred. Schuh 
[18] again gives something equivalent to (9) and obtains our formula (1) in only a slight v a r -
iation,, Singer [19] rediscovers a special case of the companion to (9) involving the coefficients 

^ ( V ) 
using formula (6), and cites Netto's famous Combinatorik [16]. 

The formulas in Netto [16, pp. 246-258] are taken from Father Eagenfs valuable t r ea -
tise [14, pp. 64-68], It is curious to note that Netto attempts to cor rec t some of Hagenfs 
formulas and introduces further e r r o r s where e r r o r s sometimes did not appear. The basic 
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e r r o r consists in failing to appreciate that ( J is a polynomial of degree n in x, whence 
some of the inequalities appended by Netto are superfluous. Also, Netto omits one very 
striking formula (number 17) of Hagen, as being a l inear combination of the others , which it 
is not. HagenTs formula (17) was the motivation of over 25 papers by me since 1956, that 
formula tracing to 1793 and one H. A. Eothe. A full discussion of the e r r o r s in Hagen and 
Netto must , however, await another t ime. At any ra te , the formulas of Moriarty a re in 
Netto and Hagen. 

The connection of our formulas with Fibonacci-type polynomials and numbers should be 
c lear because of formula (9) and the well-known formula 

[n/2] 

E C ; ' ) -
k=0 x / 

F n+1 

where F - = F + F _-, with F0 = 0, F* = 1, defining the Fibonacci numbers. As fur-
ther evidence of this connection, Lind [15] has written to me of the following mat ter . Let 
fi(x) = 1, f2(x) = x, f +«(x) = xf ^ (x) + f (x), denote the Fibonacci polynomials. It is 
known that 

\fl x2- + 4 

What is more , 

J=0 

so that comparison of coefficients yields 

v>- zK'-j-1)***1 
i=0 \ ' 

[ii^X)-^tn 
which, save for a shift of 1 in the index n, is precisely formula (5) above. Our detective 
work pays off. It shows that Moriarty is implicit in all the l i terature about Fibonacci poly-
nomials and related generalizations. 

As for further references in accessible l i te ra ture , one should examine ex. 5, pp. 209-
210 of Vol. 2 of Chrystal [6] . What is done there is to use an expansion on p. 202 for t2 + fy 
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(instead of what we used in (9) above, thereby being a Lucas approach instead of a Fibonacci 
approach). ChrystaTs formula may be written in the form 

£(*"..)(* : ,)-*,*4(m;r)-
where I have set n = m - 2r in his formulas. The result i s , of course , our formula (6) in 
slight disguise. Both (5) and (6) a re in Riordan [17, pp. 87, 243]. 

Moret-Blancfs solution to Andre 's problem [l] finds something equivalent to our (5) as 
the coefficient of x in the se r ies expansion of 

n + l , ' - - ^ (1 + x ) " ' i / l - ± \ 

found in two ways. 
Netto's proof of the formula in the form (same as in [11] and [13]) 

(13) E/ p + s \ / 2p + m \ m - 1 / m + p - l \ 

i s by equating coefficients in the algebraic identity 

(14) (i - xr2PJ(i - T - T T ) T P = (1 " ^ • 

Our formula (1) of Moriarty then follows by changing s into k and putting m = 2n - 2p + 1. 
A s imilar argument goes for the companion which he gives and which is of course equivalent 
to (2) here . 

In our sleuthing of these old resul ts we have come across one very old appearance in the 
l i terature of a Moriarty type formula in the form (6). The date of this case is 1826, a long 
time before the historic Moriarty appeared. Perhaps he lifted the resul ts from such an e a r -
l ie r source, being an evil and crafty genius. In any event, Andreas von Ettingshausen, in his 
surprisingly modern book [9] gives the formula (page 257) 

«"» <s (£)(,%)-^(•v)2""*"1 



388 THE CASE OF THE STRANGE BINOMIAL [Oct. 

This is the exact notation he uses . The German TST is used in place of Greek sigmafor sum-
mation, and the indices of summation are arranged differently than modern form, but other-
wise it is precisely the same formula. Ettingshausen gives many other formulas which are 
still today being rediscovered. Incidentally, Ettingshausen1 s book of 1826 has the first ap-
pearance in print of the modern symbol ( J in place of the previously common symbols 
f — J or I — I used by Euler. Some historians have stated (Cajori notably) that the year was 
1*827 in another book by Ettingshausen, however the cor rec t item appears to be the 1826 book. 

We come now to a modern chapter: INVERSION. A good detective would not earn his 
pay if he did not make adroit use of inversion of ser ies . Many such inverse se r ies pa i rs ex-
ist , and we can do no better for the time than refer the reader to the excellent discussion by 
Riordan [17] for information on inverse se r ies pairs of many types. We need one such, a 
very simple instance. 

It is easy to prove by the use of the orthogonality relation 

that 

k=r V / 

J *T, 

(16) ^ j ' - 1 1 ' , lf<W = g<r>. 
k=r 

if and only if 

2(-1 ) k(r)^( k ) = f(r) • 
k=r V / 

The proof is nothing but inverting order of summation and using the stated orthogonality (cf. 
Riordan [17], p. 85). Taking 

f(k) = <-Dk(2*k
 +

+ l ) and g(r) = ^ (» ~^) , m = [§] , 

we see that (5) inverts to yield 

(17) S«-"k(nik)(J)'-*-w»'(LVi) 

Similarly, choosing 
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f(k) = (-Dk(2l) , g(r) = ?-*-! (» ^ ^ , m - [|] . 

we see that (6) inverts to yield 

ffl 
as) z^^y^i* k k ^ - ^r{£) -
I have not noticed any significant appearance of these relations in the l i terature until now r e -
lation (17) has been found by Marcia Ascher [2] who has given an inductive proof. Naturally 
the skilled combinatorial detective expects a companion formula such as (18)." 

Here Holmes rested and then concluded his story by saying that all of these relations 
a re in. turn special cases of much more beautiful ones, which must await another time and 
place. So much for the evil genius of Moriarty. 

ADDENDUM 

It may be of interest to show that two well-known Fibonacci formulas 

ffl 
<19> F n + 1 

k=0 
and 

z(v) 

<20> F n + 1 
H/ Y k 

n \ - ^ # n + 1 \ 1 
lr=0 \ / 

may be derived, the one from the other, in either of two ways: by use of (5) or by use of (17). 
We also need the binomial theorem. 

We have f i rs t , using (5) of the generalized Moriarty, 

[n/2] [n/2] [n/2] 

Fn+1 - y r : M = Y : 22k-n y ( - 1 \ u 11. «* <« 
k=0 * / k=0 j * * " V ' > ' 

[n/2] . J [n/2] . v 

j=0 \ / k = 0 N / j=0 % / 

and the steps a re revers ib le , showing (19) and (20) equivalent via (5). 
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We have next, using (17) of Ascher, 

n+1 

[n/2] , x [n/2] [n/2] 
2k • S ( i Vi)5'-2"nE'rZ '-""""tikX*r 

r=0 * ' r=0 k=r * / \ / 
L"/2] / v k 

k=0 X ' r=0* ' 

[n/2] _ _ 
. . . 

k=0 x ' r=0 V / 

[n/2] [n/2] 

k=0 ^ / k=0 * / 

and again the steps a re revers ible , showing (19) and (20) equivalent via (17). Similarly it is 
possible to use the Moriarty and inverse Moriarty relations to show other equivalences. 

Thus relations (6) and (18) may be used precisely as above to show that the formulas 

(21) 

and 

(22) 

are equivalent. Here L - = L + L - , with L0 = 2, LA = 1, define the Lucas numbers. 
Another s imilar equivalence which follows from use of (5) or (17) is the pai r of com-

binatorial identities 

/ , n - k ( k 
k=0 V 

Z(i) ' 
k=0 > / 

1-
= 2n" 

L 
n 

n 

(23) 

and 

ffl 
yr^fn - x \ / n - kY n-2k _ /2n - 2x\ 

§l°-v( k ) m\ * ) 
[i] 

(24) 

3 
E/ n + l \ / n - x + j \ / 2 n - 2 x \ 

J H ( • )"( • ) 
valid for all real x. Identity (23) is essentially (3.107) in [12]. 

Again, the equivalence of the two summations 
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[t] no 
(25) E^ k ( n

k
+ k ) ( n k k )^ 2 = 2 ^ ( ^ ( S t l ) 

follows by use of (5) or by (17), although no closed form is known. By use of (5) it is easy to 
see that a closed form for 

[ n / 2 ] / \ / \ 

k=0 \ / \ / 

might depend on a closed form for 

3 

k=0 X / \ / 
2 2 k 
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which says that a sequence of integers, which is uniformly distributed mod m, where m 
is composite, is also uniformly distributed with respect to any positive divisor of m, we 
then have that { F } is uniformly distributed mod p where p is some prime factor of m, 
>2 and ^ 5. This contradicts Theorem 3. 

Conjecture: The Fibonacci Sequence (F } is uniformly distributed mod 5 (k = 3, 

4, • • • ) . 
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PERFECT N-SEQUENCES FOR N, N + 1, AND N + 2 

1 IA1 
IA2a 
IA2b 
IA3a 
IA3b 
IB1 
IB2 
11A1 
11A 2 
(I1B 
(III 

P 
n+2 

1 
1 
1 
1 
1 
1 
2 
2 
2 
3 

P n + 1 

n 
n 
n 
n 
n 

n 

= 
1 
+ 
+ 
+ 
+ 
+ 
1 
1 
+ 

n + 

1 
1 
1 
2 
2 

2 

1 P 
n 

= n 
n 
n 

2n + 
2n + 

n 
n + 
n + 
n + 

symmetrical 

-

1 
1 

1 
1 
2 
to 

1 

case 

P 
n--1 

3n 
n 

2n 

i HA) 

2n 

symmetrical to case I). 

Each of these cases is impossible except lA3a and its m i r r o r image in case III which give 
only the perfect 2-sequence for 4. 

Applying these methods to higher cases would either disprove them or produce exam-
ples . The length of such an application would be prohibitive, however. 
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REPRESENTATIONS OF AUTOMORPHIC NUMBERS 

WICHOLASP.CALLAS 
Office of Scientific Research, U.S.A.F., McLean, Virginia 

An n-place automorphic number x > 1 is a natural number with n digits such that the 
las t n digits of x2 are equal to x (see, for example [ l ] ) . In number-theoretic notation, 
this definition can be expressed quite compactly as x - x2 = 0 (mod 10 ). An example of a 
3-place automorphic number is 625. A recent report [2 ] indicates that automorphic numbers 
with 100,000 digits have been computed, 

It is a simple mat ter to prove that automorphic numbers with any number of digits ex-
ist. Fur ther , if x is an automorphof n digits, then it follows that y = 10 + 1 - x is also. 
In other words, n-place automorphic numbers occur in pa i r s . (This statement is not quite 
accurate. For example, the•"two" 4-place automorphs are 9376 and 0625. If we accept the 
convention that aleading zero is distinctive, then 0625 maybe considered a 4-place automorph 
different from the 3-place automorph 625). 

The purpose of this paper is to present the following representations for automorphic 
numbers: 

Theorem. If x is an n-place automorphic number, then y (mod 10 ), defined by 

M\ t ^ , -vkf t + k - l \ /2t - l \ k 
(1) y = x z , ( -« I k Mt + k Jx 

k=0 X / \ / 

is a tn-place automorphic number, t = 1, 2S 3, • • • . Moreover, 

x 
/ (u - u2) " du . 

o 

Remarks, a. In the case t = 1, the theorem gives the trivial identity y = x. 
b. These representations, for the case t = 2, are presented in [ 3 , page 

257] and in [ 2 ] . 
c. Apparently (due to multiple-precision requirements on digital computers) 

these representation formulas do not give any special advantage to their user in computing 
automorphic numbers with large numbers of digits. Even other alternatives for doing the 
necessary arithmetic with large integers , e . g . , modular ar i thmetic, seem also to present 
major problems in appying these formulas. 

d. The following definition and binomial coefficient identities a re used in the 
proof of the theorem. 

393 

t /2 t \ 
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/ \ ( r ( r - 1) . . . (r - k + 1) . . , v ^ 
(A = kfe-D— (i) • m t e g e r k ~ ° •• 

\ / ( 0, integer k < 0 ; 

(3) ( k ) = f ( k l l ) . " t e g . r k / 0 ; 

("•)-£$(•=•<)• — 
(5) fmj UJ = (kj fm - k) ' integers m > k 5 

2 ( - D k Q = ( - D n ( r ^ ^ , integer n > 0 . (6) 

Proof of Theorem. F i r s t , by divisibility propert ies of p r imes , a necessary and suffi-
cient condition that x > 1 is an n-place automorphic number is that either 

x = 0 (mod 2 n ) and x = 1 (mod 5n) 
(7) or 

x E 1 (mod 2 ) and x = 0 (mod 5 ) . 

Hence x = qp + r , where p = 2 or 5 and r = 0 or 1. By the binomial expansion formula, 

k k _ m 

X = i C [ml ^qpI1^ ^ w h e r e k = 1, 2, ••• . 
m=0 V / 

Suppose now that it is possible to find integers a, , independent of x, such that 

(8) y = £ 
k=0 

s 
k a k x 

is an tn-place automorph for any n-place automorph x. Then 

(9) y = r (mod p ), p = 2 o r 5, r = 0 or 1 . 

By replacing x with its binomial expansion and interchanging o rders of summation, 
t -1 

y = 2 A j fapn> E r (mod ptn> > 
3=0 
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where 

£©*•" A. = 
3 

k=j 

Due to our assumption that y is automorphic for any automorph x, it follows that 

A = 6jjr, j = 0, 1, 2, . - , t - 1 . 

