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BERNOULLI NUMBERS AND NON-STANDARD DIFFERENTIABLE STRUCTURES 
ON (4k- 1) -SPHERES 

HELAfVSAW ROLFE PRATT FERGUSON* 
Department of Mathematics, University of Washington, Seattle, Washington 

ABSTRACT 

A number theoretical conjecture of Milnor i s p resen ted examined and the existence of 
non-standard di f ferent ia te s t ructures on (4k - 1)-spheres for integers k, 4 ^ k ^ 265, 
is proved. 

1. INTRODUCTION 

In 1959, J. Milnor [l] proved the following theorem concerning non-standard differen-
tiable s t ructures on (4k - 1)-spheres, 

Theorem 1. If r is an integer, such that k /3 < r ^ k /2 , then there exists a differ-
4k- l entiable manifold M, homeomorphic to S with A(M) = s s. N/s. ( m o d i ) , where 

QI • ni i j - J£—r K. 
s, = 2 (2 - 1)B, /(2k)!, all of the prime factors of the integer N are l ess than 2(k -

th r ) , B, is the k Bernoulli number in the sequence BA = 1/6, B2 = 1/30, B2 = 1/42, 
B4 = 1/30, • • • , and A is an invariant associated with the manifold M. 

Milnor presents an algorithm based on Theorem 1, proves s t ructures exist for k = 2, 
4 , 5, 6, 7, 8, conjectures that Theorem 1 implies the existence of these s t ructures for k > 
3, and states that he has verified the conjecture for k < 15. He points out that for k = 1 
and k = 3 no integers r exist in the interval (k/3, k /2] and that for k = 1, two differ-
entiable homeomorphic 3-manifolds are diffeomorphie. 

The Milnor algorithm will be described by considering the f irs t seven cases . In each 
case an actual lower bound will be calculated for the number of said structures; to calculate 
this bound we consider the denominator of the reduced fraction and drop all prime factors 
l ess than 2(k - r ) . 

1. k = r , r = 2. 

{* W - 1 )^ / (2* - DB4 = (7V3)(1/127), lb = 127 

2. k = 6, r = 3. 

( 1
4 ° ) (2 3 - 1)(25 - l )B 2 B 3 / (2 9 - 1)B5 = (11/5) (31/73), lb = 73 

* Research supported in par t by an NSF Summer Teaching Fellow Grant, also by NSF grant 
GP-13708, and by the BYU Computer Center (for 20 consecutive hours of computation time I). 
Copies of the tables referred to in the text may be obtained from the wri ter at the address 
listed in the current Combined Membership List of the A MS. 
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2 BERNOULLI NUMBERS AND NON-STANDARD [Feb. 

3. k = 6, r = 3. 

( 1 g ) ( 2 5 - D 2 B 1 / ( 2 1 1 - 1)BG = (2-5-ll-13)(312/23-89-691) , 

lb = 23-89-691 

4. k = 7, r = 3. 

(Xg J (25 - 1)(27 - l )B 3 B 4 / (2 1 3 - 1)B7 = (11-13/2.5.7)(3L 127/8191) , 

lb = 8191 

5. k = 8, r = 3. 

f 1
6

6 J ( 2 5 - 1)(29 - l )B 3 B 5 / (2 1 5 - 1)B8 = (22-52-13.17/3)(73/151.3617) , 

l b = 151-3617 . 

6. k = 9, r = 4. 

[ 1
8

8)(27 - 1)(29 - l )B 4 B 5 / (2 1 7 - 1)B9 = (2.3-72-13-17-19)/(73.127/43867.131071) , 

lb = 43867-131071 . 

7. k = 10, r = 4 

(2g W - D(2U - l )B 4 B 8 / (2 1 9 - 1)B10 = (ll-17-19/7)(23-89.127/283-617.524287) , 

l b = 283-617-524287 . 

3. k = 10, r = 4 

(^A (29 - l)2B2
5/(219 - 1)B10 = (2-53.72-13.17.19/3)(732/283.617.524287) , 

lb = 283-617-524287 . 

9. k = 8, r = 4 

f Xg J(27 - l )2B4/(21 5 - 1)B8 = (3.5-ll-13.17/7)(1272/31.151?3617) , 

lb = 31-151-3617 . 
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There will be [k/2] - [k /3] integers in the interval (k/3, k /2] and one may choose 
the la rges t of the lower bounds. We now restate the positive outcome of the algorithm in the 
form of the following 

Conjecture 1. Let r be an integer, r £ (k/3, k / 2 ] , k > 3, 

(s) ^ 1 ) ( 2 2 k - 2 r - l _ i ) B r B k r / ( 2 2 k " 1 - l)Bfc = a /b , (a,b) = 1 , 

then there exists a prime number p , p ^ 2(k - r ) , such that p divides b. 
This purely number theoretic conjecture implies the existence of more than 2(k - r) 

4k-1 
non-standard differentiable s t ructures for S , the (4k - 1)-dimensional sphere. Con-
jecture 1 has , aside from i ts aesthetic number theoretical interest , the additional signifi-
cance of important topological consequences, and is one more example of the ubiquitous na-
ture of the Bernoulli numbers. 

2. REPRESENTATION STRUCTURE OF THE BERNOULLI NUMBERS 

Although the Bernoulli numbers have been objects of published mathematical thought 
for over two centuries, in some respects , embarrassingly little i s known about them. We 
shall present the features of these numbers useful to us in examining Conjecture 1. 

A s a typical beginning point we write [2] 

(1) x(eX - 1) = Ya b
k

X / k l 

k=0 

and since b0 = 1, bA = - 1 / 2 , and x/(e - 1) + x /2 is an even function, we write 

b2k = ^ " X « * b2k+l " °« k S 1-

We have 
00 

2k, (2) 1 - (1/2) cot (x/2) = J2 Bkx2 k/(2k)I 
k=l 

and by the double ser ies theorem [3] , we see that 

(3) B k = 2(2k)!£(2k)/(27r)2k , 
where 

CO 

-2k {(2k) = ^ n" 
n=l 
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the Dirichlet ser ies usually referred to as the even zeta function. An equivalent definition 
to (1) is the umbral recursion [ 4 ] , 

(4) (b + l ) k - b k = 0, b0 = 1 , 

which reduces to 

k 

(5) S k r X br = °' bo = 1 • 
r=0 

Equation (1) is the reciprocal of 

00 

k> ]T xk/(k + 1)1 
k=0 

and an expression for the b, may be written with symmetric functions of the coefficients of 
the reciprocal of (1). We may ra ther write [5] , [6] 

0 0 / C O 

(6) x/(ex - 1) = 2 ("1)m( 2 X / ( k + 1)l 

m=0 \ k = l 

so that [7] 

2k 
x k - l v ^ , ,m E (_)m V / m \f 2k 

w ^ l a 1 } " . , a 2 k j y ( l ; a i ) , • • • , (2k;a2 

x ( l / 2 a i « 3 a 2 - « - (2k + l ) & 2 k 

B k = W 
(7) m ^ X / V 2 k 

where the sum is over the partitions of 

2k 2k 

2k, -^T a. = m, ^ i a i = 2 k > 
i=l i=l 

= mt/alblcl ••• , ( m \ 
I a, b , c, ••• 1 

( (a;«) ," . ( d ; , ) ) = m ! / (a:f . . . (d' . )^ 
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and there will be p(2k) t e rms [8] . A variant of (7) is 

(8) <-)k"V = -a/2k +1) + y ; (-)m T T p 8 ^ * * - ' " >**> 
K p<2k 

where the product is over all pr ime numbers less than 2k, the functions 8(p, k9 s.i9 • • • , 
a2, ) a re all integers and the sum is over all the partitions of 2k but one. 

The calculation of Bernoulli numbers has been a lively subject [9] , and there exist 
several tables of these numbers, [The most massive is D. Knuty, MTAC, Unpublished 
Mathematical Tables File. The caretaker of this file, J . W. Wrench, has informed us that 

-8k from Knuthfs manuscript of 1270D values of 10 B. for k = 1(1)250 one can obtain the 
exact values of only the f irst 159 Bernoulli numbers.] To facilitate the computation of 
Bernoulli and related numbers , Lehmer generalized a process of Kronecker to produce 
lacunary recurrences of which the following are typical [10]. 

(9) 

(10) 

[ m / 2 ] 

A=0 

[m/2 ] 

E B m - 2 A ( S +
+ 4 4 ) « - ) X 2 2 X + 1 + 1 ) = « m + 2 ) / 2 ) ( ( - ) [ m / 2 ] 2 m + 1 + 1 ) . 

A=0 

[m/3] ( 
, . -r-» / 2 m + 3 \ = J -(2m + 3)/6, if m = 3k 
U 1 ' 2-» ^m-3X I 6X + 3 I i (2m + 3)/3, otherwise , 

>=0 K ' \ 

<"> E Bm-4x(28X+
+

4
4)2 m + 1-2 [ ( l n + 1 ) / 4 ] - 2 X-4x+2 = <-> ^ W + « * „ « , 

A=0 

where 

n = _34gK _ gR and 3R = 2, 0, 3, 10, 14, -12, -99, -338 , 
n n-4 n-8 n 

for n. = 0, 1, 2, 3, 4, 5, 6, 7, respectively, 

(13) 
[ m / 6 ] 
y * ~ J / 2 m + 6 V A26A+2 I ((m + 3 ) / 3 ) ( * m + 2 + < - ) [ m / * ] 2 m + 2 ) , 
2 ^ B m-6A\ 12A + 6 ) ( * W 2 + H 2 } " m + 2 

X=0 ! if m £ 2(3); 
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- ( (m + 3)/6)te + „ + ( - ) [ m / 2 ] 2
m + 2 - ( - ) ( ( m + « / 3 ) 3 ) , 

where 

and 

m+2 

if m E 2(3) , 

ft = -2702S3 - ft , 
n n-6 n-12 

S3 = 1, 5, 26, 97, 265, 362, -1351, -13775, -70226, -262087,-716035, -978122, 

for n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, respectlvely„ 
The point of creating lacunary recurrences is to avoid dealing with all the B , say 

r < k, to calculate B, . An example of a recursion relation which is not precisely lacunary 
yet satisfies this last condition is 
(14) 

[k/2] 

\ = */2)( 2f ; *) + k (2
k

k) £ (-)% (2
k

k)(l/(2k - 2D) + E BrBg 
r=0 N ' 0 < r , s ^ [ k / 2 ] 

X ( 2 r , 2s , 2k 2 - k 2 r ( 2k - 2 s ) < 1 / ( 2 k " 2 r " 2 s " « > • 

which can be proved [11] by repeated integration of the Four ier se r ies for (n - x)/2 and then 
using ParsevaTs Theorem on the result . 

F rom (2) above, we have the identity 

(15) (d /dx) (x( l - (x/2) cot (x/2)) J = x2/4 + ( 1 - (x/2) cot (x/2))2 . 

Hence, we extract 
[k /2] 

£ 2g(r)(S) (16) (2k + l)Bk = £ 2^ '^ ; jBrBk_ r , 
r=l 

where 
M = 1 if r < [ k / 2 ] o r r = [k /2 ] , k odd , 

g i r ; J 0 if r = [k /2 ] , k even . 

We observe that this "quasi-convolution" recurrence involves only positive numbers; hence, 
beginning with 

(17) B t = 1/2-3 , 

(18) B2 = 1/2-3-5 , 
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(19) B3 = 1/2-3-7 , 

(20) B4 = (l/2-34-5)(22-5 + 7) = 1/2-3-5 , 

(21) B5 = (l/2-33-ll)(22-5 + 7 + 2-32) = (5/2-3-11) , 

(22) 
B6 = (l/2-33-5-7-13)(23.52.7 + 2-5-72 + 22-5-7-ll + 72-l l + 22.32-5-7 

+ 2-32-5-ll) = 69l/(2-3-5-7-13) , 

B7 = (l/2«35-52)(23-52-7 + 2-5-72 + 22-32-5-7 + 22-5-7-ll 

(23) + 72-l l + 2-32-5-ll + 22-5-7-13 + 72-13 + 2-32-7-13 

+ 22-5.11.13 + 7.1M3) = 7/(2-3) , 

B8 = (l/2.32-5.17)(25-3.52-7 + 23-3-5-72 + 24-33-5-7 

+ 24-3-5-7-ll + 22-3-72-ll + 23-33-5-ll + 24-3-5-7-13 

+ 22-3-72-13 + 23-33-7-13 + 24-3-5-ll-13 + 22-3-7-11-13 

(24) + 25-32-52-7 + 23-32-5-72 + 24-34-5-7 + 24-32-5-7-ll 

+ 22-32-72-ll + 23-34-5-ll + 25-32-5-13 + 23-32-7-13 

+ 24-34-13 + 24-52.ll-13 + 22-5-7-ll-13 + 22-5-7-ll-13 

+ 72-ll-13) = 3617/(2-3-5-17) . 

By induction, we express the Bernoulli number B, by 

_ c(k) 

(25) Bk = n pa(pjk) E n pb ( p j r , k ) • 
p<2k+2 r= l p<2k 

Where the products are over the pr imes less than 2k + 2 and 2k, respectively, a(p,k) is 
an integer (possibly negative) and b(p , r ,k) i s a non-negative integer. The number c(k) of 
te rms in the sum clearly possesses the recurrence 

[k/2] 
(26) c(k) = J^ c ( r ) c ( k " r) ' 

r= l 

with initial condition c(l) = 1. Kishore [12], [13] has used this technique to develop anal-
ogous structure theorems for Rayleigh functions [14], [15]. 
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3. DIVISIBILITY STRUCTURE OF THE BERNOULLI NUMBERS 

We first cite the well-known [16], [17] 
Theorem 2. (Von Staudt-Clausen). If B, = P, /Q, are the Bernoulli numbers for 

k = 1, 2, 3, ••• and ( P . , Q, ) = 1, then 

(27) Q . = | | p , 
K p-lj 2k 

where the product is over all pr imes whose totients divide 2k. 
This theorem completely character izes the Bernoulli denominators; hence, questions 

of divisibility center around the numerators P. . A sufficient condition on divisors of P, 
i s given in the following [16, p» 261] 

Theorem 3. If p w | 2k, p w + 1 | 2k , p - l | 2k , then p w | P k -
The proof of this theorem follows from a congruence of Voronoi 

N - l 
(28) (a 2 k - l ) P k = (-)k"12k a 2 k _ 1 Q k ] P s 2 k _ 1 [sa/N] (mod N) 9 

s=l 

I 2k 
where (a,N) = 1 and N is any integer greater than one. Clearly if i n 2k, (a - 1)P, = 
0 (mod p ) and we may select a to be a primitive root g of p w ( i .e . , if o> = 1, g a l -
ways exists: if (x) > 1 and gp~ ^ 1 (modp 2 ) , take a = g; if g = 1 (modp 2 ) , take 
a = g +p ) . 

Equation (28) is a type of congruence used recently [18], [19] to investigate certain 
divisors of Bernoulli numerators . Specifically, those pr imes p such that 

(29) p > P 1 P 2 P 3 - - - P ( p _ 3 ) / 2 

a re called regular pr imes andKummer [20] proved that for these p r imes , Fermat ? s inequal-
ity, x p + y p fi z , holds for all nonzero integers x, y and z. We l is t a number of con-
gruences of the Voronoi type. 

(30) S s ^ 1 = ( 2 P _ 2 k - l ) ( 3 P " 2 k - 2P" 2 k - l ) ( - ) k B k / 4 k (modp) 
p /6<s<p /4 

with [16, p. 268], p > 35 p - l | 2 k 

(3D E s2k-X
 + J] s 2 k _ 1 - (-)k(6P_2k " sP_2k " 2P"2 k + DBk/4k (mod p) 

p /6<s<p /5 p /3<s<2p/5 
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with [19, p. 27] , p > 7, 2k < p - 1.. 

