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A SIMPLE OPTIMAL CONTROL SEQUENCE BN TERMS FIBONACCI NUMBERS 

f.McCAUSLAND 
University of Toronto, Toronto, Canada 

1, INTRODUCTION 

It is well known that the Fibonacci numbers are encountered in the optimization of the 
procedure for searching for the maximum or minimum value of a unimodal function [1-6] . 
The optimum search procedure can be derived by the method of dynamic programming [3, 4, 
5, 6 ] , In the present note it is shown that the sequence of optimal control inputs, for a 
simple discrete- t ime system with a quadratic performance cri ter ion, can be expressed in 
t e rms of the Fibonacci numbers. 

2. A DISCRETE-TIME SYSTEM 

Consider the very simple l inear discrete- t ime system* described by the difference 
equation 
(1) x(k + 1) = x(k) + u(k) , 

where u(k) is the control input to the system at discrete time instant k, and x(k) is a state 
variable of the system at the same instant. Suppose that it is desired to find the sequence of 
N control inputs u( l ) s • • • , u(N) whichs starting from an initial system state x( l ) , gives 
the minimum possible value to the summation F defined by 

N 
(2) T ~ 

~k^T 

IN 

F = \ j [x2(k) + u2(k)] 

The final state x(N) may be prescr ibed or not; assume for the present that the final state is 
zero. 

This problem can easily be solved by dynamic programming [4-6] . The procedure is 
to s ta r t by supposing N = 1, use the solution of that simple problem to find the solution for 
N = 2 t and proceed to derive a recurrence relationship which gives the solution of the prob-
lem for la rger values of N. If we define the quantity SN(x) to be the minimum value of the 
summation F reached in an N-stage process starting from the initial state x, we obtain the 
recurrence relationship 
(3) S (x) = min{x 2 + u2 + S x(x + u)} 

*For a discussion of discrete- t ime systems, see , for example, [7] . 
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562 A SIMPLE OPTIMAL CONTROL SEQUENCE [Dec. 

The value of Sfto, for the specified endpoint x(2) = 0, can easily be seen to be 

(4) Si {x) = 2x2 

for the control input 
(5) UiCL) = -x , 

where the notation %(!) means the f irst (and only) input of the one-stage p rocess , and where 
the initial state x is understood. In this case there i s really no optimization problem, as 
the specification of the final endpoint leaves no alternative but to choose u = -x as given by 
(5). Having obtained the solution described by (4) and (5), however, we can proceed to find 
S2(x) by substitution in (3) as follows: 

(6) S2(x) = min{x 2 + u2 + 2(x + u)2} 
u 

Performing the minimization operation by differentiating the expression in braces with r e -
spect to u, we find that the optimum value of u is given by 

(7) u2(l) = - | x , 

where the notation u2(l) represents the f irs t input of the two-stage process . Substituting 
(7) in (6), we obtain 

(8) % « = | x2 

Based on Equations (4) and (8), suppose that 

(9) SN(x) = K(N)x2 . 

SN(x) can be found by performing the minimizing operation involved in the expression 

(10) SXT(x) = min{x 2 + u2 + K(N - l)(x + u)2} 
^ u 

This minimization gives the value of u to be 

<n> UN(1) = m^ij-T-ix • 

Substitution of (11) into (10) leads to the result 

(12) KtK) - ^ ( N - :L> + 1 

(12) K(N) - K ( N _ !) + i • 
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We see from (12) that, if K(N - 1) is a rational number, K(N) will also be rationaL There -
fore, because K(2) is rational as shown by Eq. (8), K(N) is rational for all values of N. 
If K(N) is expressed in the form A(N)/B(N), where A and B are integers with no com-
mon factor, the following resul ts can be derived: 

(13) A(N) _ 2A(N - 1) + B(N - 1) 
B(N5 " ~A(N - 1) + B(N - 1) 

(14) A(N) = 2A(N - 1) + B(N - 1) 

(15) B(N) = A(N - 1) + B(N - 1) . 

The two f i rs t -order difference equations (14) and (15) can be expressed as a second-order 
difference equation (in either A or B) of the form 

(16) A(N + 1) - 3A(N) + A(N - 1) = 0 

Compare Eq. (16) with the following equation for the Fibonacci numbers F (n) for val-
ues of n separated by two units instead of one: 

(17) F(n + 2) - 3F(n) + F(n - 2) = 0 . 

Equation (17) can easily be obtained from the basic equation for the Fibonacci numbers 

(18) F(k) = F(k - 1) + F(k - 2) 

by taking k = n, n + 1, n + 2, and manipulating the three equations so obtained. Compar-
ing Eqs. (16) and (17), and using the initial conditions given by Eq. (8), it is found that K(N) 
can be expressed in the form 

no* K(m - F ( 2 N +. V 
(19) K(N) F ( 2 N ) » 

where F(k) is the Fibonacci number defined by (18) with initial conditions F(0) = 0, F(l) = 
1. Equation (11) leads to the resul t 

(20) u N ( l ) = - F % ^ 1 } x . 

This resul t shows that the optimal control input is a function of the present state and the num-
ber of stages to go to the end of the process . 

If the input given by Eq. (20) is applied to the system in initial state x( l ) , the next state 
x(2) is given by 
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F(2N - 1) 
A W - , . - -

(21) 

x<2> - 1 1 • ^Wmr] ^ 
F(2N - 2) () 

F(2N) X U ' 

The next input uN(2) can be expressed in the form 

„ (21 - ~ F ( 2 N - 3> F(2N - 2) ( . 
V Al F(2N - 2) F(2Ny 

(22) 
= -F(2N - 3) 

FT2N5 X U ' 

The sequence of optimal control Inputs uN(i) can therefore be expressed in the form 

,.v -F(2N - 2i + 1) /<M 
UN(1) = F(2N) ' X ( 1 ) 

(23) 
(i = 1, • • • , N) . 

If the final state is unspecified and therefore allowed to take on any value, the value of 
the last control input ikJN) is zero , and the values of K(N) and u N ( l ) can be expressed 
in the forms 

/ 0 1_v M -F(2N - 2) 
( 2 5 ) U N ( 1 ) = F(2N - 1) X • 

The optimal sequence of control inputs uN(i) is in this case given by 

<26> v > - 1(2N: i f x ^ 
(i = 1, • • • , N) . 

These resul ts are discussed more fully, and compared with the optimal control input 
for a continuous-time system, in [6] . 

REFERENCES 

1. R. Bellman, Dynamic Programming, Princeton University P r e s s , 1957, pp. 34-36. 
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[Continued on page 608. ] 



A PROOF OF GOULD'S PASCAL HEXAGON CONJECTURE 

A. P. HILLMAN 
University of New Mexico, Albuquerque, New Mexico 

and 
V. E. HOGGATT,JR. 

San Jose State University, San Jose, California 

The binomial coefficients 

(1) 
Bs = (n k ) s Bfi = (k - l j 

form a regular hexagon in the Pascal tr iangle. The identity 

(2) BiB3B5 = B2B4B6 

of Verner E. Hoggatt, J r . , and Walter Hansell [ l ] has inspired a number of resul ts includ-
ing Henry W. Gould's remarkable conjecture that 

(3) gcdCBi.Bs.Bg) = gcd(B2,B4,BG) 

for all integers k and n with 0 < k < n. Gould also had evidence of analogous resul ts in-
cluding the s imilar formula for the Fibonomial coefficients 

r » (4) {?( = F m F m - l - F
m - r + l / F l F 2 " " F 

in which F is the n Fibonacci number. (See [2] and [3].) 
In this paper, we prove a generalized Gould hexagon theorem that includes (3) and the 

analogous property for the Fibonomial coefficients < > . 
Let a i , a2, a$9

 e • • be a sequence of nonzero integers such that both 

(5) gcd(a , a ) I a , 
v ' & A m n ' | m+n 

and 

(6) gc d ( am'am+n>|an 

for all m and n in Z " = {l, 2, 3, . . . } . Let 
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566 A PROOF OF GOULD S PASCAL HEXAGON CONJECTURE [Dec. 

(7) f ^ l = 1, [~ml = a a ••• a ^ / a - a ••• a 
|_0J | _ r j m m - 1 m - r + 1 / 1 2 r 

for m and r in Z with 1 ^ r ^ m, 
If a = n, then n is the binomial coefficient f J, which is well known to be an 

integer for m and r in Z with 0 ^ r ^ m. If a is the Fibonacci number F , then 
is the Fibonomial coefficient < I given in (4); these coefficients are also known to be 

integers. In a la ter paper we shall show that conditions (5) and (6) imply that each general-
ized binomial coefficient is an integer. Here we assume this resul t in our proof of a 
generalized Gould hexagon property. 

Let p be a fixed positive pr ime. For all nonzero integers a let E(a) denote the 
greatest integer e such that p a. 

In t e rms of this exponent function E, one can translate our hypotheses (5) and (6) into 
the two following statements; 

(8) m i n { E ( a r ) , E(ag)} ^ E ( a
r + s ) ' 

(9) m i n { E ( a r ) } E ( a s ) } ^ E ( a j r - S ! ) * 

We now establish the following result : 
Lemma 1. For all r and s in Z , no one of the integers 

(10) E ( a r ) , E(af l ) , E ( a r + g ) 

is smaller than the other two integers in (10), i. e. , the minimum integer in (10) occurs at 
least twice in (10). 

Proof. If E(a ) is a minimum of (10), we see from (8) that at least one of E(a ) 
and E(a ) does not exceed the minimum E(a , ) and hence is also a minimum in (10). If s r+s 
either E(a ) or E(a ) is a minimum in (10), then one can use (9) to show similarly that r s 
the minimum in (10) occurs at least twice in (10). 

Using the definition (7) of the generalized binomial coefficients j , one can readily 
establish the proportionality relation 

(11) T ^ 8 : 1 ! : r r + s - 1 l : [r + s l = a : a : a ^ . 
| _ r - l J L r J L r J r s r+s 

This proportion and Lemma 1 immediately give us 
Lemma 2. The minimum integer in 

« 4 " -;'MD'+HM[r;s]) 
occurs at least twice in (12). That i s , if u, v, w are the te rms of (12) in some order and 
u < w then u = v. 
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Now let 

(13) 

° 4 = Lk + l j $ ° 5 = [ k J 9 C« = [k - l ] • 

The generalized Hoggatt-Hansell identity 

(14) C ^ C g = C2C4C6 

is established in a straightforward manner, We now turn to the generalized Gould property 

(15) gcd(Cl 9C3 9C5) = gcd(C2 jC4,C6) . 

Let C i be as in (13) and let e. = E(C.) for 0 < i < 6. Then (14) implies 

et + e3 + e5 = e2 + e4 + e6 . 

The Gould property (15) is equivalent to having (for all pr imes p) 

(17) min(e l 9e3 $e5) = min(e2 9e4 ,e6) . 

If (17) were not t rues then either 

(18) e. < min(eije39e5) for some i in {2 ,4 9 6} 
or 
(19) e. < min(e2 Je4 seg) for some j in { l s 3 s 5 } . 

We now assume the specific case 

(20) e t < min(e2 9e4 se6) 

of (19) and show that (20) leads to a contradiction! the other cases of (18) and (19) lead to 
contradictions similarly. 

The special case of (12) in which r = k and s = n - k is 

(21) el 9 e2, e0 . 

F rom (20) we have et < e2. This and Lemma 2 applied to (21) give us e* = e0 . 
Now the inequality eA < e4 from (20) and eA = e0 tell us that e0 < e4. The case of 

(12) with r = k + 1 and s = n - k is 
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(22) e0, e3, e4 . 

Using e0 < e4 and applying Lemma 2 to (22) we find that e0 = e3. 
The inequality et < e6 from (20) and et = e0 lead to e0 < e6. The case of (12) with 

r = k and s = n - k + 1 is 

(23) e@, e 0 , e5 . 

Since e0 < e6, Lemma 2 applied to (23) gives us e0 = e5. 
Thus we have shown that (20) implies 

(24) e0 = e5 = e3 = et < min(e2 ,e4 ,e6) . 

But it follows from (24) that et + e3 + e5 < e2 + e4 + e6 and this contradicts the consequence 
(16) of the Hoggatt-Hansell identity (14). Hence assumption (20) is false. Similarly, the 
other cases of (18) and (19) lead to contradictions. Therefore (17) is t rue and the generalized 
Gould property (15) is established. 

It is now natural for people with Fibonacci interests to ask if propert ies (5) and (6) are 
true for sequences {a } satisfying 

(25) a n + 2 = c a n + 1 - da n for n = 1, 2, 3, • • • , 

with c and d fixed integers. In a la ter paper, we shall show that if 

(26) gcd(c,d) = 1, aA = 1, and a2 = c 

then a sequence ( a } satisfying (25) has propert ies (5) and (6) and hence it gives r i se to 
generalized binomial coefficients j that a re integers with the Gould hexagon property 
(15). 

If one drops the condition gcd(c,d) = 1 in (26), then {a } need not have propert ies 
(5) and (6) and the need not have the Gould hexagon property. An example is the 
sequence 

1, 2, 6, 16, 44, 120, 328, ••• 

with the recursion relation a 2 = 2a - + 2a . For this sequence, the j a re all in te-
gers but the Gould hexagon property (15) is not true when n = 5 and k = 2. 

REFERENCES 
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Quarterly, Vol. 9, No. 2 (1971), pp. 120, 133. 

[Continued on page 598. ] 



A CONSTRUCTIVE UNIQUENESS THEOREM ON REPRESENTING INTEGERS 

JANOS GALAMBOS 
Temple University, Philadelphia, Pennsylvania 

Let F be the n Fibonacci number, i. e . , Fi = 1, Fo = 2, and F = F ., + n * ^ n n-1 
F n - 2 f o r n - 3o tt i s w e l 1 k*10™11 [1] that every integer N ^ 1 has a unique representation 

(1) N = F . + F . + ••• + F. 
such that 
(2) i t > 1, i. - i . ^ > 2 for j > 2 . 

Conversely, if for all the integers N ^ 1, 

(3a) N = a. + a. + ••• + a< 
i t i2 to 

is unique under (2), then a. = F . for all j , i. e. , the uniqueness of (1)under (2) charac te r -
izes the Fibonacci sequence. Generalizing this theorem, I shall prove in the present note 
that at most one increasing sequence can represent uniquely all the integers N ^ 1 as sums 
of i ts elements under a given constraint and I shall give a combinatorial formula for this only 
possible sequence. 

Let e l 9 e2, ••• be non-negative integers and let C be a property which classifies 
each finite ordered set (e^, e2, 9 e • , e n ) into one of the two categories, those which possess 
C and those which do not. Denote by C(e) the collection of all the sequences satisfying C. 

Let ai < a2 < ••• be positive integers. Assume that every integer N > 1 has a 
unique representation in the form 

(3) N = S e . a . , { e . } £ C(e) 

and it is further assumed that 

(4) if a < N < a ± 1 then e ^ 0 . x ' n n+1 n 

My aim is to prove the following 
Theorem. If the property C is expressible independently of a l s a2, ••• then there 

is at most one sequence 0 < â  < a2 < • • • for which the representation (3) and (4) is unique. 
In this case , a* = 1 and for n > 1, 

n 

(5) an+1 = 1 + y ^ k ( n ' d ' C ) ' 
dpi-

569 



570 CONSTRUCTIVE UNIQUENESS THEOREM ON REPRESENTING INTEGERS Dec. 1972 

where k(n,d,C) is the number of n-vectors (e*, e2, - •* , e n ) satisfying C and such that 
exactly d of its coordinates differ from zero, 

Before giving its proof, I wish to make some remarks on the theorem itself and on its 
applications. F i r s t of alls I want to emphasize the second par t of the theorem, namely, that 
the sequence a is explicitly determined. In several concrete cases when the structure of 
C(e) is given, the uniqueness of {a.} can be shown by a simple argument but (5) is not ob-
vious even in these cases , and for a general C(e) the usual argument for the uniqueness, 
too, seems to be very complicated, if it works at all , since several cases should be distin-
guished* The formula (5) is very useful at obtaining information on the number of non-zero 
t e rms in (3) even if no explicit formula for k(n,d,C) is known. As an example, I mention a 
recent work of A. Oppenheim. Generalizing (1), he considered the following problem (per-
sonal communication). Let k., j - 1 be given positive integers and assume that (3a) is 
unique under the assumption that the f irst non-zero te rm in i. - i._1 - k- , i. - - i. - k~, • • • 
i s positive for all j ^ 2. In our notations it means that C(e) consists of all (ej, e2, • • • , e n ) , 

th st 
n > 2, where e. is either zero or one and if the gap between the j and the (j + 1) one 
in ( q , e2, • • * , e n ) is m. , then for all j , m. - k , , m 1 - k , • • • has the property that 
the first non-zero term is positive. A. Oppenheim determined the sequences k. for which 
such a representation exists (to be published). In our approach we obtain a construction for 
the corresponding a fs though here k(n,d,C) is a complicated expression. However, this 
combinatorial function has already been investigated in much details since it has close r e l a r 

tions to p-expansions, see [3 ] , which has a wide l i tera ture . Two special cases of this prob-
lem of Oppenheim, namely, when all k. = 2, or more generally, when for all j , k. = k, 
have been investigated earlier* The case k. = 2 for all j is simply the condition (2), hence 
the corresponding sequence a. is the Fibonacci sequence and the formula (5) gives back its 
relation to the Pascal triangle. When for all j , k. = k, we get the generalized Fibonacci 
sequence introduced by Daykin [ l ] , the original argument for the validity of (5) being fairly 
complicated even for this simple case. In my recent paper [2] , I obtained (5) for the gener-
alized Fibonacci numbers , and actually that investigation led to the discovery of the shortproof 
of this general theorem, which now follows. 

Proof. F i r s t of all , note that (3) and (4) imply that there is a one-to-one correspondence 
between the integers 1 < N < a - and the set of n-vectors (ej, e2, • o s » e n ) C(e). A s a 
mat ter of fact, in view of (4), for any (el9 e2,• ••• , e n ) belonging to C(e), 

(6) e ^ i + e2a2 + • • • + e n a n < a n + 1 

namely, if the reversal of the inequality (6) apply, then, putting M for the left-hand side of 
(6), in view of (4), M would have a representation with an a., j ^ n + 1, taking par t , which: 
by the definition of M, contradicts the uniqueness of (3). The converse of the one-to-one 
correspondence in question is obvious by (4). 

From this observation the proof is easily completed. Cancel those t e rms in (3) for which 
e. = 0, hence (3) determines a function d(N), the number of non-zero te rms in (3). Since 

[Continued on page 598. ] 



GENERATING IDENTITIES FOR FIBONACCI AND LUCAS TRIPLES 

RODNEY T. HANSEN 
Montana State University, Bozeman, Montana 

Using the generating functions of 

{F A f and {L x f , 
n + m n=0 n + m n=0 

where F ^ _ denotes the (n + m) Fibonacci number and L , denotes the (n + m) n+m n+m 
Lucas numbers many basic identities a re easily deduced. From certain of these identities 
and the generating functions, we obtain identities for the tr iples F F F , F F L , F L L , & & *\ p q r p q r p q r 
and L L L , where p , q, and r a re fixed integers. 

To derive the desired generating functions we recall that 

n+m ^n+m 
(0) F , = • £ - — and L , = a + p 

n+m a - p n+m ^ 
where 

1 - N/5 , Q 1 + ^ 5 a = 2
 v and p = g . 

Note that a and p a re the roots of the equation x2 - x - 1 = 0, and hence a +j3 = 1 and 
ap = - 1 . The generating functions of 

{ , 0 0 F } n+m j
 n n=0 

where m is any fixed integer is found using the given definition of F + • We have 

OO 00 

Z-J n+m x " 2Ld' a - p 
n=0 n=0 

n+m 0n+m a - p n 
- x 

a - p 

(1) 

m\~^ n n 0 m \ ^ 0 n n a J a x - p > p x 
n=0 n=0 

1̂  f m 1 Rm 1 1 
- j 3 [ a 1 - ax ~ P 1 - /3x J 

1 fa - j3 ) - offfa - <3 )x 
- j3 [ (1 - AX)(1 - j3x) J 

F + F -x m m - 1 
1 - x - x2 

571 



572 GENERATING IDENTITIES FOR FIBONACCI AND LUCAS TRIPLES [Dec. 

In a similar fashion the generating function of \ L m } is found to be 
n=0 

OO 

E L + L - x 
L x

n = _J2 SlL_ . 

ft
 n + m 1 - x - x* 

n=0 
(Any reader who is unfamiliar with the general theory of generating functions will find refer-
ences [1 ] , [2 ] , [3 ] , and [4] enlightening.) 

Before considering important special cases of the above resul t s , two lemmas are given 
which a re proved by appropriate substitution of formulas (0). 

Lemma 1. F L = F 0 , n c z , the set of integers. 
:——- n n 2n & 

Lemma 2. F L n + F ,L = 2 F 0 - , n € Z. — n n-1 n-1 n 2 n - l ' 
In utilizing formulas (1) and (2) to generate basic identities, we must first evaluate the 

formulas at specific values of m. It is sufficient for our purposes to consider the cases 
m = - 2 , - 1 , 0, 1, 2, 3, 4. 

SPECIAL CASES OF FORMULAS (1) AND (2) 

(Let 1 - x - x2 = A .) 

F n + F , x , , _ ^ A . L ^ + L_3x 3 _ 4 x V F / - ^ - ± _ 4 ^ X X^ L xn 
2l /n-2X - ^ — s , l ^ L n _ 2 x 
n=0 n=0 

V F : :n _ F - l + F - 2 X _ 1 - x V - L x n = L l l i ^ l _ ,L±3x 
Zu Fn-1 X A ~ ' JLl n-1X A ~ A 
n=0 n=0 

V F J - F ° + F - l X - 0 + x V i xn - Lo + L - i x - 2 - x 
2^1 F n x A A ~ ' 2^1 n X A A 
n=0 n=0 

E v n _ F l + F 0 X _ 1 H-Ox V T v n - L l + L 0 X _ 1 + 2x 
F n + 1 X A A~~ • L-l n + 1 X S " A ~ 

n=0 n=0 

F„ + F , x , , _ ^ n _ L 2 + L l X _ 3 + x 

n+2 X "J ZT" 
V F ::n - F 2 + F 1 X _ l + x y » . 
Z - / n + 2 X ~ A _ A Z - f 
n=0 n=0 

n F 3 + F 2 X 2 + x V T n _ L 3 + L 2 X _ 4 + 3x 
, Fn+3 x = S = - Z T " ' 2 - Ln+3 x = 

n=0 n=0 
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Y \ : n _ F * * F 3 X 3*2x f / n L * * L3* 7 + 4x 
Z-Tn+4 X S ~ A s Z ^ n+4X * A = " ' 
n=0 n=0 

Using the fact that two ser ies are equal if and only if the corresponding coefficients are 
equal, we now find several elementary identities. 

Since 
2 - x 1 1 - x 

A = A A 
it follows that 

n=0 n=0 n=0 

.,-, + F - ) x n 
n-fl n-1 

n=0 
and hence 

Lemma 3. L = F - + F - , n e Z U {p}, the set of nonnegative integers. 
Note from definition (0) that 

= a'n - fTn _ _J_/j_ ±\ 
-n a-P a - pyja. ^ n l 

( ) a-» (afif *-? (-if 

= (_!)̂ 1 f ^ j ! = (_1}n+l Fn 

and 

T -n , 0-n . m - n , n , 0 n , 

(0") 
= ( - l ) - n L n = ( - l ) n L n 

for any positive integer n. 
Returning to Lemma 3, we now observe from this lemma and "definitions" (0') and (0") 

that 

F ( -n)+l + F ( - n ) - l " F - ( n - l ) + F - (n+l ) 

= ( - D ^ ^ F ^ + ( - D ( n + 1 ) + 1 F n + 1 

^ ^ n - l + ' n + l l 

< - « n L n = L - n 
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Hence Lemma 3 holds for all integers n. 
In a s imilar manner the additional lemmas are found. 
Lemma 4. 5F = L ... + L - , n e Z. 

n n+1 n-1 Lemma 5. 2F e1 = F + L = F l 0 + F .,, n e Z. n+1 n n n+2 n-1 
Lemma 6. 2F - = F - L , n e Z. 

•—• n-1 n n 
Lemma 7. F j 0 = F _,- + L 1 f n € Z. 

— — n+3 n+1 n-1 
Lemma 8. 3F = L _ - F . , n e Z. 

— n n+1 n-1 
Lemma 9. 3 L j r i = L + L ,A9 n e Z . 
• — n+2 n n+4' 
Lemma 10. 3F ^ 0 = F + F ^ , n e Z. 

n+2 n n+4 
Lemma 11. 2F _ = L _ - F 0 , n e Z. 

—•— n+1 n+1 n-2 
Lemma 12. L + F = F ^ 0 + F . , n e Z. 
—— n n n+2 n-1 
Although these resul ts are of interest in themselvess their principal use is as lemmas 

to more profound resul ts . The reader is encouraged to consider additional special cases of 
formulas (0), and then generate additional Fibonacci and Lucas identities. 