Hence, for r = 0, it follows that 

(10) \ = °> k = 0, 1, 2, •»• , t - 1 

Fur ther , for r = 1, the remaining s - t + 1 coefficients are related in t l inear equations. 
If we choose s = 2t - 1, then the necessary conditions on the remaining t coefficients in 
the representation y a re the t l inear equations 

2 t - l 
(11) J] HJa, = & , j = 0, 1, 2, . . . , t - 1 2(^--J 

k=t x 7 

We now verify that this system has a solution, indeed 

defines a set of solutions of the l inear system (11). Having proven this resul t , then y = r 
(mod p n ) , i. e . , y (mod 10 n ) is a tn-place automorph. 

F i r s t , consider the cases j = 1, 8 B", t - 1. Let 

2 t - l 

E^MM 
So, by using binomial identities (4) and (5) 

2 t - l - % t -1 
S = (2 l-1)£(-"i2 ,-- ))S()'1)('--') 

By again using binomial coefficient identity (5), we get 
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• -(vJK'iH-v.v) 
where 

T = 
2 t - l 

S<-«"(k-tt:,,:i + i) 

5 (-1) j - i - 1 
2 t - l 
2 i-u^K *-J-1-1 

k=t+j-i-l 
[ k - t - j + i + l l 

t -1 

Z (-D^H+i+l / t - j + l \ 
k=t+j-i-l 

with the first sum in the brackets equal to zero (by a special case of identity (6)).. Then, by 
binomial coefficient identity (6) again, 

(-v.1,-1) 
Hence T = 0, since i - j < 0. Therefore S = 0 for j = 1, 2, • • • , t - 1. 

In case j = 0, 

S = (2t - 1) (zt - 2\ X* (-DkA - A 
V'-VS k l k-7 

by first applying identity (3), then (5). Hence replacing k - t by t gives 

N ' k=0 x ' 
1 , 

since for the Beta function B, 

i 

B(t,t) = / v W t t - v j ^ d v = fa_ x. 

V'1) 
xt-1 and expanding (1 - v) and integrating each term yields 

[Continued on page 402. ] 



A PRODUCT IDENTITY FOR SEQUENCES DEFINED BY W =. dW - cW 
n+2 ri+1 n 

DAVID ZEITLIN 
Minneapolis, Minnesota 

1. INTRODUCTION 

Let W0, Wls c f- 0, and d / 0 be arbi t rary real numbers , and define 

(1.1) W n + 2 = dW n + 1 - cWn, d2 - 4c ^ 0, (n = 0, 1, • • • ) , 

(1.2) Z n = (a11 - b n ) / ( a - b) (n = 0, 1, . . . ) , 

(1.3) V n = a11 + b n (n = 0, 1, • • • ) , 

where a ^ b a re the roots of y 2 - d y + c = 0. We shall define 

(1.4) W = (WnV - W ) / c n (n = 0, 1, • • • ) . 
-n 0 n n 

If W0 = 0 and Wt = l s then Wn s Z , n = 0, 1, • • • ; and if W0 = 2 and Wi = d, then 
W = V , n = 0, 1, •• • . The phrase , Lucas functions (of n) is often applied to Z and 

It should be noted that 

(1.5) Wn = W Q Z n + 1 + (Wx - dWQ)Zn (n = 0, 1, . . . ) ; 

and we shall refer to Z , n = 0, 1, a • • , as the fundamental solution of (1.1). Let W* be 
a second, general solution of (1.1) with initial values Wff and Wf. Since W also satisfies 
(1.5), we now see that the product sequence, W W*, can be represented as a l inear com-
bination of Z 2 , Z Z i n , and Z 2 . We observe that 

n+1' m n+1 n 

(1.6) WnWn = Cja211 + C2b2 n + C3cn (n = 0, 1, • • • ) , 

where C , i = 1, 2, 3, a re arbi t rary constants, is the general solution of a third-order 
l inear difference equation whose characterist ic equation is 

(1.7) (x - c)(x2 - V2x + c2) = 0 . 

If the initial conditions of W and W* are chosen such that CQ = 0, then W W* is also a 
n n 6 n n 

solution of a second-order l inear difference equation, and its representation is of interest . 
397 
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2. STATEMENT OF RESULTS 

Theorem 1. Let W and W*, n = 0, 1, . . . , be solutions of (1.1). Then (see (1.6)) 

(2.1) W2W2* - V2WiWf + c2W0W0* = 0 

is a necessary and sufficient condition that C3 = 0. If C3 = 0, then 

(2.2) WnW* = ((WiWi* - (d2 - c)W0W0*)/d)Z2n + W0W0*Z2n+1 ; 

and if P = W W*, then n n n 

(2.3) P u.o - v o P .̂1 + c2P = ° (n = 0, 1, • • • ) , 
n+2 2 n+1 n ' ' ' 

and 
P0 + (P4 - V2P0)x « 

(2.4) — = V P^ x n , (V2 = d2 - 2c) . 
l - V 2 x + c2x2 ^ 0

 n 

Corollary 1. If d = -c = 1, then W = H , where H is the generalized Fibon-
acci number. Since V2 = 3 and Z = F , the ordinary Fibonacci number, we obtain from 
(2.2) 

H H * = (HlHf - 2H„H0*)F2n + H o H J F ^ 

( 2 . 5 ) = H l H l * F 2 n - H0H0*F2n_2 

( s i n c e F2n+1 = 2F2n-F2n-2)' w h e r e ^ e e (2.1)) 

(2.6) H2H2*..- SHtHf + H0H0* = 0 . 

If H* = H n _ 1 + H n + 1 = Gn, n = 0, 1, • • • , then (2.6) is satisfied and thus (2.5) gives 

(2.7) HnGn = H I G I F 2 A - H 0 G 0 F 2 n _ 2 (n = 0, 1, • • • ) ; 

and from (2.4), we obtain 

H0G0 + (HiGt - 3H0G0)x " 
(2.8) = > H G x . 

1 - 3x + x* n n n 

n=0 

Remarks. Our special result (2.7) solves completely the problem posed by Brother U. 
Alfred [1] , where (2 ,9) , for example, must stand for (H^, H*), and not, as incorrectly 
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indie a 
tity, F n L n = F 2 n ; and (2.8) gives 

399 

indicated (Ht, H2). If Hn = F n $ then Gn = L , and (2.7) reduces to the well-known iden-

1 - 3x + x2 2 ^ * 2n 
n=0 

3. PROOF OF THEOREM 1 

For n = 0, 1, and 2, Eq. (1.6) gives a linear system of three equations for the three 
unknowns Cj , C2, and C3. We readily find that C3 = N/D, where D = cd(a - b)3 fi 0 is 
the determinant of the system 

(3.1) 

(3.2) 

(3.3) 
and 

W0W* = Ct + C2 + C3 

WtWf = a2Ct + b2C2 + cC3 

W2W* = a4Ci + b4C2 + c2C3 

N 
1 1 W0W0* 

a2 b2 WtW* 
a4 b4 W2W* 

If we set N = 0, we obtain the necessary condition (2.1) for C3 = 0. 
For the sufficiency proof, we assume that (2.1) is t rue. If we multiply both sides of 

(3.1) by c2 and both sides of (3.2) by -V2, then the addition of the resulting equations to 
(3.3) gives, using (2.1), 

(3.4) 0 = (c2 - a2V2 + a4)Ci + (c2 - b2V2 + b4)C2 + (c2 - cV2 + c2)C3 

Since c = ab and V2 = a2 + b2, we obtain from (3.4) 

0 = _ab(a - b)2C3 

Since a f b f 0, we must have C3 = 0. 
If C3 = 0, then (see (1.6)) 

P = W W* = C ia 2 n + C 2 b 2 n , n n n l * n = 0, 1, 

Since P0 = CA + C2, we obtain, respectively, noting (1.2), 
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(3.5) P n = C2(b - a ) Z 2 n + P0& (n = 0, 1, . . . ) , 

(3.6) P n = Cj(a - b )Z 2 n + P 0 b 2 n (n = 0, 1, . - . ) . 

Evaluating C2 in (3.5) (for n = 1) and Ct in (3.6) (for n = 1), we obtain, respectively, 
after simplification, 

(3.7) P n = [(Pt - a 2 p 0 ) / d ] Z 2 n + P 0 a 2 n (n = 0, 1, • • • ) , 

(3.8) P n = [(Pj - b 2 P 0 ) / d ] Z 2 n + P 0 b 2 n (n = 0, 1, • • • ) . 

Addition of (3.7) and (3.8) gives 

(3.9) 2 P n = [(2Pj - V 2 P 0 ) / d ] Z 2 n + P 0 V 2 n (n = 0, 1, . . . ) . 

Since (see (1.5)) V„ = 2Z - dZ , we obtain from (3.9) 

(3.10) 2dP n = (2Pt - P0(V2 + d 2 ) )Z 2 n + 2 d P Q Z 2 n + 1 . 

Noting that V2 + d2 = 2d2 - 2c, we obtain from (3.10), 

(3.11) P n = [ ( P l - P0(d2 - 0 ) / d ] Z 2 n + P Q Z 2 n + 1 . 

Since P = W W*, Eq. (3.11) reduces to (2.2). n n n M 

If we set (E2 - V2E + c2)W W* = Q , where E m A = A J , then (1.7) becomes L n n n n n+m 

(3.12) (E - c)Qn = 0 . 

The solution to (3.12) is 

(3.13) Q = Kc11 (K, a constant ) . 

But K = Q0, and so (3.13) reads 

(3.14) W ± J * - V0W ^.W* + c2W W* = Q n c n , 
n+2 n+2 2 n+1 n+1 n n ^0 ' 

where 

Q0 = W2W2* - V2W1W1* + c2W0W0* . 

If (2.1) is t rue , then Q0 = 0, and P = W W* satisfies (2.3); and (2.4) follows readily from 
(2.3). 
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4. COMMENTS 

If W* = Wn_x - ( l / c )W n + 1 in Theorem 1, then (2.1) is satisfied. For example, if 
Wn+2 = 2 W n + l + W n ' t h e n ^ Z n ^ = " ^ l s 2 ' 5> 1 2 , ' " ^ w h e r e z

n is Pe l l ' s sequence. 
If we choose 

{ W n f = {2, 39 8, 19, ••• } 
n 0 

and set 

n n-1 n+1 
then 

{Wn}°° = {2, 10, 22, . - } ; n 0 

and since d = 2 and c = - 1 , we obtain from (2.2) in Theorem 1 

(4.1) W W* = 5ZQ + 4Z 0 _,_ '• (n = 0, 1, • • • ) , 
n n 2n 2n+l ' ' 

where Z is Pe l l ' s sequence. 
Using resul ts of the author [2, p. 242], it seems reasonable that the conclusions of 

Theorem 1 may be extended (properly interpreted) to p products of solutions of (1.1), where 
p = 2, 4, 6, « . . . For example, if P = W W*W**W***, where W , W*, W**, and W*** ^ ^ n n n n n n n n n 
a re independent solutions of (1.1), then P satisfies a fifth-order l inear difference equation 
(see [2, (2.2), p. 242] whose characterist ic equation is 

1 
(4.2) (x - c2) J™7 (x2 - c3V. x + c4) = 0 

3=0 4 ZJ 

Since 

P n = C i a
4 n + C2(a3b)n + C 3 c 2 n + C4(ab3)n + C5b4 n , 

we believe that C3 = 0 if and only if 

(4.3) 
' 1 
T l (E2 - c3V4 E + c4) 
j=0 3 

However, the representation of P under (4.3) is another matter . 
For the case d2 = 4c, d / 0, it appears that (2.2) of Theorem 1 holds under (2.1). 

Moreover, if 2Wi = dW0, then (2.1) holds for any arb i t rary sequence W*. Since a = b, 
we have Z = na ~ , n = 0, 1, . . . , in (2.2). 
[Continued on page 412. ] 
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[Continued from page 396. ] 
t -1 

'.« = £(V>£ + k 
k=0 ' 

Hence y (mod 10 ), defined by (8), with coefficients given by (10) and (12), is an 
automorphic number of tn places. By replacing k - t by k, we get the representation (1). 
Fur ther , by using identity (5)„ 

t -1 
V 2 t - l \ t y ^ (-x)k (t - l \ 

y i' rS^lk r 
x 1 

i f u ^ d - n ) " d u = f T W ( 1 - x v j ^ d v 

where 

o o 
t -1 
^ ft - l \ (-x)k 

ZL/I k I t + k ' 
k=0 

by expanding (1 - x v ) ^ 1 and integrating te rm-by- te rm. This resul t yields the representa-
tion (2). 
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PELL NUMBER TRIPLES 

ERNST M.COHN 
National Aeronautics and Space Administration, Washington, D.C. 20546 

Horadam [1] has shown that Pythagorean t r iples a re Fibonacci-number triple s„ It has 
now been found that Pythagorean tr iples a re Pell-number tr iples as well. 

The Diophantine solution for Pythagorean tr iples (x, y, z) is x = 2pq, y = p2 - q2, 
and z = p2 + q2, where p > q. For primitive solutions (p,q) = 1, p and q are of dif-
ferent pari ty, x or y s 0 (mod 3) [ 2 ] } x = 0 (mod 4), and all pr ime factors of z are 
congruent to 1 modulo 4. Since x ^ y, regardless of primitivity, let 

(1) y - x = p2 - q2 - 2pq = ±c 

which is readily transformed into 

(2) p - q = N/2q2 ± 
and 
(3) p + q = N/2p2 ± c . 