(32) J^ s 2 k _ 1 s ( - ) k (2 P ~ 2 k - 1 - l ) (3P- 2 k - l ) B k /2k (mod p) 
p / 6 < s < p / 3 

with [ 2 1 ] , p > 7, 2k < p - 1. 

(p-D/2 
(33) J^ (p - 2r)2 k = p22k~1Bk (mod p3) 

r= l 

with [22] , 2k £ 2 (mod (p - 1)). 

(34) b a ( p " 1 ) f lb p " 1 - l ) j = 0 (mod p j _ 1 ) 

with [23] , p an odd pr ime, a > 0, j > 0, a + j < p - 1. 
F rom reflections on the divisibility propert ies of the binomial coefficients, it has been 

shown [24] that 

(35) 2Bk = 1 (mod 2 r + 1 ) , for k > 1, 2rJ 2k, 2 r + 1 J2k . 

Also [ 2 5 ] , 

(36) 2B k = 1 (mod 4), k > 1 , 

and [26 ] , 

(37) B k s 1 - (1/p) ( m o d p r ) , for p > 2, (p - l ) p r | 2k, p r + 1 [ 2 k . 

A more elaborate resul t [2] i s 

(38) 30B 2 k = 1 + 6 0 0 | k 2 1 | ( m o d 2 7 0 0 ° ) • 

The las t depends upon special identities such as 

(eX - l ) " 1 - ( e 5 x - I ) " 1 = (cosh (x/2) •+ cosh (3x/2))cosh (5x/2) . 

48 APPROACHES TO CONJECTURE 1 

M i l n o r f l , p. 966] asked whether o r not 
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(39) 8(2k) l / (2 2 k _ 1 - l ) B k £ 0 (mod 1) . 

2k-1 That this is true for k > 2 is c lear by remarking [27] that 2 - 1 possesses a p r imi -
tive divisor q, such that q = 1 (mod 2k - 2). 

In part icular , q > 2k + 1 and q must occur in the denominator of the fraction in (39). 
We naturally ask whether o r not a pr ime q > 2k + 1 always exists such that 

Q J 2 2 k - 1 - l and q ^ - l . 1 ( q ^ 2 - 1 - 1, fa. fa_r . 

with k /3 < r < k /2 . This suggests 
i 2k- l Lemma 1. If q 2 - 1 is primitive and regular , then Conjecture 1 is true for k. 

We consider r = k/2 or (k - l ) / 2 , k > 3. Since q > 2k + 1 and qf B. for i< 
(q - l ) / 2 , q j ^ , if k is even and q J ^ B ^ if k is odd. Also [ 2 8 ] , q j ^ - 1, j < 2k - 1 . 
Another natural question i s , since Fe rma t ' s Last Theorem is true for [29] pr imes of the 

a form 2 - 1, a re these numbers and their large factors also regular? Alas, 

233JB42, 233J229 - 1 . 

As an example of the theorem, k = 15, 2k - 1 = 29; 1103| 229 - 1, yet 1103 is regular; 
the neares t i r regular pr imes are 971 and 1061. Also 339l| B1116, 339l| B1267 and 339l| 2113 

- 1, but 3391|B2$B29 so that i r regular p r imes may be primitive and still satisfy conjecture 
1. Similarly for 263| 2131 - 1 and 263| B50. These remarks handle cases k = 57, 66. The 
number of primitive pr imes is infinite, so is the number of i r regular pr imes [30] ; Kummer 
conjectured that the number of regular pr imes is infinite. Present tables show that known 
regular pr imes are more numerous than i r regular pr imes . The intersection of these p r imi -
tive and regular pr ime se t s , though nonempty, i s unknown. It is interesting to note in this 
connection that 

(40) 2 2 k " 
r= l 

which for 2k - 1 prime is a relation between Mersenne [31] numbers and Bernoulli numbers. 
4k- l We might enjoy having (2 - 1, B, ) = 1, for the case of the (8k - 1)-sphere; but 

(227 _ 1, B T ) = (2111 - 1, B28) = 23 - 1, 

and a s imilar thing occurs whenever 3 4k - 1, 7 2k; likewise, if 5| 4k - 1, 31 2k, e. g . , 
( 2 4 9 5 - l , B 1 2 4 ) > 3 1 . 

Another approach to (39) is to seek a large (greater than 2k) prime factor of B, and to 
apply i ts existence to Conjecture 1. However, there does not appear to be in the l i terature 
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any theorem (other than a direct calculation [32 ] proving the existence of a large prime di -
visor of B. Equation (25) suggests that if the b(p, r , k) numbers behave appropriately, 
the sum in (25) would be the source of large factors; for the f irst few cases the sum has a 
number of small factors (i. e. , equations (17)-(24))„ A very general and related problem is 
whether or not sums of the type 

c(k) 
(41) J ] J]*" pHtP.r.k) 

r * l p<2k 

with the function n(ps r , k) behaving similarly to the b(p, r , k) possess large factors. It 
is known 33 that for sums of type (41) where n(p, r , k) ^> b(p, r , k) (inequality in a rough 
distribution sense of the density of pr imes being greater in one than the other) large factors 
a r i se . One must proceed with considerable care because of the copious factors [34] of a 
sum such as 

(42) W n V n(k - 1) \ / nk \ 
2Lr\ a i» •"•» a k / \ n - al f ••• , n - a k y \ n , • • • , n / 

where the sum is over the partitions 

k 

E ai = n • 
i=l 

Rather than digging a prime out of P. , we recognize the obvious 
Lemma 2. For m , n arb i t ra ry positive integers, such that m/n < 1, then there ex-

i s t s a prime p such that p |n/ (m,n) and p | p / ( m , n ) . 
We write for integers r G (k/3, k/2] , k > 3, 

(43) ( * ) ( 2 2 r - X - D ( 2 2 k 2 r " X - l ) B r B k _ r / ( 2 2 k - 1 - l )Bk 

(44) = (ifj ( Q t / Q A _ J ( 2 2 1 " - l)(22 k-2 r"1^ l)PT.Pt.T./(22k-1 - DP k / v V * k - r M " ~ ± M* ^ r ' k - r ' ^ 1 ~ A ' "k 

r J k - r 
/ 2 k \ 0(p ,k) -0(p , r ) -0(p ,k- r ) ( 2 2 r - l _ 1 ) ( 2 2 k - 2 r - l _ 1 ) p p 

W D<2k+2 r k 

(45) 
p<2k+2 

where 
(46) 0(p,k) = 1 if (p - l)| 2k and zero otherwise 

(47) 2 2 k _ 1 - 1 = MkM^ , Mk = ^ c 2 L p ^ , k ) . Mk larges t possible, 



12 BERNOULLI NUMBERS AND NON-STANDARD [Feb. 

and 
(48) P k = N k N k ' N k = ' ' P ^ P , k \ N k la rges t possible. 

Therefore, we have the following 
Lemma 3. If 

(49) MkNk < 0 . 2 6 ( j ) . Q k / Q r Q i E _ r 

for some integer r E (k/3, k / 2 ] , then Conjecture 1 i s t rue. 
F rom (3), 

(50) B r B k - r / B k = ( S ) 2 «2r ) J (2k - 2r)/f(2k) < j / V g r ) ' 

In fact, [35], for k even, 

(51) £2<W/£(2k) = 2 2l/(n) ^ ' 
n=l 

for î (n) equal to the number of distinct pr ime factors of n. 
By hypothesis 

m / n = ( 2 2 1 - 1 - l ) ( 2 2 k - 2 r - 1 - D P ^ / l 
(52) 

"Pk 

A (J)1 %%-* 4 M k N k 2r Q A - r / Q k
< X 

But n has no prime factors less than 2k and hence none less than 2(k - r) (whether 2k + 1 
is pr ime or not, n has no factors less than 2k + 2), so by Lemma 2 there exists some 
prime greater than 2k, which provides a non-trivial bound for Conjecture 1. Also, if 2k -
1 is p r ime , M^ = 1; in general , for say n = 2k - 1, an easily refined inequality i s M, 
< n 2 ( ^ n ) + 2 " with cp Euler ! s totient function. 

Since for relatively small k, discovery of a large prime divisor of P. could require 
more than 1038 centuries with our present technology, Lemma 3 presents itself as a most 
opportune calculational device. Using this lemma we have shown Conjecture 3 to be true for 
integers k E (3, 265]. The details of this calculation, which appear in the appended tables, 
material ly suggest the truth of the hypothesis of Lemma 3. These calculations make use of 
congruences of type (28), which gives necessary conditions for all divisors of P, , conditions 
which depend upon propert ies of the sum 
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p w - l 
(53) J ? s 2 k _ 1 [ s a / p w ] • (mod p") , 

s=l 

for a some primitive root of p (a complication can ar ise here because p = 35119 which 
satisfies 2P~ = 1 (mod p2) f has a Kummer i r regular i ty of 2). 

Of (53), the tables present empirical evidence, the most complete to date; the more 
valuable conceptual information in the form of an upper bound inequality on N, , for exam-
ple , would be welcome knowledge at this point. 
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CONVERGENCE OF THE COEFFICIENTS IN THE km POWER OF A POWER SERIES 

JOSEPH ARKIN 
Spring Valle^, New York 

1. CONVOLUTED SUM FORMULAS 

In this paper we investigate generalized convoluted numbers and sums by using recur-
ring power ser ies 

m \ " oo 
(1) I 1 + 2 ^ a y x v J = ^ u(n,k,m) x11 , 

v=l / n=0 

where the coefficients a and u(n,k,m) are rational integers k = 1, 2, 3, " " , u(0,k,m) = 

1 and m = 1, 2, 3, 
By elementary means, it i s easy to prove, if 

(2) 

then 

where 

H ,-k W(k) v (1 " y) = 2-J bv y 

v=0 

(n + k - l \ _ ,(k) 
V k - 1 / ~ Dn ' 

and 

b0
(k) = 1, k = 1, 2, 3, • • • , n = 0, 1, 2, • • - , 

\ k - 1 X) = (n + k " W-fak - 1)l • 

Elsewhere [ l ] , it has been shown that the following convoluted sum formulas hold: 

•**»-5:(,tE:i",)(,V)*n* o) u(n,k,2) = > . ( " ; ; : " J ) i " : J j ar "j 4 

(n = 0, 1, 2, • • • , k = 1, 2, 3, • • • ) ; 

and 

•(k +"k- .r- i ) ( i ' -*)( , r j ' ) )•*"•?"*•'] 

(4) 
r=0 j=0 

15 



16 CONVERGENCE OF THE COEFFICIENTS [Feb. 

where S = n - 4 r - 2 + j , T = 2r + 1 - 2j , n = 0, 1, 2, • • • , and k = 1, 2, 3, ' ' ' . 
The u(n,k,2) in (3) are called "generalized Fibonacci numbers , " the u(n,k,3) in (4) 

are called "generalized Tribonacci numbers*" we shall te rm the u(n,k,4) as the "general -
ized Quatronacci numbers , " and the general expression u(n,k,m) in (1 for m = 5, 6, • • • ) 
we shall refer to as the "generalized Multinacci numbers . " 

Now in (2) we let 
m 

y = ^ a w x w (m = 2, 3, • • • ) 
w=l 

and put 

00 « 

(5) (1 - y)~k = ] T u(n ,k ,m)x n = ^ b ? ^ ' 
n=0 v=0 

and by comparing the coefficients in (5), i t is easy to prove with induction, that 

r i r 2 r o 
i L m _ 2 

(6) > . " > " . > ; • • • • > ' * fo,m)FtQfm)b^ = u(n,k,m) , 
r 1 =0 r2=0 r3=0 ^ ^ = 0 

where 

n-2ri+r? ri-2r2+rQ r 0 - 2 r ,,+r - r 0 - 2 r ., r -
^, x \ i \ L 6 m _ 3 m _ 2 m _ i m _ 2 m - 1 m - 1 
F(n,m) = ai a? ••• a 0 a n a , 

' * L m-2 m - 1 m ' 
,(k) _ / n + k - r t - l \ b n - r t " V 1 - 1 J > 

and n = 0, 1, 2, • ' * , m = 2, 3, 4, • • • . 
Of course the convoluted sum formula of the generalized Quatronacci number u(n,k,4) is 

immediate as a special case of (6, with m = 4). 

2. A GENERAL METHOD TO FIND FORMULAS FOR THE u(n,k,m) 
ASA FUNCTION OF u(j , l ,m) (n,j = 0, 1, 2, • • • ) 

In [ l ] , it has been shown that the following formulas for the generalized Fibonacci num-
bers hold: 

(7) (a! + 4a2)ku(n - 1, k + 1, 2) = atnu(n, k, 2) + a2(4k + 2n - 2)u(n - 1, k, 2) , 

where u(0,k,2) = 1, u ( l ,k ,2) = ajk, and n ,k = 1, 2, 3, • • • . 
Now, using the resul ts in (7) we are able to write the following: where 
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A = ai + 4a2, B(k,n) = 4k + 2n . - 2 , u(0,k,2) = 1,. u(l-,k,2) = atk, n ,k = 1, 2, 3, • • • , 
and 

u(n , l ,2 ) = u(n - 1, 1, 2)a4 + u(n - 2 , 1, 2)a2 , 

(where aj and a2 a re rational integers) we have 

(8) u(n - 1, 2, 2)A = u(n , l ,2)na! + u(n - 1, 1, 2)B(l,n)a2 , 

(8.1) u(n - 1, 3, 2)A22l = ( a ^ n B d , n + 1) + a ^ n B ^ n ) + afn(n + l ) )u(n, l ,2) 

and 

(8.2) 
where 

+ (a2B(l,n)B(2,n) + a|a2n(n + l))u(n - 1,1,2), 

M 

u(n - 1, 4, 2)A33l = M + N , 

' a ^ n B d , n + l)B(3,n) + a!a2nB(2,n)B(3,n) 

+ afa2n(n + l)B(3,n) + a ^ n E d , n + 1)B(2, n + 1) 

+ a|a2n(n + l)(n + 2) + afa2n(n + 1)B(1, n + 2) 

+ afa2n(n + 1)B(2, n + 1) + ajn(n + l)(n + 2) 

u(n , l ,2 ) , 

and 

N = 

2 „ 2 , a£B(l,n)B(2,n)B(3,n) + afajjiiGi + l)B(3,n) 

+ aia2n(n + 1)B(1, n + 2) + afa2n(n + l)B(2,n + 1) 

+ afa2n(n + l)(n + 2) 

u ( n - 1,1,2) 

It should be noted that the method used in [ l ] to derive the formulas (8), (8.1), and(8.2) 
may also be used to develop formulas of the u(n,k, 2) for values of k = 5 and higher. 

In this paper we find for the f irst time a general method to express the u(n,k,m) as a 
function of the u ( j , l ,m) (j = 0, 1, 2, • • •) with m > 2 (m = 2, 3, 4, •• •) . 