The next three resul ts are also generated from formulas (1) and (2). These fundamental 
identities are essential to our development of Fibonacci and Lucas t r iples . Theorem 1. F L + F n L - - ^ ^ 1S n m n-1 m-1 n+m-1 

Proof. Let m be any fixed integer. Then 

E(F L + F ,L , )xn = L Y ^ F xn + L , V * F , x11 
n m n-1 m-1 m / J n m-1 / ^ n-1 

n=0 n=0 n=0 

« L * + L n
 ( 1 ^ m A m-1 A 

L 
m-

L 
m-

-1 

-1 

+ 

+ 

(L 
m A 

L 
m-

-

2X 

L 
m-- i ) x 

" zL* Ln+m-l *n 

n=0 

by formula (2). Results (0T) and (0n) complete the proof. 
From a development similar to the above proof, we find a companion result to Theorem 

1. 
Theorem 2. n-1 m-1 n+m-1 
Theorem 3. L L + L . L . = L ^ + L J 0 = 5 F J n , for any n , m € Z. n m n-1 m - 1 n+m n+m-2 n+m-1 J 

Proof. Since L J + L , 0
 = 5 F J L . b y Lemmj • n+m n+m-2 n+m-1 J 

first par t of the identity. Let m be any fixed integer. Now 
Proof. Since L , + L , n - 5F , . b y Lemma 4S we need only consider the • n+m n+m-2 n+m-1 J J 
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00 00 00 

Y ^ (L L + L , L , )xn = L Y ^ L x11 + L , \ ^ L , x n 
jL*d n m n-1 m - 1 ' m Z - # n m - 1 £BBj n -1 

n=0 n=0 n=0 n=0 n=0 

L 

l"L + (L - L - )1 + T2L - + (L - - L ) Ix 1 m m m - 1 J L m-1 m-1 m J 

A 
[L + L 0 1 + TL - + (L - - L J l x 
L m m - 2 J L m-1 m-1 m-2 J 

L + L . x L o + L 0x m m - 1 m-2 m - 3 

= 2 (Ln+m + L n + m - 2 ) x I 1 

n=0 

Aided by the partial fractions technique we find the final result needed to generate the 
specified Fibonacci and Lucas triples* It is the following; 

(p -f qx) (r + tx) _ pr + (pt + qr)x + qtx2 

A A A2 
(3) 

-qt (pr + qt) + (pt + qr - qt)x 
= A A2 

The identities are now found by eonvoluting ser ies (generating functions) of the forms 
(1) and (2). We begin by specifying m and s as fixed integers, Now 

F + F -x L + L , x m m - 1 s s — = Yl Fn+mxI1 2 Vs*" 
n=0 n=0 

(4) 

-n T n 

F, L . , x 
k+m n-k+s 

°o n 

n=0 k=0 

and by Eq. (3) this product also equals 

- F n L , (F L + F 1 L 1 ) + ( F L 1 + F - 1 L - F - L , )x m - 1 s-1 m s m - 1 s-1 m s-1 m-1 s m-1 s-1 

A2 

- F m - l L s - l , V + s - l + ( F m - l L
S

 + F
m - 2 L s - l ) x 

A A2 
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by Theorem 1 and substitution of F n for F - F J m-2 m m - 1 

= _F L -i- + **iH-s-l m+s-2 _1_ 
m - 1 s-1 A A A 

by Theorem 1 

«o oo oo 

= -Fm-lLs-l E F n + l x D + E L n + m + S - l x n ' E ^ l ^ 
n=0 n=0 n=0 

by definition of generating functions (1) and (2) 

XX 

Z ) [ - F m - l L
S - l F n + J x n + Z Z X - n V k + m + s - l ^ 

n=0 n=0 k=0 

( 5 ) = Z [~Fm-l VlFn+l + Z F k -M L n-k + m + s - l3 X " • 
n=0 k=0 

By equating the coefficients of ser ies (4) and (5), the f irst identity is deduced. It may be ex-
pressed as 

7^ F k+m L n-k+s " F m- l L s - l F n -KL + £-* Fk+lLn-k+m4-s-l 
k=0 k=0 

or 
n 

F m - l L s - l F n + l = 2~t ( F k+ l L n -k+m+s- l + Fk-f-mLn-k+s ) ' 
k=0 

Letting p = m - 1, q = n + 1, and r = s - 1, the identity becomes 
Theorem 4. 

q-1 
F p F q L r = 2-1 ( F k+ l L p+q+r -k - l + Fp-Hk+lLq+r-k) ' 

k=0 

for any integers p , q, and r . 
One notes the need of definitions (0f) and (0") if any of the above integers is negative. 
Following the procedure given above, aided by the given lemmas , Theorems 1-3, and 

definitions, two additional identities are found. The first is a result of the convolution of 
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F + F , x m m - 1 

577 

with 

A 

F t + F t - i x 

and the* second is determined by the convolution of 

L + L . x m m - 1 

with 

H + Lt- ix 

Theorem 5. 
r - 1 

F F F p q r 5>, 
k=0 

F F F ) 
p+q+k+1 r -k " p+k+l r+q-k ; ' 

for any p , q , r E Z. 
Theorem 6. 

p-1 
F p L q L r = Z^ (5Fp-kFq+r+k-HL " Lq+kH-lLp+r-k) 

k=0 

for any p , q, r E Z. 
Theorem 7. 

L L L = 5 p q r 

"p-2 

Z ( F 
k=0 

T — F L ) F 
q+r+k+1 p-k p+r-k q+k+1' " p+q+r 

L p + q L r + l f 

for any p , q, r G Z. 
Proof. From Lemma 3f we obtain 

L L L = (F ^ + F n )L L p q r p+1 p-1 q r 
= F ^ L L + F , L L p+1 q r p -1 q r 

Now from Theorem 69 it follows that 
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P 
L p L q L r Z - / ( 5 F p -k+l F q+r+k+l L q+k+l L p+r-k+l * 

k=0 

p~2 

' / ^ ( 5 F p - k - l F q + r + k + l Lq+k4-lLp+r- k - 1 ) 

k=0 

p-2 

/ J L5 Fq+r+k+i^Fp-k+l + F p - k - l ) L q+k+l ( L p+r-k+l + V ^ - k - l * - * 
k=0 

+ (5F0F ^ ^ • » L _ L L J _ 0 ) + (5F-F ^ ^ ^ - L _, ^ L _ ) 2 p+q+r p+q r+2 v 1 p+q+r+1 p+q+1 r+1 ' 

"q+r+k+1' p-k " p+r+k q+k+1J 

p-2 
= 5 \ ^ (F„ , _ , _ , , L _ ^ - F ,_L. 

k=0 

4- 5F _ (5TT + L L ) 
p+q+r+2 p+q+r+1 p+q r+1 

by Lemmas 2 and 4 and Theorem 4 

= 5 
p-2 
^ ( F ^ ^ I ^ ]r - F _ ^ L ^ J - F^ 

" q+r+k+1 p-k p+r-k q+k+1 p+q+r 
Lk=0 

p+q r+1 

Many corol lar ies to the las t three theorems are immediate by making substitution(s) for 
p , q9 and r , respectively, in the given identities. The formulation and derivation of these 
resul ts we leave to the reader . 
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A NEW GREATEST COMMON DIVISOR PROPERTY OF THE BINOMIAL COEFFICIENTS 

H.W.GOULD 
West Virginia University, Morgantown, West Virginia 

1. INTRODUCTION 

The chief object of this paper i s to announce the following: 
Conjecture. Let k and n be any integers with 0 < k < n, and 

( j ) - * A " (n - k)t 

be the ordinary binomial coefficients. Then 

*•» H(v)• (^)• (J;01 H("-)'('-)•("")! • 
The consideration of this mat ter was prompted by a resul t due to Hoggatt and Hansell 

[ 3] which is that 

«•» (";l)(i>-0(^0-(^0('°0("") • 
The six coefficients involved form a hexagonal pattern around 1 , 1 in the usual Pascal t r i -
angle display. See the diagram in [ l ] where I called (1.2) a Star of David Property. The 
new conjecture gives anew Star of David property. What is more9 I also conjecture that 
(1.1) holds for Fibonomial coefficients where nl is replaced by 

[ n ] ! = F n F n _ 1 . - « F2Fi , [ 0 ] i = 1 , 

with 

F n + 1 = F n + F n - 1 ' F» = ° ' F* = * ' 

being the ordinary Fibonacci numbers . The manner in which powers of a prime enter as 
factors of such generalized coefficients suggests that there are many other a r rays in which 
the new arithmetic Star of David property holds. We shall also exhibit some entirely novel 
pseudo-binomial coefficient a r rays where the conjecture holds. It would be of great interest 
to establish necessary and/or sufficient conditions for the new conjecture. I am certain the 
conjecture is cor rec t but hesitate to publish a proof as I believe my original proof has a flaw. 
Computational resul ts will be exhibited here as evidence. 

579 
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2. EVIDENCE 

Table 1 below shows the situation for 21 rows of the Pascal triangle. Shown here is 

-KvM^O-fcOf-
for 0 < k < n /2 . In every case the value is identical with 

H(-o-('")-eni 
Spot checks for dozens of other values have failed to turn up any counterexample. In working 
with numerical examples, it is convenient to draw the Pascal triangle in the usual manner as 

1 1 

1 2 1 

1 3 3 1 

1 22 2-3 22 1 

1 5 2-5 2-5 5 1 

1 2- 3 ^ P f c > 2 2 . 5 3-5 2-3 1 

1 7 3*7 5-7 5-7 3-7 7 1 

but in factored form. The way in which the pr imes appear suggests both (1.1) and (1.2). Be-
cause of the recurrence relation governing formation of the binomial coefficients (and the 
same principle applies to the Fibonomial coefficients) the occurrence of prime factors forms 
a triangular pattern. Thus, if 

then 

(k) md P 1 ( k - l ) ' 

( " " ) 

where c = min (a,b). But c may be l a rger I 
Let us denote the set of coefficients 

|(v). U).(;; ;)| 
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by <Q and the set 

\(l:l)^)-(»V)\ 
by P > , or more generally, we may sometimes use this suggestive notation for the corres-
ponding sets in any general array. If we must be explicit we can write \ J , and P> , , 
to indicate the values of n and k used. Clearly, if we compute a table of g. c. d. < ^ and 
the table is symmetrical with an entry in the k spot on row n the same as the entry in the 
n - k spot, then the property (1.1) holds. This is because of the similar symmetry for the 
Pascal triangle itself. Table 1, therefore, lists g. c.d. <^1 for 0 < k < n/2 only. The 
original table was drawn up on a very large sheet of paper and is not easy to reproduce here, 

Table 1 
n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

3 

5 

1 

7 

2 

3 

5 

11 

1 

13 

7 

5 

4 

17 

3 

19 

4 

7 

14 

6 

3 

11 

11 

13 

91 

7 

4 

68 

51 

57 

.. 

42 

6 

33 

11 

143 

91 

91 

28 

68 

204 

969 

• 

66 

33 

143 

143 

13 

52 

68 

204 

3876 

k 

429 

143 

143 

26 

442 

102 

1938 

.. 

715 

286 

442 

442 

646 

[n/2] 

4862 

442 

8398 8398 

A result like (1.1) using 1. c. m. is in general false. The first simple counter-example is 

l c m < ] 3 1 = lcm W J J , h \ , (*\l = 1cm (2, 1, 6) = 6 , 
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1cm [ > 3 > 1 - lcm j ( 0
2 ) , Q . ( j ) j - lcm (!, 3, 4) = 12 . 

There a r e , however, numerous cases where the L c m . property does hold. 
Except for the first values, it is interesting to note that the sequence of middle num-

bers in Table 1, i . e . , 1, 1, 1, 5, 7, 42, 66, 429, 715, 4862, 8398, • • • , are alternately 
Catalan numbers or one-half Catalan numbers. More precisely: let n > 1. Then 

(2.1) «-K*.-1) • ( . * . ) • ( ? * ! ) } -
(2n") r f i • # • • 

We omit the proof. 

3. THE FIBONOMIAL CASE 

The corresponding result for the Fibonomial coefficients to (1.1) is true because these 
numbers satisfy a recurrence relation s imilar to that for the ordinary binomial coefficients. 
We should remark that the same may be said for the Gaussian or q-binomial coefficients. 
We omit the details of the proof. 

To illustrate the relation (1.1) for Fibonomial coefficients, we give in Table 2 some 
specimen values. The table s ta r t s with n = 6, the first row where the g. c. d. > 1 for any 
k. 

Table 2 

n 

6 

7 

8 

9 

10 

11 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1 

1 

1 

1 

1 

1 

3 

5 

4 

13 

7 

17 

55 

••• k ••• [n/2] 

52 

91 

119 1547 

187 1309 

Again one finds a formula for Fibonomial Catalan numbers , but it is not as simple as (2.1). 

4. PSEUDO-BINOMIAL COEFFICIENTS 

Scrutiny of the discussion above for (1.1) shows that the key to the pattern of prime 
powers l ies in the recurrence relation used. However, we may evidently dispense with the 
recurrence relation and still have (1.1). To i l lustrate , we offer the a r ray on the following 
page of pseudo-binomial coefficients. 
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1 
1 1 

1 1 1 
1 2 2 1 

1 3 2-3 3 1 
1 5 3-5 3-5 5 1 

1 7 5-7 3*5-7 5-7 7 1 
1 11 7-11 5-7-11 5-7-11 7-11 11 1 

1 13 11-13 7-11-13 5-7-11*13 7-11-13 11-13 13 1 

Here we have imposed a perfectly regular pattern of appearance of prime factors. It is easy 
to see that (1.1) must hold for the pseudo-binomial coefficients P(n,k). A few specimen rows 
from the g. c. d. triangle a re : 

5 
7 7 

11 7-11 11 
13 11-13 11-13 13 

17 13-17 11-13-17 13-17 17 

where we have tabulated the g. c. d. for 3 < k < n - 3 and 6 < n < 10. 
It is also evident that the resulting a r r ay itself possesses property (1.1)', and this may 

be seen to repeat forever. The 1. c. m. of the two sets of coefficients in (1.1) fail to be equal 
for the pseudo-binomial coefficients for k = 0 (n > 2), and for k = 2 (n = 5), k = 3 
(n = 7), k = 4 (n = 9), etc. We omit a discussion of the precise behavior of the least 
common multiples, but it is clearly a mat ter to be investigated. I have been unable to find 
an a r ray in which the g. c. d. property and 1. c m . property both hold always. Even 1. c. m. 
a r r ays are hard to come by. 

In contrast to the Pascal triangle and the Fibonomial triangle, the a r ray of pseudo-
binomial coefficients does not have the property (1.2) of Hoggatt-HanselL 

Here is still another pseudo-binomial a r r ay having the Star of David property (1.1): 

1 
1 1 

1 2 1 
1 3 3 1 

1 7 3 - 7 7 1 
1 1 7 7 1 1 

1 23 2 2-7 2 23 1 
1 52 2-52 2-52 2-52 2-52 52 1 
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One may easily extend such a triangle in an infinity of ways. 
These are the types of general a r ray suggested by our work, a r r ays in which the entry 

of pr imes occurs in carefully delineated tr iangles. The most general such triangle has not 
been written out. 

5. MULTINOMIALS 

It i s , of course , tempting to go further. In [l] , [2] , [4] will be found methods for 
finding equal products of any number of binomial and multinomial coefficients in general. 
Whenever a triangle pattern'of pr ime entry appears , one suspects that interesting g. c. d. and 
1. c. m. propert ies will hold in certain cases . Computer calculations would be very useful to 
make further conjectures, but already I have checked numerous cases and found interesting 
resu l t s . When one real izes that Scharff, Rine, and Gould [2] have found relations such as 

/ n + 2 \ / n - 3 \ / n + 3 \ / n - 2 \ (n + l \ / n \(n - l \ 
\k - ijy k )\k + l / \ k - 2 / \ k + 2 / \ k - 3 / \ k + 3 / 

/ n - 2 \ / n + 3 \ / n - 3 \ / n + l \ / n + 2 \ / n - l \ / n \ 
\k - l) \ k J \k + 1/ \k - 2) \k + 2) \k - 3/ \k + 3/ 

it becomes clear that there is much more to be investigated. When, for example, a re the 
g. c .d. f s of the above sets of seven coefficients equal? Not in general , as examples are 
easily shown to the contrary. A computer can easily generate as many tables of this sort as 
needed. We should remark that the detailed computer print-out in [2] will be deposited in 
the Fibonacci Bibliographical Center for reference. 

In [l] I pointed out that (1.2) generalizes to 

(n - a W n \ / n + n \ / n - a \ / n \ / n + a \ 
k / ^k - a^ \ k + ay y k - a y ^ k + a J ( k J 

and it is tempting to see if the g. c.d. property holds here . A simple counter-example, n = 
8, k = 3, a = 2 suffices to show that the g .c .d . Star of David property does not hold in 
general here . Again, however, abundant true examples exist. 

ADDENDUM 

Property (1.1) was first noted by me around December 1971. Since writing the present 
paper (1.1) was mentioned to Hoggatt (telephone call , August 3, 1972), and I have now heard 
from him (telephone call August 7) that he and A. P . Hillman [5] have proved conjecture (1.1) 
as well as for the Fibonomial case and for a r rays in general where certain recur rences hold, 
The method is one due to Hillman based on iteration and the recurrence . Clearly we are at 
the opening of a new chapter in the discovery of interesting arithmetic propert ies of a r r ays of 
numbers . 
[Continued on page 628. ] 



LINEAR DIFFERENCE EQUATIONS AND GENERALIZED CONTSNUANTS 
PART I: ALGEBRAIC DEVELOPMENTS 

L..R. SHENTQN 
Computer Center,University of Georgi®, Athens, Georgia 

1. INTRODUCTION 
A continuant detenninant (or matrix) has elements in the diagonals through (1,1), (1* 2), 

and (2,1) only, and zeros elsewhere. We can use the notation K (h^1,) for the s order 
continuant, where 

(1) 

hi 

g{ 
0 

Si 

h2 
f 

g2 

0 

g2 

g? 

& s 
s ] (s) 

As is well known, by expanding this by its las t row and column, we find the recurrence r e l a -
tion (omitting the arguments for brevity) 

(2) K s = h s V l - g . s g s K s _ 2 B - 2 , 3 . » . 

with K0 = 1, Ki = hA. Note that K is unchanged in value if the signs a re changed for any 
s 

subset of the gTs along with the corresponding subset of the g f / s . Again note that the usual 
Fibonacci sequence a r i ses from either g. = 1, g' = -1 (or of course g. = - 1 , g' ^ 1) 
or gx = g'x = i (= \^1) . 

Many elementary propert ies of recursive schemes such as (2) a re well known and in 
part icular Brother Alfred Brousseau [ l ] has given some of these in the case when the coef-
ficients are constants. 

The question a r i se s as to what happens when we add diagonals to (1) through (1,3) and 
(3,1) and produce a 5-diagonal determinant. We shall call a (2s + 1) diagonal determinant 
(with elements in the main diagonal and the s super-diagonals, and the s sub-diagonals) a 
continuant of degree s. The recursions followed by these generalized continuants have been 
studied by H. D. Ursell [2] . In fact, Ursell gives the following table which refers to the o r -
der of the difference equation satisfied by a continuant of degree s: 

Order of Recurrence Relation 

Degree s 
Symmetric Case 
Unsymmetric Case 

1 

2 

2 

2 

5 

6 
585 

3 

15 

20 

4 

49 

70 

5 

169 

252 

6 

604 

924 
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The rate of increase of the difference equation order is very remarkable . 

2. THE FIVE DIAGONAL SYMMETRIC CONTINUANT 

We use the notation K (h1? gl5 fA) for a second-degree symmetric continuant with e le -s 
ments hi , h2, • • • , in the principal diagonal, gi, g2, • • • , on the diagonal through (1,2) and 
(2,1), %, f2, • • • , on the diagonals through (1,3) and (3,1) and zeros elsewhere. The fifth-
order recurrence is then given by (see [3] , p . 173, expression (16)) 

(3) g 0K = a K .. - b (g ,K „ - g _f 0K Q) 
&s-2 s s s-1 s & s - l s-2 &s-2 s-2 s-3 

- f2 0f 0 c K , + f J2
 Qf2 ,g ,K . 

s-3 s-2 s s-4 s-2 s-3 s -4 & s- l s-5 
where s = 3, 4, • • • , with 

-2 

where 
K2 = hxh2 - gt , 

a s = Vs-2 " fs-2gs-l • 
bs = gs-lgs-2 " Vlf8-2 • 
Cs = h s - 2 g s - l " f s - 2 g s - 2 ' 

We discuss several special cases . 
2»1 gj_ = g2 = • • • = g 1 = 0. We now have to expand K by its las t row and column 

S —X S 
since formula (3) aborts . We find 

(4) K = h K - - f2 0h -K o + f2 of2 QK . (s = 4 , 5 , - ) 
x ' s s s-1 s-2 s-1 s-3 s-2 s-3 s-4 
with 

K„ = 1 , 
Ki = hi , 

K2 = hAh2 , 

K3 = h2(hih3 - ff) . 

Using (4) we find for the next few cases , 

K4 = (hih3 - ff)(h2h4 - f2.) , 

K5 = (h2h4 - 4)(h5(hih3 - i) - htfi) 

indicating that K is the product of two continuants of degree 1 (three diagonals). This is 
easily seen from the determinant for K by expanding by sub-matr ices consisting of e le -
ments from odd rows (and columns). For example, 
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(5) K7 

ht fj 0 0 
ft h3 f3 0 
0 f, hK fB 

0 0 £B h, 

h2 f2 0 
k h4 f4 

0 k h6 

and this type of condensation has been given by Muir [4] . We may verify directly from (4) 
that K does in fact factor, and defining first degree continuants 

hi ft 

k h3 

f„ (6a) Kf (h1; ft) 

(6b) Ks
2 )(h2, f2) = 

^2 k 
k ^ 

2s-3 
f 2s -3 h 2s - l l 

2 s-2 
f h 
I 2s -2 2s 

(s) 

(s) 
it can be demonstrated that 

(7) K 2 s (h i , 0, fj) = K(f (hi, fi)K^2)(h2, f2) , 

K2 s + 1(hi, 0, ft) = K ^ O i i , fi)42 )(h2, f2) . 

In par t icular taking h = 1 , f = i in (4) we see that the sequence (K ) where 
s s s 

(8) s s-1 s -3 s-4 (s = 4, 5, • • • ) 

with K0 = l j Kf = 1, K2 = I? K3 = 2, is such that K2 - is the product of consecutive 
Fibonacci numbers whereas K0 is the square of a Fibonacci number,, For example, 

zs 

s 4 5 6 7 8 9 10 11 12 
K 22 2-3 32 3-5 52 5«8 82 8-13 132 

s 

It is perhaps not surprising to find the characterist ic equation of (8) has zeros ±i, ( l±V5) /2 , 

and indeed 

(9) K s ~ " T o ^ l + ^0 W «»• * ( (H*f • ( H ^ f ) / • 
Again since the characterist ic equation has a zero with la rges t modulus, then 

s—^oo K 2 
s 
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2.2 Constant Elements in the Diagonals 
We consider K (h, g, f) where 

following seem to be the most interesting: 
We consider K (h, g, f) where h, g, f a re either unity in modulus, or zero. The 

Case h g f 
1 0 1 1 
2 1 1 - 1 (i = V=T) 
3 1 i -1 
4 1 i 1 

Case 1 
K = - K , - K 0 + K Q + K , + K . s = 3, 4, ••• 

s s-1 s~2 s-3 s-4 s-5 ' ' 
with 

K_2 = K_x = 0, K0 = 1, Kt = 0, K, = -1 . 
In addition 

s 3 4 5 6 7 8 9 10 11 12 
K 2 0 - 2 3 0 - 3 4 0 - 4 - 3 

s 
Characterist ic Equation 

(x - l)(x2 + x + l ) 2 = 0 

Roots x = 1, w, w, w2, w2, where w is a primitive cube root of unity. 

Explicit Formula 

Ks -
from which 

Case 2 

2 
9 + c L + 

K 3 s 

s 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

K 
s 

4w + s( l + 

= s + l s 

= 2K - -
s-1 

K 
s 

1 
1 
0 

-4 
-8 
-7 

9 
40 
64 
24 

-135 
-375 
-440 

124 
1584 
3185 

/ w \ S _ 1 . 
2w)) f 2: J - ( l - 3w + s(l - w) 

K3s+1 = 0> K3s+2 = _ S " X 

2K „ - 2K o + 2K A - Ka -
s-2 s-3 s-4 s-5 

/ ' 2̂- -^1-VlVl1 

1 
2 
4 
6 

11 
19 
32 
56 
96 

165 
285 
490 
844 

1454 
2503 

/ \ 2 s - l 
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Characteris t ic Roots 

Xl = ( ^ e i 7 r / 6
 + ^ l 3 e i a / 2 ) / 2 s 

x2 = l/xt 9 

x3 = X! (conjugate) , 

x4 = 1/xt , 

x5 = 1 9 

where tan a = 3 ^ 3/5. 
The roots of greatest modulus being complex, "explains" the apparently unpredictable 

behavior of K . On the other hands notice that K2 - K -K , n is always a perfect square5 
S S S-*J. S"J"X 

and in fact A follows the recurrence 
s 

A s = V l + V2
 + A s - 3 ' A s _ 4 (s = 2, • • • ) 

with 
A_1 = 0, A0 = l , At = 1 , 

and character is t ic roots 
x4 = - (<s/l3 + 1 + ^(2\ll3 - 2) J / 4 , 

x2 = - (*JT5 + 1 - V(2Vl3 - 2 ) ) / 4 , 

x3 = ( \ / l 3 - 1 + i V ( 2 N / 1 3 + 2 ) ) / 4 , 

x4 = ( \ / l 3 - 1 - i V ( 2 N / 1 3 + 2 ) ) / 4 , 

in which xA has the greatest numerical values and | x3| = | x4| = 1, Actually it can be shown 
that 

Case 3 

r A s * l = N/13 + 1 + V2W13 - 1) 
s i ^ o o A 4 

s 

K g = 2 * ^ + 2Kg_4 - K g _ 5 (s = 4, 5 , . . - ) 

with 
S 0 1 2 3 4 5 6 7 8 9 10 

K 1 1 2 4 10 21 45 96 208 432 933 
s 

Characteris t ic Roots 
Xi = 1 

- 3 ± N/5 ±. V ( 6 N / 5 - 2)" X2,3S4S5 *-£-* 

Magnitude of larges t root = f 3 + N/5> + \ ( 6 V5 - 2) J / * 

lim K s + 1
 = 3 + N/5 + V ( 6 N / 5 - 2) 

s—-**oc K 4 
s 

= 2,1537 
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Comments (i) K is always positive 

Dec. 1972 

ai) y 
Case 4 

s 0 

K s 1 

Characterist ic Roots 

o 

IK 

1 

1 

s-KLKs-l ™ K s ! is an integer. 

