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PELLIAN REPRESENTATIONS 

L. CARLITZ*and RICHARD SCOVILLE 
Duke University, Durham, North Carolina 

and 
VERNERE.HOGGATTJR. 

San Jose State University, San Jose, California 

1. INTRODUCTION 

We define the Pellian numbers by means of 

P0 = 0, P. = 1, P ^ = 2P + P - (n > 1) . 
u * ' n + x n n _ i 

By a Pellian representation of the positive integer N we mean a representation of the form 

(1.1) N = €iPi + e2P2 + e3P3 + - • • , 

where the e. a re non-negative integers. If the e. a re res t r ic ted to the values 0, 19 not 
all integers N are representable. Indeed we have the sequence of "missing" numbers; 

4, 9, 10, 11 , 16, 21, 22, 23, 24, 25, 26, 27, 28, 8 , s . 

On the other hand we prove that every positive integer N is uniquely representable in 
the form (1.1) where the e. satisfy the following conditions: 

€i = 0 or 1; e. = 0, 1 or 2; 
(1.2) * 

if e. = 2 then e. - = 0 . i i - l 

It follows that the sequence of "missing" numbers is infinite. 
When (1.2) is satisfied we call (1.1) the canonical representation of N. Let A, denote 

the set of integers N such that 

e i = . . . = V l = 0, e k * 0 . 

and let B, denote the set of integers N such that 

e i = ••• = e
k _ i = °> \ = 2 -

As in the previous papers of this ser ies [ l , 2, 3, 4 ] , we shall characterize the sets A. , BjJ 
in t e r m s of certain arithmetic functions. As we shall see below, the discussion is considerably 

* Supported in par t by NSF Grant GP-17031. 
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450 PELLIAN REPRESENTATIONS [Nov. 

more elaborate than that in the case of Fibonacci representations. The number of functions 
necessary to describe the sets A, , B, is grea ter than that needed for the corresponding 
Fibonacci results; moreover some of the relations a re more intricate. 

To begin with, if N has the canonical representation (1.1) we define 

(1.3) e(N) = e2Pi + e3P2
 + e4p3 + B" 

a n d 
(1.4) p(N) = q P 2 + e2P3 + e3P4 + . . - - . 
Then 

however, for some n, 
e(p(n)) = n (n = 1, 2, 3, . . . ) 

p(e(n)) £ n . 

Note that the right member of (1.3) need not be canonical. 
Next we define the following six functionst 

a(n) = [N/2 11], b(n) = [(2 + N / 2 ) I I ] 

d(n) = [(1 + Nf2)n], d'(n) = [\{2 + ^ 2 ) n ] , 

5(n) = b(n) + d(n), e(n) = complement of 5(n) . 

Two (strictly monotone) functions fj_, f2 from N to N are complementary if the sets 

ft(N), f2(N) 

constitute a disjoint partition of N, the set of positive integers. In part icular a, b; d, d?; 
6, e a re complementary pai rs of functions. 

Of the numerous relations satisfied by these functions we mention in part icular the 
following: 

b(n) = a(n) + 2n, d(n) = a(n) + n , 

ab(n) = a(n) + b(n), d'(2n) = b(n) , 

d(n) = a(b(n) - d ' ( n ) ) f a2b(n) = 2b(n) = 1, 

e(2n) = e(2n - 1) + 1 = d(n), d'(b(n)) = din), 

a(n + 1) = e(n) + n + 1, b(n + 1) = p(n) + n + 3, 

e(d(n)) = n, e(b(n)) = a(n), e(6(n)) = d(n), 

p(d(n)) = 5(n), p(<5(n)) = d(6(n)). 

The sets A, , B, are described by the following formulas: 
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At « d(N) - 1 , 

A 2k " d 6 k " l e CB) ( k - 1 , 2, 3, • • • ) , 

A2k+1 " ^ ^ ( k " l s 2 ' 3 » ' " > > 
B 2 k - d f i ^ d C g ) (k - 1, 2, 3,. . - ) , 

B2k+1 = fik(i® (k - 1, 29 3, . . . ) . 

This summarizes the first half of the paper8 In the remaining sections of the paper we 
discuss various other functional relations. For the most par t these relations are motivated 
by the introduction of certain supplementary functions f, ff; g, gf now to be defined. To be-
gin withj we note that the function 

s(n) « ab(n) - ba(n) 

takes on only the values 19 2; similarly the function 

t(n) » adf(n) - dfa(n) 

takes on only the values 0, 1. We define fs f by means of 

s(f(n)) = 1, s(f'(n)) = 2 ; 

similarly we define g, g' by means of 

t(g(n)) - 0, t(g '(n)) » 1 . 

Thus f, f; g, g! are complementary pa i r s . 
Alternatively we may define these functions by means of 

a2(f(n)) = 1, a2 ( f (n)) ~ 0 (mod 2) 
and 

a(g(n)) s? 1, a(g»(n)) s 0 (mod 2) . 

In addition, the complementary pair c, c? should also be mentioned: 

c(n) « b(n) - df(n) ; 
as noted above, 

d(n) « a(c(n)) . 

Of the relations satisfied by these functions we note the following: 
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g(n) = a(f(n)) , P(n) = d(f(n)) 

b(ftn)) - a ( f (n)) = 1 

d(n) (n = P (k)) 
c f ( n ) = ^d(n) - 1 (n - f(k)) 

c(n) = j d'(n) +l (n = M 
1 d'(n) (n = g'(k)) 

a(cf(n)) = cf(n) .+ n - 1 = d'(2n - 1) 

c(n) = e(a(n)) -f' 1 

e(c'(n) + l ) = n . 

The las t section of the paper contains some theorems involving the functions of cr,r defined 
as follows by means of (1.1); 

cr(N) s et + e2 + e3 + • • • (mod 2) 

T(N) S k (mod 2) (N G Afe) . 

In part icular we show that 

b(N) = {n | a(n) = 0, r(n) = l } 

g(N) = {n j a(n) = r(n)} 

= ( n j a(n - 1) = 0} , 

dg(N) = {n(n G (d), a(n) = l } 

dgUN) = {n|n G (d), a(n) = 0} . 

For the convenience of the reader a summary of formulas appears at the end of the pa-
per , as well as several numerical tables. 

It should be remarked that most of the theorems in this paper were suggested by num-
erical data. Thus further numerical data may well suggest additional theorems, particularly 
in the case of some of the functions defined in the la t ter par t of the paper and not explicitly 
mentioned in this Introduction. 

2. THE CANONICAL REPRESENTATIONS 

As above, the Pellian numbers P are defined by 
n J 

(2.1) P 0 = 0, Pi = 1, P = 2P n + P 0 , 
7 u » i » n n_i n_2 

so that 
P2 = 2, P 3 =. 5, P 4 = 12, P 5 = 29, P 6 = 70, ••• . 
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We consider sequences 
(2.2) (€lf e2, . . . . e n ) 

of length n, where the e. satisfy the conditions 

(i > 1) 

453 

(2.3) 
(et = 0 or 1; e. = 0, 1, 

I if e. = 2 then e. 1 = 0 v i l - l 

It i s easily seen by induction on n that the number of sequences (2.2) is precisely 
P - . We prove next that if N is given by 

N = eiPi + • • - + e P , 1 1 n n * 

where the e. satisfy the conditions (2.3), then N < P - . For otherwise we would have 

N - e P - e , P . ^ P . - e P - e , P 1 n n n-1 n-1 n+1 n n n -1 n-1 
= (2 - e )P + (1 - € - )P - ^ P -n n n-1 n-1 n-1 

which eventually leads to a contradiction. See Keller [7] for s imilar resul ts . 
Theorem 2.1. Every positive integer N can be written uniquely in the form 

(2.4) N = eiPi + e2P2 + ' # ' t 
where 

(et = 0 or 1; e. = 0, 1 or 2; 
(2.5) 

if €. = 2 then e. . 

Proof. In view of the preceding r emarks , it is enough to prove that no integer N can 
have more than one representation (2.4), because if this can be established, the P - num-
bers corresponding to the sequences (2.2) of length n will be precisely 

0 , 1 , 2 , . . . . P n + 1 - 1 

Now suppose N is given by 

N = €tPi + . . . + € P , e ^ 0 , i i n n n 

N. where the e. satisfy (2.5). Then P ^ N < P - , so that n is uniquely determined by 
Now by considering N - e P we see that e itself is determined uniquely by N. Hence, 
by induction, the theorem is proved. 

In a s imilar manner we can prove the following theorem. 
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Theorem 2.2. Every positive integer N can be written uniquely in the form 

(2.6) N « fyPj + S2P2 + • • • , 
where 

( 6. = 0, 1 o r 2 (i = 1, 2, 3, • - . ) 

( i f 6t = • - . = 6 £ 0, 6. ± 0, then i 
(2.7) 

is odd. 

The form (2.4) will be called the f irs t canonical representation for N (or simply the 
canonical representation); the form (2.6) will be called the second canonical representation. 

It will be convenient to abbreviate the formula 

N = €tPi + e2P2 + e3P3 + - • . 
as follows: 

N = • £ie2e3 . . . . 

We shall say that N is a missing number if e. = 2 for some i. Hence the missing 
numbers a re those which a re not the sum of distinct Pell numbers. 

Theorem 2.3. The number of missing numbers l ess than P - i s equal to P - - 2 n . 
Moreover if 

N = e0 + 2ex + . . . + 2 k e k (e. = 0, 1) 

is the binary representation of N, then 

RN = €0 P l + £ l P 2 + . . . + e k P k + 1 

i s the N number that can be represented as a sum of distinct Pell numbers. 
Proof. The number of sequences 

Ui , e2, ' • • , e n ) 

in which each e. = 0 or 1 is clearly 2 . Since the total number of sequences is P - , it 
follows that the number of sequences containing at least one 2 is P - - 2 n . 

For the second half of the theorem it suffices to observe that the proof of Theorem 2.1 
shows that RN is a strictly monotone function of N. 

The first few missing numbers are 

(2.8) 4, 9, 10, 11 , 16, 21 , 22, 23, 24, 25, 26, 27, 28, ••• . 

Let N have the f irst canonical representation 

N = etPt + e2P2 + e3P3 + . . . . 
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We define the functions e(N), p(N) by means of 

(2.9) e(N) = e2Pl + e3P2 + e4P3 + ••-
and 
(2.10) p(N) = €iP2 + e2P3 + e3P4 + • • . . 

Theorem 2.4. The functions e and p satisfy the following identities; 

(2.11) p(n) = e(n) + 2n 

(2.12) e(p(n)) = n 

(2.13) e(p(n) + 1) = n 

(2.14) e p(n) + 2 = n + 1 . 

Moreover e and p are monotone. 

Proof. Let n be given canonically by 

n = °ei<E2e3 ••• . 
Then by definition 

p(n) = -Oe^e^ ••• 
and 

e(n) = • e2€3e4 • • • . 

Hence (2.11), (2.12), (2.13) follow at once. If e2 < 2, p(n) + 2 is given canonically by 

p(n) + 2 = .0(ei + l)€2e3 • •• 

and (2.14) follows. Now suppose e2 = 2. Then et = 0 and 

p(n) + 2 = (e3 + 1)P4 + e4P5 + • • • . 

As before this is canonical if e4 < 2 and (2.14) follows. Otherwise we continue until, for 
some k, e . < 2, and again (2.14) follows. 

To prove the monotonicity of e and p , we again take the canonical representation 

n = *€i£2e3
 0 8 9 . 

if et = 1, then 
n - 1 = e0e2e3 ** * , 

so that e(n - 1) = e(n). If €j = 0 and e2 ^ 0, then 
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n - 1 = -Keg - 1)^3 "•• 

and e(n - 1) = e(n) - 1. If 

(2.15) et = e2 = • . . = e ^ = 0 , ek £ 0 , 
then, for k odd, 

(2.16) n - 1 = eP2 + 2P4 + . . . + 2P k _ x + ( ^ - l ) P k + €k + 1 P k + 1 + ••• 
and 

e(n - 1) = 2Pt + 2P, + . . . + 2 P k _ 2 + (C Q - D P ^ + e k + 1 P k + . . . . 

This gives e(n - 1) = e(n). If in (2.15) k is even, we have 

(2.17) n - 1 = P l + 2P3 + • . . + 2 P n _ 1 + (efc - l )Pf c + ^ + ••• 
and 

e(n - 1) = 2P2 + . . . + 2 P k _ 2 + (Cj£ - D P ^ + e ^ + . . . , 

which gives e(n - 1) = e(n) - 1. 
This proves that e is monotone and therefore, by (2.12), p is also monotone. 
A s a corollary we have the following theorem. 
Theorem 2.5. For any n, the equation e(x) = n has at most three solutions. 
Proof. Assume 

e(xt) = e(x2) = e(x3) = e(x4) 
with 

X! < X2 < X3 < X4 . 

It follows from the definition of p that any n must be of at least one of the three forms p(j), 
p(j) + 1 or p(j) + 2. Take n = x2. Then by Theorem 2.4 we have 

e(xt) £ e(x4) . 

3. NEWMAN-SKOLEM PAIRS 

By a Newman-Skolem pair we shall mean a pair of functions (a,b) defined on the posi-
tive integers N and satisfying the conditions 
(3.1) a(N) U b(N) = N , 

(3.2) a(N) n b(N) vacuous , 

(3.3) a, b str ict ly monotone. 

Hence a and b a r e complementary functions. The Newman-Skolem pair (a,b) defined 
uniquely by the condition 
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b(n) = a(n) + n 
was introduced in [ 5 ] . 

We shall say that (a, b) is ordered if 

(3.4) a(n) < b(n) (n = 1, 2, 3 , • ••) 

and that (a,b) is separated if (a,b) is ordered and 

(3.5) b(n + 1) > b(n) + 1 (n = 1 , 2 , 3 , • • • ) . 
Define 

(3.6) d(n) = b(n) - n . 

Theorem 3.1. If (a, b) is separated then 

ad(n) = b(n) - 1 
and 
(3.8) a(d(n) + l ) = b(n) + 1 . 

Proof. By (3.5) we must have, for some k, 

b(n) - 1 = a(k), b(n) + 1 = a(k + 1) . 

Hence the k + n numbers 

a( l ) , a(2), • • • , a(k); b( l) , • • - , b(n) 

comprise all the numbers l e s s than or equal to b(n), so that 

k + n = b(n), k = b(n) - n = d(n) . 

This evidently completes the proof of the theorem. 
Theorem 3.2. If (a,b) is separated then 

(3.9) a(n + 1) = a(n) + 2 *± n G (d) , 

where (d) denotes the range of the function d. 
Proof. Since (a,b) is separated it is c lear that, for any n, either a(n + 1) = a(n) + 1 

o r a(n + 1) = a(n) + 2. Also we have 

d(n + 1) = d(n) = b(n + 1) - b(n) - 1 > 1 , 

so that d is str ictly monotone. 
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Now assume 
n ^ d(k) (k = 1, 2, 3, • • • ) . 

Then, for some k, 
d(k) + 1 < n < d(k + 1) . 

If a(n + 1) = a(n) + 2 then a(n) + 1 = b(j) for some (j). But 

b(k) + 2 = a(d(k) + l ) + 1 £ a(n) + 1 < ad(k + 1) + 1 = b(k + 1) , 

so that a(n) + 1 = b(j) is impossible. 
Theorem 3.3. If (a, b) is separated and 

d(n + 1) > d(n) + 1 (n = 1, 2, 3, • • • ) 
then 

a(d(k) - 1 ) = b(k) - 2 (d(k) > 2) . 
Proof. Since 

d(k) - 1 $ d(j) (j = 1, 2, 3, • • • ) , 
by Theorem 3.1, 

b(k) - 1 = ad(k) = a(d(k) - l ) + 1 . 

Theorem 3.4. If (a,b) is a Newman-Skolem pair and if, for all n, we have 

ba(n) < ab(n) < b(a(n) + l ) , 
then 
(3.10) ab(n) * a(n) + b(n) . 

Proof. Using the hypothesis we see that the a(n) + b(n) numbers 

b(l) , b(2), • • - , ba(n); a( l ) , a(2), • • • , ab(n) 

coincide with the numbers l ess than or equal to ab(n). Hence (3.10) follows at once. 
It is well known that if a9p a re positive irrational numbers satisfying 

(3.11) 1 + 1 = 1, a < p , 

the pair (a, b) defined by 

(3.12) a(n) = j > n ] , b(n) = [ jSn ] 

is a separated Newman-Skolem pair . For the remainder of this paper we define 
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a(n) = [ N / 2 I I ] 

b(n) = a(n) 4- 2n * [(2 + ^J2)n] 

d(n) = b(n) - n = [(1 + >j2)n] 

d'(n) = [1(2 + N/2)n]. 

Thus (a,b) and (d \d) a re separated Newman-Skolem pa i r s . Making use of the preceding 
theorems we get 

Theorem 3.J5, The functions &., b , d, d? as defined above, satisfy the following 
relations: 

ad(n) = b(n) - 1 

a(d(n) + l ) = b(n) + 1 

a(d(n) - l ) = b(n) - 2 

d ' (atn)) = d(n) - 1 

d?(a(n) + 1) = d(n) + 1 

a(n + 1) = a(n) + 2 *z» n E (d) 

df(n + 1) * d'(n) + 2 •=* n £ (a) . 

Here we have let (f) denote the range of the function f. 
Theorem 3.6. For all positive integers n, we have 

(3.13) ab(n) = a(n) + b(n) . 
Proof. Since 

a(n) < \/2"n < a(n) + 1 , 
we see that 

2a(n) + \l2 a(n) < ^ ( 2 n + a(n)) < 2(a(n) + l ) + N/2 (a(n) + l ) . 

Hence 5 taking greatest integers , 

b(a(n)) < ab(n) < b(a(n) -1- l ) . 

Equality is obviously impossible. Hence, by Theorem 3.4, we get (3.13). 
Suppose (df ,d) is any separated Newman-Skolem pair and suppose f is any increas -

ing function. Let d'f = b and let a be such that (a,b) is a Newman-Skolem pair. Then 
since d!(N) b(N), it follows that d(N) a(N). Hence there exists an increasing function 
c such that 

(3.14) d(n) = ac(n) . 

Now, since (df,d) is separated, we have 
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d'(d(n) - n ) = d(n) - 1 . 
Hence, among the numbers 

1, 2, 3, . . . , d(n) , 

there are exactly j members of b(N), namely 

d'f(l), d'f(2), • • • , d'f(j) 9 

where j is the largest integer such that 

f(j) < d(n) - n . 

We may write (symbolically) 

(3.15) j = [ ^ M _ U i ] . 

The remaining d(n) - j members in 

{ l , 2, 3, . . . , d(n)} 

are members of a(N), so that 

d(n) = a(d(n) - j ) , 
that i s 

(3.16) c(n) = d(n) - [ d ( n )
f ~ n ] 

Theorem 3.7. For the functions a, b , c, dT previously defined, we have 

(3.17) d(n) = a(b(n) - dT(n)) . 

Proof. Since df(2n) = b(n), the above remarks apply with f(n) = 2n. Hence 

c(n) = d(n) - [ ^ ^ ] = b(n) - n - [ ^ ] 

But 

-+ [*¥•] - » + DH - •+ [4s] 
= [1(2 + N/2)n] = d>(n) , 

so that 
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c(n) = b(n) - d»(n) . 

This evidently completes the proof of the theorem. 

4. RELATIONS BETWEEN a, b, d, df AND e AND p 

Theorem 4.1 . The functions a, b , c and p a re related by the following formulas: 

(4.1) a(n + 1) = e(n) + n + 1 

(4.2) b(n + 1) = p(n) + n + 3 . 
These formulas imply 
(4.3) e(n) = [ (\l2 - l)(n + 1) ], e(0) = 0 

(4.4) p(n) = [N/2 (n + 1) ] + n - 1, p(0) = 0 . 

Proof. It is c lear by induction that (asb) is the unique Newman-Skolem pair satisfying 

(4.5) b(n) = a(n) + 2n (n = 1, 2, 3, •• •) . 
Now let 

af(n + 1) = e(n) + n + 1 
and 

bf(n + 1) = p(n) + n + 3 . 

We shall show that (a',bf) is a Newman-Skolem pair satisfying 

(4.6) bf(n) = aT(n) + 2n . 

This will evidently prove the theorem. 
By (2.11) we have 

p(n) = e(n) + 2n. 
Hence 

bT(n + 1) - a'(n + 1) = p(n) - e(n) + 2 = 2n + 2 s 

so that (4.6) is satisfied. 
Since, by Theorem (2.4), 

e(p(n)) = e(p(n) + l ) = n, e(p(n) + 2 ) » n + l , 
we get 

a?(p(n) + 2 ) = p(n) + n + 2 = bT(n + 1) - 1 

and 
af(p(n) + 3) = p(n) + n + 4 = bT(n + 1) + 1. 
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Hence the ranges of a* and bT are disjoint. Fur thermore we see that 

a ' ( l ) , a'(2), • • - , a»(p(n))+ 2 ; b ' ( l ) , b'(2), • • • , b'(n + 1) 

a re p(n) + n + 3 distinct numbers l ess than or equal to 

b!(n + 1) = p(n) + n + 3 . 

Hence all numbers in this range must be included and the theorem is proved. 
Theorem 4.2. We have, for all n, 

(4.7) e(b(n)) = a(n) , 

(4.8) e(d(n)) = n . 

Proof. By Theorems 3.5 and 4.1 we have 

b(n) + 1 = a(d(n) + l ) = d(n) + 1 + e(d(n)) . 

Hence, since b(n) - d(n) = n, we get (4.8). 
Since d(n) = [(1 + \f2)n]9 it follows that 

d'(n) = [\(2 + N/2)n] . 
Hence 

df(2n) = b(n) . 
In part icular 

b(n) ^ d(N) , 
so that, by Theorem 3.2, 

a(b(n) + 1) = ab(n) + 1 . 
Then 

b(n) + 1 + e(b(n)) = a(n) + b(n) + 1 
and therefore 

e(b(n)) = a(p) . 