It may be noted in passing that all values of c for primitive tr iples a re of the form 12d ± 1 
and 12d ± 5, where d = 0, 1, 2, 3, • e e . However, l e ss than fifty percent of numbers of 
this form are possible values of c, because this representation by means of three Pell num-
bers includes all odd numbers not divisible by 3. 

Two character is t ic identities of the Pell-number sequence, 

(4) P n + 2 = 2 P n + 1 + P n (P„ = 0, P l = 1) 
and 
(5) ( P n + 1 + P n ) 2 - 2 P ^ + 1 = ( - l ) n + 1 

were used [3] to prove that Pell numbers generate all values for (x, y, z) when c = 1. 
Multiplication of (5) by a2 shows that Pell numbers also generate all values for (x, y, z) 
when c = a2, regardless of primitivity. Thus, when c = 1, q = P and p = P +̂ _; 
c = 4, q = 2P ; c = 9, q = 3P , etc. Similarly, Pell numbers generate all (x, y, z) 
when c = 2a2, obviously nonprimitive, When c = 2, q = P - + P and p = P n + 2

 + 

P .-; c = 8, q = 2(P _ + P ); c = 18, q = 3(P ,- + P ), etc. n+1 M n n+1 n 5 Mn n+1 n / s 

All other Pythagorean tr iples are represented by generalized Pell numbers , s imilar to 
Horadam1 s generalized Fibonacci numbers [ 4 ] , in such a way that a pair of equations is 
associated with each value of c8 

403 
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(6a) 
and 
(6b) 

*2n+l 

^2n+2 

or d2n+2 = aP n+1 bP 

q0 _ = bP ^ + aP M2n+1 n+1 n 

where a > b. The value of p , associated with a given value of q, is obtained by replacing 
n by (n + 1). It will be noted that the odd and even values form two distinct sequences. 

Upon combining (2) and (3) with (6), we obtain 

(7a) 

(7b) 
and 
(8a) 

(8b) 

2n+l 

2n+2 

<Wl = (a b ) P n + 1 + (a + b)Pt i 

V + 2 = (a + b ) P n + 1 + (b a)P 

P2n+1 + q2n+l 

p2n+2 + q2n+2 

(3a b ) P n + 1 + (a b)P 

(a + 3b)P n + 1 + (a + b )P n 

where the subscripts for p and q may be interchanged between (7a) and (7b) as well as be -
tween (8a) and (8b) as needed. 

Since Pell numbers proper , and generalized Pell numbers for primitive solutions, a re 
alternately of different parity, and with p ± q odd for primitive solutions, a ± b must be 
odd in view of (7) and (8). All other possible values of a ± b also occur and give r i se to non-
primitive tr iples . Thus, all (x51 y, z) can be generated, and no impossible values occur. 
Once obtained, all values are easily verified, and any oversight of a permissible value of c 
becomes obvious by the absence of an expected pair (a,b). But there appears to be no sys -
tematic, analytical method of determining a pr ior i either possible values of c or their a s -
sociated pair o r pa i rs of (a,b), except for c = a2 and c •=. 2a2, where b••••= 0. 

Following is a table of the f irs t 33 values for c , a, and b > 0. Values of c giving 
r i se to primitive solutions are underlined. 

£ 
7 

14 

17 

23 

28 

31 

34 

41 

46 

47 

49* 

a 

2 

3 

3 

4 

4 

4 

5 

5 

5 

6 

5 

b 

1 

1 

2 

1 

2 

3 

1 

2 

3 

1 

4 

£ 
56 
62 
63 
68 

11 
73 

11 
82 
8£ 
92 
94 

a 

6 
7 
6 
6 
6 
7 
8 
7 
7 

b 
2 
1 
3 
4 
5 
2 
1 
3 
4 
2 
5 

c 

£7 
98** 

103 

112 

113 

119*** 

a 

7 

9 

8 

8 

9 

8 

119*** 10 

124 

126 

127 

136 

8 

9 

8 

10 

b 

6 

1 

3 

4 

2 

5 

1 

6 

3 

7 

2 

*This also has the solution 7F~7 
**This also has the solution 7(P* + 1 + P n ) 

[Continued on page 412. ] 

"ifc|4;" This is the first value with two pai rs 
of solutions. 



FIBONACCI NUMBERS OBTAINED FROM PASCAL'S TRIANGLE 
WITH GENERALIZATIONS 

H. C. WILLIAMS 
University of Manitoba, Winnepeg 19, Canada 

1. INTRODUCTION 

Consider the following a r r ay of numbers obtained from the first k lines of Pasca l ' s 
Triangle, 

1 
1 
1 

0 
1 
2 

0 
0 

.1 

. . . 
0 
0 
0 

C-1) (v) 

2k 

4k 

If we let the element in the i + 1 column and n row be F . M, then F . „ = ( " ) (n,i = 
0, 1, 2, ••• , k - 1) and 

i , n ' 
r i , n " ( i ) 

F. 12 Fi,n-j G = 0, 1, 2, •••, k - 1; |n| = k, k + 1, •••) 
1=1 

If k = 2. F~ = f , - , F- = f , where f is the n Fibonacci number; and if k = J3, 5 0,n n+1 l , n n n 
F„ = L . and Fr t = K - , where L and K a re the general Fibonacci numbers of l , n n+1 2,n n-1 n n 
WaddiU. and Sacks [8], Also, Ff e_1 h = fh k where the fQ fc a re the k-generalized Fibon-
acci numbers of Miles [5] , and FA = U, of Ferguson [2]. Both the numbers f . and 
U. are of use in polyphase merge sorting techniques (see, for example, Gilstad [3] and 

rL9 n 
Reynolds [6]). 

The purpose of this paper is to investigate some of the propert ies of a more general 
set of functions which include the functions F . (i = 0, 1, 2, • • • , k - 1 ) and several others 

i s n 
as special cases . 

405 
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2. NOTATION AND DEFINITIONS 

Let {c^, a2i * • • , % } be a fixed set of k integers such that 

[Oct. 

-nw \ k k -1 _*_ k -2 , , / i \ k 
F(x) = x - a^x + a2x + . . . + (-1) ^ 

has distinct zeros p0, Pi, • • • , Pk_-p Let a0, al9 • • • , a, - beany k integers and define 

Finally, let 

k-1 
pi = Jl *A (i = 0, 1, 2, •••, k - 1) 

l d~j l l j=o 

D = 

A = 

1 

1 

1 

|D|. 

Po 

Pi 

p k - l 

Pi 
2 

Pi 

P2 
pk-l 

... 

... 

... 

Po 

Pi 

Pk-1 

We shall concern ourselves with the functions 

(2.1) A. 
i , n 

1 

1 

1 

Po 

Pi 

p k - l • 

• p}-1 

k-1 
• Pi 

i-1 
'• pk-l 

00 

01 

*k-l 

i+1 
Po 

i+1 
Pi 

i+1 
pk-l ' 

• Po 

k-1 
• Pi 

k-lj 
" pk-l 

It i s c lear that 

(i = 0, 1, 2, • • • , k - 1) . 

(2.2) 
k-1 

Ai ,n = f EV? (i = 0 , 1 , 2 , . - . k - l ) , 
i=o 

where c . is the cofactor of p] in D. 
If &i = 1, a. = 0 (i = 0, 2, 3, • • • , k - 1), we have <p. = p. ; and, in this case , we 

define A. to be z. . These functions, which are quite useful in the determination of the 
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propert ies of A. , have been dealt with in some detail by authors such as Bell [1] 9 Ward 
[9] andSelmer [7] , When a = (-1)1 (i = 1, 2, ••• , k), {z. - } is the general F ib-

i Ki-x 9 n 
onacci sequence discussed by Miles [5] and Williams [ l0 ] . 

Since matr ix methods a re advantageous in the treatment of the A. functions, we in-
i 9 n 

troduce the following: 

C = 

"00 

"01 

"10 

"11 

c 0 k-1 C l k-1 

C. = diag (c.o9 c . r 

"k-1 0 

"k-1 1 

' c i k -1 

k-1 k-l_ 

) , 

Z. = 
l 

°1.0 
Z i ,2 

i , k - l i ,k 

i , k - l 
i ,k 

%2k-2 

n , r 

h 

,n+(k-l)r 

01 
,n+r 

01 

^n+fe-Dr 

"k-1 
,n+r 

,n+(k-l)r 

B 
n 9 r 

0,n 
^0sn+r A l 9 n+r 

A 0 9 n+(k- l ) r A l 9 n + ( k - l ) r 

k - l , n 
k-1,n+r 

k - l , n+(k - l ) r 

B. i , n s r 

A. i ,n 
A- ^ i9n+r A. i ,n+2r 

A. i9n+(k-l)r 
A. i ,n+kr 

A i 9 n+(k- l ) r A i , n+kr Ai ,n+(2k-2)r 

3. SPECIAL CASES 

The A. functions include a number of interesting functions as special cases . We 
have already mentioned the z. functions in the previous section and in this section we de-
scribe several other special cases . We first show the relation of the function F . to A. 

.th i , n i , n 
Let H. (j = 1, 2, . . . 9 k) be the j elementary symmetric function of 0O9 0 j , 

4>k_l9 then 
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k 
W + 1 T 

J i>n-j 
(3.1) A.jn = X ) ( " 1 ) J + 1 H A -

3=1 

If 

•'[(•)-(•->)] «i = ( - i r i m - L , 1 1 a = i, 2. •••,k) 

and a0 = aA = 1, a. = 0 (I = 2, 3, • • • , k - 1), we have 0. = 1 + p. and H. = (-1)J+ . 
Hence, 

k 
A. =y^A. 

i ,n L-d i ,n- j 
3=1 and 

thus, in this case , 

Vi,n = ( i ) (0 < i, n < k - 1) 

A. = F . i ,n i ,n 

When k - 2, at = 1 - 2a, a2 = a2 - a - 1, SLQ = a, aA = 1, we have Hi = 1, H2 = 
- 1 , and AQ n = afn + f ^ , A. Q = fn« If ^ = 0 , a2 = "5> ao = a i = 1> we have 

An = 2 n _ 1 £ and A, = 2n"1f , 
0,n n l , n n 

where 9- is the n Lucas number. If (xl9 yA) i s the fundamental solution of the Pel l 
equation 

(3.2) x2 - dy2 = 1 , 

ax = 0, a2 = -d, a0 = xl9 at = yi , 

Then AA = x and A, = y , where (x , y ) is the n solution of (3.2). 0,n n l , n J n n J n 
When k = 3, we also have some interesting cases . For example, if a± = a2 = a% = 

2 and a0 = -ai = a2 = 1, we have Hi = -H2 = H3 = 1 and AA = UQ , A. = -L . , u 1 L * 6 0,n 3,n l , n n-1 
AQ

 = ^Q j_i = K . If (xl9 yi, zA) is a fundamental solution of the diophantine equation &, n o, n+i n 
(Mathews [4]) 

(3.3) x3 + dy3 + d2z3 - 3dxyz = 1 , 
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and a0 = a2 = 0, az = d, a0 = x l s a! = yl s a2 = z l s then all the solutions of (3.3) are 
given by 

( A 0 , n ' A l ,n> A 2 s n ) ( | n l = 0 , 1 , 2 , . . . ) . 

4. IDENTITIES 

We now obtain several of the important relations satisfied by the A. functions. It 
will be seen that each of these relations is a generalization of a corresponding identity sa t -
isfied by the Fibonacci numbers. The most important propert ies of the Fibonacci numbers 
are the identities which connect the numbers f , , f and f to other Fibonacci num— 

n+m n-m nm 
bers . For the sake of convenience, we shall call these relations the addition, subtraction, 
and multiplication formulas. 

By (2.1), 
B. _,_ = P C.Pf 

i , n+m, r n , r I m, r 
where we denote by Bf the transpose of the matrix B. Since 

CD = DC = I , 

B. ^ = P C ' D ' C . D C P ' = B Z .B ! ; 
i , n+m, r n , r I m , r n , r I m , r 

hence, 

A. , = (AA A, AQ « . . A. )Z.(AA A, . . . A. )? 
i,m+n 0,n l , n 2,n k ,n l 0,m l , m k , m 

(4.1) k-1 k-1 

ZLJ z L r Z i s h + j h ,n j , m 
h=0 j=0 

This is the addition formula for A. >n* 
By the definition of A. it follows that J i , n 

(4.2) 

thus, 

h ,m 
p. 0. 

= 

k-1 

3=o 

k-1 

r P?*A. 
3=o 

k-1 / k-1 

]=o \ j=o 
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Now if H = Hk = 0o040i ••• <%_!> 

[Oct. 

HmA. i , n -m A 

00 Po0o 

,m ,m 
0i pi(p1 

i-1 ,m ,n i+l^ni 
Po 0o 0o Po 0o 

i-1 ,m ,n i - l ^ m 
Pi 0i 0i Pi 0i 

k-1 ,m 
Po 0o 

k-1 ,m 
Pi 0i 

,m n ,m i-1 ,m ,m i+1 , m k - l . m 

By (4.2) 

(4.3) 

k-1 

y ^ -A. 
*-J 0,] j , i 
3=0 

HmA. 
i ,n -m 

2 w Z 0 s i + j - l A j , m A 0 , m Z / o , i + j + l A j , m ' * ' Z / o , i + k - l A j , m 

5 - X j A j , m " ' Z ) Z l , i + j - l A j , m A l , m S z l . i + | + l A j , m ' " 2 Z l , i + k - l A j , j , m 

2 J Z k - l » J A J » m " " X / Z k - l . i + 3 - l A J » n i - A k - l , m z J Z k - l , i + j + l A j , m ' " S Z k - l , i + k - l A j , m 

this is the subtraction formula for A. . 
i , n 

Since 

k-1 
A. i ,nm 

1 \ ^ ^nm 

1=0 

A. 
i ,nm 

k / k - i \ ] 

j=0 \ h = 0 / 

From (4.2), we get the multiplication formula 

k i. 
i ,nm Z-/ii-i2T- ••• ik- j = i J> 

z. m i, s 

where the sum is taken over all non-negative integers i i , i2, ••" , % such t h a t ^ i . = m; 
and £ ( j - l ) i . . 
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We may easily evaluate the determinants of B , and B. by first introducing 
n, r i;ii) r 

the matrix. 