K = 2 K „ - 2K . 0 + K K s s-2 s -3 s-5 
2 3 4 5 6 7 

2 0 2 - 3 5 - 8 

8 

16 

9 

-24 

10 

45 

Xi = 1 X 2 j 3 = 

x 4 . 5 

-(1 + 

-(1 -

N/13) 

N/13 ) 

± V2N/13 -
4 

± i V 2 ^ 1 3 

- 2 

+ 2 

K s+1 l im Tr 
s—•<» K0 

| ](1 + N / 1 3 ) + V2«s/13 - 2^ 

-1.7221 

3. FACTORABLE CONTINUANTS 

A number of these have been given by D. E. Rutherford [5], [6], In part icular , 
Rutherford remarks that the n Fibonacci number can be expressed as 

(10) jfj^-Hcos?) 

Moreover, although he does not give the recurrence relation, he quotes the factors of (in our 
notation) K (z, 2a, 1), where 

z, 2a, 1, 

^a, z, z«i, x, 

1, 2a, z, 2a, 1, 

1, 2a, z, 2a, 1, 
K = s 

1, 2a, z (s) 

as 

2(cos 2a - cos 2j3) 
j sin2 (s + 
( sin2# 

2)a _ sin2 (s + 2)j3 
sin2j3 

where 
[Continued on page 634. ] 



TRIANGULAR ARRAYS SUBJECT TO MAC MAHON'S CONDITIONS 

L. CARLiTZ* 
Duke University, Durham, Worth Carolina 

and 
D.P.R0SELLE2 

Louisiana State University, Baton Rouge, Louisiana 

INTRODUCTION 

We consider triangular a r rays (n..) (j = i(l)k, i = l(l)k) and (a ) (s = l ( l )k + 1 
ij r s 

- r , r = l(l)k) and let T(n5k) and C(n,k), respectively, denote the number of these a r -
rays in which the entr ies a re non-negative integers subject to the conditions 

(lol) n.. ^ n. . ( 1 , n.. > n. ,- ., n-,-, < n 
13 i , j+l 13 1+1,3' 11 

(1.2) a ^ a , - , a > a ,- , a~- < n . 
r s r , s + l r s r + l , s ? 11 

The conditions (1*1) and (1,2) are the same as MacMahon [ 3] imposed on multi-rowed par t i -
tions. Rectangular a r r ays subject to these conditions have been considered by Carlitz and 
Riordan [ 1 ] , 

It is easy to evaluate T( l ,k) and C( l ,k ) . Indeed, taking row sums, we find that 
T( l ,k) is the number of sequences j - , 9 8 e , j . with j . > j . - and j - < k„ It follows that 
T( l ,k ) = 2 . In the same way, we find that C(l ,k) is the number of sequences j 1 ? * • • , j , 
with k + 1 - i > j . ^ J.,-1- Hence C(l ,k) is the familiar Catalan number (c.f. [2]) 

(1.3) C(l ,k) k + 2 
/2k + 2 \ 
\k + 1 J 

It will be convenient to have an alternative description of C(n,k) and T(n,k). With 
each a r ray counted by T(n,k) we associate the n x k ar ray M = (m. . ) , where m... is the 

th number of elements in the j row which are greater than or equal to i. Similarly, with 
each a r r ay counted by C(n,k), associate the n x k ar ray B = (b..) , where b. . is the 

th number of elements in the j column which are greater than or equal to i. That i s , m.. 
= ca rd fn . Jn . , ^ i} and b. . = card (a, . la , . ^ i ) , It then follows that the entr ies of the 1 jtl jt J 13 l t j | t] J 

associated a r r ay are subject to the conditions 

(1.4) m.. ^ m. . t 1 , m.. ^ m . , - ., m-- ^ k , 
13 i , j+l s 13 i+lt3 11 

1 Supported in par t by National Science Foundation Grant GP17071* 
2Supported in par t by National Science Foundation Grant GP11397, 
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(1.5) 
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b. . 2= b. ._,,* 
ij 1.3+1 

b. . 2: b . ^ ., 
13 i+ l . J 

b. . < k + 1 - j 
13 J 

It also is not difficult to verify that the n x k a r rays subject to (1.4) and (1.5) a re equinum-
erous with those counted by T(n,k) and C(n,k). 

Here we prove that 

(1.6) 

(1.7) 

as well as 

T(2,k) / 2k + l \ 

v k ) • 

T(S.k) = 2 k ( 2
k

k
+

+ ^ ) - 2 k ( 2 k
k

+ 2 ) 

(1.8) C(n,k) = det 

It is also shown that 

( n + k + 1 - r \ 
n + r - s J ( r , s = 1, ••• , k) 

-k(k+l) 
C(n,k)xn = Ak(x) • (1 - x) 2 

n=0 

where A, (x) is a polynomial of degree -^k(k - 1) with integral coefficients and which sa t is -
fies the symmetry condition 

(1.9) Jk(k-1) A M Ak(x) 

2. TRIANGULAR ARRAYS 

We consider triangular a r r ays 

(2.1) 

n l l n 1 2 " " n l k 
n22 ' - * n2k 

"kk 

and let T*(n,k) denote the number of these a r r ays with non-negative integral coefficients 
satisfying 

(2.2) a,- = n, n.. ^ n. . , - , 
11 13 1.3+1 

n.. ^ n . , - . , 
13 1+1.3 
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We also put 

n 
T(n5k) = 2 L j T * ( j j k ) 

j=0 

It is immediate that T(0,k) = T*(Ofk) = 1 and as observed in Section 1, it i s easy to 
see that T*(l,k) = 2 - 1. This can also be seen by classifying the a r rays according as 
n l l = ° o r ! a n ( i noting that this implies the recurrence 

T*(l ,k) = T*( l ,k - 1) + T ( l , k - 1) . 

A simple verification of the boundary conditions is then all that is necessary to anchor the 
induction. 

Next let Q.(mnj m2i , e e e
s m n l ) denote the number of n x k a r rays M = (m..)5 

where the m.. are subject to the conditions (1.4). It is clear from the remarks of Section 1 
that 

T*(n,k) = y ^ Q ( s l > e 8 8
9 s n ) , 

where the summation extends over all n-tuples (si, e 8 • 9 s n ) for which k ^ s- ^ - • • ^ s 
^ 1. A more useful reformulation of these remarks is the observation that 

(2.3) T(n9k) = Q(k + 1, k + 1, ••• , k + 1) . 

For the case n = 25 we find that 

m - 1 r - 1 m - 1 

Q(m,r) = 1 + 2^] Q ( s ) + / ] / j 
s=l t=l s=4 

r - 1 m - 1 
= 2 m -1 + 1C zl̂  Q(S9t) 5 

t=l s=t 

where we have used (2.3) for the case n = 1. A more convenient form of this las t equation 
is 

m 

Q(m, r + 1) = / j Q ( s » r ) • 
s=r 
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It is now a simple induction to show that 

^m+r-Q(m,r + 1) = 2" 1 "— 1 - 5 ^ ( 2 ^ - 1 ) ( m * J " X) Cm s= r + 1) 

which should be compared with [ l , Eq8 (1.9)] . In particulars we have 

Q(m + l , m + 1) = 2 

•j=o 

/ 2 m + l \ 

v m ; • 
It now follows from (2.3) that 

(2.4) T* (2 ,k) / 2k + l \ 

V k ) 
3. THE CASE n = 3 

The evaluation of T(3,k) is more complicated but leads to a simple result . Let 
Q (m^i, m2is m3i) denote the number of 3 x c a r rays (m..) whose entr ies are non-increasing 

C 1] 
down each column and whose positive entr ies are strictly decreasing along each row. Then, 
according to the remarks of Section 1, we have 

(3.1) T(3$k) = Qk + 2fc + 1, k + 1, k + 1) . 

It i s not difficult to show (by induction on c) that 

(3.2) 

where we put 

Qc-KL(r 9Sst ) " 2Lj De-2i,c-2j-l,c-
I=£}:5k 

2 j - l , c -2k -2 9 

D. i , j , k 

(0 
0) 
(I) 

( • • 0 
VJ + i ) 

( - ) 

( . ' 

05 
( > 

•0 
- ) 

' * ) 

In part icular , for c = m = r = s = t, it follows from (3.1) that 
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T(35m - 1) = 
i=£j<k 

( ? ) ( 2 i m i ) ( 2 1 ^ 2 ) 

( 2 ] + l ) ( 2 3 ) ( a j + l ) 

^2k + Zj ^2k + l j (^2kJ 

2^ (2k + 2 / ^ (2kl+ v 2-* w 
k s j ka j 

2 - f ( 2 i ) 2-^\2i - 1/ 2~l\2i - 2/ 
i<5 i<j 

( 2 j m
+ i ; (Ti) \ 2 J m + 1 / 

|2-/(2k) 2-fV^m+i/ 2L<(2k) 
/ m \ / m \ / m \ 
y 2 i J V 2i - 1 J \2i - 2 J 

1==] 

T 1^0 
( 2 J + 1 J [zj) ( 2 J + 1 ) 

(2i - l j (2j + l j " (2ij(2j - lj _ (2j j ( 21 - 2J 

This reduces to 
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(3.3) T(3,k) = 2k(2
k

k
+

+
1

2) - 2 k ( 2 V 2 ) 

(3.4) T*(3,k) = 2k (f;f) - 2k (2k
k

+ 2 ) - (2 k
 k

+ *) . 

It appears unlikely that this method would lead to a simple resul t for T(n,k) even 
though (3.2) can be generalized in an obvious manner. 

4. CATALAN DETERMINANTS 

We consider triangular a r rays 

a l l ' " ' a l , k-1 a l k 
( 4 a ) a21 ' • • a 2 , k - l 

* k l 

and let C(n,k) denote the number of these a r rays with 

(4.2) a-- ^ n, a.. ^ a. . - , a.. ^ a.^- . . 
11 i] i.J+1 ij 1+1,3 

Then, as observed in Section 1, we have that C(n,k) is also the number of n x k a r rays 
B = (b..) subject to the conditions (1.5). Also, if we put C( j - , • •• , j . ) equal to the num-
ber of a r rays (4.1) with a = j , then we find that 

xs s 

(4.3) C(i., • • • , ] . ) = y ••• Y ^ C(r.. •••, r. . ) , 
r k - l r l 

where the i summand extends over the range r. - . ^ r. _. ^ j . . and, for convenience, 
we put r. = 0. 

It i s an easy induction to show that (4.3) is the same as 

7 j s + k - r V 
\ k + s - 2 r / ( r , s = 1,2, ••• , k - 1) C( j 1 , ••• , j k ) = det 

In part icular , we find that 

v, , _1_ \r -i- 1 « \ I 

( r , s = 1, ••• , k) . 

Notice that the special case (1.3) follows from (4.4) and the identity 

(4.4) C ( n > k ) = d e t [ ( n
n

+ k ^ - r ) ] 
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k h(t:;)-^(k;i;>)T^{V-V) 
In the next place if we write (4.4) in the form 

(4.5) C(nsk) = det / n + k + 1 - r \ 
^ k + l - 2 r + s / 

then we can use this determinant to define C(nsk) for all real numbers n. According to 
this definition, we find that C(n9k) is a polynomial of degree -|k(k + 1) in n and satisfies 
the equation 

(4.6) 

(4.7-) 

C(n,k) = ( - l ) i k ( k + 1 ) C ( -k - n - l ,k) 

Hence if we put 
k(k+l) 

C(n,k) = • E s . C r 1 ) 
j=k ' 

then we have 
k(k+l) 

C(-k - n - l ,k) Ev^-v*- 1 ) 
j=k 

^k(k+l) 

- £«Mkr) • 
j=k 

In o rder to summarize these resul ts in te rms of generating functions, we first put 
C.(x) = ^ C ( n , k ) x and note that 

,-k(k+l) 

Ck(x) 

j=k 

a k . ( l - x) - i - i 

and 
00 

_i)ik(k+1)cyx) =y^c( -k - n - i,k)xn 

n=0 

[Continued on page 658. ] 

(1 - x) J 
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3. V. E. Hoggatt, J r . , "Fibonacci Numbers and Generalized Binomial Coefficients," F ib-
onacci Quarterly, Vol. 5, No. 4 (1967), pp. 383-400. 

[Continued from page 570. ] 

for 1 ^ N < a - , 1 ^ d(N) ^ n, and since the sets (d(N) = d} are disjoint, we have that 

n 
(7) an+1 - 1 =y^f(n,d,C) 

d=l 

where f(n,d,C) denotes the number of integers N, such that 1 ^ N < a - and for which 
the representation (3) and (4) contains exactly d non-zero t e rms . By the relation between 
the n-vectors of C(e) and the interval 1 ^ N < a - , proved in the first paragraph of the 
proof, f(n,d,C) reduces to the combinatorial function k(n ,d ,C) , hence the formula (5) is 
proved. Since the property C i s , by assumption, independent of the a f s , the formula (5), 
whenever it is defined, determines a single sequence. Note that the whole argument assumed 
(4), hence that n ^ 1. The fact that a* = 1 follows from applying (3) with N = 1, and thus 
the proof is completed. 

To conclude, I wish to remark that if C depends on the afs to be determined, the 
equation (5) still applies as it can be seen from the argument above; in this case , however, 
(5) may have more than one solution. 

REFERENCES 

1. D. E. Daykin, "Representation of Natural Numbers as Sums of Generalized Fibonacci 
Numbers ," J . London Math. Soc. , 35 (1960), pp. 143-160. 

2. J . Galambos, "On a Model for a Fa i r Distribution of Gifts," J . Appl. Prob . , 8 (1971), 
pp. 681-690. 

3. W. Pa r ry , "On the |3-Expansions of Real Numbers , " Acta. Math. Acad. Sci. Hung., II 
(1960), pp. 401-416. 

FIBONACCI NOTE SERVICE 

The Fibonacci Quarterly is offering a service in which it will be possible for i ts readers 
to secure background notes for ar t ic les . This will apply to the following: 

(1) Short abstracts of extensive resu l t s , derivations, and numerical data. 
(2) Brief ar t icles summarizing a large amount of research 
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CONVOLUTION TRIANGLES 
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and 
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If G(x) is the generating function for a sequence, then (G(x)) is the column gen-
era tor for the k column of the CONVOLUTION TRIANGLE. The original sequence is the 
zeroth column. We study here the convolution triangle of a c lass of generalized Fibonacci 
sequences which are obtained as rising diagonal sums of generalized Pascal triangles in-
duced by the expansions (1 + x + x2 + . . . + x r ~ ) , n = 0S 1, 2, 3, * * *. There are several 
ways to generate the convolution triangle a r ray for a given generalized Fibonacci sequence, 
We shall i l lustrate these with the Fibonacci sequence. 

1. GENERATION OF ARRAYS 

In [l] s it is shown that a rule of formation for the Fibonacci convolution triangle i s as 
follows: to get the n element in the k columns add the two elements above it in the same 
column and the one immediately to the left in the preceding column* One notes in passing 
that this is equivalent to the following? Start row zero with a row of ones extending to the 
right. To get an element A in this a r ray , add the two elements directly above A and all 
those elements in the same two rows and to the left of these. 

(1.1) 

1 

1 

2 

3 

5 

8 

1 

2 

5 

10 

20 

38 

1 

3 

9 

22 

51 

111 

1 

4 

14 

40 

105 

256 

1 • 

5 • 

20 •• 

65 • 

190 • 

511 • 

• 1 

m 
. ... 
. ... 

x1 

8 y 

1 
m m + 1 

It is easy to prove by mathematical induction that this generates the Fibonacci convolution 
a r ray . 

One might observe that the rising diagonal sums in the a r r a y above are the Pell s e -
quence P j = 1, P2 = 2S P n + 2 

up 2 and over 1 are 1, 1, 3, 5, 11, 21, 
the square a r rays of order 1, 2, 3, 4, 5, readily found in the left-hand corner of the a r ray , 
i s in each case equal to one. 

599 

2P - + P . The rising diagonal sums formed by going 
5 u i r = u ,- + 2u . Also, the determinant of 3 n+2 n+1 n 
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By comparison, if Pascal1 s triangle is written in rectangular form 

[Dec. 

(1.2) 

1 
1 
1 
1 
1 

1 
2 
3 
4 
5 

1 
3 
6 

10 
15 

1 
4 

10 
20 
35 

1 . . . 
5 . . . 

15 . . . 
35 . . . 
70 . . . 

the rule of formation to obtain an element A is to add the one element above A and all e le -
ments in that same one row, or , to add the one element above A and the element in the p r e -
ceding column to the left of A. The rising diagonal sums are the powers of two, and the 
sums of diagonals formed by going up 2 and over 1 are the Fibonacci numbers 1, 1, 2, 3, 5, 
8, . . . , F .„ = F ,- + F . 

' ' n+2 n+1 n 
When we speak of rising diagonal sums in generalized Pascal7 s tr iangles we a re think-

ing of diagonals formed by going up 2 and over 1 in rectangular a r r ays s imilar to (1.2) or go-
ing up 1 and right 1 in a left-justified a r ray such as 

(1.3) 

1 
2 1 
3 3 
4 6 

The coefficients of the Fibonacci polynomials 

f0(x) = 0, f:l(x) = 1, f 9(x) = xf +1{x) + f (x) n+2v n-KLv 

l ie along the rising diagonals of Pascal1 s triangle (1.3) and f (1) = F . It is well known that 
the generating function for the Fibonacci polynomials i s 

1 - xA - X* 
fn(x)A" 

n=0 

d x m \ l -xX- X2) 
X ml 

xX -X2 J (l-xX-X2)m+1 
l(™\x)Xa 

n=0 

Since f (x) is of degree n - 1, setting x = 1 yields 
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m + l ^ f ( m ) ( l ) 
A X n Nn 

( i - X - x 2 ) m + 1 ^ ml 
X 

so that since 

(r±*r-z** 
th also generates the m convolution sequence, equating coefficients shows that 

f ( m ) ( l ) n U )
 = F (m) 

ml n ' 

where F is the n member of the m Fibonacci convolution sequence. Thus the 
Fibonacci polynomials f (x) evaluated at x = 1 by the Taylor?s se r ies expansion have as 
coefficients elements that lie along diagonals of the Fibonacci convolution triangle (1.1), 
which are the rows of (1.4): 

(1.4) 

fi(x) 

f2(x) 
f3(x) 
f4(x) 
f5(x) 

ffi« 

f (1) 
nv ' 

1 
1 
2 
3 
5 
8 

ff (1)/1I 
n ' 

0 
1 
2 
5 

10 
20 

f"(l)/2I n 
0 
0 
1 
3 
9 

22 

n (D/2! 

0 
0 
0 
1 
4 

. . . 

2. THE JACOBSTHAL POLYNOMIALS 

Consider the polynomials JA(x) = 1, J2(x) = 1, and J n + 2 ( x ) = J
n + 1 ^ + ^ n ^ * W e 

see , of course , that J (1) = F • The coefficients of the Jacobsthal polynomials also lie on 
the rising diagonals of Pasca l ' s triangle (1,3) but their o rder i s the reverse of that for the 
Fibonacci polynomials. The generating function for the Jacobsthal polynomials is 

y^jjx)r 
1 - A - xtf ^ n 

from which 

d x m \ l - X - xA2/ 

.2m+l , ^r--^ / x 

X - x x V ( l - X - x X 2 ) m + 1 " ^ J n ^ 

so that 
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,m+l A J ( m ) ( l ) 
X X n . n - m .X 

Thus 

( i -x-x^)m + 1 fa ml 

T(m)<l) 
J n W

 = F (m) 
m! n ' 

also. 
The Jacobsthal polynomial sequence has two polynomials of each degree. The a r ray 

obtained by listing the polynomials and their derivatives at x = 1 appropriately divided by 
ml also yields the Fibonacci convolution ar ray . 

There is another nameless set of polynomials that has interesting related proper t ies , 
Qi(x) = 1, Q2(x) = x, and Q +0(x) = x(Q + 1 ( X ) + Q (X)) . These polynomials also have 
their coefficients along the rising diagonals of Pasca l ' s triangle (1.3). Clearly, thus Q (1) = 
F . The generating function for the Q (x) is 

Qn(x)An ; 
1 - x(A + X2) - ^ 

(1 + A)mxm+1 A 0^(1) 
X 

We will leave the reader to do the analysis of the a r r ay obtained from Q ( l ) /m! . 

3. ROW GENERATING FUNCTIONS 

For the Fibonacci convolution a r ray the column generators are 

\ l - X - X 2 / 

k+1 
k = 0, 1, 2, 3, 

Here we are interested in the row generators when the a r ray is written in the form (1.1) 
which s ta r t s with a row of ones. Since an element A of that a r r a y is secured by adding the 
two elements in the column above A and the element in the preceding column directly to the 
left of A, we now wish to secure the row gene rating functions based on this same generating 
scheme. Let R (x) be the row gene rating function; then the recurrence scheme dictates that 

We note that 

R J 0(x) = xR J 0(x) + R ,-Cx) + R (x) 
n+2 n+2 n+1 n 

Roto = — ^ and Ri(x) = X 

(1 - x) ' 
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thus since 

R (x) + R (x) 
R^W - n+1 

n+2v ' 1 - x 

it follows that the general form of 

R (X) = _ i 
N (x) 

n M xn+l * 
(1 - x) 

where the numerator polynomials N (x) obey the recurrence 

N n + 2 ( X ) = N n + l ( x ) + ( 1 " ^ 

with N0(x) = 1 and Ni(x) = 1. Surely now we recall the Jacobsthal polynomials discussed 
ear l i e r and we observe that 

J -(1 - x) = N (x) . n+1 n 

Expand the polynomials J (x) in a Taylor ' s ser ies about x = 1 to yield 

J l ( l ) J"(D 
Jn(x) = J n ( l ) + -4L_ (x - 1) + - j L - (x - l ) 2 + • • • 

J ' ( l ) J"( l ) J"»(i) 
J n ( l - x) = J n ( l ) - - ^ - x + - ^ j - x2 - - ^ — x3 + • • • 

Thus we conclude that 
Nn(x) = W 1 " X) 

are polynomials whose coefficients lie along the rising diagonals of the Fibonacci convolution 
triangle (1.4) whose modified column generators are 

m+1 
m = 0, 1, 2, 

4. THE GENERALIZATION OF THE FIBONACCI CONVOLUTION ARRAYS 

Consider the a r rays whose column generators are 
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These a re convolution a r rays for those rising diagonal sum sequences in the generalized 
Pascal1 s triangle induced by 

(1 + x + x2 + . . . + x r ~ ) , n = 0, 1, 2, 

and written in a left-justified manner as is (1.3). Such sequences are called the generalized 
Fibonacci sequences. 

We will i l lustrate the generalization using the Tribonacci sequence 

Ti = T2 = 1, T3 = 2, • • • , T j 0 = T j 0 + T J i + T , 1 l 9 s ' ' n+3 n+2 n+1 n ' 

The Tribonacci convolution triangle written in rectangular form is 

n = 1, 2, 3, 

(4.1) 

1 

1 

2 

4 

7 

13 

24 

1 

2 

5 

12 

26 

56 

1 

3 

9 

25 

63 
... 

1 

4 

14 

44 

125 
... 

1 ••• 

5 ••• 

20 ••• 

70 ••• 

220 ••• 

The rising diagonal sums of the Tribonacci a r r ay (4.1) obey the recurrence 

where 

Un+3 = 2Un+2 + Un+1 + U n ' 

UA = 1, u2 = 2, U3 = 5, U4 = 13, 

These could be called the generalized Pell sequence corresponding to the Trinomial triangle, 
The diagonals formed by going up 2 and right 1 in the Pascal case were Fibonacci numbers as 
sums; in the Fibonacci case , going up 3 and right 1 gave Tribonacci numbers; here the 
diagonals formed by going up 4 and right 1 in (4.1) give Quadranacci numbers , 1, 1, 2, 4, 8, 
15, 29, • •• , where u ^ , = u j 0 + u _ l 0 + u , . , + u . ' n+4 n+3 n+2 n+1 n 

The corresponding Jacobsthal polynomials for the trinomial triangle are given by 

with 

Jn+3<x> = J n + 2 ( x ) + <+!*> + x 2 j n ( x ) 

JJW, J*(x) = 1, J*(x) = 1 + x 

The generating function for the generalized Jacobsthal polynomials i s 
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J*(x)Xn 

1 - A - xA - x2X2 f-f n 

It i s not hard to prove that the row generating functions for the Tribonacci convolution 
a r ray (4.1) a re generally 

N*(x) 
R*(x) = - n 

(1 - x)1J 

where 

R*(x) = y - i - , R*(x) = 1 , R*(x) = 2 " x 

0 X - X X (1 - x)2 2 (1 - x)3 

Thus one a s se r t s the polynomials N*(x) obey 

where 

Fur ther , 

and 

N*+3(x) = N*+2(x) + (1 - x)N*+1(x) + (1 - x)2N*(x) , 

N*(x) = 1, N*(x) = 1, and N*(x) = 2 - x . 