This completes the proof of the theorem. 
Fur ther relations between a, b, d, dT, e and p will be established in the next section. 

5. THE SETS A. AND B, k k 

We define the sets A, and B, as follows: 

(5.1) Ak = {N J q = ••• = ek_x = 0, ek * o} , 
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(5.2) B k = ( N | q = • . . = ek_x = 0, ^ = 2} , 
where 
(5.3) N = • qe2£3 °8 * 
is the canonical representation of N. 

We also define 
(5.4) 6(n) = b(n) + d(n) = 2a(n) + 3n 

and define e(n) by the requirement 

(5.5) (e?5) is a Newman-Skolem pair . 

Theorem 5.1. Let the non-negative integer n have the canonical representation 

(5.6) n = • ete2ez 88B . 
Then 
(5.7) d(n + 1) - 1 = p(n) + 1 = "l€t€2ez

 6 e e . 
Hence 
(5.8) Ai = d(N) - 1 . 

Proof. The theorem follows from the relations 

b(n + 1) = d(n + 1) + n + 1 = p(n) + n + 3 . 

Since it is c lear that (e,5) is a separated Newman-Skolem pair , it follows from Theorem 
3.1 that 
(5.9) e(2d(n)) = 5(n) - 1 

(5.10) e(2d(n) + l ) = 6(n) + 1 . 

Since 6(n) - n = 2d(n), it follows from Theorem 3.3 that 

(5.11) e(2d(n) - l ) = 6(n) - 2 . 
Moreover we have 

d2(n) = d(n) + ad(n) = d(n) ^ b(n) - 1 = 6(n) - 1 , 
so that 
(5.12) e(S(n) - l ) = d(n) . 
Also we have 

3 + d + pd = b(d + 1) = 2(d + 1) + a(d + 1) = 2d + 2 + b + 1 , 
so that 
(5.13) pd(n) = d(n) + b(n) = S(n) . 
Applying e9 we get 
(5.14) e6(n) = d(n) . 
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Now using (4.1) and (4.2) we get 

pS = d(6 + 1) - 2 = (6 + 1) + a(6 + 1) - 2 

= (6 + l ) + (6 + l + e ) - 2 = d + 26 

= 6 + 6 + e(6 - 1) = 5 + aS = dS , 
so that 
(5.15) p6 = d S . 

Theorem 5.2. We have 
(5.16) B2 = d2(M) 

(5.17) B 2 k + 1 = 6kd(H) (k = 1, 2, 3, . . . ) 

(5.18) B 2 k = d ^ d O S ) (k = 2, 3, 4, • • • ) . 

Proof. It is only necessary to prove (5.16) since (5.17) will then follow by (5.13) and 
(5.15). 

Applying Theorem 5.1 to d(n + 1) - 1 we obtain 

d2(n + 1) - 1 = ' l l q e 2 e 3 . . . , 
so that 

d2(n + 1) = «02 ete2ed ••" . 

This evidently proves (5.16) and therefore the proof of Theorem 5.2 is complete. 
Note that if n has the canonical representation 

n = -exe2ez ••• , 
then 
(5.19) d(n + 1) - 1 = tle^ez ••• 

i s also canonical. Since 6(n) = 2d(n) + n, it follows that 

(5.20) 6(n + 1) - 1 = -02 e1e2e3 ••• 
and 
(5.21) d(6(n + 1)) - 1 = .102 €t€2 ••• 
a re both canonical. 

Theorem 5.3. We have 
(5.22) AA = d(N) - 1 

(5.23) A 2 k = d5k"1e(N) (k = 1, 2, 3, • • • ) 

(5.24) A 2 k + 1 = 6ke(N) (k = 1, 2, 3, • • •) . 

Proof. We have already proved (5.22). It will therefore suffice to establish 



1 9 7 2 ] PELLIAN REPRESENTATIONS 465 

(5.25) A2 = d€(N) . 

Now A2 consists of all N in the canonical form 

N = -0 <E2e3e4 •-• (e2 ± 0) . 

Hence A2 - 1 consists of all N in the canonical form 

N = -1 ( e 2 - l ) e 8€4 . - . (e8 £ 2) . 

Fur thermore d(N) - 1 consists of all N in the canonical form 

N = . l f 2 f 3 f 4 . . . 

and by (5.21), dS(N) - 1 consists of all N in the canonical form 

N = .102 

Therefore since d(N) - 1 is the disjoint union of d5(N) - 1 and de(N) - 1, we see that 

de(N) - 1 = A2 - 1 , 
that i s , 

A2 = de(N) . 

This completes the proof of the Theorem. 
Theorem 5.4. We have 

(5.26) d(N) = U A 2 k 

00 
(5.27) (N) = U A 2 k + 1 

(5.28) (N) = d(N) U (d(N) - l ) . 

Proof. Since every integer is of the form 6 e(n) for some k ^ 0, (5,26) and (5.27) 
follow from the previous theorem. Since e(N) is the complement of 6(N)S (5.28) follows 
from (5.22) and (5.26). 

We have seen above that 

(5.29) e(N) = d(N) U (d(N) - l ) . 

Hence the numbers in e(N) a r e , in order , 
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d(l) - 1, d( l) , d(2) - 1, d(2), d(3) - 1, d(3), 

It follows that 
(5.30) e(2n) = d(n), e(2n - 1) = d(n) - 1 . 
Applying e, we have 
(5.31) e(e(n)) = [n/2] . 

The following remark concerning the second canonical form is useful. If 

n = • ±*if2f3 • • • (second canonical) 
then 

d(n) = • 0 i^h • • • (first canonical) 
and 

6(n) = -00 f1f2f3 • • • (first and second canonical) . 

6. ADDITIONAL RELATIONS INVOLVING a AND b 

Theorem 6.1. We have 
(6.1) a2b = 2b - 1 . 

For the proof we require 
Theorem 6.2. The integer n is in (d) if and only if 

(6.2) J 5 _ ( => 2 - N/2 , 
( 1 + N/2 I 

where (a) denotes the fractional par t of the real number a . 
Proof. Let 

n = d(k) = [(1 + N/2)k] , 
so that 

(1 + \f2)k - 1 < n <: (1 + N/I)k, k i _ . < 5 _ < k . 
1 + N/2 1 + N/2 

This is equivalent to 

J n I > 1 ^— = 1 - (N/2 - 1) = 2 - N/2 . 
I 1 + N/2 J 1 + N/2 

Proof of Theorem 6.1. It follows from 

a(n) = [NJ2"n] 
that 
(6.3) n - 2 < a2(n) < n - 1 . 
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It therefore suffices to show that 

467 

(6.4) a2b(n) = 1 (mod 2) (n = 1 , 2 , 3 , • • • ) 

Assume that there exists an integer k such that 

that is 

Then 

for some integer j . Hence 

so that 
(6.5) 
By Theorem 6.2, 

that is 

Hence 

a2b(k) = 0 (mod 2) , 

a(2d(k)) = 0 (mod 2) . 

[2N/2d(k)] = 2j 

2j < 2N/2 d(k) < 2j + 1 , 

5 <? Ni2d(k) < j + \ , 

(N/2d(k)} <; | . 

\ ^ m ^ \ - 2 - ^ 2 , 
I 1-+ N/2 

{(\ /2 - l)d(k)} > 2 - N/2 

{N/2d(k)} > 2 - ^ 2 . 

This contradicts (6.5) and so completes the proof of the theorem. 
It follows from ab = a + b that 

Put 
(6.6) 
Then 

b k = 

b2 = ab + 2b = a + 3b , 

b3 = ab + 3b2 

= a + b + 3(a + 3b) 

= 4a + 10b , 

b4 = 4(a + b) + 10(a + 3b) 

= 14a + 34b . 

= u, a + v, b , ui = 0, vi = 1, u 15 v2 

uk+1 = u , (a + b) + v, (a + 3b) 

= (uk + v k ) a + (uk + 3vk)b 

so that 
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(6.7) 

It follows that 

Then 

u k + l = \ + vk 
Vk-KL = \ + 3 v k 

V 2 " 4uk-KL + 2 u k = ° 
vk+2 - 4vk-KL + 2 v k = ° ' 

u(x) = 2 ukxk = x2 + £) (4vi - 2v2> 
= x2 + (4x - 2x2)U(x) , 

so that 

We find that 

U(x) 
1 - 4x + x2 

(6.8) 

where 

k-1 flk-l 
\ " or - j3 

a = 2 + N/2", 

uk . 

VKL - uk 

•'2 - N / 2 . 

Theorem 6.3. The function b is evaluated by means of (6.6) and (6.8), 
In the next place, 

ab = a + b , 

(ab)2 = a2b + bab 

= 2a2b + 2ab 

= 2(2b - 1) + 2(a + b) 

= 2a + 6b - 2 , 

(ab)3 = 2a2b + 6bab - 2 

= 8a2b + 12ab - 2 

= 8(2b - 1) + 12(a + b) - 2 

= 12a + 28b - 10 , 

(ab)4 = 56a + 136b - 50 . 
Put 

(6.9) 

Then 

(ab) = ufea + v k b - t̂ . , 

ut = vt = 19 <4 = 0, u2 = 2, v2 = 6, t2 = 2 

,k+l (ab) = u, a2b + v, bab - t, 
= (u, + v, ) a2b + 2v, ab - t, k 
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(uk + vk)(2b - 1) + 2vk(a + b) - t̂ . 

2vka + (2uk + 4vk)b - (uR + vR + y 

vk+l 

uk+l " 
2u, + 4v, k k 

2v, 

4 v k + 4 v k - l 

<k-• + 1 . 
u k + v k + *k 

Let 
Qo = Qi = I t Q2 = 3, Q3 = 7, Q k + 1 = 2Qk .+ Q k _ 1 

It is easily verified that 
(6.10) Q k = P ^ + P k 

k 

p k 

[%_ 

0 

0 

l 

i 

i 

i 

2 

2 

3 

3 

5 

7 

4 

12 

17 

5 

29 

41 

6 

70 

99 

We find that 
(6.11) 

(6.12) 

u k = 2 Q k _ l 9 

t - I (2
k+1p 

\ ~ 7 {2> Pk+1 

k̂ . 

2k-V 

3-2 P k - 2) . 

469 

Theorem 6.4. The function (ab) is evaluated bymeansof (6.9), (6.10), (6.11) and (6.12). 

It follows from 

that 
(7.1) 

7. THE FUNCTIONS f, ff, g, gf, c, c ! 

a(n) = [N/2 n ] , b(n) = [(2 + \l2)n] 

ab(n) - ba(n) = 1 or 2 (n = 1, 2, 3, • 

We may accordingly define the pair of complementary functions f, ff by means of 

(7.2) ab(n) - ba(n) 

An equivalent definition is 

(7.3) 

1 ( n E (f)) 
2 ( n £ (ft)) )) 

a2f (n) = 1 (mod 2) 
j a2f (n) = 0 (mod 2) 

It is also easily verified that 

(7.4) ad?(n) - d'a(n) = 0 or 1 (n = 1, 2, 3, • • • ) 

Hence we may define the pair g, gf by means of 
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(7.5) ad'(a) - d - a t n ) = j j | j | g } j 

It is somewhat more convenient to take as definition 

(n) = 1 (mod 2) 
( 7 , 6 ) 1 ag ' (n ) = 0 (mod 2) ' 

We shall show that (7.5) and (7.6) are equivalent. 
For brevity put 

(7.7) s = ab - ba, t = ad' - d T a . 
It is easily verified that 
(7.8) s(n) = 2n - a2(n) 

from which the equivalence of (7»2) and (7.3) is immediate. 
It is also immediate from (7.3) and (7.6) that 

(7.9) g = af . 
In the next place 

t = adT - dTa = adT - a - n + 1 , 

ta = adfa - a2 - a + 1 

= a(d - 1) - a2 - a + 1 

= b - a 2 - a - l 

ta(n) = 2n - a2 - 1 , 

(7.10) 

Also 

J taf = a2f + 1 = 0 (mod 2) , 
{ tafT = a2fT + 1 = 1 (mod 2) . 

tb = ad'b - db + 1 

= a8 - ab - b + 1 

= d + 5 - a - 2 b + l 

= b + 2 d - a - 2 b + l 

(7.11) = 1 (mod 2) 

It foUows from (7.10) and (7.11) that 

(7.12) t(n) E 0 (mod 2) £± n G (g 

This evidently establishes the equivalence of (7.5) and (7.6). 
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Note that the pair g8 gf is not separated. 
Theorem 7.1. We have 

(7.13) df = ff o 

The proof of this theorem requires a number of prel iminary resul t s . 
Theorem 7.2 

(7.14) bf - 1 = dg . 
Proof. 

bf - dg - 1 = af + 2 f - a g - g - l 

= 2f - a2f - 1 = 0 . 
Theorem 7.3 

(7.15) n G ( f ) ^ { ^ n } < 4 : . 
is/2 

Proof. By (7.2) or (7.3) 
n E (f) - ^ a2n = 2n - 1 . 

Consider 
[ N / 2 [N/"2 n ] l = 2n - 1, 2n - 1 < \/2 [ \ / 2 n ] < 2n . 

Put k = [is/I^.n], so that 
\ / 2 n - 1 < <s/Ik < 2n 

N/ 2 n - — < k < N/ 2" n 
^ 2 

0 < N j 2 n - k < - ~ L , 
N/2 

that is 

(7.16) {>s/2n} < - ^ . 
N/2 

Hence if n G (f), Eq. (7.6) is satisfied. 
Next let n £ (ft), so that a2(n) = 2n - 2. Consider 

[ N/2 [N/"2 n ] l = 2n - 2 

2n - 2 < N / I [ < S / 2 I I ] < 2n - 1 

2n - 2 < N/2k < 2n - 1 ( k = [ \ / 2 n ] ) 

\ ( 2 n - ^ 2 < k < <s/2n - — 
^ 2 

- i - < N/2 n - k < N/2 , 
N/2 

that is 
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(7.17) { N / 2 n} > - i : 
N/2 

Hence if n e (f!), Eq. (7.17) is satisfied. 
Combining (7.16) and (7„17), we get (7.15). 
Proof of Theorem 7.1. By Theorem 6.2, n £ (d) if and only if 

— I 
1 + N/2 ) 

(7.18) \ 2 I > 2 - N/2 

Put 
(1 + \/2)f = df + e; 

by Theorem 7.3, we have e < 1/N/*2. Moreover 

f - d f
 +

 e 

1 + N/2 1 + N/2 

= J + , _ d L _ + _ L 
1 + N / 2 ) 1 + N/2 

where 

Then 

[—-1 
Li + N/2J 

df / + _ £ _ = 1 , 
1 + N / 2 ) 1 + NJ2 

{N/2 df} + £(N/2 - 1) = 1 , 

{^2df} > 1 - ^ 1 = - L , 
N/2 N/2 

so that 
(7.19) (df) C (ff) . 

We shall now show that 
(7.20) (p) C (df) . 

Let n satisfy {N/*2 n} > 1 / N / 2 , SO that n £ (p). Then, by (7.18), n £ (d), that is 

n = d(k) = [(1 + N/2)k] , 
for some integer k. Thus 

(1 + N/2)k = n + {N/2k} 

(1 + N/2")k + ( N / I - Dn = N / 2 H + { N/2 k} 
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(1 + ^ 2 ) k + (N/2 - l)d(k) = ad(k) + { ^ n } + {N/2 k} > b(k) - l + - L + {^2k} 
^ 2 

N/2 k - (2 - \|2)d(k) + 1 > — + {N/2 k} 
\/2 

N/2k - (2 - N / 2 ) ( ( 1 + v/2)k - {<\/2k}) + 1 > - i - + {N/2 k} 
N/2 

(2 - N/2) {N/2 k} + 1 > - i - + {\/2 k} 
N/2 

^ - ^ > (N/2 - l){Nj2k} 
N/2 

4 : > {vilk} . 
N/2 

Therefore k G (f), n G (df). 
This proves (7.20) and so completes the proof of the theorem. 
Theorem 7.4. We have 

(7.21) bf - af = 1 . 

Proof. By (7.14), Eq. (7.21) may be replaced by 

(7.22) aff = dg = daf , 

which by Theorem 7.1 is the same as 
(7.23) adf = daf . 
Now 

ad - da = b - 1 - a2 - a 

= 2n - 1 - a2 , 

adf - daf = 2f - 1 - a2f = 0 . 

This proves (7.23) and therefore proves (7.21). 
Theorem 7.5. The pair (f,ff) is separated. 
Proof. By (7.13) 

P(p) = df(n) > f(n) , 

so that the pair (f,f!) is ordered. Since the pair (df ,d) is separated, it follows that 

f'(n + 1) - f (n) = df(n + 1) - df(n) > 1. 
Define 

(7„24) c(n) = b(n) - df(n) , 
so that by (3.17) 
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(7.26) 

(7.27) 
Now 

Theorem 7.6. 
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d = ac . 
We have 

f» = acf = caf . 
Proof. It suffices to show that 

Theorem 7.7 

acf - caf = 0 . 

ac - ca = d - ba + dfa 

= d - a 2 - 2 a + d - l , 

acf - caf = 2df - 2af - a2f - 1 

= 2f - a2f - 1 = 0 . 

[Nov. 

(7.28) ] ( n i l 
n 6 (g-) * {-£-[ < 1 

( N / 2 ) 2 

Proof. Let n £ (g), so that a(n) = 1 (mod 2). Then 

K 2 n ] = 2k - 1 

2k - 1 < V I n < 2k 

k - i < - i - < k , 
* N/2 

so that . . 

Next le t n G (gT) so that a(n) = 0 (mod 2). Then 

W i n ] = 2k 

2k < \l~2n < 2k + 1 

k < - " - < k + i , 
V2 * 

so that 

2 " 
n ' < i 

^2 

This completes the proof of the theorem. 
Theorem 7.8 

(7.29) g' = a ( | a g » ) + 1 . 
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Proof. This is equivalent to 
dgi - l = b(^ag') 

which in turn is equivalent to 
(7.30) d'ag' = b ( | ag ' ) . 

Since df(2n) = b(n)s Eq. (7.30) follows at once. 
Theorem 7.9 

, 7 o-n (d'(2n) = 2d'Ca) + 1 ( n £ (g) ) 
K ' |d ' (2n) = 2d'(n) ( n E (g»)) 

Theorem 7.10 
(7.32) adf(n) = 2d'(n) - n . 

I bg = 2dfg + 1 
| bgT = 2d'g? 

We show first that Theorems 7.9 and 7.10 are equivalent. Since df(2n) = b(n), (7.31) 
may be replaced by 

(7.33) 

while (7.3) may be replaced by 

(7 34) l a d ? g = 2 d ' g " g . 
u ' o 4 f c ' | ad 'g f = ad*gf - g? 

Since, by (7,5), 
adfg = d'ag, ad'g1 - d'ag' = 1 , 

(7.34) is the same as 

/ 7 OC\ I d ! a g = 2 d ?g " S 
{'•33) \ /Iforvt ^ 2 d ? g f - gf " 1 " 

(d'ag 
j d ? a g f 

But dTa = d - 1, so that (7.35) becomes 

dg - 1 = 2d'g - g 
( 7 ' 3 6 ) \ dg? = 2d*g' - g' 

which is the same as (7.33), This proves the equivalence of (7.31) and (7.32). 
We shall now prove (7.32). We have first 

adfa = a(d - 1) = b - 2 

2d?a - a = 2(d - 1) - a = b - 2 , 
so that 
(7.37) adfa = 2dfa - a . 
Secondly 

ad?b = a8 = b + 2d 

2d?b - b = 2 S - b = b + 2d 9 

so that 
(7.38) adfb = 2d!b - b . 



476 PELLIAN REPRESENTATIONS [Nov. 

Clearly (7.37) and (7.38) imply (7.32). 
Theorem 7.11. We have 

(7.39) c'(n) + n - 1 = d'(2n - 1) , 

where cT(n) and c(n) are complementary. 
Proof. Put 

e~(n) = d'(2n - 1) - (n - 1) 

= [ l (2 + N / 2 ) ( 2 n - l ) ] - ( n - 1 ) 

= n + — (2n - 1)I = T(l + ^2)n - — 1 
L N/2 J L ^2 J 

Thus 

Since 

It follows from (7.15) that 

(7 40) c(n) = ! d ( n ) ( n G ( f f ) ) 
U , 4 U ; CW |d (n) - 1 ( n E tf)) ' 

In order to prove that c"(n) = cf(n), it will suffice to show that c and c" are comple-
mentary. Now, by (7.31), 

c(n) = f d'(n) +1 (n G fe) } 
CW | d ' ( n ) (n E (gf)) ' 

(c) = (d'g + 1) U (d'g') 

(c) = (df) U (df - 1) 

d'g + 1 = d'af + 1 = df 

df - 1 = d'af = d'g , 

(c) = (df) U (d'g') 

(c) = (dg') U (d'g) . 

(c) U (c ) = (df) U (df) U (d'g) U (d'g') 

= (d) U (d') = N 

while (c) n (c") is vacuous. This completes the proof of the Theorem. 
Theorem 7.12. We have 

(7.41) acf(n) = c'(n) + n - 1 . 

In view of (7.39), (7.41) i s the same as 

(7.42) ac'(n) = d'(2n - 1) . 

Proof of (7.41). By (7.40), 

i t follows that 

Therefore 
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ct(n) = | d { n ) ( n G ( f , ) ) 
M n ) jd(n) - 1 (n G (f)) ' 

so that 

Thus 

( c ' F = df 
j c ' f = df - 1 

It follows that 

and therefore 

ac 'P = adff = bff - 1 
ac'f = a(df - 1) = bf - 2 ' 

ac 'F - c!f? = bf! - 1 - dff = ff - 1 
ac'f - cff = bf - 2 - (df - 1) = f - 1 

acf(n) - cf(n) = n - 1 . 
Theorem 7.13. We have 

(7.43) a2c?(n) = 2c'(n) - 1 . 
Proof. By (7.32), 

adf(2n - 1) = 2df(2n - 1) - (2n - 1) . 
Then by (7.42), 

a2cf(n) = ad'(2n - 1) = 2ac'(n) - (2n - 1) . 