Let 

(9) E 
m-2 m - 1 

v=l 
= y^ d x v , and w = \ b : 

v=0 v=0 

where a, d and b are rational integers , m ^ 2 (m = 2, 3, • ••) and 

(9.1) M(m) = zy - w(dy/dx) (M(m) is a rational number) 

-k -k 
Now, differentiating the identity y = y , we have 
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(10) -k(dy/dx) /y k + 1 = d(«x)k/dx , 
where 

/ o c \ k 

<j> (x) = | / u(n ,k ,m)x n J = y , k = 1, 2, 3, • • • , and m > 2 . 
\ n = 0 / 

k+1 We then respectively, multiply (9.1) through by k and divide (9.1) through by y 
and combine the resul t with (10). This leads to 

(kM(m) - kzy ) /y k + 1 = (d<«x)k/dx)w , 

and we have 

(11) xkM(m)/y k + 1 = xkz /y k + wx(d<Mx)k/dx) 

Now, comparing coefficients in (11), we conclude that 

u(n - 1), k + 1, m)kM(m) = 

m-2 m - 1 (12) v^ v^ 
k y u(n - 1 - v, k, m)d + \ u(n + v + 1 - m, k, m)(n + v + 1 - m)b _ _-

v=0 v=0 

To complete (12), we notice it is necessary to solve (9.1), and this is easily accom-
plished by collecting the coefficients of x . Comparing the coefficients then leads to the fol-
lowing 2m - 1 equations: (Note: In what follows B. = ja. , and also for convenience we have 
replaced a with -a (j,v = 1, 2, 3, • • • , m. ) 

(13) 
dQ = M(m) + Bib0 , 
a ^ = di + B2b0 + Bibt , 
a2d0 = - a ^ + d2 + B3b0 + B2bi + Bxb2 , 

a 0dA = -a Qd- - a ,d0 - • • • - a-d 0 + d 0 + B -bA + B 0 b - + • • • + B-b n , m-2 0 m - 3 1 m-4 2 1 m - 3 m-2 m - 1 0 m-2 1 1 m-2 
a ndA = - a 0 d . - . . . - and 0 - a-d 0 + B b~ + B -b- + . • . + B-b - , m - 1 0 m-2 1 2 m - 3 1 m-2 m 0 m - 1 1 1 m - 1 
a d~ = -a dn - . . . - a0d 0 - a0d 0 + B b- + ••• + B0b - , m 0 m - 1 1 3 m - 3 2 m-2 m l 2 m - 1 
0 = - a d. - . . . - a .d 0 - aQd 0 + B b 0 + • • . + B0b - , m l 4 m - 3 3 m-2 m 2 3 m - 1 

0 = -a d o - a nd 0 + B b 0 + B -b - , m m - 3 m - 1 m-2 m m-2 m - 1 m - 1 
0 = - a d 0 + B b -m m-2 m m - 1 

(dividing through by a this las t equation becomes 0 = -d 0 + mb ., ) . & & J m M m-2 m - 1 

Next we consider in (13) the 2m - 1 equations in the 2m - 1 unknowns M(m), dl9 d2, 
"" ' » 1̂ 0> b0, bi, • • • , b - , where for convenience we write m—u m.—x 
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S(m,0,0) = M(m) ; S(0,1,0) = d1? S(0,2,0) = d2s 

(14.1) S(0, m - 2, 0) = d ; 8(0,0,1) = bj , S(0,0,2) = b2 , 

19 

S(0,0, m - 1) = b m - 1 * and b0 = bn 

The 2m - 1 equations in the 2m - 1 unknowns S(g) (where we consider g to run 
through all the 2m - 1 combinations one at a time of the S( ) (we also include b0) in (14.1)) 
can be solved by Cramer f s rule to obtain 

(15) D(m)S(g) = D(g) , 

where D(m) and D(g) are the determinants given below: 

(15.1) 

D(m) = 

and 

1 0 

0 1 

0 -at 

-a m-3 

m - 1 
-a 

m 

0 

0 

0 

0 

1 

a m-4 

a m - 3 

a m-2 

a m - l 

0 

0 

- a 0 

0 

0 

0 

1 

- a l 

Bn 

B r 

B 

m 
0 

-a m - 1 
1 

m - 1 
B 

m 
0 

0 

B l 
Bn 

B m-2 

B m - 1 
B m 
0 

0 

0 

0 

0 

0 

B l 

B2 

B 2 

B„ 

(Determinant D(m) = the coefficients of the S(g) ) 

0 

0 

0 

0 

B l 
Brt 

m - 1 
m 

(15.2) D(g) is the determinant we get when replacing in (15.1) the appropriate column of the 
coefficients of any S(g) with the column to the extreme left in (13) (the t e rms in the column 
to the extreme left in (13) from top to bottom are : d0, al9 d0, • • • , a m , do, 0, • • • , 0, 0). 

Note. Upon investigation we notice that there is no loss of generality if we put 

(15.3) D(m) . 

We shall now use the above method to derive formulas for the generalized Multinacci 
number. 

We first find formulas for the generalized Tribonacci number. We write the generalized 
Tribonacci power ser ies as follows: 



20 CONVERGENCE OF THE COEFFICIENTS [Feb. 

(16) (1 - aAx - a2x2 - a3x3) = y ^ u(n,k,3)xn , 

n=0 

where k = 1, 2, 3, • • • , the a a re Integers and u(0,k,3) = 1. 
Now combining (16) with (9.1), we write 

(17) M(3) = (do + dix)(l - a tx - a2x2 - a3x3) + (a4 + 2a2 + 3a3x3)(b0 + btx + b2x2) 

and combining (17) with (15.1 and 15.3, with m = 3), we have 

0 0 0 

0 1 B2 Bi 0 

(17.1) d0 = D(3) = I 0 - a i B3 B2 Bi 

0 -a2 0 B3 B2 

0 - 1 0 0 3 

and of course applying the directions in (15.2, with m = 3) in combination with the deter-
minant D(3) in (17.1)pleads to the following: 

do D(3) = 27a| + 15aia2a3 - 4a2 

18aia3 - 6a2a3 

(17.2) 
b0 = 4a2

la3 + 3a2a3 - axa2 

bi = 9a2. + 7aia2a3 2a| 

b2 = 6aia| - 2a|a3 

M(3) 27a3 + 18aia2a3 + 4afa3 - 4a2 - afa2 

We now combine (16) and (17.2) with (12, with m = 3), which leads to 

(18) 

k(27a3 + 18aia2a3 + 4aia3 - 4a2 - aja2)u(n - 1, k + 1, 3) 

= (4aia3 + 3a2a3 - aia2)nu(n,k,3) 

+ ((n - l)(9a3 + 7aia2a3 - 2a|) + k(27a3 + 15aia2a3 - 4a2))u(n - 1, k, 3) 

+ ((n - 2)(6aia3 - 2a2a3) + k(18aia3 - 6a2a3))u(n - 2, k, 3) . 

(18.1) In (18) it is evident that if we put k = 1 we can find the u(n,2,3) as a function of the 
u(n, 1, 3) and also for k = 2 we find u(n, 3, 3) as a function of the u(n, 2, 3), so that we have 
u(n,3,3) as a function of the u (n , l , 2 ) . In this way, step by step for k > 1 (with induction 
added), it is easy to see that we can find formulas of the u(n,k, 3) as a function of the u (n , l , 3 ) . 
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(19) Using the exact methods which lead to (18) and (18*1), we find formulas for the Quatro-
nacci (u(n,k,4)) numbers (with k > 1) as a function of the u(n, 1,4), and we find formulas 
for the generalized Multinacci (u(n,k,m) with m = 5, 6, 7, e - e and k > 1) numbers as a 
function of the u(ns l , m ) . 

3. THE GENERALIZED MULTINACCI NUMBER EXPRESSED AS A LIMIT 

Note. In [ l ] the generalized Fibonacci number is expressed as the following: 

(20) n l im t t (u (n , k + 1, 2)/(n + l ) k u ( n , l , 2 ) ) = (1 + a^af + 4a2)~2) / 2
k k » , 

where 
k ,n = 1, 2, 3, ••• . 

In this paper we find asymptotic formulas of the u(n,k,m) (with k 9 m ^ 2 ) expressed 
in t e rms of u ( n , l , m ) , a , n, and k. 

However, before finding our asymptotic formulas, we make some 

(21) SUPPLEMENTARY REMARKS 

This author, for the f i rs t t ime, proved the following in 1969 [ 2 ] , Define 

f 
2 > w x W = F(x) ^0 
w=0 

(for a finite f) , 
t m d 

X>wxW=TT(l-v>w = ^ 
w=0 w=l 

for a finite t and m, where the d ^ 0 a re positive integers , the r , ^ 0 and are d i s -
w w 

tinct and we say | r* | i s the greatest | r | in the | r j* We then proved the following 
Theorem. If 

00 

F(x)/Q(x) = J ] u
w

x W
5 

w=0 

then 
1 / u .1 n / n - j | 

(for a finite j = 0, 1, 2, *••) converges to | r J j , where the r / 0 in Q(x) are distinct 
with distinct moduli and j r41 i s the greatest | r | in the j r |„ 

We are now in a position to discuss the generalized Multinacci number expressed as a 
l i m i t 

F i r s t , we consider when m = 3 and we multiply equation (18, with k = 1) through by 
l/nu(n - 1 , 1 , 3 ) to get 

Mm 
n —»QO 
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M(3)u(n - 1, 2, 3)/nu(n - 1, 1, 3) = b0u(n, 1,3)/u(n - 1, 1, 3) 

( 2 2 ) + ((n - l)bi + d0 )u(n - 1 ,1 , 3)/u(n - 1 , 1 , 3)n 
+ ((n - 2)bi +di)u(n - 2 , l , 3 ) /u (n - 1 ,1 , 3)n 

(23) In (21) we have u(n, l ,3) /u(i i - 1 , 1 , 3 ) = r where r i s the greates t root in 

x3 - aAx2 - a2x - a3 = 0 , 

so that equation (22) may be written as 

(23.1) lrni^ M(3)u(n - l ,2 ,3) /nu(n - 1,1,3) = rb0 + b t + b 2 / r = (say) L(3) . 

Now, we multiply (18, with k = 2) through by 

M(3)/n2u(n - 1, 1, 3) , 
to get 

2(M(3))2u(n - 1, 3, 3)/n2u(n - 1, 1, 3) = 

+ [u(n,2,3)M(3)b0/nu(n - 1 ,1 ,3)] [ u ( n , l , 3 ) /u (n , l , 3)] 

+ ((n - l)bi + 2d0)u(n - 1, 2, 3)/n2u(n - 1, 1, 3) 

+ [((n - 2)b2 + 2d!)u(n - 2,2,3)M(3)/n2u(n - 1,1,3)] [u(n - l ,2 ,3 ) /u (n - 1 , 2 , 3 ) ] , 

where combining this resul t with (23.1), and with n-» oo, leads to 

^ i rn^ (21 (M(3))2u(n - l ,3 ,3) /n2u(n - 1,1,3)) = b0L(3)r + b2L(3)/r 

( 2 4 ) = (b0r + bi + b2/r)L(3) = (L(3))2 

We continue with the exact method that gave us (24) step by step and with induction, 
which leads us (for k = 1, 2, • • •) to: 

The generalized Tribonacci number expressed as a limit 

(25) lim (k!(M(3))ku(n,k + l ,3 ) / (n + l ) k u (n , l ,3 ) ) = (L(3))k , n—* oo 

where L(3) is defined in (23.1). 
Now, with the exact method that was used in finding (25) applied to the equation in (12) 

and step by step (and with added induction), we prove that: 
The generalized Multinacci number expressed as a limit is 

(26) l im (k!(M(m))ku(n,k + l , m ) / ( n + l ) k u (n , l ,m) ) = (L(m))k , n—* oo 
where 
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m - 1 
^ M(m)u(n,2,m)/(n + l)u(Q,l,m) = ^ b y r 1 v = (say) L(m) , 

v=0 

r i s the greatest root in 

m 
x 

\ ^ m-w A 
- > a x = 0 , 

w=l 

the M(m) and the b are found by using Cramer f s rule as defined in (15) through (15.3), 
m = 2, 3 , 4, ••• , n = 0, 1, 2, ••• , k = 1, 2, 3, ••• , and u(0,k,m) = 1. 

4. A GENERALIZATION OF THE BINOMIAL FORMULA 

Put 

m m 
/ J a ( n , l , m ) x n , 

w=0 n=0 

so that 
k 1 

mk 
(27) y k = [ ^ T a w x w \ = ] T a(n,k,m) x11 , 

* w=0 / n=0 

where m = 1, 2, 3, • • • , k = 1, 2, 3, ••• • , and the a are arbi t rary numbers (ao fi 0). 
k -1 k w 

It i s evident that y y = y 9 and combining this identity with (27) and then comparing 
the coefficients, leads to 

m 
(28) a(mk - q, k, m) = \ a (v , l ,m)a(mk - q - v, k - 1, m) , 

v=0 

where q ranges through the values q = 0, 1, 2, • • • , mk - m, k = 2, 3, 4, • • • , and m 
1. 2, 3 , • • • . 

Differentiating equation (27) leads to 

/mk-m \ / m \ mk 
kl \ a(v, k - l ,m)x II / va(v, l ,m)x J = / va(v,k,m)x , 

\ v=0 / \ v = l / v=l 

and comparing the coefficients in this result , we have 
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m 
(29) (mk - q)a(mk - q, k, m) = k y ^ v a ( v , l ,m)a(mk - q - v , k - 1, m) , 

v=l 

where q ranges through the values q = 0, 1, 2, • • • , mk - m , k = 2, 3, 4, ••• , and 
m = 1, 2, 3, • • • . 

We multiply equation (28) through by mk - q so that the right side of (28) is now an. 
identity with the right side of (29), and arranging the t e rms in this resul t leads to 

(mk - q)a(09l9m)a(mk - q, k - 1, m) 

m 
= 2 a (v , l ,m)a(mk - q - vs k - l ,m)(vk - mk + q) . 

(30) m 

v=l 

Then replacing k with k + 1 in (30), we have 

(mk + m - q)a(09l9m)a(mk + m - q, k, m) 

(31) 
y> a(v , l ,m)a(mk + k - q - v, k, m)((v - m)(k + 1) + q) , 
v=l 

where m , k = 1, 2, 3, • * • , q ranges through the values q = 0, 1, 2, • • ° s mk9 mk + k - q 
= v ^ 0, and it i s evident that 

k k 
a(0,k9m) = (a(0s l ,m)) , and a(mk9k,m) = (a(m,l9m)) . 

As an application of (30) we find a value for a ( l 9 k 9 m) . Let mk + m - q = 19 so that 

m 
a(0 9 l 9 m)a( l 9 k 9 rn) = y a (v , l 9 m)a ( l - v9 k, m)(vk + v - 1) , 

v=l 
then 

a (0 9 l 9 m)a( l 9 k 9 m) = ka(0 9 k 9 m)a( l 9 l ,m) = k(a(09l ,m)) a ( l 9 l , m ) 
and we have 

k -1 a( l 9 k 9 m) = k(a(09l5m)) a ( l 9 l 9 m ) . 
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ON THE GREATEST COMMON DIVISOR OF SOME BINOMIAL COEFFICIENTS 

E.G.STRAUS 
University of California, Los Angeles, California 

Henry W. Gould [l] has raised the conjecture 

«» -{(n i 1 ) - (^0-(^0}"-{(s :O-(^O-("1)} • 
which we shall prove in this note. 

It i s convenient to express the proof in t e rms of the p-adic valuation of rationals. 
Definition. Let r = p (a/b) where (a9p) = (bsp) = 1 then j r | = p~ . 
We need only two propert ies of this valuation,, 

(2) Ultrametric inequality. ja + bl ^ m a x { | a | , jb| ) ; 

and for all integera al9
 8 • • , a n we have 

(3) | g c d ( a l s • - . , a n ) | p = m a x { | a i | p , • • • , j a j p } * 

In view of (3) we can rephrase (1) as follows. 
Conjecture. For all pr imes p we have 

If we divide both sides by 

| (n - l)(n - 2) . . . (n - k + 2) 
I (k + 1)! 

we get the equivalent conjecture 

Mi(n,k) = max{ | (n - k)(n - k + l)(k + 1)| , jnk(k + 1)| , |(n + l)n(n - k + 1 ) ] ^ 

(5) = max{ | (n - k + l)k(k + 1)| , |n(n - k)(n - k + 1)| , |(n + l)n(k + 1)\^ 

= M2(n,k) . 
It thus suffices to prove Mt ^ M2 and M2 ^ Mt by deriving contradictions from the 

assumptions that one of the te rms in Mi exceeds M2 or one of the t e rms in M2 exceeds 
Mj. Since M2(n,k) = Mj(-k - 1, -n - 1) this involves only three steps. 