J* + 1 ( l - x) = N*(x) 

M * M • T * m J ^ l ( 1 )
 + ^ l ( 1 ) 2 

N n ( x ) = J n + l ( 1 ) I f - X + 21 X ' " 

the same as before (this has alternating signs)8 

There are several polynomial sequences yielding the Tribonacci convolution a r r ay when 
merates P ( m ) ( l ) / r 

Tribonacci polynomials , 

where 

one generates P ( l ) /ml , where P (x) are the generalized Fibonacci polynomials, or 

P n + 3 ( x ) = x 2 P n + 2 ( x ) + x P n + l ( x ) + P n ( x ) • 

One such example: 
Pi(x) = P2(x) = 1 and P3(x) = 1 + x 

oo 

i - * x - x ' - x » fa n PJx)An 

(1 - xx - x̂  - x3)m+1 fa n ()A 

/ X ^ - V T * > X » - V ^ ^ / 
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Recall from Section 1 that the convolution triangle (1.4) for the Fibonacci numbers is 
generated by adding x, y, and z to get element A as in the diagram below: 

A = x + y + z 

Recall this is also the a r ray generated by the numerator polynomials for the row generators 
of the Fibonacci convolution ar ray . For the Tribonacci convolution a r ray row generators 
can also be self-generated if element A = u + v + w + x + y + 2z where the elements u, v, 
w, x, y, and z are found by the diagram 

A - - u + v + w + x + y + 2 z 

beginning the a r ray with a one. Here the coefficients of the numerator polynomials of the 
row generators of the Tribonacci a r ray lie along the rising diagonals of the triangle a r ray 
below, which has the Tribonacci numbers in its left column. Of course , one normally asks 
what a re the column generators of this triangle, too. 

(4.2) R | _ 

i 

i 

2 

4 
- 7 - ^ 

13 

24 

1 

4 

%^ 
22 

50 

1 

.3 

12 

37 

2 

11 

40 

1 

6 
• • • 

Here we shall i l lustrate several row generators: 
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R*(x) = 

R|(x) = 

4 

7 

- 4x 

(1 -

- 9x 

+ X2 

x)4 

+ 3x2 

(1 - X)5 

The column generators of (4.2) a re 

G„+2<*> '( )( 
\ 1 - X - X2 - X 3 / \ 

(2x + 1)G .(x) + G 
2 _ v 3 I I n + 1 • „ « ) 

G0(X) = Gt(x) x(l + 2x) 
1 - X - X2 - X3 (1 - X - X2 - X 3 ) 

5. THE FULL GENERALIZATION 

The generalized Jacobsthal polynomials are Ji(x) = 19 J2(x) = l s Js(x) = 1 + x9 

J4(x) = ( 1 + x ) 2 , • • • , J
m + 2

( x ) = ( 1 + x ) m » a n d 

J _, ^n(x) = J ^ (x) + x j ^ -(x) + x2J ^ Jx) n+m+1 n+m n+m-1 n+m-2 + x m J n (x) 

3=0 
n+m-j 

. (x)x' j - l 

The numerator polynomial triangle is constructed by taking the appropriate size triangle B 
above A where the multipliers for the elements in B are the elements in the first k rows 
of Pasca l ' s triangle as illustrated for k = 4 below: 

The left edge of this triangular a r r ay is the Quadranacci sequence: 

1 
1 
2 
4 
8 
15 
29 

1 
4 
12 
28 
67 
154 

1 
6 
18 
58 

1 
4 
22 
88 

3 
22 
106 

... 

2 
18 
100 

... 

1 
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In each case , the generalized Pascal7s a r r ay can be generated by adding all the e le -
ments in the rectangle with k rows above and to the left of element A (not including e le -
ments in the same column as A) to get A. If the rectangle has k rows, then we get the 
a r ray induced by the expansions (1 + x + x2 + . . . + x ~ ) , n = 0, 1, 2, • • • . In these 
rectangular a r r ays using k rows in formation, if sums are found of elements lying on dia-
gonals formed by going up (k + 1) and right one, the sequence formed obeys the recurrence 

n+k+1 n+k n+k-1 n 
n-2 where u4 = u2 = 1, u = 2 for 2 ^ n ^ k + 1, generalized Fibonacci sequences, 

while the rising diagonals yield sums which a re generalized Pell sequences obeying the 
recurrence 

pn+k = 2 p n+k- l + (Pn +k-2 + Pn+k-3 + ' ' ' + P n
) 

and with the first three members of the sequence the ordinary Pell numbers 1, 2, 5, and 
the first k members of the sequence the same as the first k members of the sequence 
found from the rectangular a r ray using (k - 1) rows in its formation. 

The convolution triangle for such generalized Fibonacci sequences can be generated by 
adding all the elements in the rectangle with k rows, including the column above an element 
A and extending to the extreme left of the ar ray . 

In any of these generalized Pascal* s a r rays or convolution a r rays of generalized F ib-
onacci sequences written in rectangular form, the determinant of any square a r ray found in 
the upper left-hand corner is always equal to one. The proofs and extensions will appear in 
la ter papers [2] , [ 3 ]. 
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A COUNTING FUNCTION OF INTEGRAL n-TUPLES 

HWAS. HAHN 
West Georgia College, Carrollton, Georgia 

1. INTRODUCTION 

Let P be the set of positive integers and let P be the set of n-tuples of positive in-
tegers . Many f resnmen books talk about how to count P2 but ra re ly exhibit a counting func-
tion such as [2] 

MPl» P2) = Pi + (Pi + P2 - D(Pl + P2 ~ 2)/2 . 

Ee A. Maier presented a counting function of P in this Quarterly [ l ] . In this note 
LOW another more 

and some applications. 
we show another more simple counting function of P and also discuss its inverse function 

2. THEOREM 

The following polynomial in n variables 

(1) fn(Pn P2> ° e o * P n ) = Pi + 

k=2 
where 

n / i \ 

£(V) • 
s. = Pi + P2 + B e * + P t and 

for s, - 1 < k, is a counting function of P f 

(V1) 
Proof. Consider the set9 call it the s-layer9 of lattice points of positive coordinates 

(xl9 x2, • • e , x n ) satisfying 
Xi + X2 + e • • X = S 

This s- layer contains 

(::i) 
points. For , it is the number of ways of putting n - 1 marke r s in s - 1 spaces between 
l ! s in 

1 + 1 + 8 e 8 + X = s 8 

Then the collection of s- layers9 call it a pyramid, ranging n < s < s , which is the 
la rges t pyramid without the given point (pl9 p29 • • • , p n ) 9 contains 

609 



points. But this sum is simply 

For* 
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( n - l / + \ n - l j + 9 ' B + \ n - l / 

(v)-
(v1)-(^:1>(\-) 

Next9 we count points (xls x2, * • • 9 x n ) such that 

^ _ 
7 x. = s j 

£^ i n 

up to (pi? P2» e B B j P )• Since x is determined by (x1$ x23 ' * • , x n _ i ) and s 9 we need 
to count only (n - 1)-tuples from (1, 1, • • • , 1) to (pl9 p2 s • • • , P n _ iK For this we may 
use the function f - (pl9 p2? ••• , pn_]_) . 

Thus9 we obtain 

fn(Pl* P2* 9 e e * P n ) = f
n _ i ( P i J P29

 o o e> Pn - l ) + I 1 

And this recursive formula gives 

£n(Pl* P2* 9 - s Pn) = Pi + £(Y)-
k=2 x K f (taking ^(pt ) = p i ) . 

Notes. 1. For s0 = 1 , 

£(V) • fn(Pi9 P2» 9 8 ' S P n ) = 
k=0 

which is a string of pyramids of each dimension from 0 to n, 
2. From its counting method f is clearly 1 - 1 . However* we can also 

prove as follows. If (pls p2, • • • , p n ) ^ (pjj p2 , • • - , p n ) s then there exists m such that 
s ^ sf and s, = s,f for k > m. Say9 s < sf (without loss of generality). Since m ' m k k J m m & J 

1 = s0 < sA < . . . < s m < s m - 1 , 
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£(V)*£rv>£(\*:r) 
k=0 x ' k=0 x * / k=0 

C-J-C)«--(\>£(Y)-
These inequalities imply f (pl5 •• • , p n ) < f (p[, • • - , p^ ) . The following section al-

so shows that f is onto* 
n 

3* THE INVERSE MAPPING f"1 : P—*P n 

n 
The following algorithm produces s , s - , • • • , s- (=p1 ) from a given positive inte-

ger p . 
Firsts determine s satisfying 

(\-x) * - s (s») 

Then s - , s o5
 e e e

9 s. from n-1 n-2 1 

Thus 

where 

( S n - 2 - l ) < v - f ' n - 1 ) - ("n-1 " * \ < j V 2 \ 
\ n - 2 / \ n / V n - 1 / \ n - 2 / 

fn - l(p) = ( s r s 2 - s l 9 . . . , s n - s n _ x ) f 

°k " °k - l = p k f o r k > 1 a n d s i = Pi * s. - s, 

(V) 4. PYRAMIDAL NUMBERS \ n f IN PASCAL'S TRIANGLE 

In the construction of the Inverse image f" (p) it is helpful to use Pasca l ' s triangle* 
st n 

in which (n + 1) diagonal line is the ordering of all n dimensional pyramids, 



612 A COUNTING FUNCTION FOR INTEGRAL n-TUPLES Dec. 1972 

Q 
\%J ( n ) Dimensional 

f$\ pyramidal numbers 

For example, to compute f3 (100) express 100 as a sum. of pyramidal numbers of 
dimensions 3, 2, and 1 as follows: 

100 «= 84 + 1 5 + 1 

Then s3 = 10, s2 = 7, Sj = 1 and thus 

(».-')• ( v ) + 1 

f3 (100) = (1, 7 - 1, 10 - 7) = (1, 6, 3) 

5. COUNTING LATTICE POINTS IN EUCLIDEAN n-SPACE 

Take any counting function of Z, the set of integers, for example f0 defined by 

f0(z) = 28z + 1 - 6 

where 

8 

2 

j 1 for z > 0 , 
\ -1 for z < 0 . 

Then the ordinal number for (zj, Z2> ' " » z n ) is given 

fn(fo(zi)> fo(z2)> 

where 

k=0 > ' 

^ f „ ( z . ) . 

[Continued on page 627. ] i=l 



SOME COMBINATORIAL IDENTITIES OF BRUCKMAN 
A SYSTEMATIC TREATMENT WITH RELATION TO THE OLDER LITERATURE 

H.W.GOULD 
West Virginia University, IVIorgantown, West Virginia 

Bruckman [4] has made a study of some propert ies of numbers A defined by the 
power ser ies expansion 

00 

(1) f(x) = (1 - x ) _ 1 ( l + x ) " 1 / 2 = V ^ A n x n . 
n=0 

In some cases , for convenience9 he uses the modified notation 

(2) B = 2 n n l A . 
n n 

By use of the binomial theorem he found that 

(3) An = > ( - i n n 2"2k 

k=0 

Then by means of an exponential integral he was able to show that 

» \ = *-2n«-»(2„°)Z<-»k(")ll£T 

The A's satisfy the second-order recurrence relation 

(5) 2nAn = A n _ 1 + (2n - l )An_2 , A0 = 1, A, = 1/2 . 

Using recurrence relations and differential equations, Bruckman obtained the following ele-
gant formula 

<* *i - a. • u M r » 2 < W ? ) 2"2k anr^iE • 
v / k=0 \ / 

Bruckman proves this interesting formula by showing that 

613 
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2n+l (7) A retail x = V^ B 2 X' 
n (2n + 1)1 ' 

-1 /2 while, on the other hand, it is easy to multiply the se r ies for Arctan x and (1 - x2) / 

together directly, and the resul t i s (6). 
I believe that formula (6) is the most interesting formula given in [4] , and it does not 

appear in any readily accessible source. A direct proof of (6) by squaring (3) is not exactly 
trivial. The other relations in [4] are not really new, and far more general expansions have 
been considered in the older l i tera ture . However, it i s hard to name a single source where 
all such expansions have been systematically generated. In the work below we shall obtain 
variant forms and expansions and in passing show that the numbers A are special cases of 
numbers studied by Cauchy [5] , Chessin [6, 7 ] , Perna [10], and Graver [9], Some of the 
power ser ies expansions are summarized in Adams andHippisley [l] who also cite other r e -
lated sums. Since our motive is partly pedagogical, we give considerable detail in some of 
the proofs below. We end by stating a difficult RESEARCH PROBLEM. 

Free use will be made of some elementary identities, such as 

«•> (-v)-<-«"(?) 2 " 2 k 

which follow from the polynomial definition of the binomial coefficient 

( x \ _ x(x - 1) • • • (x - k + 1) / x \ _ -

V = E ' 17 
For example, we also have (9) I ", 1 = (-1) I . J , x = any real number. 

We shall use the older notation ((x ))F(x) to denote the coefficient of x in the power 
ser ies expansion of F(x). 

We now summarize the main formulas proved and discussed in the present paper: 

do ((xn))a - x)-i(i+x)-1/2 = y v - f ) = T (-i>k{2
k
k) 

fe^ / k=0 * ' 
This is just Bruckman's first resul t with a variation by means of (8). 

2 - 2 k = A 
n 

(ID ((xn))a - x)_1/2(i - x
2 r 1 / 2 = S^X'-H 
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2 " k = A n 

< — ( 2 » ) t > k ( ^ (12) 
-2n 

( ( x - O d . x ) - 3 / ^ ! - ^ " 1 

<13) . - a n ' % n 

e x 2 /2 f X „ - u 2 

0 

(14) oo 

n=0 k=0 ^ / 

A x2n+l n A * x: 

n=0 

This i s just relation (22) in [4 ] 

2n+l 
(2n + l j l n 

n=0 . n=0 

5^(JX*)'' 92k A k _ 2 n 

2k + 1 2n + 1 e 

^ / n \ / 2 k V 1
 92k _ \ _ _ ^ 1 _ / z n V 1 

J k J I k J ^ 2k + 1 2n + l l n J 

Relation (17) follows by adding (15) and (16) together so that odd-index te rms cancel. Sub-
tracting (15) from (16) yields a s imilar formula involving A , - . 

\ ^ 2n+l / 2 n \ _ 1 A n 
JLa V n / 2n + 1 " tn „ , x n+ l 

/-, gx x o*""rA § *lx i iJL
 x2n+l ^ A re sin x 

n=0 ( 2 - x 2 ) - ^ 
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(19) 

(20) 
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Arctan x 
£-U V n / 2 n + 1 ( 2 + X 2 ) n + 1 

n=0 / 

B = ^ J L i » / ( i - t * ) n d t 
n 2 n n ! V 2 / 

This i s relation (26) in [ 4 ] . 

(21) B = n 
(2n f i > i f (l-2u*)ndu 

2 n! 

This relation follows from (20) by the change of variable t = u ^ 2 

(22) 

(23) 

Sf_-nn x \ T Y -1 /2 \ 2n + 1 Arctan x 
1 ' 2n + 1 X A n - k J 2k + 1 ' / — 

b 0 \ / V l - x2 

E (-1/2\l - A2 = / l/2"\ V ^ "1/2 ^ 2n + 1 
I k I ( n 1 n I ^ ^ l n - k / 2 k + l 

k=0 x ' 1 x ' k=0 % ' 

This i s an equivalent formulation of Bruckman»s formula (6) above 

(24) 
n n * K n . v 

E I - 1 / 2 A \ ^ , ^ n - k / n \ 0 k 2n + 1 _ T " V -1/2 \ 2n + 1 

I i / JLJ l k / 2k + 1 ~ Z « A n - k ; 2k + 1 
j=0 > ' k^O X ' k=0 X ' 

This is another equivalent formulation of (6). 

(25) X A t 2»J ( 1] \ k / 2k + 1 1 - t 2-J 2k + 1 I 1 - t J 
n=0 k=0 x ' k=0 x / 

where 

S(x,t) 

z2 = x t / ( l - t) 

1 Arctan z 
1 - t " z 

For x = 2, this may be specialized to involve A or B , whence 
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\ n2j 2 ^ ( _ 1 ) 2 - r ( y ( k n - J/(2j + D(2k - 2j + (27) A^ = (2n + 1)2 _ M / . l i j U - i l ^ l H ^ ^ l ) 

oo oo 

^ x . _ X * k+1 k 
' (2n + 1)» \ ~ /_, 

n=0 k=0 
<28> > <-«" 7*rTTTT \ = / , x T2k-n5kT 

where J^(x) is the ordinary Bessel function. 
The power ser ies in this paper a re treated as formal power se r ies , without regard to 

regions of convergence. The algebra of such formal power se r ies is developed in Nivenfs 
paper [11]. Convergence information for the various ser ies could be developed, but we shall 
omit this. 

The functions expanded in (10), (11), (12), (13) are all identical with Bruckmanfs defini-
tion in (1). The proof of (10) is t r ivial , being a direct application of the binomial theorem 
and Cauchy product of se r ies . 

Here are details of a proof of (11); 

a - *r^a - x*r1/2 - V (-«'(-1/2 *J • V r f i/2 «2k -E'-^rhsM-p)' 
j=0 x ; k=0 \ / 

k=0 j=0 \ / \ / 

In th is , le t j = n - 2k to obtain the coefficient of x . The result is (11). 
In proving (12) we first note that the identity, which is (Z.46) in [8] , 

1HH (2n°)(̂ ) 2"2° - (?)(V- T) 2"2k • • « « . 
can be obtained from the polynomial definition of ( J just as (8) is found. Thus we have 
only to prove the f irst form of (12), which can be done as follows: 

oo n 

EE^Xv-fW*11 
n=0 k=0 7 x ' 



618 SOME COMBINATORIAL IDENTITIES OF BRUCKMAN [Dec. 

= E(tWi;(Y-rk 
k=0 X / n=k X ' 

oo oo 

= E<-»k(t)^kE(ntkn+1/2)»". 
k=0 s ' n=0 

using the substitution of n + k for n, 

k=0 \ / n=o ^ / 

by use of (9), 

00 

k=0 x f 

x (1 - x) ' 

by the Binomial theorem, 

—-£(-?x-; -3/2 \ ^ / - l 

k= 
using (8), 

,- v - 3 / 2 / - _, 2x V 1 / 2 ,. . - 1 , . _, , -1 /2 
= (1 - x) 1 1 + 1 _ x 1 = (1 - x) (1 + x) / 

The somewhat s imilar proof of (13) runs as follows: 

E n / 2 n \ 0 - 2 n , 0 ^ _ \ ^ , 1 , n - k / n \ / 2 k \ 1 „ 3 k 1 X n 2 (2n + X) 2̂  (_1) U A k j 2 2ITTT 
n=0 > / k=0 \ / \ / 

OO OO 

k=0 n=k V / 
using (Z.46) in [8] , 

OO OO 

k=0 n=0 \ / 
2 k ( - l ) n 
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^(2x)k^(-i)n/-3/2
n-ky(-ir> 

k=0 n=0 V / 

OO OO 

] T (2x)kd H- x ) - 3 / 2 - k = (1 + x ) - 3 / 2 J ^ t r ^ Y 
k=0 k=0 * / 

( 1 + x ) - 3 / 2 x _ 2 x ^ V = ( 1 + x ) - l / 2 ( 1 _ x ) - l 

We have said that the expansions which we consider a re special cases of other known 
expansions. To i l lustrate this, we note the formula 

[n/2] 
(29) 

valid for all real or complex x and y. This i s formula (3.31) in [8] , In this formula, let 
x = - 1 / 2 , y = - 1 , and we obtain at once 

fn/21 ^T)(^yp-^-T){,-\) 
but by (9) we have 

( • • ) 
(-D3 , 

so that we have proved the equivalence of (10) and (11) this way. 
Again formula (le9) In [8] is 

(so) > K)f = > . r : A ) t t + y)n-k(-y)k I®'-Eh')' 
k=0 w k=0 X / 

valid for all real or complex x and ye Letting x = - 1 / 2 , it is easy to see that we obtain 
the equivalence of (13) and (10). Here again we need (Z.46) in [8] . 

Still another way to prove the equivalence of (13) and (10) is to use formula (1.10) from 

[ 8 ] : 

(3D rWxn-k=tfz;k,;1U + i ) k . SW^-Sn-1) 
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In this , let z = - 1 / 2 , x = 1, and simplify. This time we need the identity 

,2k-2n 

[Dec. 

which is easily proved from the polynomial definition of 
A direct proof of (14) is as follows: 

0 < k < n , 

(0-
x2/2 f ^ du = e" x

2 /2 du 
0 k=0 

2n E x2n y ^ 
n=0 k=0 

(-DJ k x 2k+l 
(2k + l)kl 

OO OO 

V " ^ X " ^ •- „2n+2k+l 

Lala 
k=0 n=0 

OO OO 

k=0 n=k 

(-I)' 

(-if 

k x" 
2 n! (2k + l)ki 

2n+l 
x 

2n"k(n - k)! (2k + l)kl 

replacing n by n - k, 

n=0 n'A k=0 \ / 
T ' 

as desired to show. 
A variant of (14) involving Bessel functions is derived as follows, and is formula (28): 

n=0 n- l k=0 X / 

oo oo 

E , n,k 2k v " / ^ / x V n i 
K~1} 2 k ~ T J^j {'1} I 2 J nl (n - k)!k! 

k=0 n=k > ' 

E 2 k / x \ 2 k V ^ n / x \ 2 n 1 

(2k + l)kf I 2 ) /-J ( - 1 ) \ 2 I 5T+ k)ikl 
k=0 x ' n=0 V / 

= x 

E 2k /x\2 k/xVk
 T / > V * k+1 J k ( x ) 

(2k + lJET I 2 J I 2 1 Jk1X) ~ ^ L * X (2k + l)k! 
k=0 \ I \ I k = 0 
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Relation (15) is nothing but the inversion of (12), and relation (16) the inversion of (13). 
What is needed to see this is the well known pair of inverse se r ies : 

f(n) = ]T(-Dk(£) (32) f(n) = > ( - 1 H ^ J g ( k ) 
k=0 

if and only if 
n 

(33) g(n) = V (-!)"( " lf(k) . 
k=0 X * 

These in turn depend on nothing deeper than the orthogonality relation 

P-^m 0, n ± j , 
19 n = j , 

and this is a consequence of the binomial theorem. 
To use them, for example, choose g(k) = 2 /(2k + 1) and then by (12), 

f (n) = 2nn! B n /(2n + 1)1 . 

Therefore by (33) we find that (12) inverts to yield (15). Relation (13) inverts to give (16) in 
a s imilar way. 

Adams and Hippisley [1, p. 122, 6.42-(5.)] give the formula 

(34) A r c s i n x 

OO OO / l 

E 22nn!̂  2n+l V ^ t n* * f"1/2 V 
(2n + 1): x ~ Z~l 2n + 1 \̂  n / \ 1 - x2 n=0 n=0 

which may be compared with (18) here. Of course, there is also the well known expansion 

- I>t»2)^' (35) A re sin x 
n=0 

which we cite for completeness. 
Proof of (18) is obtained in the following way: By (16) we have 

•Sox-r 22 nn '2 , - n V / n \ / 2 k V 1 ,2k A k 
(2n + 1)1 ~ z Z - / \ k A k / 2k + 1 
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then, recalling (34), we have 

A r c s i n x _ \ ^ -n 2n+l V ^ / n \ / 2 k \ " " 1 o 2 k A k 

| x 2 n 2 " n 

V1 - - n 
» n=0 

oc 

k=0 V ' n=k v / 

which reduces to the desired result . 
Relation (19) is proved in a similar way from (15), for we have first of all: 

oo 

Arctan x = y (-1) E <-"" ££ - E < - » w £ <-W;)(?r ^ 
n=0 n=0 k=0 \ / \ / 

QO . QO 

k=0 x / n=k N / 

oo oo 

k=0 \ / n=0 \ / 

which reduces as required. 
Proof of (22): 

n 

E , 1)*2E*^LV7 -l/2\2n + l v ; 2n + 1 / A n - k 1 2k + 1 
n=0 k=0 X / 

(.a»^2(n-^)^T n=0 k=0 ^ 

OO OO 

E'-'^-E-lt2) 
j=0 k=0 ^ / 

x = A rctan x • (1 - x2) 
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Relation (23) is found by using (8) in (6), giving 

2 = / - l / 2 \ V ^ / - l / 2 \ 2n + 1 
n \ n / ^—^ Vn " k / 2 k + 1 ' 

from which the formula follows readily. 
JL JL 1/Xi.Xg JT 

(10) and (12), so that a factor of 
Relation (24) is found by writing A2 in (23) as a product of two forms of A given by 

( - ) 
cancels. 

Relation (27) follows from (12) by using the general theorem that 

- g ( ^ •§(•)>.-g|;0)(^)^ 
for arb i t rary a, Ts and b . ' s . 

Relations (23), (24), and (27) are offered as small variations on (6). 
An alternative proof of (19) can be given by first noting that 

(37) Arctan 
x A 22nnl2 / X2 \n 

X =
 1+X2 Lj^T^l[1+x2 

n=0 % / 

2n as noted in [ l , p. 122, 6.41-(3.)]. One then expands 2 n!2/(2n + 1)1 by (16), and upon 
reduction and use of the binomial theorem we again find (19). 

We note in passing that expansion (37) may be compared with one given by Bromwich 
[ 3 , p„ 199, ex. 17] which is 

(38) Arctan x = > _ (-1)" " J X ^TTT . t = 
1 + x2 

which converges, incidentally, for 11|2 < 4/27. Both (37) and (38) are examples of special 
cases of formulas related to the Lagrange inversion formula. 