Now 

hence 

Since 

we have 

(4.5) 

and 

(4.6) 

Q. 
,n. 

&(k-l)n ^(k-l)n 

0,0 

s (k-l)n 
k-1 

QnC = 0,n l 9 n 
k - l 9 0 

Ss-l.n 

A 0 , (k - l )n A l , ( k - l ) n 

l s n 

V l , ( k - l ) n 

K\ 
l , 2n 

k ,n 
^k,2n 

l , ( k - l ) n ^k , (k-l)n 

iPn,r| = H K 

B 
n , r A 

l , r 
^ l ,2 r 

n-1 9 r 
^ n - l , 2 r 

% ( k - l ) r 

A 

B. 
i 9 n , r 

H n |Z . | 
i 

l 9 r 
H,2r 

n r l , ( k - l ) r 

n - l 9 r 
A . n - l , 2 r 

A l , ( k - l ) r 
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•"ANNOUNCEMENT.*. 

The Editor (who always parks in a Fibonacci-numbered parking space) noted the follow-

ing in the latest publication of the Fibonacci Association, A P r i m e r for the Fibonacci Num-
bers : There a re 13 authors, each of whom wrote a Fibonacci number of ar t ic les . Each c o -
author has a Fibonacci number of ar t ic les with a given co-author. There a re 11 ar t ic les with 
one author, and 13 ar t ic les have co-authors. Of the twenty-four a r t i c les , 13 are P r i m e r 
ar t ic les , and 11 are not. 

The P r i m e r , co-edited by Marjorie Bicknell and V. E. Hoggatt, J r . , is a compilation 
of elementary ar t ic les which have appeared over the years . These ar t ic les were selected and 
edited to give the reader a comprehensive introduction to the study of Fibonacci sequences 
and related topics. The 175-page P r i m e r will be available in the Fall of 1972 at a cost of 
$5.00. 
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H-195 Proposed by Verner £ Hoggatt, Jr., San Jose State College, San Jose, California 

Consider the array indicated below: 

1 

1 

2 

5 

13 

34 

89 

1 

2 

4 

9 

22 

56 

145 

1 

3 

7 

16 

38 

1 

4 

11 

27 

65 

1 

5 

16 

1 

6 

22 1 1 

(i) Show that the row sums are F„ , n ^ 2. 
(ii) Show that the rising diagonal sums are the convolution of 

( F 2 n - l ^ = 0
 a n d { ^ 2 , 2 ) } ; = 0 , 

the generalized numbers of Harr i s and Styles. 

H-196 Proposed by J. B. Roberts, Reed College, Portland, Oregon. 

(a) Let A0 be the set of integral par ts of the positive integral multiples of r, where 

1 + ^ 5 
T = „ — 

413 
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and let A - , m = 0, 1, 2, • • • , be the set of integral par t s of the numbers nr2 

for n 61 A . Prove that the collection of Z of all positive integers is the disjoint 
union of the A.. 

J 
(b) Generalize the proposition in (a). 

H-197 Proposed by Lawrence Somer, University of Hi in o is, Urbana, Illinois. 

n 
sion relationship: 

Let { i r } _ be the t-Fibonacci sequences with positive entries satisfying the recur -

Find 

(t) u n 

. l im 
n —• 

t 
Vu . Z—i n- i 
i=l 

(t) u n+1 
u oo n 

SOLUTIONS 
HYPER -TENSION 

H-185 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 

(1 - 2x)n = £ ( - D n " k ( n
 2

+
k

k ) ( 2
k

k ) (1 - v ) n - k
2 F l [-k; n + k + 1; k + 1; x] 

k=0 ^ / \ / 

where 2 F i [a ,b ; c; x] denotes the hypergeometric function. 

Solution by the Proposer. 

We star t with the identity 

r s E (2r + 3s)! (y - z) z _ 

r!s!(r + 2s)! ^ + .2r+3s+l 1 - y - z 
r , s=0 y* 

Now put y = u + v, z = v, so that 

frv V ( 2 r + 3s)L u v = 1 
1 ; JLJ r l s l ( r + 2s)l ,- + ,2r+3s+l 1 - u - 2v 

r . s=0 * U v ' 
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The right-hand side of (*) is equal to 

n=0 

while the left-hand side 

oo oo 

E (2r + 3s)l r s V 1 / -x\kf2r + 3s + k \ , ^ ± 
r l s l ( r + 2s)l U V ^ {~1} { k J ( U + V) 

r , s=0 k=0 

It follows that 

, , . ,n \ "^ , , ,k v ^ . n x k / 2 r + 3s + k \ (2r + 3s)l r s 
<u + 2 v > = L <u + v) L ('1] \ k J rl8l(r + 2s)l U v 

k=0 r+s=n-k 

E , i x n - r - s (r + 2s + n)l r s , , vn-r-s 

W r '.si(r + 2s)l (n - r - s)l u v ( u + v ) 
r+s<n 

n . k 
An-k E t l Nn-k (u + v) \7* (s + n + k)l k-s s 

("1 } (n - k)l L* sl<k - s)l(k + s)i u v ' 
k=0 s=0 

Taking u = 1, v = -x , we get 

(1 - 2x)n = £ (-Dn"k EMV- 'MI (1 " V)n_k ^ ^ n + k + 1; k + 1; X] 
klkl(n - k)t 

k=0 

A CONGRUENCE IN ITS PRIME 

H-186 Proposed by James Desmond, Florida State University, Tallahassee, Florida. 

The generalized Fibonacci sequence is defined by the recurrence relation 

u , + u = u ^ , 
n-1 n n+1 

where n is an integer and U0 and Û  a re arbi t rary fixed integers. 
For a prime p and integers n, r , s and t, show that 

u _, = U ^ (mod p) , np+r sp+t x ^ 3 
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if p = ±1 (mod 5) and n + r = s + t, and that 

U _,_ = ( - l ) r + t U ^ (mod p) np+r sp+t ^ 

if p = ±2 (mod 5) and n - r = s - t. 

Solution by the froposer. 

We have from Hoggatt and Buggies, "A P r i m e r for the Fibonacci Sequence — Par t III ," 
Fibonacci Quarterly, Vol. 1, No. 3, 1963, p. 65, and by Fe rma t ' s theorem, that 

p 
F ^ = V* ( ? V-^ F1 FP"i = F FP .. + F _, FP = F F - + F _,_ F (mod p) 

np+r L^d 1 1 1 l+r n n-1 r n-1 p+r n r n-1 p+r n v 

i=0 x / 

for all n and r. From I. D. Ruggles, "Some Fibonacci Results Using Fibonacci-Type Se-
quences," Fibonacci Quarterly, Vol. 1, No. 2, 1963, p. 79, we have that 

F .^ . = F. . F . + F .F . -1+3 l + l j I j -1 

for all i and j . Therefore, 

F _,_ = F F , + F ^ F F + F F . F (mod p) 
np+r r n-1 r+1 p n r p -1 n ^ 

for all n and r. We have from Hardy and Wright, Theory of Numbers, Oxford University 
P r e s s , London, 1954, p. 150, that 

F _- = 0 (mod p) and F = 1 (mod p) 

if p = ±1 (mod 5), and that 

F + i - • ° (mod p) and F = 1 (mod p) 

if p = ±2 (mod 5). Let p = ±1 (mod 5) and n + r = s + t. Then 

F _,_ = F F n + F ^ n F E F ^ (mod p) np+r r n-1 r+1 n r+n v' 

for all n and r. Therefore 

F .* = F ^ = F ^ = F _,_ (mod p). sp+t s+t n+r np+r * 

It is easily verified by induction that 
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U = t L F + UnF n n I n 0 n-1 

for all n. Therefore 

U n p + r s U l F n p + r + U 0 F n p + r - l = U l F
s p + t + U 0 F

S p + t - l S U sp + t < m o d P> • 

Now, let p = +2 (mod 5) and n - r = s - t. From page 77 of the reference to Ruggles, we 
have 

F .^ . - F.L. = ( - l ) j + 1 F . . 
i+J 1 3 i-3 

for all i and j . Therefore 

F ^ = F F - - F , - F + F F E F F - + F ^- F - 2F , - F + F F np+r r n-1 r+1 n r n r n-1 r+1 n r+1 n r n 
= F ^ - L F = ( - l ) r + 1 F (mod p) 

r+n r n ' n - r F 

for all n and r . Thus 

( - l ) r + t F _,. = ( - l ) r + t ( - l ) t + 1 F . = ( - l ) r + 1 F = F _,_ (mod p) . 
v sp+t \ / \ / s _ t n - r np+r v 

Hence 
U n p + r = U l F n P + r + U 0 F n P + r - l B U l ( - 1 ) r + t F s P + t + V- l ) ' - 1 * - 1 F

sp+t-l 
B ( " 1 ) r + t ( U l F s P + t + U 0 F

s p + t - l > - < - 1 ) r + t u s P + t ( m o d P>" 

FIBONACCI IS A SQUARE 

H-187 Proposed by Ira Gessel, Harvard University, Cambridge, Massachusetts. 

Problem: Show that a positive integer n is a Fibonacci number if and only if either 
5n2 + 4 or 5n2 - 4 is a square. 

Solution by the Proposer. 

Let F0 = 0, F4 = 1, F - = F + F _- be the Fibonacci ser ies and L0 = 2, ^ = 1, 
L ,- = L + L n be the Lucas se r ies . It is well known that r+1 r r - 1 

(1) (-I)" + F*r = F r + 1 F r _ 1 

(2) L r = F r + 1 + F r _ x 

Subtracting four times the first from the square of the second equation, we have 

whence 
L2 _ 4 ( - l ) r - 4F2 = (F _,, - F - )2 = F2 , r r r+1 r - 1 r 

5F2 + 4 ( - l ) r = L2 . r r 
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Thus if n is a Fibonacci number, either 5n2 + 4 or 5n2 - 4 is a square. 
I have two proofs of the converse. 
F i r s t Proof. We use the theorem (Hardy and Wright, An Introduction to the Theory of 

Numbers, p. 153) that if p and q are integers , x is a real number, and |(p/q) - x | < 
l /2q2 , then p /q is a convergent to the continued fraction for x, and that (Hardy and Wright, 
p. 148) the convergents to the continued fraction for (1 + *s/5)/2 in lowest t e rms are F - / 
F . r 

Assume that 5n2 ± 4 - m2. Then since m and n have the same parity, k = (m + n)/2 
is an integer. Then substituting m = 2k - n in 5n2 ± 4 = m2, we get k2 - kn - n2 = ±1, 
so that k and n are relatively pr ime and 

±l /n2 = (k/n)2 - (k/n) - 1 = [(k/n) - (N/5 + l ) /2 ] [(k/n) + (\/5 - l ) /2 ] . 

Thus 

| (k/n) - (s/5 + l ) / 2 | = 1/n2 | (k/n) + (^5 - l ) / 2 | . 

Since 1 is a Fibonacci number, we may assume n ^ 2. Then 

(2k - n)2 = m2 ^ 5n2 - 4 = 4n2 + (n2 - 4) ^ 4n2 , 

so 2k - n ^ 2n, whence k/n 2= 3/2. Thus (k/n) + (\/"5 - l ) / 2 > 2, so by the two theorems 
quoted above, k/n = F - / F for some r , and since both fractions are reduced, n = F . 

Second Proof. Assume 5n2 ± 4 = m2. Then m2 - 5n2 = ±4, so 

m + \/5n m - N/5n _ n 
" 2 * 2 ±l ' 

and since m and n have the same parity, 

m + \ r5n , m - V5n _ — _ and * 

are integers in Q ( N / 5 ) , where Q is the rationals, and since their product is ±1, they are 
units. It is well known (Hardy and Wright, p. 221) that the only integral units of Q(\/I>) are 
of the form ±x~ , where x = (1 + \/"5 )/2. 

Then we have 

(m + ^ 5 n ) / 2 = x r = \ (xr + y r ) + f L ^ ^ L • N/5 , 2 L ^ 5 J 

where y = -1/x . Now x. + y = L and 
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(X
r - y r ) / ^ 5 = F r 

(Hardy and Wright, p. 148). Thus 

| ( m + N/5n) = | ( L r + ^ 5 F r > , 

so n = F . 

SUM SERIES 

H-189 Proposed by L Carlitz, Duke University, Durham, North Carolina (Corrected). 

Show that 

(2r + 3s)l (a - b y ) r b S y r + 2 s 

^ r l s ! ( r + 2s)l H _, ,2r+3s+l , , 2 

r 9 S = 0 ' (1 + ay) 1 - ay - by2 

Solution by the Proposer. 

