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A SIMPLE OPTIMAL CONTROL SEQUENCE IN TERMS FIBONACCI NUMBERS

I. McCAUSLAND
University of Toronto, Toronto, Canada

1. INTRODUCTION

It is well known that the Fibonacci numbers are encountered in the optimization of the
procedure for searching for the maximum or minimum value of a unimodal function [1-6].
The optimum search procedure can be derived by the method of dynamic programming [3, 4,
5, 6], Inthe present note it is shown that the sequence of optimal control inputs, for a
simple discrete-time system with a quadratic performance criterion, can be expressed in
terms of the Fibonacci numbers.

2., A DISCRETE-TIME SYSTEM

Consider the very simple linear discrete-time system* described by the difference
equation
@ 2k + 1) = xk) +uk) ,

where u(k) is the control input to the system at discrete time instant k, and x(k) is a state
variable of the system at the same instant. Suppose that it is desired to find the sequence of
N control inputs u(i), -+, u(N) which, starting from an initial system state x(1), gives

the minimum possible value to the summation F defined by

N
(2) F = E [x%k) + v?k)] .
k=1

The final state x(N) may be prescribed or not; assume for the present that the final state is
Zero.

This problem can easily be solved by dynamic programming [4-6]. The procedure is
to start by supposing N = 1, use the solution of that simple problem to find the solution for
N = 2, and proceed fo derive a recurrence relationship which gives the solution of the prob-
lem for larger values of N. If we define the quantity SN(X) to be the minimum value of the
summation F reached in an N-stage process starting from the initial state x, we obtain the
recurrence relationship

(3) Sy = mliln {x* +u? + Sy & + w}

¥For a discussion of discrete-time systems, see, for example, [7].

561



562 A SIMPLE OPTIMAL CONTROL SEQUENCE [Dec.

The value of Si(x), for the specified endpoint x(2) = 0, can easily be seen to be

4 S (x) = 2x?
for the control input
(5) u@) = -x ,

where the notation uy(1) means the first (and only) input of the one-stage process, and where
the initial state x is understood. In this case there is really no optimization problem, as
the specification of the final endpoint leaves no alternative but to choose u = -x as givenby
(5). Having obtained the solution described by (4) and (5), however, we can proceed to find
Sy(x) by substitution in (3) as follows:

(6) Sp(x) = min {x2 + u? + 2(x + u)?}
u

Performing the minimization operation by differentiating the expression in braces with re-
spect to u, we find that the optimum value of u is given by

(1) ud) = - 2x ,

(95]

where the notation u,(l) represents the first input of the two-stage process. Substituting
(7) in (6), we obtain

®) 500 = 3 x?
Based on Equations (4) and (8), suppose that
9) 8.(x) = K(N)x% .

N

SN(x) can be found by performing the minimizing operation involved in the expression
(10) Sy® = min{x? +u? + KN - Dx +w?} .

u
This minimization gives the value of u to be

_ K(N -1)
(11) UN(].) = m_—ly—_ﬁ X .

Substitution of (11) into (10) leads to the result

RS- CELELY
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We see from (12) that, if K(N - 1) is a rational number, K(N) will alsobe rational. There-
fore, because K(2) is rational as shown by Eq. (8), K(N) is rational for all values of N.
If K(N) is expressed in the form A(N)/B(N), where A and B are integers with no com-
mon factor, the following results can be derived:

13) AN) _ 2A(N - 1) + BN - 1)
B(N) AN - 1) + BN - 1)

(14) AN) = 2AN - 1) + BN - 1)
(15) B(N) = AN - 1) + BN - 1).

The two first-order difference equations (14) and (15) can be expressed as a second-order

difference equation (in either A or B) of the form
(16) AN +1) - 3AN) + AN -1) =0

Compare Eq. (16) with the following equation for the Fibonacci numbers F (n) for val-

ues of n separated by two units instead of one:

am Fn + 2) - 3F(n) + Fo - 2) = 0 .

Equation (17) can easily be obtained from the basic equation for the Fibonacci numbers
(18) Fk) = Fk - 1) + Fk - 2)

by taking k = n, n+1, n+2, and manipulating the three equations so obtained. Compar-
ing Egs. (16) and (17), and using the initial conditions given by Eq. (8), it is found that K(N)

can be expressed in the form

(19) KN) = —FeNn -

where F(k) is the Fibonacci number defined by (18) with initial conditions F(0) = 0, F(1) =
1. Equation (11) leads to the result

_ _F(2N - 1)
(20) uN(l) = W X o

This result shows that the optimal control input is a function of the present state and the num-
ber of stages to go to the end of the process.

If the input given by Eq. (20) is applied to the system in initial state x(1), the next state
x(2) is given by
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. FeN-1)
x@) [1 - 'T(ﬁf_] x
(21)
_ FEN - 2)
- Trew 0 -

The next input uN(Z) can be expressed in the form

-F(2N - 3) F@2N - 2)

uw®@ = 5er—y —Fom o W
(22)
_ _F(N - 3)
= TON x(1) .

The sequence of optimal control inputs uN(i) can therefore be expressed in the form

-F(@2N - 2i + 1)

up@ = TGN x(1)

(23)
@i=1,°+,N).

If the final state is unspecified and therefore allowed to take on any value, the value of
the last control input uN(N) is zero, and the values of K(N) and uN(l) can be expressed
in the forms

(24) K(N) = ﬁ%z%)ﬁ
_ _F(2N - 2)
(25) uN(l) = FeNn—1 X

The optimal sequence of control inputs uN(i) is in this case given by

(26) @ = EEE=2) xq)

i=1,°",N .

These results are discussed more fully, and compared with the optimal control input

for a continuous-time system, in [6].
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[Continued on page 608. |




A PROOF OF GOULD’S PASCAL HEXAGON CONJECTURE

A. P. HILLMAN
University of New Mexico, Albuguergue, New Mexico
and
V. E. HOGGATT, JR.
San Jose State University, San Jose, California

The binomial coefficients
_[(n-1 n-1 _ n _[n+1
Bi“(k-l) » B (k) , B3“(k+1) ’ B4‘(k+1>’
) n+1 _ n
Bs K ¢ B = k-1

form a regular hexagon in the Pascal triangle. The identity

]

]

(2) B1B3B5 = BZB4BG

of Verner E. Hoggatt, Jr., and Walter Hansell [1] has inspired a number of results includ-
ing Henry W. Gould's remarkable conjecture that

(3) ng(Bi,B3,B5) = ng(Bg,B4,Bg)

for all integers k and n with 0 < k < n. Gould also had evidence of analogous results in-

cluding the similar formula for the Fibonomial coefficients

m = LU LY
“) { r f =F F 4 Fori /F1F2 Fr »

in which F  is the n® Fibonacci number. (See [2] and [3].)

In this paper, we prove a generalized Gould hexagon theorem that includes (3) and the
analogous property for the Fibonomial coefficients { III,I} .

Let a;, ay, a3, *++ be a sequence of nonzero integers such that both

(5) gcd(am, a ) I a n
and
(6) gcd(am, a. +n) | a,

forall m and n in Z° = {1, 2, 3, *++}. Let
565



566 A PROOF OF GOULD S PASCAL HEXAGON CONJECT URE [Dec.

™ [I(r)l] =5 [I;'l] R W am-r+l/ala2 Ay
for m and r in Z' with 1=r=m.

If an = n, then [1;1 is the binomial coefficient (IE), which is well known to be an
integer for m and r in Z' with 0 = r =m. If a, is the Fibonacci number Fn, then
[1?] is the Fibonomial coefficient {1;1} given in (4); these coefficients are also known to be
integers. In a later paper we shall show that conditions (5) and (6) imply that each general-
ized binomial coefficient [I;l] is an integer. Here we assume this result in our proof of a
generalized Gould hexagon property.

Let p be a fixed positive prime. For all nonzero integers a let E(a) denote the
greatest integer e such that pe 'a.

In terms of this exponent function E, one can translate our hypotheses (5) and (6) into

the two following statements:
(8) min {E(a ), E(a,)} = Efa,)
Q) min {E(a ), E(a,)} = E@p ) -

We now establish the following result:
Lemma 1. Forall r and s in Z+, no one of the integers

(10) E(ar), E(as), E(ar+s)

is smaller than the other two integers in (10), i.e., the minimum integer in (10) occurs at
least twice in (10).
Proof. If E(ar+s) is a minimum of (10), we see from (8) that at least one of E(ar)

and E(as) does not exceed the minimum E(a ) and hence is also a minimum in (10). If

T+8
either E(ar) or E(as) is a minimum in (10), then one can use (9) to show similarly that
the minimum in (10) occurs at least twice in (10).

A

Using the definition (7) of the generalized binomial coefficients [I;lj » one can readily
establish the proportionality relation

r+s-1 r+s-1 r+s| _ . .
(11) [r—l]'[ - ]’[r]_ar'as'ar+s'

This proportion and Lemma 1 immediately give us

Lemma 2. The minimum integer in

(12) E ([r 2o 1]) E(‘:r Ty 1:') ’ E([r r S])

occurs at least twice in (12). That is, if u, v, w are the terms of (12) in some order and

u<w then u =v.
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Now let

n n-17 n - 1
CO:[k] 3 Ci:[k—l ) Cz=[ k ] 3 C3=[k3‘1] 3
_In+1 _fn+1 _ n
co=[8i1] o= [Pt e [k 2]

The generalized Hoggatt-Hansell identity

(13)

(14) CiC3C5 = CyC4Cq
is established in a straightforward manner. We now turn to the generalized Gould property
(15) ged(Cy,C3,C5) = ged(Cy,Cy,Cy)
Let Cy be as in (13) and let e = E(Ci) for 0 < i< 6. Then (14) implies
ey +e3+e; = € teyteg .
The Gould property (15) is equivalent to having (for all primes p)
@anm) min(e;, e3,e5) = min(ey,ey,eq)

If (17) were not true, then either

(18) e < min(ey, es,e5) for some i in {2,4,6}
or
(19) e < min(e;, ey, €4) for some j in {1,3, 5} .