25 
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Step 1. If 
|(n - k)(n - k + l)(k + 1)| > M2 

then 

!k!p * ln - k i P - L so lk + \ = i 
ln!P

 < ik + X =x ' so ln + % =x 

h i p = ln<n + -w|p < ln - k l P
 s » « { M p ' lklP> < !n - klE 

a contradiction. 
Step 2. If 

|nk(k + 1)| > M2 

then 

ln - k + % K M P - 1 so ln - k l P = 1 

|n - k + l | p = |(a - k)(n - k + l ) | p < |k(k + i ) | s | k | 

l n + 1 !p < lkip = |(n + 1) - (n - k + l ) | p ^ max{ |n + 1 p , | n - k + l | p } 
< | k | I lp 

a contradictioa 
Step 3. If 

then 
|(n + l)n(n - k + 1)| > M2 

|k(k + l ) | p < |n(n + l ) | p ^ |n + l | p 

ln " klp K ln + % 
|k t l | p < |n - k + l | p so |k | p = 1 . 

The first inequality now yields 

lk + J l p < l n + ^ p = l(n " k) + (k + l ) | p ^ max{)n - k | p . |k + 1 ^ 

< ln + Xlp 
a contradiction. 

We have thus completed the proof of M-^njk) =s M2(n,.k) = M^-k - 1, -n - 1) and hence 
by symmetry the proof of M2(n,k) = Mj(-k - 1, -n - 1) ^ M2(-k - 1, -n - 1) = Mi(n,k). 
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A TRIANGLE WITH INTEGRAL SIDES AND AREA 

H.W.GOULD 
West Virginia University, Morgantown, West Virginia 

The object of this paper is to discuss the problem [3 ] of finding all triangle shaving in-
tegral a rea and consecutive integral sides. The c lass of all such triangles is determined 
uniquely by a simple recurrent sequence. We also examine other interesting sequences a s -
sociated with the triangles. Such triangles have been of interest since the time of Heron of 
Alexandria and the reader is referred to Dickson1 s monumental history [ 9 , Vol. 2, Chapter 
5 J for a detailed account of this and s imilar problems up to 1920. 

The area , K, of a triangle having sides a, b, c must satisfy the formula of Heron 

K2 = s(s - a)(s - b)(s - c) , 
where 

s = (a + b + c)/2 . 

Letting the sides of our triangle be u - 1, u, u + 1, we have s = 3u/2 and the equation 

(1) K2 = 3 u 2 ( u 2 - 4 ) . u; ^ 1 6 

Evidently u must be even; for if u were odd then both u2 and u2 - 4 would be odd 
and 16 could not divide into the numerator. In order for 3N to be a perfect square it i s 
necessary that N be a multiple of 3. However, u2 cannot be a multiple of 3 without also 
being a multiple of 9, and so the only way to account for the factor 3 in the numerator i s 
to impose the Diophantine equation u2 - 4 = 3v2, or 

(2) u2 - 3v2 = 4 . 

All solutions to the problem will be determined by solving this equation for u, making c e r -
tain that we obtain even values of u. 

Equation (2) is of the general c lass u2 - Dv2 = 4 and a complete solution of this equa-
tion may be found inLeVeque [ 5 , Vol. 1, p. 145], The substance of the solution, as it applies 
to our work is that if Uj + Vfs/D is the minimal positive solution of u2 - Dv2 = 4, D ^ 
square, D > 0, then the general solution for positive u ,v is given by the symbolic formula 

/ui + ViVBY1 

A—2—) -u + vVB" = 2 \ — 5 } , (n = 0, 1, 2, • • • ) 

27 
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where v and u are found by expanding the right-hand side by the binomial theorem and 
equating radical and non-radical pa r t s . It i s easily seen that the minimal positive solution 
of (2) is 4 + 2V3 so that the general solution is given by 

u + vy^ = 2(2 + V3) n = 2 Xl (k) ^ ^ > k 

k=0 

[ n / 2 ] [ (n - l ) / 2 l 

-£(!)**++*» Z Ua
+1>n-2k-v 

Thus we have 

2 
k=0 x ' k=0 

[n/2] 
u = 2 n + 1 T ( 0 l ) (3/4)k 

2-d \2kJ 
k=0 

However, it is easy to split up the binomial expansion and obtain the well-known formula 

Z ( 2 k ) x k = !{<1+VS>n-Mi-v^)n} . 
k=0 

whence we have 

(3) u = u n = (2 + \ / 3 ) n + (2 - \ / 3 ) n , (n = 0, 1, 2, • • • ) . 

It is of interest to point out that we could also write 

U) u - ( H - V 3 > 2 n - M l - V 3 ) 2 n 

n 2 n 

but the former relation is eas ier to use in pract ice. We also remark that i t is easy to prove 
by induction that u as determined by (3) i s indeed even. A shorter derivation of (3) is to 
note that 

2u = (u + v \ /3) + u - v \ /3) = 2(2 + \ / 3 ) n + 2(2 - %/3)n . 

Cf. the solution given by E. P . Starke [i], 
We also have the recurrence relation 
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u ^ 0 = 4u ,- - u , n+2 n+1 n9 (u0 = 2 , 1 1 ! = 4) 

since this recurrence is associated with the character is t ic equation 

«* = 4x - 1 

whose roots are 2 +\/3, 2 -yjz. The recurrence relation allows us to compute a short 
table of values of u, as follows: 

u = u 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

2 

4 

14 

52 

194 

724 

2702 

10084 

37634 

140452 

524174 

1956244 

7300802 

27246964 

101687054 

379501252 

1416317954 

5285770564 

19726764302 

73621286644 

275758382274 

Actually our problem is an old one, rational triangles having always been of interest . 
A solution of the form (3) was given, for example, by Reinhold Hoppe in 1880 [ 4 ] , Also, Cf. 
solutions in [ 7 ] , [ 8 ] , 

The first six tr iangles, together with their a r ea s , a re : 

1, 
35 
13, 
51, 
193, 
723f 

2, 
4, 
14, 
52, 
194, 
724, 

3, 
5, 
15, 
53, 
195, 
725, 

0 
6 
84 

1170 
16296 
228144 
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The triangle 3, 4, 5 is the only right triangle in the sequence because (u - I)2 + u2 = (u + l)2 

implies u(u - 4) = 0 which has only the one non-trivial solution. The triangle 13, 14, 15 
has been used widely in the teaching of geometry. In fact the wri ter f irst became aware of 
this example during a course in college where the triangle was used as a standard reference 
triangle. Such a triangle has rational values for i ts major constants, as we shall see he re , 
and so makes it possible to have problems with ?nice! answers. For example, in this case 
the sines of the three angles in the triangle are 4 /5 , 12/13, and 56/65. The radii of the e s -
scribed circle are 21/2, 14, and 12. The altitudes are 168/13, 12, and 168/15. Cf. [7 ] . 

It i s easy to conjecture that the a rea K = K satisfies the recurrence relation 

(6) K n + 2 = 14Kn + 1 - K n , <K0 = 0. K l = 6) . 

If this were t rue , we could find an explicit formula for K since the character is t ic equation 
for (6) is x2 - 14x + 1 = 0, whose roots are 7 ± 4 \ /3 . For suitable constants A ,B we 
should then have 

Kn = A (7 + 4v/3)n + B(7 - 4 / 3 ) n . 

F rom the initial values, A,B are easily determined and we find that 

which simplifies to 

(7) 

Kn = ^ 1(7 + 4V3)n - (7 - 4V^)n( 

Kn = ^ j(2 + V3)2n - (2 - V3)2nj 

According to the review in the Fortschri t te [4] i t was in this form that Hoppe found the area . 
Now (7) follows from (6) which we conjectured from tabular values of K. However it is 

easy to show that K given by (7) satisfies (6). Thus we shall prove (6) by proving (7) in a 
novel way, as follows. 

By (1) we have, for any triangle T , 

16K2 = 3u2(u2 - 4) , n nv n 

and it i s easy to see that (3) implies 

(8) u2 = u0 + 2 , 
w n 2n 
whence 

16K2 = 3(u0 + 2)(u0 - 2) = 3(u2 - 4) = 3(11. - 2) , n N 2n 2n x 2n 4n 
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so that we have the formula 

(9) K» = 4 (u,„ - 2) . 
Thus 

n 16 v"4n 

- V5 i 
(10) K n = * £ (U 4 n - «)i 

However a short calculation shows that in fact 

(2 + V 3 ) 2 n - (2 - v ^ ) 2 n f 2 = (2 + V^) 4 1 1 + (2 - V 3 ) 4 n - 2 

= U4n " 2 • 

whence formula (10) gives (7) which we wanted to prove. 
We remark that relation (8) is very useful in checking a table of u and was used for 

this purpose here to be certain of the value of U2Q. 
The radius , r , of the inscribed circle of any triangle is given by the formula K = r s . 

In the case at hand this gives 

T^2 2 A U2 - 4 U 0 - 2 
.2 - T.2 - K - - u - 4 _ n _ 2n (11) r2 = r n o 12 12 12 

a 

and it is easy to prove that 

(12) r n + 2 = 4 r n + 1 - rn > (r, = 0, n = 1) 

so that every triangle T has an integral inradius. The first few values of r are 0, 1, 4, 
15, 56, 209, 780, 2911, 10864, • • • . 

Noting that recurrence relation (12) is the same as relation (5) we suspect that there 
are other intimate relations between u and r* Indeed, the theory of continued fractions 
provides us an interesting result . Some very handy information on continued fractions is 
given by Davenport [ 2 ] and especially the table on page 105. F i r s t of al l , our original equa-
tion (2) may be transformed as follows. Since u is even, say u = 2x, we have 4x2 - 3y2 = 
4, whence v is even, say v = 2y, and so the equation can be written as 

(13) x2 - 3y2 = 1 

which suggests that we examine the familiar continued fraction expansion for V 3 . Indeed, 

v 1 + 2 + 1 + 2+ 1+ 2+ 

and tltie f irst few convergents are 
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1 2 5 7 1 9 2 6 ^ 7 1 9 7 
1 ' 1 } 3 ! 4 ' 11 } 15 ' 4 1 ' 56 ' " ' ' 

The interesting point here is that every other numerator is one-half u , while every other 
denominator is precisely r . By means of some simple transformations we can bring out 
the relation more strikingly. In fact the continued fraction 

l i 4 ) u l 1+ 3 - 4- 4- 4 - 4 - 4 - 4- 4 - 4- . . . 

has successive convergents 

1. 2 7 26 97 _362̂  1351 
1 ' 1 J 4 ' 15 ' 56 ' 209 ' 780 J 

so that each numerator is -|u and each denominator i s r . It can be shown that the continued 
fraction (14) converges to \/3„ Let us show that 4 u / r also tends to \ / 3 . We have, by (11) 

1 u2
 0 u2

 0 1 
T — = 3 . = 3 _ • 3 a s n—> oo » 
4 r2 u2 - 4 1 - ± 

so that we can say that our general T has the interesting property that 

u 
(15) l im — = 2\/3 

n-* oo r v 

n 

It is interesting to recall Heron's formula (iterative) for the square root of 3 

5a + 9 
a. = n 

n+1 3a + 5 ' n 

Starting with aj[ = 5/3 we find the successive approximations 

5 26 265 1351 
3 5 15 9 153 ' 780 

These approximations, especially the value 1351/780, a re of historical in te res t 
One may find fori 

calling that [ l , p. 12] 
One may find formulas for the radii of the escribed c i rc les for the c lass T by r e -

r s = (s - a)r = (s - b)r, = (s - c)r a D c 
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Fur ther interesting relations follow from the two formulas 

(16) r + r, + r = r + 4R, I = - 1 + J L + -L , 
a b c r r r, r 

a b c 

where R = radius of the c i rcumcir le . Also we recall that r = (s - a) tan | A , with other 
s imilar formulas. 

Thus we have 

(17) r2 = 3 2 (u_^J\ 
u 4 U \u + 2 / 

(18) r2 = | (u2 - 4) , 
whence by (11), r, = 3r , 
(19) 

fcb 4 

r2 = 3 2 (}L±2\ 
c 4 U i u - 2 I 

The radii of the three escribed circ les are easily calculated and the first few values are as 
follows^ 

<on\ n 9 2 1 1 3 ° H64 6878 50795 
W) r

a
: U j Z j T s T" J "T" 9 TT™ s — l 3 ~ s e s e 

(21) r, : 0, 3, 12, 45, 168, 627, 2340, 

(22) r ... 6 14 221 ^79 U946 

Relations (16) become 

(23) JL + A = ± 
{A6) r r 3r s 

a c 
and 

6r2 + 2 (24) r + r = 4R - 2r 
c r 

the last step following because of the fact that we shall find R = 2r + l / 2 r . 
As a simple example of the check afforded by (23), we have (n = 5] 

19 11 = 19 11 192 + 3-112 

11946 6878 2-3-1M81 2-19-181 2-3-11.19-181 

361 + 363 2 2 = _2_ 
2-3.1M9-181 3-1M9 3(209) 3r 
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One discerns a Pellian equation in this calculation also. 
We may combine (23) and (24) to obtain a product formula, which is 

(25) r r = 9r2 + 3 . 
a c 

The equation 

x2 - (r + r )x + r r = 0 a c ' a c 

has for roots the radii r , r , and when we substitute into this equation by means of (24) 
and (25), we have the equation 

rx2 - (6r2 + 2)x + 9r3 + 3r = 0 . 

Solving this by the quadratic formula, we obtain the novel formulas 

(26) r = 3 r 2 + 1 - V 3 r 2 t l . 
a r 

and 

(27) r = 3 r 2 + 1 + V 3 r 2 + 1 
c r 

which are ra ther elegant resul t s , especially since 3r2 + 1 is a perfect square. 
We turn now to the angles of our triangles. From the functional relations 

(28) 2K = ab sin C = be sin A = ca sin B , 

we find (by means of (1)) 

(29) sin2 A = | u 2 " 4 , 
4 (u + l)2 

(30) sin'5 B = ^ 3 u2(u2 - 4) 
4 (u2 - l)2 

(31) sin2 C = | u 2 " 4 . 
4 (u - l )2 

Letting n —* oo, each of these tends to 3/4. This agrees with the fact that in an equi-
lateral triangle the three sines would be each V"3/2. Of course, our special triangle T b e -
haves at oo as an equilateral triangle insofar as angular measurements are concerned, but 
never becomes truly an equilateral triangle because the sides never become equal. We may 
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il lustrate this behavior in another way. It is well known that the square of the distance be-
tween the circumcenter and incenter in any triangle is R(R - 2r). Since, as we have r e -
marked, it can be shown in our case that R « 2r + l / 2 r the number in question has the 
value R/2r . It is also known that R J> 2r in any case. However, R - 2r = l / 2 r which 
can be made as small as we wish by choosing n sufficiently large. (It follows from (12) that 
r is an increasing sequence.) Thus we have 

(32) lim (R - 2r ) = 0 
n —»oo n n 

and 
R 

(33) lim - J l = i . 
n -> oo 2 r n 

It follows then that the distance between circumcenter and incenter tends to 1. Only if 
these two points come together can we speak truly of an equilateral triangle. Of course , in a 
finite triangle, with R fixed say, then as 2r approaches R, R(R - 2r) tends to zero . In 
our case , however (R - 2r) and R increase at the same ra te , i . e . , n-*oo. The reader 
will find other peculiarit ies of T^ • 

Let us agree to write ] P - Q j for the distance between points P and Q. Let N = 
circumcenter; N = orthocenter; I = incenter; G = centroid; M = Nine-point center; A, 
B, C = ver t ices . Then we have the following known distance relationships for an arb i t ra ry 
triangle: 

N - H|2 = 9R2 - (a2 + b2 + e2) = 9 |N - G[2 = I |G - H|2 ; 

I = H | 2 = 4R2 + 2r2 - £(a2 + b2 + c2) 

| I - N | 2 = R(R - 2r) ; 

I - A | • | l - B | • | I - c | = 4r2R ; 

G - H = 2 G - N ; 

|M - N| = |M - H| = £-|N - H| . 