Put 

i - ar 

so that 

1 - ax - bx2
 A 

m=0 

m x m 

1 = E * 
(1 - ax - bx2)(l - y) n ' 

J m,n=0 

v n i n 
x y 

Replacing y by x" y this becomes 

1 V ^ m ~ n n 

• -z / J G x y 
m,n=0 (1 - ax - bx2)(l - x y) 

Hence that par t of the expansion of 

(1 - ax - bx2)(l - x V ) 

that is independent of x is equal to 
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(*) 
1 - ay - by2 

On the other hand, since 

(1 - ax - bx2)(l - x~ y) = (1 + ay) - x(a - by) - bx2 - x" y , 

we have 

(1 - ax - b x ^ U - x - V ) " 1 = £ [ ^ a - b ^ + b x ^ + x - V l 

vT, S t E (r + s + t)l (a - by) b y r+2s- t 
rlsltl ,- ^ x r + s + t + l x 

r,s,t=0 ( 1 + a ^ 

The par t of this sum that is independent of x is obtained by taking t = r + 2s. We get 

E (2r + 3s)l (a - b y ) V y r 2 s 

rT.sI(r + 2s)l ,.. , v2r+3s+i 
r , s=0 ( 1 + a y ) 

Since this is equal to (*), we have proved the stated identity. 

IT 'S A MOD WORLD 

H-190 Proposed by H. H. Ferns, Victoria, British Columbia. 

Prove the fo l lowing 

2 r F = n (mod 5) 

2 r L = 1 (mod 5) , 

where F and L are the n Fibonacci and n Lucas numbers , respectively, and r is 
the least residue of n - 1 (mod 4). 

Solution by the Proposer. 

In an unpublished paper by the proposer , it i s shown that 

^\- E (2k
n

+1) 5 k 

k=0 
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Hence 

IT] 
k=l x ' 

Thus 

5 k . 

2 n 1 F n = n (mod 5) 

Let n - 1 = 4m + r , where 0 < r < 4. Then 

But 

Hence 

2 F = 2 F = 2 2 F = n (mod 5) . 

24m = (24}m ^ 1 ( m o d 5 ) ^ 

To prove 

use 

2 r F = n (mod 5) . 

2 r L = 1 (mod 5) , 

M 
k=0 % ' 

(which is derived in the same paper) and proceed as above* 

JUST SO MANY TWO'S 

H-192 Proposed by Ronald Alter, University of Kentucky, Lexington, Kentucky. 

I f 
3n+l 

c 
n 

3=0 

•M1+J. 

. • s (%: JH 
prove that 

c = 2
6 n + 3 . Ns (N odd, n >0) . 

n 

Solution by the Proposer. 

In the sequence 

bk = b k - l " 3 b k - 2 ' ( k " l j bi = b2 = D > 

it is easy to show that 2 is the highest power of 2 that divides b. if and only if k = 3 
(mod 6), Also, by deriving the appropriate Binet formula, it follows that 
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Thus ^im-c-^ i - »-
k ^ 1 

2 
j=o 

The desired result follows by observing 

6n+3 6n+2 n * 

Editorial Note: Please submit solutions for any of the problem proposals. We need fresh 
blood! 

A GOLDEN SECTION SEARCH PROBLEM 

REXH.SHUDDE 
Waval Post Graduate School, Monterey, California 

After tiring of using numerous quadratic functions as objective functions for examples 
in my mathematical programming course , I posed the following problem for myself: Design 
a unimodal function over the (0,1) interval which is concave, has a maximum in the interior 
of (0,1), and is not a quadratic function. The purpose was to demonstrate numerically the 
golden section search.* 

My first thoughts were to add two functions which are concave over the (0,1) interval 
with the property that one goes to -°o at 0 and the other goes to -°o at 1. My two initial 
choices were log x and l / (x - 1). The golden section search s tar t s at the two points xt = 
1 - (1/0) and x2 = l/(p where 0 = (1 + N / 5 ) / 2 . After searching with 8 points, I noticed that 
the interval of uncertainty still contained the first search point so I thought it about time to 
find the location of the maximum analytically. I was dumfounded to discover that if I contin-
ued indefinitely with the search my interval of uncertainty would still contain the initial search 
point. 

* Douglas J. Wilde, Optimum Seeking Methods, Prentice Hall, Inc. (1964). 



INTRODUCTION TO PATTON POLYGONS 

BROTHER L RAPHAEL, FSC 
St. Mary's College, California 

This paper introduces an extraordinarily elementary topic which is accessible to any 
patient high school student with little or no sophisticated number theory. The ideas covered 
are presented in a straight-forward fashion, with many proofs and extensions left for the 
reader to work through. Deeper connexions with additive sequences and number theory are 
left to those with interest to pursue mat ters in the standard references on Fibonacci numbers. 
In the following (*) designates assert ions which must be proved or developed by the reader . 
Drawing all the figures carefully is certainly essential to an understanding of what is going 
on. 

1. Choose a coordinate system (which is to say, use some convenient graph paper) 
and draw any parallelogram O A ^ A j where 0 is the origin, and the le t te rs a re taken 
around the figure. 

2. Find the unique point A3 so that 0AiA3A2 is a parallelogram (Fig. 1). 
3. In general, find the point A so that OA A -A is a parallelogram. 

*4 . Consider the situation if n = - 1 , - 2 , - 3 , • • • in (3) and study Fig. 2* 
5. If we have been successful so far, we now have a set of points {Aj- where n is 

any integer, positive or negative; we may consider these points as forming an infinite poly-
gon •••A_2A_1A0A1A2A3o.e (Fig. 3). 

Figure 1 Figure 2 Figure 3 

423 
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6. This curious polygon has many propert ies which are somewhat surprising. Evi-
dently, A is the midpoint of A A for any integer n. This can be easily shown since 
AoA2 = OAj = A2A3 as opposite sides in the first two paral lelograms. This process may be 
continued along the polygon. 

7. But there is a more interesting and related result . In Fig. 1, a rea O A ^ = \ a rea 
OAjA2Ao = area A Q A - ^ , and A0A2 = A2A3, so that a rea A Q A - ^ = a rea A1A2A3. Continuing 
along the polygon we find that area AiA2A3 = area A2A3A4. In general then, a rea OAoAj. = 
area A

n
A

n + i A
n + 9 ' &1 a s e n s e > the polygon is an infinite stack of triangles with the same 

area. 
8. Vectors are now introduced to make calculations a bit s impler. Let OA be r ep -

resented by the vector v n . We may apply the "Paral lelogram Law" for vector addition to 
OA0AiA2 so that we have OA0 + QAt = 0A2, or v0 + vt = v2. In general , we have that v 2 

= v n + 1 + v n , since by (3), 0 A
n A n + 2 A n + 1 i s a parallelogram. 

9. The entire polygon is based on 0A|A2Ai, so in some way, the vectors v0 and vj 
are fundamental. In fact, 

v2 = vA + v0 

v3 = v2 + V! = 2vi + v0 

v4 = v3 + v2 = 3vi + 2v0 

v5 = v4 + v3 = 5vi + 3v0 

v6 = v5 + v4 = 8 ^ i + 5v0 . 

And we recognize our old friend the Fibonacci sequence where F 0 = 0, F^ = 1, and F „ 
= F ,. + F . In short , we are able to write: v = F v. + F . v n . n+1 n n n 1 n-1 0 

*10. In the negative direction along the polygon, check that v ~ F V- + F_ _-. v . . 
We already know one of the propert ies of the Fibonacci sequence is that 

F = ( - l ) n + 1 F , -n n 

n+1 
and so we have v_n = (-1) ( F

n
v i - F

n + l v 0 ^ 
11. Using the coordinate system we set up in (1), we may assign coordinates (f , g ) 

to the point A ; and, of course , the vector v will have the same coordinates. Then, since ^ n n 
vectors are added coordinate-wise, we have: 

f = F L + F .fn and g = F g. + F n g n , 
n n 1 n-1 0 &n n & l n - l & 0 

for any integer n. 
*12. Since our polygons seem to be deeply involved with the Fibonacci sequence, we 

need a short detour to pick up some well known propert ies of this sequence. Let 

<p = | ( l + ^5) , 
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so that cf? = <p+l. Then F - / F is an increasing sequence of rational numbers bounded 
by cp if n is odd, and a decreasing sequence bounded by <p if n is even. As n becomes 
large j F n + 1 / F n can be shown to approach <p as l i m i t As a result of all this we can write 
that: 

, • Fn+1 l im - = — = w ; n ^ c o F n <P> 

and that F - cpF 1 > 0 and <zF - F , > 0 if and only if n is odd. n r n -1 Y n n+1 J 

13, Returning to the polygon, consider the slope of OA for large positive n, where 
A n is the point (fn, g n ) : 

F 
n 

%n - ° F n % + Vl̂ O V l &1 &0 

f - 0 F L + F , f n F 
n n 1 n-1 0 n c , £ 

T—fi + fo 
n-1 

As n becomes very large9 F / F _1 approaches cp and so the slope approaches the value 

9 \ + g 0 
M 

<?h + f0 ' 

14. For the slope of 0A_ , we find, using (10), that: 

h F so 
T—^ = (-lHFnh - F n + 1 f 0 ) " F ^ " 

h F o 
n 

-n - ° ^ ^ V l " W o * 

Again, as n becomes large , the slope approaches 

s1 - <pg0 
N f i - ^ f o 

15. Another way of thinking about (13) and (14) is to call the lines y = Mx and y = Nx 
the asymptotes of the polygon (Fig. 4), where M and N are given in (13) and (14). For 
large n, the polygon runs along the asymptote y = Mx in the positive direction, and along 
y = Nx in the negative direction 

*16. It is easy to show that the asymptotes are distinct l ines through the origin 0. 
Merely show that M ^ N if O A ^ form a triangle. 
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= Mx 

y - N X 

Figure 4 
17. Figure 4 suggests a more intriguing relationship between the polygon and i ts asymp-

totes. In order to get at this, let 

d = f0gi - *igo = 
fo go 
*i gi 

Check to see that we may choose A0 and A4 so that d ^ 0, qft + f0 ^ 0 and ft -cp% £ 0. 
A calculation shows that for positive n : 

d(Fn - (pFn - ) 
ff - Mf = n n " 1 

&n n cp fA + £Q 

Since d/(^fi + f0) is a constant, the sign of g - Mf depends on F - cpF n which is pos-
n JO. n JJ "• x 

itive if n is odd and negative if n i s even (see (12)). Hence g - Mf is alternately greater 
and less than 0, which is equivalent to saying that g is alternately greater and less than 
Mf . Hence, the vert ices A 

n n 
(f , g ) lie alternately above and below the line y 

*18. A similar analysis for g - Nf , g - Mf and g - Nf 
J &n n ' &-n -n &-n -n 

Mx. 
yields this result : 

the polygon (its ver t ices , at any rate) l ies on alternate sides of the asymptote y = Mx, and 
entirely on one side of y = Nx. This explains the TfTtf-shape of the polygon (Fig. 4). The 
asymptotes divide the plane into 4 regions: one containing the even-numbered ver t ices , an-
other the odd ones, and the last two regions are empty. 

19. We know from (7) that the absolute value of the area of triangle A A. ^A + 2 equals 
a rea OAQAI. More precisely, from analytic geometry, the a rea OAQAI is given by the 
determinant: 
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1 0 0 

1 fo go 

427 

1 fi gi 

which gives after expansion: \(f0gt - f i g 0 ) = f d, as in (17). Using determinants to find 
area , we must recall that lettering a triangle in the opposite sense changes the sign of its 
area . Hence we get: 

d = 
1 
1 
1 

0 

fo 
fi 

0 

go 
gi 

= -
1 fo 
1 fi 

1 f2 

go 
gi 

g2 

which is twice the area A0A1A29 and, in general: 

(-I)' n+1 1 f n+1 &n+l 
n+2 gn+2 

This in turn may be simplified to: 

d = (-D1 

n+1 

^n 
gn+l 

for any n. This is a ra ther simple and unexpected result . 
*20. A little more digging around can give us even more curious resul ts . For example, 

confine attention to the even-numbered ver t ices . These form an "hyperbola"-shaped polygon 
with the obvious asymptotes (Fig. 5). It can be shown without much trouble that 

i d = a r e a 0 A2nA2n+2 = a r e a A2nA2n+2A2n+4 

in absolute value. Notice also that F lA = 3F J Q - F . 
n+ t̂ n+z n 

* 2 1 . Check the situation for the odd-numbered ver t ices . 
22. What happens if we demand the asymptotes be perpendicular? Borrowing a resul t 

from analytic geometry again, we see that MN = -1 in that case. This can be simplified to: 

2 
gi g0g2 

A 
= -1 

fnf; 0̂ 2 

A simple way (not the only way, of course) for this to happen is for g = f _1. This gives us 
the polygon with vert ices (f , f - ) and the asymptotes are y = (l/<p)x and y = - cpx (which 
are clearly perpendicular). 
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0 - 3 

Figure 5 Figure 6 
23. All polygons of the form (f , f - ) have the same asymptotes and so must be of 

the same general shape. The simplest one is (F , F - ) so that A0 = (0,1), Aj_ = (1,0) 
and A2 = (1,1) as in Fig. 6. Thus the polygon is based on the unit square, and so 

d = F0F( 0*0 FiF_i 

Also, the result in (19) becomes: 

n+1 
n -1 
F = (-I)" n+1 

24. Investigate all eight polygons based on unit squares at the origin. For example, 
in addition to polygon (23), we also have (F - , F ). What a re the asymptotes, etc. ? 