We now assume the specific case

(20) e; < min(ey, ey, eq)

of (19) and show that (20) leads to a contradiction; the other cases of (18) and (19) lead to
contradictions similarly.

The special case of (12) in which r =k and s =n -~k is

(21) ey, €y, € .

From (20) we have e; < ey, This and Lemma 2 applied to (21) give us e; = ¢ .
Now the inequality e; < e, from (20) and e; = ey tell us that ey < e;. The case of
(12) with r =k+1 and s =n -k is
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(22) € €35 €4 .

Using e; < e, and applying Lemma 2 to (22) we find that e; = es.
The inequality e; < eg from (20) and e; = ey lead to ey < eg. The case of (12) with
r=k and s=n-k+1 is

(23) €gs €ps €5 .

Since ey < eg Lemma 2 applied to (23) gives us e; = e
Thus we have shown that (20) implies

(24) e = e; = e3 = e < min(ey, ey e4) .

But it follows from (24) that e; + e3 +e; < e; + ¢, + €5 and this contradicts the consequence
(16) of the Hoggatt-Hansell identity (14). Hence assumption (20) is false. Similarly, the
other cases of (18) and (19) lead to contradictions. Therefore (17) istrue and the generalized
Gould property (15) is established.

It is now natural for people with Fibonacci interests to ask if properties (5) and (6) are

true for sequences {an} satisfying

(25) 849 = 03 4 - d:—ln for n=1,2,3,¢°°",

with ¢ and d fixed integers. In a later paper, we shall show that if
(26) ged(c,d) = 1, a =1, and a, = ¢

then a sequence {an} satisfying (25) has properties (5) and (6) and hence it gives rise to
generalized binomial coefficients [?] that are integers with the Gould hexagon property
(15).
If one drops the condition ged(c,d) = 1 in (26), then { an} need not have properties
(5) and (6) and the [?] need not have the Gould hexagon property. An example is the
sequence
1, 2, 6, 16, 44, 120, 328, ***

= 2a + Zan. For this sequence, the [T] are all inte-

2 n+l
gers but the Gould hexagon property (15) is not true when n = 5 and k = 2.

with the recursion relation a.

REFERENCES
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[Continued on page 598. ]



A CONSTRUCTIVE UNIQUENESS THEOREM ON REPRESENTING INTEGERS

JANOS GALAMBOS
Temple University, Philadelphia, Pennsylvania

Let Fn be the nth Fibonacci number, i.e., F; =1, ¥y, =2, and Fn = Fn—l +
Fn—z for n = 3, It is well known [1] that every integer N = 1 has a unique representation
(49) N=F +F, +:0+F,

] 1y ol
such that
2) =1, i, - i = 2 for §j = 2.

i1

Conversely, if for all the integers N =1,
(3a) N =a, +a, +cec + a;

is unique under (2), then aj = Fj for all j, i.e., the uniqueness of (1) under (2) character-
izes the Fibonacci sequence. Generalizing this theorem, I shall prove in the present note
that at most one increasing sequence can represent uniquely all the integers N = 1 as sums
of its elements under a givenconstraint and I shall give a combinatorial formula for this only
possible sequence.

Let ey, €3, **+ be non-negative integers and let C be a property which classifies
each finite ordered set (e, ey, *°+, e,) into one of the two categories, those which possess
C and those which do not. Denote by C(e) the collection of all the sequences satisfying C.

Let a4 < ay < «+- be positive integers. Assume that every integer N >1 has a

unique representation in the form

(3) N = Zea, , {e;} € Cle)
and it is further assumed that
(4) if a = N < a1 then e #0 .

My aim is to prove the following
Theorem. If the property C is expressible independently of a3, aj, «-+ then there
is at most one sequence 0 < a; < ay < .+- for which the representation (3) and (4) is unique.
In this case, a; =1 and for n> 1,
n
(5) a4 = 1 +Zk(n,d,c) s
d=1

569



570 CONSTRUCTIVE UNIQUENESS THEOREM ON REPRESENTING INTEGERS Dec. 1972

where k(n,d,C) is the number of n-vectors (e;, e;, +++, e,) satisfying C and such that
exactly d of its coordinates differ from zero.

Before giving its proof, I wish to make some remarks on the theorem itself and on its
applications. First of all, I want to emphasize the second part of the theorem, namely, that
the sequence a, is explicitly determined. In several concrete cases when the structure of
C(e) is given, the uniqueness of {ai} can be shown by a simple argument but (5) is not ob-
vious even in these cases, and for a general C(e) the usual argument for the uniqueness,
too, seems to be very complicated, if it works at all, since several cases should be distin-
guished, The formula (5) is very useful at obtaining information on the number of non-zero
terms in (3) even if no explicit formula for k(n,d,C) is known. As an example, I mention a
recent work of A. Oppenheim. Generalizing (1), he considered the following problem (per-
sonal communication). Let k., j =1 be given positive integers and assume that (3a) is
unique under the assumption that the first non-zero term in ij - ij_1 - kl, ij+1 - ij - kz, ree
is positivefor all j = 2. In our notations itmeans that C(e) consists of all (ey, ey, *++, ep),
th and the (j +1)St one
1 mj+1 - kz, *** has the property that
the first non-zero term is positive. A. Oppenheim determined the sequences kj for which

n=> 2, where ej is either zero or one and if the gap between the j

in (e, ey =+, €y) is m]., then for all j, mj-k

such a representation exists (to be published). In our approach we obtain a construction for
the corresponding a's though here k(n,d,C) is a complicated expression. However, this
combinatorial function has already been investigated in much details since it has close rela-
tions to f-expansions, see [3], which has a wide literature. Two special cases of this prob-
lem of Oppenheim, namely, when all kj = 2, or more generally, when for all j, k. =Kk,
have been investigated earlier, The case kj = 2 for all j is simply the condition (2), hence
the corresponding sequence a]. is the Fibonacci sequence and the formula (5) gives back its
relation to the Pascal triangle, When for all j, kj =k, we get the generalized Fibonacci
sequence introduced by Daykin [1], the original argument for the validity of (5) being fairly
complicated even for this simple case. In my recent paper [2], I obtained (5) for the gener-
alized Fibonacci numbers, and actually that investigationled to the discovery of the shortproof
of this general theorem, which now follows.

Proof. First of all, note that (3) and (4) imply that there is aone-to-one correspondence

between the integers 1 < N < a, and the set of n-vectors (e;, ey, *°*, ey) Cle). Asa

+1
matter of fact, in view of (4), for any (ey, €3, *=+, ep) belonging to Cf(e),

(6) ea; + €8y + ccr +epay < anyy

namely, if the reversal of the inequality (6) apply, then, putting M for the left-hand side of
(6), in view of (4), M would have a representation with an a., j = n+ 1, takingpart, which:
by the definition of M, contradicts the uniqueness of (3). The converse of the one-to-one
correspondence in question is obvious by (4).

From this observation the proof is easily completed. Cancel those terms in (3) for which

e]. = 0, hence (3) determines a function d(N), the number of non-zero terms in (3). Since

[Continued on page 598. ]



GENERATING IDENTITIES FOR FIBONACCI AND LUCAS TRIPLES

RODNEY T. HANSEN
Montana State University, Bozeman, Montana

Using the generating functions of

00 0
{Fn+m}n=0 and {Ln+m }n=0 !

th .. . th
where Fn +m denotes the (n +m) Fibonacci number and Ln 4 denotes the (n + m)

Lucas number, many basic identities are easily deduced. From certain of these identities

and the generating functions, we obtain identities for the triples FquFr’ FquLr’ F Lqu,

and LquLr’ where p, g, and r are fixed integers.

To derive the desired generating functions we recall that

n+m n+m
_ o - B _ nt+m n+m
(0) Fum = —a—p— &d L, =@ + B
where
_1-+3% _ 1+ 45
¢ = ——— and B == .

Note that o and B are the roots of the equation x% -x -1 = 0, and hence a+8 =1

off = -1, The generating functions of

g T
n-+m n=0

where m is any fixed integer is found using the given definition of Fn 4m° We have
0

co
)
n+m* a-f
n=0 =0
o0 ]
ﬁ[am z:anxn _ ﬁmE :ann

]

n=0 n=0
1) 1 m m 1
. -s[a = - —-—wx]
_ @ - ™) - ap@™t - g™k
- ﬁ (1 - ox)(d - li’x}
_ F + Fm 1
1-x-x°

571
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- .
1 is found to be
n=0

i . L +L_ x
@ S, - R ml
n=-; 1 -x - x2

In a similar fashion the generating function of {Ln +m

(Any reader who is unfamiliar with the general theory of generating functions will find refer-
ences [1], [2], [3], and [4] enlightening.)

Before considering important special cases of the above results, two lemmas are given
which are proved by appropriate substitution of formulas (0).

Lemma 1. FnLn =F n € Z, the set of integers.

2n’

Lemma 2. FnLn-l + Fn-‘an = 2F2n—1’

In utilizing formulas (1) and (2) to generate basic identities, we must first evaluate the

ne Z.

formulas at specific values of m. It is sufficient for our purposes to consider the cases
m=-2, -1, 0, 1, 2, 3, 4.

SPECIAL CASES OF FORMULAS (1) AND (2)

(Let 1 -x-x%2 =A.)