In our special triangles we also have the following: 

(34) ab + be + ca = 3u2 - 1 = 3u2 - 1 = 3un + 5 v ' n 2n 
and 

(35) a2 + b2 + c2 = 3u2 + 2 = 3u2 n + 8 = 36r2 + 14 



36 A TRIANGLE WITH INTEGRAL SIDES AND AREA [Feb. 

Thus we have 

- H | » = 9 ( 2 r + ^ ) 2 -(36) | N - H|2 = 9 [ 2 r + Tf- J - 36r2 - 14 = 4 + — , 
4r2 

and since r increases steadily with n we see that for T the circumcenter and orthocenter 
will be two units a p a r t 

Moreover, 

| I - H|2 = 4(2r + l /2 r ) 2 + 2r2 - -|(36r2 + 14) 

= 1 - 1/r2 

whence in T ^ the incenter and orthocenter a re also one unit apart. 
It i s then extremely simple to draw the Euler line for T ^ : 

N G I = M H 

The Euler line from N to H is two units long and the incenter l ies on it and in fact coin-
cides with the Nine-Point center. This then gives some idea of the behavior of T^ . 

In Figure 1 is shown the standard location of the common points in an arb i t rary finite 
triangle. The Nine-point circle has quite a history, having been studied as long ago as 1804. 
It was first called n le cercle des neuf points' ' by Terquem in 1842 in Vol. 1 of the journal 
Nouvelles Annales de Mathematiques. The circle has many properties; it passes through the 
midpoints of the sides and the feet of the altitudes, it is tangent to the inscribed circle; i ts 
residue is f R; it bisects any line segment drawn from the orthocenter to the circumclrcle . 
Thus it has more than nine points associated with it , and has been called an n-point c i rc le , 
Terquem*s ci rc le , the medioscribed c i rc le , the circumscribed midcircle , Feueroach's c i r -
cle , etc. A very interesting history has been given by J. S. MacKay[6] , Coxeter [ l , p. 18 J 
quotes Daniel Pedoe: "This circle i s the f irst really exciting one to appear in any course on 
elementary geometry." 

We have now to return to a discussion of the circumradius R. From the formula 

_ abc 
K " "4R" 

we have in our case 

2 - u2 - 1 u0 + 1 
(37) R = R = ^ - i = - £ _ = J* , 

n 6r 6r 6r 
o r also 

(38) R2 = (u2 - 1 ) 2 . 
n 3(u2 - 4) 
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^ M / LV 
\ 

V 

V 

V 

Figure 1 

But by (11) we have u2 = 12r2 + 4, so 

R 2 = (12r2 + 3)2
 = (4r2 + l)2 

whence 

(39) 

3 ( 1 2 r ) 4r2 

2r + ^ 2r 

as we suggested ear l ie r . The first few values of R are 
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65 901 12545 174725 
30 ' 112 ' 418 

or 

0 + i , 2 + - i , 8 + i 3 0 + 4 ? > 1 1 2 + T T o > 4 1 8 + TTQ > 1 5^0 + 0 ' 2 ' 8 ' 30 ' 112 ' 418 ' ^ ^ 1560 ' 

It i s certainly more interesting, for example, in the triangle 13, 14, 15 to think of the 
circumradius as 8 + 1/8 than as 65/8; this together with the inradius being 4. (We apolo-
gize for writing 1/0 but wish to be suggestive.) 

The sequence of numbers 1, 5, 65, 901, 12545, ••• incidentally, has an interesting 
recurrence. Now we know that these are just 2r t imes R, so let us define a special s e -
quence by 

(40) g = 2rR = 2r R . 
&n n n 

Then g = (u2 - l ) / 3 , but also 

WD gn + 2 = 1 4 g n + 1 " gn " 4> feo = L gi = 5) • 

This completes our present discussion of the properties of special number sequences 
associated with the class of triangles having consecutive integers as sides and having integral 
a reas . The really crucial mat ter was right at the beginning where it was necessary to set up 
a cri terion for the triangles. It is not enough to guess formula (3) or (5), as we must rule out 
any other possibility. This we accomplished by setting up the equation (1) and arguing to (2) 
a s a Accessary condition. That it is a sufficient condition is clear. Any three consecutive 
numbers (>1) do generate a real triangle, and sequence (3) turns out to have integral area. 

We close by suggesting other possible problems. Let u _^2 and consider triangles 
having integral a reas and sides 2u - 1, u, 2u + 1, Then s = 5u/2, and 

s - a = i ( u + 2), s _ b = 3u/2, s - c = - (u - 2) . 

Then 

K2 = B(B _ a)(s _ b)(s _ 0) = i 5 u 2 y 6 - 4 > . 
Again, u must be even. Thus we have evidently to impose the equation 

(42) u2 - 15V2 = 4 . 
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The res t of the discussion is similar to what we presented above. 
Again, let the sides be consecutive Fibonacci numbers. Then 

S = I ( Fn-l + F„ + W = I(Fn+l + W = F„+l • 
and 

s - a = F , s - b = F - , a - c = 0 . n n-1 J 

Thus K = 0. But this is trivial. No triangle is formed; just a degenerate line segment. It 
would be of interest to modify the values so as to have some really interesting Fibonacci t r i -
angle with integral area . We leave this as a problem for any interested reader . Can one, 
for instance, make anything interesting with sides F - d, F , F + d for suitable values 
of d? What interesting Pellian equations and recurrences might be associated with a 
tetrahedron? 
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A NEW LOOK AT FIBONACCI GENERALIZATION 
N.T.GRIDGEMAN 

National Research Council of Canada, Ottawa, Canada 

1* INTRODUCTION 

Our parent topic will be sequences, in the broadest sense. That i s to say, we shall be 
dealing with ordered infinite sets of numbers , mostly or usually positive integers , whose 
character i s determined by (a) some given subsequence of si members , and (b) a function 
linking any given member to i ts immediate preceding £ - ad. In this context the case of 
£ = 1 is t r ivial , whereas the case of £ = 2 includes many well known examples, in pa r t i c -
ular those called the Fibonacci and Lucas sequences. Some of the examples of the case 
£ = 3 have been discussed under the name of Tribonacci sequences. 

Here we res t r i c t attention to s_ = 2. In characterizing such sequences we use the 
le t te rs A and B to denote the given pair (and only coprime A and B will be admitted). 
The determining function will be l inear , with parameters N and M. Thus the t e rm follow-
ing B will be NA + MB; the next NB + M(NA + MB); and so on. Similarly, the t e rm p r e -
ceding A will be (B - MA)/N; and the next A/N - M(B - MA)/N2; and so on. Each term 
is in fact expressible as aA + bB» where the coefficients a and b are polynomials in N 
and M, and if we work through the algebra the resul ts shown in Table 1 will be reached. 

Note that we have not so far mentioned ordinal numbers associated with the te rms of 
the sequence. In thinking of the formal sequence, extending to infinity in both directions, we 
have to realize that there i s an arb i t rar iness inputting ordinals in one-to-one correspondence 
with the t e rms . But i t is patently convenient to associate the te rm A with " f i r s t , " so that 
all t e rms less than A are associated with nonpositive ordinals. Not the leas t reason for 
this choice i s that the structure of the sequence i s such that the expression for t e rms smal ler 
than A is different from, and more complicated than the expression for t e rms greater than 
B (the former involve alternating algebraic signs). 

Examining Table 1 we observe that i t contains the apices of Pascal Triangles , and i t i s 
not difficult to show that, with the proposed ordinal convention, the n t e rm is 

(1) y ( n T L ; 2 ) MA + ( n " J " 2 ]B WW1"21"2 (n > 2) 

and 

£ ( n I 1 . - 1
a ) M A + ^ - J - a ) B ^ 

(2) (-l)n+1 £ I ~n - / + X \MA - /"n ~ ^ B N^^M-11-21 (n < 1) 

40 
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Table 1 
POLYNOMIALS IN N AND M SPECIFYING THE SEQUENCE 

(ONE TERM PER LINE) OF [aA + b B ] , WHERE a = f(N?M) AND b = f»(N,M) 

a = Coefficient of A 

-(N~5M5 + 4N~4M3 + 3N"3M) 

N_4M4 + 3N-3M2 + N~2 

-(N"3M3 + 2N"2M) 

N~2M2 + N"1 

-(N-1M) 

1 

0 

N 

NM 

NM2 + N2 

NM3 + 2N2M 

NM4 + 3N2M2 + N3 

NM5 + 4N2M3 + 3N3M 

b = Coefficient of B 

N~5M4 + 3N_4M2 + N - 3 | 

-(N~4M3 + 2N"3M) | 

N"3M2 + N ' 2 

-(N"2M) 

N-i 

0 

1 

M 

M2 + N 

M3 + 2NM 

M4 + 3NM2 + N2 

M5 + 4NM3 + 3N2M 

M6 + 5NM4 + 6N?M2 + N3 

2. A TWO-PARAMETER SEQUENCE 

In what follows, we shall concentrate on an important special case of the "̂ s = 2n l in-
ear sequencess namelys that with A = M = 1. The setting of A at unity is actually l ess 
of a restr ict ion than at f irst appears , in that any sequence with A / l can be transformed 
to the "unity" set by division of every term by A. This new sequence will retain most of the 
propert ies of i ts original form* with the notable exception of number-theoretic propert ies s 

The setting of M at unity not only introduces a major simplification into the s t ructure , but, 
as we shall see later9 it ties in with a natural extension of the classic Fibonacci Rabbit 
Problem. 

Let us fix a notation at this point We shall use F ^ XT „ to denote the n member of 
±s j IN $ n 

the sequence whose paramete rs a re B (>0) and N (>1). Thus 

(3) ( F = 1 • F = B 
BSN91 ? r B , N , 2 

F B s N f n = N F B * N s n - 2 + F B s N ? n - l 
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Normally, B and N will be integers. The case of N being any real number > - l / 4 i s 
worth special consideration; i t yields mono tonic ally increasing sequences many of whose 
propert ies are shared with those of N integral; but it will not be explored here . Fur ther -
more , we shall not be specifically concerned with n negative (although it will occasionally 
have to be referred to in explication of certain formulas). 

The generating function of the sequence is worth noting here . It is the left-hand side of 
the identity 

N - x - x* *—• 
n=l 

This can be verified by multiplying out. And setting B = N = 1 we of course obtain the 
familiar generating function of the "original" Fibonacci sequence, which is 1/(1 - x - x 2 ) . 

We shall use { B , N } to denote the sequence itself, and it must be pointed out at once 
that not all { B , N } are unique, sequence-wise. Some may differ only in "key," to borrow 
the musical t e rm, in the sense that a shift in the ordinals (the n-sequence) will make them 
identical. For example, the following three sequences can be equalized by such shifts: 

n : 

{ 0 , 1 } , 

{ l . l } : 
{ 2 , 1 } , 

-3 

5 
2 

-1 

-2 

-3 
-1 

1 

-1 

2 
1 
0 

0 

-1 
0 
1 

1 

1 
1 
1 

2 

0 
1 
2 

3 

1 
2 
3 

4 

1 
3 
5 

Explanation is superfluious. 
Another type of hidden identity (for the segments with n > 0) is multiplicative, and is 

i l lustrated below; 

2 3 4 

{ 0 , 3 } : 4/9 - 1 / 3 1 0 3 3 12 
{ 0 , 3 } / 3 : 4/27 -1 /9 1/3 0 1 1 4 
{1 ,3} : 1/3 0 1 1 4 7 19 

Thus { O , N } , divided throughout by N is identical, over positive n (apart from a 2n-keyshift), 
to { l , N } . 

Using a subscript to denote keyshift, we can summarize the algebra of these sequences 
as follows: 
(5) {0 ,Y} = Y{ l ,Y} + 2 = Y{Y + 1 , Y } ^ 

which of course includes the special case of Y = 1, il lustrated above. Fur thermore , if 
B|N, then 
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{X 9 Y} = X{Y/X + I S Y} + 1 

43 

which has a special case X = Y, so that 

(7) {x9Y> = X{29Y} = 2X{Y/2 + l , Y } + 2 (Y even) 

And if Y = X(X - 1)9 the sequence is simply the powers of X, and is infinitely divisible 
by X — but every quotient i s identical to the original dividends apart from a shift of key* 
Symbolically! 

= X11"1 (8) •X(X-l) ,X,n (X > 1) 

Finally, if X > Y + 19 all { X 9 Y } are unique. 
In Figure 1, the distribution pattern of these hidden identities i s shown for some of the 

lower B and N. Each cell i s to be regarded as containing a complete sequence { B 9 N } 
— specifically9 { X 9 Y } » A blank cell i s understood to contain an irreducible sequence (in 
the sense that i t cannot be transformed9 by division and/or shift of key9 into a smal le r -B 
sequence). Hatched cells contain sequences that a re powers of B. Black cells hold all other 
reducible sequences* 

R 1 
z 
3 
4 
s 
6 
1 
8 
* 10 
H 

III 
13 
14 

i l l 
17 

ha 
MS 

1 2 3 4 S'6 1 & J 11 II 1215 14 If till miilb\ 

^fsj 

Fig. 1 Distribution of Three Types of { B 9 N } : (i) reducible (black); 
(ii) powers of B (stippled); (ii) irreducibles* 

1(1)259 and for certain 
B (/5) and N (^10). Of the possible total of 50 combinations of B and N9 only 34 have 

In the Appendix are collected for reference F_ ,T for n 
s5 9 IN 9 n 
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been tabulated; 14 were omitted because of their being reducibles, and 2 because of their be-
ing merely sequences of powers (which in this context are uninteresting). The omissions* in 
short , a re conditioned by Fig* 1, 

38 PROLIFIC FIBRABBITS 

The sequence { l , l } is the original Fibonacci sequence, and { 3 , l } is the Lucas 
sequence — and we can now see why the Lucas sequence is normally regarded as the one 
"next" to the Fibonacci sequence; i t is because the intervening {2» l} is really { 1,1.}, with 
a unit shift of key. We may note in passing that (for any given fixed N, say Y) the identity 

(<)) F + F = F 
vy ; l t Y . n r l , Y , n - 2 r Y + 2 , Y , n - l 

yields the well known relation between member of the Fibonacci and Lucas sequences when 
we set Y at unity, 

The interesting thing about { I , N } is that it furnishes solutions to the Fibonacci Rabbit 
problem generalized to the situation in which each pair gives birth to N pa i r s at a t ime, in-
stead of one. This is perhaps best appreciated by reference to a t ime-table, as in Table 2, 

Table 2 
NUMBER OF PAIRS OF IMMORTAL RABBITS ALIVE, 

BY MONTH (t) AND GENERATION (g in N g ) , 
IN A BREEDING REGIME THAT UNFAILINGLY YIELDS N PAIRS PER MONTHLY BIRTH 

r 
t = 
n - 1 
0 

1 1 

2 

3 

4 

i 5 

6 

7 

j 8 

9 

| 10 

11 
12 

; 13 

N°  

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

N1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

N2 

1 

3 

6 

10 

. 15 

21 

28 

36 

45 

55 

N3 

.1 

4 

10 

20 

35 

56 

84 

120 

N* 

1 

5 

15 

35 

70 

126 

N5 

1 

6 

21 

56 

N6 

1 

7 

Sur 
1 

1 

1 

2 

3 

5 

8 

13 

21 

34 

55 

89 

144 

233 

377 

n when 
2 

1 

1 

3 

5 

11 

21 

43 

85 

171 

341 

683 

1365 

2731 

5461 

N = 
3 

1 

1 

4 ' 

7 

19 

40 

97 

217 

508 

1159 

2683 

6160 

14209 

32689 

We imagine, after Fibonacci, a pai r of month-old rabbits mated in an enclosure, and giving 
birth to N new pai rs every month thereafter; and each of the new pa i r s breeds similarly 
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after a month1 s maturation. The table can be readily constructed from elementary consider-
ations, with each column representing a generation* beginning at the zeroth — and the con-
struction is in fact the familiar tilted Pascal Triangle. At the beginning of the second month 
there will be 1 + N pairs ; at the beginning of the third there will be 1 + 2N pa i r s , and so 
forth. Clearly, the sums in the end columns will be 

(10) 

00 

i=0 * ' 

— which is expression (1) with A = B = M = 1 and the utilization of Pascal1 s Rule for the 
addition of binomial coefficients. In other words, Eq. (10) is F- , , 

M ' l , N , n 
It i s possible to sophisticate the treatment by allowance for deaths* the simplest si tua-

tion being to schedule the death of a mated pair of rabbits immediately after the birth of i ts 
m l i t ter . Hoggatt and Lind [2] have shown how this can be done for the classic case , in 
which N = 1. For N > 1 the crude arithmetic of the population growth is straightforward 
enoughs but it does not condense well. The population increment from the g generation at 
time n (= t + 1) can be written 

where 
h = n - g - i m - 2 , 

and the summation of (11) over all g and all time points to n gives the required population 
size at n. This is clumsy, but a compact operation is elusive. 