We now turn to some of the older l i terature . Cauchy numbers have been defined by the 
following: 

(39) N_ 0 = Constant te rm in expansion of x ^ | HH 
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When p = # + m, then N = 1 . When I + m - p is odd o r a negative integer, then 
- p , SL , H I 

N = 0. Moreover, 

4 -*)(")• ( 4 0 ) % , ! , m = > ^ I - ., II •: 1 ' when « + m - p = 2n 

Comparing this with (10), we see that Bruckmanfs A is given by 

( 4 1 ) A n = N 2 n + 3 / 2 ( - 1 / 2 , - 1 -

Many interesting propert ies have been found for the Cauchy numbers , and the reader may 
consult references [5] , [ 6 ] , [7] and [10].. In [10], Perna numbers are defined by 

,42) VM-IJ^X"?:*) 2j0-m,m-n,n 

The late Harry Bateman (1882-1946), a mas te r of special functions (since it was said 
he knew the propert ies of over a thousand functions, and he left dozens of card files of such 
information) worked on manuscripts for about 25 books, living to publish only three of them. 
In 1961, through the kind generosity of Professor A. Erdelyi , who was then at California In-
stitute of Technology, Bateman's three versions of his manuscript [2] toward a book on bi-
nomial coefficients were borrowed for study at West Virginia University. A microfilm of the 
manuscript is on file now in the West Virginia University Library. The wri ter has gone 
through this mater ial and edited it into a single manuscript, adding a few remarks as neces -
sary , correcting obvious mistakes , etc. It is hoped that this version can be made more 
readily accessible for study by other scholars . Bateman tried to unify some of the material 
on binomial identities using the Cauchy number definition in one case. Here he summarized 
many of the propert ies of these and the related numbers studied by Chessin, Perna , etc. 
Chessin gave the formula, for example, that 

,a+2n j (X) = \ ^ N - a , Q , a + 2 n / x V 

n=0 ^ / 

for the Bessel function. 
Such sums of products of two binomial coefficients continue to occur in mathematics. 

One example is in GraverTs combinatorial work [9], He defines coefficients P (a,b) which 
turn out to be such that 
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oo 
(43) (1 - x) b ( l + x ) a " b = Y ^ Pn(a ,b) x n . 

n=0 

From this , it i s easy to see that Bruckmanfs A is given by 

(44) A = P (-3/2, -1) . 
n n ' ' 

Interesting formulas are found by Graver. For example: 

(45) V-b)=E^k(k)(n:k
k) 2 . n < b < a 

(46) P (a,b) = b ; J a " b\] P , (a ,n) , 
nv s n! (a - n)S bv ' 9 

expressing a symmetry in b and n, and (Graver1 s actual definition) 

- E <-»k(*)(» - i) 
k=0 x ' N ' 

(47) Pn(a sb) = 

The equality of (45) and (47) is not again a new resul t , so extensive i s the vast l i terature 
around the binomial coefficient identities. An expansion of the sor t studied by Graver occurs 
frequently in mathematics, just as the Cauchy numbers have come to attention many t imes. 
Graver fs numbers relate to Cauchy1 s numbers by the formula 

(48) P (i + m ,m) = N - with i + m - p = 2n . 
n - p , *•, m 

In the older l i te ra ture , one thing was noted as conspicuously absent; any relation of the 
form (6) of Bruckman or a suitable extension. Looking at BruckmanTs formula in the form 
(23) it is tempting to generalize and wonder if by chance 

£Wf-(0£(0-
k = 0 \ / 1 \ / k = 0 \ / 

x - n 
x - n + k 

"k=6 x ' I x / k=0 

but this turns out to be false. The reader is invited to t r y and find such a generalization. 

Bruckman*s formula i s an example of a case in which a certain more difficult problem 
is solvable. The general problem we mean is this: 
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PROBLEM: Let 
oo op 

m = ^ A n x I 1 ' S(x) = 2 3 A n x I 1 ' 
n=0 n=0 

for an arb i t rary sequence { A i. How are the functions f and g related? In case A = 
F = n Fibonacci number, we not only know the solution for squares but for any power of 
F . Other examples where the function g can be given explicitly when f is known a r e , e.g.: 

00 00 

2 2 n x n = x / ( l - x)2 , V ^ n2 x n = x(x + 1)/(1 - x)3 ; 
n=0 n=0 

n=l n=l n 0 

oo oo 

n=0 n=0 n ' 

and so on. It i s c lear that in general there i s no really simple relation between f and g, 
but the wri ter has not found any result of this type in the l i terature and tosses it out as a r e -
search problem. 

Solution of this problem, even with res t r ic t ions , would allow us to deal effectively with 
large c lasses of difficult problems. 

In closing we mention two extensions of relation (22): 

E<-«n#?1i;(»-k)ii44-<i-'!>x—•. 
n=0 k=0 f 

and 

(50) 
00 Jto+1 n E J ^ y V x \2nj_l = (1 + t 2 ) x . l ^ 1 + J 

2 n + 1 Z - # \ n - k / 2 k + l vi + t j 2 log 1 _ t 

n=0 k=0 

In a la ter paper we will t reat some further propert ies of such expansions. 
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[Continued from page 612. ] 

For the inverse mapping P—>Zn we need 

_! ( - l )€( P i - €) 
fQ ( p . ) = 2 

10 for p. even, 
11 for p. odd 

fo" fn*(p) = fo" (Pi> P2* ••• i Pn) 

= (.fo"1(Pi)9 • • • , fo'^Pn)) • 

68 POLYNOMIAL COUNTING FUNCTIONS 

It is quite easy to see from (1) that there are at least n! polynomial counting functions 
of P n (obtained by permuting p l 9 p2 , • • - , p n ) . But for n = 3 besides these six polynomi-
als of degree 3, there are six more polynomials of degree 4 obtained by composition of 
f2 such as 

where 

Then 
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h(h(Pi> P2K P3) • 

For n = 4 there are 360 polynomials, provided that different compositions yield d i s -
tinct polynomials, 

We are unable to determine the number of counting polynomials of P , except the 
case n = 1. 

Theorem. The identical function fi(pi) = pi is the only polynomial mapping 1 - 1 
from P onto itself. 

Proof. Suppose g(p) is a counting polynomial of P . Consider the curve y = g(x). 
It i s c lear that after a finite number of ups and downs the curve is monotone increasing (to 
+00). Let a be a positive integer such that (1) g(x) is monotone for x > a and (2) g(x) < 
g(a) for x < a. Since g(x) is a counting function of P , it has to satisfy 

g(a) == a, g(a + 1) = a + 1, ••• . 

For , if g(a) < a, then positive numbers g(l) , g(2), •• • , g(a) cannot all be distinct, and if 
g(a) > a then the curve must come down beyond a, contrary to (1). Now, by the Fundamen-
tal Theorem of Algebra we have g(x) = x for all x. 

Question. Are 

x ^ V 1 ) and -2
 + ( S 2 2 1 ) 

the only two polynomials mapping 1 - 1 from P2 onto P ? 
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H-198 Proposed by E. M. Cohn, National Aeronautics and Space Administration, Washington, D. C. 

There is an infinite sequence of square values for triangular numbers,1 

k2 = m(m + l ) / 2 . 

Find simple expressions for k and m in te rms of Pell numbers , P . (P « = 2P - + P , 
n n*r4 n"i"i n 

where P0 = 0 and Pi = 1. 

H-199 Proposed by L Carlitz and R. Scoville, Duke University, Durham, North Carolina. 

A certain country's coinage consists of an infinite number of types of coins: • • • , C , 
C - , C 0 , C . , • • • . The value V of the coin C is related to the others as follows: for all 
n, 

n n -3 n-2 n-1 

Show that any (finite) pocketful of coins is equal in value to a pocketful containing at most one 
coin of each type. 

H-200 Proposed by Guy A. R. Guillotte, Cowansville, Quebec, Canada. 

Let M(n) be the number of pr imes (distinct) which divide the binomial coefficient,2 

<* » ( : ) • 

1A. V. Sylvester, Am. Math. Monthly, 69 (1962), p. 168; quoted in C. W. Trigg, Ma thema-
tical Quickies (1967), p. 164. 

2Divide at least one CP where 0 < k < n. 

629 
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Clearly, for 1 < n < 15, we have M(l) = 0, M(2) = M(3) = 1, M(4) = M(5) = 2, M(6) = 
M(7) = M(8) = M(9) = 3, M(10) = 4, M(ll) = M(12) = M(14) = 5, M(13) = M(15) = 6, 
etc. Show that 

has an upper bound and find an asymptotic formula for M(n). 

H-201 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Copy 1, 1, 3, 8, • • • , F ? _9 (n > 1) down in staggered columns as in display C: 

1 
1 1 -

C 3 1 1 
8 3 1 1 

21 8 3 1 1 

i) Show that the row sums are F 9 - (n = 0, 1, 2, • • • ) 
ii) Show that, if the columns are multiplied by 1, 2, 3, • • • sequentially to the right, 
the row sums are F 9 9 (n = 0, 1, 2, •• •) • 
iii) Show that the rising diagonal sums (s*) a re F2 - (n = 0, 1, 2, • ••) • 

H-202 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Put 

!

v F F • • • F 

k =
 J k k-1 k-j+1 

Show that 

(*) 
j=-k j=l 

j=-k 

(**) 

2-52~KF.1F l x 3 x 2k-l (k even) 
j=o 

2k 

12 (-1)5 H F(J-W2 = 2 ' 5 H k _ 1 ) F l F 3 •'' F2k-1 (k 0dd) • 
J=o 
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H-203 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, California. 

A. Let there be n (n > 1) edge-connected squares. How many configurations a re 
there which have each row starting one square to the right of the row above ? 

B. For the above configurations, how many have each row starting k (k > 0) squares 
to the right of the row above ? 

H-204 Proposed by Dwarka Nivas, Berhampur, Orissa, India. 

Given that 65537 (= 2562 + 1) is p r ime , find the remainder when it divides 

., / 32768 \ 
i ; 1 16384 J 

and 

ii) 163841 

SOLUTIONS 
NOBODY IS EVEN PERFECT 

H-188 Proposed by Raymond £ Whitney, Lock Haven State College, Lock Haven, Pennsylvania. 

Prove that there are no even per fect Fibonacci numbers. 

Solution by S. L. Padwa, Applied Mathematics Department, Brookhaven National Laboratory. 

As is well known, all even perfect numbers are of the form 2P~ (2P - 1) where p 
and 2 - 1 are pr ime. 

In part icular , all even perfect numbers >28 a re multiples of 16. 
Now the only Fibonacci numbers which a re multiples of 16 are also multiples of 9; 

namely, F 1 2 k . 
Thus no Fibonacci number which is a multiple of 16 is of the required form for perfect 

numbers since they are all multiples of 9, while even perfect numbers cannot have an odd 
composite factor. 

Also solved by the Proposer. 

SOME SUMS 

H-191 Proposed by David Zeitlin, Minneapolis, Minnesota 

Prove the fo l lowing ident i t ies: 

ALL / \ *J-

k=0 v ' k = 0 KK'> 
(a) ? i r i L ^ L > , - ( 2 n + k ) ! 5 n " k 
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2n+l . n 
" (2n + 1 + k)l Kn+l-k 

2k i 2 n + 1 Z ^ ( k ! )3 ( 2 n + ! _ ay, 
(b> S (̂  k 7L^ = F^ ̂  ̂  ~(2n + 1+k)l 5 

2n n 

^ V k / 2 k 2 n ^ ( k ! ) 3 ( 2 n - 2k)! 

2n+l n 
y^/2n + IV = X ^ (2n + 1 - k) 5n-k 
Z^{ k J 2k 2n+l Z ^ , + x _ k=0 *—* (k!)d(2n + 1 - 2k)! 

where F and L denote the n Fibonacci and Lucas numbers , respectively. 

Solution by the Proposer. 

From the solution to H-18G, we recall that 

(i) > . i n ^ = > . vtJ • ^ *k(X + Dp_2k 

„=n W h i (k'-)3(p - 2k)! k=0 ' 2k£p 

Since o? + 1 = a2 - a/3 = a(a - /3) and /32 + 1 = /3(/3 - a) 

( . -H*. »-*T^) • 
we obtain from (1) for x = a2 and x = j32 , 

t ^ W k± (k03(p - 2k)! 
and 

E(sK-Ss^?',k[-M-w],w,k 
k=0 X ' 2k<p (K-' (P ^>-

respectively. So, by addition of (2), (3), we get 

EP I kVL2k = [*P + ("1)P^ V - ^ ^ ^ -V V 2 k Z - J (kl)3(p - 2k)i 
k=0 2kcp 

p-2k 
c 2 
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since (a - j3)2 = 5 and a + p = L2k„ For p = 2n9 we obtain (a); for p = 2n + 1, we 
obtain (b)* By subtraction of (3) from (2), we get 

p-2k 
r 2 

v 

fef\k/ fej W)»(p - 2k)! 

since (<* 2 k - /3 2 k ) / ( a - /3 ) = F ^ 
For p = 2n, we obtain (c); for p = 2n + 19 we obtain (d), 

SECOND DEGREE FOR DIOPHANTUS 

H-194 Proposed by H. V. Krishna, Man/pa/ Engineering College, Manipal, India. 

Solve the Diophantine equations: 

(i) x2 + y2 ± 5 = 3xy 
(ii) x2 + y2 ± e = 3xy 9 

where 
e = p2 - pq - q2 ; 

p , q positive integers. 

Solution by the Proposer. 

Rewrite (ii) as 
(1) (x + y)2 - 5xy = ±e • 

Let H0 = q, Ht = p5 and H + 2 = H + 1 + H , n ^ 0 be the generalized Fibonacci sequence. 
Then we have the following identities viz. 

2 T - 1 
<2> < H 2 r - l + H 2 r + 1 ) 2 " 5 H 2 r - l H 2 r + l = <-» " e 

and 
2r 

(3) (R2r + H 2 r + 2 ) 2 - 5 H 2r H 2r + 2 = ^ e ' 

from which the solution of (ii) easily follows, (i) is a part icular case? where e = - 5 . 

EDITORIAL NOTES 

Correction to H-185. 
Show that 

n 
(1 - 2x)n = V ( - l > n " k ( n 2 +

k
k ) ( 2

k
k ) ( 1 - *>n~k

2Fl[-k. n + k + l; k + 1; x] 
k=K> ^ / \ / 
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where 2 F i [ a , b ; c; x ] denotes the hypergeometrie function. 

Comment on H-193. 

The proposer has pointed out that the stated condition does hold for the following examples. 
Examples: 5 + 1 + 1 = 7 = 23 - 1, 53 + I3 + l 3 = 127 = 27 - 1, 

19 + 11 + 1 = 31 = 25 - 1, 193 + l l 3 + l 3 == 8191 = 213 - 1 , 
79 + 2 9 + 1 9 = 127 = 27 - 1, 793 + 293 + 193 = 524287 = 219 - 1 . 

The validity of the statement would be a pleasant surpr ise . 

Late Acknowledgements 

H-183 P. Lindstrom, D. Klarner, S. Smith, D. Priest, and L Carlitz. 

Notice; The editor would be happy to override the "two months after publication" clause for 
solutions of problems pr ior to H-180, for which no solutions have been published. The next 
issue will contain a complete l is t of unresolved problems. Please send your solutions! 

[Continued from page 590. ] 

2a = 0 - i/r , 2j3 = 0 + *// , 
x = 2 c o s 0 , y = 2 cos i// , 
z = xy + 2 , a = -̂  (x + y) . 

We shall consider the asymmetric five diagonal determinant on another occasion. 
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A PRIMER FOR THE FIBONACCI NUMBERS 
PART X: ON THE REPRESENTATION OF INTEGERS 

BROTHER ALFRED BROUSSEAU 
St. Mary's College, California 

The representation of integers is atopic that has been implicit in our mathematics edu-
cation from our ear l ies t years due to the fact that we employ a positional system of notation. 
A number such as 35864 in base ten assumes the existence of a sequence 1, 10, 100, 1000f 

10000 9
 B • • , running from right to left. The digits multiplied by the members of the sequence 

taken in order give the indicated integer. In this case , the representation means 

3-10000- + 5-1000 + 8-100 + 6-10 + 4 . 

Another way of thinking of these multipliers is this: they are the number of t imes various 
members of the sequence are being used. 

It i s instructive to see that such a sequence used as a base for representing integers 
a r i ses naturally. Suppose we allow multipliers 0, 1, or 2. We wish to have a sequence that 
will enable us to represent all the positive integers and furthermore we want this sequence 
with the multipliers to do this uniquely; that i s , for each integer there is one and only one 
representation by means of the sequence and the mult ipl iers. Clearly, the first member of 
the sequence will have to be 1; otherwise, we could never represent the f irs t integer 1. With 
this9 we can represent 0 , 1 , or 2. Hence, the next integer we need is 3. The following 
table shows how at each step we are able to represent additional integers and likewise what i s 
the next integer that is needed. 

Sequence Representations added 

1 0, 1, 2 
3 3, 4, 5, 6, 7, 8 
9 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, • ' » , 26 

27 27, 28, 29, - - . , 79, 80 
81 81, 82, 83, . . . , 241, 242 

Note that, as far as we have gone, the representation is unique. Assume that we have unique 
representation when the sequence goes to 3 and that this representation extends to 3 - 1. 
Adding 3 to the sequence enables us to go from 3 to 2*3 - 1 in a unique manner, 

n+2 but this sum is 3 - 1. Thus, the base three representation of integers using the sequence 
1, 3, 9, 27, 81, . . . a r i ses naturally in the case of allowed multipliers 0, 1, 2, and the r e -
quirements of complete and unique representation. 

635 
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Perhaps the most interesting case of representation is that in which the allowed multipli-
e r s are 0, 1. We build up the sequence that goes with these multipliers giving complete and 
unique representation. 

Sequence 

1 

2 

4 

8 

16 

32 

Representations added 

1 

2, 3 

4, 5, 6, 7 

8, 9, 10, 11, 12, 13, 14, 15 

16, 17, 18, • • • , 30, 31 

32, 33, 34, ••• , 62, 63 

Thus far the representation is unique. If we have unique and complete representation when 
the la rges t t e rm of the sequence i s 2 and the representation extends to 2 n - 1, then on 
adding 2 to the sequence, we extend complete and unique representation to 2 n + 2n~ -
1 = 2 n + 2 - 1. 

Another way of thinking of representation when the multipliers are 0 and 1 i s this: 
We have a sequence where integers are represented by distinct members of the sequence. 
Thus the base two integer 110111010 says that the number in question is the sum of 28, 27, 
25, 24, 23, and 2. The powers of two along with 1 enable us to represent all integers uni-
quely by combining different powers of two. 

INCOMPLETE AND NON-UNIQUE SEQUENCES 

Let us return to the representation with multipliers 0, 1, and 2. Clearly, if instead 
of taking 1, 3, 9, 27, 81, • • • , we take some l a rge r numbers such as 1, 3, 10, 28, 82, 
244, • • • , i t will not be possible to represent all integers. 

Sequence 
1 
3 

10 

28 
82 

Representations added 
1, 2 
3, 4, 5, 6, 7, 8 
10-18, 20-28 
28-36, 38-46, 48-56, 56-64, 66-74, 76-84 
82-90, 92-100, etc. 

Below 100, the numbers that cannot be represented are 9, 19, 37, 47, 65, 75, and 91. On 
the other hand, 28, 56, 82, 83, and 84 have two representations. 

Suppose that instead of making the numbers of the sequence slightly la rger we make 
them a bit smaller . Let us take the sequence 1, 3, 8, 26, 80, 242, • • • , as before: 
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Sequence Representations added 
1 1, 2 
3 3, 4, 5, 6, 7, 8 
8 8-16, 16-24 

26 26-34, 34-42, 42-50, 52-60, 60-68, 68-76 
80 80-88, 88-96, 96-104, 106-114, 114-122, 122-130, 

132-140, 140-148, 148-156, 160, etc. 

Up to 160, the missing integers are 25, 51, 77, 78, 79, 105, 131, 157, 158, and 159. 
Duplicated integers are 8, 16, 34, 42, 60, 68, 88, 96, 114, 122, 140, and 148. 

The sequence 1, 3, 8, 23, 68, 203, • • • , gives complete but not unique representation. 

Sequence Representations added 
1 1, 2 
3 3-8 
8 8-16, 16-24 

23 23-31, 31-39, 39-47, 46-54, 54-62, 62-70 
68 68-76, 76-84, 84-92, 91-99, 99-107, 107-115, 

114-122, 122-130, 130-138, 136-144, 144-152, etc. 

Up to 140 there is complete representation but duplicate representation for the following: 8, 
16, 23, 24, 31, 39, 46, 47, 54, 62, 68, 69, 70, 76, 84, 91 , 92, 99, 107, 114, 115, 122, 
130, 136, 137, and 138. 

FIBONACCI REPRESENTATIONS 

Let us now consider the case in which the multipliers are 0, 1 and the basic sequence 
i s the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, • • ' , That this sequence gives complete r e p -
resentation i s not difficult to prove. In fact, the representation is still complete if we e l im-
inate the f irst 1 and use the sequence 1, 2, 3, 5, 8, 13, - • • . In the table following, note 
that the representation at each stage gives complete representation up to and including F n + 2 

- 2. Assume this to be so up to a certain F . Then upon adjoining F n + 1 to the sequence 
the representation will be complete to F n + 1 + F n + 2 - 2, which is much beyond F n + 2 , the 
next t e rm to be added. Thus the representation is complete, but it is evidently not unique. 

Sequence Representations added 
1 1 
2 2, 3 
3 3, 4, 5, 6 
5 5-8, 8-11 
8 8-11, 11-14, 13-16, 16-19 

13 13-16, 16-19, 18-21, 21-24, 21-24, 24-27, 26-29, 29-32 
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AN INTERESTING THEOREM 

To get a new perspective on representation by this Fibonacci sequence we write down 
the representations of the integers in their various possible forms. (Read 10110 as 8 + 3 
+ 2 or 1-F8+ 0*F5 + 1-F4 + 1 - F 3 + 0-F2.) 

Integer 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Representations 

1 

10 

11, 100 

101 

110, 1000 

111, 1001 

1010 

1100, 1011, 

10001, 1101 

10010, 1110 

10000 

Integer 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Representations 

10100, 10011, 1111 

10101 

11000, 10110, 100000 

100001, 11001, 10111 

100010, 11010 

100100, 100011, 11100, 11011 

100101, 11101 

101000, 100110, 11110 

101001, 100111, 11111 

101010 

Now the Fibonacci sequence has the property that the sum of two consecutive members 
of the sequence gives the next member of the sequence. Accordingly, one might argue, it i s 
superfluous to have two successive members of the sequence in a representation since they 
can be combined to give the next member. If this i s done, we ar r ive at representations in 
which there are no two consecutive ones in the representation. Looking over the list of inte-
gers that we have represented thus far, i t appears that there is just one such representation 
for each integer in this form. 

Suppose we go at this from another direction. We are building up a sequence that will 
represent the integers uniquely with multipliers 0 and 1. However, we stipulate that no 
two consecutive members of the sequence may be found in any representation. We form a 
table as before. 

Sequence 

1 

2 

3 

5 

8 

13 

Representations added 

1 

2 

3, 4 

5, 6, 7 

8, 95 10, 11, 12 

13, 14, 15, 16, 17, 18, 19, 20 

To this point the representation is unique and the sequence that is emerging is the Fibonacci 
sequence 1, 2, 3, 5, 8, 13, • • • . Assume that up to F there is unique representation to 
F -j - 1. On adding F - to the sequence, we cannot use F in conjunction with it but only 
t e rms up to F - . But by supposition these may represent all integers up to F - 1 in a 
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unique way. Hence with F - we can represent uniquely all integers from F to F - + 
•ft"1" J- n+1 n+1 

F n - 1 = F n + 2 - 1. Hence the uniqueness and completeness of this type of representation are 
established, which is known as Zeckendorf?s Theorem* 

MORE ZEROES IN THE REPRESENTATION 

A natural question to ask is ; Would it be possible to require that there be at least two 
zeroes between l f s in the representation and obtain unique representation? We can build up 
the sequence as before taking into account this requirement,, 

Sequence 

1 

2 

3 

4 

6 

9 

13 

19 

28 

Representations added 

1 

2 

3 

4, 5 

69 7, 8 

9, 10, 11, 12 

13, 14, 15, 16, 17, 18 

19, 20, 21, 22, 23, 24, 25, 26, 27 

28-40 

Up to this point, the representation is complete and unique. We have a sequence, but it would 
be difficult to operate with it unless we knew the way it builds up according to some recursion 
relation. The relation appears as 

T ,- = T + T „ . n+1 n n-2 

Now assume that up to T we have unique representation to T n + 1 - 1, where T n + 1 is 
given by the recursion relation in t e rms of previous members of the sequence. Then on add-
ing T - to the sequence we may not use T or T - in conjunction with it but only t e rms 
up to T 0 . But these give unique and complete representation to T - - 1. Hence upon 
adding T - to the sequence we have extended unique and complete representation from 
T - to T - + T 1 - 1 = T 9 - 1. Thus, the uniqueness and completeness a re es tab-
lished in general. 

The sequences required for unique and complete representation when three, four, or 
more zeroes a re required between l ? s in the representation can be built up in the same way. 
Some are listed on the following page. 
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Zeroes Sequence derived Recursion relation 
3 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 

36, 50, 69, 95, 131, 181, 250, . . . 
4 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 26, 

34, 45, 60, 80, 106, 140, 185, ••• 
5 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21 , 

27, 34, 43, 55, 71, 92, 119, ••• 

T n + 1 

T n + 1 

T n + 1 

= T n 

= T 
n 

= T n 

+ T Q n -3 

+ T . n-4 

+ T K 
n-5 

6 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, T . - = T + T fi 
28, 35, 43 , 53, 66, 83, 105, 133, ••• n 

Fo r k zeroes , the sequence is 1, 2, 3, 4, • • • , k, k + 1, k + 2, which enables us to 
get k + 3; then k + 4 which gives k + 5, k + 6; and so on. Up to this point the representa-
tion is unique and complete; the recursion relation beginning with k + 2 is T - = T + 
T , . Assume that the sequence up to T gives unique and complete representation to T -
- 1. Then upon adding T - the highest te rm we can use in conjunction with it i s T 1 _ k _ 1 

= T , which gives unique representation to T , - - 1 by hypothesis. Hence upon adding 
T - we have unique representation from T - to T - + T , - - 1 = T 2 - 1. 