0 0
L T s T EL a2 th 3o
n-2 - A - A : n-2 A A

n=0 n=0

0 0
I R S SR U ZL I e S T

z:n-lX = A N ’ n-1 A =T A

n=0 n=0

00 (o]

Fxn=F0+F—1X:0+x an=L0+L_1x=2__x
n A ’ A ! Z n A A

n=0 =0
. xn_F1+FOX_1+0x ZL Aot et 1aax
n+l - A - A ’ n+l A A

n=0 n=0

0 0
N T W WS I N Wl S R
2% T A TA J Z n+2 .y A

n=0 n=0

o0 o0

F n_F3+F2X_2+x L n _ 73 2 4 + 3x
Z n+3* = Ay N ’ Z n+3® = A A
=0

n=0
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0 o0
+
E:F Xn=F4 F3x___3+2x E:L xn=L4+I"3X=7+4x
n+4 A A ? n+4 A A :

n=0 n=0

Using the fact that two series are equal if and only if the corresponding coefficients are
equal, we now find several elementary identities.

Since
2 -x _ 1 + 1 -x
A T A A
it follows that
0 0 ]
n 2 : n 2 : n
Ln X = Fn+1 X+ Fn—l X
n=0 n=0 n=0
o0
n
a Z_(Fnﬂ +F L) E
n=0
and hence
+ . :
Lemma 3. Ln = Fn+1 + Fn—l’ n e Z U {0}, the set of nonnegative integers.

Note from definition (0) that

-n a - B a-B n_Bn

(0)

ntl o - B n+l
WY e = (DR
and
L-n = o™ +ﬁ-n - (aB)-n(an +ﬁn)
(") o

_ n
(-1) L, = (-1) L,
for any positive integer n.
Returning to Lemma 3, we now observe from this lemma and "definitions' (0') and (0")
that
F(—n)—l = F--(n—l) + F-(n+1)
= (p0 Dy 4 ()

F (-n)+1 *

n+l

n
-1) [Fn—l + Fn+1]

n
0L =L .
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Hence Lemma 3 holds for all integers n.

In a similar manner the additional lemmas are found.

Lemma 4. 5F_ = L + L , n e Z.
_— n n+l n-1

Lemma 5. 2Fn+1 = Fn + Ln = Fn+2 + Fn-l’ ne Z.
Lemma 6. 2F =F -L, neZ
—_— n-1 n n

Lemma 7. Fn+3 = Fn+1 + Ln—l’ neZz.
Lemma 8. 3Fn = Ln+1 - Fn-—l’ ne Z.
Lemma 9. 3Ln+2 = Ln +Ln+4, ne Z.
Lemma 10. 3Fn+2 = Fn + Fn+4’ ne Z.
Lemma 11. 2Fn+1 = Ln+1 - Fn—z’ n e Z.
Lemma 12. Lrl + Fn = Fn+2 + Fn—l’ ne Z.

Although these results are of interest in themselves, their principal use is as lemmas
to more profound results. The reader is encouraged to consider additional special cases of
formulas (0), and then generate additional Fibonacci and Lucas identities.

The next three results are also generated from formulas (1) and (2). These fundamental
identities are essential to our development of Fibonacci and Lucas triples.

Theorem 1. Fan +F L L

n-1"m-1 -~ “n+m-1°
Proof. Let m be any fixed integer. Then

for any n,m € Z.

0 0 ]
n n n
Z (Fan *Fyabma s = Lmz FoX *Lhpa E : Foa¥
n=0

n=0 n=0

x 1 -x
m A m-1 ~ A

Lm—l + (Lm - Lm—l x
A

Lm—l + Lm— 2x

A

o0
n
Z Ln+m-1 X ’

n=0

1

by formula (2). Results (0') and (0") complete the proof.

From a development similar to the above proof, we find a companion result to Theorem

1.
Theorem 2. FnFm + Fn—lFm—l = Fn+m—1’ for any n,m € Z.
Theorem 3. Lan + Ln_le_1 = Ln+m + Ln_‘_m_2 = 5Fn+m—1’ for any n,m € Z.
Proof. Since L + L = 5F by Lemma 4, we need only consider the
— n+m n+m-2 n+m-1

first part of the identity. Let m be any fixed integer. Now
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00 o0 0
n n n
+ = § :
E (Lan Ln—le—l )x Lm Z Lnx * Lm~1 Ln—lx
n=0

n=0 n=0

2 - x -1 + 3x
Lm< A )+Lm~1< iy )

) (L, + @&, - Lo +[e, ;+ @, 4 -5 )]x
A
) [Lm + Lm_z] + [Lm_1 + (Lm_1 - Lm~2)]x
A
_ Lm + Lm_lx . Lm_2 + Lm_gx
A A

[>e]
_ n
- Z (Ln+m Ln+m—2)X

n=0

Aided by the partial fractions technique we find the final result needed to generate the

specified Fibonacci and Lucas triples. It is the following:

( +aqx) (r +tx) _ pr+ (pt + gr)x + gtx?
A A Az
-qt . r + gt) + (pt + gr - qt)x

A AZ

(3

The identities are now found by convoluting series (generating functions) of the forms

(1) and (2). We begin by specifying m and s as fixed integers. Now

oo

<]
Fm * Fm-1x Ls * Ls—lx n n
® F X L X
A A n-+m n+s

n=0 n=0
(4)
0 n
n
- Z Z Fk+m Ln—k—!-sx :
n=0 k=0

and by Eq. (3) this product also equals

_Fm-lLs—l + (FmLs + Fm—lLs—l) + (FmLs—l * Fm—lLs - Fm—lLs—l )z
A A
= _Fm-«lLS—l + Lm+s~-1 + (Fm-lLs * Fm-zbs—l )

A A
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by Theorem 1 and substitution of Fm-z for Fm - Fm-l .
I B Ml T S
= - — + _
m-1"s-1 A A A

by Theorem 1

(=] o0 00
= _ n n . n
= Fralsa Z Fpa® E :Ln+m+s—1x Z: Fpa®

n=0 n=0 n=0
by definition of generating functions (1) and (2)

o )

n
-\ n n
= Z[_Fm-]LLs—anﬂ]x + 2 :ZFk+1Ln—k+m+s-lx

n=0 n=0 k=0

© n

- r_ n
) - z [ FmalLs-—anﬂ + Z Fk+1Ln-k+m+s—1:l X
n=0 k=0

By equating the coefficients of series (4) and (5), the first identity is deduced. It may be ex-

pressed as

n n
E From™n-k+s = Fm-1PsaFna * Z P41t n-kam+s-1
k=0 k=0

or
n

Fm—lLs.—lk-‘rwl = Z (Fk+1Ln—k+m+s-1 * Fk+an-k+s) °
k=0

Letting p=m-1, g=n+1, and r = s -1, the identity becomes
Theorem 4,
q-1
FFL =% (F _.L
P agr Lo k¥l ptgir-k-1
k=0

* Fp+k+1Lq+r—k) ?

for any integers p, g, and r.
One notes the need of definitions (0') and (0") if any of the above integers is negative.
Following the procedure given above, aided by the given lemmas, Theorems 1-3, and

definitions, two additional identities are found. The first is a result of the convolution of
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F +F X
m m-1

A
with

Ft + Ft-—
A

1X

9

and the. second is determined by the convolution of

L+ L X
m m-1

with
Ly + L 4%
A
Theorem 5.
r-1
"pfqr T Z Fpsgac Trk = Fpucs Fragk) 2
k=0
for any p,q,r € Z.
Theorem 6.
p-1
FLL, = Z GF L F ornen ~ LosertPporaic)
k=0

forany p, q, r € Z.

Theorem 7.

LLL =

p-2
p g T 5 § :(Fq+r+k+1Lp-k - Fp+r-qu+k+1) - Fp+q+r - Lp+qu+1 i

k=0

for any p, q, r € Z.
Proof. From Lemma 3, we obtain
LquLr = (Fp+1 + Fp—l )Lqu
= + .
Fp+1Lqu Fp—quLr

Now from Theorem 6, it follows that

577
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p

LquLr = E :(SFp—k+1Fq+r+k+1 - Lq+k+1Lp+r—k+1)
k=0

pP-2
* E ;(BFp—k—qu+r+k+1 = Lt Ppar-k-1)
=0

p-2

Z |:5]5‘<;1+r+k+1(Fp-kﬂ * Fp-k—l) - Lq+k+1(Lp+r—k+1 + Lp+r—k-1)]
k=0

) + (5F L

+ (5F oF )

ptgt+r Lp+qu+2 1Fp+q+r+1 N p+q+1Lr+1

p-2
5§ :(Fq+r+k+1Lp-k - Fp+r+qu+k+1)
k=0

-+

( L ..)