Actually, allowance for restr ic ted l i t tering and for mortality does not make a great dif-
ference to the population, which, with N > 1, soon becomes enormous. For example, 
F- (- OQ = 3 912 125 981, and if we l imit m to 5 (and remove the parents subsequently), 

9 5 rd ~~~ 

the population at the 23 month will still be 3 759 051 250, which is 96 percent of the for-
mer figure (and represents more than one pair of rabbits for every human being on earth). 

Incidentally, in considering l i t ters with more than two siblings, we can easily cope with 
a sex ratio other than 50s5Q. Suppose, for instance, that l i t te rs of five bucks and four does 
are to be substituted for the classic one buck and one doe (perlit ter) % we ca r ry out the ar i th-
metic for N = 4, and then multiply the answer by the factor (4 + 5)/4; this will give us the 
required population (in, of course , rabbits , not pa i rs of rabbits). 

4. T N AND THE EXPLICIT FORMULAS 

A sequence of the kind we are discussing may intuitively be expected to have a limiting 
ratio of adjacent t e rms , and in fact it is well established that such a ratio exists and is 
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independent of B. But it is not independent of N. By extension from the familiar treatment 
of the case of { l , l } , we write the auxiliary equation 

(12) ^ = N T ^ - H T ^ 1 

and divide it by T L to give, after rearrangement , 

(13) T^ . TN _ N = 0 . 

The roots of (13) are 1/2 ± ^W+T/i, and we identify the positive root with the required 
limiting rat io, T . The other root, we note, is 1 - T . 

So the asymptotic growth rate (per unit interval) of all {B, l} (including the original 
Fibonacci and Lucas sequences) i s 1/2 + N/"5/2 = 1.618034 • • •; that of all { B , 2 } is 1/2 + 
\T9/2; that of all { B , 3 } is 1 /2+ N/13/2 = 2.302775 • • • ; and so on. These asymptotes are 
approached rapidly: turning to the sums at the right foot of Table 2, for example, we 
shall find that 377/233 = 1.618 ••« , that 5461/2731 = 2.000 ••• , and that 32689/14209 = 
2.301 ••• . 

The powers of T can be expressed in t e rms of two F ! s , thus: 

F + F */4N + 1 
fl4> ^n _ JM-2X,X,n * l , N , n ^ 1 N 

u ' N ~ 2 
and 

F - F \/4N + 1 
(15) T - = l+2X,X,n 2 l , N , n ( _ l / N ) n ^ 

where X is the part icular value of N and determines B in the f irst F of the numerator . 
The quantity T can be used to derive explicit expressions for any F_^ N by virtue 

of the relation 
( 1 6 ) F B , N , n = k l T N _ 1 + k 2 ( 1 - V " 1 • 

where the kf s a re constants that can be evaluated from our knowledge of the two parametr ic 
members of the sequence 

F B , N , 1 = 1 = k * + k * 
and 

whence 
F B , N , 2 = B = k l T N + k 2 ( 1 " V • 

ki = (TN + B - D/(2TN - 1) 

k2 = (TN - B)/(2TN - 1) . 

Therefore, 
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(TN + B - l ) ^ 1 - (TN - B ) ( l - TN>n-l 
B9N9n 2TN _ 1 ^ 

(17) 
(TN + B - l ) ( T N - l ) T n . ( T N - B ) T N ( l - T N ) -

"N(2TN - 1) 

(because T
N ( T

N - 1) = N). 
It i s perhaps worthwhile recasting (17) without T In so doing we write *VN + 1/4 = R, 

and obtain 

h t t F _ [N - (B - l ) ( l / 2 - R) ] ( l /2 + r ) n - [N - (B - l ) ( l / 2 + R)] (1/2 - R) n 

( 1 8 ) F B 9 N 9 n — 2NR " " ° 

It i s here to be noted that, in particular 9 

n q v F _ (1/2 + R)n - (1/2 - R) n 

(19) F l , N , n ~ 2 R ~ 

which j with N = 1, yields the established explicit formula for a member of the original F ib-
onacci sequence, And9 again9 

(20) F 3 9 N 9 n = ( 1 / 2 + R ) n + ( 1 / 2 " R > n ' 

which, with N = 1, yields the established explicit formula for a member of the Lucas 
sequence. 

5S SOME IDENTITIES 

Our topic is r ich in interesting identities9 and in this section a few of the more impor-
tant ones will be set out together with their degeneralizations to more familiar forms* We 
omit proofs, which can be constructed on traditional (and mostly inductional) l ines —many 
exercises and problems can in fact be drawn from the statements* 

One of the simplest and most revealing of the identities, an almost obvious consequence 
of expression (1), is 

<21> F B , N , n = N F l , N , n - 2 + B F l , N , n - l ' 
An allied identity i s 

<22> F B , N , n = X F l , N , n - l + F B - X , N , n 

with the special case in which X = B - It 

(23> F B , N , n = ( B " 1 ) F l , N , n - l + F l , N , n • 

Summations of t e rms and powers of te rms are often neatly expressible0 For example? 
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n 
(24) ZFB,N9i = ( FBsN5n+2 - B ) / N 

i=l 

and its relation to the familiar { l , l } is plain to see. 
The sum of squares to a given n can be eompactly expressed for N = 1: 

n 

( 2 5 ) EFB.1.I = F B , l , n F B 9 l 9 n - M - ( B " X) 

i=l 
but l e ss so for B = It 

J ^ N3F2 ._ , + N(N2 - N - 1)F2
 AT - F2

 XT ^ - (N - 1) 
(9a) V * T?2 = l , N , n - l l , N , n l , N , n + l ' 
K^} «Z-f l , N , i " ~ ~ N ( N + 1)(N - 2) 

i=l 
which9 with N = 1, becomes 

= (F2 + F 2 - F2 )/2 = F F 
v l , l , n + l 1,1,n l , l , n - l ; / 1,1,n 1,1,n+1 

A central identity, with several useful reductions, is 

(27) F ^ ,T F ^ ._ ^ ^ - F ^ ._ _, F ^ ._ ^ = ( - l ) n N n " 1 F 1 ,T F , ._ ( B 2 - B - N ) . 
B9N,n B,N,n+x+y B,N,n+x B,N,n+y l 9 N 9 x l , N , y 

Setting y = -x, and bearing in mind that F- M = (-1) we can reduce (27) 
x, JN $ —n x 9 IN 9 n 

to 
(28) F2

 XT - F-, XT F-. XT A = ( - l ) n + X " 1 N n _ X " 1 F 2
 XT (B2 - B - N) . 

B9N,n B 9 N,n-x B,N,n+x l 9 N 9 x v 

And setting x = -y = 1 gives us 

<2 9> FB,N,n " FB,N,n-lFB,N,n+l = ( - ^ " V " B - *> . 

Lastly9 as regards reduction of (27), if we set x = y = nf - 1, and n = 1, we obtain (after 
depriming nf): 

(3°) F i XT " FTD ^ o i = F i AT .(B2 - B - N) 
B,N9n B ,N 9 2n- l l , N , n - l 

(and this , when B = N = 1, becomes the well known two-consecutive-square identity in 

{ i . i } ) . 
A general "adjacent products" identity is 

(31) F = NF F + F F - ( B - l ) F 
x ; B,N,n+x B,N,n-l B,N,x r B ,N,n B,N,x-HL V13 ; r B , N , n + x - l 
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which, when x = n, can be expressed in several forms! 

F B , N , 2 n = F B , N , n ( N F B , N , n - l + F B 9 N 9 n + l ) " ( B " 1 ) F B , N , 2 n - l 

(32) = F2 - N2F2 - (B - 1)F 
1 ' *B ,N ,n+ l ^ B . N . n - l {t5 ^ B . N ^ n - l 

= 2F F - F2 - ("B - 1)F 
B,N,n B,N,n~KL B,N9n Kn ; * B , N , 2 n - l 

(and from the f irs t of which we readily infer that iff B = 1, then F_, ,T 0 must be com-
JD , JN, z n 

posite (being divisible by F,-, *, )). 
±5, J N 9 n 

If s in (31)j we put x = 2n, the result is 

( 3 3 ) F B , N 9 3 n = ^BJ^n-^B^^n + FB9N9nFB,N,2n~KL ~ ( B ~ 1 ) F B 9 N 9 3 n - 3 * 

And here are two cubic relations that apply when B is unity* 

F l 9 N 9 3 n = 3 N F l , N , n - l F l , N , n F l 9 N , n + l * ( N + 1 ) F l , N , n 
( 3 4 ) = F 3

 XT A1 + NF3
 KT - N3F3

 XT , 
l , N , n + l l 9 N 9 n l , N 9 n - l 

— the former of which9 incidentally, tells us that F- N 0 (mod 3) is always composite,, 

6. SOME MISCELLANEOUS POINTS 

1. In Section 29 it is mentioned that real N < -1 /4 is out of court9 so to say8 The 
reason is that the discriminant of the roots of the generalized Fibonacci quadratic i s zero at 
N = - 1 / 4 , and negative beyond* At N = -1 /4 we have that F 1 ,T = n /2 ~ , so that 

1 9 IN 9 n 

T = [lim, n-»oo](n + l ) /2n = 1/2 . 

At N < -1 /4 the te rms of the sequence take alternating algebraic signs, and there is no 
limiting ratio in the usual sense; what happens of course is that T moves onto the gaussian 
plane. 

2, The number-theoretic propert ies of { B 9 N } need examination It seems clear that 
the main theorems of divisibility and primali ty [3] applicable to { l 9 l } also apply9 mutatis 
mutandis9 to { I , N } * And squares are r a r e among the F f s in the Appendix (outside of { l 9 l } 9 

in which it is known that only F- - -„ is a square, and beyond F N 4) I find OI&Y 
F l 4 8 = ^ ^ ' anc^ F l 8 6 = ^ ^ ^ o t e that X(X - 1)9X , which is a sequence of powers9 

contains an infinity of squares , but this i s an odditye) 
Interesting problems in this area take the form* In how many ways, if at all , can a 

given natural number be represented as F _ ,T ? & ^ B,N,n 
3* The digits of a Fibonacci number, at a given decimal place, occur in cycles along 

the ascending sequence* Lagrange9 says Coxeter [ l ] , observed that the final digits of { l , l } 
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repeat in cycles of 60. The question naturally a r i ses as to the cycling pattern of other { B , N } . 
The answer is in Table 3. 

Table 3 
CYCLE SIZE OF REPEATED FINAL DIGITS IN { B , N } (EXCLUDING F ) 

^ " ^ ^ ^ N mod 10 

B mod 5 ^ ^ ^ ^ 

08 1, and 2 
3 
4 

0 1 2 3 4 5 6 7 8 9 

1 60 4 24 6 3 20 12 24 6 
1 12 4 24 6 3 4 12 24 6 
1 60 2 24 6 3 20 6 24 6 
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APPENDIX 

VARIOUS F ^ XT TO n = 25 B,N,n 
The tables appear on the following pages. 

CONFERENCE PROGRAM 
FIBONACCI ASSOCIATION MEETING 

Saturday, October 21, 1972 San Jose State University, Macquarrie Hall 
9:15 a .m . Registration 
9:30 - 10:20 SOME QUASI-EXOTIC THEOREMS 

Dmitri Thoro, Professor of Mathematics, San Jose State University 
10:30 - 11:20 GENERALIZED LEO MOSER PROBLEMS 

Pat Gomez, Student, San Jose State University 
11:30 - 12:00 FUN WITH FIBONACCI AT THE CHESS MATCH AND THE BALL PARK 

Marjorie Bicknell, Mathematics Teacher, A. C. Wilcox High School 
1:30 - 2:20 INTERVALS CONTAINING INFINITELY MANY SETS OF ALGEBRAIC 

INTEGERS — Raphael Robinson, Professor of Mathematics, 
University of California, Berkeley 

2:30 - 3:20 SOME ADDITION THEOREMS IN NUMBER THEORY 
C. T. Long, Professor of Mathematics, Washington State University, 
Visiting University of British Columbia 

3 :30 -4 :10 SOME CONGRUENCESOF THE FIBONACCI NUMBERS MODULO A PRIME, 
V. E. Hoggatt, J r . , San Jose State University 
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Ĥ 
05 
LO 

00 
Ĥ 
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Ĥ 
00 
rH 
»-« rH 

~~io f 
05 
O 
LO 
b-

LO 
05 



52 A NEW LOOK AT FIBONACCI GENERALIZATION [Feb. 

LINEARLY GENERALIZED FIBONACCI NUMBERS 

F B , N , n WITH B = 2 

\ N 

\ 
n \ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

1 22 

23 

24 

25 

3 

1 

2 

5 

11 

26 

59 

137 

314 

725 

1 667 

3 824 

8 843 

20 369 

46 898 

108 005 

248 699 

572 714 

1 318 811 

3 036 953 

6 993 386 

16 104 245 

37 084 403 

85 397 138 

196 650 347 

452 841 761 

5 

1 

2 

7 

17 

52 

137 

397 

1 082 

3 067 

8 477 

23 812 

66 197 

185 257 

516 242 

1 442 527 

4 023 737 

11 236 372 

31 355 057 

87 536 917 

244 312 202 

681 996 787 

1 903 557 797 

5 313 541 732 

14 831 330 717 

41 399 039 377 

7 

1 

2 

9 

23 

86 

247 

849 

2 578 

8 521 

26 567 

86 214 

272 183 

875 681 

2 780 692 

8 910 729 

28 377 463 

90 752 566 

289 394 807 

924 662 769 

2 950 426 418 

9 423 065 801 

30 076 050 727 

96 037 511 334 

306 569 866 423 

978 832 445 761 

9 

1 

2 

11 

29 

128 

389 

1 541 

5 042 

18 911 

64 289 

234 488 

813 089 

2 923 481 

10 241 282 

36 552 611 

128 724 149 

457 697 648 

1 616 214 989 

5 735 493 821 

20 281 428 722 

71 900 873 111 

254 433 731 609 

901 541 589 608 

3 191 445 174 089 

11 305 319 480 561 
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LINEARLY GENERALIZED FIBONACCI NUMBERS 

FB§N9n WITH B = 3 

\ N 

n \ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

[ 25 

1 

1 

3 

4 

7: 

11 

18 

29 

47 

76 

123 

199 

322 

521 

843 

1 364 

2 207 

3 571 

5 778 

9 349 

15 127 

24 476 

39 603 

64 079 

103 682 

167 761 

4 

1! 