25. This material reveals a great many propert ies of the Fibonacci-type sequences in 
a very geometric and graphic fashion. One obvious and several not-so-obvious generaliza-
tions are immediately available. But these will be the subject of another ar t ic le . 
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ALGORITHM FOR ANALYZING A LINEAR RECURSION. SEQUENCE 

BROTHER ALFRED BROUSSEAU 
St. Mary's College, California 

The basic idea of the algorithm to be presented in this paper may be illustrated by the 
simple example of a th i rd-order l inear recursion sequence; 1, 4? 8, 21 , 67, 199, 568, 1641,. 
4782, 13904, 40353, 117161, •• • with a recursion relation of the form 

T _ = aT + bT n + cT 0 . n+1 n n-1 n-2 

The problem is to find a, b , c. The obvious procedure is to set up a set of l inear equations 

c + 4b + 8a = 21 
4c + 8b + 21a = 67 
8c + 21b + 67a = 199 
21c + 67b + 199a = 568 . 

Only three equations are needed to find a, b , and c; the fourth is introduced since it brings 
out the fact that it must be a l inear combination of the first three, the multipliers being in 
fact the quantities a, b , c for the given sequence; that i s , 

L4 = aL3 + bL2 + cL | 

Hence we can ascertain that the sequence is of the third order by fact that these four relations 
a re linearly dependent and no smaller number has this property. Thereafter, the first three 
equations can be used to find the quantities a, b , c. 

The algorithm that does both these jobs simultaneously is Gaussian elimination. Stripped 
of the excess baggage we s ta r t with a matr ix of quantities; 

(la) 1 4 8 21 
(2a) 4 8 21 67 
(3a) 8 21 67 199 
(4a) 21 67 199 568 

Multiply the first set of quantities by -4 and the second by 1 and add to get (2b); multiply 
the first set by -8 and the third by 1 to get (3b); multiply the first by -21 and the fourth 
by 1 to get (4b). 

429 

L4; 
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(2b) 0 -8 -11 -17 
(3b) 0 -11 3 31 
(4b) 0 -17 31 127 

Now use -8 in (2b) as the pivot value and eliminate -11 and -17 in (3b) and (4b). 

(3c) 0 0 -145 -435 
(4c) 0 0 -435 -1305 

Finally by another elimination 

(4d) 0 0 0 0 

This shows that there is a third-order l inear recursion relation among the quantities we have 
used in these equations. 

To find the constants a, b , c, we have equivalently from (4c): 

-435a = -1305 so that a = 3 . 

Then from (3b) - l i b + 3c = 31 which gives b = -2 . Finally from (la), c + 4b + 8a = 21 
we have c = 5. The recursion relation in question i s : 

T , = 3T - 2T , + 5T 0 . n+1 n n-1 n-2 

It can now be ascertained whether the remaining t e rms are governed by this recursion 
relation. 

In general 8 given a l inear recursion relation for which we do not know the order o r the 
coefficients, we can proceed by Gaussian elimination until we find a row of zeros . If this is 
the n row, then the order of the l inear recursion relation is n - 1 . The coefficients can 
then be found by back-substitution as was done in the illustrative example. 

For example, the sequence • • •527 , 110, 23, 5, 2, 5, 23, 110, 527, ••• was obtained 
as a fourth-order sequence. Is it a proper fourth-order sequence or does it have a lower-
order factor which governs the sequence? We proceed to make our analysis. 

(la) 

(2a) 

(3a) 

(4a) 

(5a) 

527 

110 

23 

5 

2 

110 

23 

5 

2 

5 

23 

5 

2 

5 

23 

5 

2 

5 

23 

110 

2 

5 

23 

110 

527 
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(2b) 

(3b) 

(4b) 

(5b) 

0 

0 

0 

0 

21 

105 

504 

2415 

105 

525 

2520 

12075 

504 

2520 

12096 

57960 

2415 

12075 

57960 

277725 

(3c) 

The sequence is governed by a second-order recursion relations 

T _,, = 5T - T , n+1 n n-1 

As a more ambitious example9 consider the sequence: 

77, -20, 1, 0, - 8 , - 2 , 5, - 2 , 1, 9, 1, - 2 , 5, - 2 , - 8 , 0, 1, -20, 77, -425, 

which is supposed to be of the sixth order . 

(la) 

(2a) 

(3a) 

(4a) 

(5a) 

(6a) 

(7a) 

(2b) 

(3b) 

(4b) 

(5b) 

(6b) 

(7b) 

(3c) 0 

(4c) 0 

(5c) 0 

(6c) 0 

(7c) 0 

(4d) 0 

(5d) 0 

(6d) 0 

(7d) 0 

1 

0 

-8 

5 

-2 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-8 

-2 

5 

-2 

1 

9 

0 

0 

0 

0 

0 

-8 

-2 

5 

-2 

1 

9 

-8 

-2 

5 

-2 

1 

9 

1 

-2 

-59 

-18 

41 

-7 

9 

468 

154 

-332 

58 

-54 

-3023 

-1916 

-5 

-1593 

-2 

5 

-2 

1 

9 

1 

-2 

5 

-18 

-3 

19 

-3 

0 

154 

-1 

142 

19 

-45 

5 

-2 

1 

9 

1 

-2 

5 

-2 

41 

19 

-24 

8 

0 

-332 

-142 

188 

-62 

18 

-1916 

-2780 

-1220 

-1188 

-2 

1 

9 

1 

-2 

5 

-2 

1 

-7 

-3 

8 

1 

0 

58 

19 

-62 

-9 

-9 

-5 

-1220 

-947 

-135 

1 

9 

1 

-2 

5 

-2 

-8 

9 

9 

0 

0 

0 

-9 

-54 

-45 

18 

-9 

-9 

-1593 

-1188 

-135 

-891 
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(5e) 0 

(6e) 0 

(7e) 0 

(6f) 0 

(7f) 0 

0 

0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

4732884 3678480 539136 

3678480 2862756 400140 

539136 400140 155844 

17876957904 -89384789520 

-89384789520 446923947600 

<7g) 0 0 0 0 

Back substitution gives for the coefficients - 5 , 4, - 2 , 4, - 5 , 1, so that the recursion re la -
tion is T x = -5T + 4T - - 2T 0 + 4T „ - 5T A - T 

n+1 n n-1 n-2 n-3 n-4 n-5 
A complication can ar i se when there is a zero in a position at which the pivot should be 

found. The general procedure here is to take as pivot in a given column the first candidate 
among the sets of coefficients that might serve as a possible pivot in this column. 

The following example will i l lustrate the manner of proceeding. Let there be a sequence 
of unknown order: 1, 2, 4, 8, 11 , 7, - 1 1 , -47, -94, -123, -76, 123, • • • . We s e t u p quan-
tit ies to cover up to the fifth order as an initial guess. 

(la) 

(2a) 

(3a) 

(4a) 

(5a) 

(6a) 

(2b) 

(3b) 

(4b) 

(5b) 

(6b) 

1 

2 

4 

8 

11 

7 

0 

0 

0 

0 

0 

2 

4 

8 

11 

7 

-11 

0 

0 

-5 

-15 

-25 

4 

8 

11 

7 

-11 

-47 

0 

-5 

-25 

-55 

-75 

8 

11 

7 

-11 

-47 

-94 

-5 

-25 

-75 

-135 

-150 

11 

7 

-11 

-47 

-94 

-123 

-15 

-55 

-135 

-215 

-200 

7 

-11 

-47 

-94 

-123 

-76 

-25 

-75 

-150 

-200 

-125 

-11 

-47 

-94 

-123 

-76 

123 

-25 

-50 

-35 

45 

200 

The f irst pivot element in the second column occurs in (4b). So we c a r r y down (2b) and (3b) 
and pivot on (4b). 

(2c) 

(3c) 

(5c) 

(6c) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-5 

-100 

-250 

-5 

-25 

-450 

-1125 

-15 

-55 

-950 

-2375 

-25 

-75 

-1250 

-3125 

-25 

-50 

-750 

-1875 

The first pivot element in the third column is found in (3c). 
[Continued on page 438. ] 



FUN WITH FIBONACCI AT THE CHESS MATCH 

V. E. HOGGATT,JR. 
San Jose State University, San Jose, California 

and 
IV1ARJ0RIE BICKWELL 

A. C. Wilcox High School, Santa Clara, California 

As first noted by Hoggatt [1] , the resul ts of the world championship chess match held 
in Iceland this summer between Boris Spassky9 U. S. S. R.s and Bobby Fischer , U. S. A., were 
heavily influenced by Fibonacci and Lucas numbers (underlined in what follows). Fischer 
started as a 5 to 2 favorite with the British bookmakers, and Jimmy "The Greek" Snyder in 
Las Vegas j Nevada, gave Fischer 6 to _5_which was changed to <3 to 5> as reported in Time, 
August 21. After the first and second games, Fischer won all games whose numbers are 
Fibonacci numbers , while all games numbered by Lucas numbers (apart from 3) were either 
draws or wins for Spassky. They played 7_ consecutive draws (games 14 to 20 inclusive); 
there were 8_ consecutive games where Fischer was 3̂  games ahead of Spassky, and Fischer 
was 4 games ahead of Spassky when he won the match. The 2^ games ended with 11_ draws, 
7_ wins for Fischer and _3 for Spassky, with a prize split of 5/8 for Fischer and 3/8 for Spassky, 
or , a gold ratio of 5> to 3. 

There were _8 occasions when both scores were positive integers- After _5 of the games 
(i» ii!l ~> -> 2±!)» koth scores were Fibonacci numbers and consecutive Fibonacci numbers in 
4 of those cases; in :2 cases (3 and 7), both scores were Lucas numbers; in 8_ cases (1, 2_, 3>, 
7_, 8_, 12, 13, 19 — where there are 4 Luc as-numbered and _5 Fibonacci-numbered games 
listed), the scores were each Fibonacci or Lucas numbers. In 1_ cases OL, 29 _3, 7_, _8, 12, 
19) there were one Lucas and one Fibonacci number. 

Even when the scores were non-integral, all was well with Fibonacci. It is well-known 
that there are several ways to round off numbers ending with 1/2. If one score is rounded up 
and the other rounded down, in 8̂  cases (4, _5, 6, 9, 10, 11., 18, 21) the scores will both be 
either a Fibonacci or a Lucas number; in 31 cases (4, _5, 21) the scores are both distinct F ib -
onacci numbers, being consecutive Fibonacci numbers in games j5 and 21_ and making Fibon-
acci numbers 2̂  ways for the scores from game 4; in 5_ cases (4, 6, 10, 11 , JL8) both scores 
will be Lucas numbers with positive subscripts , being consecutive Lucas numbers in games 
4, 11, and 18; in_3 cases (4, _5, 6) both scores are both Fibonacci and Lucas numbers for 
both ways to round up and down. Notice that, in 3 cases (4, !5, 21), the scores a re both d i s -
tinct Fibonacci numbers while in 4 other cases (6, 10, 11, 18) the scores are both Lucas 
numbers. There were 3̂ games (4, 6, 10, 11, 18̂ ) after which if both scores were rounded up, 
they would both be either (distinct) Fibonacci or Lucas numbers, and again 3; cases (4, J5, 6) 
where both scores are both Fibonacci and Lucas numbers. Similarly, there are 5> cases (4, 
6, 9,, 14, 20) in which if both scores were rounded down, both numbers resulting are either 

433 
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(distinct) Fibonacci o r Lucas numbers. Game ^ yields tied Fibonacci and/or Lucas numbers 
upon rounding both scores either up o r down. Fur ther , the non-integral entr ies , upon drop-
ping the fraction 1/2, yield 13 entries which are Fibonacci numbers, and IJ^ which are Lucas 
numbers, made up of _7 distinct numbers; further, 8 are both Fibonacci and Lucas numbers, 
while _8 a re separately Fibonacci or Lucas numbers. Games 4, j>, and 6 make two scores 
which are each both Fibonacci and Lucas numbers for all ^ ways to round off the scores , and 
a Fibonacci or Lucas number of game numbers are underlined in each case listed in this pa r -
agraph. There were 1 1 games where the scores were non-integral. Writing all non-integral 
scores as improper fractions yields _8 Fibonacci only numerators and 1_ Lucas only numera-
tors and 1 which is both. 

The ratio of the two scores equalled the ratio of two positive Fibonacci numbers after 
7 of the games (3, 4, 5, 7, 13, 15, 19), while after 3 of the games (5, 7, _8) the ratio of the 
scores was equal to the ratio of two Lucas numbers with positive subscripts. After the _8 
games 1, 2, ^ , j5, 6, _8„ 13 and 21., the ratios of the scores are the ratios of two Fibonacci 
numbers, and after the 7_ games 3, 4, 6, _7> 10, 11.* and IjS the scores a re two Lucas numbers 
if Spassky's score is rounded down and Fischer1 s rounded up. Further , in each l is t of games 
cited, a Fibonacci or Lucas number of games is underlined. 

Note that game J5 fits all _5 cr i te r ia given for non-integral scores . Lastly, there is e x -
actly one game, game 16, whose scores fit into none of the preceding pat terns , again a F ib-
onacci count. The scores of this remarkable match follow. 