5Fp+q+r+2 - 5Fp+q+r+1 * Lp+q T+l

by Lemmas 2 and 4 and Theorem 4

p-2
=9 2 :(Fq+r-|k+1Lp—k - Fp+r—-qu+k+l) - Fp+q+r - Lp+qu+l *
k=0

Many corollaries to thelast three theorems are immediate by making substitution(s) for
p, 9, and r, respectively, in the given identities. The formulation and derivation of these

results we leave to the reader.
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A NEW GREATEST COMMON DIVISOR PROPERTY OF THE BINOMIAL COEFFICIENTS

H.W. GOULD
West Virginia University, Morgantown, West Virginia

1. INTRODUCTION

The chief object of this paper is to announce the following:
Conjecture. Let k and n be any integers with 0 < k < n, and

(E) = ni/kt (o - k)

be the ordinary binomial coefficients. Then

an af("7) () (R (2 E) (na)- ()

The consideration of this matter was prompted by a result due to Hoggatt and Hansell
[ 3] which is that

an ()@ -G

The six coefficients involved form a hexagonal pattern around (ﬁ in the usual Pascal tri-
angle display. See the diagram in [1] where I called (1.2) a Star of David Property. The
new conjecture gives a new Star of David property. What is more, I also conjecture that

(1.1) holds for Fibonomial coefficients where n! is replaced by
with

being the ordinary Fibonacci numbers. The manner in which powers of a prime enter as
factors of such generalized coefficients suggests that there are many other arrays in which
the new arithmetic Star of David property holds., We shall also exhibit some entirely novel
pseudo-binomial coefficient arrays where the conjecture holds. It would be of great interest
to establish necessary and/or sufficient conditions for the new conjecture. I am certain the
conjecture is correct but hesitate to publish a proof as I believe my original proof has aflaw.
Computational results will be exhibited here as evidence.
579
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2. EVIDENCE

Table 1 below shows the situation for 21 rows of the Pascal triangle. Shown here is

ed n-1 n n+1
& k J'\k-1/'\k+1)§"
for 0 < k < n/2. In every case the value is identical with
n-1 n n+1
g0d3<k-1)’(k+1>’( k )}

Spot checks for dozens of other values have failed to turn up any counterexample. In working

with numerical examples, it is convenient to draw the Pascal triangle in the usual manner as

1
1 1
1 2 1
1 3 3 1
1 22 23 22 1
1 5 2:5 2+5 5 1
1 2:3 35 22.5 35 23 1
1 7 37 5+7 57 37 7 1

but in factored form. The way in which the primes appear suggests both (1.1) and (1.2), Be-
cause of the recurrence relation governing formation of the binomial coefficients (and the
same principle applies to the Fibonomial coefficients) the occurrence of prime factors forms
a triangular pattern, Thus, if

then

where ¢ = min (a,b). But ¢ may be larger!
Let us denote the set of coefficients

{27 () (23
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by <] and the set

((E23)- () ()

by l> s Oor more generally, we may sometimes use this suggestive notation for the corres-
ponding sets in any general array. If we must be explicit we can write <ln,k and ‘>n,k’
to indicate the values of n and k used. Clearly, if we compute a table of g.c.d. < and
the table is symmetrical with an entry in the k spot on row n the same as the entry in the
n - k spot, then the property (1.1) holds. This is because of the similar symmetry for the
Pascal triangle itself. Table 1, therefore, lists g.c.d. <} for 0 £k <n/2 only. The

original table was drawn up on a very large sheet of paper and is not easyto reproduce here.

Table 1

n[0 1 2 3 4 k [n/2]
0

1

2

3

4

5

6 5

7 1

8 7 7

9 2 14

3 6 42

11 5 6

Jury
[N]

11 11 33 66

1 11 11 33

13 13 143 143 429

7 91 91 143 143

7 91 13 143 1715

4 4 28 52 26 286
17 68 68 68 442 442 4862

3 51 204 204 102 442 442
19 57 969 3876 1938 646 8398 8398

L e e e e e
© W N o U kW

[uny

S
S T T = e = T = T = T W
O T T T T = T S S S e O T )
O = = = T U S

[\
[=)

A result like (1.1) using l. c. m. is in general false. The first simple counter-example is

tem <[g ; = 1cm§<f) : (3) , (;)} =lem (@2, 1,6 =6 ,
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lem >, | = lem ;(g) , (g) , (‘f)z = lem (1, 3, 4) = 12 .

There are, however, numerous cases where the 1. c. m. property does hold.

whereas

Except for the first value, it is interesting to note that the sequence of middle num-
bers in Table 1, i.e., 1,1, 1, 5, 7, 42, 66, 429, 715, 4862, 8398, ***, are alternately

Catalan numbers or one-half Catalan numbers. More precisely: let n > 1. Then

w el (2 (2] o) ()

We omit the proof.

3. THE FIBONOMIAL CASE

The corresponding result for the Fibonomial coefficients to (1.1) is true because these
numbers satisfy a recurrence relation similar to that for the ordinary binomial coefficients.
We should remark that the same may be said for the Gaussian or g-binomial coefficients.
We omit the details of the proof.

To illustrate the relation (1.1) for Fibonomial coefficients, we give in Table 2 some
specimen values. The table starts with n = 6, the first row where the g.c.d. > 1 for any
k.

Table 2
n|] 0 1 2 3 +-+ k +++ [n/2]
6] 1 1 1 5
711 1 1 4
8/ 1 1 1 13 52
9/1 11 7 9
10/ 1 1 1 17 119 1547
11| 1 1 1 55 187 1309

Again one finds a formula for Fibonomial Catalan numbers, but it is not as simple as (2.1).

4. PSEUDO-BINOMIAL COEFFICIENTS

Scrutiny of the discussion above for (1.1) shows that the key to the pattern of prime
powers lies in the recurrence relation used. However, we may evidently dispense with the
recurrence relation and still have (1.1). To illustrate, we offer the array on the following

page of pseudo-binomial coefficients.
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1
1 1
1 1 1
1 2 2 1
1 3 2°3 3 1
1 5 35 35 5 1
1 7 57 3:5.7 57 7 1
1 11 7-11 5:7.11 5:7.11 7-11 11 1
1 13 11.13 7-11-13 5¢7-11-13 7-11-13 11-13 13 1

Here we have imposed a perfectly regular pattern of appearance of prime factors. It is easy
to see that (1.1) must hold for the pseudo-binomial coefficients P(n,k). A few specimen rows
from the g.c.d. triangle are:

5
7 7
11 7-11 11
13 11.13 1113 13
17 13-17 11.13-17 13.17 17

where we have tabulated the g.c.d. for 3 Sk <n -3 and 6 < n < 10.

It is also evident that the resulting array itself possesses property (1.1), and this may
be seen to repeat forever. The l.c.m. of the two sets of coefficients in (1.1) fail to be equal
for the pseudo-binomial coefficients for k =0 (n 2> 2), and for k=2 (0 =5), k=3
m=T7, k=4 (n=29), etc. We omit a discussion of the precise behavior of the least
common multiples, but it is clearly a matter to be investigated. I have been unable to find
an array in which the g.c.d. property and 1. c. m. property both hold always. Even 1. c. m.
arrays are hard to come by.

In contrast to the Pascal triangle and the Fibonomial triangle, the array of pseudo-
binomial coefficients does not have the property (1.2) of Hoggatt-Hansell.

Here is still another pseudo-binomial array having the Star of David property (1.1):

1
1 1
1 2 1
1 3 3 1
1 7 3.7 7 1
1 1 7 7 1 1
1 23 2 2.7 2 23 1

1 52 2.52 252 252 252 52 1
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OF THE BINOMIAL COEFFICIENTS :

One may easily extend such a triangle in an infinity of ways.
These are the types of general array suggested by our work, arrays in which the entry
of primes occurs in carefully delineated triangles. The most general such triangle has not

been written out.
5. MULTINOMIALS

It is, of course, tempting to go further. In [1], [2], [4] will be found methods for
finding equal products of any number of binomial and multinomial coefficients in general.
Whenever a triangle pattern of prime entry appears, one suspects that interesting g. c.d. and
l.c. m. properties will hold in certain cases. Computer calculations would be very useful to
make further conjectures, but already I have checked numerous cases and found interesting
results. When one realizes that Scharff, Rine, and Gould [2] have found relations such as

DG GG
ERIE e e (s

it becomes clear that there is much more to be investigated. When, for example, are the

=]

TN
w B
T+
+ +
W
N’
/-\
B
(]

]
N
=]
(]
+ 1
= o
N
N
=]
T+

g.c.d.'s of the above sets of seven coefficients equal? Not in general, as examples are
easily shown to the contrary. A computer can easily generate as many tables of this sort as
needed. We should remark that the detailed computer print-out in [2] will be deposited in
the Fibonacci Bibliographical Center for reference.

In [1] I pointed out that (1.2) generalizes to

(e - o) (i)

and it is tempting to see if the g. c.d. property holds here, A simple counter-example, n =
8, k =3, a =2 suffices to show that the g.c.d. Star of David property does not hold in
general here. Again, however, abundant true examples exist.

ADDENDUM

Property (1.1) was first noted by me around December 1971. Since writing the present
paper (1.1) was mentioned to Hoggatt (telephone call, August 3, 1972), and I have now heard
from him (telephone call August 7) that he and A. P. Hillman [5] have proved conjecture (1.1)
as well as for the Fibonomial case and for arrays in general where certain recurrenceshold,
The method is one due to Hillman based on iteration and the recurrence. Clearly we are at
the openingof a new chapter in the discovery of interesting arithmetic properties of arrays of

numbers.
[Continued on page 628. ]



LINEAR DIFFERENCE EQUATIONS AND GENERALIZED CONTINUANTS
PART [: ALGEBRAIC DEVELOPMENTS

L. R. SHENTON
Computer Center,University of Georgia, Athens, Georgia

1. INTRODUCTION
A continuant determinant (or matrix) has elements in the diagonals through (1,1), (1,2),
and (2,1) only, and zeros elsewhere. We can use the notation Ks(higgil,) for the sth order
continuant, where

hy g ©
gi hy g
@ 0 g
gS
g5 hg

(s)

As is well known, by expanding this by its last row and column, we find the recurrence rela-
tion (omitting the arguments for brevity)

) K =hK

s sB¥s1 858K § =2, 3,0

with Ky =1, Kj = hy. Note that KS is unchanged in value if the signs are changed for any
subset of the g's along with the corresponding subset of the g'’s. Again note that the usual
Fibonacci sequence arises from either g = 1, g;\ = -1 (or of course gy = -1, g;\ =1)
or g, =g) =1 =V-1).

Many elementary properties of recursive schemes such as (2) are well known and in
particular Brother Alfred Brousseau [1] has given some of these in the case when the coef-
ficients are constants.