Combining this with (7.41), we get 

a2c«(n) = 2(cf(n) + n - 1) - (2n - 1) 

= 2cf(n) - 1 

Theorem 7.14. There exists a strictly monotone function 6 such that 

(7.44) cf = ffi . 
Proof. This resul t is implied by 

(7.45) ff = eg . 
To prove (7.45) we take 

ft = df = acf . 
Since 

ac - ca = ab - ba - 1 = s - 1 , 
it follows that 

acf - caf = 0 . 
Hence 

ff = caf = eg. 

Theorem 7.15. There exists a strictly monotone function i/> such that 

(7.46) f«/r = d» . 
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Proof. This is an immediate consequence of fT = df. 
Theorem 7.16. There exists a strictly monotone function h such that 

(7.47) fh = b . 

Proof. Since f» = df = acfs it follows that (P) C (a) and therefore (b) C (f) . 
Theorem 7.17. We have 

(7.48) iM2n) = h(n) . 
Proof. By (7.46), 

ft//(2n) = df(2n) = b(n) 
and (7.48) follows at once. 

Theorem 7.18. We have 
(7.49) c = ea + 1 . 

Proof. We recall that 
e(2n) = €(2n - 1) + 1 = d(n) . 

Also 
\ a(n) = 1 (mod 2) & n E (g) 
j a(n) = 0 (mod 2) *=+ n E (gf) 

1. Let n = g(k). Then 

ea(n) + 1 = d ( | ( a (n ) + l)J = d(±(ag(k) + l ) \ 

= d ( | ( a 2 f (k ) + l ) j = df(k) 
so that 
(7.50) eag + 1 = df . 

2. Let n E (gT) and put 

a(n) = [\IIn] = 2k, k L̂ J 
By (7.28) 

teH 
We have 

e.a(n) + 1 = d ( | a ( n ) ) + 1 = d(k) + 1 

= k + [\l!k] + 1 

LN/2 J + 2 \N/2 " (N/2)/ ( " 2 Nil] 

~ n + L N/2 J 

+ 1 
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On the other hand 

d'(n) = [|(2 + N/2)n] = n + [ "VI 

so that 
(7.51) eagf + 1 = dfgf . 
Combining (7.50) and (7.51) we get 

(ea + 1) = (df) U (dfgf) = (c) ; 

the las t equality appeared in the proof of Theorem 7.11. 
Theorem 7.19. We have 

(7.52) e(cf(n) + l ) = n . 
Proof. By (7.40) 

jc ' f (n) = df(n) - 1 
I c ' P (n) = dff(n) 

so that 

Since 

it follows that 

Therefore 

{ 

c'f(n) + 1 = df(n) 

c ' f (n) + 1 = df(n) + 1 

df + 1 = d2f + 1 = 6f , 

/cff(n) + 1 = df(n) 

(c f f (n) + 1 = 6f(n) 

e(e'f(n) + 1 ) = f(n) 

e(c'f '(n) + l ) = df(n) = P (n) 

This evidently proves (7.52). 
Remark. c!(n) + 1 ^ d(n). 
Theorem 7.20. We have 

(7.53) tf = dfg = d'af 
iff = df? 

Proof. We have 

(7.54) c'(n) = f"(l + N/2)II - — 1 
L N/2J 

and 

{N/2f} < | , { ^ 2 f } > - L 
N/2 

Hence 

Since 
{ 

c'f = df - 1 

c'f = df! 
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d'g = d'af = df - 1 , 
(7.53) follows at once. 

Theorem 7.21, We have 
(7.55) c»(n) < d(n) < c'(n) + 1 < p(n) 
and 
(7.56) e(k) = n if and only if k E [d(n), p(n) + l ] . 

The interval [d(n), p(n) + l ] contains exactly three integers-if n G (d) and contains exactly 
two integers if n (E (d»). 

Proof. Inequalities (7.55) come from 

d(n) = [(1 + *j2)n] 

together with (4.4) and (7.54). To prove (7.56) we use 

e(d(n)) = e(p(n) + l ) = n 
and 

p(n) + 2 = d(n + 1) . 

The final statement in the theorem follows from 

d(n + 1) - d(n) = 3 if and only if n G (d) . 

8. THEOREMS INVOLVING a AND r 

Let 
(8.1) n = ftPi + f2P2 + f3P3 + • • • 

be the f irs t canonical representation of n. Define cr(n) by means of 

(8.2) a(n) = fi + f2 + f3 + • • • (mod 2) . 
If 

f l = . . . . f ^ = o, fk + 0 , 

put 
(8.3) r(n) s k (mod 2) . 

We may assume that cr(n), r(n) tal^e on the values 0, 1. 
It follows from (8.1) that 

p(n) = • 0 f1f2f3 « . . . 
Since 

p. = k (mod 2) 
it follows that 
(8.4) n + p(n) = a(n) (mod 2) . 
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Since 

b(n + 1) = n + p(n) + 3 
we get 

(8.5) a(n + 1) = b(n + 1) s a(n) + 1 (mod 2) . 

In the next place, by Theorem 5.4, 

(8.6) (d) = ( n | r ( n ) = o} 
so that 
(8.7) (d») = (n j r (n ) = l } 

Since (b) C (dT) it follows that 

(8.8) r (b(n)) = 1 (n = 1 , 2 , 3 , - ) . 
By (8.5) 

(8.9) a(b(n)) = a(b(n) + l ) = ab(n) = 0 (mod 2) . 

On the other hand, for n such that a(n) G (d?)? 

a(a(n)) + 1 = a(a(n) + 1) = a2(n) + 1 . 
Since (d!) C (f) , 

a2(n) = 2n - 1 = 1 (mod 2) 
and therefore 
(8.10) cr(a(n)) = 1 (a(n) £ (d»)) . 

Combining (8.8), (8.9) and (8.10), we get the following. 
Theorem 8.1. The set (b) is characterized by 

(8.11) (b) = ( n | a ( n ) = 0, T(n) = l} . 
Put 

(8.12) A = {n | r (n ) = i, P"(n) = j} (i , j = 0,1) 
Thus by (8.11) 
(8.13) (b) = A l j 0 , (a) = A 0 j 0 U A ^ U A ^ . 

Theorem 8.2. We have 
(8.14) AQ j 0 = (ad'g') 

(8.15) A 0 1 = ( a f ? ) = ( a d f ) 

(8.16) A 1 x = (ac») = (adP) U (ad'g) . 
Proof. 

1. Let n G (a) PI (df). By (8.10), a(n) = 1; also by (8.7), r(n) = 1. Therefore 

(8.17) (a) H (d») C AX1 . 

481 
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2. Next let n £ (d), so that r(n) = 0. Since d = ac and (c) = (df) U (d'g!), we 
have 
(8.18) (d) = (adf) U (ad'g') . 
Since n G(d), 

0(n) = a(n + 1) + 1 = a(n) + 1 . 
Let n = a(k)9 k G (df). Then 

cx(a(k)) = a2(k) + 1 = 1 . 
Hence 
(8.19) (adf) C AQ x . 

Now let n = a(k), k £ (d'g'h Then 

a(a(k)) = a2(k) + 1 = 0 , 
so that 
(8.20) (ad'F) C AQ j 0 . 

Since 
(a) = ((a) fl (d»)) 'U (ac) 

- ((a) H (d')) U (adf) U (ad'g») , 

it follows that the inclusion sign C in (8.17), (8.19) and (8.20) may be replaced by equality. 
This completes the proof of the theorem. 

Theorem 8.3. We have 
(o 9-n jtf(n) = T(D) (n G (g) ) 
K*'Z1) |CT(n) + r(n) = 1 ( n G (g»))' 

Proof. Since g = af, (g) C (a) but (g) (£ (afT). Consequently, by the last theorem, 

((g) = AQ Q U Ax x 

(8'22) l<*> = \ l U A^o 

and (8.21) follows at once. 
Theorem 8.4. We have 

(8.23) a(n - 1) = 0 <=* n G (g) . 
Proof. By (7.6), 

a(n) E 1 (mod 2) ^ n G (g) . 
Since 

a(n - 1) « a(n) + 1 (mod 2) , 
(8.23) follows at once. 

Theorem 8.5. We have 

f(dg) = { n | n £ (d), a(n) = l} 
(8.24) 

((dg) 

l(dgf ) = { n | n e (d), a(n) = 0} 
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Proof. Since (d) C (a) and 

r(n) = 0 (n G (d)) , 
it follows from Theorem 8.2 that 

(d) = AQQ U AQ1 = (ad'g') U (af) . 
Thus 
(8.25) (dg) U (dg') = (ad'g') U (af») . 

Now assume that 
n G (af1), n G (dg?) - (acg») . 

It follows that there exists an integer k such that 

k G ( f ) , k G (cg») . 
But 

so that 
ff = df = acf = caf = eg , 

k G (eg), k G (eg') , 
which is impossible. 

Next assume that 

n G (dg), n E (ad'gf) . 
Then there is a k such that 

k G (eg), k G (d'g») . 
But 

eg = caf = acf = df , 
so that 

k G (dg), k G(d'g») , 

which is impossible. It therefore follows from (8.25) that 

(dg) = (af»). (dg») = (ad'g') , 

This completes the proof of the theorem. 
Theorem 8.6. We have 

= { n | n G (6), a(n) = l } 
(8.26) 

«) = { n | n G (6), a(n) = o} 

Proof. Since 

00 

(6) = U A 
x 2k+l 

and ed = d, Theorem 8.6 is an immediate corollary of Theorem 8.5. 
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SUMMARY OF FORMULAS 

1. p(n) = 2n + e(n) 

2. e(p(n)) = e(p(n) + l ) = n 

3. e(p(n) + 2 ) = n + 1 

4. a(n + 1) = e(n) + n + 1 

5. b(n + 1) = p(n) + n + 3 

6. d(n + 1) = p(n) + 2 

7. ad(n) = b(n) - 1, a(d(n) + l ) = b(n) + 1, a(d(n) - l ) = b(n) - 2 

8. ed(n) = n 

9. eb(n) = a(n) 

10. d2(n) = 6(n) - 1 

11. eS(n) = d(n) 

12. e2S(n) = n 

13. e(6(n) - l ) = d(n) 

14. e2(S(n) - l ) = n 

15. ab(n) = a(n) + b(n) = 2d(n) 

16. db(n) = bd(n) + 1 

17. ad - da + 1 = ab - ba 

18. a6(n) = d(n) + 6(n) 

19. a(n) = e(b(n) - l ) = ead(n) 

20. ebd(n) = b(n) - 1 

21. dfa(n) = d(n) - 1 

22. d'(a(n) + l ) = d(n) + 1 

23. e(2d(n)) = 6(n) - 1 

24. e(2d(n) + l ) = 6(n) + 1 

25. e(d(n) - l ) = n - 1 

26. e(a2(n) + a(n)) = a(n) 

27. e(b(n) - l ) = a(n) 

28. a(d(n) - l ) = b(n) - 2 

29. e(2n) = d(n), €(2n - 1) = d(n) - 1 

30. e(e(n)) = [n/2.] 
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31. e(n) - e(n - 1) = l ^ n E (d) 

32. a(n + 1) = a(n) + 2 • *=* n E (d) 

33. df(n + 1) = d'(n) + 2 z± n e (a) 

34. d(n) = ac(n), c(n) = b(n) - df(n) 

(k = 1, 2S 3S - . . ) 

(k = 1, 2, 3, • • • ) 

(k = 1 , 2 , 3 , " . ) 

(k = 1 , 2S 35 . - • ) 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

At = d(JJ) - 1 

A 2k = d a k " l e ( K ) 

A 2 k + 1 = akc(N) 

B2k = d 6 k " l d ® 

B2k+1 = ^ 
00 

d(N) = U A 2 k 

00 

S(N) = U A 2 k + ] 

42. €(N) = d(N) U (d(N) - l ) 

43. a2b = 2b - 1 

44. n E (d) & | 2 _ ( > 2 - N/2 
( 1 + ^ 2 ) 

k 
45. b = u, a + v. b , 

where 

k+1 _ fik+l 

46. ab = ukn + v^b - t̂ . , 

where 

\ = ^ V i - vk = *~\* t " 7 (2k+lpk+l - 3'2kpk - 2> • 
and 

% = p
k
 + p k - i • 

47. s = ab - ba 

48. af(n) = 1, af'(n) = 2 

49. a2f(n) = 1, a2f'(n) = 0 (mod 2) 

50. t = adf - d'a 

51. tg(n) = 0, tg'{n) = 1 

52. ag(n) = 1, agT(n) s 0 (mod 2) 
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52. g = af 

54. df = f» 

55. df - dg = 1 

56. n G (f) ^ { N / I I I } < — 

57. bf - a£» = 1 

58. f = acf = caf 

59. n e (g) ** I — f < i 
I N/2 J 2 

60. g» = a(^agf) + 1 

(d'(2n) = 2d'(n) + 1 ( n G (g)) 
61. 

ldT(2n) = 2d'(n) ( n G (g')) 

62. adf(n) = 2df(n) - n 

63. acf(n) = c'(n) + n - 1 = d'(2n - 1) 

rfd(n) ( n G (P)) 
64. c'(n) = / 

(d(n) + 1 ( n G (f)) 

((c) = (df) U (d'g») 
65. { 

( ( c ) = (df) U (d'g») 

66. a2c'(n) = 2c'(n) - 1 

67. cT = f0 

68. dT = fi/i 

69. fh = b 

70. i//(2n) = h(n) 

71. c = ea + 1 

72. e(cT(n) + l ) = n 

(c!f = dfg = d!af 
73. { 

(c ' f = df 

74. (b) = ( n | a ( n ) = 0, r(n) = l } 

75. A = { n | r ( n ) = i, a(n) = ]} (:i,j = 0,1) 

76. A0 > 0 = (ad'g') 

77. AQ1 = (af) = (adf) 
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78. Ax x = (aC) = (adf<) U (ad'g) 

79 i( Otn) = r(n) ( n E (g)) 

| 0 ( E ) = r(n) = 1 ( n G (gf)) 

80. a(n - 1) = 0 ^ n e (g) 

(dg) = { n j n G (d), a(n) = l } 

(dgf) = { n | n G (d)9 a(n) = o} 

((eg) = { n l n E (5), a(n) = l } 
82. / 

f(Sg') = { n | n £ (5), a(n) = 0} 

81. 
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Table 1 

n 

a 

b 

d 

d? 

e 

P 

1 

1 

3 

2 

1 

0 

2 

1 

5 

2 

2 

6 

4 

3 

1 

5 

2 

10 

3 

4 

10 

7 

5 

1 

7 

3 

17 

4 

5 

13 

9 

6 

2 

10 

4 

22 

5 

7 

17 

12 

8 

2 

12 

6 

29 

6 

8 

20 

14 

10 

2 

14 

7 

34 

7 

9 

23 

16 

11 

3 

17 

8 

39 

8 

11 

27 

19 

13 

3 

19 

9 

46 

9 

12 

30 

21 

15 

4 

22 

11 

51 

10 

14 

34 

24 

17 

4 

24 

12 

58 

11 

15 

37 

26 

18 

4 

26 

13 

63 

12 

16 

40 

28 

20 

5 

29 

14 

68 

13 

18 

44 

31 

22 

5 

31 

15 

75 

14 

19 

47 

33 

23 

6 

34 

16 

80 

15 

21 

51 

36 

25 

6 

36 

18 

87 

16 

22 

54 

38 

27 

7 

39 

19 

92 

17 

24 

58 

41 

29 

7 

41 

20 

99 

18 

25 

61 

43 

30 

7 

43 

21 

104 

19 

26 

64 

45 

32 

8 

46 

23 

109 

20 

28 

68 

48 

34 

8| 

48 

24 

116 

Table 2 

n 

a 

ab 

ba 

s 

f 

f! 

1 

1 

4 

3 

1 

1 

2 

2 

2 

8 

6 

2 

3 

7 

"7 
4 

14 

13 

1 

4 

9 

~T 
5 

18 

17 

1 

5 

12 

5 

7 

24 

23 

1 

6 

14 

6 

8 

28 

27 

1 

8 

19 

7 

9 

32 

30 

2 

10 

24 

8 

11 

38 

37 

1 

'11 

26 

9 

12 

42 

40 

2 

13 

31 

10 

14 

48 

47 

1 

15 

36 

11 

15 

52 

51 

1 

16 

38 

12 1 

16 

56 

54 

2 

17 

41 
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Table 3 

n 

a 

d? 

adf 

dfa 

t 

g 

gT 

1 

1 

1 

1 

1 

0 

1 

2 

2 

2 

3 

4 

3 

1 

4 

3 

3 

4 

5 

7 

6 

1 

5 

6 

4 

5 

6 

8 

8 

0 

7 

9 

5 

7 

8 

11 

11 

0 

8 

10 

6 

8 

10 

14 

13 

1 

11 

12 

7 

9 

11 

15 

15 

0 

14 

13 

8 

11 

13 

18 

18 

0 

15 

16 

9 

12 

15 

21 

20 

1 

18 

17 

10 

14 

17 

24 

23 

1 

21 

19 

11 

15 

18 

25 

25 

0 

22 

20 

"T2I 
16 

20 

28 

27 

1 

24 

23 

Table 4 

n 

c» 

e 

6 

dr 

* 
e 

h 

1 e'+l 

1 

1 

2 

1 

1 

1 

1 

2 

2 

2 

4 

3 

3 

3 

2 

2 

5 

5 

3 

6 

5 

5 

5 

4 

3 

7 

7 

4 

8 

7 

6 

6 

5 

4 

9 

9 

5 

11 

9 

8 

8 

6 

6 

12 

12 

6 

13 

10 

9 

10 

7 

7 

14 

14 

7 

16 

12 

11 

11 

8 

8 

17 

17 

8 

18 

14 

13 

13 

9 

9 

19 

19 

9 

21 

15 

15 

15 

10 

11 

22 

22 

10 

23 

17 

17 

17 

12 

12 

25 

24 

11 

25 

19 

18 

18 

13 

13 

27 

26 

12 

28 

20 

20 

20 

14 

14 

29 

28 
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ENUMERATION OF 3x3 ARRAYS 

L CARLITZ* 
Dyke University, Durham, North Carolina 

1. Let 
(1.1) A = (a..) (i9 j = 1, 2, 3) 

denote an a r ray of non-negative integers. Let H(r) denote the number of a r rays (1.1) such 
that 

n n 

(le2) 2/ij= r = 2^ "i (i = l j 2s 3) 

3=1 3=1 

MacMahon [2, p . 161] has proved that 

oo 
r 1 - x 3 1 + x + x 2 (1.3) > H(r)x 

^ 0 ( 1 ~ x ) ( 1 " x ) 

This resul t has recently been rediscovered by Anand, Demir and Gupta [l]„ 
Let H(r, t) denote the number of a r rays (1.1) that satisfy (1.2) and also 

3 
(1.4) V a,, = t 

and let H( r , s , t ) denote the number of a r rays (1.1) that satisfy (1.2), (1.4) and 

(1.5) 
i=l i=l 

MacMahon [2, pp. 162-163] has proved that 

oo 
> H(r9r) / i n\ "% TT/ \ r 1 - Xb 1 + X" 

(1.6) > H(r9r)x = 
= 0 (1 - x)3(l - x3)2 (1 - x)3(l - x3) 

* Supported in par t by NSF Grant GP-7855. 
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and 
oo 

H ( r , r , r ) x = — • 
ti _ -

r=0 

/i ^ V ^ X J / \ r (1 - x 6 ) (1 + x3)2 
(1.7) / H ( r , r , r ) x = ± *- = •* £-

(1 - x 3 ) 5 (1 - x 3 ) 3 

In the present paper we show first that if 

(1.8) H(r; \ u A2, A3, A4) = J ^ \hzXhi 
a+b<r 
c+d<r 
a+c^r 
b+d<r 

a-fb+c+fer 
then 

r=0 

(1.9) 

/ j H(r; Xx, A2, A3s A 4 )x r 

1 - A1A2A3X4X3 

(1 - AiX)(l - A2x)(l - A3x)(l - A4x)(l - AiA4x)(l - A2A3x) 

We show next that (1.9) implies 

2^ H ( r ! , s , t ) x r y S z t 

TiS,t=0 

( 1 , 1 0 ) = l - x 3 y 3 z 3 

(1 - xy)2(l - xz)2(l - x y ^ H l - xyz3) 

This in turn implies 
00 

(1.11) Y " * H(r, t) x r z* = * ~ x 3 z 3 

^ (1 - x)2(l - xz)»CL - xz3) 

which we show implies (1.6). 
In the next place we prove 

r,t=0 
(1.12) 

00 

/ ] H(r , t , t ) 
r t x z 

(1 - x 2 z 4 ) ( l - x 3 z 3 ) ( l - x2z)3 
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which we show implies (1.7), We also give a combinatorial proof of (1.7). 
Finallys if 

' H( r , s , t ) (s + t = 2r) 
( 1 ' 1 3 ) K ( S s t ) " } 0 (s + t o d d ) , 
we show that 

oo 

/ ^ K ( s , t ) y £ (1.14) > K ( s f t ) y s z t 

sst=0 

= (1 + y V H l + 4y3z3 + y*z8 + 4y2z2(y2 + z2) + yz(y4 + z4)] 
(1 - y5z)2(l - y z * ) 2 

Moreover (1.14) contains (1.7). 
2. Proof of (1.9). It follows from (1.8) that 

(2.1) H(r; Xu X2, X3, X4) = S^r) - S2(r) , 
where 

(2.2) St(r) = 22 X*X*X*X* 
a+b^r 
c+d^r 
a+c^r 
b+d^r 

and 

(2.3) S2(r) = } J x f x ^ X ^ . 
a+b+c+d<r 

Then by (2.2) 

b jC^r a ^ r - b d ^ r - b 
a ^ r - c d ^ r - c 

= 2 x^b x^~c2x i a2X 4 
b 9 c ^ r a^b d^b 

a<c d^c 

A4 

b<c<r a<b d^b 

c < b ^ r a^c d^c 
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b ^ r a<b d^b 

- . r-b+1 - , b + l , . b+1 

Z^ r - b 1 " A? 1 ~ A l -1 " A4 
^X 2 1 - A3 1 - Ai 1 - X4 

b ^ r 

r-c+1 ^ x c+1 ., x c+1 
-c ± - A 

3 + > 'A.? ' 0 1 ~ A2 1 - A l * - A4 
1 - X2 1 - Xj_ 1 - X4 c< r 

E. r-b. r-b 1 - xrrx 1 - x r x 
A2 A3 1 - A l " 1 ^ X 7 -

It follows that 

E «-—<* .t . b+1 - . b+1 , ——- - . r+1 

.=0 r=0 

00 00 

Z i n . c+1 - N c+1 m ^ n . r+1 

vb+l - . b+1 , , _ . ., x r+1 

r=0 b=0 r=0 

c+1 - c+1 _ _ _ ., N r+1 
L l _ 1 - A4 X

C V * 
XI 1 - X4 / I / 

c=0 r=0 

b+1 1 . b+1 
U 1 - A4 
Xi 1 - X4 

b=0 r=0 

V 1 - A" 1 - A" * b Y^> r > r 

"2Lr 1 - X t 1 - X 4
 X Z^2*3 

r r x 

Carrying out the summations and simplifying, we get 

(1 - XiX4x2)(l - X2X3x2) 
(2, •4) J2*{T)xT =TT x H l - Xtx)(l - X2x)(l - X3x)(l - X4x)(l - XtX4x)(l - X2X3X) 

r=0 

Similarly we find that 

(2.5) J^SjdOx* = x 
W- x)(l - XiX)(l - X2x)(l - X3x)(l - X4x) 

r=0 

Since, by (2.1) 
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/ ,H( r ; Xlf X29 X39 XA)xT = > ] S^rjx* - > > 2 ( r ) x r , 
r=0 

OO OO 

r=0 r=0 

it is easily verified that we get (1.9). 
3. Proof of (1.10) and (1.6). Consider the a r ray 

(3.1) 

(3.2) 
If 

a b r - a - b | 
c d r - c - d 

r - a - c r - b - d k 

a + b + c + d = k + r 

then clearly all row and column sums of (3.1) equal r . It follows that 

Let 
H(r; 1, 1, 1, 1) = H(r) 

a + d + k = t (3.3) 
and 
(3.4) 2 r - 2 a - b - c + d = s . 