SCORES IN WORLD CHAMPIONSHIP CHESS MATCH 
(Scoring: Win, 1 point; Draw, 1/2 point) 

Winner 
S 

S 

F 

D 

F 

F 

D 

F 

D 

F 

S 

Game 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Spassky 
1 

2 

2 

2-1/2 
2-1/2 
2-1/2 

3 

3 

3-1/2 
3-1/2 
4-1/2 

Fischer 
0 

0 

1 

1-1/2 
2-1/2 
3-1/2 

4 

5 

5-1/2 
6-1/2 
6-1/2 

Winner 
D 

F 

D 

D 

D 

D 

D 

D 

D 

F 

Game 
12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

Spassky 
5 

5 

5-1/2 
6 

6-1/2 
7 

7-1/2 
8 

8-1/2 
8-1/2 

Fischer 
7 

8 

8-1/2 
9 

9-1/2 
10 

10-1/2 
11 

11-1/2 
12-1/2 

Making a different count, notice that, opt of 42 scores occurring, if fractions a re d i s -
carded, Lucas or Fibonacci numbers occur 34 t imes while there are only 8_ occurrences of 
non-Fibonacci, non-Lucas numbers , and, further, each score occurs a Fibonacci o r Lucas 
number of t imes. If both scores a re rounded up, each score occurs a Lucas o r Fibonacci 
number of t imes. 
[Continued on page 438. ] 



POLYHEDRA, PENTAGRAMS, AND PLATO 

AWDREWFEINBERG 
Student Johns Hopkins Medical School 

1. INTRODUCTION 

The Divided Line 
Plato believed that mathematics and logic were a necessary step in the pursuit of the 

Good, but that an extra step of enlightenment was necessary to achieve it. This is il lustrated 
by the discussion of the divided line in the Republic, Plato divides a line into nunequal seg-
m e n t s / ' [l] by first dividing the line (length a) into two unequal segments (ka and a - ka), 
the shorter one near the top. He then divides each segment by the same proportion k, and 
he labels the segments as shown in Fig. l a . The divided line is one of four explanations of 
the Good offered in the Republic (Fig, lb ) , where the line is itself an example of dianoia. 
Now, the problem with the line is that, following o rde r s , one cannot construct the second and 
third segments unequal [2] . I leave the proof to the reader . 

Platonists conclude that mathematics, symbolized by the line, while useful for descr ib-
ing the Good, contains inconsistencies reconciled only by a higher perception. In [2] is an 
excellent detailed explanation of the l ine. 

nous (rational understanding) 
dianoia (mathematics and logic) 
pist is (belief) 

eikasia (heresay) 

the Attainment of the Good 

| sun analogy I Socrates (nous) 
j l i n e analogy | Timaeus (dianoia) 
1 cave allegory I Hermocrates (pistis) 

i f c h 0 0 1 I Cri t ias (eikasia) 
I learning • 

(b) Ways to Understand the Good (c) Characters in the Timaeus 

Fig* 1 The Divided Line 

The irreconcilability of mathematics and the highest good was a part icularly sore area 
for Plato. Irrational numbers were a case in point. Plato felt that, even though they were 
embodied in many beautiful objects (the Golden Ratio appeared in many buildings of his day), 
irrational numbers were without reason and impure. 

435 

episteme ^ 
(knowledge) 

doxa J^J 
(opinion) ' | 

(a) Steps in 
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2. THE DODECAHEDRON IN THE TIMAEUS 

In this dialogue, Plato describes the celestial orbs as consisting of the five regular 
polyhedra, each of whose faces can be decomposed into the basic triangles which constitute 
mat ter [3], He divides them up as shown in Fig. 2. The Pythagoreans divided the pentagonal 
faces of the dodecahedron into 30 elementary scalene triangles [4 ] , as shown in Fig. 3a. 

POLYHEDRON 

pyramid 
octahedron 
icosahedron 

cube 
dodecahedron 

Fig. 2 The Celestial Orbs and their Constituent Triangles , Squares, and Pentagons 

(a) Decomposed into elementary triangles (b) Represented as a pentagram 

Fig. 3 The Pentagonal Face of a Dodecahedron [4] 

This decomposition provides the outline of the famous pentagram (Fig. 3b), the Pythagorean 
symbol of recognition, meaning "Health" [5] . The heavy outline in Fig. 3a marks a 72°-720-
36* isosceles triangle, the ratio of whose sides is the Golden Ratio, which is irrational [6] , 

The first four polyhedra describe the Sun, the Moon, and planets [7] , and comprise 
collectively the Circle of the Different; but the dodecahedron, the Circle of the Same, is the 
celestial sphere itself. The twelve faces of the dodecahedron a re the twelve signs of the 
Zodiac [8]. Where the other orbs rotate at various intervals , the dodecahedron rotates e x -
actly once each day (actually the rotation of the earth). Plato gives the dodecahedron special 
compliments. Because of i ts diurnal regulari ty, it has Sameness and Supremacy and is Self-
Moving, quite a nice Platonic pra ise . Most importantly, the dodecahedron is rational. He 
says: 

Now whenever discourse that is alike t r u e . . . is about that which is sensible, and 
the circle of the Different, moving aright, ca r r i e s i ts message throughout all i ts 
soul—then there ar ise judgments and beliefs that are sure and true. But whenever 
discourse is concerned with the rational, and the circle of the Same, running 
smoothly, declares it, the resul t must be rational understanding and knowledge [9] . 
Plato contradicts himself. At the root of the dodecahedron is the Golden Ratio, which 

is irrational and Platonically imperfect; yet Plato describes the dodecahedron as rational and 
perfect. 

The easiest explanation of this contradiction is that it is a Platonic aberration. But I 
think that Plato knew it all along, and that it is an attempt to show a flaw in Timaeus* argument. 

FACE 

(4) triangles 
(8) triangles 

(20) triangles 
(6) squares 

(12) pentagons 

ELEMENTARY 
TRIANGLE 

) £ & <6> 30°-60°-90 

121 (4) 45°-45°-90;< 

Plato does not 
divide these. 
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3e INTERPRETATION 
Plato is giving mathematicians a subtle lesson on the l imits of their perceptions. It is 

not Plato speaking in this dialogue, it is Timaeus—in fact, there are four speakers: Cr i t ias , 
Hermocra tes , Timaeus, and Socrates, This is an important Platonic clue, The characters 
might be ranked as shown in Fig. l c . Crit ias begins with a story about Atlantis which he 
heard from the old Cri t ias , who heard it from Solon, who heard it from the pr ies t of an an-
cient Egyptian province (an example of heresay). Hermocrates is the one who introduces the 
story to Plato (belief). Timaeus is the scientist, describing the universe with natural laws 
and mathematics as he sees them (mathematics). Plato (rational understanding) never gets 
the las t word. 

Timaeus! discussion is a model of dianoia. We Timaeuses might describe the world 
in our mathematical t e rms and point to the beauty of our models, but according to Plato, our 
models have built-in contradictions. Like the Line, the Timaeus is a mathematical descrip-
tion of nature; and like the Line, it must contain hidden contradictions and imperfections* 
TimaeusT mathematical construct, the dodecahedron, is superficially beautiful and rational, 
but it contains hidden the Golden Ratio and its imperfect, irrational N/"5. 

Now most of us probably do not see anything wrong with N/5; after all , i t ' s much neat-
e r than e or i. And I personally think mathematics is quite beautiful. But Plato believed 
that mathematics cannot simultaneously retain its simplicity and achieve beauty, that mathe-
matics alone is insufficient to achieve the Good, and that the Golden Ratio is the paradigm of 
mathematics1 aesthetic inadequacy, as shown by the dodecahedron. 

We Fibonacci lovers can at least savor the knowledge that the great Greek genius spent 
so much time thinking about one of our favorite numbers. 
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6. According to legend, Hippasus was struck down at sea for discovering the dodecahedron. 
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(2d) 
(5d) 
(6d) 

0 
0 
0 

[Continued from page 432. ] 

0 0 -5 -15 -25 
0 0 -250 -750 -1250 
0 0 -625 -1875 -3125 

-25 
-1250 
-3125 

The first pivot element in the fourth column is in (2d). 

(5e) 0 0 0 0 0 0 0 . 

Back substituting in (2d), (3c), (4b) and (la), we find the coefficients in the recursion re la -
tion to be a = 3, b = - 4 , c = 2, d = - 1 , so that the recursion relation of the fourth o r -
der i s : 

T ^ = 3T - 4T 1 + 2T 0 - T . n+1 n n-1 n-2 n-3 

[Continued from page 434. ] 

Turning to the players and the match itself, F ischer , who is now 2£, won the U. S. 
Junior Open Championship at age 13 and became an international grandmaster at 15, while 
Spassky was 1_8, three years older than Fischer was, when designated an international grand-
mas ter . Lar ry Evans, American grandmaster , in Time, September 11 , 1972, analyzes the 
match as having three par ts : games 1-5, opening, 5_ games; games 6-13_, middle, j$ games; 
games 14-21, ending, _8 games. F i scher ' s "poisoned pawn" bobble came on the _29 move of 
the first game, after Fischer had arrived _7 minutes late , while the 1_1 move of the third 
game was the key move in his first win. Finally, observe that the match was played in the 
7 t h and ^ t h months at longitude 21° W. 

In conclusion, returning to the opening sentence of this paper, notice that every proper 
noun has a Fibonacci number of le t ters in the word (except for Fibonacci itself). 

The odds were really in our favor since _11 out of the first 21_ integers are Fibonacci or 
Lucas numbers and of these 4 are even integers and 7_ are odd integers. Again, of these 21, 
7_ a re Lucas, 7_ are Fibonacci and 3_ a re both. 

The factual information in this art icle was gleaned for the most part from Time Maga-
zine and the San Jose Mercury-News., 
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MAKING GOLDEN CUTS WITH A SHOEMAKER'S KNIFE 

JOSEPH LERCOLANO 
Baruch College, CUNY, Mew York, New York 

1. The problem of finding the "golden cut" (or section) of a line segment was known to 
the early Greeks and is solved in Euclid II, 11 [1]: let segment AB be divided into two seg-
ments by the point G such that AB/AG : AG/'GB. Then G is the golden cut of AB, and 
AG/GB, the golden ratio. The "shoemaker 's knife" (or arbelos) was the name given by 
Archimedes [2] to the following figure: let K be any point on segment CD and let semi-
ci rc les be drawn on the same side of CD, with CD, CK, and KD as diameters . The fig-
ure whose boundary consists of these semicircles is called a shoemaker 's knife (see Fig. 1). 

C K D 

Figure 1 

In this note, we will show how, given a golden cut G in a segment AB, we can, with the aid 
of an arbelos, generate a golden cut on any segment with length smaller than AB, in a swift 
and straightforward fashion. This in itself should justify bestowing the title of "golden" on 
the arbelos; however, we will also give a justification which conforms more with historical 
cr i ter ia . 

2. Let segment AB be given and let G denote the golden cut of AB. Let C be any 
interior point of segment AB. The problem is to find the golden cut of segment AC. Con-
struct a semicircle with diameter AB. Locate point D on the semicircle such that the d i s -
tance AD is equal to AC. Draw chord AD, and drop a perpendicular from G to AD. 
Denote the foot of the perpendicular by G?. (See Fig. 2.) 
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Claim. GT is the golden cut of chord AD. 
Proof. Draw chord BD„ Since angle ABD is a right angle, it follows that the t r i -

angles AGfG and ADB are s imilar , from which it follows that AGr/GfD = AG/GB. Hence, 
G' is the golden cut of AD9 which was to be shown. Finally, by locating point G" on seg-
ment AB such that AGn = AG', we have that Gn is the golden cut of segment AC. 

Since angle AG'G is a right angle, it follows that the points A, Gf, G determine a 
semicircle. Thus, we have the following corollary; let AD be any chord in the semicircle 
with diameter AB. Let Gf denote the golden cut of AD. Then the locus of all such points 
GT is a semicircle with diameter AG (G, the golden cut of AB). 

It is easy to see that both the construction and above corollary ca r ry over with obvious 
modifications if we reference everything at point B, ra ther than point A. Thus, if BD is 
any chord in the semicirc le , and H its golden cut, then the locus of all such points H is a 
semicircle with GB as diameter. 

The figure consisting of the semicircles with diameters AB, AG, and GB i s , of 
course , an arbelos. Now we are ready to reverse the above procedure and deal with the 
main problem: viz, to utilize the shoemaker 's knife to effect golden cuts. Let AB be a given 
line segment and G its golden cut. Draw semicircles with diameters AB, AG, and GB, 
respectively. Let D be any point on the semicircle with diameter AB, and draw chord AD 
intersecting the semicircle on diameter AG at GT. Then G' is the golden cut of AD. 
(See Fig. 3.) 

Figure 3 

By drawing chord BD intersecting the semicircle on diameter GB at H, we see also that 
H is the golden cut of BD. The argument for both these statements is the same as that given 
above. 

In light of the la t ter argument, it is reasonable that the arbelos in Fig. 3 should be 
termed "golden. M To see that this terminology is in fact also historically justified, observe 
that the arbelos can be viewed as a continuous deformation of a right triangle, where the hy-
potenuse corresponds to the larges t semicircle and the legs to the smaller semicirc les . His-
torically [1 ] , a right triangle is called golden if the ratio of its legs is the golden ratio. In 
light of the above observation, it would be in keeping to te rm the arbelos "golden" if the ratio 
of i ts " legs" (i. e. , i ts minor semicircles) were the golden ratio. A simple computation for 
our arbelos reveals that this is in fact the case; the length of the semicircle on AG is evi-
[Continued on page 444. ] 



YE OLDE FIBONACCI CURIOSITY SHOPPE 

BROTHER ALFRED BROUSSEAU 
St. IVlary's College, California 

In the good old days when Jekuthiel Ginsburg was Editor of Scripta Mathematica, there 
were many brief i tems of interesting mathematics, some with proof, some without, contrib-
uted by a wide variety of people. Some of these were labeled curiosities; others without being 
tagged as such were evidently in the same category. A fair amount of this material dealt with 
Fibonacci sequences. We offer a few for-instances translated into symbolism more familiar 
to readers of the Fibonacci Quarterly. 