The question arises as to what happens when we add diagonals to (1) through (1,3) and
(3,1) and produce a 5-diagonal determinant. We shall call a (2s +1) diagonal determinant
(with elements in the main diagonal and the s super-diagonals, and the s sub-diagonals) a
continuant of degree s. The recursions followed by these generalized continuants have been
studied by H. D. Ursell [2]. In fact, Ursell gives the following table which refers to the or-

der of the difference equation satisfied by a continuant of degree s:

Order of Recurrence Relation

Degree s 1 2 3 4 5 6

Symmetric Case 2 5 15 49 169 604

Unsymmetric Case 2 6 20 70 252 924
585
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The rate of increase of the difference equation order is very remarkable.

2. THE FIVE DIAGONAL SYMMETRIC CONTINUANT

We use the notation Ks(hi, gy, fj) for a second-degree symmetric continuant with ele-
ments hy, hy, ++-, in the principal diagonal, g, g, +++, on the diagonal through (1,2) and
2,1), £, £y, <+, on the diagonals through (1, 3) and (3,1) and zeros elsewhere. The fifth-
order recurrence is then given by (see [3], p. 173, expression (16))

(3) K =

€s-2"s asKs-l - bs(gs—le-Z - gs—zfs—sz—S)

_ g2 2
fS—3fS—20SKS—4. * fs—2fs—3fs—4gs—1Ks-5

K = K =0, K0=1, K1=h1,

K, = hihy - gf ,
where

as = hsgs—z - fs-zgs—l ’

s ~ 851852 hs—lfs—z ’

- f

s hs—zgs—l s-285-2 °

We discuss several special cases.

2.1 gy =gy = = 81 = 0. We now have to expand KS by its last row and column
since formula (3) aborts. We find

- e 2 2 =
&) Ks LsKs—l fs—zhs—le-3 * f:s—zfs—:3Ks-4 (s 4, 5, )
with

Ky = 1,

Ky = hy,

Ky = byh, ,

K3 = hz(hihg - f%) .
Using (4) we find for the next few cases,

Ky = (ayhy - §)(hshy - £3)
K5 = (hghy - £)(hslhehy - £) - hyff)
indicating that Ky is the product of two continuants of degree 1 (three diagonals). This is

easily seen from the determinant for KS by expanding by sub-matrices consisting of ele-
ments from odd rows (and columns). For example,
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(5) K'{ =

and this type of condensation has been given by Muir [4]. We may verify directly from (4)

that KS does in fact factor, and defining first degree continuants

hy £
f; hg
(62) kP, ) = .
28-3
f h
28-3 2s-1] (s)
hy 1
f hy
(6b) kP, ) = ;
28-2
fos-2 Dog ©)
it can be demonstrated that
2 2
(" Ky, 0, £y) = K;) (hy, fi)Ké )(hzs f2)

(his 0, fl) = K(Z)

2 g, 14 )Kf')(hz, £,) .

K2s+1

In particular taking h, =1, fs =i in (4) we see that the sequence (KS) where

(®) K, =K, +K g +K_, (s = 4,5, )

with Ky =1, Ky =1, Ky =1, K3 = 2, is such that KZS—l is the product of consecutive

Fibonacci numbers whereas Kzs is the square of a Fibonacci number. For example,

s 4 5 6 7 8 9 10 11 12

K, 22 2.3 3 3.5 52 5.8 82 813 132

It is perhaps not surprising to find the characteristic equation of (8) has zeros #i, (1 +\5)/2,

and indeed
@ -1) 8. (2+1Q) , .8 1 +vB\"*2 /1 -5\ 52
© Ky = g5 1 + g D7+ (( 2 ) +( 2 ) 5

Again since the characteristic equation has a zero with largest modulus, then

lim Ks,+1 _1+\5
Sy, KS 2 °
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2.2 Constant Elements in the Diagonals.

We consider Ks (h, g, f) where h, g, f are either unity in modulus, or zero.

following seem to be the most interesting:

Case h g f
1 0 1 1
2 1 1 -1 (i = VA1)
3 1 i -1
4 1 i 1
Case 1
Ke = Koq K ¥ K 3+ Ky ¥ Ky 5 8 =34,
with
K,=K, =0 K =1, K =0, Kp=-1.
In addition
s 4 5 7 8 10 11 12
s -2 3 -3 0 -4 -3
Characteristic Equation
E-DE2+x+172 =0
_Bi)o_ts x=1, w, w, W, w2, where w isa primitive cube root of unity.

Explicit Formula

2 W\s-l w 2s-1
K, =5+ (1+4w+s0 +2w)) (3} -(1 - 3w+ s —w))(-g)

from which

K3S = s +1, K3S+1 = 0, K3s+2 = - -1.
Case 2
K = ZKs—l - 2Ky 5 - 2K g7 2Ks—4 -Kes
K - 2

= s S (“ K - Ks-le+1))
0 1 —

1 1 1

2 0 2

3 -4 4

4 -8 6

5 -7 11

6 9 19

7 40 32

8 64 56

9 24 96

10 -135 165

11 -375 285

12 -440 490

13 124 844

14 1584 1454

[Dec.

The
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Characteristic Roots

X = ('\/_3'ei7r/6 + \"/1—3eia/2)/2 ,
Xy = 1/%
X3 = Xy (conjugate) ,
x = 1/% ,

X5 =1,
where tan o = 35 3/5.
The roots of greatest modulus being complex, "explains'' the apparently unpredictable
behavior of Ks’ On the other hand, notice that KZS -K K is always a perfect square,

s-1"s+1
and in fact AS follows the recurrence

Ag = Bgq TAg 2" A5 37 Agg (6 =2,
with
A_1=Os A0=1s A1=1,
and characteristic roots

—(Vﬁ+1+ \/(2\/ﬁ—2))/4,

Xy =
X, = -('\fl_ﬁ+1 - \/(ZVﬁ-z)VLL,
X3 = (\/ﬁ—1+i (2\/1-3+2))/4,
X4 = («/1‘??- 1 -1\/(2\E§+2))/4,
in which x; has the greatest numerical value, and IX3| = |x4| = 1. Actually it can be shown
that
1 Qg+l NIB + 1 + Y2(NI3 - 1)
im =
S—»0 A 4
Case 3
K, = 2K 4 +2K_, -K_ ¢ (s = 4, 5, ++)
with
] 0 1 2 3 4 5 6 7 8 9 10
KS 1 1 2 4 10 21 45 96 208 432 933
Characteristic Roots
Xy = 1
_3x N5+V6NE - 2
X2,3,4,5 = 2

Magnitude of largest root = (3 + NB + VY615 - 2) >/L

i st _ 3+ NE+V(ENE - 2)

S—3> w0 Ks 4

2.1537

I
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Comments (i) Ks is always positive

i ! 2 s :
(ii) \ngsﬂKs—l - K4| is an integer.

Case 4
Ky = 2K, 5 - K, 5 +K 5
s 0 1 2 3 4 5 6 7 8 9 10
K 1 1 2 0 2 -3 5 -8 16 -24 45

s
Characteristic Roots

_ -1 + NT3) + V2NT3 - 2
Z

Xy = 1 Xz,s
Xy 5 = -(1 - N13) + i\lzr\[-l_S + 2
4,5 = 7
K !
. s+l _ 1 — - _
Shmuo K, = 1 ?(1 + NI3) + \/2«/13 2‘)

-1.7221 .

3. FACTORABLE CONTINUANTS

A number of these have been given by D. E. Rutherford [5], [6]. In particular,

Rutherford remarks that the nth Fibonacci number can be expressed as

n-1 , T
(10) ]—[ (1 - 2i cos T) .

r=1

Moreover, although he does not give the recurrence relation, he quotes the factors of (in our

notation) Ks (z, 2a, 1), where

Z, 2a, 1,
2a, Z, 2a, 1,
Ks - 1, 2a, Z 2a, 1,
i, 2a, Z, 2a, 1,
2
1, a, Z (s)
as
1 sin? (s + 2)a _ sin? (s + 2)8
2(cos 2o - cos 2B) sin%x sin?g
where

[Continued on page 634. ]



TRIANGULAR ARRAYS SUBJECT TO MAC MAHON’S CONDITIONS

L.CARLITZ?
Duke University, Durham, North Carelina
and
D.P. ROSELLE?
Louisiana State University, Baton Rouge, Louisiana

1. INTRODUCTION
We consider triangular arrays (nj].) (G = ik, i =1@Q)k) and (ars) (s =1k +1
-r, r =1(1)k) andlet Tn,k) and Cn,k), respectively, denote the number of these ar-
rays in which the entries are non-negative integers subject to the conditions

(1.1) = n

= =
%5 T B Py T MLy "

(1.2) a__ = a a = a

a
rs T,s+1° rs r+l,s’

11 ="
The conditions (1.1) and (1.2) are the same as MacMahon [ 3] imposed on multi-rowed parti-
tions. Rectangular arrays subject to these conditions have been considered by Carlitz and
Riordan [1].

It is easy to evaluate T(1,k) and C(1,k). Indeed, taking row sums, we find that
T(1,k) is the number of sequences jl’ s, jk with ji > ji+1 and j1 =k, It follows that
Td,k) = Zk. In the same way, we find that C(1,k) is the number of sequences jl’ cee jk

with kK+1-1i= ji = ji+1' Hence C(1,k) is the familiar Catalan number (c.f. [2])

1 2%k + 2
(1.3) CL.K) = 5 <k+1> .

It will be convenient to have an alternative description of Cln,k) and T(n,k). With
each array counted by T(n,k) we associate the nx k array M = (mij), where 0y is the
number of elements in the jth row which are greater than or equal to i. Similarly, with
each array counted by C,k), associate the nxk array B = (bij)’ where bij is the
number of elements in the jth column which are greater than or equal to i. That is, mij
= card{njtlnjt = i} and bij = card {atj}atj = i}. It then follows that the entries of the
associated array are subject to the conditions
k,

(1.4) m

= = =
My = Wy 540 My = Wy, 1 =

iSupported in part by National Science Foundation Grant GP17071.
ZSupported in part by National Science Foundation Grant GP11397.
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= = = -
(1.5) by = by i bij = by g by = k+1-j.
It also is not difficult to verify that the n x k arrays subject to (1.4) and (1.5) are equinum-
erous with those counted by T(n,k) and C(n,k).