MULTIPLIERS 0, 1, 2 

We know that we obtain unique and complete representation using multipliers 0, 1, 2 
when we have the geometric progression 1, 3, 9, 27, • • • . Can we find a unique and com-
plete representation if we demand that there be a zero between any two non-zero digits in the 
representat ion? Let us build this up as before. 

Sequence Representations added 
1 1, 2 
3 3, 6 
4 4, 5, 6, 8, 9, 10 
7 7, 8, 9, 10, 13, 14, 15, 16, 17, 20 

11 11-14, 17, 15-17, 19-25, 28, 26-28, 30-32 
18 18-21, 24, 22-24, 26-28, 25-28, 31-35, 38, 36-39, 

42, 40-42, 44-46, 43-46, 49-53, 56 

It appears that the sequence is the Lucas numbers. The representation is not unique. But a 
Lucas number L allows complete representation to the next Lucas number L - (and be-
yond) without any additional Lucas numbers being represented. Assume that this is the case 
up to a certain n. Upon adding L - we may not use L . Going back to L 1 and p r e -
ceding te rms we can represent all integers up to L - 1 without being able to represent any 
Lucas numbers L , L - , • • • . Thus adding L . allows the representation of numbers 
L ,n t o L , - , + L - 1 = L l 0 - 1, but does not give L , 0 since this would require L . n+1 n+1 n n+2 ' & n+2 M n 
If we use 2L ,., we would need L to get L l 0 , but since we do not have L it is no tpos-n-KL n & n+3 n ^ 
sible to ar r ive at this Lucas number. To dispose of L . and higher Lucas numbers, we have 
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to set a bound on the highest number at which we may a r r ive . Starting with L and work-
ing backwards the highest sum we can have is twice the sum of alternate t e rms beginning with 
L 19 If n - 1 i s odd, this sum is 2(L - 2 ) , and if n - 1 i s even, this sum is 2(L - 1 ) . n-± n n 
In either case , the sum is l e s s than 2L . Hence an upper bound for t e rms when L ,- i s 

n n+i 
added to the sequence is 2L ^ + 2L = 2L l 0 . But L xA = 2L l 0 + L ,- which is grea ter 

n+1 n n+2 n+4 n+2 n+1 & 

than 2L . Hence it i s not possible to a r r ive at L ^ or higher Lucas numbers. 
This resul t was very encouraging and led to an investigation of cases with multipliers 

0, 1, 2, 3; then 0, 1, 2, 3, 4; etc. , where we still require one zero between non-zero 
digits. The first few te rms looked interesting. 

Multipliers 0, 1, 2, 3: 1, 4, 5, 9, 14, ••• 
Multipliers 0, 1, 2, 3, 4: 1, 5, 6, 11, 17, 
Multipliers 0, 1, 2, 3, 4, 5: 1, 6, 7, 13, 20, ••• 

Unfortunately, in the sequence 1, 4, 5, 9, 14, ••••, if we continue with the te rms 23, 27, 
60, we find that 60 is already represented by 14 and lower t e rms . In the sequence 1, 5, 
6, 11, 17, 28, •• • , the 28 is represented by ear l i e r t e rms . We have run into aDRYHOLE. 

Next, keeping the multipliers 0, 1, 2, the case of two zeroes between non-zero digits 
was investigated. T h i s l e d t o t h e sequence 1, 3, 4, 5, 9, 13, 22, 31, 53, 75, 128, 181, • • • , 
where there are two apparent laws of formation, one for odd-numbered t e rms , and a second 
for even-numbered t e rms f 

( 1 ) T2n+1 = T 2n + T 2 n - 1 9 

( 2 ) T2n+2 = T2n+1 + T 2 n - 1 ' 

There a re equivalent representations of these relations. By (1) and (2), 

<3> T 2n + 1 = ( T 2n- l + T2n-3> + T 2n-1 = 2 T 2 n - l + T 2n-3 • 

<4> T2n+2 = (T2n + T2n-1> + T 2n-1 = T 2n + 2 T 2 n - l • 

Since by (1) T ^ = T2Q+1 - T ^ , We have from (4) T 2 n + 2 = 2 T 2 n + 1 - T^, or, 

<5> 2 T 2 n + l = T2n+2 + T 2n ' 

Therefore, by using (5) to express 2 T 2 n _ 1 in (4), 

( 6 ) T2n+2 = 2 T 2 n + T 2n-2 8 

Hence, combining (3) and (6), there is one recursion relation for the entire sequence, 

(7) T ^ = 2T - + T o . v } n+1 n -1 n-3 
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The manner in which the sequence builds up is shown by the following table. 

Sequence Representations added 
1 1, 2 
3 3, 6 
4 4 , 8 
5 5, 6, 7, 10, 11, 12 
9 9-12, 15, 18-21, 24 

13 13-16, 19, 17, 21 , 26-29, 32, 30, 34 
22 22-25, 28, 26, 30, 27-29, 32-34, 44-47, 50, 48, 52, 49-51, 54-56 

To show that the sequence will continue to be built up in this way we note the following as a 
basis for our induction: 

(1) Adding a te rm T, covers all representations up to T. - - 1. 
(2) Adding another term of the sequence does not give additional t e rms of the r e p r e -

senting sequence. 
(3) The la rges t te rm that can be represented by adding T. i s l e ss than T. «. 

Now, if the above is true to T , add the term T ,.,. We can use only t e rms to T 0 and 
n* n+1 J n-2 

smal ler in the sequence in conjunction with T ... Such t e rms can represent values up to 
T _1 - 1. Hence adding T +- enables us to represent values from T - to T - + T _ 1 -
1, which gives T x 0 - 1 if n - f l is odd. If n + 1 i s even, T _,- + T - - 1 = 2T _,„ - 1. & n+2 n+1 n-1 n+2 
Hence all representations up to T +« - 1 are covered. 

On adding T - to the sequence we do not obtain any other sequence t e rms . For T „ 
= T _,_- + T - and T ,„ = 2T _,- + T n if n + 1 is odd, and T 1 i s not available in n+1 n -1 n+2 n+1 n -1 ' n -1 
conjunction with T - . Similarly, if n + 1 is even, T + 2 = T - + T and T + 3 = 2T -
+ T 1 where neither T nor T - is available. Finally, T 4 i s l a rger than any term 
that can be formed using T , - and smal ler t e r m s . & n+1 

CONCLUSION 

A great deal of work has been done on representations of integers in recent yea rs . Much 
of this has appeared in the Fibonacci Quarterly which has published some two dozen ar t ic les 
totalling approximately 300 pages by such mathematicians a sCar l i t z , Brown, Hoggatt, Fe rns , 
Klarner , Daykin, and others. The number of byways that may be investigated is great. It 
aould be the project of a lifetime. 



FIBONACCI DRAINAGE PATTERNS 
W.E.SHARP 

University of South Carolina, Columbia, South Carolina 

1. INTRODUCTION 

Some 25 years ago, an engineer, Robert E„ Horton, developed the notion of s t ream o r -
der or class [1] as a measure of the position of a s t ream in the hierarchy of t r ibutaries as 
observed in natural r iver basins. Using a map of a specified scale, he designated f i r s t -c lass 
s t reams as those which have no t r ibutar ies , second-class s t reams as those which have tr ibu-
tar ies only of the first c lass , and thi rd-class s t reams as those which have only f i rs t- and 
second-class t r ibutar ies , and so on (Fig. 1). Although Horton in his original analysis next 
renumbered the s t reams to show the headward extent of the main thread of the r iver , it has 
since been shown [6] that for most purposes this is an unnecessary complication. If the r e -
numbering procedure is omitted then the basic property of s t ream class numbers is that if 
two s t reams of the same class i combine [ 5 ] , the resulting s t ream is of c lass i + 1, that i s 

I— 1 mile -J 
Rice Creek 

Blythewood Quadrangle 
South Carolina 

Fig. 1 A Third-Class Natural Stream Illustrating the Ordering Procedure 
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i * i = i + 1 , 

[Dec. 

where an as ter isk (*) signifies the junction or combination of two s t reams . If, however, the 
s t reams are of different c lass , then the lower c lass s t ream is lost in the one of higher c lass 
and the combination is expressed by [5]: 

i * 3 = 3 * i = 3 (j 

Using this system of s t ream classification, Horton [l] noticed that in natural r iver ba-
sins when the logarithm of the number of s t reams of each class was plotted versus the s t ream 
class (Fig. 2), the graph formed a straight line. The constant slope of the l ine, Horton called 
the bifurcation rat io. Measured values of this ratio for natural s t reams range between 2 and 
5 but seem to average about 3.5 [2, p. 138]. Although many geomorphologists have been 
greatly intrigued by this natural relationship between numbers of s t reams and their c l ass , i t 
i s still not clearly understood why the relationship holds so well. 

Because the bifurcation ratio is given by 

N. 
N. + 1 

l 

Horton then summarized the result of his observations for a basin using the relation 

*i - C 1 

100 

2 3 4 1 2 3 4 1 2 3 4 
St ream Class (i) 

1 2 3 4 

Fig. 2 A Graph Showing the Relationships Between the Stream Class and the Number of 
Streams in each Class . Examples a r e : (A) Hightower Creek, Georgia [9, p . 19]; (B) Tar 
Hollow, Ohio [4 , p . 1036]; (C) Green Lick,. Pa. [4 , p . 1036]; (D) Fibonacci Pattern(8<k 
Order ) 
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where m is the c lass of the main s t ream in the basin and N. is the number of s t reams of 
each c lass i. This equation i s analogous to the simple population growth equation [3, p. 129] 
when the initial population is taken equal to one. The bifurcation ratio then corresponds to 
the net reproductive ra t e , m - i corresponds to the number of generations and N. c o r r e s -
ponds to the population size after m - i generations (Fig. 3). 

Norton's equation by itself implies that drainage nets only have junctions of the type 
where s t reams of class i meet at a single place to form s t reams of class i + 1 (Figs. 3 and 
4). That i s , only junctions of the type 

i * 1 = i + 1 
i * i * i = i + 1 

i * i * i * i = i + 1 

to 
c o 

c 
<D O 

3 4 
Bifurcation Ratio 

Fig. 3. Branching Systems for Various Bifurcation Ratios which Obey the Simple Population 
Growth Equation 

3-5 
Bi furcat ion Ratio 

Fig. 4. A Simple Branching System having an Average Bifurcation Ratio of 3.5 
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etc. , exist with no junctions of the type 

i * j = j (j > i) . 
This would suggest that natural s t reams should appear as shown in Fig. 4. However, this 
branching pattern has little resemblance to natural drainage patterns (Fig. 1) because there 
are no junctions of the type where a low-class s t ream becomes lost in a higher-class s t ream. 

If we next examine the drainage patterns of randomly selected small second- and third-
c lass s t r eams , one will soon notice that a significant percentage of these patterns resemble 
the branching pattern obtained by constructing a Fibonacci t ree [10, p. 47] . This resemblance 
can be illustrated by comparing an unnamed portion of Rice Creek and the upper reaches of 
Crane Creek (Figs. 5 and 6) Blythewood Quadrangle, South Carolina with the 5 and 6 o r -
der Fibonacci t rees (Fig. 7), respectively. 

2. SIMPLE PROPERTIES OF FIBONACCI DRAINAGE PATTERNS 

If a Fibonacci t ree of any order i s treated as if it were a drainage pattern [ 7 ] , we can 
apply Hortonfs numbering procedure to the branches of the tree and call these branches 
s t reams (Fig. 7). Inspection of any such Fibonacci t ree (Fig. 7) shows that the total number 

I 1 mile 1 
Upper Crane Creek 

Blythewood Quadrangle 
South Carolina 

Fig. 5. A Third-Class Natural Stream Fig.. 6. A Third-Class Natural Stream 
Which can be Represented as a Fifth- Which can be Represented as a Sixth-
Order Fibonacci Tree Order Fibonacci Tree 

I — 1 mile \ 

Unnamed branch of Rice Creek 
Blythewood Quadrangle 

South Carolina 



1972] FIBONACCI DRAINAGE PATTERNS 647 

1 1 1 1 1 1 1 1 

<D 
"D 
L-

o 
u 
V 
05 
C 
O 
n 

Fig. 7. Fibonacci T rees of Fifth and Sixth Order 

of pendant vert ices (first-class streams) at the end of k Fibonacci o rders i s given by F k ? 

the Fibonacci number having index k where F k is evaluated using the recursion formula: 

F k = F k - 1 + F k - 2 

and the initial conditions: 

0, F0 = 0, Fi = 1 

so that in a Fibonacci s t ream basin 
Ni = F,, 

Similarly, inspection of the Fibonacci t ree (Fig. 7) having a maximum Fibonacci order of k 
shows that the total number of s t reams of class i is given by N. = F n where n = k - 2 
(i - 1) and the total number of s t reams of i t c lass lost in a s t ream of class i + 1 is given 
by L. = E where I = k - 2i - 1. The s t ream of highest c lass (m) in a tree of Fibonacci 
order k is given by 

where [ ] signifies the integral value,, The bifurcation ratio is given by 

N. 
l 

l+l 

• k-2i+2 

i-2i 
1 + • k-2i+l 

k-2i 
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and for large values of (k - 2i), this ratio converges to the constant 1 + r where r is the 
famous golden ratio. Comparison of the Fibonacci bifurcation ratio of 2.618 (Fig. 2) with 
the average ratio of 3.5 shows the Fibonacci ratio to be significantly smaller than the ratio 
seen in natural s t reams . 

In Fibonacci s t r eams , the disappearance of low-class s t reams into higher-class s t reams 
has the following fixed restr ic t ions: 

1. When i * j = j , then 0 < j - 1 < 1. 
2. No more than one s t ream of c lass i can be lost in any given s t ream of c lass i + 1. 

3. A GENERALIZED FIBONACCI DRAINAGE PATTERN 

The restr ict ion imposed on Fibonacci patterns that no more than one i class s t ream 
can be lost in any given i + 1 class s t ream can be partially relaxed by considering a simple 
form of a generalized Fibonacci t ree [8, p. 922]. In the usual construction of a Fibonacci 
t ree [10, p. 47] it i s assumed that the trunk and each limb has a maturing time of one period 
and a gestation time of one period. This growth pattern can be modified by changing the m a -
turing period from one to some other integral period (Fig. 10). 

If p i s equal to one (gestation period) plus the maturing period (any integer greater 
than one) and k is the total number of elapsed periods (order), then P F , i s a generalized 
Fibonacci number which can be evaluated from the recursion formula: 

I I— 1 mile ^ 
Gills Creek 

Messers Pond Quadrangle 
South Carolina 

Fig. 8. A Third-Class Natural Stream Which Can Be Represented as a Seventh-Order 
Modified Fibonacci Tree with Two-Period Maturation 
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Peters Creek 
Ridge Spring Quadrangle 

South Carolina 

Fig. 9. A Third-Class Natural Stream Which can be Represented as an Eighth-Order Modi-
fied Fibonacci Tree with Two-Period Maturation 

1 1 1 1 1 1 1 1 1 

Fig. 10. Modified Fibonacci Trees of Seventh and Eighth Order with Two-Period Maturation 

and the initial conditions: 

: - k 
= 0, Pp = 0, 1 . 

In a manner s imilar to regular Fibonacci patterns this group of generalized Fibonacci pat-
terns has a total number of pendant ver t ices (first-class s treams) at the end of k orders 
given by 
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Ni = P F . 

The total number of s t reams of c lass i i s then given by 

where 
N. = P^ 1 ^F n 

n = k - p(i - 1) 

the total number of s t reams i lost in c lass i + 1 is given by 

where x. k-pi 

i = k - 1 - p(i - 1) , 

and the bifurcation ratio is given by 

N. P F , 
r = _ ^ _ - F k -P ( i -D = x +

 F k - l -p ( i+ l ) 
b Ni+1 P F , . P F , • ' 

k-pi k-pi 

which will converge to a constant for large values of (k - pi). 
This group of generalized Fibonacci s t reams has the following fixed restr ic t ions govern-

ing the loss of low-class s t reams into higher-class s t r eams : 
1. when i * j = j , then 0 :s j - i < l , 
2. No more than (p - 1) s t reams of c lass i can be lost in any given s t ream of c lass 

i + 1. 
Natural s t reams which resemble this type of generalized Fibonacci pattern are il lustrated by 
comparing the upper reaches of Gills Creek (Fig. 8) Messers Pond Quadrangle, and Pe te r s 
Creek (Fig. 9) Ridge Spring Quadrangle, South Carolina with 7" and 8 order generalized 
Fibonacci t rees (Fig. 10) having two-period maturation (p = 3). 

4. CONCLUSION 

Because natural second-class s t reams can only have f i r s t -c lass t r ibutaries and th i rd -
class s t reams can only have f i rs t - and second-class t r ibutar ies , the very restr ic t ive junction 
rule (|j - i | ^ 1) for Fibonacci patterns is commonly satisfied. This produces a superficial 
resemblance between these small natural patterns and Fibonacci pat terns. In fourth- and 
higher-class basins the opportunities for violation of the Fibonacci junction rule are suddenly 
increased and the resemblance rapidly fades. Yet even in basins of the highest c lass , when-
ever the branching among two or three adjacent c lasses i s emphasized, a Fibonacci pattern 
can often be discerned. 
[Continued on page 655, ] 



MORE ABOUT MAGIC SQUARES CONSISTING OF DIFFERENT PRIMES 

EDGAR KARST 
University of Arizona, Tucson, Arizona 

Let a magic square of order n be surrounded by numbers such that square plus num-
bers form another magic square of order n + 2 and s imilar magic squares of order n + 4, 
n + 6 9 and so on; then the center square may be called a nucleus and the surrounding n u m -
bers a frame, 

In a le t ter of August 8, 1971, V. A« Golubev concocts and gives permission to publish 
the following magic square of order 11 consisting of pr imes of the form 30x + 17 and includ-
ing s imilar magic squares of order 3, 5, 7, and 9„ 

GOLUBEV1 S PRIME MAGIC SQUARE 

1 73547 
1 80177 
| 80897 

81077 

81647 

1 44927 
44417 

1 43787 
1 84437 
27917 

| 53657 

52757 

59447 

73127 

53117 

52727 

74507 

51257 

101537 

46187 

57947 

73877 

52457 

54767 

67217 

75437 

55967 

69737 

57737 

56957 

60167 

71867 

74177 

74567 

71987 

60527 

64877 

60017 

72707 

58067 

60917 

66107 

54647 

52067 

51287 

54167 

60257 

60497 

64577 

62477 

62897 

66137 

66377 

72467 

75347 

75767 

72647 

58427 

54347 

61637 

63317 

64997 

72287 

68207 

53987 

50867 

49787 

53597 

59387 

71147 

63737 

64157 

62057 

55487 

67247 

73037 

76847 

49727 

50147 

70937 

65717 

66617 

53927 

68567 

61757 

55697 

76487 

76907 

24527 

84407 

66467 

51197 

70667 

56897 

68897 

69677 

59417 

42227 

102107 

119087 

68687 

53507 

73517 

73907 

52127 

75377 

25097 

80447 

67187 

7547 

72977 

46457 

45737 

45557 

44987 

81707 

82217 

82847 

42197 

98717 

53087 

The nucleus of order 3 contains the elements 61637, 62057, • •• , 64997 which are the nine 
pr imes in A„ P . given in the appendix of [3]e A pair of opposite pr imes in each frame adds 
up to 126634 = 2-63317, Important for constructing the frames is the fact that the sums of 
two opposite sides without the corners must be the same, Hence, the frame of order 5 has 

60497 + 54347 + 71147 + 66137 + 72287 + 55487 = 66617 + 53927 + 68567 + 60017 + 

+ 72707 + 58067 = 379902 = 2-3-63317 , 
the frame of order 7 has 

60527 + 60257 + 58427 + 59387 + 70937 + 66107 + 66377 + 68207 + 67247 + 55697 
= 51197 + 70667 + 56897 + 68897 + 69677 + 75437 + 55967 + 69737 + 57737 + 56957 
= 633170 = 2*5*63317 , 

651 
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and so on. This comprises the s impler par t of the construction. For the corners , the two 
pa i r s of diagonally opposite p r imes must each not only add up to 126634 = 2-63317, but the 
sum of the elements of each of the two diagonals must also agree with the magic constant a l -
ready obtained by summing up n members in a vertical or horizontal way. This is the more 
difficult pa r t of the construction. Is someone able to attach a frame of order 13 to Golubev's 
beautiful magic square of pr imes 30x + 17? 

If we have pr ime magic squares of odd order , it is not necessary that the nucleus con-
s is t s of p r imes in A. P . such that 

Pi + d P2» p2 + d = p3, p8 + d P9 

In fact, the 3 and 6 d in those equations may be replaced by any number y = 6m such 
that the elements still remain pr imes . F o r example, 

_17 + 6 = - 1 1 , -11 + 6 = - 5 , -5 + 12 = 7, 7 + 6 = 13, 13 + 6 = 19, 

19 + 12 = 31, 31 + 6 = 37, 37 + 6 = 43 with d = 6 and y = 12. 

Choosing now the standard magic square of order 3 

and putting the right side of those 
equations, starting with -17, in 
that order into it, we obtain 

8 
3 
4 

1 
5 
9 

6 
7 i 
2 

I 37 
-5 

7 

-17 
13 
43 

19 
31 

-11 

yielding a pr ime magic square with magic constant 39. For the frames we may not request 
that their p r imes are of a special form. Of course , all means of construction should be the 
same as in Golubev!s pr ime magic square. Has such a magic square of p r imes , say of o r -
de r 13, ever been constructed? Yes, one can find it in [5 ] , and it may be republished here 
as a good example of magic squares of pr imes with no restr ic t ions attached to their construc-
tion. It says there: "This tremendous pr ime magic square was sent to Francis L. Miksa of 
Aurora , Elinois, from an inmate in prison who, obviously, must remain n a m e l e s s . " The 
nucleus of order 3 consists of tr iples of pr imes in A. P. with d = 6 and y = 3558. Each 
opposite pr ime pair in any frame adds up to 10874 = 2*5437, the magic constant of order 3 
i s 16311 = 3-5437, of order 5 i s 27185 = 5-5437, • • • , of order 13 is 70681 = 13-5437. 
It is constructed in the same way as Golubevfs magic square, but while there the difference 
between the la rges t p r ime , 119087, and the smallest p r ime , 7547, is 111540 = 22-3-5-ll-132, 
in the p r i soner ' s magic square it is 9967 and 907 with 9060 = 22,3-5-151. 

Is someone able to attach a frame of order 15 to the pr i soner ' s remarkable magic square ? 
Somewhat differently behave the pr ime magic squares of even order . The greates t 

attraction is here the pr ime magic square of order 12 by J . N. Muncey of Jessup , Iowa, 
which is the smallest possible magic square of consecutive odd p r imes , starting with 1, end-
ing with 827, and reproduced in [ 2 ] . It speaks for the attitude of mathematical journals 
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THE PRISONER'S PRIME MAGIC SQUARE 

J 1153 

1 9967 
1831 

1 9907 
1 1723 

1 9421 
1 2011 

1 9403 
1 1531 
1 9643 
1783 

1 9787 
| 2521 

8923 

8161 

8167 

7687 

7753 

2293 

2683 

8761 

2137 

2251 

2311 

7603 

1951 

1093 

3253 

4093 

7237 

2347 

6763 

6871 

3877 

7177 

7027 

3541 

7621 

9781 

9127 

2857 

7561 

6367 

4603 

4663 

6547 

4783 

6673 

4423 

3313 

8017 

1747 

1327 

6823 

3631 

4597 

5527 

4657 

5227 

5851 

5923 

6277 

7243 

4051 

9547 

9277 

2143 

3457 

4723 

4993 

9007 

1873 

5431 

5881 

6151 

7417 

8731 

1597 

1063 

4447 

7573 

6577 

5641 

1861 

5437 

9013 

5233 

4297 

3301 

6427 

9811 

9133 

8821 

3907 

4513 

6073 

5443 

9001 

1867 

4801 

6361 

6967 

2053 

1741 

9661 

8713 

7411 

4831 

4951 

6217 

5647 

5023 

5347 

6043 

3463 

2161 

1213 

1693 

8317 

3967 

6451 

6271 

6211 

4327 

6091 

4201 

4507 

6907 

2557 

9181 

991 

3001 

7333 

3637 

8527 

4111 

4003 

6997 

3697 

3847 

6781 

7873 

9883 

8887 

3271 

2707 

3187 

3121 

8581 

8191 

2113 

8737 

8623 

8563 

2713 

1987 

8353 

907 

9043 

967 

9151 

1453 

8863 

1471 

9343 I 
1231 

9091 

1087 

9721 

shortly before the outbreak of World War I that they would rather publish abstract mathema-
tics than such a genuine gem of mathematical thinking. Hence, one doesnft wonder that 
Munceyfs magic square of consecutive pr imes finally appeared in a philosophical journal 
[The Monist, 23 (1913), 623-630], We see at a glance that this pr ime magic square is of a 
different kind. Neither has it a nucleus of order 4 nor does it include similar magic squares 
of order 6, 8, and 10. Its magic constant is 4514 = 2*37*61. 

Another gem is the magic square of order 4 consisting of 16 pr imes in A. P . by S. C. 
Root of Brookline, Massachusetts. It is published in [4], Its magic constant is 

15637321864 = 23»43«45457331 , 

the common difference is 

223092870 = 2°3'5°7«11-13.17.19»23 . 

It i s not known whether there exists a sequence of 16 pr imes in A. P . with a smal ler 
common difference d. Theoretically, it should be possible to find such a sequence with 
d = 30030 = 2«3.5-7.11.13. 