It follows from (3.2) and (3.3) that 

(3.5) t + r = 2a + b + c + 2 d . 

In (1.9) take 
(3.6) Xi = y"2z2, A2 = X3 = y ^ z , X4 = yz2 

and replace x by xy2z"1 . The left member of (1.9) becomes 

2 jH(r; y"2 z2
5 y"1 z, yz2)(xy2z-1) 

r=0 

OO 

2r-2a-b-c+d 2a+b+c+2d-r 
y z 

r=0 a+b^r 
c+d<r 
a+c^r 

a+b+c+d^r 

/ A H( r , s s t ) x r yS z s 

r s s , t=0 

where H( r , s , t ) is the number of a r rays (3.1) that satisfy (3.3) and (3.4). We have therefore 

the generating function 
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oo 

(3.7) 7 H(r,s,t) x r yS * = 1 " x 3 ?* Z* 
T^f=0 (1 - xy)2(l - xz)2(l - xfz)(l - xyz3) 

To obtain a generating function for H(r , t ) , the number of a r r ays (3.1) that satisfy (3.3), 
we take y = 1. Thus 

QO 

(3.8) > ^ H(r, t) x r z t - 1 ~ x 3 z 3 

r j t = 0 (1 - x)2(l - xz)3(l - xz3) 

We shall now show that (3.8) implies (1.6). Since 

. QO 

(1 - x)-2(i - xz3)-* = ^ T (a + l ) x a + b z 3 b , 
a,b=0 

it follows that the te rms in which the exponents of x and z a re equal contribute 

(2b + l ) x 3 b z 3 b = 1 + x 3 z 3 . 
b=o' ( 1 " x 3 z 3 > 2 

Therefore 
OO 

** ~ + X3 1 + X3 

^ T ^ (1 - x)3 (1 -^ (1 - x)3 (1 - x3) 2 (1 - x)3(l - x3) 

4. Proof of (1.12) and (1.7). Returning to (3.7), we shall now obtain a generating func-
tion for H( r , t , t ) . We have 

(1 - xy)-2(l - xz)-2( l - x y S z f ^ l - xyz3)"1 

/ ± i \ / u x i \ a+b+c+d a+3c+d b-K5+3d (a + 1) (b + l)x y z 
a ,b ,c ,d=0 

For those t e rms in which y and z have equal exponents 

a + 3 c + d = b + c + 3 d , 
so that 

a + 2c = b + 2d . 

We accordingly get 
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2 2 X/b " 2C + 2d + lKb * l)^b"C+3d(y^b"K;+3d - T V + D2x2 a + 2 c(yz)a + 4 c 

c<d b a ,c 

= 2 ^ (b + 2d + l)(b + l ) x 2 b + 2 c + d ( y z ) b - t 4 c + 3 d - V ( a + l ) 2 x 2 a + 2 c ( y Z ) a + 4 c 

b j C s d a , c 

E(b + 2d + l)(b + l ) x 2 b + 3 d ( y z ) b + 3 d - _ J L _ V ^ ( a + l ) 2
x

2 a ( y z ) a . 
. - A v „ , b j d l - x 2 ( y z ) 4 2 L ^ 

Carrying out the indicated summations, we get 

1 ) 2 1 + x2yz + 4(xyz)3 _ 1 + x2yz | 
1 - x2(yz)4 ( l - x3(yz)3 (1 - x2yz)2 (1 - x2yz)(l - x3)(yz3)2 (1 - x2yz)3 ) 

which reduces to 

1 + x2yz + 4x3(yz)3 - 4x5(yz)4 - x6(yz)6 - x8(yz)7 

(1 - x2(yz)4)(l - x3(yz)3)2(l - x2yz)3 

It follows therefore that 

r t H(r9t j t)x z 

r , t=0 
(4.1) 

1 + x2z + 4x3z3 - 4x5z4 - x6z6 - x8z7 

(1 - x2z4)(l - x3z3)(l - x2z)3 

To get a generating function for H ( r , r s r ) we observe that the right member of (4.1) is 
eq[ual to 

(4.2) (1 + x2z)(l + x3z3) 4x3z3 

(1 - x2z4)(l - x2z)d (1 - x2z4)(l - x3z3)(l - x2z) 
The f irst fraction 

a s b 

which will contribute 

/1 , 3 3 \ \ T * / . i\2 2a+2b a+4b = (1 + x6z6) J (a + l r x z 

/1 ^ 3 3\ \ ^ " /OK _, -n2, ^6 b (1 + x3z3)(l + 6x6 + x1 2z1 2) (1 + x6z6) / (2b + l r (xz ) = ^ — — — 
£-J ( 1 _ X 6 Z 6) 3 
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The second fraction in (4.2) 

[Nov. 

1 - x3z3 4 ^ a ,b 
(a + l ) x 2 a + 2 b

z
a 4 4 b 

which will contribute 

4x3z3 V ^ 
1 _ X3Z3 jLj 

(2b + l)(xz) 6b 4x3z3 1 + x6z6 

1 - x3z3 (1 - x6z6)2 

The total contribution is evidently 

(1 + x 3 z 3 ) 4 _ (1 + x 3 z 3 ) 2 

(1 - x3z3)(l - x8z6)2 (1 - x3z3)3 

We have therefore 

(4.3) H ( r , r , r ) x r = ±±*L 

r=0 (1 - x3)* 

As noted by MacMahon, Eq. (4.3) is equivalent to 

(4.4) H(3m, 3m, 3m) = m2 + (m + l ) 2 

We shall now give a combinatorial proof of (4.4). With the notation (3.1) it is c lear that 
H ( r , r , r ) is equal to the number of solutions of the following system 

(4.5) 

a + b + c + d = k + r 
k + a + d = r 

2a + b + c - d = r 
a + b ^ r , c + d ^ r 
a + c ^ r , b + d ^ r 

It follows that 3d = r . Thus, for r = 3m, Eq. (4.5) reduces to 

(4.6) 
2a + b + c = 4m 

a + b ^ 3m 
a + c ^ 3m 

b ^ 2m, c < 2m 

For 0 < a =£ m, Eq. (4.6) implies 
b 2> 2m - 2a, c ^ 2m - 2a 

Hence 
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m - 1 2m m - 1 2m 
H(3m,3m93m) = \ y ^ 1 + \ ^ > l 

a=0 2m-2aTb<2m a=m b+c=4m-2a 

m-1 2m 
\ ^ (2a + 1) + \ ^ (4m - 2a + 1) 
a=0 a=m 

m 
= m2 + y (2a + 1) 

a=0 

= m2 + (m + I ) 2 

5. Proof of (1.14). Returning to (1.10) we replace x by x2, y by x" y and z by 
x~ z. If K(s, t) i s defined by (1.13) it is clear that 

OP 

VK(s,t) s t y z 

sst=0 

is equal to the sum of the t e rms in 

(5.1) 1 - y*z 
(1 - xy)2(l - xz)2(l - x - y z ) ( l - x-2yz3) 

that a re independent of x. Expanding (5.1) s this sum is seen to be 

tt JS 3\ X""^ / _!_ iwu _!_ i\ a+3c+d b+c+3d (1 - y V ) y (a + l)(b + l)y z 

where the summation is over all non-negative as bs c , d such that a + b = 2c + 2d. This 
gives 

00 

/i sh \ ^ / 0 , - W o . , -v 2a 2b, xa+b \ ™ ^ 2 c 2 d 
(1 - yV) y j (2a + l)(2b + l )y z (yz) / A y z 

a,b=o c4d=a+b 

00 

, /-. J5 3\ \ ~ ^ /o , 0\/ou , o\ 2a+l 2b+l, va+b+l \ ^ 2c 2d + (1 - y V ) y ^ (2a + 2) (2b + 2)y z (yz) / ^ y z 
a,b=o c+d=a+b+l 

Carrying out the indicated summations, we get 
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I^fJy2^ 
y2 - T? \ (l 

+ y5z 1 + y ^ 3
 2 1 + y3z3 1 + yz5 

- y«z)2 (1 - y V ) 2 Z (1 - y3z3)2 (1 - yz*)2 

£j? 4z4 tJi 
(1 - y5z)2(l - y V ) 2 (1 - y»z»)'<l - yz*)2 

A little manipulation gives 

(1 + y V ) ri + 4y3z3 + y6z6 + 4y2z2(y2 + z2) + yzCy4 + z4)l 
(1 - y5z)2(l - yz*)2 

This completes the proof of (1.14). 
To show that (1.14) contains (1.7), we take 

(1 - ySz)-*& - yz*)-2 = y ^ (a + l)(b + l ) y 5 a + b z a + 5 b 

a,b=o 
Since 

1 + 4y3z3 + y6z6 + 4y2z2(y2 + z2) + yz(y4 + z4) 

= 2(1 + y V ) 2 - (1 - y5z)(l - yz5) + 4y2z2(y2 + z2) , 
it follows that 

OO 00 

V H ( S , S , S ) Z S = S K(s, s)z 

s=o 

^ jP (a + l)2 = 2(1 + z3)3 > (a + l ) 2 z 6 a - (1 + z3) > z 6 a 

a=o 

= 2 (1 + Z3)3 J _ + *6 1 + *3 

(1 - z6) 3 1 - z6 

2(1 + z6) 1 (1 + z3) 
(1 - z3) 3 1 - z3 (1 - z3)3 
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1. INTRODUCTION AND SUMMARY 

Consider the sequence defined by 

(1.1) u0 = 0S ut = 1, u n + 1 = u n + 2un_1 (n > 1) . 

It follows at once from (1,1) that 

(1.2) u n = | ( 2 n - ( - l ) n ) , u n + u n + 1 = 2 n . 

The f irst few values of u are easily computed* 

n 

u n 

1 

1 

2 

1 

3 

3 

4 

5 

5 

11 

6 

21 

7 

43 

8 

85 

9 

171 

10 

341 

It is not difficult to show that the sums 

k 

(1.3) / C € i U i (k = 2f 3, 4, •-.) . 
i=2 

where each €. = 0 or 1, are d is t inc t The first few numbers in (1.3) a re 

1, 3, 4, 5, 6, 8, 9, 11 , 12, 14, 15, 16, 17, 19, 20, 8 " . 

Thus there is a sequence of "missing" numbers beginning with 

(1.4) 2, 7, 10, 13, 18, 23, 28, 31, 34, 39, ••• . 

In order to identify the sequence (1.4) we first define an a r r ay of positive integers R 
the following way. The elements of the f irs t row are denoted by a(n), of the second row 
b(n), of the third row by c(n). Put 

* Supported in par t by NSF Grant GP-17031. 
499 
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a(l) = 1 , b(l) = 3, c(l) = 2 . 

[Nov. 

Assume that the first n - 1 columns of R have been filled. Then a(n) is the smallest 
integer not already appearing, while 
(1.5) b(n) = a(n) + 2n 
and 
(1.6) c(n) = b(n) - 1 . 

The sets (a (n)} , ( b ( p ) } , {c(n)} constitute a disjoint partition of the positive integers. The 
following table is readily constructed. 

1 n 
a 
b 
c 

1 

1 

3 

2 

2 

4 

8 

7 

3 

5 

11 

10 

4 

6 

14 

13 

5 

9 

19 

18 

6 

12 

24 

23 

7 

15 

29 

28 

8 

16 

32 

31 

9 

17 

35 

34 

10 

20 

40 

39 

11 

21 

43 

42 

12 

22 

48 

47 

The table suggests that the numbers c(n) a re the "missing" numbers (1.4) and we shall 
prove that this is indeed the case . 

Let A. Denote the set of numbers k 

(1.7) 
( N = u. + u. + • • • + u. , I ki k2 k r 
| 2 < k = k 1

< : k 2 < ' * ' < 

and r = 1, 2, 3, We shall show that 

(1.8) 
and 
(1.9) 

A2k+2 = a b k a ( £ > U abkc(N) 

A2k+i = bk | l (5? u b k°Q? 

(k > 0) 

(k > 1) 

where N denotes the set of positive integers. 
If N is given by (1.7), we define 

(1.10) 
Then we shall show that 

(1.11) 

and 

(1.12) 

e(N) = u + u + . . . + u 
r r r 

e(a(n)) = n 

e(b(n)) = a(n) . 

Clearly the domain of the function c(n) is res t r ic ted to a(N) U b(N). However, s ince, as 
we shall see below, (b(n) - 2 ) G a(N) and 
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(1.13) 
it is natural to define 
(1.14) 

REPRESENTATIONS FOR A SPECIAL SEQUENCE 

e(b(n) - 2 ) = a(n) f 

e ( c (n ) ) = a(n) . 

501 

Then e(n) is defined for all n and we show that e(n) is monotone. 
The functions a, b , c satisfy various relations. In part icular we have 

a2(n) » b(n) - 2 = a(n) + 2n - 2 

ab(n) = ba(n) + 2 = 2a(n) + b(n) 

ac(n) = ca(n) + 2 = 2a(n) + c(n) 

cb(n) = bc(n) + 2 = 2a(n) + 3c(n) 4-2 . 

Moreover if we define 
(1.15) 
then we have 

d(n) = a(n) + n 

da(n) « 2d(n) - 2 

db(n) * 4d(n) 

dc(n) = 4d(n) - 2 

It follows from (1.11) and (1.12) that every positive integer N can be written in the form 

(1.16) 

where now 

N = u, + u. + • • • + ui 

1 < ki < k9 < 

k » 

< kr 

Hence N is a "missing" number if and only if kj = 1, k2 = 2. 
The representation (1.16) is in general not unique. The numbers a(n) are exactly those 

for which, in the representation (1.7), kt is even. Hence in (1.66) if we assume that kj is 
odd, the representation (1.16) is unique. We accordingly call this the canonical representation 
of N. 

Returning to (1.15), we define the complementary function dT(n) so that the sets | d (n )} , 
|df (n)} constitute a disjoint partition of the positive integers. We shall show that 

(1.17) d(n) = 2df(n) 

n 

df 

d 

1 

1 

2 

2 

3 

6 

3 

4 

8 

4 

5 

10 

5 

7 

14 

6 

9 

18 

7 

11 

22 

8 

12 

24 

9 

13 

26 

10 

15 

30 

11 

16 

32 

12 

17 

34 

13 

19 

38 

14 

20 

40 

15 

21 

42 

16 

23 

46 j 
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Let S(n) denote the number of d(k) ^ n and let 6f(n) denote the number of dT(k) — n. 
We show that 

*«> - [i] - m • [f] - -
6'(N) = [N] - [ | ] + [»] . ... . 

Finally, if N has the canonical representation (1.16) we define 

X ^ ki 
(1.18) f(N) = > (-1) * . 

1=1 
It follows that 
(1.19) a(N) = 2N + f(N) 
and 

(1.20) d(N) = a(N) + 
r k. 

i=l 

so that there is a close connection with the binary representation of an integer. 
Even though there is no "natural" irrationality associated with the sequence {u }, it is 

evident from the above summary that many of the resul ts of the previous papers of this ser ies 
[2 , 3, 4, 5, 6] have their counterpart in the present situation. 

The material in the final two sections of the paper is not included in the above summary. 

2. THE CANONICAL REPRESENTATION 

As in the Introduction, we define the sequence {u } by means of 

u0 = 0, ui = 1, u ,- = u + 2u - (n ^ 1) . 
u 1 s n+1 n n-1 v 

We first prove the following. 
Theorem 2.1. Every positive integer N can be written uniquely in the form 

(2.1) N = €l U l + e2u2 + • . . , 
where the €. = 0 or 1 and 
(2.2) et = . . . = c = 0 , e k = 1 ^ ^ k odd . 

Proof. The theorem can be easily proved by induction on n as follows. Let C ? con-
sist of all sequences 

(el , e2> • • • . €2n) (€i = 0 or 1) 
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satisfying (2.2). Then the map 

(elf €2J - . - , e 2 n ) — ^€l U i + e2u2 + . . . + e2nu2n 

is 1 - 1 and onto from C 2 to [0, • • - , u 2 - - l ] . Clearly 0 2 — ^ [ 0 5 l ] . Assuming that 

we see that 

since 

C 2 n - > [ 0 , . . . , u 2 n + 1 - l ] . 

C 2 n + 2 - ^ [ 0 ' ' • • ' u2n+l " l ] [ u 2 n + l ' " • • 2 u 2 n + l " ^ 

U [ u 2 n + 2 + 1 ' " - ' U 2 n + l + U 2 n + 2 - 1 ] 

U [ u 2 n + l + U2n+2 2 u 2 n + l + U2n+2 " 1 ] 

= [°« • • • ' U 2 n + 3 " ^ 

2 u 2n+l " l = U2n+2 

If (2.2) is satisfied we call (2.1) the canonical representation of N. 
In view of the above we have also 
Theorem 2.2. If N and M are given canonically by 

N = £ e .u. , M = £ 8.U. , 
then 
(2.3) N ^ M if and only if ^ e . 2 1 < £ ^ 2 * . 

Let N be given by (2.1) and define 

(2.4) 0(N) = E 6 ! 2 " -
Note that since 

(2.5) u n = | ( 2 n - ( - l ) n ) f 

we have 

(2.6) N = | ( 0 ( N ) - f(N)) , 

where 

(2.7) f(N) = €( - l ) 1€i . 

Theorem 2.3. There are exactly N numbers of the form 2TC, ks K odd, l e ss than or 
equal to 0(N), 

Proof. The N numbers of the stated form are simply 

0(1), 0(2), ••-, 0(N) . 
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If N is given canonic ally by 

N = €iU! + e2u2 + ••• , 
we define 
(2.8) a(n) = €i\x2 + €3u3 + • • • . 

This i s of course never canonical. Define 

(2.9) b(n) = a(N) + 2N = etu3 + e ^ + . . . . 

The representation (2.9) is canonical. 

Suppose e2k+l *s ^n e ^ r s ^ n o n z 6 r o e. in the canonical representation of N. Then, 
since 

ut + u 2 + . . . + u 2 k + 1 = u 2 k + 2 , 

we see that a(N) is given canonically by 

(2.10) a(n) = U l + u2 + . . . + u 2 k + 1 + 0 .u 2 k + 2 + e 2 k + 2 u 2 k + 3 + ••• . 

Let c(N) = b(N) - 1. Then, since 

ut + u 2 + . - . + u 2 k + 2 = u 2 k + 3 - 1 , 

c(N) is given canonically by 

(2.11) c(N) = ut + u2 + . . . + u 2 k + 2 + 0 . U 2 k + 3 + e 2 k + 2 u 2 k + 4 + — . 
We now state 
Theorem 2.4. The three functions a, b , c defined above are str ict ly monotone and 

their ranges a(N), b(N), c(N) form a disjoint partition of N. 
Proof. We have 

(2.12) 0(a(N) + 1) = 20(N) + 2 
and 
(2.13) 0(b(N)) = 40(N) . 

Since <j) is 1 - 1 and monotone, it follows that a, b , c are monotone. By (2.10), a(N) 
consists of those N whose canonical representations begin with an odd number of lTs ; b(N) 
of those which begin with 0; and c(N) of those which begin with an even number of l T s . 
Hence all numbers are accounted for. 

It i s now clear that the functions a, b, c defined above coincide with the a, b , c de -
fined in the Introduction. 

The following two theorems a re easy corol lar ies of the above. 
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u. with i > 2. 
l 

Theorem 2.5. c(N) is the set of integers that cannot be written as a sum of distinct 
th i > 2. 
Thus the c(N) a re the "missing" numbers of the Introduction, 
Theorem 2.6. If K-$ c(N), then K can be written uniquely as a sum of distinct u. 

with i >: 2. 

3. RELATIONS INVOLVING a, b, AND c 

We now define 
d(N) = a(N) + N. 