3 

7 

19 

47 

123 

311 

803 

2 047 

5 259 

13 447 

34 483 

88.271 

226 203 

579 287 

1 484 099 

3 801 247 

9 737 643 

24 942 631 

63 893 203 

163 663 727 

419 236 539 

1073 891447 

2 750 827 603 

[7046 403 391 

5 

1 

3 

8 

23 

63 

178 

493 

1 383 

3 848 

10 763 

30 003 

83 818 

233 833 

652 923 

1 822 088 

5 086 703 

14 197 143 

39 630 658 

110 616 373 

308 769 663 

861 851 528 

2 405 699 843 

6 714 957 483 

18 743 456 698 

52 318 244 113 j 

7 

1 

3 

10 

31 

101 

318 

1 025 

3 251 

10 426 

33 183 

106 165 

338 446 

1 081 601 

3 450 723 

11 021 930 

35 176 991 

112 330 501 

358 569 438 

1 144 882 945 

3 654 869 011 

11 669 049 626 

37 253 132 703 

118 936 480 085 

379 708 409 006 

1 212 263 769 601, 

8 

1 

3 

11 

35 

123 

403 

1 387 

4 611 

15 707 

52 595 

178 251 

599 011 

2 025 119 

6 817 107 

23 017 259 

77 554 115 

261 692 187 

882 125 107 

2 975 662 603 

10 032 663 459 

33 837 964 283 

114 099 271 955 

384 802 986 219 

1 297 597 161 859 

4 376 021 251 611 

10 

1 

3 

13 

43 

173 

603 

2 333 

8 363 

31 693 

115 323 

432 253 

1 585 483 

5 908 013 

21 762 843 

80 842 973 

298 471 403 

1 106 901 133 

4 091 615 163 

15 160 626 493 

56 076 778 123 

207 683 043 053 

768 450 824 283 

2 845 281 254 813 

10 529 789 497 643 

38 982 602 045 773 
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LINEARLY GENERALIZED FIBONACCI NUMBERS 

vl 
J ^ 

1 

2 

3 

4 

5 

6 

7 

8 

-9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

1 25 

1 

1 

4 

5 

9 

14 

23 

37 

60 

97 

157 

i 254 

411 

665 

1 076 

1 741 

2 817 

4 558 

7 375 

11 933 

19 308 

31 241 

50 549 

81 790 

132 339 

1 214 129 

2 

1 

4 

6 

14 

26 

54 

106 

214 

426 

854 

1 706 

3 414 

6 826 

13 654 

27 306 

54 614 

109 226 

218 454 

436 906 

873 814 

1 747 626 

3 495 254 

6 990 506 

13 981 014 

27 962 026 
i 1 

5 

1 

4 

9 

29 

74 

219 

589 

1 684 

4 629 

13 049 

36 194 

101 439 

282 409 

789 604 

2 201 649 

6 149 669 

17 157 914 

47 906 259 

133 695 829 

373 227 124 

1 041 706 269 

2 907 841 889 

8 116 373 234 

22 655 582 679 

63 237 448 849 

6 

1 

4 

10 

34 

94 

298 

862 

2 650 

7 822 

23 722 

70 654 

212 986 

636 910 

1 914 826 

5 736 286 

17 225 242 

51 642 958 

154 994 410 

464 852 158 

1 394 818 618 

4 183 931 566 

12 552 843 274 

37 656 432 670 

112 973 492 314 

338 912 088 334 

7 

1 

4 

11 

39 

116 

389 

1 201 

3 924 

12 331 

39 799 

126 116 

404 709 

1 287 521 

4 120 484 

13 133 131 

41 976 519 

133 908 436 

427 744 079 

1 365 103 121 

4 359 311 604 

13 915 033 451 

44 430 214 679 

141 835 448 836 

452 846 951 589 

1 445 695 093 441 

9 

1 

4 

13 

49 

166 

607 

2 101 

7 564 

26 473 

94 549 

332 806 

1 183 747 

4 179 001 

14 832 724 

52 443 733 

185 938 249 

657 931 846 

2 331 376 087 

8 252 762 701 

29 235 147 484 

103 510 011 793 

366 626 339 149 

1 298 216 445 286 

4 597 853 497 627 

16 281 801 505 201 

10 

1 

4 

14 

54 

194 

734 

2 674 

10 014 

36 754 

136 894 

504 434 

1 873 374 

6 917 714 

25 651 454 

94 828 594 

351 343 134 

1 299 629 074 

4 813 060 414 

17 809 351 154 

65 939 955 294 

244 033 466 834 

903 433 019 774 

3 343 767 688 114 

12 378 097 885 584 

45 815 774 766 994 
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LINEARLY GENERALIZED FIBONACCI NUMBERS 

F B , N , n WITH B = 5 

\N 
n \ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

1 

1 

5 

6 

11 

17 

28 

45 

73 

118 

191 

309 

500 

809 

1 309 

2 118 

3 427 

5 545 

8 972 

14 517 

23 489 

38 006 

61 495 

99 501 

160 996 

260 497 

2 

1 

5 

7 

17 

31 

65 

127 

257 

511 

1 025 

2 047 

4 097 

8 191 

16 385 

32 767 

65 537 

131 071 

262 145 

524 287 

1 048 577 

2 097 151 

4 194 305 

8 388 607 

16 777 217 

33 554 431 

3 

1 

5 

8 

23 

47 

116 

257 

605 

1 376 

3 191 

7 319 

16 892 

38 849 

89 525 

206 072 

474 647 

1 092 863 

2 516 804 

5 795 393 

13 345 805 

30 731 984 

70 769 399 

162 965 351 

375 273 548 

864 169 601 

6 

1 

5 

11 

41 

107 

353 

995 

3 113 

9 083 

27 761 

82 259 

248 825 

742 379 

2 235 329 

6 689 603 

20 101 577 

60 239 195 

180 848 657 

542 283 827 

1 627 375 769 

4 881 078 731 

14 645 333 345 

43 931 805 731 

131 803 805 801 

395 394 640 187 

7 

1 

5 

12 

47 

131 

460 

1 377 

4 597 

14 236 

46 415 

146 067 

470 972 

1 493 441 

4 790 245 

15 244 332 

48 776 047 

155 486 371 

496 918 700 

1 585 323 297 

5 063 754 197 

16 161 017 276 

51 607 296 655 

164 734 417 587 

525 985 494 172 

1 679 126 417 281 

8 

1 

5 

13 

53 

157 

581 

1 837 

6 485 

21 181 

73 061 

242 509 

826 997 

2 767 069 

9 383 045 

31 519 597 

106 583 957 

358 740 733 

1 211 412 389 

4 081 338 253 

13 772 637 365 

46 423 343 389 

156 604 442 309 

527 991 189 421 

1 780 826 727 893 

6 004 756 243 261 

9 

1 

5 

14 

59 

185 

716 

2 381 

8 825 

30 254 

109 769 

381 965 

1 369 076 

4 806 761 

17 128 445 

60 389 294 

214 545 299 

758 048 945 

2 688 956 636 

9 511 397 141 

33 712 006 865 

119 314 581 134 

422 722 642 919 

1 496 553 873 125 

5 301 057 659 396 

18 770 042 517 521 



ON THE LENGTH OF THE EUCLIDEAN ALGORITHM 

E. P. IV1ERKES and DAVSD MEYERS 
University of Cincinnati, Cincinnati, Ohio 

Throughout this art icle let a and b be integers , a > b > 0. The Euclidean algo-
rithm generates finite sequences of nonnegative integers , 

such that 

(1) 

{q}1 1 and 
J J = l 

a = qtb + rif 

b = q2ri + r2, 

* i = Q3r2 + r3, 

r n - 3 = q n - l r n - 2 + r n - l ' 
r 0 = q r n + r , n-2 n n-1 n 

0 

0 

0 

< 

< 

< 

0 

ur 3 3= 

r i < 

r2 < 

r3 < 

< r n 
r 
n 

1 

b , 

* i « 

^2 . 

< 
-1 
= 0 

r n - 2 

• 

The integers r _- is the greates t common divisor of a and b and q ^ 2. 
Define I(a, b) to be the number of divisions n in the algorithm (1). Some basic prop-

er t ies of i(a,b) a re 

(i) i (a,a) = 1 ; 

(ii) i(ac,bc) = i (a ,b) , c > 0 ; 

(iii) i(a + b,b) = i(a,b) ; 

(iv) I (a + b,a) = 1 + i(a,b) . 

Each of these propert ies is proved directly from the definition (1). Property (ii) permits us 
to assume a and b are relatively pr ime. 

This paper is concerned with maximizing i(a,b) when the integers a and b are drawn 
from certain subclasses of positive integers. There are some classical resul ts in this d i -
rection such as the theorem of Lame [3, p. 43] which states that i (a ,b ) is never greater 
than five times the number of digits in b. We begin with a known resul t , the proof of which 
is instrumental for the justification of the main theorem of the paper. 

Theorem 1. Let { F . } be the Fibonacci sequence generated by 

(2) Fj+2 = FJ+1 + F., F^ = 0, FQ = 1 (j = -1, 0, 1, 2, •••) . 
Editorial notes This is not our standard Fibonacci sequence. 

56 
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If a < F m + 1 o r b < F m for some integer m > 0, then i(a,b) < i(F + 1 , F ) = m. 
Proof. From (1) the rational number a/b has a continued fraction expansion 

(3) B - * + £ + £ + - + £ . 0<*, &*!<">. ^ 2 . 

The k numerator A, and the k denominator B. of this continued fraction a re de te r -
mined from the equations 

( 4 ) A k = \ A k - l + A k - 2 ' B k = \Bk-l + B k -2 * = 1, 2, •• • , n) , 

where 
A0 = 1, B0 = 0, A4 = qls Bt = 1 [2 , p. 3 ] . 

Since q, > 0 for each index k ^ n5 it follows from (4) that 

\ > A k - r B k > B k - i * - 2 . 3 . - t n ) . 

Moreover, by (1) and (4) we have a ^ A , b ^ B . J n n 
Suppose a and b are integers for which n = i(a,b) — m. Since q, — 1 (1 ^ k ^ n), 

we have A0 = F 0 , Aj ^ F i , A2 ^ Ft + F0 = F 2 , and, in general, 

A k £ A k - 1 + A k - 2 * F k - 1 + F k - 2 = F k (1 < k < n) . 

Finally, since q ^ 2 , we have by (2) 

A > 2 A - + A ^ 2F - + F 0 = F - + F = F _ L l . n n-1 n n-1 n-2 n -1 n n+1 

Similarly, B, ^ F, - (1 ^ k < n) and B ^ F . Fur thermore , A = F ,- if and only if J k k -1 n n n n+1 
a = 1 (1 ^ k < n), q = 2 and B = F if and only if q, = 1 (1 < k < n), qn = 2. 
Since a ^ A ^ F , . - F , - and b ^ B ^ F ^ F , we have the contrapositive of the n n+1 m+1 n n m 
first par t of the implication in the statement of the theorem proved, The fact that i(F -
F ) = m is a consequence of the statements concerning equality of A and B with F -
and F , respectively [ l ] . 

The ordered pai rs of integers (a,b) can be partially ordered by defining (a, b)#(aT ,bf) 
if a ^ a? and b ^ bf . Relative to this partial order , the theorem sta tes , in part icular , that 
(F + 1 , F ) is the "first" pair for which I(a,b) = m, i. e , , if (a!, b')»(F + 1 , F ), then 
i ( a ! , b f ) < i(F , - , F ) unless a? = F ,- and bf = F . 

m+1 m m+1 m 
The proofs of our next resul ts are dependent on the following known lemma. 
Lemma 1. F , = F F + F . F - (p,q = 1,2,- ••) . — P+c3 P q p-1 q-1 
Proof. Set S = F F + F , F -. Then by (2) p ,q p q p -1 q-1 

S = ( F + F ) F + F F = F F + F F = S 
p ,q p -1 p-2 q p -1 q-1 p -1 q+1 p-2 q p - l , q + l 
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Repeated application of this identity yields 

S = S = F F + F F = F 
p ,q l , q+p - l 1 p+q-1 0 p+q-2 p+q 

Corollary (Lame). If m is the number of digits in the integer b , then i(a,b) ^ 5m. 
Proof. We first show F 5 n + 1 > 10n by induction. For n = 1, F 6 = 13 > 10, If the 

inequality is valid for an integer n, then by Lemma 1 

F* ^ = F^ ^ F . + F r F . > 8.10n + -I 10n = ^ 10n > 1 0 n + 1 
5n+6 5n+l 5 bn 4 2 2 

since 

TT > I r 
r 5n 2 r 5n+l ' 

Thusj the inequality is valid for all integers. 
Now if b has m digits, then b < 10 and, hence, b < F g m + 1 > By Theorem 1 it 

follows that i(a,b) < 5m + 1 and Lame theorem is proved. 
It i s interesting to observe that equality is possible in Lame theorem if b < 103. If b 

has four digits, then b < F20 = 10946 and, by Theorem 1, i(a,b) < i (F 2 1 ,F 2 0 ) = 20. 
More generally, equality cannot hold in the Corollary for m > 3. Indeed, by Lemma 1 and 
the argument used in the proof of the corollary, we have F > 10 implies F _ > 10 
Since F20 > 104, it follows that F 5 m > 1 0 m for m ^ 4. If b < 1 0 m (m ^ 4), then 

i(a,b) < i ( F r x 1 , F c ) = 5m . s 5m+l 5m 

The next problem considered in this article pertains to the number of distinct pa i rs 
(a, b) such that 

(F _,_-, F )a(afb)Qf(F ^ F ^ ) 
m+1 m m+2 m+1 

and i(a,b) = m. We prove there are m + 1 such pairs and obtain formulas for the integers 
a and b that comprise the pai rs . It is convenient to establish these resul ts from a sequence 
of lemmas. 

Lemma 2. Let the Euclidean algorithm for a and b , a and b a re relatively pr ime, 
be (1) where for some integer m (1 < m < n) - q = 2 and q, = 1 (k f m, 1 ^ k < n), 
q = 2 . Then Mn 

and 
a ~ F n+1 + F n - m + l F m - l 

b = F + F _ F Q . 
n n-m+1 m-2 

Moreover, (a,b)<*(F .9> F . - ) . 
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Proof. From the proof of Theorem 1, we have that the k numerator and denomina-
tor of the continued fraction expansion for a /b when i(a,b) = n satisfy, for k < m, the 
conditions A k = Fk> B k = F

k _ r From this fact and (4), we have 

A = 2 F - + F 0 = F + F - = F + Ff tF - , m m - 1 m-2 m m - 1 m 0 m - 1 
B m = 2 F m - 2 + F m - 3 = F m - 1 + F m - 2 = F m - 1 + F 0 F m - 2 • 

A m+1 = ( F m + ^ - l * + F m - 1 = F m + 1 + F l F m - l > 
B - L l = ( F i + F o ) + F o = F + F i F o • 

m+1 m - 1 m-2 m-2 m 1 m-2 

Thus, by induction, we obtain 

A 1 = F n + F n F - , 
n -1 n -1 m - 1 n - m - 1 

B - = F 0 + F 0 F n . 
n -1 n-2 m-2 n - m - 1 

Finally, by (4) and these formulas, 

A = 2F , + F 0 + (2F _ + F 0 ) F - = F _,, + F _ F -
n n-1 n-2 n-m+1 n-m-2 m - 1 n+1 n-m+1 m - 1 

and, s imilarly, B = F + F , -F 0 . Therefore, a = A and b = B and the first ' J n n n-m+1 m-2 n n 
par t of the lemma is proved. 