Here we prove that

(1.6) T@,k) = (2kk+ 1) ,
_ ok f2k + 2 k 2k + 2
1.7) T@B,k) = 2 (k + 1)- 2 ( Kk >
as well as
(1.8) Cl,k) = det [(n : lj : f S r)] (t,s =1, «++, k) .
It is also shown that
0 -k(k+1)
5 -1

:E::C(anxn

n=0

Ak(X) - (1 -x)

where Ak(x) is a polynomial of degree %k(k - 1) with integral coefficients and which satis-
fies the symmetry condition

1k(k-1) 1

2 = =

1.9) X Ak - Ak(x) .
2. TRIANGULAR ARRAYS

We consider triangular arrays

P11%2 07 Mk

@.1) 22

and let T*(n,k) denote the number of these arrays with non-negative integral coefficients
satisfying

= => =
(2.2) Dy =0 Dy = By 54 By = DiaaLj
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We also put

n

T(n,k) = E T*(,k) .

j=0

It is immediate that T(0,k) = T*(0,k) = 1 and as observed in Section 1, it is easy to

see that T*(1,k) = 2k —~1. This can also be seen by classifying the arrays according as

ng, = 0 or 1 and noting that this implies the recurrence

T*1,k) = T*(1,k - 1) + T,k - 1) .
A simple verification of the boundary conditions is then all that is necessary to anchor the
induction.

Next let Q(myy, my, °+*, my;) denote the number of nxk arrays M = (mij)’

where the mij are subject to the conditions (1.4). It is clear from the remarks of Sectionl

that
T*(n’k) = E Q(Si’ 0%y sn) ]

where the summation extends over all n-tuples (s;, ***, s,) for which k = 81 = 8,

= 1. A more useful reformulation of these remarks is the observation that
(2.3) Th,k) = Qk +1, k + 1, re>o, k +1) ,

For the case n = 2, we find that

m-1 r-1 m-1
Q(m,r) = 1 + Z Q(s) + Z Z Q(s,t)
s=1 = st
r-1 m-1
= g1y Qlsst) »
=1 s=t

where we have used (2,3) for the case n = 1. A more convenient form of this last equation

is
m

Qm,r +1) = ZQ(s,r) .

S=r
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It is now a simple induction to show that

Qm,r + 1) = @1 _ E @f1 _ 1) (m +jj - 1) m=r+1)

which should be compared with [1, Eq. (1.9)] . In particular, we have

Qm +1,m +1) = 220 _ @™ _q) (mj+ j)

It now follows from (2.3} that

(2.4) T*@2,k) = (21‘1: 1) .

3. THE CASE n = 3

The evaluation of T(3,k) is more complicated but leads to a simple result. Let
Qc(mn, my, Mg ) denote the numberof 3 x ¢ arrays (mi.) whose entries are non-increasing
down each column and whose positive entries are strictly decreasing along each row. Then,
according to the remarks of Section 1, we have

(3.1) T(3,k) k+1, k+1,k+1),

= Qk+2

It is not difficult to show (by induction on c) that

=Y
3.2) Qc+1(r,s,t) = Z De—Zi,c-Zj—l,c—Zk—Z ’

isj=k

where we put

r s t
i i+1 i+ 2
57| (3

) (
)
(1) (1) (59)

k
In particular, for ¢ =m =r = s = {, it follows from (3,1) that

e H
4+ W
et
g
P
—
+(_f'
[\
Nt

4B
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_ okf2k +2 k f2k + 2
(3.3) T@B,k) = 2 <k+1) -2 ( Kk ) s

_okf2k + 2 k(2k + 2 2k + 1
(3.4) T*(3,k)—2(k+1)_2( K )_( i >

It appears unlikely that this method would lead to a simple result for T(n,k) even

though (3.2) can be generalized in an obvious manner.

4, CATALAN DETERMINANTS

We consider triangular arrays

a a

1177 q1,k1 Pk
(4.1) 1 77 B2k
8

and let C(n,k) denote the number of these arrays with

=
(4.2) a3 S W 45 = 3 a1 5 = B4y, ¢
Then, as observed in Section 1, we have that C(n,k) is also the number of n x k arrays
B = (bij) subject to the conditions (1.5). Also, if we put C(]'l, SN jk) equal to the num-

ber of arrays (4.1) with Ay = js’ then we find that

(4.3) C(ji' cee, jk) = E E C(rl, cee, rk—l) s
k-1 1

.th - - s .
where the i~ summand extends over the range Tettoi = Troi = Jeoi and, for convenience,
we put T = 0.

It is an easy induction to show that (4.3) is the same as

jS +k -1
C(jl,---,jk)=det k+s - ar (rys = 1,2, »+-, k - 1) .
In particular, we find that
(4.4) C(n,k) = det [(n : E : E ; r)] (r,s =1, *++, k) .

Notice that the special case (1.3) follows from (4.4) and the identity
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k
1 2k + 2\ _ yl (K+1-1 1 2k - 2j
k+2 \k+1 j+1 k+1-j k -j :
=0

In the next place if we write (4.4) in the form

_ n+k+1-1r
(4.5) Cln,k) _det[<k+1—2r+s)] ’

then we can use this determinant to define C(n,k) for all real numbers n. According to
this definition, we find that C(n,k) is a polynomial of degree —%k(k + 1) in n and satisfies

the equation

Fk(k+1)

(4.6) C,k) = (-1) C(-k - n - 1,k) .

Hence if we put
3k (k+1)

Z akj(n;j) ’

j:

4.7) C(n,k)

then we have
3k (k+1)

-k -n+j-1
C(-k - - 1,k) = . .
( n ) z:akJ( j )

=k
Fe(s+1)
=Ty k +n
E (-1) akj( j > .
j=k

In order to summarize these results in terms of generating functions, we first put
n
Cy () =3 Cn,k)x  and note that

Fk(c+1)
C &) = E a1 - x) i1
j:
and o
i
(—1)§k(k+1)ck(x) = E C(k - n - 1,k)x"

n=0
gk(k+1)

(—1)jakj X ik @ - x)_j_1 .

j:
[Continued on page 658. ]
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2. H. W. Gould, "A New Greatest Common Divisor Property of the Binomial Coefficients, "
Fibonacci Quarterly, Vol. 10, No. 6 (1972), pp. 579-584.

3. V. E. Hoggatt, Jr., ""Fibonacci Numbers and Generalized Binomial Coefficients, " Fib-
onacci Quarterly, Vol. 5, No. 4 (1967), pp. 383-400.

L o 3

[Continued from page 570. ]

for 1=N< a, 1 = d(N) = n, and since the sets {d(N) = d} are disjoint, we have that

+1°
n

-1 = E f(n,d,C) )
d=1

Y an+1

where f(n,d,C) denotes the number of integers N, such that 1 = N < a .1 and for which
the representation (3) and (4) contains exactly d non-zero terms. By the relation between
the n-vectors of C(e) and the interval 1 = N < a .10

proof, f(n,d,C) reduces to the combinatorial function k(n,d,C), hence the formula (5) is

proved in the first paragraph of the

proved. Since the property C is, by assumption, independent of the a's, the formula (5),
whenever it is defined, determines a single sequence. Note that the whole argument assumed
(4), hence that n = 1. The fact that a; = 1 follows from applying (3) with N = 1, and thus
the proof is completed.

To conclude, I wish to remark that if C depends on the a's to be determined, the
equation (5) still applies as it can be seen from the argument above; in this case, however,

(5) may have more than one solution.
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FIBONACCI NOTE SERVICE

The Fibonacci Quarterlyis offering a service in which it will be possible for its readers
to secure background notes for articles. This will apply to the following:-

(1) short abstracts of extensive results, derivations, and numerical data.

(2) Brief articles summarizing a large amount of research

[ Continued on page 658. ]



CONVOLUTION TRIANGLES

VERNER E. HOGGATT, JR.
San Jose State University, San Jose, California
and
MARJORIE BICKNELL
A. C. Wilcox High School, Santa Clara, California

If G(x) is the generating function for a sequence, then (G‘r(x))k-i-1 is the column gen-
erator for the kth column of the CONVOLUTION TRIANGLE. The original sequence is the
zeroth column. We study here the convolution triangle of a class of generalized Fibonacci
sequences which are obtained as rising diagonal sums of generalized Pascal triangles in-
duced by the expansions (1 +X +x2 + ... + xr'l)n, n=20,1, 2, 3, °*+. There are several
ways to generate the convolution triangle array for a given generalized Fibonacci sequence.
We shall illustrate these with the Fibonacci sequence.

1. GENERATION OF ARRAYS

In [1], it is shown that a rule of formation for the Fibonacci convolution triangle is as

th element in the kth column, add the two elements above it inthe same

follows: to get the n
column and the one immediately to the left in the preceding column. One notes in passing
that this is equivalent to the following: Start row zero with a row of ones extending to the
right. To get an element A in this array, add the two elements directly above A and all

those elements in the same two rows and toc the left of these.

1 1 1 | 1

1 4 . m m+1 e
(1.1) 2 5 9 14 20 e ees . e

3 10 22 40 65 ere certee e

5 20 51 105 190 -+ x| .-

8 38 111 256 511 -+ y

cee see ese  see  ees eee A

It is easy to prove by mathematical induction that this generates the Fibonacci convolution
array.
One might observe that the rising diagonal sums in the array above are the Pell se-

quence Py =1, Py =2, P 2Pn T Pn‘ The rising diagonal sums formed by going

n+2

up 2 and over 1 are 1, 1, 3, 5, 11, 21, -+, u + 2un. Also, the determinant of

=qu
n+2 n+1
the square arrays of order 1, 2, 3, 4, 5, readily found in the left-hand corner of the array,

is in each case equal to one.