Since 
Uk + \ + l = ^ ' 

it follows at once from (2.4) and (2„8) that 
(3.1) d(N) = 0(N). 
Hence, by (2.6), we may write 
(3.2) 2N = a(N) - f(N) . 

Let dT denote the monotone function whose range is the complement of the range of d. 
Since the range of 0 (that i s , of d) consists of the numbers 2TC, with k,K both odd, it 
follows that the range of dT consists of the numbers 2TC with k even and K odd. We have 
therefore 
(3.3) d(N) = 2d'(N) . 

Thus (2.12) and (2.13) become 
(3.4) d(a + 1) = 2d + 2 
and 
(3.5) db = 4d , 
respectively. 

F rom (2.10) we obtain 
(3.6) da = 2d - 2 
and 
(3.7) d'a = d - 1 . 

Theorem 3.1. We have 

(3.8) a2(N) = b(N) - 2 = a(N) + 2N - 2 

( 3 e 9 ) abftO = ba(N) + 2 = 2a(N) + b(N) 
(3.10) ac(N) = ca(N) + 2 = 2a(N) + c(N) 

(3.11) cb(N) = bc(N) + 2 = 2a(N) + 3c (N) 

(3.12) da(N) = 2d(N) - 2 

(3.13) db(N) = 4d(N) 

(3.14) dc(N) = 4d(N) - 2 . 
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Proof. The first four formulas follow from the definitions. For example if 

then 

and 

N = U2k+1 + €2k+2U2k+2 + • • ' ' 

a(N) = l ,u t + Lu2 + . . . + l . u 2 k + 1 + ^ 2 k + 2 u 2 k + 3 

a 2 ( N ) = lmu* + • " + 1 , U2k+2 + €2k+2U2k44 

= U2k+3 - 2 + £2k+2U2k+4 + ••• 

= b(N) - 2 . 

Formula (3.12) is the same as (3.6) while (3.13) and (3.14) follow from the formulas for ab 
and ac. 

In view of Theorem 2.6, every 
N G a(N) U b(N) 

can be written uniquely in the form 
(3.15) N = S2u2 + 53u3 + . . . 

with 62 = o, 1. We define A, as the set of N for which 6 is the first nonzero 5.. 
Theorem 3.2. We have 

(3.16) A 2 k + 2 = abka(N) U abkc(N) (k > 0) 

(3.17) A 2 k + 1 = bka(N) U bkc(N) (k ^ 1) . 

Proof. By (2.9), (2.10) and (2.11), the union 

a(N) U c(N) 

consists of those K for which 

Hence, applying a, we have 

and, applying b, 

€t = €i(K) = 1 . 

A2 = a2(N) U ac(N) 

A3 = ba(N) U bc(N) . 

Continuing in this way, it is c lear that we obtain the stated resul ts . 
Theorem 3.2 admits of the following refinement. 
Theorem 3.3. We have 

(3.17) abka(N) = ( N G A
2 k + 2 | N = a b k a ( n ) = n (mod 2)} 

(3.18) abkc(N) = ( N E A 2 k + 2 | N = abkc(n) = n + 1 (mod 2)} 

(3.19) bka(N) = ( N G A
2 k + 1 | N = bka(n) = n (mod 2)} 
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(3.20) bkc(N) = {N G A 2 k + 1 j N = bkc(n) = n + 1 (mod 2)} . 

Proof, The theorem follows from Theorem 3.2 together with the observation 

(3.21) a(n) s b(n) = n$ c(n) = n + 1 (mod 2) . 
Let 

N E a(JJ) U b(N) , 
so that (3.15) is satisfied. We define 
(3.21) e(N) = V i + 63u2 + . . . . 

Then from the definition of a and b we see that 

(3.22) e(a(n)) = n 
and 
(3.23) e(b(n)) = a(n) . 
Since 

a2(n) = b(n) - 2 < c(n) < b(n) , 
we define 
(3.24) e(c(n)) = a(n) . 

Thus e(n) is now defined for all n. 

1 n 

e 

! n 

e 

1 

1 

21 

11 

2 

1 

22 

12 

3 

1 

23 

12 

4 

2 

24 

12 

5 

3 

25 

13 

6 

4 

26 

14 

7 

4 

27 

15 

8 

4 

28 

15 

9 

5 

29 

15 

10 

5 

30 

16 

11 

5 

31 

16 

12 

6 

32 

16 

13 

6 

33 

17 

14 

6 

34 

17 

15 

7 

35 

17 

16 

8 

36 

18 

17 

9 

37 

19 

18 

9 

38 

20 

19 

9 

39 

20 

20| 

io: 
40^ 

20 i 

Theorem 3.4. The function e is monotone. Indeed e(n) = e(n - 1) if and only if 

n E b(N) U c(N) . 
Otherwise (n G a(N)) 

e(n) = e(n - 1) + 1 . 

Proof. We have already seen that 

e b(n) = e c(n) = e c(n) - 1 = a(n) . 

Thus it remains to show that 
(3.25) e(a(n)) = e(a(n) - l ) + 1 . 

Let 

n = U2k+1 + €2k + 2 U 2k + 2 + e e e 
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be the canonical representation of n. Then 

a ( n ) = U 2 k + 2 + e 2k + 2 U 2k + 3 + ' " • 
Since 

u2k+2 - 1 = u2 + u 3 + u 4 + . . . + u 2 k + 1 , 
we get 

It follows that 
a(n) - 1 = u2 + u3 + . . . + u 2 k + 1 + €2 k + 2 u 2 k + 3 + . . . . 

e(ato) - 1) = U l + u2 + . . . + u 2 k + €2 k + 2 u 2 k + 2 + . . . 

= (u2k-KL " X) + £ 2 k + 2 U 2 k + 2 + '" 
= n - 1 . 

This evidently proves (3.25). 
Theorem 3.5. We have 

/o 9a\ \a (n + 1) = a(n) + 3 (n G afl®) 
{6'^} j a (n + 1) = a(n) + 1 (n E bflj) U cC®) . 

Proof. Formula (3.4) is evidently equivalent to 

(3.27) a(a(n) + l ) = b(n) + 1 . 
By (3.8) 

a2(n) = b(n) - 2 = c(n) - 1 , 

so that we have the sequence of consecutive integers 

(3.28) a2(n), c(n), b(n), a a(n) + 1 . 

On the other hand, by (3.9) and (3.10) 
ab(n) = ac(n) + 1 . 

Finally, since 
b(n) + 1 E a(n) , 

we have, by (3.28), 
a(b(n) + 1 ) = a2(a(n) + l ) = b a(n) + 1 - 2 

= a(a(n) + l ) + 2a(n) 
= 2a(n) + b(n) + 1 
= ab(n) + 1 

This completes the proof of the theorem. 
If we let a(n) denote the number of a(k) < n , it follows at once from Theorem 3.5 

that 

(3.29) a(n) = n + 2or(n) (n ^ 1) . 

This i s equivalent to 
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(3.30) df(n) = n + a(n) . 
We shall now show that 

(3.31) a(n + 1) = e(n) . 

Let n Ga(N) U b(N). Then 

and 
n = u k = €k + i u k + i + - " ( k - 2 ) 

Also 

so that 

e(n) = V 1 + €k + l U k + . . . • 

n + 1 = % + u k + ek+i uj^+i + • • • (canonical) , 

i(n + 1) = u2 + u k + 1 + €k + 1 u k + 2 + • • • . 
It follows that 
(3„32) a(n + 1) - 2e(n) = n + 1 (.n $ c(N)) . 

If n e c(N) we have e(n) = e(n + 1). Since n + 1 E b(N), we may use (3.32). Thus 

2e(n) = 2e(n + 1) = a(n + 2) - (n + 2) = a(n + 1) - (n + 1) , 

by (3.26). Hence 
a(n + 1) - 2e(n) = n + 1 

for all n. This is evidently equivalent to (3,31). 
This proves 
Theorem 3.6. The number of a(k) ^ n i s equal to e(n). Moreover 

(3.33) a(n) = n + 2e(n - 1 ) (n > 1) . 

A few special values of a(n) may be noted: 

(3.34) a ( 2 2 k _ 1 ) = 2 2 k (k > 1) 

(3.35) a (2 2 k ) = 2 2 k + 1 - 2 (k ^ 1) 

(3.36) a ( 2 2 k _ 1 - 2) = 2 2 k - 4 (k > 1) 

(3.37) a (2 2 k - 2) = 2 2 k + 1 - 6 (k > 2) . 

4. COMPARISON WITH THE BINARY REPRESENTATION 

If N is given in i ts binary representation 

(4.1) N = To +7l ° 2 +72 e 22 + . . . , 

where % = 0 or 1, we define 
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(4.2) 6(N) = y0u0
 + n^i + r2u2 + • ' • 

and 
(4.3) (N) = X ^ t - D 1 . 
Then we have 
(4.4) S(d(N)) = N 
and 
(4.5) X(d(N)) = f(N) . 
A simple computation leads to 

6<N, = [ » ] - [ » ] + [ « ] - . . . . 
Let 

(4.7) 6-(N) = N - [ ! ] + [ f ] - • • • 

so that 
(4.8) <5(N) + fr(N) = N . 

Theorem 4 .1 . The number of d(k) ^ n is equal to S(N). The number of df(k) ^ n i s 
equal to fr(N). 

Proof. Since 5 is monotone, we have d(k) ^ n if and only if 

k = 6 d(k) ^ 6(n) . 

Hence, in view of (4.8), the theorem is proved. 
We have seen in Section 3 that if N has the canonical representation 

N = ejUj + e2u2 + • e • 

then 
(4.9) a(N) - 2N = f(N) , 
where 

f(N) = £ ( - D 1€i . 
i 

It follows that 

(4.10) d(N) = a(N) + N = £ ^ ' 21 . 
i 

Replacing N by d(N), df(N) in (4.9), we get 

(4.11) a(d(N)) - 2d(N) = f(d(N)) 
and 
(4.12) a(d»(N)) - 2d'(N) = f(d(N)) . 
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Theorem 4.2. The function f(d) takes on every even value (positive8 negative or zero) 
infinitely often. The function f(df) takes on every odd value (positive or negative) infinitely 
often. 

Proof. Consider the number 

N = UJL + u3 + u5 + . . . + u 2 k _ x 

= | (21 + 1) + | (23 + 1) + . . . + | ( 2 2 k _ 1 + 1) 

- * { ! « * - » • * ) . 
Clearly 
(4.13) N s 2 (mod 4) 
if and only if 
(4.14) k = 0 (mod 4) . 

It follows from (4.13) that N E d(N). Also it is evident that 

(4.15) f(N) = -k, k = 0 (mod 4) . 

In the next place the number 

N = u3 + u5 + • • • + u 2 k + 1 

« | (23 + 1) + | (2B + 1) + . . . + | ( 2 2 k + 1 + 1) 

= 3k (mod 8) . 

Hence for k = 2 (mod 4), we have N = 2 (mod 4) and so as above N G d(N). Also it is 
evident that (4.15) holds in this case also. 

Now consider 
N = uj + u2 + u4 + u6 + • • • + u 2 k 

= 1 + | (22 - 1) + | (24 - 1) + • • • + | (2 2 k - 1) 

= 1 + k (mod 4) . 

Thus for k odd, N G d(N). Also it is c lear that 

f (N) = k - 1 . 

This evidently proves the first half of the theorem. 
To form the second half of the theorem we first take 

Then 
N = u4 + u3 + u5 +. • • • + u2k_i • 
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N 5 k (mod 2) . 
Thus for k odd, N E d»(N). Moreover 
(4.16) f(N) = -k . 

Next for 

N = U! + u2 + 114 + u8 + • • • + U2k + u2k+2 
we again have 

N 5 k (mod 2) , 

so that N E d ' ( N ) for k odd. Clearly 
(4.17) f(N) = k. 

This completes the proof of the theorem. 
As an immediate corollary of Theorem 4.2 we have 
Theorem 4.3. The commutator 

ad(N) - da(N) = fd(N) + 2 

takes on every even value infinitely often. Also the commutator 

ad'(N) - d'a(N) = fd'(N) + 1 

takes on every even value infinitely often. 

5. WORDS 

By a word function, or briefly, word, is meant a function of the form 

(5.1) w = a v cr a br cr ••• , 

where the exponents a re arbi t rary non-negative integers. 
Theorem 5.1. Every word function w(n) can be l inearized, that is 

(5.2) w(n) = A a(n) + B n - C (A > 0) , 
w w w w 

where A , B , C a re independent of n. Moreover the representation (5.2) is unique. 
Proof. The representation (5.2) follows from the relations 

a2(n) = a(n) + 2n - 2 

(5.3) { ab(n) = 2a(n) + b(n) = 3a(n) + 2n 

ac(n) = 2a(n) + c(n) = 3a(n) + 2n - 1 . 

If we assume a second representation (5.2) it follows that a(n) is a l inear function of 
n. This evidently contradicts Theorem 3.5. 
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Theorem 5.2. For any word w, the coefficient B in (5.2) is even. Hence the func-
•———-——-———— w 

tion d is not a word. 
Proof. Repeated application of (5.3). 
Remark. If we had defined words as the set of functions of the form 

(5.4) a ^ b V c l 8 - . - , 

then, in view of Theorem 4.3, we would not be able to a s se r t the extended form of Theorem 
5.1. 

Combining (5.3) with (5.2), we get the following recurrences for the coefficients A , 
w B , C 

w w 

(5.5) 

A wa 
B 

wa 
C 

wa 

= 

= 

= 

A + w 
2A w 

B w 

2A + C w w 

A , = 3A + B 
wb w w 

(5.6) { B , = 2A + 2B 
1 wb w w 

(5.7) 

\ wb 

A wc 
B 

wc 

= C w 

3A 
w 

2A w 

+ 

+ 

B 
w 

2B 
w 

C = A + B + C wc w w w 
In part icular we find that 

(5.8) ak(n) = uRa(n) + S u ^ n - ( u ^ - 1) , 
k 

(5.9) ab (n) = u 2 k + 1 a(n) + (u
2k+l ' 1 * n ' 

(5.10) ack(n) = u ^ ^ a f e i ) + ( u 2 k + 1 - l)n - | ( 4 u 2 k - k) , 

(5.11) bk(n) = u2ka(n) + (u2 k + l)n , 

(5.12) akb3(n) = \ + 2 j a ( n ) + S u ^ . ^ n - (u k + 1 - 1) , 

(5.13) b3ak(n) = uk + 2 ja(n) + 2 u k + 2 j _ i n - ( u k + 2 j + 1 - u 2 j + 1 ) , 

(5.14) akb3(n) - bJak(n) = u k + 2 j + 1 - u k + 1 - u 2 j + 1 + 1 

= | ( 2 k - l ) (2 2 j - 1 ) . 

We shall now evaluate A and B explicitly. For w as given by (5.1) we define the 
weight of w by means of 
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(5.15) p = p(w) = a + 2/3 + 2y + a + 2j3! + 2y» + • • . . 
We shall show that 
(5.16) A = u , B = 2u n . 

w p w p -1 

The proof is by induction on p. For p = 1, (5.16) obviously holds. Assume that 
(5.16) holds up to and including the value p. By the inductive hypothesis, (5.5), (5.6), (5.7) 
become 

(5.17) 
A = A + B = u + 2 u - = u t 1 wa p p p p-1 p+1 
B = 2A = 2u wa p p 

I A = A = 3A + B = 3u + 2u . = u LO wb wc p p p p-1 p+2 

B = B = 2A + 2B = 2u + 2u , = u ^ wp wc P P P p -1 P + l 

This evidently completes the induction. 
As for C , we have w 

C = 2u + C wa p w 
(5.19) / C , = C 

x wb w 
C = u _ + C wc p+1 w 

Unlike A and B , the coefficient C is not a function of the weight alone. For w w w & 

example 
C&2 = 2, C b = 0, C c = 1 , 

Ca3 = 4 ' C a b - °- C a c = 1 • 

Repeated application of (5.19) gives 

C k = 2(Ui + u2 + • • • + u^ .x ) = u k + 1 - 1 

C
c k = u i + *' * + u k = \ (%+2 " W * 

of which the first two agree with (5.8) and (5.11). 
We may state 
Theorem 5.3. If w is a word of weight p , then 

(5.20) w(n) - u a(n) + 2u - n - C , 
P p—J. w 

where C can be evaluated by means of (5.19). If w, wf are any words of equal weight, then w 

(5.21) w(n) - w!(n) = C . - C . ' wf w 
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Theorem 5.4. For any word w, the representation 

w = a b c a br c ; 

i s unique. 
Proof. The theorem is a consequence of the following observation. If u, v a re any 

words, then it follows from any one of 

ua = va, ub = vb9 uc = vc 
that u = v. 

Theorem 5.5. The words u9v satisfy uv = vu if and only if there is a word w such 
that 

r s 
U = W j V = W 5 

Theorem 5.6. In the notation of Theorem 5.3, C = C! if and only if w = wf. 
' w w J 

where r9 s are non-negative integers 
Theorem 5.6. In the notation of 
Remark. It follows from (5.20) that no multiple of df (n) is a word function. 

6. GENERATING FUNCTIONS 

Put 

(6.1) AW = V x a ( n \ B(x) = V x b ( n )
5 C(x) = > " x c ( n ) 

00 

n=l n=l n=l 
and 

0° _ °° M. 

(6.2) D(x) = > xu 

n=l n=l 

where of course | x j < 1. Then clearly 

(6.3) A(x) + B(x) + C(x) x 
1 - x 

and 

(6.4) D(x) + Di(x) = YZT-£° 

Since 
b(n) = c(n) + l s d(n) = 2d'(n) , 

(6.3) and (6.4) reduce to 

(6.5) A(x) + (1 + x)C(x) = r
X - 7 , 

and 

(6.6) Dt(x) + Di(x2) = r ~ ^ , 

respectively. 
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It follows from (6.6) that 

X X 2 , X 4 

Di(x) = r ^ - - — ^ - + 
1 _ x l - x2 I - x4 

00 00 . 

k=0 r=l 

= £*•!>>*, 
n=l 0k 

2 r=n 
so that 

d'(n) = Y ^ (-l)k . 
2 r=si 

This i s equivalent to the resul t previously obtained that 

d'(N) = { 2 m M | m even, M odd}. 

Theorem 6.1. Each of the functions A(x), B(x), C(x), D(x), DA(x) has the unit circle 
as a natural boundary. 

Proof. It will evidently suffice to prove the theorem for A(x) and Di(x). We consider 
first the function Di(x). 

To begin with, Di(x) has a singularity at x = 1. Hence, by (6.6), Dt(x) has a singu-
lar i ty at x = - 1 . Replacing x by x2, (6.6) becomes 

Dt(x2) + Dt(x4) = 
1 - x2 

We infer that DA(x) has singularities at x = ±i. Continuing in this way we show that D^(x) 
has singularities at 

x = e
2 k ? r i / ^ (k = 1, 3, 5, . . . , 2 n - 1; n = 1, 2, 3 , • • •) . 

This proves that Di(x) cannot be continued analytically across the unit c i rc le . 
In the next place if the function 

00 

f(x) 
n=l 

00 

where the c = 0 or 1, can be continued across the unit c i rc le , then [ 1 , p. 315] 
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P(x) f(x) k f 

1 - x 

where P(x) is a polynomial and k is some positive integer. Hence 

(6.7) c n = c n _ k (n > n0) . 

Now assume that A(x) can be continued across the unit c i rc le . Then by (6.7), there exists 
an integer k such that 

a(n) = a(nt) + k (n > n0) , 

where n4 depends on n. It follows that 

(6.8) a(n) = a(n - r) + k (n > n0) 
for some fixed r . This implies 
(6.9) d(n) = a(n - r) + k + r (n > u0) . 

However (6.9) contradicts the fact that D(x) = D^x2) cannot be continued across the unit 
c i rc le . 

Theorem 6.2. Let w(n) be an a rb i t ra ry word function of positive weight and put 

(6.10) Fw(x) = > x w ( n ) 

00 

n=l 

Then F (x) cannot be continued across the unit c i rcle . w 
Proof. Assume that F (x) does admit of analytic continuation across the unit c i rc le . 

Then there exist integers r , k such that 

w(n) = w(n - r) + s (n > n0) „ 

By (5,2) this becomes 
A a(n) + B r = A ( n - r ) + k . w w wv 

This implies 
(6.1D Awd(n) = Awd(n - r) + (Aw - B w ) r + k . 

Since A > 0, (6.11) contradicts the fact that D(x) cannot be continued. 
Put 

00 

(6.12) E(x) = \ j x G ( n ) • 
n=l 
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Then, by Theorem 3.4, 

x (6.13) E(x) = Y^-£ + 2ACx) 

Also 

(6.14) (1 - x)_1A(x) = \ ^ e(n) x11 

n=l 

In the next place, by (3.8), (3.9), and (3.10), 

J2 *a2(n) + ] £ *ab(n) + ] £ *ac(n) 

Since 

it follows that 

A(x) = > x* U1/ + 

= x 2B(x) + (1 + x 1 ) F a b ( x ) 

A(x) + (1 + x_ 1)B(x) - x 

1 - x 

(6.15) (1 + x)2Fa b(x) = (1 + x + x2)A(x) - j - f - j 

Let w, wf be two words of equal weight. Then by (5.21), 

(6.16) x ° w F (x) = x C w f F Ax) . 
\ W W! 

Thus it suffices to consider the functions 
F k(x) (k = 1, 2, 3, • • • ) . 