If we have pr ime magic squares of an even order , the nucleus has not to consist of 

p r imes in A. P. Assuming again, 

Pi + d = p2 , p2 + d = p3 , • • • , p1 5 + d = p!6 

we shall see that the 4 t h , the 8 t h , and the 12 t h d can be replaced by 6m, but these all dif-
ferent, say u, v, and w. Each (2m - 1) d may be 30 and each 2(2m - 1) d may be 
12. In this way we obtain the pair of pr ime magic squares due to the late Leo Moser of the 
University of Alberta which are published in [5]. Moser uses not only p r imes , but twin 
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MUNCEY?S CONSECUTIVE PRIME MAGIC SQUARE 

1 

[ 89 

97 

223 

367 

349 

503 

229 

509 

661 

659 

827 

823 

83 

227 

653 

379 

359 

523 

491 

199 

101 

673 

3 

821 

211 

103 

499 

521 

353 

233 

373 

73 

643 

677 

7 

809 

79 

107 

197 

383 

647 

337 

487 

541 

239 

683 

5 

811 

641 

193 

109 

241 

389 

547 

461 

347 

691 

71 

13 

797 

631 

557 

113 

467 

331 

397 

251 

191 

701 

67 

11 

19 

619 

719 

563 

257 

317 

421 

443 

181 

127 

61 

787 

29 

709 

727 

479 

263 

311 

17 

463 

569 

131 

47 

769 

313 

617 

607 

173 

269 

409 

401 

137 

577 

179 

59 

773 

31 

53 

139 

761 

167 

307 

271 

439 

571 

613 

743 

419 

23 

43 

757 

587 

601 

293 

431 

457 

163 

277 

733 

149 

37 

739 

281 

157] 

599 

449 

433 

283 

593 

151 

41 

751 

ROOT'S M^GIC SQUARE OF PRIMES IN A. P. 

2236133941 

4690155511 

I 3797784031 
J 4913248381 

5359434121 

335159.8291 

4243969771 

2682319681 

5136341251 

3574691161 

4467062641 

2459226811 

2905412551| 

4020876901 

3128505421 

5582526991| 

MOSER'S TWIN MAGIC SQUARESOF PRIMES IN 'A."P.. 

1 31 
1 271 
1 1051 
151 

1063 

139 

103 

199 

181 

1021 

241 

61 

229 

73 

109 

1093 

J 29 
269 

1049 

1 149 

1061 

137 

101 

197 

179 

1019 

239 

59 

227 

71 

107 

1091 

pr imes . We see that u = 6, v = 18, and w = 7508 The magic constant of the left square 
is 1496 = 23»ll«17f the magic constant of the right square is 1504 = 25-47. The author r e -
members that Leo Moser had always a little self-fabricated poem on hand which served as a 
kind of donkey bridge to his brain twis ters : does someone recall the poem for the twin pr ime 
magic squares? 

We have attempted to give a glimpse into the more recent investigations on pr ime m a -
gic squares and to somewhat analyze the regular ones of them. Of course, a detailed t reat ise 
on their construction would not be permissible he re , but can be found in the almost classic 
collection of f l ] . 
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[Continued from page 650. ] 

The determination of the branching character is t ics of natural s t reams of c lass five and 
higher is an extremely difficult and tedious task. Thus any hypothesis proposed for s t ream 
patterns of high class is very difficult to test . If it could be shown that a Fibonacci or one of 
the generalized Fibonacci patterns could serve as a f irst approximation to natural pat terns , 
then any hypothesis proposed could quickly and easily be explored to very high orders and the 
resul t s used to plan tes ts that could be applied to natural pat terns. 
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ERRATA 
FOR 

A NEW PRIMALITY CRITERION OF MANN AND SHANKS AND ITS RELATION 
TO A THEOREM OF HERMITE WITH EXTENSION TO FIBONOMIALSi 

On page 356, Eq. (2.3): for "mod , . m r " read " /mod , . m r\ " 
( a , b , - - - , c ) I ( a , b , « « . , c ) y 

f ? / n - l \ " . » r n - l l » On page 359, line 4: for 

The sixth and eighth lines from the bottom of page 360 should read " E r d o s , " NOT " E r d o s . " 
In Reference 2, page 372, change "Institute" to "Institution." 
These a re typographical e r r o r s arising in the process of printing. H. W. Gould 

FOR 
THE CASE OF THE STRANGE BINOMIAL IDENTITIES OF PROFESSOR MORlARTY2 

Page 382, 
Page 382, 
Page 383, 
Page 383, 
Page 385, 
Page 385, 
Page 385, 
Page 387, 

line 1: For 
line 4: For 

"E. T. Davis" read 
"Holmes. "Here I . . . " 
"n - 1 - 2i" read Eq. (8): For 

4 line from bottom; for "equation" 

"H. T. Davis". 
read "Holmes. " Here I . . . " . 

"n - 1 - 2k". (manuscript e r ro r ) 
read "equating". 

line 7: 
Eq. (12): for 
,rd 

for "Glocksman" 
2n - 2 j" 

read 
read 

"Glicksman" . 
"n - 2 j" . 

3XV* line from bottom: for "Eagan" read "Hagen". 
line 5: Before "87" inser t " 3 6 , " (new reference cited by Riordan). 

Page 387, Eq. (14): for (1 - T-^-TT 1 read 1 (x.̂ y - i.^y 
Page 387, 
Page 391, 
Page 391, 
Page 391, 
Page 391, 

line 6: for "Andre" read " 
Eq. (25): for the exponent "n - 2" 
Ref. 5: for "Bromwhich" read 
Ref. 10: for "Glocksman" read 

Gonsales" read 
numerous" read 

Ref. 16: for "Leipsig" 
Ref. 18: for "Ni'ew" 
Ref. 20: for " le t t e r s" 

Ref. 11: 
and 

for 
for 

read 
read 
read 

Page 402, 
Page 402, 
Page 402, 

Except as indicated, these are typographical e r r o r s arising in the printing. H. W. Gould 

Andre" . 
read "n - 2k" 

"Bromwich" . 
"Glicksman" . 
"Gonzales" , 
"numeros" . 
"Leipzig" . 
"Nieuw" . 
" le t tere" . 

Appear ing in Vol. 10, No. 4, Fibonacci Quarterly, pp. 355-364; 372. 
Appear ing in Vol. 10, No. 4, Fibonacci Quarterly, pp. 381-391; 402. 
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A NOTE ON THE NUMBER OF FIBONACCI SEQUENCES 

BROTHER ALFRED BROUSSEAU 
St Mary's College, California 

In an article entitled "On the Ordering of Fibonacci Sequences11 [1], the author point-
ed out that if we consider Fibonacci sequences with relatively prime successive te rms and 
a se r ies of positive t e rms extending to the right* there is (apart from the case of the F ib-
onacci sequence:: 1, 1, 2, 3, 5, 8, 13, e 8 e ) 9 one point in the sequence and only one where 
a positive te rm is l e ss than half the next positive t e rm. Such being the case , it is conven-
ient to identify a Fibonacci sequence by these two numbers, as this gives a unique means 
of specifying a sequence. 

The present note is concerned with this question: If the two identifying numbers of a 
Fibonacci sequence as presently defined are less than or equal to a positive integer m, 
how many Fibonacci sequences does this give? 

Theorem. If the starting numbers of a Fibonacci sequence are ^ m (m ^ 2), the 
number of Fibonacci sequences that can be formed is : 

1/2 £ 0(k) 
k=l 

where <p(m) is Euler ' s totient function. 
Proof. The following table indicates the situation for small values of m and serves 

as the basis of the subsequent mathematical induction 

m (jAm) S^(k) 

1 1 
2 1 2 
3 2 4 
4 2 6 
5 4 10 

6 2 12 
7 6 18 

Within the l imits of this table, it is c lear that the total number of sequences that may be 
formed for any given m is |S^(k) . 

Assume that this is true to some given m. If we enlarge the domain by including 
m + 1, the new sequences added will be those involving this quantity as well as those 
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0) 

1 
2 
3 
5 
6 
9 

Sequences 

(1,1) 
(1,3) 
(1,4) 
(1,5), (2,5) 
(1,6) 
(1,7), (2,7), (3,7) 
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quantities less than half of m + 1 and relatively prime to it. But the number of such quan-
tities is ~0(m + 1). Thus it follows tj 
and the theorem is proved in general. 
t i t les is ~<fi(m + 1). Thus it follows that if the formula is true for m, it i s true for m + 1 

REFERENCE 

1. Brother U. Alfred, "On the Ordering of Fibonacci Sequences," Fibonacci Quarterly, 
Dec. 1963, pp. 43-46. 

[Continued from page 597. ] 

That i s , we have shown that 

(4.8) Ck(x) = Ak(x) - (1 - X)" i^+V'1 

where A^(x) is a polynomial in x of degree | k ( k - 1) given by either of 

|k(k+l) 

(4.9) Ak(x) = Y ^ a ^ d - x ) ^ k ( k + 1 ) - j 

o r 
ik(k+l) 

Ak(x) - ] T ^ x J ^ x - D ^ ^ - i . (4.10) 

Notice that the symmetry property (1.9) follows by comparing (4.9) and (4.10). The first few 
values of AMx) are A^x) = 1, A2(x) = 1 + x, A3(x) = 1 + 7x + 7x2 + x3. 

REFERENCES 

1. L. Carlitz and John Riordan, "Enumeration of Certain Two-Line Ar rays , " Duke Math. J. , 
Vol. 32 (1965), pp. 529-539. 

2. L. Carlitz and R. A. Scoville, Problem E2054, MA A Monthly, Vol. 75 (1968), p. 77. 
3. P . A. MacMahon, Combinatory Analysis, Vol. 1, Cambridge, 1915. 

[Continued from page 598. ] 
(3) Articles of standard size for which additional background material maybe obtained. 
Articles in the Quarterly for which this note service is available will indicate the fact, 

together with the number of pages in question. Requests for these notes should be made to 
Brother Alfred Brousseau 
St. Mary 's College 
Moraga, California 94574 

The notes will be Xeroxed. 
The price for this service is four cents a page (including postage, mater ia ls and labor). 



FIBONACCI NUMBERS IN PHYSICS 

BASIL DAVIS 
Student, Indian Statistical Institute, Calcutta, India 

Since mathematics has great application in Physics , it would be surprising if the F ib-
onacci numbers , which have a wide application in unexpected branches of science, play no 
par t in Physics . However, Fibonacci numbers do occur in Physics , though the importance 
of their occurrence is not certain. 

ELECTRO-STATICS 

Consider the following problem in electro static si A charge of +e and two charges -e 
are to be arranged along a straight line such that the potential energy of the whole system is 
equal to zero . 

The potential energy of a system of static charges is the work done in bringing the 
charges from infinity to those points. The potential energy of two charges may be taken as 
the product of the charges divided by the distance between them. In the problem, let the 
charges +e, - e , and -e occupy points Af B, and C, respectively. Let AB = x, 

BC = y. 
A x B y C 
+e -e -e 

Potential energy due to +e at A and -e at 

B = (+e) - (-e> = :£ 
x x 

Potential energy due to +e at A and -e at 

(+e) • (-e) _ -e 2 
c 

x + y x + y 

Potential energy due to -e at B and -e at 

y y 

For the potential energy of the system to be zero, 

zs! + _ z s l + s! = o 
x x + y y 
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or 
-(x + y)y - xy + x(x + y) = 0 

Therefore 
x2 - xy - y2 = 0 

or 

Hence, x /y , the golden rat io, =1.618 
Thus we find that for the potential energy to be zero , x /y must be the golden rat io. 
Now we consider charges in dynamic equilibrium. 

THE ATOM 

The atom consists of a positively charged nucleus surrounded by electrons orbiting 
around it in fixed orbits . Bohr, Schroedinger, Pauli and others contributed to the building 
up of the shell model of the atom that has successfully explained the physical and chemical 
propert ies of mat ter . 

Certain gases , called noble or r a r e gases , are exceptionally stable chemically. On 
looking at the periodic table, one finds an interesting relationship between the atomic numbers 
of these inert gases. With the exception of Helium, the atomic numbers of the gases roughly 
correspond to the Fibonacci numbers. Also, if the atomic numbers are divided by 18 and the 
resul ts expressed to the neares t integers , the Fibonacci numbers from 0 to 5 a re attained. 

Gas 

Helium 
1 Neon 

Argon 
Krypton 
Xenon 
Radon 

Symbol 

He 
Ne 
Ar 
Kr 
Xe 
Rn 

Atomic 
No. = Z 

2 
10 
18 
36 
54 
86 

F Numbers 

F 6 = 8 
F 7 = 13 
F 8 = 21 
F 9 = 34 

Fio = 55 
F U = 89 

Z/18 to Nearest 
Integer 

0 = F0 

1 = F4 

1 = F 2 

2 = F 3 

3 = F 4 

5 = F 5 

Thus, there is a double correlation between the atomic numbers of stable atoms and the 
Fibonacci Series. 

THE NUCLEUS 

The structure of the nucleus remained a mystery for several yea rs . It was known that 
the nucleus consisted of two kinds of part icles — the protons and the neutrons. A proton has 
a charge equal and opposite to that of an electron, while the neutron is neutral . The atomic 
number Z = number of protons. The neutron number N = number of neutrons. The mass 
number A = N + Z. Exactly how the part ic les were arranged in the nucleus was unknown. 
Various models were put forward, but none was satisfactory. None of them could explain a 
[Continued on page 662. ] 



AN OLD FIBONACCI FORMULA AND STOPPING RULES 

REUVEN PELEG 
Jerusalem, Israel 

A fair coin is tossed, a head giving a return of +1, a tail of - 1 . Let the sum of these 
re turns for a sequence of m throws be designated S . We define a stopping rule for the 
sequence: The sequence of throws will end if S is outside the closed interval -2 to +1. 

At the end of m throws, if all possible variations a re considered, there will be a c e r -
tain number of l ' s , O's, - l ' s and - 2 ' s which will be designated n(l) , n(0), n(-l)> and 
n(-2), respectively. The number of sequences that terminate at m because of the stopping 
rules will be denoted <p(m). 

Let us consider the f irs t few steps. At the end of the first throw, there a re two pos-
sible values +1, - 1 , and no terminations. Hence n(l) = 1, n(- l) = 1, <p(l) = 0. 

At the end of two throws, the possible values a re +2, 0, 0, - 2 , the first being a t e r -
mination. Hence n(0) = 2, n(-2) = 1, <p(2) = 1, Continuing with the non-terminating s e -
quences, we have values - 1 , +1, - 1 , +1, - 3 , - 1 at the end of three throws. Hence 0(3)= 1, 
n(l) = 2, n(- l ) = 3. 

The following table summarizes a few additional steps. 

<Mm) 
n(l) 
n(0) 
n(- l ) 
n(-2) 

1 
0 
1 
0 
1 
0 

2 
1 
0 
2 
0 
1 

3 
1 
2 
0 
3 
0 

4 
2 
0 
5 
0 
3 

5 
3 
5 
0 
8 
0 

6 
5 
0 

13 
0 
8 

2m -
F r 2 m -
F r 2 m -

0 
F 2m 

0 

1 

•2 

• 1 

2m 
F 2m- l 

0 
F r 2 m + l 

0 
F 

2m + 1 
F 2m 
F 

2m+l 0 
F 

2m+2 0 

The general pattern is shown under the columns 2m - 1, 2m, 2m + 1. Now assume 
that we have the pattern in column 2m - 1. The l ' s get out of bounds at 2 giving (p(2m) = 
F - . The l ' s and - l ' s combine to give F

2 m - 1 + F 2 m = F2m+1 z e r o S o T h e _ 1 ' s &° 
to -2 giving F 2 . Starting at 2m, the -2 ' s go out of bounds giving ^(2m + 1) = ^^m' 
The O's and -2 ' s combine to give F + F 2 = F 2 m + 2 for - 1 . The O's also go to 1 
putting F Q in that place. Thus the process is seen to continue indefinitely. 

^m+l 

REFERENCE 
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puzzling phenomenon: nuclei having certain values for their N or Z numbers are consider-
ably more stable than others* These values are 2, 8, 14, 20, 28, 50, 82, and 126. These 
numbers were called "magic numbers , " since their origin was a mystery. 

Let us divide the magic numbers by 10 and express the results to the neares t integers. 

X 2 8 14 20 28 50 82 126 
X/10 0.2 0.8 1.4 2 2.8 5 8.2 12.6 

Nearest 
Integer 0 1 1 2 3 5 8 13 

We get the Fibonacci numbers from 0 to 13 • • • S 
We saw that the shell s tructure of the atom showed that the atomic numbers of stable 

atoms should be related to the Fibonacci se r ies . The phenomenon of the magic numbers thus 
indicates that the nucleus also might have a shell s t ructure. The first successful model of 
the nucleus, the shell model, was put forward by Maria Goeppert Mayer, Hans Jensen, and 
Eugene Wigner. Calculations based on the shell model successfully explained the phenome-
non of magic numbers. 

Thus the Fibonacci numbers seem to be associated with the stability of systems in dy-
namic equilibrium. Perhaps the Fibonacci sequence might help solve a number of problems 
in Physics. 

MOW A ^ A l J a A B l L E J f f 

C O M B I N A T O R I A L I D E N T I T I E S 
A STANDARDIZED SET OF TABLES 

LISTING 500 BINOMIAL COEFFICIENT SUMMATIONS 
by Henry W. Gould, Professor of Mathematics, West Virginia University 

A corrected, revised, augmented edition of the legendary tables of 500 combinatorial 
identities originally circulated on a very limited basis in 1960. This edition actually con-
tains several dozen new formulas, and all known e r r o r s in the first edition have been co r -
rected. 116 pp. 22 x 28 cm. bound. 1972. 

Because of the enthusiastic reception accorded the original tables, and due to the con-
tinued demand for copies of these useful tables, the present edition has been produced to fill 
the need for these handy tables. The tables are analogous to a standard table of integrals . 
Sums of ratios of products of binomial coefficients of all kind are included, from the simplest 
form of the Vandermonde Convolution to DougalPs famous formula involving six coefficients 
divided by five. The tables a re of value to .mathematicians in many fields: combinatorics, 
number theory, graph theory, special functions, s ta t is t ics , probability, matr ix theory, ap-
plied mathematics, computer science, etc. 

Copies may be secured at $10.00 each, postpaid, directly from: 
Henry W. Gould 
1239 College Avenue 
Morgantown, W. Va. 26505 

ORDER YOUR COPY TODAY!!! HAVE YOUR LIBRARY ORDER A COPY TODAY!!! 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAW 

University of New Mexico, Albuquerque, !\Sew Mexico 

Send all communications regarding Elementary Problems and Solutions to Professor 
A. P. Hillman, Dept. of Mathematics and Statistics, University of New Mexico, Albuquerque9 

New Mexico 87106. Each problem or solution should be submitted in legible form, prefer-
ably typed in double spacing, on a separate sheet or sheets, in the format used below. Solu-
tions should be received within four months of the publication date. 

Contributors (in the United States) who desire acknowledgement of receipt of their con-
tributions are asked to enclose self-addressed stamped postcards. 

NOTATION: F0 = 0, Fi = 1, F _,_ = F ^ + F ; L0 = 2, Li = 1, L ^ 0 = L ^ + L . u * I » n + 2 n+1 n' u » i n+2 n + l n 

PROBLEMS PROPOSED IN THIS ISSUE 

B-244 Proposed by J. L Hunsucker, University of Georgia, Athens, Georgia. 

Le t Q be the 2 X 2 m a t r i x 

and let 

M = 

GO 
(:s) 

be the sum of a finite number of matr ices chosen from the sequence Q, Q2, Q3, " *. Prove 
that b = c and a = b + d. 

B-245 Proposed by Richard M. Grass/, University of New Mexico, Albuquerque, New Mexico. 

Show that each term F with n > 0 in the sequence F 0 , F j , F2 , • • • is expressible 
as x2 + y2 or x2 - y2 with x and y te rms of the sequence with distinct subscripts. 

B-246 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that at least one of the following sums is irrat ional: 

(-Dn 
00 00 

Y-±- , y 
Z ^ F

2 n + i *~J L2n+1 
n=0 n=0 663 
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B-247 Proposed by Larry Lang, Student, San Jose State University, San Jose, California. 

Given that m and n a re integers with 0 < n < m and F IL , prove that n is 

1, 2, 3, or 4. ' 

B-248 Proposed by V. £ Hoggatt, Jr., San Jose State University, San Jose, California. 

k i 
Let k be a positive integer and let h = 5 . Prove that h IF, . 

B-249 Proposed by V. £ Hoggatt, Jr., San Jose State University, San Jose, California. 

k f 
Let k be a positive integer and let g = 2*3 . Prove that g |L . 

SOLVERS INADVERTENTLY OMITTED FROM PREVIOUS ISSUES 

J. L.Brown,Jr:B-219 

Herta T. Freitag: B-202, B-203, B-206, B-207. 

D. V. Jaiswal: B-214, B-215, B-216, B-217, B218, B-219. 

Graham Lord: B-202, B-203, B-204, B-205 

SOLUTIONS 

TWIN PRIMES SLIGHTLY DISGUISED 

B-220 Proposed by Guy A. R. Guillotte, Montreal, P. Q., Canada. 

Let p be the m prime,, Prove that p and p + - a re twin pr imes (i. e. , p -

= p + 2) if and only if 

( P n + l " Pn> = P m 
n=l 

Solution by C. B. A. Peck, State College, Pennsylvania. 

The sum telescopes to p - - p 1 = p - - 2. 

Also solved by Wray G. Brady, Paul S. Bruckman, Warren Cheves, R. Garfield, Herta T. Freitag, Peter A. Lindstrom, 
Graham Lord, John W. Milsom, Richard W. Sielaff, and the Proposer. 

SIMPLE SUBSTITUTION IN A CONVERGENT SERIES 

B-221 Proposed by R. Garfield, College of Insurance, New York, New York. 

Prove that 

]£(1/FnV =S(1/F2n) 
n=l n=l 
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Solution by Wray G. Brady, Slippery Rock State College, Slippery Rock, Pennsylvania. 

It follows from the identity F = F L that the ser ies are identical. Since 
zn n n 
11m (F_ / r 2 n ) = 1 n—>oo 2n 

where 
r = (1 + \ / 5 ) / 2 > 1 , 

the ser ies converge. 

Also solved by Paul S Bruckman, Herta T. Freitag, Peter A. Lindstrom, Graham Lord, C. B. A. Peck, Richard W. Sielaff 
Gregory Wulczyn, and the Proposer. 

A NONHOMOGENEOUS RECURSION 

B-222 Proposed by V. £ Hoggatt, Jr., San Jose State University, San Jose, California. 

Find a formula for K where Ki = 1 and n 

K n + 1 = ( K 1 + K 2 + . . . +Kn) + F 2 n + 1 . 

Solution by C. B. A. Peck, State College, Pennsylvania. 

Reducing the subscript n + 1 to n in the given recursion, we have K = (kj + K2 + • • • 
+ K - ) + F„ 1 . Subtracting from corresponding sides of the original gives us 

K n + 1 " K n = K n + F 2n + 1 " F 2 n - 1 = K n + F 2n 
or 

K ^ = 2K + F 0 . n+1 n 2n 

Then Kt = 1, K2 = 2.1 + 1, K3 = 22-l + 2-1 + 3, and generally 

Kn = 211"1
 + ( 2 n " 2 F 2 + 2 n " 3 F 4 + - ^ + 2 F 2 n _ 4 + F 2 n _ 2 ) . 

Using a result of Herta T. Freitag (Fibonacci Quarterly, VoL 8, No. 5, p. 344), we have 

K n = F2n+1 " ^ • 

Also solved by Paul S. Bruckman, L Carlitz, Herta T. Freitag, Graham Lord, David Zeitlin, Gregory Wulczyn, and the 

Proposer. 

FORMIDABLE ARITHMETIC 

B-223 Proposed by Edgar Karst, University of Arizona, Tucson, Arizona. 

Find a solut ion of 

x y + (x + 3)y - (x + 4)y = uV + (u + 3)V - (u + 4)V 
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in the form 
x = F 9 y = F , u = L , and v = L . 

m J n r s 

Solution by the Proposer, 

A solution is 

x = 13 = F 7 , y = 5 = F 5 , u = 7 = L4, and v = 3 = L2 . 

QUADRATIC NONRESIDUES 

B-224 Proposed by Lawrence Somer, Champaign, Illinois 

Let m be a fixed positive integer. Prove that no t e rm in the sequence F1 ? F 3 , F 5 , F 7 , 
• • • is divisible by 4m - 1. 

Solution by L Carlitz, Duke University, Durham, North Carolina. 

Since 

it would follow from 

that 

5 F L + 1 " 4 - L2n+1 • 

F2n+1 s ° ( m 0 d 4 m ' 1 ) 

L | n + 1 E -4 (mod 4m - 1) 

This implies the solvability of the congruence 

x2 = -1 (mod 4m - 1) 

which is impossible. 

Also solved by Paul S. Bruckman, Graham Lord, and the Proposer. 

STILL UNCHARACTERIZED SEQUENCES 

B-225 Proposed by John Me, Berkeley, California. 

Let a0, • • • , a-j_i be constants and let jf \ be a sequence of integers satisfying 

n+j j - 1 n+j-l j - 2 n+j-2 o n ' ' ' 

Find a necessary and sufficient condition for j f } to have the property that every integer m 
is an exact divisor of some f, . 

EDITORIAL NOTE; A necessary and sufficient condition that m divides 
2 

some fk is that m divides some fk for 1 ̂  k ^ m + 1• for every m. °  
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Number of Fibonacci Sequences," Vol. 10, No. 6, pp. 657-658. "A P r i m e r for the 
Fibonacci Numbers: P a r t X — On the Representation of In tegers , " Vol. 10, No. 6, pp. 
635-642. 

BROWN, J. L. , JR. "Modulo One Uniform Distribution of Certain Fibonacci-Related Se-
quences," Vol. 10, No. 3, pp. 277-280 (co-author, R. L. Duncan). Problem Solved: 
B-219, Vol. 10, No. 6, p. 664. 