599
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By comparison, if Pascal's triangle is written in rectangular form

10 15 ...
10 20 35 ...
15 35 70 ...

(1.2)

R
oo W N

the rule of formation to obtain an element A is to add the one element above A and all ele-
ments in that same one row, or, to add the one element above A and the element in the pre-
ceding column to the left of A, The rising diagonal sums are the powers of two, and the

sums of diagonals formed by going up 2 and over 1 are the Fibonacci numbers 1, 1, 2, 3, 5,

8,+++, F =F _+F.

n+2 n+l n
When we speak of rising diagonal sums in generalized Pascal's triangles we are think-
ing of diagonals formed by going up 2 and over 1 in rectangular arrays similar to (1.2) or go-

ing up 1 and right 1 in a left-justified array such as

(1.3)

T T Y
I =
w
=

The coefficients of the Fibonacci polynomials

fyx) = 0, fix) = 1, fn+2(X) =xf &+ &

lie along the rising diagonals of Pascal's triangle (1.3) and fn(l) =F. it is well known that

the generating function for the Fibonacci polynomials is

[> o]
D, S E 7 fn(x))\n .
1 -xx - 22 -
n=0
m+1 X
m
dm A - A m!m+1 - E :fl(lm)(x)}\n .
dx \1 - xa - A2 @ -xx-2A) =

Since f (x) is of degree n -1, setting x = 1 yields
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X
(L -x-2%)

© . (m)
m+1 ~ fn (1)

i i A

n=t

m+1 =
( A ) =§:F(m))\n
9 n
1-Xx-X =0

also generates the mth convolution sequence, equating coefficients shows that

so that since

(m)
fn 1) __(m)
1 = F ’
m! n
(m) . th th _. . .
where Fn is the n member of the m Fibonacci convolution sequence. Thus the

Fibonacci polynomials fn(x) evaluated at x = 1 by the Taylor's series expansion have as
coefficients elements that lie along diagonals of the Fibonacci convolution triangle (1.1),
which are the rows of (1.4):

fn(l) f]'a(l)/l'. f;(l)/zz fﬂ'(l)/Z’.

f1(x) 1 0 0 0
£5(x) 1 1 0 0
f3(x) 2 2 1 0
(1.4) £4(x) 3 5 3 1
£5(x) 5 10 9 4
fa(x) 8 20 22 e

o 00 es e Y LY Y

2. THE JACOBSTHAL POLYNOMIALS

Congider the polynomials Jy(x) = 1, Jy(x) = 1, and Jn+2(x) = Jn+1(x) +xJn(x). We
see, of course, that Jn(l) = Fn' The coefficients of the Jacobsthal polynomials also lie on
the rising diagonals of Pascal's triangle (1.3) but their order is the reverse of that for the

Fibonacci polynomials. The generating function for the Jacobsthal polynomials is

0
A - = E J ) A"
1 -2 - xX 'n=0
from which
2m+1 =
a )y _ AT e (m) n
m B m+l Jn (A
dx\ 1 - - xp? @ -2x-x?) oy

so that
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0 (m)
AL _ 3 @ Jn-m
9 m+1 m! ‘
- x-2) eer
Thus
(m)
JI1 1) ~ F(m)
—_ = ,
m! n
also.

The Jacobsthal polynomial sequence has two polynomials of each degree. The array
obtained by listing the polynomials and their derivatives at x = 1 appropriately divided by
m! also yields the Fibonacci convolution array.

There is another nameless set of polynomials that has interesting related properties,
Q) =1, Q& =x, and Q, +2(x) = x(Q_,n +1(X) +Q,n(x)). These polynomials also have
their coefficients along the rising diagonals of Pascal's triangle (1.3). Clearly, thus Qn(l) =
Fn. The generating function for the Qn(x) is

00
—2— - E Q"5
1 - x(h+2) =
@ s Tt S Qr(lm)(l) -
m+1 m! :
1-2-2%) =)

We will leave the reader to do the analysis of the array obtained from Ql(lm)(l)/m! .

3. ROW GENERATING FUNCTIONS

For the Fibonacci convolution array the column generators are

k+1
__A_ k=0’1’2,3’..-.
1-a-2

Here we are interested in the row generators when the array is written in the form (1.1)
which starts with a row of ones. Since an element A of that array is secured by adding the
two elements in the column above A and the element in the preceding column directly to the
- left of A, we now wish to secure the row generating functions based on this same generating

scheme. Let Rn(x) be the row generating function; then the recurrence scheme dictates that

Rn+2(x) = an+2(x) + Rn+1(x) + Rn(x) .

We note that

and R1 (X) =
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thus since

R .® +R (%
_ "ntl n
Rn+2(x) = —a

it follows that the general form of

Nn(X)

Rn(x) = a- x)n+1 ’

where the numerator polynomials Nn(x) obey the recurrence

Npyp® = Ny 1@ + (L - 0N &)

with Ny(x) =1 and Ny(x) = 1.

Surely now we recall the Jacobsthal polynomials discussed
earlier and we observe that

Jn+1(1 -Xx) = Nn(x) .

Expand the polynomials Jn(x) in a Taylor's series about x = 1 to yield

Jh(l) Jn(1) )
Jn(X) =Jn(1)+ T x - 1) + o1 x - 1)% + «--
Jh(l) J}l'(l) Jr(1)
Jn(l - X) = Jn(l) - i X + 3T x2 - T X3 4 e
Thus we conclude that
Nn(x) = Jn+1(1 - x)

are polynomials whose coefficients lie along the rising diagonals of the Fibonacci convolution
triangle (1.4) whose modified column generators are

m+1
_(___..‘L__z) m=0,1,2, - .
1-A-X

4. THE GENERALIZATION OF THE FIBONACCI CONVOLUTION ARRAYS

Consider the arrays whose column generators are

A m-+1
1-x- 2 Ar) mE AR
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These are convolution arrays for those rising diagonal sum sequences in the generalized

Pascal's triangle induced by
l+x+x2+... +x , n=20,1,2, -

and written in a left-justified manner as is (1.3). Such sequences are called the generalized

Fibonacci sequences.

We will illustrate the generalization using the Tribonacci sequence

Ty =Ty =1, Tg=2 -+, Toa="T ,+T  +T, n=1,2 3 .

1 1 1 1 1 ees

1 2 3 4 ERE

2 5 14 20 ---

4.1) 4 12 25 44 70 .-
7 26 63 1256 220 -

13 56 e cee  sse  saee

24 . . .. ves

The rising diagonal sums of the Tribonacci array (4.1) obey the recurrence

U = 2U

h+3 + U

+ U

n+2 n+l n '’

where

‘Ul = 1, UZ = 2, U3 = 5, U4 = 13, tee

These could be called the generalized Pell sequence corresponding to the Trinomial triangle,
The diagonals formed by going up 2 and right 1 in the Pascal case were Fibonacci numbers as
sums; in the -Fibonacci case, going up 3 and right 1 gave Tribonacci numbers; here the
diagonals formed by going up 4 and right 1 in (4.1) give Quadranacci numbers, 1, 1, 2, 4, 8,

15, 29, *++, where w un+3+u +u .

= +u
+4 n+2 n+1 n
The corresponding Jacobsthal polynomials for the trinomial triangle are given by

* " +* 21%
Jn+3(X) = Jn+2(x) + xJn+1(x) + xJn(x)
with
J16, RE =1, I3 = 1+x

The generating function for the generalized Jacobsthal polynomials is
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(=]

A = E I*)A"
1 -2 - x\ - x2)2 n

n=0

It is not hard to prove that the row generating functions for the Tribonacci convolution
array (4.1) are generally

N;(X)
n a - X)n+1
where
1 1 2 - X
RE(x) = ) R¥x) = ——mr R¥x) = —————
0 1-x 1 (1—X)2 2 (1-—X)3

Thus one asserts the polynomials NI";(X) obey

N¥ o) = NX () + (1 - IN¥ () + (1 - x)N¥x) ,

where
N"(‘)(x) =1, N"i(x) =1, and N’zk(x) =2 -X .
Further,
* _ - N*
Jn+1(1 X) Nn(x)
and
J*vv (1) J*n (1)
® - 1% _ n+1 n-+1 ..
Ny = g, (@) T

the same as before (this has alternating signs).

There are several polynomial sequences yielding the Tribonacci convolution array when
one generates Pr(lm)(l)/m!, where Pn(x) are the generalized Fibonacci polynomials, or
Tribonacci polynomials,

P (x) = szn+2(x) + xPn+1(x) + Pn(x) ,

n+3
where

Pix) = Pyx) = 1 and Py(x) = 1 +x .
One such example:

oC

A = E PN
1-xx -2 -0

n=0

-]

A _ 2 :P(m) .
2 3 m+1 n
1 - xx = 2% - ) .

N m+1 ‘°° @) .o = Pr(lm) (1) n
(1-7\-%-;\3) =ZTH * =Z mr
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Recall from Section 1 that the convolution triangle (1.4) for the Fibonacci numbers is
generated by adding x, y, and z to get element A as in the diagram below:

A=x+y+z
Y Zi
A

Recall this is also the array generated by the numerator polynomials for the row generators
of the Fibonacci convolution array. For the Tribonacci convolution array row generators
can also be self-generated if element A = u+v+w+x+y+ 2z where the elements u, v,

W, X, ¥y, and z are found by the diagram

A =u+v+w+x+y + 2z

beginning the array with a one. Here the coefficients of the numerator polynomials of the
row generators of the Tribonacci array lie along the rising diagonals of the triangle array
below, which has the Tribonacci numbers in its left column. Of course, one normally asks

what are the column generators of this triangle, too.