We have a 

By (5.8) 
F k ( x ) = F k _ l ( x ) + F (x) + F k ( x ) 

a a a b a c 

akb(n) = ukab(n) + 2uk_1b(n) - (u k + 1 - 1) 

= uk(3a(n) + 2n) + 2uk_1(a(n) + 2n) - ( i^ - 1) 

= (3uk + 2uk_1)a(n) + 2(ufe + 2uk_x )n - ( u ^ - 1) 

= uk + 2a(n) + 2u k + 1 n - ( u ^ - 1) 

= ak + 2(n) + 2 k + 1 

a c(n) = ukac(n) + 2uk_1c(n) - (\+1 - D 

= uk(3a(n) + 2n - 1) + 2uk_1(a(n) + 2n - 1) - (u k + 1 - 1) 

= uk+2a(n) + 2uk+1n - (2uk+1 - 1) 

[Continued on page 550. ] 

a (n) 4- u k + 2 



SPECIAL CASES OF FIBONACCI PERIODICITY 
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INTRODUCTION 

This paper will deal with the periodicity of Fibonacci sequences; where the Fibonacci 
sequence {Fn}°^_ is defined with F0 = 0S F* = 19 and F 2 = F - +'F ; the Lucas 

n=0 

sequence 
1 n J 

n 
is defined with L0 = 2, Lj = 1, and L = L - + L ; and the generalized Fibonacci se -
quence {H n } = 0 has any two starting values with H + 2 = H - + H . We will see that in 
one casej that of modulo 2 5 all generalized Fibonacci sequences will have the same pe r -
iod,, In a second case , that of modulo 5 , different sequences will have different periods, 
We will also consider the periods modulo 10 . In each case except that of 10 , the method 
of proof will be to show that with sequence {A }, modulus ms and period p9 then A -
A (mod m) and A = A - (mod m). Identities in the proof may be found in [ l ] , 

2. THE FIBONACCI CASE MOD 2 n 

Theorem 1. The period of the Fibonacci sequence modulo 2 is 3»2 ~ . We will 

prove that: (A) F 3 # 2 n - 1 = F0 (mod 2 n ) and (B) F3.2n-l.KL = F4 (mod 2 n ) . 
A. The proof is by induction. 

(1) When n = 1, F Q ^ i = F 3 = 2 = 0 (mod 2l) . 

(2) Suppose F 3 o 2 k - 1 = ° ^ m o d 2 ^ ° 

® N o w > F3«2k = F3*2k-1 L 3 -2k- l 
from the identity F 0 = F L 

J 2n n n 
(4) We claim L g k = 0 (mod 2) . 

The proof is by induction. 
(5) When k = 1, L 3 e l = 4 = 0 (mod 2) . 
(6) Suppose L 3 m = 0 (mod 2) , 
( 7 ) L3(m+1) = 2 L 3 m + l + L 3 m = ° ( m o d 2 ) 

and statement (4) is established. 
Using (3) s with the induction hypothesis (2), and (4), it follows that 
(8) F 3 s 2 k = 0 (mod 2 ^ ) 

and P a r t A is proved. 
B. (9) First, F 3 # 2 n _ 1 + 1 = ( F g . 2 n _ 2 + 1 ) 2 + (Fg . 2 n _ 2 ) 2 

using the identity F m + n + 1 = F m + 1 F n + 1 + F m F n . Now, since F ^ j . - 0 
(mod 2 ) from Par t A, it follows that 

519 
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(10) (F
3 . 2n-2>2 s ° ( m o d 2 n ) « 

(11) Also ( F
3 . 2 n - 2 * l ) 2 " X ( m 0 d ^ ) 

from the identity F' ^ -F . - F2 = ( - l ) n and (10). J n+1 n-1 n 
Pa r t B follows from these three steps. 

3. THE GENERAL FIBONACCI CASE MOD 2 n 

Theorem 2. The period of any generalized Fibonacci sequence modulo 2 is 3-2 " . 

We will prove that: (A) ^3.2n-l+1 = H i ( m o d 2 n ) ^d (B> H3.2n-l+2 - H2 ( m o d 2 £ ) ' 
A. We will have to consider three cases . 

Case 1: n = 1. H3e 2 i - i + 1 = H4 = 2H2 + Ht B Hj (mod 2 1 ) . 
Case 2: n = 2. H 3 e 2 2 - l + i = H7 = 3H2 + 5Ht s Hj (mod 2 2 ) . 
Case 3: n > 2. 

(12) F i r s t , H 3 # 2 n _ 1 + 1 = H 3 .2 n -2+ i F 3 .2 n -2+ l + H 3 . 2 n - 2 F 3 . 2 n - 2 > 
from the identity H ._,_.,= H ^ F x 1 + H F . J m+n+1 m+1 n+1 m n 

(13) We need the fact that F 3 # 2 n _ 2 = 0 (mod 2 n ) for n > 2, which can be 
proved by induction in the manner of the proof of 1-A. 

(14) Next we claim H 3 # 2 n_2F 3 # 2 n -2 + 1 = H i (mod 2 n ) for n > 2. 
Since H - = H-F _- + H 2 F , we can multiply both sides by F -

(15) so H 3 . 2 n ~ 2 + 1
F

3 . 2 n - 2 + 1 = H i F 3 - 2 n - 2 - i F
3 . 2 n - 2 + l 

+ H 2 F 3 . 2 n - 2 F 3 . 2 n - 2 + l ' 
(16) Now, F 3 .2n-2- l F 3 .2* i -2 + 1 » 1 (mod 2n) n > 2 

using the identity F + 1 F - F^ = ( - l ) n and (13). 
Our claim in (14) follows from (15), (16), and (13) and Case 3 follows from (12), (13), 
and (16). 
B. (17) F i r s t , H 3 e 2 n , 1 + 2 - H ^ . ^ + H 2 F 3 > 2 n . 1 + 1 

from the identity H n + 2 - H ^ * F ^ . 
Since F q o n _ i == 1 (mod 2 n ) f rom 1-A, and F n i = l*mod£n) f r o m l - B , 

o.^ 3 * 2 + 1 
Pa r t B follows immediately. 

One of the key par t s in the proof of Theorem 1 is being able to write F 3 > 2 ^ in t e rms 
of Fo#ok-1 a s m statement (3). For the next theorem, an analogous result is needed for 
F

5 n+1 m t e rms of F 5 n . 

4. THE FIBONACCI CASE MOD 5 n 

We need a simple lemma 

Lemma. F^n+1 
Proof. We will use the Binet forms 
Lemma. F

5 n+1 * F
5 n ( L

4 . 5 n ~ L
2 . 5 n + D» n * ^ 2 , 

n nn 
Y = — g~ and L = a + fi 

n a - B n r 

where 
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1 + N/5 , D 1 - N/5 a = — _ _ and p = — 
Note that af$ = - 1 . 

,-n+l _n+l _n c Kn -
F _ <* - P _ or - 0 

n+1 or - j3 a - |8 

/ ^ o5 \ Kn , _n 0 _n Kn _ cn _ _n ..n 0 cn , 
= (a

a-_P } (a5 ' 4 + a5 ' V + a 5 *2 + /35 - 2 + a 5 0 5 , 3 + ,35 ' 4 ) 

/ 5 • n5 x cn , r n „ ,-n ,-n _ cn _ ,_n rt 
= ^ __ Q—- [« + P + (<*£) (a + j3 ) + (o0) ] 

= F (L - L n + 1 ) 
5 n 5n.4 5n.2 

Theorem 3. The period of the Fibonacci numbers modulo 5 is 4*5 . 
Proof. We will prove that: (A) F „ = F0 (mod 5n) and (B) F n E F i ( m o d 5 n ) . 

465n ° ' 4-5n+l 
A. (18) Since F f F, , F n = F n (mod 5 ) v nl kn' 4.5*1 5 n ' 

(19) Next we claim F = 0 (mod 5 ) , 
511 

The proof is by induction. 
(20) When n = 1, Fg = F 5 = 5 = 0 (mod 51). 
(21) Suppose F k = 0 (mod 5k) . 
(22) Now9 F u..-, = F t (L u- - L t + 1) from the Lemma. 

5K+1 5R 4 . 5 K 2 . 5 K 
(23) L k = 2 (mod 5) 

from the identity L . - 2 = 5 F | f 
(24) and L w 8 -2 (mod 5) 

2«5 
from the identity L 2 ( 2 n + 1 ) + 2 = 5F2

2
n+1 . 

Using the induction hypothesis (21), with (22), (23), and (24), 
(25) F k + 1 = 0 (mod 5 k + 1 ) 

o 
and Pa r t A follows. 

B. (26) F i r s t F 4 _ 5 n + i = ( F ^ ) ' + ( F ^ ) ' 

using the identity F m + n + 1 = F m + 1 F n + 1 + F m
F n ' 

F rom (19) it follows that 
(27) (F n ) 2 s 0 (mod 5n) . 

2e 5 
(28) Also (F n )2 = 1 (mod 5n) 

using the identity F
n + 1

F
n _ i ~ F n = ( - l )* and (27). 

Consequently Pa r t B is proved. 

5. THE LUCAS CASE MOD 5 n 

Theorem 4. The period of the Lucas numbers modulo 5 is 4-5 " . 
Proof. We will prove that: (A) L n - 1 = L0 (mod 5n) and (B) L n - 1 s LA (mod 

n 4»5 4 * 5 + 1 
5 n ) . 
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A, (29) F i r s t 
from the identity 

L n_i = 5(F n -j 
4-5n x 2.511-1 )

2 + 2 

4n 2 = 5F% 
2n From (19) it can be shown that 

(30) ^ 2 . 5 * - ! ^ ~ ° ( m ° d 5 n ~ 1 ) 

(31) So 
2- sn-
5(F n i )2 = 0 (mod 5n) 

2-511 x 

and Pa r t A is proved. 

L
4 . 5 n + 1 + 2 

L4n+2 

5 ( F 2 . 5 n - l + l ) 2 B. (32) F i r s t 
from the identity 

(33) In a method s imilar to that used in showing (28), it can be shown that 
5FL+i - 2 

( F 2 . 5 n " 1 + l 
)2 = 1 ( m o d 5 n ) . 

L
4 . 5 n - l + 2 = 3 (mod 5 ). (34) Therefore 

(35) From A and (34), L>A _ -, - L n . = 1 (mod 5X1) 
4«5n~"-H-2 4»5n~i 

(36) since n+2 n+1 n L 4 . 5 n - 1 + 1 - 1 (mod 5n) 
As shown in [ 2 ] , the periods of the Fibonacci sequences modulo 10n will be the least 

common multiple of the periods mod 2 and mod 5 . A summary of the periods is below. 

Sequence 

Fibonacci { F } 

Lucas { L } 

Generalized 
Fibonacci { H } 

mod 2 
n = l , 2, ••-

3.211-1 

3-211-1 

3.211"1 

mod 5 
n = l , 2, ••• 

4-5n 

4.51 1-1 

variable 

mod 10 

60 

12 

variable 

mod 100 

300 

60 

variable 

mod 10 
n = 3, 4, . . . 

i ^ i o 1 1 " 1 

3-1011-1 

variable 

6. SOME PARTING OBSERVATIONS 

We note in passing that we have found some solutions to nj F in the statement F n s 0 
n mod 5 . To this we add two statements also involving solutions to L = 0 mod n. 

Theorem; 
Theorem; 
Theorem; 

mod n for n a prime 
ok 

. . * 2-3J 

2 ok 2**3J 

0 mod 2-3 
= 0 m o d 2 2 . 3 k

s 

k 
k 

1, 2, 3, . . 
1, 2, 3, •• 

A new paper by Hoggatt and Bicknell will further discuss these ideas. 
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CONCAVITY PROPERTIES OF CERTAIN SEQUENCES OF NUMBERS 

L. CARLITZ* 
Duke University, Durham, Worth Carolina 

A set of non-negative real numbers C k (k = 1, 2, • • • , N) is said to be unimodal if 
there exists an integer n such that 

C k * C k + 1 (1 ^ k < n) 

C k * C k + 1 (n < k < N) . 

A stronger property is logarithmic concavity; 

(1) C» ^ C ^ C ^ (1 < k < N ) . 

Strong logarithmic concavity (SLC) means that the inequality in (1) is s tr ict for all k* 
In a recent paper, Lieb [ l] has proved that the Stirling numbers of the second kind 

«4Zrf1i)' 
j=0 

have the SLC property. The proof makes use of Newton!s inequality, If the polynomial 

N 
(2) Q(x) = Y ^ Ck xk 

k=l 

has only real roots ? then 

Ci>- ft^<V^, d<k<N). 

In view of the above9 it is of some interest to exhibit sequences { c . } with the SLC 
property for which the corresponding polynomial does not have the SLC property. Such an 
example is furnished by 

* Supported in par t by NSF Grant GP-7855e 
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\ 2n 

(3) (1 + x + x 2 ) n = y " \ ( n , k ) x k • 
k=0 

It follows at once from (3) that c(nJ(k) satisfies the recurrence 

(4) c(n + l ,k ) = c(n,k - 2) + c(n,k - 1) + c(n,k) . 

We shall show first that, for n > 2, 

(5) c(n,k) < c(n,k + 1) (0 < k < n) , 

(6) c(n,k) > c(n,k + 1) (n < k < 2n) . 
Since 

(7) c(n,k) =. c(n,2n - k) , 

(5) and (6) a re equivalent so that it suffices to prove (5). Since 

2 
(1 + x + x2) = 1 + 2x + 3x2 + 2x3 + x2 , 

it is c lear that (5) holds for n = 2. Assume that (5) holds for 2 < n < m. Then, for k < m, 

c(m + l , k + 1) - c(m + l ,k ) = c(m,k + 1) - c(m,k - 2) > 0 . 

For k = m we have 

c(m + l , m + 1) - c(m + l , m ) 

= 2c(m,m - 1) + c(m,m) - [c(m,m - 2) + c (m,m - 1) + c ( m , m ) ] 

= c (m,m - 1) - c (m,m - 2) > 0 . 

This completes the proof of (5). 
We remark that c(n,n) satisfies 

00 

\ ^ c(n,n)xn = (1 - 2x - 3x2) T 

-n=0 

For proof see [2, p. 126, No. 217]. 
We shall now show that, for n > 2, 

(8) c2(n,k) > c(n,k + l )c(n ,k - 1) (0 < k < 2n) 
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This holds for n = 2. We assume that (8) holds for 2 5 n < m. 
Note that (8) implies 

525 

(9) c(n,j)c(n,k) > c(nfj - l)c(n, k + 1) (0 < j < k < 2n) 

Indeed, by (8) 

which implies 

c(n,k) > c(n,k - 1) 
e(n,k + 1) c(n,k) 

c(n,k) c(n,j - 1) 
c(n,k - 1) c(n,jj 

Thus, for 0 < k < 2m, 

|c (m + l ,k ) c(m + l , k + 1) 
| c (m + l , k - 1) c(m + l ,k ) 

c(m,k - 2) + c(m,k - 1) + c(m,k) c(m,k - 1) + c(m,k) + c(m,k + 1)1 
c(m,k - 3) + c(m,k - 2) + c(m,k - 1) c(m,k - 2) + c(m,k - 1) + c ( m , k ) | 

[c(m,k - 2) c(m,k - 1)1 | c ( m , k - 2) c(m,k) 1 
| c (m,k - 3) c(m,k - 2)| | c ( m , k - 3) c(m,k - 1)| 

| c ( m , k - 2) c(m,k + l)!j Jc(m,k - 1) c(m,k) I 
c(m,k - 3) c(m,k) c(m,k - 2) c(m,k - 1) 

c(m,k - 1) c(m,k + 1) 
c(m,k - 2) c(m,k) 

c(m,k) c(m,k + 1)1 
c(m,k - 1) c(m,k) 

c(m,k) c(m,k - 1)1 
c (m,k - 1) c(m,k - 2) 

The fourth and sixth determinants cancel while each of the remaining five is positive by (9). 
Hence 

c2(m + l ,k ) > c(m + l , k - l )c(m + l ,k ) (0 < k < 2m) . 

As for the excluded values, we have by (7) 

c2(m + 1,2m) - c(m + 1,2m - l)c(m + 1,2m - 1) = c2(m + 1,2) - c(m + l ,3)c(m + 1,1) > 0, 
c2(m + 1,2m + 1) - c(m + l ,2m)c(m + l , 2 m + 2) = c2(m + 1,1) - c(m + l ,2)c(m + 1,0) > 0 . 

In a s imilar way we can show that the coefficients of c (n,k) defined by 

(1 + x + 
nr 

, * \ n = 7 c (n, k)xtt 

k=0 

have the SLC property for n > 2. 
[Continued on page 530. ] 



A CONJECTURE CONCERNING LUCAS NUMBERS 

L. CARLITZ 
Duke University, Durham, North Carolina 

Anaya and Crump (now Anaya and Anaya) [l] have proved that 

where a = ^ ( l + V s ) and [x] denotes the greatest integer ^ x . They remark that it seems 
reasonable that 

^ \ * ^ = L n * > 

when n is somewhat greater than k. 
We shall show that 

(1) [ a k L n + i ] = L n + k (n ^ k + 2, k ^ 2) . 

Moreover, for k = 1, 
(2) [ a L n + i ] = L n + 1 ( n > 4 ) . 

To prove (1), it suffices to show that 

(3) a k L - L „ 
v ' ! n n+k 

< \ (n > k + 2, k ^ 2) , 

that i s , 
(4) j b n ( a k - b k ) | < | (n ^ k + 2, k ^ 2) , 
where we have used 

L n = a11 + b n , b = ^(1 - N/5) . 

Clearly (4) is satisfied if 
a~n(ak + a" k ) < \ (n > k + 2, k > 2) . 

Thus it is enough to show that 
a"k""2(ak + a"k) <= \ (k ^ 2) 

that i s , 
(5) a"2 + a" 2 k " 2 < | (k > 2) . 
Since 

a"2 + a"6 = 3 - I ^ L - 9 - 4 ^ 5 = | (21 - 9 ^ 5 ) < \ 

[Continued on page 550. ] 526 



ADDENDUM TO THE PAPER "FIBONACCI REPRESENTATIONS" 

L CARLITZ*and RICHARD SC0V1LLE 
Duke University, Durham, Worth Carolina 

and 
VERWERE. HOGGATT,JR. 

San Jose State University, San Jose, California 

1. The presentation and investigation of the functions a and b given in the paper 
cited in the title [ l ] can be simplified if we consider the following: Every positive integer 
N has a unique representation in the form 

(1) N = <52 F2 + 63 F 3 + . . . , 

where 6. is either 0 or 1 and 6. 6. = 0, This canonical or Zeckendorf representation 
may be written more briefly 

(2) N = • 626z5A5b*«* . 

Let A be the sequence of length 1 consisting of a 0, A = (0), and let B be the s e -
quence of length 2, B = (1»0). Clearly, then? N can be written uniquely as a sequence of 
ATs and BTsf and any sequence of A?s and Bfs9 infinite on the right, containing only a 
finite number of BTs, represents a non-negative integer. We may regard A and B as 
functions. For instance A(N) is to be the sequence obtained by adjoining A to the left of 
the sequence representing Ns and similarly for B(N). 

Then we see immediately that 

(3) N + A(N) + 1 = B(N), (N > 0) . 

Now define 

(4) 

Then (3) becomes 

a(N) 

b(N) 

= A(N -

= B(N -

1) + 1 

1) + 1 

(N > 1) 

(N £ 1) 

* Supported in par t by NSF Grant GP-17031, 
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(5) N + a(N) = b(N) N ^ 1 . 

Hence propert ies (2.2), (2.3) and (2.4) of [ l] are easily verified, so we have, in fact, 

(a(N) = [aN] 
( 6 ) (b(N) = |>2N] , a = (1 + >JE)/2 

as before, ((1.6) of [ 1 ] ) . 
The advantage of introducing A and B appears when we calculate e(a) and e(b). 

We have 

( e (a (N) ) = e(A(N - 1) + l ) = e(A(N - 1)) + 1 = N 
( 7 ) (e (b(N)) = e(B(N - 1) + l ) = 1 + A(N - 1) = a(N) ' 

The function e is defined by (1.7) in [ l ] : 

(8) e(6\,F2 + '53F3 + • • • ) = 52Fi + S3F2 + ••• . 

To obtain (7) we have used the fact that e(N) is independent of the Fibonacci represen-
tation chosen for N. 

It is also useful to define E(N) by means of 

(9) e(N) = E(N - 1) + 1 ; 

this definition may be compared with (4). Let N have the canonical representation (1) and 
consider 

(10) N + 1 = 1 + • 62 63 64 • • • . 

If 62 = 0 we may write 

N + 1 = • 1 63 64 • • • . 

This representation may not be canonical. However, by (8) we have 

e(N + 1 = 1 + • 635465 . . . . 

Hence, by (8) and (9), 
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(11) E(N) = • S 3 S 4 6 5 * . . 

If §2 = 1, then $3 = 0 and we get 

N + 1 = • 01 64 65 • • • . 

Again this representation may not be canonical but, by (8), 

e(N + 1) = . 1 64 65 • • • = l + . 63 S4 65 • • • . 

It follows that 

E(N) = • 6 3 6 4 6 5 « - . . 

Thus in any case if N has the canonical representation (1), E(N) is determined by 

(11). 
To sum up we state the following. 
Theorem. Let N have the canonical representation 

N = • 626364 

Then 

A(N) = . 0 S 2 S 3 6 4 . . . 

B(N) = • 106 2 6 3 6 4 . . . 

E(N) = . 6 3 6 4 6 5 . . . 

2. Similar observations may be made for Fibonacci representations of higher order . 
For instance, if we put 

(12) A = (0), B = (10), C = (110) , 

then the relations between A, B, C and a, b , c of [2] a re given by 

(13) 
a(N) = A(N - 1) + 1 
b(N) = B(N - 1) + 1 
c(N) = C(N - 1) + 1 
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where N ^ 1. 
3. By Theorem 11 of [ l ] 

(14) 
[ N E ( b ) ^ i < g j < 1, 

where {x} denotes the fractional par t of x. The possibility { N A * 2 } = l/a never occurs . 

We should like to point out that (14) can be replaced by the following slightly s impler 

cri terion. 

(15) 

As above, { # N } = lA*2 is impossible. 
To see that (14) and (15) are equivalent, it suffices to observe that 

J 21 J = {(2 - a)n} = 1 -{>N} . 
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SEQUENCES, PATHS, BALLOT NUMBERS 

L CARLITZ* 
Duke University, Durham, !\!orth Carolina 

1. INTRODUCTION 

Consider the sequences of positive integers (al9 a2s • * • , a n ) that satisfy the following 
conditions: 
(1.1) 1 = at * a2 < . - < a n 

and 
(1.2) a. < i (1 < i < n) . 