BRUCKMAN, PAUL S. "An Interesting Sequence of Numbers Derived from Various Gener-
ating Functions," Vol. 10, No. 2, pp. 169-181. Problems Proposed: B-236, Vol. 10, 
No. 3, p. 330; B-219, Vol. 10, No. 3, p. 336. Problems Solved: B-214, Vol. 10, No. 
3, p. 331; B-215, Vol. 10, No. 3, p. 331; B-216, Vol. 10, No. 3, p. 332; B-217, Vol. 
10, No. 3, p. 333; B-218, Vol. 10, No. 3, p. 235; B-220, Vol. 10, No. 6, p. 664; 
B-221, Vol. 10, No. 6, p. 665; B-222, Vol. 10, No. 6, p. 665; B-224, Vol. 10, No. 6, 
p. 666. 

CALLAS, NICHOLAS P. "Representations of Auto mo rphic Numbers ," Vol. 10, No. 4, pp. 
393-396. 

CARLITZ, L. "Fibonacci Representat ions," Vol. 10, No. 1, pp. 1-28 (co-authors, Richard 
Scoville and V. E. Hoggatt, J r . ) . "Lucas Representat ions," Vol. 10, No. 1, pp. 29-
42 (co-authors, Richard Scoville and V. E. Hoggatt, J r . ) . "Fibonacci Representations 
of Higher Orde r , " Vol. 10, No. 1, pp. 43-70 (co-authors, Richard Scoville and V. E. 
Hoggatt, J r . ) . "Fibonacci Representations of Higher Order — I I , " VoL 10, No. 1, pp« 
71-80 (co-authors, Richard Scoville and V. E. Hoggatt, J r . ) . "A Generating Function 
for Par t ly Ordered Par t i t ions , " Vol. 10, No. 2, pp. 157-162. "Notes on Summation 
Formulas , " VoL 10, No. 3, pp. 281-282. "Pellian Representat ions," VoL 10, No. 5, 
pp. 449-488 (co-authors, Richard Scoville and V. E. Hoggatt, J r . ) . "Enumeration of 

667 
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3X3 A r r a y s , " Vol. 10, No. 5, pp. 489-498. "Representations for a Special Sequence," 
Vol. 10, No. 5, pp. 499-518 (co-authors, Richard Scoville and V. E. Hoggatt, J r . ) . 
"Concavity Proper t ies of Certain Sequences of Numbers , " Vol. 10, No. 5, pp. 523-525. 
"A Conjecture Concerning Lucas Numbers ," Vol. 10, No. 5, p. 526. "Addendum to 
the Paper , 'Fibonacci Representa t ions ' , " Vol. 10, No. 5, pp. 527-530 (co-authors 
Richard Scoville and V. E. Hoggatt, J r . ) . "Sequences, Paths , Ballot Numbers," Vol. 
10, No. 5, pp. 531-550. "Triangular Arrays Subject to MacMahonfs Conditions," Vol. 
10, No. 6, pp. 591-597 (co-author, D. P . Roselle). 
Problems Proposed: H-189, Vol. 10, No. 2, p . 185; H-177, Vol. 10, No. 2, p . 190; 
H-178, Vol. 10, No. 2, p. 193; B-213, Vol. 10, No. 2, p. 224; H-180, Vol. 10, No. 2, 
p. 284; H-181, Vol. 10, No. 3, p . 286; B-217, Vol. 10, No. 3, p. 333; H-185, Vol. 10, 
No. 4, p. 414; H-189, Vol. 10, No. 4, p. 419; B-239, Vol. 10, No. 4, p. 447; H-199, 
Vol. 10, No. 6, p. 629; H-202, Vol. 10, No. 6, p. 630; B-246, Vol. 10, No. 6, p. 663. 
Problems Solved: H-177, Vol. 10, No. 2, p. 191; H-178, Vol. 10, No. 2, p . 194; 
B-213, Vol. 10, No. 2, p. 224; H-180, Vol. 10, No. 3, p. 284; H-181, Vol. 10, No. 3, 
p . 286; B-215, Vol. 10, No. 3, p. 331; B-217, Vol. 10, No. 3, p. 333; B-218, Vol. 10, 
No. 3, p. 335; H-185, Vol,, 10, No. 4, p. 414; H-189, Vol. 10, No. 4, p. 419; H-183, 
Vol. 10, No. 6, p. 634; B-222, Vol. 10, No. 6, p. 665; B-224, Vol. 10, No. 6, p. 666. 

CHEVES, WARREN. Problem Solved: B-220, Vol. 10, No. 6, p . 664. 

CHOW, BOB. "Some Theorems on Completeness," Vol. 10, No. 5, pp. 551-554 (co-author, 
V. E. Hoggatt, J r . ) . 

COHN, ERNST M. "Pell Number T r ip l e s , " Vol. 10, No. 4, pp. 403-404. Problem P r o -
posed: H-198, Vol. 10, No. 6, p. 629. 

CRUMP, JANICE. "A Generalized Greatest Integer Function Theorem," Vol. 10, No. 2, 
pp. 207-212 (co-author, Robert Anaya). 

CULLEN, THEODORE, JR. Problem Solved: B-213, Vol. 10, No. 2, p. 224. 

DAVES, BASEL. "Fibonacci Numbers in Phys ics , " Vol. 10, No. 6, pp. 659-660. 

DEININGER, ROLF A. "Fibonacci Numbers and Water Pollution Control ," Vol. 10, No. 3, 
pp. 299-300. 

DESMOND, JAMES. Problem Proposed: H-186, Vol. 10, No. 4, p. 415. Problem Solved: 
H-186, Vol. 10, No. 4, p. 416. 

DJERVERSON, TOMAS. Problem Proposed: B-212, Vol. 10, No. 2, p. 223. Problems 
Solved: B-218, Vol. 10, No. 3, p. 336; B-219, Vol. 10, No. 3, p. 336. 

DUNCAN, R. L. "Modulo One Uniform Distribution of Certain Fibonacci-Related Sequences," 
Vol. 10, No. 3, pp. 277-280 (co-author, J . L. Brown, J r . ) . 

EDGAR, GERALD. "Perfect N-Sequences for N, N + 1, and N + 2 , " V o l . 10, No. 4, pp. 
377-380. 

ERCOLANO, JOSEPH L. "Making Golden Cuts with a Shoemaker's Knife," Vol. 10, No. 4, 
pp. 439-440. 

ERDOS, P. "On Sums of Fibonacci Numbers ," Vol. 10, No. 3, pp. 249-254 (co-author, 
R. L. Graham). 

FEINBERG, ANDREW. "Polyhedra, Pentagrams, and P l a to , " Vol. 10, No. 4, pp. 435-438. 

FERNS, H. H. Problems Proposed: H-190, Vol. 10, No. 2, p. 185; H-190, Vol. 10, No. 
4, p . 420. Problems Solved: H-190, Vol. 10, No. 4, p. 420. 

FISHER, P. F. "A Generalized Fibonacci Sequence," Vol. 10, No. 4, pp. 337-344 (co-
author, E. E. Kohlbecker). 
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FREITAG, HERTA T. Problems Solved: B-208, Vol. 10, No. 2, p . 220; B-209, Vol. 10, 
No. 2, p. 221; B-211, Vol. 10, No. 2, p. 222; B-213, Vol. 10, No. 2, p. 224; B-215, 
Vol. 10, No. 3, p. 331; B-216, Vol. 10, No. 3, p . 332; B-202, B-203, B-206, B-207, 
B-220, Vol. 10, No. 6, p. 664; B-221, Vol. 10, No. 6, p. 665; B-222, Vol. 10, No. 
6, p . 665. 

GALAMBOSi JANOS. nA Constructive Uniqueness Theorem on Representing In tegers , " 
Vol. 10, No. 6, pp. 569-570. 

GANDHI, J. M. "The Coefficients of cosh x /cos x , " Vol. 10, No. 4, pp. 349-354 (co-
author, V. S. Taneja). 

GARFIELD, RALPH. Problem Proposed: B-221, Vol. 10, No. 6, p. 664 Problems Solved: 
B-208, Vol. 10, No. 2, p. 220; B-209, Vol. 10, No. 2, p. 221; B-210, Vol. 10, No. 2, 
p. 222; B-211, Vol. 10, No. 2, p. 223; B-215, Vol. 10, No. 3, p. 331; B-216, Vol. 10, 
No. 3, p. 332; B-220, Vol. 10, No. 6, p. 664; B-221, Vol. 10, No. 6, p. 665 . 

GESSEL, IRA. Problem Proposed: H-187, Vol. 10, No. 4, p. 417. Problems Solved: 
H-187, Vol. 10, No. 4, p. 417. 

GIULI, ROBERT M. "Linear Homogeneous Difference Equations," Vol. 10, No. 3, pp. 265-
270. 

GOULD, H. W. "The Case of the Strange Binomial Identities of Professor Moriar ty ," Vol. 
10, No. 4, pp. 381-392. "A New Primali ty Criterion of Mann and Shanks and i t sRe la -
tion to a Theorem of Hermite with Extension to Fibonomials ," Vol. 10, No. 4, pp. 355-
364. "A New Greatest Common Divisor Property of the Binomial Coefficients," Vol* 
10, No. 6, pp. 579-584. "Some Combinatorial Identities of B r u c k m a n - A Systematic 
Treatment with Relation to the Older L i t e ra tu re , " Vol. 10, No. 6, pp. 613-627. 

GRAHAM, R. L. "On Sums of Fibonacci Numbers ," Vol. 10, No. 3, pp. 249-254 (co-author, 
P . Erdos). 

GRASSL, R. M. Problems Proposed: B-226, Vol. 10, No. 2, p. 218; B-214, Vol. 10, No. 
3, p . 331; B-245, Vol. 10, No. 6, p . 663. Problem Solved: B-214, Vol. 10, No. 3, 
p . 331. 

GUILLOTTE, GUY A. R. Problems Proposed: B-210, Vol. 10, No. 2, p. 222; B-232, Vol. 
10, No. 3, p. 329; B-215, Vol. 10, No. 3, p. 331; B-218, Vol. 10, No. 3, p . 335; 
B-238, Vol. 10, No. 4, p. 447; B-241, Vol. 10, No. 4, p. 447; H-200, Vol. 10, No. 6, 
p. 664; B-220, Vol. 10, No. 6, p. 664. Problems Solved: B-216, Vol. 10, No. 3, p. 
332; B-218, Vol. 10, No. 3, p . 335; B-220, Vol. 10, No. 6, p. 664. 

HAHN, HWA S. "A Counting Function of Integral n -Tuples , " Vol. 10, No. 6, pp. 609-612. 

HANSEN, RODNEY T. "Generating Identities for Fibonacci and Lucas T r i p l e s , " Vol. 10, 
No. 6, pp. 571-578. 

HESSE, DEBBY. Problem Solved: B-214, Vol. 10, No. 3, p. 331. 

HIGGINS, JOHN C. "Subsemigroups of the Additive Positive In tegers , " Vol. 10, No. 3,, pp. 
225-230. 

HILLMAN, A. P. Editor of "Elementary Problems and Solutions," Vol. 10, No. 2, pp. 318-
224; Vol. 10, No. 3, pp. 329-336; Vol. 10, No. 4, pp. 447-448; Vol. 10, No. 6, pp. 
663-666. "A Proof of Gould's Pascal Hexagon Conjecture," Vol. 10, No. 6, pp. 565-
568 (co-author, V. E. Hoggatt, J r . ) . 

HOGGATT, V. E. , JR. "Fibonacci Representat ions," Vol. 10, No. 1, pp. 1-28 (co-authors 
L. Carlitz and Richard Scoville). "Lucas Representat ions,"Vol. 10, No. 1, pp. 29-42 
(co-authors, L. Carli tz and Richard Scoville). "Fibonacci Representations of Higher 
O r d e r , " Vol. 10, No. 1, pp. 43-70 (co-authors, L. Carlitz and Richard Scoville). 
"Fibonacci Representations of Higher Order— I I , " Vol. 10, No. 1, pp. 71-80 (co-
authors, L. Carlitz and Richard Scoville). "Some General Results on Representat ions," 
Vol. 10, No. 1, pp. 81-88 (co-author, Brian Peterson). "Generalized Zeckendorf 
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Theorem," Vol. 10, No. 1, pp. 89-94. ' 'Generalized Fibonacci Numbers in Pasca l ' s 
Pyramid ," Vol. 10, No. 3, pp. 271-276. "Fun with Fibonacci at the Chess Match," 
Vol. 10, No. 4, pp. 433-434 (co-author, MarjorieBicknell). "Pel l ianRepresentat ions," 
Vol. 10, No. 5, pp. 449-488 (co-authors, L. Carlitz and Richard Scoville). "Repre-
sentations for a Special Sequence," Vol. 10, No. 5, pp. 499-518 (co-authors, L. Ca r -
litz and Richard Scoville). "Special Cases of Fibonacci Periodici ty ," Vol. 10, No. 5, 
pp. 519-522 (co-author, Judy Kramer) . "Addendum to the paper 'F ibonacci Represen-
ta t ions1 ," Vol. 10, No. 5, pp. 527-530 (co-authors, L. Carlitz and Richard Scoville). 
"Some Theorems on Completeness," Vol. 10, No. 5, pp. 551-554 (co-author, BobChow). 
"Fibonacci and Lucas Tr iang les , " Vol. 10, No. 5, pp. 555-560 (co-authors, Marjorie 
Bicknell and Ellen L. King). "A Proof of Gould's Pascal Hexagon Conjecture," Vol. 
10, No. 6, pp. 565-568 (co-author, A. P. Hillman). "ConvolutionTriangles," Vol. 10, 
No. 6, pp. 559-608 (co-author, Marjorie Bicknell). Problems Proposed: B-230, Vol. 
10, No. 2, p. 219; B-231, Vol. 10, No. 2, p. 219; B-208, Vol. 10, No. 2, p. 220; 
B-209, Vol. 10, No. 2, p. 221; B-211, Vol. 10, No. 2, p. 222; H-183, Vol. 10, No. 3 , 
p . 288; B-237, Vol. 10, No. 3, p . 330; B-216, Vol. 10, No. 3, p. 332; H-195, Vol. 10, 
No. 4, p. 413; H-201, Vol. 10, No. 6, p. 630; H-203, Vol. 10, No. 6, p. 631; B-248, 
Vol. 10, No. 6, p. 664; B-249, Vol. 10, No. 6, p. 664. Problems Solved: B-208, 
Vol. 10, No. 2, p. 220; B-211, Vol. 10, No. 2, p . 222; H-183, Vol. 10, No. 3, p. 
288; B-216, Vol. 10, No. 3 , p. 332; B-222, Vol. 10, No. 6, p. 665. 

HORADAM, A. F. "Some Propert ies of Third-Order Recurrence Relat ions," Vol. 10, No. 
2, pp. 135-145 (co-author, A. G. Shannon). 

HUNSUCKER, J . L. Problem Proposed: B-244, Vol. 10, No. 6, p, 663. 

HUNTER, J . A. H. "Fibonacci Once Again," Vol. 10, No. 2, pp. 201-202. "Back-to-Back: 
Some Interesting Relationships Between Representations of Integers in Various Bases ," 
Vol. 10, No. 2, pp. 213-217 (co-author, J o s e p h s . Madachy). Problem Solved: B-208, 
Vol. 10, No. 2, p . 220. 

IVIE, JOHN. "A General Q-Matr ix ," Vol. 10, No. 3, pp. 255-261. Problem Proposed: 
B-225, Vol. 10, No. 6, p. 666. 

JAISWAL, D. V. Problems Solved: B-214, B-215, B-216, B-217, B-218, B-219, Vol. 10, 
No. 6, p. 664. 

KARST, EDGAR. "More About Magic Squares Consisting of Different P r i m e s , " Vol. 10, 
No. 6, pp. 651-655. Problems Proposed: H-193, Vol. 10, No. 3, p. 283; B-223, 
Vol. 10, No. 6, p. 665. Problem Solved: B-223, Vol. 10, No. 6, p. 666. 

KELLER, TIMOTHY J. "Generalizations of Zeckendorf;s Theorem," Vol. 10, No. 1, pp. 
95-102. 

KING, ELLEN L. "Fibonacci and Lucas Tr iang les , " Vol. 10, No. 5, pp. 555-560 (co-
authors, Marjorie Bicknell and V. E. Hoggatt, J r . ) . 

KLAMKIN, M. S. "A Number P rob lem," Vol. 10, No. 3, p. 324. 

KLARNER, DAVID. Problem Solved: H-183, Vol. 10, No. 6, p . 634, 

KOHLBECKER, E. E. "A Generalized Fibonacci Sequence," Vol. 10, No. 4, pp. 337-344 
(co-author, P . F. Fisher) . 

KRAMER, JUDY. "Special Cases for Fibonacci Periodici ty ," Vol. 10, No. 5, pp. 519-522 
(co-author, V. E. Hoggatt, J r . ) . 

KRISHNA, H. V. Problems Proposed: B-227, Vol. 10, No. 2, p. 218; H-194, Vol. 10, No. 
3, p . 283; H-194, Vol. 10, No. 6, p. 633. Problem Solved: H-194, Vol. 10, No. 6, p. 
633. 

KUIPERS, LAWRENCE. "A Distribution Proper ty of the Sequence of Fibonacci Numbers , " 
Vol. 10, No. 4, pp. 375-376 (co-author, Jau-Shyong Shiue). 

LANG, LARRY. Problem Proposed: B-247, Vol. 10, No. 6, p. 664. 
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LINDSTROM, PETER A. Problems Solved; B-210, Vol. 10, No.. 2, p, 222; H-183, VoL 
10, No. 6, p . 634; B-220, VoL 10, No. 6, p. 664; B-221, VoL 10, No. 6, p. 665. 

LORD, GRAHAM. Problems Solved: B-202, B-203, B-204, B-205, VoL 10, No. 6, p. 664; 
B-220, Vol. 10, No. 6, p. 664; B-221, VoL 10, No. 6, p. 665; B-222, Vol. 10, No. 6, 
p . 665; B-224, VoL 10, No. 6, p. 666. 

MADACHY, JOSEPHS. "Back-to-Back: Some Interesting Relationships Between Represen-
tations of Integers in Various B a s e s / 1 VoL 10, No. 2, pp. 213-217 (co-author, J . A.H. 
Hunter). "Some New Narcissist ic Numbers ," VoL 10, No. 3, pp. 295-298. 

MANA, PHIL. Problems Proposed; B-235, VoL 10, No. 3, p. 330; B-215, VoL 10, No. 
3, p. 331. Problems Solved: B-214, VoL 10, No. 3, p. 331; B-215, VoL 10, No. 3, 
p . 331. 

McCAUSLAND, I. "A Simple Optimal Control Sequence in Te rms of Fibonacci Numbers , " 
VoL 10, No. 6, pp. 561-564. 

MELSOM, JOHN W. Problem Solved: B-220, Vol. 10, No. 6, p. 664. 

NIEDERREITER, HARALD. "Distribution of Fibonacci Numbers mod 5 k , " VoL 10, No. 4, 
pp. 373-374. 

NIVAS, DWARKA. Problem Proposed: H-204, VoL 10, No. 6, p. 631. 

NORDEN, HUGO. "Proportions and the Composer ," Vol. 10, No. 3, pp. 319-323. 

OfCONNELL, ROGER. "Representations of Integers as Sums of Fibonacci Squares ," VoL 
10, No. 1, pp. 103-111. 

PADWA, S. L. Problem Solved: H-188, VoL 10, No. 6, p. 631. 

PARKER, F . D. Problem Solved: H-180, Vol. 10, No. 3, p. 284. 

PECK, C. B. A. Problems Solved: B-208, VoL 10, No. 2, p. 220; B-210, Vol. 10, No. 
2, p. 222; B-220, VoL 10, No. 6, p. 664; B-221, VoL 10, No. 6, p. 665; B-222, VoL 
10, No. 6, p. 665. 

PELEG, REUVEN. "An Old Fibonacci Formula and Stopping Rules , " VoL 10, No. 6, p. 
661. 

PETERSON, BRIAN. "Some General Results on Representat ions," VoL 10, No. 1, pp. 8 1 -
88 (co-author, V. E. Hoggatt, J r . ) . 

PRIEST, D. Problem Solved: H-183, VoL 10, No. 6, p. 634. 

RAPHAEL, BROTHER L. "Introduction to Patton Polygons," Vol. 10, No. 4, pp. 423-428. 

ROBERTS, J. B. Problem Proposed: H-196, VoL 10, No. 4, p. 413. 

ROSELLE, D. P. "Triangular Arrays Subject to MacMahon's Conditions," Vol. 10, No. 6, 
pp. 591-597 (co-author, L. Carli tz). 

ROSS, BEVERLY. "A Lucas Number Counting Prob lem," VoL 10, No. 3, pp. 325-328. 

SCOVILLE, RICHARD. "Fibonacci Representat ions," VoL 10, No. 1, pp. 1-28 (co-authors 
L. Carlitz and V. E. Hoggatt, J r . ) . "Lucas Representat ions," VoL 10, No. 1, pp. 
29-42 (co-authors, L. Carlitz and V. E. Hoggatt, J r ) . "Fibonacci Representations of 
Higher O r d e r , " VoL 10, No. 1, pp. 43-70 (co-authors, L. Carlitz and V. E. Hoggatt, 
J r . ) . "Fibonacci Representations of Higher Order — I I , " Vol. 10, No. 1, pp. 71-80 
(co-authors, L. Carlitz and V. E. Hoggatt, J r . ) . "Pellian Representations," Vol. 10, 
No. 5, pp. 449-488 (co-authors, L. Carlitz and V. E. Hoggatt, J r . ) . "Representations 
for a Special Sequence," VoL 10, No. 5, pp. 499-518 (co-authors, L. Carlitz andV. E. 
Hoggatt, J r . ) . "Addendum to the Paper fFibonacci Representat ions1," Vol. 10, No. 5, 
pp. 527-530 (co-authors, Le Carlitz and V. E. Hoggatt, J r . ) . 
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SHANKS, DANIEL. "Fibonacci Primitive Roots , " Vol. 10, No. 2, pp. 163-168. 
SHANNON, A. G. "Some Proper t ies of Third-Order Recurrence Relat ions ," Vol. 10, No. 

2, pp. 135-145 (co-author, A. F . Horadam), Problems Solved: B-208, Vol. 10, No. 
2, p. 220; B-209, Vol. 10, No. 2, p. 221; H-180, Vol. 10, No. 3, p. 284. 

SHARP, W. E. "Fibonacci Drainage P a t t e r n s , " Vol. 10, No. 6, pp. 643-650. 
SHENTON, L. R. "Linear Difference Equations ar Generalized Continuants: Pa r t I — Al-

gebraic Developments," Vol. 10, No. 6, pp. 585-590. 
SHIUE, JAU-SHYONG. "A Distribution Property of the Sequence of Fibonacci Numbers , " 

Vol. 10, No. 4, pp. 375-376 (co-author, Lawrence Kuipers). 
SHUDDE, REXH. "A Golden Section Search Prob lem," Vol. 10, No. 4, p. 422. 
SIELAFF, RICHARD W. Problems Solved: B-220, Vol. 10, No. 6, p. 664; B-221, Vol. 10, 

No. 6, p. 665. 
SMITH, S. Problem Solved: H-183, Vol. 10, No. 6, p . 634. 
SOMER, LAWRENCE. "The Fibonacci Group and a New Proof that F p- (5 /p) s ° ( m o d P)»" 

Vol. 10, No. 4, pp. 345-348. Problems Proposed: H-197, Vol. 10, No. 4 , p. 414; 
B-224, Vol. 10, No. 6, p. 666. Problem Solved: B-224, Vol. 10, No. 6, p. 666. 

TANEJA, V. S. "The Coefficients of c o s h x / c o s x , " Vol. 10, No. 4, pp. 349-354 (co-
author, J . M. Gandhi). 

UMANSKY, HARLAN L. "A Note on Pythagorean T r i p l e t s , " Vol. 10, No. 2, pp. 203-206. 
Problem Proposed: B-233, Vol. 10, No. 3, p. 329. 

WHITNEY, RAYMOND E. Editor of "Advanced Problems and Solutions," Vol. 10, No. 2, 
pp. 185-196; Vol. 10, No. 3, pp. 283-294; Vol. 10, No. 4, pp. 413-421; Vol. 10, No. 
6, pp. 629-634. Problems Proposed: H-184, Vol. 10, No. 3, p. 289; H-188, Vol., 10, 
No. 6, p. 631. Problems Solved: H-184, Vol. 10, No. 3 , p. 289; H-188, Vol. 10, 
No. 6, p. 631 . 

WILLIAMS, H. C. "Fibonacci Numbers Obtained from Pasca l ' s Triangle with Generaliza-
tions, " V o l . 10, No. 4, pp. 405-412. 

WITZGALL, CHRISTOPH. "Fibonacci Search with Arbi t rary F i r s t Evaluation," Vol. 10, 
No. 2, pp. 113-134. 

WLODARSKI, J . "A Number Game," Vol. 10, No. 2, pp. 301-302. Problems Proposed: 
B-242, Vol. 10, No. 4, p. 448; B-243, Vol. 10, No. 4, p. 448. 

WULCZYN, GREGORY. Problems Solved: B-221, Vol. 10, No. 6, p. 665; B-222, Vol. 10, 
No. 6, p. 665. 

YALAVEGI, C. C. "Proper t ies of Fibonacci Numbers , " Vol. 10, No. 3, pp. 231-246. P r o b -
lem Proposed: H-176, VoL 10, No. 2, p. 186. Problem Solved: H-176, Vol. 10, No. 
2, p. 186. 

ZEITLIN, DAVID. "A Product Identity for Sequences Defined by w
n + 2 = d w n + l " c W n » n 
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