1
1 1
2 4 3 2 1
4 9/12 11 6
(4.2) R} = 2 3 0
13 50
24 see .

Here we shall illustrate several row generators:

=

Rg(x) ! i X
1
R* (X) = —
! 1 - x)?
R;(x) = ._?__:__X__

1 - x)?®
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4 - 4x + x°

R¥x) =
3 (1 - x
_ 2
RZ(X) _ 7 9x + 3x

1 - x5
The column generators of (4.2) are

— ———}—(—_——
Gn+2(X) (1 R x3>( (2x + l)Gn+1(x) + Gn(X)) s

1

1-x-x%-x° 1-x-x%-x%)

5. THE FULL GENERALIZATION

The generalized Jacobsthal polynomials are Ji(x) = 1, Jx) = 1, J3x) = 1+x,

T = @+ e, I oK) = 1+, and

= 2 LIS m
Tntm+1 &) = I &) F Xy 00+ Xy p®) e H xR

j-1
Jn+m—j (x)x

"'i;[\las

The numerator polynomial triangle is constructed by taking the appropriate size triangle B
above A where the multipliers for the elements in B are the elements in the first k rows

of Pascal's triangle as illustrated for k = 4 below:

The left edge of this triangular array is the Quadranacci sequence:

1

1 1 1 1

2 4 6 4 3 2 1
4 12 18 22 22 18

8 28 58 88 106 100

5 87  een .

9 154 oo ces . cen

co e e s e coe o

1 ces oo ves
2
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In each case, the generalized Pascal's array can be generated by adding all the ele-
ments in the rectangle with k rows above and to the left of element A (not including ele-
ments in the same column as A) to get A. If the rectangle has k rows, then we get the
array induced by the expansions (1 +x +x%+... +xk_1)n, n=20,1,2,---. In these
rectangular arrays using k rows in formation, if sums are found of elements lying on dia-
gonals formed by going up (k + 1) and right one, the sequence formed obeys the recurrence

= +

ksl = UYnak FYpagezr U T Y, -

where u; = uy, = 1, u, = zn‘z for 2=n=k +1, generalized Fibonacci sequences,
while the rising diagonals yield sums which are generalized Pell sequences obeying the

recurrence
Ppig = ZPpygg * (pn+k—2 T Ppagg Tt pn)

and with the first three members of the sequence the ordinary Pell numbers 1, 2, 5, and
the first k members of the sequence the same as the first k members of the sequence
found from the rectangular array using (k - 1) rows in its formation.

The convolution triangle for such generalized Fibonacci sequences canbe generated by
adding all the elements in the rectangle with k rows, includingthe column above an elemeént
A and extending to the extreme left of the array.

In any of these generalized Pascal's arrays or convolution arrays of generalized Fib-
ohacci sequences written in rectangular form, the determinant of any square array found in
the upper left-hand corner is always equal to one. The proofs and extensions will appear in
later papers [2], [3].
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A COUNTING FUNCTION OF INTEGRAL n-TUPLES

HWA S. HAHN
West Georgia College, Carrollton, Georgia

1. INTRODUCTION

Let P be the set of positive integers and let P" be the set of n-tuples of positive in-
tegers. Many fresnmen books talk about how to count P2 but rarely exhibit a counting func-

tion such as [2]

folpts P2) = p1 + (py + p2 - Dipy +pp - 2)/2 .

E. A. Maier presented a counting function of P" in this Quarterly [1]. In this note
we show another more simple counting function of P" and also discuss its inverse function

and some applications.

2. THEOREM

The following polynomial in n variables

‘ S 1
(1) fn(ph Pas pn) =Py + 2 : s
where

sk—l
sk=1)1+p2+---+pk and( =0

for Sy - 1< k, is a counting function of P,
Proof. Consider the set, call it the s-layer, of lattice points of positive coordinates

(X1, X9, ***, Xp) satisfying

This s-layer contains

points. For, it is the number of ways of putting n -1 markers in s -1 spaces between
1's in
1+1+eee+1 =35,

Then the collection of s-layers, call it a pyramid, ranging n< s < S which is the

largest pyramid without the given point (py, Ps, *»+, Ppn), contains

609
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o)) (200

points, But this sum is simply

For,

I
AN
)
B
! [
sl )

up to (P, P> *° s pn). Since X is determined by (x4, X3, °°*, Xp_1) and 5,0 we need
to count only (n - 1)-tuples from (1, 1, **+, 1) to (py, pgs *+, py_1). For this we may
use the function £ (15 P> "o+ 5 Dpq) o

Thus, we obtain

s -1
n
fn(pis Pas *ce pn) = fn_l(pj,s P2s °°°» pn_l) + ( N ) .

And this recursive formula gives

S - 1
fn(pi’ Pas ***5 Pn) = Py + E ’
k=2 \

(taking fi(py) = py)-
Notes. 1. For sy =1,

n
s -1
£ ( vee,p) = k
npispza s Pp K s

=0

which is a string of pyramids of each dimension from 0 to n.

2. From its counting method fn is clearly 1 - 1. However, we can also
prove as follows. If (pg, Py *-°» pp) # (pi, Pis "7, p;l), then there exists m such that
Sm # sl and S, = S) for k> m. Say, sm< S (without loss of generality). Since

1=52<8<-  <sp=sh-1,
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zm:(sk-1>< f:(sm-(m—k)—l)=i(sm-(m-k)—1>
K K b sm—m—l

k=0 k=0
m
s S st -1 st -1
=(Sm_)=(m)< p{_i_(m )Sz:(k )
m m m = k /

These inequalities imply f (p1s **+, py) <f (pi, -+, py). The following section al-
so shows that fn is onto.

3. THE INVERSE MAPPING f;ll : P—p"

The following algorithm produces Syr Sp_q Tt s1(=p1) from a given positive inte-

ger p.
First, determine s, satisfying

n-2
n
() B ()
1 = k 1
Thus
£ - 1) = (54585 = 85 ***5 8 -8y 1) »
where

P for k> 1 and s = p; .

s -1
4, PYRAMIDAL NUMBERS < nn \) IN PASCAL'S TRIANGLE

In the construction of the inverse image fr_ll(p) it is helpful to use Pascal's triangle,
in which (@ + 1)St diagonal line is the ordering of all n dimensional pyramids.
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Dimensional
pyramidal numbers

36 84/./{26//126//;
45 /120 /210 /252 /.

//" /e e / . °

For example, to compute f3'1(100) express 100 as a sum of pyramidal numbers of
dimensions 3, 2, and 1 as follows:

100=84+15+1=(103—1>+(7;1)+1.

Then s3 =10, s, = 7, s5; = 1 and thus
£51100) = 1, 7-1,10-17 = (1, 6, 3) .

5. COUNTING LATTICE POINTS IN EUCLIDEAN n-SPACE

Take any counting function of Z, the set of integers, for example f;, defined by

fo(z) = 28z + 12“5 ,
where

éh)—h
N N
I\ V
oo

Then the ordinal number for (z;, z5, ***, z,) is given

n
Sk -1
fn(fo(Zi)s fo(z9)s ***, fo(Zn)) = E ( Kk ) s
k=0
where

k

Sk = E f()(Zi) .
i=1

[Continued on page 627. ]



SOME COMBINATORIAL IDENTITIES OF BRUCKMAN
A SYSTEMATIC TREATMENT WITH RELATION TO THE OLDER LITERATURE

H.W. GOULD
West Virginia University, Morgantown, West Virginia

Bruckman [4] has made a study of some properties of numbers An defined by the
power series expansion

o0
@ fe) = (1 - x)7 1@ + 072 - E A X,
n=0
In some cases, for convenience, he uses the modified notation
@) B = 2"nA .
n n
By use of the binomial theorem he found that
n
_ z : k {2k -2k
3) An = (-1) (k) 2 .
0

k=

Then by means of an exponential integral he was able to show that

n
K
) A, = 272000 + 1)(2;1) E (-1)1‘(‘;)%1—1 )
k=0

The A's satisfy the second-order recurrence relation

(5) znAn = An—l + (2n - l)An Ay =1, Ay =1/2.

-2°?

Using recurrence relations and differential equations, Bruckman obtained the following ele-

gant formula

n
_ 2n }_-2n z : n-kf 2k\ ,-2k 1
(6) AIZI = (Zn + 1)( n >2 (—1) ( k) 2 m .

k=0

Bruckman proves this interesting formula by showing that

613
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00

2n+1
@) Arctan x _ g2 X
n (2n + 18 °
Jl - x? n=0

while, on the other hand, it is easy to multiply the series for Arctan x and (1 - xz)_l/2
together directly, and the result is (6).

I believe that formula (6) is the most interesting formula given in [4], and it does not
appear in any readily accessible source. A direct proof of (6) by squaring (3) is not exactly
trivial. The other relations in [4] are not really new, and far more general expansions have
been considered in the older literature. However, it is hard to name a single source where
all such expansions have been systematically generated. In the work below we shall obtain
variant forms and expansions and in passing show that the numbers An are special casesof
numbers studied by Cauchy [5], Chessin [6, 7], Perna [10], and Graver [9]. Some of the
power series expansions are summarized in Adams and Hippisley [1] who also cite other re-
lated sums. Since our motive is partly pedagogical, we give considerable detail in some of
the proofs below. We end by stating a difficult RESEARCH PROBLE M.

Free use will be made of some elementary identities, such as

® (-11{/2) _ F (zlf) p2k

which follow from the polynomial definition of the binomial coefficient

xY _ x(x-1).e0 (x -k + 1) x‘_l
' k! ? 0]~ *
/
For example, we also have
9) (_g) = (—1)k(X +1; - 1), x = any real number.

We shall use the older notation ((<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>