The number of such sequences with a = k9 where k is fixed, 1 < k == n9 will be denoted 
by f(n,k). Thus the total number of sequences satisfying (1.1) and (1.2) is equal to 

E (1.3) 7 J(n,k) 
k=l 

The numbers f(n,k) were called two-element lattice permutations by MacMahon [6* 
p. 167 ]. Two-element lattice permutations have n elements.of one kind9 k of a secondkind 
with k ^ ns and are such that if a is the number of the f irst kind in the f irst r and b 
is the corresponding number of the second kind9 then a ^ b for every r . Another way of 
putting it is that the elements of the first kind a re thought of as votes for candidate Ar those 
of the second kind as votes for candidate B; the lattice permutation is then an election r e -
turn with final vote (n9k) which is such that all part ial re turns correct ly predict the winner. 
As still another interpretation, let each element of thefirstkind be represented as a unit hor -
izontal line and each of the second kind as a unit vertical line9 then the permutation r e p r e -
sents a path from (191) to (n9k) which does not c ross the line y = k. The illustration at the 
top of the following page shows an admissible path from (191) to (7^6). 

In the present paper we discuss some of the basic propert ies of f(n9k) and related 
functions. We also discuss briefly some extensions9 in part icular the q-analog [3] 

(1.4) f(n9k9q) = y V 1 ^ 2 4 " 8 9 ^ 

* Supported in par t by NSF Grant GP-17031. 
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(7,6) 

(1,1) (2,1) (7,1) 

where the summation is over all %, a2, • • • , a n such that 

1 = ai ^ a? ^ • • • ^ a = k 
1 • * n 

and 
a. < i (l < i < n) , 

furnishes a useful generalization of f(n,k). Many of the propert ies of f(n,k) ca r ry over to 
the general case. 

The l i s t of references at the end of the paper is by no means complete. A comprehen-
sive bibliography of Catalan numbers is included in [1], 

2. It follows at once from the definition that 

k 
(2.1) f(n,k) = T J f(n - l , j ) (1 < k ^ n; n > 1) , 

3=1 

where it is understood that f(n - 19 n) = 0. From (2.1) we get 

(2.2) f(n,k) = f(n, k - 1) + f(n - 1, k) , 

where again 1 ^ k s n, n ^ 1, 
Making use of either (2.1) or (2.2) we can easily compute the table shown at the top of 

the following page. 
It is evident from (2.1) that the total number of sequences satisfying (1.1) and (1.2) is 

equal to 
(2.3) f(n + 1, n + 1) = f(n + 1, n) . 
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f(n,k) : 

[\ k 

1 

2 

3 

4 

5 

6 

7 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1 

2 

3 

4 

5 

6 

3 

2 

5 

9 

14 

20 

4 

5 

14 

28 

48 

5 

14 

42 

90 

6 

42 

132 

7 

132 

We now define 

(2.4) 

Using (2.2) we get 

b(n,k) = V ^ 2k _ 3f(n,j) . 

b(n,k) = \ ^ 2 k " 3 | f (n, j - 1) + f(n - 1, j)} 

3-1 

k-1 k 
= s 2 k~5 _ i f(njj) +y^2 M (f(n •ij j) s 

5=1 3=1 
so that 
(2.5) b(n,k) = b(ns k - 1) + b(n - 1, k) (l < k < n) 
However, for k = n, we get 
(2.6) b(n,n) = b(n, n - 1) + 2b(n - 1, n - 1) . 
It follows from (2.5) that 

k 
(2.7) b(n,k) = ^ J b(n - 1, j) (1 < k ^ n) ; 

however 

(2.8) 

3=1 

n-1 
b(n,n) = 2__j b ( n - !» J) + 2 b ( n - I t n - 1) 

3=1 

The table shown at the top of the following page is easily computed using either (2.4) or 

(2.5) and (2.6). 
Examination of the table suggests the following formula. 

(2.9) b(n,k) = 

It is c lear from (2.4) that 

/ n + k - l \ 
\ k - i ; (1 < k ^ n) 
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b(n,k) 

1 

2 

1 3 
4 

1 5 6 

1 

1 

1 

1 

1 

1 

1 

2 

3 

4 

5 

6 

7 

3 

10 

15 

21 

28 

4 

35 

56 

84 

5 

126 

210 

6 

462 

b(n,l) = 1 (n = 1, 2, 3, 

[Nov. 

in agreement with (2.9). Assume that (2.9) holds for n = 1, 2, • • • , m and 1 ^ k ^ n. Then 
by (2.7), for k ^ m, 

bta + i . B - £ w . B . £ ( - • « ; » ) - £ ( - • , 1 - 1 ) 
j=l ^ / j=l 3=1 

(m + k \ _ / m + k \ m + 1/ V k - V 
On the other hand, by (2.8), 

b(m + 1, m + 1) = / b(m,j) + 2b(m,m) 

3=1 

m . 

-Sfv-'x1)^--1) 
( 2m V /2m \ /2m + l \ 

This evidently completes the proof of (2.9). 
Returning to (2.4), it is evident that 

(2.11) f(n,k) = b(n,k) - 2b(n, k - 1) (l < k ^ n) . 
Therefore, by (2.9), 

(2 -,o\ *< i \ | n + k - l \ 0 / n + k - 2 \ n - k + l / n + k - 2 \ ,12) f(n,k) = ^ k _ 1 J - 2^ k _ 2 j = 5 -^ n _ 1 J (1 < k < n). 

In par t icular , for k = n, 

(2.13) * - • > = K 2 ° ° : i 2 ) 
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Thus, by (2.3), the number of sequences that satisfy (1.1) and (1.2) is equal to the Catalan 
number 

w-^fc) (2.14) c(n 

Making use of (2.12), it is easy to verify that 

( 2 ' 1 5 ) I f(n + 1, k) f(n + 1, k + 1)1 - ° 
and 
(2.16) f2(n,k) > f(n, k - l)f(n, k + 1) . 

3. Put 

(3.1) C(x) = > c ( n ) x n 

n=0 

Since 
OO 

(1 - te)* = y^(-l)n(M(4x)n 

n=0 

= 1 - 2 

OO 

E l /2n - 2 \ n 
Kl n - 1 J X 

n=l x 7 

\T* 1 /2n\ n = 1 - 2x 
n=0 

it follows from (2.14) and (3.1) that 

(3.2) C(x) .= JL (i . Nfl - 4x) . 

Thus 
(3.3) xC2(x) = C(x) - 1 , 
which is equivalent to 

n 
(3.4) c(n + 1) = / ^c(k)c(n - k) . 

k=0 

In a le t ter to the wr i te r , Dr. Jiirg Ratz had inquired about the possibility of proving 
(3.4) without the use of generating functions. This can be done in the following way. Put 
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where 

Then 
(a) = a(a + 1) • • • (a + n - 1) 

^L=(H 
and a little manipulation leads to 

„2n _ / 2 k \ / 2 n - 2k \ 

Thus we have proved the identity 

(x+f )_n = ^ _ j _ _ / 2 k \ / 2 n _ ̂ A 
(3.5) 2 2 n ^ 

It is easily verified that 

2 2 n * x + l>n ^ 2 n 
( xU = <XVX + " n ' 

so that (3.5) becomes 

(2x) E l /2k \ /2n - 2k \ 
x + k ^ k j ^ n - k j 

2n 
(x) .(x + 1) 

k=0 * ' * ' 

In particular, for x = 1, we have 

E l / 2 k \ / 2 n - 2k \ (2n + 1)1 = ( 2n + l \ 
k + l l k II n - k J n! (n + 1)1 I n ) 

It follows that 

/2n + 2 \ _ 9 /2n + l \ _ \ ^ 1 /2k\ /'2n - 2k\ \ ^ 1 / 2k\ / 2n - 2k \ 
^ n + 1 / ~ Z \ n / " / - g+1 \k) \ t i - k J V i n - k + 1 \ k ) \ n ~ k / 

• Z t , i ) ( : - \ » x ) ( i k ) ( • ; : f ) • *•+*E^v„ • 
k=0 k=0 
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This evidently proves (3.4). 
4. We now define 

°° n 
(4.1) F(x,y) = ^ y ^ f ( n s k ) x n y ] ivn,K; x y 

n=l ~k^T 
Then, by (2.1), 

F(x,y) = xy + x Y j / J f(n + l ,k) x11 y k 

n=l k=l 

00 n+1 k 
xy + x 

i^r ^ î "H: 
00 n n+1 

xy + x 
1 ^ " 1^1 "k^j 

2 S Sf(n,j)xnyk 

n=l j=l k=j 
00 n 

•i+2 

n=l j=l 

°" n 
x xv ^^ m̂. n n 

xy + r^FF(x-y> - r^r 2 ^ Z J f(n'j) x y • n=l j=l 

Since, by (2.13) and (2.14), 
n 

/ ] f(n,j) = f(n + 1, n + 1) = c(n) 

3=1 
we get 

and therefore 
(4.2) 

Now put 

(4.3) 

Then 

F(x,y) = 

(1 - x - y)F(x,y) = xy(l - y) - xy2 / ^ c(n)(xy)n 

n=l 

(1 - x - y)F(x,y) = xy - xy2C(xy) . 

OO 

Fn(x) = 22 f(n + k' k > x I 1 + k (n a 0) . 
k=l 

OO OO OO OO 

2 2 2 ^ f(n + k, k )x n + k y k = ^ y-11 ^ P «n + k,k)(xy) 
n=0 k=l n=0 k=l 

537 

n+k 
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so that 

F(x,y) = V \ nFn(: (4.4) F(x,y) - > y n F (xy) 

It follows from (4.2) and (4.4), with x replaced by xy , that 

(1 - xy X - y) 2 ^ Y nFn(x) - x - xy C(x) , 

or preferably 
oo 

(4.5) (1 - y + xy2) > y" F (x) * x C(x) - xy 

Comparison of coefficients yields 

2' \ \ n ^ v 

UR\ F0(x) - xC(x) - Ft(x) + F0(x) = x , 
^'b) F (x) - F Ax) + xF 0(x) - 0 (n > 2) . 

n n-1 n-2 
Thus 

Ft(x) = F0(x) - x s x C(x) - x = x2 C2(x) , 
by (3.3). Next 

F2(x) » Ft(x) - xF0(x) = x2C(x)(C(x) - 1 ) « x3 C3(x) 
Generally we have 
(4.7) Fn(x) - x n + 1 Cn + 1(x) , 

as is easily proved by induction, using (4.6). 
Clearly (4.7) implies 

(4.8) Fn(x) = xC(x)Fn_1(x) (n > 1) . 
Since 

OO 

= / J f(n,n)xn , xC(x) 

it follows from (4.8) that 
k 

(4.9) f(n + k, k) - 2 J f0>3)f(n + k - j , k - j + 1) (n ^ 1) 

When n «= 1, (4.9) reduces to (3,4). 
If we define 

n 
(4.10) fn(x) «= ^ V f(n,k)xk , 
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we have 

n 
n+1 (1 - x)fn(x) = \ ^ -}f(n9k) - f(n9 k - l ) } x k - f(n9n)xn 

f(n - l 9 k)x - f(n9n)x 

k=l 

n-1 

so that 
(4.11) (1 - x)fn(x) = f n - 1 W - f(Q,n)xn+1 . 

By iteration of (4.11), 

(1 - x)2fn(x) = fn_2(x) - f(n - 1, n - Dx11 - f(n9n)xn(l - x)9 

(1 - x)3fn(x) = fn_3(x) - f(n - 2, n - 2 )x n _ 1 - f(n - 1, n - l )x n ( l - x) - f (n ,n)xn + 1( l 

and generally 
k-1 

(4.12) (1 - x)kfn(x) = fn_k(x) - V ^ f(n - j 9 n - j ) x n - j + 1 ( l - x ) ^ " 1 . 
3=0 

In par t icular , for k = n - 1, Eq. (4,12) becomes 

n-2 
(1 - x ^ U x ) = x - Y ^ f ( n - h n - 5)xn"3 + 1(l - xf^'2 , 

j=o 
so that 

(4.13) (1 - x ) \ ( x ) = x - y ^ f ( J f J J x J ^ d - x) j X . 

5=1 

For example, for n = 39 

(1 - x)3(x + 2x2 + 2x3) = x - x2 - x3 - x4 + 4x5 - 2x6 

x - x2 - x3 (1 - x) - 2x4(l - x)2 

If we put 

(4.14) 

(4.13) becomes 
(4.15) 

Gn(x) = x 

(1 -

y^f(j,j)xj+i(i - X) 3 - 1 , 
j=i 

(1 - x)nf (x) = G (x) n n 
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We shall show that (4.15) character izes the f(n,k) in the following sense. Let 

(a1$ a2, a3, • ••) 

be a sequence of numbers such that 

(4.16) A (x) = x - ;> a. x 3 + 1 ( l - x ^ " 1 

n ' J 3 
3=1 

is divisible by (1 - x) for n = 1, 2, 3, • • • . Define g (x) by means of 

(4.17) An(x) = (1 - x ) n gn(x) , 

so that g (x) is a polynomial of degree n. We shall show that 

(4.18) gn(x) = fn(x) (n = 1, 2, 3, • • • ) . 

For n = 1, it follows from (4.16) and (4.17) that at = 1, gA(x) = x. For n = 2 we 
have 

x - x2 - a2 x3(l - x ) = (1 - x)2 g2(x) , 

so that a2 = 1, g2(x) = 1 + x. For n = 3 we have 

x - x2 - x3(l - x) - a3 xHl - x)2 = (1 - x)3g3(x) , 

which gives 

&3 = 2, g3(x) = 1 + 2x + 2x2 . 

It follows from (4.16) that 

A n - l ( x ) " A n ( x ) = a n x n + 1 ( 1 " x ) n _ 1 • 

so that, by (4.17), 

(1 - xf-1 gn m l(x) - (1 - x ) n gn(x) = an x n + 1 ( l - xf-1 

Thus 

(4.19) gn_1(x) - (1 - x)gn(x) = a n x n + 1 
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On the other hand, by (4.11), 
(4.20) f ^ f c ) - (1 - x)fn(x) = f (n ,n)xn + 1 . 

Now assume that (4.18) holds for n = 1, 2, • • • , m - 1. Then by (4.19) and (4.20) we have 

(1 - x)[fm(x) - g m ( x ) ] = [ a m - f ( m , m ) ] x m + 1 . 

This implies 
a = f(m,m), f (x) = g (x) , m m &m 

thus completing the proof of (4.18). 
In the next place, we have, by (4.13), 

n 
fn(X) = X(i - x)-n - y ^ f a . j j ^ d - xf 

k=o % / 5=1 k=o X / 

. *£(°+1- *y -1,*kti E ( n -t
2i-r) «>• 

k=o V ' k=o j=l V I 

Equating coefficients, we get 

(4.21) I (n .k + 1) - ( « + ? - ' ] - > . 1 " V T ' ! « « . » ( o s t a n ) . * + » = ( n + k - i ) - I ) ( " " ^ ; k ) 
and 

n 
(4-22) S ( n ~k* J k ) f ( 3 ' j ) = C +* ') (k " n) 

In par t icular , for k = n, (4.22) becomes 

Then 

n=l X 7 j=l n=0 X ' 
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Since 

(1 
n=o 

it follows that 
oo 

^ f ( j . j ) x3 = -|(1 - 4x)l j ( l - 4x)"^ - 1 ( 

Thus we have obtained another proof of (3.2). 
We can also prove (3.2) — or the equivalent formula (3.4) — directly from the definition 

of f(n,k). Consider the sequence (als a2, • •* , a n + ^) with 

1 = aj ^ a2 ^ •-- =s a n + 1 = n; a. < i (i « 1, 2, • • • , n) . 

Let k be the la rges t integer such that a, ~ k. Clearly k ^ n and a. - = k. Now break 
the given sequence into two subsequences 

Put 

Then 

It follows that 

( a l» ' " » a k ) j ( a k + l ' " " • a n + l ) 

b. = a ^ . - k + 1 (j « 1, 2, • • • , n - k + 1) 

r; 
V^f(k,k)f(n 

' 1 = b* < b2 ^ . . . ^ b n _ k + 1 = n - k + 1 ; 

j (j = 1, 2, . . . , n - k + 1) . 

n 
(4.24) f(n + 1, n) = S \ ffe,k)f(n - k + 1, n - k + 1 ) . 

k=l 
Since 

c(n) = f(n + 1, n) « f(n + 1, n + 1) , 
(4.24) reduces to 

n 

C(n) = y ^ c(k)c(n - k) . 
k=l 

More generally consider the sequence (a*, a2, • •• , a n + ^ ) with 

1 = a i < a2 ^ ••• ^ a n + 1 = m < n ; 

a. < i (i = 1, 2, • • • , n) . 
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As above let k be the greatest integer such that a, = k. Then k ^ m < n and a. = k. 
K. K.*t"X 

Break the given sequence into two pieces; 

and put 

Then 

It follows that 

(4.25) 

b. = ak + . - k + 1 (j = 1, 2, • • • , n - k + 1) . 

I 1 " ' 1 = bt s b2 s . . . < b n _ k + 1 = m - k + 1 ; 

b. s j (j = l , 2, • • • , n - k + 1) . 

Ill 

f(n + 1, m) = \ ^ f(k,k)f(n - k + 1, m - k + 1) 

k=l 

Replacing n + 1 by r + m9 (4,25) becomes 

m 
(4.26) f(r + m9 m) = \ f(ksk)f(r + m - k , m - k + 1) 

k=l 

This furnishes another proof of (4*9)* 
5. We now consider the following generalization of f(n,kh 

(5.1) f(n,k,q) = > q a i ^ 2 + - ' - + a n 

where the summation is over all ai, a29 • * • , a n that satisfy 

(5.2) 1 = aA < a2 ^ . . . < a n = k 
and 
(5.3) a. < i (i = 1, 2, • • • , n) 

It is c lear that f (n ,k s l ) = f(n,k)„ 
It follows at once from the definition that 

k 

(5.4) f(nsk,q) = ^ T j «n " X> h q) . 
3=1 

where f(n - 1, ns q) = 0. From (5.4) we get 



544 SEQUENCES, PATHS, BALLOT NUMBERS 

(5.5) f(n,k,q) = qf(n, k - 1, q) + qkf(n - 1, k, q) 

[Nov. 

Making use of either (5.4) or (5.5) we can compute the following table. 

1 1 >v 

1 

2 

3 

4 

5 

1 

q 

Q2 

q3 

q4 

q5 

2 

q3 

q4 + q5 

q5 + q6 + q7 

q8 + q7 + q8 + q9 

3 

q5 + q6 

q6 + q7 + 2q8 + q9 

q7 + q8 + 2q9 + 2q10 + 2qu 

+ q12 

4 

q7 + q8 + 2q9 + q10 

q8 + q9 + 2q10 + 3qu 

+ 3q12+3q13 + q14 

5 

q9+q4 f i + 2q u + 3q12 

+ 3q13 + 3q14 + q15 

It is evident that 
(5.6) 
and 
(5.7) 

f (n , l ,q) = q11 (n = 1 , 2 , 3 , . . - ) 

f(n,n,q) = qf(n, n - 1, q) . 
Also, by (5.4), the sum 

(5.8) f(n,q) = ^ X a 1 + a 2 + . . . ^ n ) 

where now 
(5.9) 

satisfies 

(5.10) 

1 p 2Lt < a2 ^ • • • ^ a n ^ n; a. ^ i 

f(n,q) = q nf(n + 1, n, q) = q n - 1 f (n + 1, n + 1, q) 

It is also easily verified that 

(5.11) f(n,2,q) = q 1 * 
n-1 

6. It is convenient to consider the polynomial a (x,q) defined by means of 

(6.1) 

where 
(6.2) 

n 
( a ) n + 1 an(x9q) = 1 - x y j a(k,k,q)(qx)k(x)k , 

k=0 

(x)n = (1 - x)(l - qx) . . . (1 - q ^ x ) , (x)0 = 1 . 
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The definition (6.1) may be compared with (4.13). 
F o r n = 0, (6.1) becomes 

(1 - x)a0(x9q) = 1 - xa(0909q) , 
so that 

a(090,q) = 1, a0(x9q) = 1 . 
For n = 1 we have 

(1 - x)(l - qx)a!(x,q) = 1 - xa(0909q) - qx2(l - x )a ( l , l ,q ) , 
which implies 

a(l,l,q) = q, at(x,q) = 1 + qx . 
For n = 2 we have 

(1 - x)(l - qx)(l - q2x)a2(x9q) = 1 - x - q2x2(l - x) - q2x3(l - x)(l - qx)a(2,2,q). 

This yields 
a(2929q) = 1 + q, a2(x9q) = 1 + (q + q2)x + (q3 + q4)x2 . 

We now show that (6.1) uniquely determines a(n,n9q) and a (x9q). Clearly (6.1) implies 

(x ) n + 1 an(x,q) = (x)n an_1(x,q) - xa(n9n,q)(qx)n(x)n , 
or 
(6.3) (1 - qnx)an(x9q) = an_1(x9q) - q n a (n 9 n 9 q )x n . 

For x = q~ this becomes 
(6.4) a(n9n9q) = q11 an_1(q"n , q) . 

Substitution from (6.4) in (6.2) shows that a (x9 q) is uniquely determined and is of degree n 
in x. We may accordingly put 

(6.5) 
n 

Ein(x9q) = y ^ a(n9k9q)xn 

k=0 

thus incidentally justifying the notation a(n9n9q) in (6.1). 
It now follows from (6.2) that 

/6 6 ) j a ( n 9 k , q ) = qna(n9 k - 1, q) + a(n - 1, k9 

J a(n9n,q) = qna(n9 n - 1, q) 
q) 

a(n9 n - 1, q) 

Iteration of the first of (6.6) leads to 
k 

(6.7) a(n9k9q) = V j qina(n - 1, k - j , q) 
3=0 
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If we put 

(6.8) a(n,k,q) = q l k a t + 1 ) b ( n , k , q ) , 

(6.6) becomes 

(6.9) I b(n,k,q) 
\ b(n,n,q) 

n-k = b(n - 1, k, q) + q b(n, k - 1, q) 
= b(n, n - 1, q) 

The following table is easily computed. 