Charles W. Raine [l] noted that if four consecutive Fibonacci numbers are taken, then 
the product of the extreme te rms can be used as one leg of a Pythagorean triangle, twice the 
product of the mean t e rms as the other, to give a hypotenuse which is a Fibonacci number 
whose index is the sum of the indices of the t e rms in one of the sides. For example, if 

F 6 = 8, FT = 13, F 8 = 21, F 9 = 34 
a = 8 x 34 = 272; b = 2 x 13 x 21 = 546 ; 

c = N/272 2 + 5462 = 610 = F1 5 . 

Harlan L. Umansky [2] following up on Raine1 s idea extended the result to a generalized 
Fibonacci sequence. The sides of the Pythagorean triangle in this case would be given by: 

a = TkTk+3; b = 2 T k + l T k + 2 ; C = b + TL ° r C = Tk+1 + Tk+2 • 

For example, using the sequence 1, 4, 5, 9, 14, 23, 9 e o and taking the four values 5, 9, 
14, 23, a = 5 x 23 = 115; b = 2 x 9 x l 3 = 252. 

N/115 2 + 2522 = 277 , 

i2 = 

Gershon Blank [3] pointed out that 

while b + T2 = 252 + 52 = 277 and 92 + 142 = 277. 

( F n + F n + 6 ) F k + ( F n + 2 + F n + 4 ) F k + l = L n + 3 L k + l • 

For example, if n = 5, k = 4, (5 + 89) x 3 + (13 + 34) x 5 = 517, while 47 x 11 = 517. 

A note signed G. (evidently J. Ginsburg himself) [ 4 ] quoted the cubic relation given by 
Dickson 

n+1 n n-1 r 3 n 

441 
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and offered a second 

Thus for n = 5, 
?3 - 3F3 + F 3 = 3 F 0 n+2 n n-2 3n 

133 - 3 x 53 + 23 = 1830 = 3F 1 5 . 

Fenton Stancliff [5] (A Curious Proper ty of aA1) showed the following arrangement for 
finding the value of 1/89 = 0.011235955056 . . . 

1/89 = 0.0112358 
13 

21 
34 

55 
89 
144 

233 
377 

0.011235955056107 

P . Schub [6] (A Minor Fibonacci Curiosity) offered the relation: 

5F2 + 4 ( - l ) n = L2 . n n 

G. Candido [7] produced a fourth-power relation: 

2(F4 '+ F4 + F4
 Q) = (F2 + F2 + F2 ) n n+1 n+2 n n+1 n+2 

When n = 5, this becomes 

while 

2(54 + 84 + 134) = 66564 

(52 + 82 + 132) = 66564 

Royal V. Heath [8] noted that the sum of ten consecutive Fibonacci numbers is divisible 
by 11 with a cofactorthe seventh of the ten quantities. The sum of fourteen consecutive Fib-
onacci numbers is divisible by 29 with the cofactor the ninth; etc. 

Harlan L. Umansky [9] (Curiosa, Zero Determinants) offered the following. For any 
ser ies a, d, a + d, a + 2d, 2a + 3d, etc. , if N2 consecutive te rms (N ^ 2) a re taken and 
placed consecutively in the columns of a determinant, the value of the determinant is zero. 
Thus: 

= 0 

1 

3 

4 

7 

11 

18 

29 

47 

76 

123 

199 

322 

521 

843 

1364 

2207 
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These examples are sufficient to give the general flsivor of the contributions of those 
days. I believe there must be people today likewise who would be happy to express themselves 
in this fashion once more. Recently, in a private communication, William H. Huff stated that 
he had discovered the following. Add up any number of consecutive Fibonacci numbers; then 
add the second to the result; the final answer is always a Fibonacci number. The same seems 
to hold for any Fibonacci sequence starting with two values a ,b . 

Another curiosity is the fact that the sum of the squares of consecutive Fibonacci n u m -
bers is always divisible by F10 = 15. What about other sums of squares either of the Fibon-
acci sequence proper or other Fibonacci sequences? Are there similar resul ts for sums of 
cubes, fourth powers, e t c . ? 

This art icle is an invitation to our readers to engage in the type of activity that used to 
be featured by Scripta Mathematica. While it is probably true that one man 's "curiosity" is 
another man 's formula, ar t ic le , or thesis , we shall content ourselves by defining a "curiosity" 
as follows: A fact or relation that seems interesting and calculated to arouse intellectual cur -
iosity which is offered without proof for the consideration of the readers of the Fibonacci 
Quarterly. If you want something to appear in this department, be sure to label it FIBONACCI 
CURIOSITY. 
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AN INTEKESTING BOOK 

A MATHEMATICAL MODEL OF LIFE AND LIVING by Li Kung Shaw, Second Edition, 
1972. Paperback, good quality printing and binding, 94 pages. (Libreria Inglesa, P. O. 
Box 94 (Sue. 25), Buenos Aires , Argentina, $3.00 postpaid.) 

The Generalized Equation of the Golden Ratio 

(1) S + h = N/S2 + S 

which a r i ses in Li Kung Shawfs mathematical model of human life induces a new development 
in that historically famous topic of mathematics and magic, the Golden Section Ratio. Here, 
S represents a m a n ' s service hours and h his work hours . The equation (1) a r i ses as the 
condition for the happiness function 

to be maximized. The mathematical model begins with five basic assumptions and has de -
rived values which are in conformity with natural human behavior. 

Li Kung Shaw graduated from Chiao Tung University in Shanghai, China, in 1937, where 
he had studied physics. He was Chief of Air Transportation of the Chinese Civil Aeronautics 
Administration in Nanking, following service in the Air Forces as an aeronautical engineer. 
After three years of refugee life, he immigrated to Argentina where he pract ices operations 
research . 

— M a r j o r i e Bicknell 

[Continued from page 440. ] 

MAKING GOLDEN CUTS WITH A SHOEMAKER'S KNIFE 

dently (7r/2)AG, while the length of the semicircle on GB is (TT/2)GB. The ratio of these 
two lengths is then seen to be AG/GB, the golden ratio. 
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THE FIBONACCI ASSOCIATION 

PROGRAM OF THE NINTH ANNIVERSARY MEETINGS 
FIFTH ANNUAL SPRING CONFERENCE AND BANQUET 

Saturday, 22 April , and Sunday, 23 April , 1972 

HARVEY SCIENCE CENTER —UNIVERSITY OF SAN FRANCISCO 
Sponsored by the Institute of Chemical Biology 

INTRODUCTORY TOPICS 
Elementary Sessions FIBONACCI OPEN HOUSE 

Saturday, April 22, 1972 

8; 30 — Registration 
9:00 —WELCOME 

George Ledins Jr« , University of San Francisco 
9:15 — FIBONACCI REPRESENTATIONS 

Brother Alfred Brousseau, St. Mary 's College, Moraga, California 
10:00 — THE GOLDEN SECTION AND THE GREEK CRISIS 

G, De Chakerian, University of California, Davis, California 
10:45 — Question and Answer Period 
11:00 — Short talks to small groups to be presented by high school students* 

Topics and speakers to be announced 
11:45 — A GENERALIZATION OF BEVERLY ROSS* PROBLEM 

Brian Peterson, student, San Jose State University, San Jose , California 

ADVANCED TOPICS 
Research Session 

Sunday, April 23, 1972 

10:0 0 — R egi s t r ation 
10:30 — REDUNDANCY: WHY TWO RABBITS ARE BETTER THAN ONE 

Loran P, Meissner, Dept* of Computer Science, University of California, Berkeley 
11:20 — GENERAL LINEAR FIBONACCI AND LUCAS IDENTITIES 

Rodney Hansen, Montana State University, Bozeman, Montana 
12:10 — ALGORITHM FOR FINDING PRIME FACTORS 

Capt. N. A. Draim, Ventura, California 
2:15 — SOME RESULTS IN GRAPH THEORY 

Frank Harary, University of Michigan, Ann Arbor, Michigan 
3:15 —- THE ARITHMETIC PROPERTIES OF CERTAIN RECURSIVELY DEFINED 

SEQUENCES — David Klarner , Dept. of Computer Science, Stanford University 
4:15 — SOME COMBINATORIAL PROBLEMS ON PERMUTATIONS 

Leonard Carl i tz , Duke University, Durham, North Carolina 
5:30 — Cocktails 
6:00 — Dinner-Banquet 

445 



446 Oct. 1972 

FIBONACCI MAKES THE SPORTS PAGE 

The following appeared in an art icle clipped from the sports page (p. 51) of the San 
Francisco Chronicle, Wednesday, August 2, 1972, by A. P. Hillman. 

"5 Homers in Sweep: COLBERT'S 13 RBIs 

"Nate Colbert set a major league record when he drove in 1J3 runs on five home runs, 
including a grand s lammer, and a single in leading the San Diego Padres to a doubleheader 
sweep over Atlanta 9-0 and 11-_7- M 

The art icle continues, stating that Colbert hit two homers in the first game and three 
in the second, driving in five runs in the opener and eight in the nightcap. 

TfIn other games, Cleon Jones ' single in the _18 gave the New York Mets a ^-2 win over 
Philadelphia in the opener, but Steve Carl ton's 1 1 t h straight win gave the Phils the nightcap, 
4-1 ; Matty Alou's three hits sparked St. Louis to a _7-4 win over Pittsburgh; Joe Morgan's 
two-run homer led Cincinnati to a J3-J. victory over Houston and Montreal edged the Chicago 
Cubs, ^3-2, in ten innings. 

"Colbert homered with two mates aboard in the first inning of the opener, singled home 
a run in the third and added a solo homer in the seventh. 

"In the nightcap, Colbert blasted a grand slam homer off Pat Ja rv i s in the second inning 
and hit a two-run shot off J im Hardin in the seventh. His final homer, another two-run shot, 
came in the ninth. " 

The reader is left to find his own Fibonacci and Lucas number counts. If the Padres 
had scored 8 in the first game against Atlanta, and if Montreal had taken 11 innings, and Col-
bert had homered in the 

8 th 
inning instead of the ninth, then every number mentioned including 

the date would be either a Fibonacci or a Lucas number. Isn't that an amazing coincidence? 
(And the article should have appeared on page 55.) 

FIBONACCI NOTE SERVICE 

The Fibonacci Quarterly is offering a service in which it will be possible for i ts readers 
to secure background notes for ar t ic les . This will apply to the following: 

(1) Short abstracts of extensive resu l t s , derivations, and numerical data. 
(2) Brief ar t icles summarizing a large amount of research. 
(3) Articles of standard size for which additional background material maybe obtained. 
Articles in the Quarterly for which this note service is available will indicate the fact, 

together with the number of pages in question. Requests for these notes should be made to: 
Brother Alfred Brousseau 
St. Maryfs College 
Moraga, California 94574 

The notes will be Xeroxed. 
The price for this service is four cents a page (including postage, mater ia ls and labor). 



ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by 

A. P. HILLIVfAN 
University of New Mexico, Albuquerque, New Mexico 

Send all communications regarding Elementary Problems and Solutions to Professor 
A. P. Hillman, Dept. of Mathematics and Statistics, University of New Mexico, Albuquerque, 
New Mexico 87106. Each problem or solution should be submitted in legible form, prefer -
ably typed in double spacing, on a separate sheet or sheets , in the format used below. Sol-
utions should be received within five months of the publication date. 

Contributors (in the United States) who desire acknowledgement of receipt of their con-
tributions are asked to enclose self-addressed stamped postcards. 

B-238 Proposed by Guy A. R. Guillotte, Cowansville, Quebec, Canada. 

Can you guess WHO IS SHE? This is an easy simple addition and SHE is divisible by 
29. 

WHO 
IS 

SHE 

B-239 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Let p ^ O , q ^ O , u0 = 0, % = 1 and u - = pu + qu - (n > 1). Put 

U | , In) 
< . V = U U - • • • U , . - / U - U 0 • • • U, , < ft t- = 1 . 
| k | n n -1 n-k+1 1 2 k5 | 0 | 

Show that 

(*) 2 ) n 

P k - k + 1 (0 < k n) 

B-240 Proposed by W. C. Barley, Los Gatos High School, Los Gatos, California. 

Prove that, for all positive integers n, 3F + 2 F + 3 is an exact divisor of 

7F3 _ F 3 _ F 3 
n+2 n+1 n 

B-241 Proposed by Guy A. R. Guillotte, Cowansville, Quebec, Canada. 

If 2F 9 - F 9 - - 1 and 2 F 9 + 1 are both prime numbers , then prove that 
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*2n r 2n - l J ? 2n+ l 

is also a pr ime number. 

£-<?4? Proposed by J. Wlodarski, Proz-Westhoven, Federal Republic of Germany. 

Prove that 
/ n \ / n \ 

F 
( ! ) • ( ' - ) - ' • m+1 

for infinitely many values of the integers m, n, and k (with 0 < k ^ n ) . 

B-243 Proposed by J. Wlodarski, Proz-Westhoven, Federal Republic of Germany. 

Prove that 

(sHn 1 ) •»»•', "m+1 

for infinitely many values of the integers m, n, and k (with 0 < k ^ n). 

ERATTA FOR 

A CHARACTERIZATON OF THE FIBONACCI NUMBERS 
SUGGESTED BY A PROBLEM ARISING IN CANCER RESEARCH 

Please make the following changes in "A Characterization of the Fibonacci Numbers 
Suggested by a Problem Arising in Cancer Research" by Leslie E. Blumenson, appearing 
on pp. 262-264, Fibonacci Quarterly, April 1972. 

Page 263, line 11: For "N2 = 2 , n read "N = 2" ; 
Page 264, fourth line from bottom of page: For M+M read "•" ; 
Page 264, Eq. (6): For "+" read "•" ; 
Page 292, Eq. (7): For "+" read "." . 