Kk 
n \ 

0 
1 
2 
3 

4 

0 

1 
1 
1 
1 

1 

1 

1 

1 + q 
1 + q + q2 

1 + q + q2 + q3 

2 

1 + q 
1 + 2q + q2 + q3 

1 + 2q + 2q2 + 2q3 

+ q4 + q5 

3 

1 + 2q + q2 + q3 

1 + 3q + 3q2 + 3q3 + 2q4 

+ q5 + q8 

4 

1 + 3q + 3q2 + 3q3 + 2q4 

+ q5 + q8 

Comparison with the table for f(n,k,q) suggests that 

(6.10) f(n + 1, k + 1, q) = q (k+l)(n+l)- |k(k+l) b(n,k,q ) 

To prove (6.10), substitute from (6.9) in (5.5). We get 

(k+l)(n+l)--|k(k+l), . . - lv k (n+l ) - ik (k- l )+ l , . . - - L 
q 2 7b(n,k,q ) = q 2 b(n, k - 1, q ) 

(k-KL)n-ik(k+l)+k+l, / n . - L + q ^ b(n - 1, k, q ) t 

that is 

b(n,k,q X) = qk nb(n, k - 1, q X) + b(n - 1, k, q 1 ) 

Replacing q by q , this becomes 

b(n,k,q) = qn kb(n, k - 1, q) + b(n - 1, k, q) , 

which is identical with (6.9). This evidently proves (6.10). 
7. It follows from (6.9) that b(n,k,q) is a polynomial of degree k in q . Put 

(7.1) b(n,k,q) = ^-y— > c(k,s)q 

s=o 

where c(k, s) = c(k, s,q) is independent of n. Using (6.9) we get 
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. k 
c(k,s) = -qS~K ^ - ^ - 2 - c(k - 1, s - 1) . 

1 - qS 

This yields 
(7.2) c(kfs) = ( - l ) S q s ( S " k ) [ 3 ] c ( k - s) , 
where c(k - s) = c(k - ss0) and 

[ k 1 = (1 - qk)( l - q1""1) --- (1 - qk"S + 1) 
L S J (1 - q)(l - q 2 ) . . . (1 _ q

s ) 
Thus (7.1) becomes 

k 

(7.3) btn.k.q) = ^ p ^ i^f qS(S~k)[f|c(k - s)q] 

k 
s=o 

By (6.9) and (7.3) we have 

- k - i k 

b(j, k + 1, q) - b(j - 1, k + 1, q) = % - Y ^ (-DSqS(S_k)[s]c(k - s)qj(s+1) (j > k). 
k s=o 

Summing over j gives 

-k -1 w X , t . . r i n (k+l)(s+l) (n+l)(s+l) 

^2>vMK> b(n, k + 1, q) = ^ - > (-1)S qB<"-W| * |c(k - s) 3 ^ 
k * — 1 '-"J 1 - q 

s=o ^ 

k+1 

'k+1 i^-v^T:1}*-**^ 
s=o 

k+1 

,i-2>-«T:1]-
s=l 

Comparison with (7.3) yields 

k+1 

c k+ l ^ ( - l ) S q s ( s - 1 ) [ k ; 1 ] c ( k - s + l) 
s=l 

that is j 

(7.4) > ' (-if qBVB-i/ |* j c ( k _ s ) = o (k > 0) . ^ t - l l V ^ g ] 
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The c(k) are uniquely determined by (7.4) and c(0) = 1. In part icular 

c(l) = 1, c(2) = 1 + q - q2, c(3) = 1 + 2q + 2q2 + q3 - q6 . 

To get a generating function for c(k), put 

(7.5) f(t) = ^ ( - l ) k q k ( k _ 1 ) t k / ( q ) k . 
k=0 

Then, by (7.4), 

(7.6) 
n=o 

In the next place put 

(7-7) w = ZX« wr • 
n=0 

where 
n 

(7.8) ^ ( n ) = ^ ("1 ) S q S ( S " 1 ) [ j ] c ( Q - s)a 
s=o 

In part icular , by (7.3), 

(7.9) b(n + k - 1, k, q) = - ^ ~ ifj^q*) , b(k,k,q) = -^j- ^ ( q ) 

» s 
JX 

Therefore, by (7.7), 

(7.10) 
k=0 

While f(t) resembles the familiar ser ies 

CO 

2 ^ b(n + k - 1, k, q)tk = S ^ T <n > °> 

oo oo 

2>-TT (1 - qnt) 

n=o n=o 
and 

OO OO 

^ ("I)" q^(n_1) t7(q)n = ]"[(1 - qnt) . 
n=o n=o 

its propert ies seem to be less simple. 
It follows from (7.5) that 
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(7.11) f(t) - f(qt) + tf(q2t) = 0 . 

Repeated application of (7.11) leads to 

(7.12) q~2n(n-1)tnf(qI1"flt) = -An(t)f(t) + Bn(t)f(qt) (n > 0) f 

where An + i ( t ) = Bn(qt) and 

(7.13) Bn(t) = ^ ( - D S ^ 8 " 1 ^ 1 1 ~ S ] t S • 
2s^n 
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We have therefore . .. 
„ K + 1 Ul,_LO 

(6.17) F k(x) = F k + 1 (x) + {x + x K + ^ ) F k + 2(x) . 
Now a a a 

B(x) = x2F ,(x) , 
d 

so that F 2(x) is rationally related to A(x) = F (x). Then by (6.17) the same is true of a a 
F 2(x) and so on. a 

We may state 
Theorem 6.3. For arbi t rary w9 the function F (x) is rationally related to A(x), 

that is j there exist polynomials P (x), Q (x), R (x) such that 

P (x)F (x) = Q (x)A(x) + R (x) . w w w w 

It seems plausible that A (x) and DA (x) a re not rationally related but we have been un-
able to prove this. 
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it is c lear that we have proved (5). 
As for (2), we have 

For n ^ 4 

a L n " Ln+1 = b I 1 ( a - W = bnN^5 . 

U 1 1 ^ | < b4N/5 = \{7 - 3NJ5)N/5 < | . 
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SOME THEOREMS ON COMPLETENESS 

V. E. HOGGATT, JR., and BOB CHOW* 
San Jose State University, Sen Jose, California 

1. INTRODUCTION 

The notion of completeness was introduced in [1] . 
Definition, A sequence of positive integerss A, is "complete" if and only if every pos-

itive integer, N, is the sum of a subsequence of A* The theorem of Brown [2] gives a 
necessary and sufficient condition for completeness, 

Theorem 1. A sequence of mono tonic increasing positive integers , A9 is "complete" 
if and only if: 

n 
ai = x and vi *i+2] \ • 

Corollary. As an easy consequence of Theorem 1, the sequence a = 2 , n = l s 29 

3S • • • is complete^ since 2 = 1 + (2 + • • • + 2 + 1), a well known result , 
Theorem 2. The Fibonacci Sequence is complete* 
Proof. The identity 

n 

gives us 

k*l 

n 
Fn+1 * ' + XN = Fn+2 

k=l 

since 
F ^ = F ^ + F n+2 n+1 n 

2, ANOTHER SUFFICIENT CONDITION 

Theorem 3. If (i) a< = 1, (ii) a , > a , (iii) a ,. ^ 2a , then sequence A is A n+l n n+l n 
complete, 

Proof. a ^ ^ a +• a n+l n n 
^ a + a - + a -n n-1 n-1 
^ a + a n + » = » + a 1 + a 1 

n n-1 1 1 
* Part ial ly supported by NSF Grant GY9923, Undergraduate Research Participation Program 
in Mathematicss Summer 1972, University of Santa Clara, 
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by repeated use of conditions (ii) and (iii), thus 

n 

n+l * X + L J \ 
k=l 

since (i) gives â  = 1. 
Corollary. The Fibonacci sequence is complete. F* = 1, F - ^ 2 F n and F - ^ F . 
Theorem 4. The sequence { l , p } is complete, where p is the nth pr ime. 
Proof. By Ber t rand 's postulate there is a prime in [n, 2n] for n ^ 1. 
Now p < p - < 2p . Thus by Theorem 3, Theorem 4 is proved. 
Theorem 5. The sequence { l , p } is complete even when an arb i t ra ry pr ime ^7 is 

removed. 
Proof. By Sierpinski 's Theorem VII in [3] , we have for n > 5 there exists at least 

two pr imes between n and 2n„ 
Thus 

p < P M < p l 0 < 2p Fn *n+l Fn+2 *n 

Clearly, if some p - is deleted, then Theorem 3 is still valid. Thus Theorem 5. 
Theorem 6. The sequence { l , p } remains complete even if for n > 5 we remove 

an infinite subsequence of pr imes no two of which are consecutive. 

3. COMPLETENESS OF FIBONACCI POWERS 

Theorem 7. The sequence of 2 " copies of F, is complete. 

Proof. 
F -

*IL < 2 for n > 3 F n 
and 

Thus 

Now: 

W 23 for n > 3 . 

fl?r :£ 2 m 1 for m a: 4, n a 3 

F m s m-1 m £ + ^ n - 1 X F m 
n+l n / J k 

k=l 

For m = 1, the theorem is true by Theorem 2. For m = 2, we have 

F i + F 2 + - - + F n " F n F n + l 
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shows that one copy is not enough. 
Let a 2 n = a 2 n + 1 = F2^ then clearly 

2n 

since 

2n 

k=l 
Thus 

since 

12n+l a2n 

a. = 2(F2 + F 2 , + " • + F 2 ) = 2F F , k 1 2 n n n+1 

a = F2 

2n+2 n+1 
< 1 + 2F F _ n n+1 

F ^ < 2F n+1 n 

Therefore by Theorem 1 it is complete. For m = 3, four copies of F 3 is complete from 
[ 5]« Theorem 7 is proved. See Brown [4] . 

In [5] is the following Theorem which we cite without proof: 
Theorem 8. If any a 8 n ^ 69 is deleted from the two copies of the Fibonacci Squares, 

the sequence remains complete3 while if n ^ 79 the sequence becomes incomplete. 
In [5] the following theorem is given: 
Theorem 9. If four copies of F 3 forms a sequence, then the sequence remains com-

plete if F 3 is removed for k odd and becomes incomplete if F? is removed for k even. 
The following conjecture was given by OfConnell in [5]: 
Theorem 10. If m ^ 4, the 2 " copies of F remains complete even if a F, 

is removed. 
Proof. Since F ^ < 2 m _ 1 F^ 1 for n > 3; m > 4, then 

n+k 
F m ^ m-1 F m ^ + m-1 ^ p m _ p m 

n+k+1 n+k / j s n 
s=l 

From Theorem 8, the sequence is complete up to te rms using 2 " F clearly if we delete 
one Fp1 the f irs t possible difficulty appears at k = 1 above. Clearly this causes no trouble 
for k ^ 0. The resul t follows and the proof of Theorem 10 is finished. 

Theorem 11. If m = 4k9 then the sequence of 2 copies of F remains complete 
even if 2 of the F are deleted. n 

Proof. 
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wr • 
4k 

3k 

F 4 k ^ 3k 4k = p 4 k 3k 4k 
n-KL n n n 

^ 2 3 k F 4 k
1 + ^ ( 2 * - D F ^ n-1 n 

n-1 

i=l 

2 4 k - l ^ V k + ( 2 4k- l_ 2 k- l ) F 4k 

1 + 24 k"1 V F4 k - 2k~X F4k 

/ J i n 

then let m = 4k; 

Fm, * 1 + 2 m - 1 Y \ m - 2k"1 F m 
n+1 / j I n 

i-1 

Thus 2 " copies of F can be deleted without loss of completeness. Fur ther : 
Theorem 12. 

k 

2>. F m 

s. 
1 

k-1 can be deleted without loss of completeness, and where c*. < 2 

K 

E a. F m * 2 k - X F m 

. „ * S i Sk i=l 

Proof. A s a consequence of Theorem 11, we have 

K 
> a. F ^ 2 F 

f JI i s. s, 
"rrf I k 

(2. =£ 2 

i=l 

Thus: 

n 
F™ ^ 1 + 2 m -

n+1 •^ -E^ 
i=l i=l 

[Continued on page 560. ] 



FIBONACCI AND LUCAS TRIANGLES 

V. E. HOGGATT, JR., MARJORSE BtCKWELL, and ELLEW L KING 
San Jose State University, San Jose, California 

1. INTRODUCTION 

We first define four sequences of polynomials and lay out two fundamental identities. 
Let 

(a) f0(x) = 09 fx(x) = 1, and fn+2(x) = x f ^ f e ) + fn(x) . 

These a re the Fibonacci polynomials 9 and f (1) = F . Let 

(b) L0(x) = 2, Li(x) = x, and \ + 2 ^ = x L n + l ^ + L n ^ s 

which are the Lucas polynomials. It is easy to show that 

L (x) = f ^ ( x ) + f Ax), L2(x) - (x2 + 4)f2(x) = (- l)n49 and L (1) = L . n n+1 n-1 n n n n 

These are two well known polynomial sequences which have been much discussed in these 
pages* Both enjoy Binet forms. Let A2 - xA - 1 = 0 have roots 

. x + N/X2 + 4 , . x - *s/x2 + 4 Ai = —s— and A2 = o——— 

Then 

Xi - A ? ""^ ^ n v 

A1 _ A2 
f^(x) = ^——~— and Ln(x) = Ai + A2 , 

L (x) + N/X2 4- 4 f (x) L (x) - ^x2 + 4 f (x) vn n n , >. n n n Ai = 5 —— and A2 = —— 

Next we introduce two polynomial sequences closely related to the Chebysheff polynomials of 
the first and second kind which were introduced in [2] . Let 

g0(x) = 09 g l(x) = 1, and gn+2(x) = xg n + 1 (x) - gn(x) , 

h0(x) = 2, hi(x) = x9 and h. +2Cx) = x n
n + i ( x ) ~ h

R^ • 

It is easy to establish 
555 
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h^(x) - (x2 - 4)g^(x) = 4 and hn(x) = gn + 1(x) + gn_1(x) , 

and if A 2 - x A + 1 = 0 has roots 

. * , x x + Nix2 - 4 , . * , x x - ^ x 2 - 4 Ai(x) = Q and A2(x) = ^ 

then, for x ^ ±2 , 

A *n, v . *n, x Xi (x) - A 2 (x) 
g (x) = _ _ and h (x) = A?n(x) + \*n(x) , 

n Af(x) - A*2(x) n 

while gn(2) = n and gn(-2) = -n , n = 0, 1, 2, ••• . As with Fibonacci polynomials, g (x) 
have their coefficients lying along the rising diagonals of Pascal* s tr iangle. 

2. SUBSTITUTIONS INTO POLYNOMIAL SEQUENCES 

Consider 

x + ^x2 + 4 Ai(x) = 

which from 

becomes 

Similarly, 

for x replaced by LQ - (x). From L2 (x) - (x2 + 4)f2 (x) = 4 ( - l ) n we see that ^n ~r J. n n 

X l ( L 2 n + l ( x ) ) 2 

X?(x) = [Ln(x) + N/X2 + 4 f n (x ) ] /2 

Xi(L2 n + 1(x)) = Xi2n+1(x) . 

X2(L2n+1(x)) = xfn+1(x) . 

Now let us look at 

f m ( L 2n+l 
,T , u X 1

m ( L 2 n + 1 ( x ) ) - x f ( L 2 n + 1 ( x ) ) 
, ( I W X » = Ai(L 2 n + 1 (x» - A 2 (L 2 n + 1 (x) , 

X t
m ( 2 n + 1 ) (x) - X f ( 2 n + 1 ) ( x ) f m ( 2 n + 1 ) (x ) 

X 2 n + 1 (x) - X 2 n + 1 (x) = W W 

by dividing numerator and denominator by Ai(x) - A2(x) and using the Binet form for the F ib-
onacci polynomials. We note that since the coefficients of both polynomial sequences f (x) 
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and Ln(x) are integers , then ^ ( I ^ ^ f e ) ) is a polynomial and f
m ( 2 n + i ) ( x ) / f

2 n + l ( x ) i s a 

polynomial. Letting x = 1 shows that F 0 , J F /ft ^ . & 2n+l| m(2n+l) 
If instead we use L2 (x) - 4 = (x2 + 4)f2 (x), then 

* '--* - x + ^ x 2 - 4 ^ * M _ x - \)x2 - 4 Xi(x) = - V » X2(x) = 

becomes 

*,T . . . L2n(x) + N ^ n f 2 n ( x ) 
Ai(L2 n(x)) = ^ = Xt (x) 

L (x) - ^/x2 + 4 f (x) 
X^(L2n(x)) = -52 _ J E _ = X2n(x) 

so that 

,fe) 
Ai (x) - X2 (x) 

m X* (x) - X* (x) 

becomes, when x is replaced by L (x), 

S m ( L ? n ( x ) ) = 1 1 
m 2 n X*tL2 nW) - X| (L2 n(x)) 

Xfm n(x) - Xfm n(x) f2 m n(x) 
x?1 - x2n = '7^r 

as before using the Binet form for the Fibonacci polynomials. Again g (L (x)) is a poly-
m ^n 

nomial when x = 1, F 2 n | F 2 m n . 
Summarizing, 

(A) W)m( x ) = ^ 2 n + l ^ ^m^2n+l^ X ^ 
<B> f 2nm ( x ) = f 2 n ( x ) g m ( L 2 n ( x ) ) ' 

Using the explicit formulas for the polynomials f (x) and g ( x ) , we have 

. , . V ^ / n + 1 - k \ n-2k < . \ ^ f n + 1 - k \ M X n-2k 
n+i(x) = JLJ \ k r ' gn+i = 2-r \ k / 

Then, we can combine (A) and (B) into one formula, 

In/2 

Wx) = Vx) 
]= 

h-]-A(-i)(k+1^+1)^-\) 
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This justifies the formula reported by Brother Alfred in [3] , Table 41 , when x = 3, but, of 
course , holds for other x as well. 

3. THE LUCAS TRIANGLE 

The polynomial sequences L (x) and h (x) for each n have the same coefficients ex-
cept those of h (x) alternate in sign. If we call the coefficient a r ray for the Lucas polynom-
ials the Lucas Triangle, then we can get a result s imilar to that above as reported for Table 
42 in [3], See also [ l ] , [ 4 ] , [ 5 ] , and [ 6 ] , F i r s t , 

so that 

Next 

M L 2 n + 1 ( x ) ) = Ai2n+1(x) and A2(L2 n + 1(x)) = A2
2n+1(x) 

V * W X » = A^)-(x) . A 2 ^-(x) « L m ( W x ) . 

so that 

Af(L2 n(x)) = X?n(x) and X|(L 2 n (x)) = X2
2n(x) 

hn(L2 n(x)) = X1
2mfl(x) + X2

2mn(x) = L 2 m n ( x ) . 

This evidently establishes the counterpart for the Lucas polynomials. 
We note in passing that L0(x) = 2 , Li(x) = x, and from 

L n+2 ( x ) = x L n + l ( x ) + L n ( x ) ' L 2 ( x ) = x* + 2 • 

Thus the L ? .. (x) a re divisible by x. This also holds for h ? - (x) . 
Thus, 

L 2 m + l ( L 2 n + l ( x ) ) = L(2m+l)(2n+l) ( x ) 

h 2 m + l ( L 2 n ( x ) ) = L(2m+l)(2n) ( x ) 

implies that L (x) I L , 2 ^ (x). Similarly, f (x) I f (x). Setting x = 1 establishes. 
L I L / 0 M , and F I F for m ^ 0. p J (2m+l)p p | mp 

4. SOME OTHER RESULTS 

Suppose 
fn+2(x) = xfn+1(x) + fn(x); f0(x) = 0, fi(x) = 1 . 

Next let x = a, where a2 = a + 1; then 

f (a) = aP + Q . n n n 

Here we seek recurrences for the sequences P and Q . Thus 
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and 

Subtracting 

Thus 

a P n + 2 + %+2 = a ( f f P n + l + Vl> + ( a P n + V 

P n + 2 = P n + 1 + P n + V l 
Q n + 2 = P n + 1 + % 

P n + 1 = P n + P n - 1 + % 

P n + 3 = P n + 2 + P n + 1 + < W 

Dn+3 Pn+1 " Pn+2 " P n + Pn+1 " P n -1 + Qn+2 " Q n * 

P ,o = P ,o + 3P „ - P - P , n+3 n+2 n+1 n n-1 

Qn+2 " Q n ~ Pn+1 ' 
whose auxiliary polynomial is 

This agrres with the results in [8] . 
Now, let A2 = xA + 1. Then 

y » = xpn + Qn , 

when P and Q are polynomials in A* 

Thus 

* P n + 2 + Q n + 2 = X ( X P n + l + Q n + 1 > + * P n + Q n 

= x A P n + l + P n + 1 + X Q n + l + ^ n + % 

P , = XP ± 1 + P + Q ^1 > 
n+2 n+1 n ^n+1 

^n+2 n+1 ^ n 5 

so that9 using the same techniques as before9 we find 

P n + 3 = x P n + 2 + P n + 1 + Q n + 2 

P n + 1 = x P n + P n - 1 + % 

P n + 3 " P n + 1 = x P n + 2 + P n + 1 " x P n " P n - 1 + ( Q n + 2 ' Qn> 
yielding 

P l 0 = xP l 0 + 3P _,- - xP - P -
n+3 n+2 n+1 n n-1 

which agrees with Eq. (8), part icularly resul t (iii), in [8], 
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SOME THEOREMS ON COMPLETENESS 

holds true and Theorem 12 is completed. 
Corollary. The hypothesis of Theorem 3 is not a necessary condition. From Theorem 

7, clearly F1",- ^ 2 F m for n ^ 3, m ^ 4, and that the sequence 2 m ~ copies of F^ 1 

is complete. 
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