Next, by Lemma 1, it follows that 

F , < A = F _ L l + F ^ F 1 = F _ L 1 + F - F F 0
< F _ ! _ 0 n+1 n n+1 n-m+1 m - 1 n+1 n n-^m m-2 n+2 

and, similarly, FR < BR < FR+r 

This lemma gives us n - 2 pai rs (m = 2, 3, * • • , n - 1) of integers (a,b) such that 

F ^ < a < F _^, F < b < F ^ , n+1 n+2? n n+1 

and i(a,b) = n. Since ^ ( F
n + 1 * F

n ) and 

i ( Fn+2> Fn> = i ( F n + l + Fn> V = i ( F n + l > V = n> 

there a re so far n pa i rs in the range 

(F _,,, F )a(a,b)a(F ^ , F _,, ) n+lJ n ' n+2' n+1 

for which i(a,b) = n. The fact that there exists only one additional such pair i s proved by 
the next two lemmas. 
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Lemma 3. Let q, = 1 (k = 1, 2, ° • • , n - 1), q = 3 in the Euclidean algorithm 
(1) for the relatively prime integers a and b. Then 

and 
a = F ,- + F - , b = F + F 0 , 

n+1 n-1 n n-2 

< W F n ) a ( a , b M F n + 2 J F n + 1 ) . 

If q. ^ 1 (k = 1, 2, • • • , n - 1), q > 3, then the corresponding integers a and b obey 
K n 

the inequalities a > F „ and b > F - . 
Proof. From the proof of Theorem 1, we have A - = F - and B . = F 0 when * n -1 n -1 n-1 n-2 

qk = 1 (1 ^ k < n). If qn = 3, then by (4), 

A = 3 F 1 + F Q = F + 2F 1 = F _ L l + F -n n -1 n-2 n n-1 n+1 n -1 

and, similarly, B = F + F n . Since F 0 < F - < F , we 9 J9 n n n-2 n-2 n -1 n ' have 

and 

By (4) 

a = A < F _ L 1 + F = F _ L O n n+1 n n+2 

b = B < F + F . = F ^- . n n n -1 n+1 

Next, if q. ^ 1 (1 ^ k < n) and q ^ 4, we have A > F 1 and B 1 ^ F 9 . 
K. n n—x n—i. n—x n—u 

a = A ^ 4A - + A 0 ^ 4 F - + F „ n n - 1 n-2 n -1 n-2 
= F + 2 F > F + F = F 

n+1 n-1 n+1 * n n+2 ' 

Similarly, b = B n > F n + r 

Lemma 4. Let the Euclidean algorithm for the integers a and b be (1), where q, > 2 
f o r a t l e a s t t h r e e i n d i c e s k err w h e r e q > 2 , q > 3 f o r 1 < p m < n 
p f m. Then a > F ^ ^ o -

Proof. Let qk > 2 for k = m, p (1 < m < p < n). Then, paralleling the proof of 
Lemma 2, we obtain 

(5) a ^ A > F ^ + F F + F F 
n n+1 n-m+1 m - 1 n-p+1 p-1 " 

Now the las t expression is grea ter than F provided 
n+£« 

(6) F ,- F , + F . F > F . 
n-m+1 m - 1 n-p+1 p -1 n 

Since ± 
Fn-s+lVl > 2 F n 
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for 1 < s ^ n by Lemma 1, the inequality (6) is valid. We conclude from (5) that 

a > A > F , - + F = F | 0 , n n+1 n n+2 

If for some index m, 1 ^ m ^ n, we have q ^ 3 , then A. ^ F. for k = 1, 2, 
m K. K. 

• ° • , m - 1 and by (4) 

A > 3 F -, + F 0 = F _ L i + F i > F _ L l S m m - 1 m-2 m+1 m - 1 m+1 
A ^ (F + F ) + F > F + F = F 

m+1 v m+1 m - r m - 1 m+1 m m+2 e 

By inductionj A, > F. - for m ^ k < n. Now 

A > 2 A , + A 0 > 2 F + F 1 = F _ L O n n-1 n-2 n n-1 n+2 
so a > F J 0 . 

n+2 
The final case to consider is when q = 2 for some index m, 1 ^ m < n and q ^ 

Mm Mn 
38 A s in the p roof of L e m m a 2? i t i s e a s i l y shown tha t 

Thus, 

provided 

A, ^ F. + F - F. (k = m, m + 1, ' •e , n - 1) . 
k k m - 1 k-m 

A > 3A - + A 0 > 3F 1 + F 0 + (3F - + F 0 )F n 
n n-1 n-2 n-1 n-2 n - m - 1 n-m-2 m - 1 

> F + F + ( F + F )F > F 
~~ n+1 n-1 l n-m+1 n - m - 1 f r m - 1 n+2 * 

F j n F -, + F - F > F „ 
n-m+1 m - 1 n - m - 1 m - 1 n-2 

This i s the case since, by Lemma 1, 

F F > I F 
n-s+1 s~l 2 n 

for 1 < s ^ n and, hence, 

F F + F F > — (F + F ) > F 
r n-m+1 m - 1 n - m - 1 m - 1 2 K n n - 2 ; n-2 

Therefore, a > F ? in all cases considered in this Lemma. 
Collecting the resul ts in the last three lemmas , we have proved the following: 
Theorem 2. Let h> be the set of ordered pairs (a,b) such that (a,b)»(F $F - ) . 

There are exactly n + 1 pai rs in E such that i(a,b) = n. These pai rs are obtained from 
the formulas 

a = F n+1 + F n - m + l Fm-1> b = F n + F n - m + l F m - 2 
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" 3 
(m = 0, 1, 2, ••• , n), where F 0 = F 1 = 0 and F . for each j > 0 is the j Fibon-

-A - 1 1 
acci number (2). 

The resul ts in Theorem 2 were suggested to the authors by considering a number of 
special cases on an IBM 360/65 computer. 
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LETTERS TO THE EDITOR 

Dear Editor: 
In the paper (*) by W. A. Al-Salam and A. Verma, "Fibonacci Numbers and Eulerian 

Polynomials ," Fibonacci Quarterly, February 1971, pp. 18-22, an e r r o r occurs in(9), which 
is readily corrected. I will generalize their (4) by defining a general polynomial operator 
M by 
(I) Mf(x) = Af(x + ct) + Bf(x + c 2 ) , ct £ c2 , 

where f(x) is a polynomial and A, B, cl9 and c2 are given numbers. With D = d/dx, 
we note that M = A e ° l D + Be° 2 D so that 

QO n OO n 

Mf(x) = A J^ nT ^ W + B 2 nT D*f(x) ' 
n=0 n=0 

or 
OO 

W 
(II) Af(x + C l ) + Bf(x + c2) = J^ -£ Dnf(x) , 

n=0 

where W = Ac* + Bc2 is the solution of W i r = PW ,- - QW and c4 ^ c2 are the roots n 1 L n+2 n+1 ^ n \ T- L 

of x2 = Px - Q. In (*), Eq. (4) is a special case of (I) with A = fi and B = 1 -1±, There 
are two cases of (II) to consider: 

Case 1. A + B / 0 , If A = B, we obtain from (II) 

v 
(III) f(x + C l ) + f(x + c2) = 2 -5? D l l f ( x ) > 

V_ 

n=0 

where V0 = 2, Vi = P , and V ,n = PV ,- - QV . If Cj and c2 are roots of x2 = x + 1, u » i n+2 n+1 n -1 * 
[Continued on page 71. ] 



ON SUMMATIONS AND EXPANSIONS OF FIBONACCI NUMBERS 

HERTAT. FRESTAG 
Hoilins, Virginia 

INTRODUCTION 

One of the early delights a neophyte in the study of Fibonacci numbers experiences may 
be an encounter with some elementary summation propert ies such as 

iL> F i Fn+2 -1 9 

i=l 

As soon as his curiosity is aroused, he may wish to investigate summations which "skip" a 
constant number of Fibonacci numbers , for instance the problem of obtaining a formula for 
the sum of the first n Fibonacci numbers of odd position indexe 

But — as has often been observed — mathematicians are like lovers; give them the l i t -
tle finger, and they will want the whole hand. Can one find a relationship which spells out 
the sum of any finite Fibonacci sequence whose subindices follow the pattern of an arithmetic 
progression? 

A SUMMATION THEOREM (Theorem 1) 

Seeking a pattern for the sum of a number of equally spaced Fibonacci numbers means 
a concern with 

y ^ F „ , (n. = ki+r) , 
i=o * 

r is a non-negative integers whereas k is a natural number. 
Let us use the Binet formula 

a11 - b n .., 1 + «sT5 , , 1 - NT5 F = — with a = -—7T— and b = ^ . 
</5 2 2 

We also note that ab = - 1 . The n Lucas number, L , is L = a + b . Then 
n n 

2X 
i=0 X 

63 
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becomes: 

n 
-±-Y (aik+r- . ik+r x 

- b ) = 
- _L 

45 
' r a ( n + 1 ) k - 1 

a - k -
a - 1 

h r b ( n + 1 ) k - 1 
b k - l 

[ a ( n + l ) k + r _ ^ k ^ ^ n + l ^ r ^ r ^ k ^ 

Nf5[ ( - l ) k + 1 - L k ] 

Performing the indicated operations and again employing the Binet formula, we are ready to 
give the sum of n Fibonacci numbers beginning with F . The sequence continues equally 
spaced such that (k - 1) Fibonacci numbers are left out from any one t e rm to the next* 

Theorem 1. 

f F <-!> V l ) k + r + (-l>min(k'r)-%r_kl ~ W + *r 

t k(i"1)+r = ("l>k + 1 - \ 

where k is any natural number and r any non-negative integer. The number t is defined 
by: 

, _ \ 0, when r < k 
I 1, when r > k 

ttentio 
Since F« , , vanishes for r = k9 t need not be defined in this case. r - k | 

Attention should be drawn to the fact that we may res t r i c t r to the condition 0 < r < k 
by the 

Reduction Formula: (2) 
If r = r (mod k), i. e. : r = ak + r where a is a natural number and 0 < r < k9 

then 
n n 

2L» F ( i - l )k+r = 2 ^ F (a+i- l )k+r 
i=l i=l 

n+a a 

= 2^ F ( i - i )k+r " JLS F ( i - l )k+r 9 

i=l i=l 

While the restr ict ion on r" is useful for reduction purposes, it is not a necessary condition 
for relationship (2). 

Special Cases of Theorem 1. 
We notice that the result of our summation involves an expression which combines no 

more than four t e rms . Thus9 this relationship would be quite helpful whenever n i s "fairly 
l a r g e . " For r = 0, the special case 
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(3) y F = ("1} Fnk + Fk - F(n-H)k 
tl M ^ + 1 - L k 

may mer i t attention. 
It is evident that Theorem 1 embraces the basic elementary summation formulas of 

this kind0 Obviously, k = 1, r = 0 yields: 

i=l 

which is the formula we previously quoted for the sum of the f irs t n Fibonacci numbers. 
However, it is aesthetically satisfying that the summation formulas for the f irs t n 

Fibonacci numbers of odd indices and those of even indices also become special cases of our 
pattern. Thus, by letting k = 2 and r = 0, we get 

n 

2i ~ "2n+l 2-J F 2 i F 2 -"« 1 

i=l 
whereas r = 1 yields: 

n 

- X) F2i-1 = F2n ' 
i=l 

If one relationship combining the two cases were required, Theorem 1 — for k = 2 and r = 
0 or 1 — becomes: 

n 

2~J F 2 ( i - l )+ r = F2n+2-2 " ^ F 2 - r " F r ' 
i=l 

or , more simply: 
n 

<4> X F2(i-1)H 
i=l 

)+r F 2 n + r - l + r ~ 1 

It may be instructive to check other cases of small "skipping numbers'1 k. Owing to 
reduction formula (2), the condition r < k does not limit the generality of the resul ts . 

For k = 3 we obtain 

n 2 F Q _ 1 - ( - l ) r F 0 - F 
3n+r-l ' 3-r 2L F3(i-1)H - r r 

. )+r 
i=l 
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which may also be stated as 

n 

+r (5) Z F3(i-1) 
i=l 

and, for k = 4, we have 

F3n+r-l " ir " !| 

2 F 4 n + r - 3 + F 4n+r -2 " ^ ^ - r _ F r 
<L*t A 4 ( i - l ) + r 
i = l 

or, alternatively: 

n 
(6) E F4(i-l)+r = 

i=l 

5 

2n-2 2n+r |_ 2 J ' 

These equivalences, relationships (5) and (6), may easily be verified by straight sub-
stitution of the few r-values to which we are restr ic ted. All of these formulas can, however, 
readily be established either by using the Binet formula, or e lse , employing mathematical 
induction. They were stated here merely as a mat ter of interest since none of them seem 
too obvious. 

Two further observations may be mentioned. 
We might wish to impose the condition r = k on Theorem 1. Then 

Ct\ V F - ("X) F n k - F(n+l)k + F k 

Clearly, the summation formula for the f irs t n Fibonacci numbers of even subindex is a 
special case of this. 

It may also be of interest to note that on the basis of Theorem 1, L, divides into all 
sums of our kind, provided k is odd, i . e . , the number of Fibonacci numbers "skipped over" 
in our summation is even. If this number were odd, (2 - L, ) would be a divisor of our sum. 

AN EXPANSION THEOREM (Theorem 2) 

But hasnft Jacobi advised us: "Man muss immer umkehren" (one must always turn 
around)? Thus — having obtained summation resul ts as expressions involving Fibonacci 
numbers — we may now experiment with an inversion and pose the problem: Can a Fibonacci 
number be expanded into a ser ies reminiscent of an expansion for the n power of a binomial? 

Par t ly analogous to Theorem 1, and pr imari ly for the sake of developing some notions, 
we symbolize our Fibonacci numbers F as F, , where all le t ters represent non-negative 
integers. 

The proposed expansion reads: 
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Theorem 2. 
k-1 

•n Z - r l i I m r 
i=0 > / 

m+lFm-f-r-k+i-HL> ( n = km + r) 

In our proof j we use mathematical induction on n. Symbolizing Theorem 2 by R(n), 
we readily verify R(n) for the first few natural numbers. Now we need to show that the 
correctness of R(s - 1) and of R(s) implies correctness of R(s + 1), where s represents 
any natural number. This means that we investigate whether 

/ k - 1 \ k - i - i i 
I i I m n 

/ k - A F k - i - i F i 
I i I m i 

T F + F 1 
' m+l L m+r-k+i m+r-k+i+lJ 

equals 

' ' J. F 
m+l m+r-k+i+2 

However, the iterative definition of Fibonacci numbers assures the correc tness of this equal-
ity and, hence, completes the proof. 

As an illustration, we might wish to expand Fn by letting m = 3 and r = 2. We 
asser t that 

' --zM'f'i 'w 
i=0 X f 

which is easily verified. 
Special Cases of Theorem 2. 
Some special cases might be pointed to. Considering Fibonacci numbers with even 

subindex, Theorem 2 reduces to: 

£ - 1 
2 

» = £(^)2': (8» F- - M 2 J 2 Vi„/2)+i 
i=0 

But those of odd subindex may be expanded on the basis of 

n-3 
2 / n - 3 2 / n - 3 \ 

n = S\ t P F(9-n)/2+i (9) F. 
Li 

i=0 

A Corollary of Theorem 2. 

We propose a corollary of expansion formula 2 (Theorem 2) which gives a prescribed 
number of terms for the expansion. Let the symbol a stand for that number. In our 
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condition n = km + r we stipulate that m = 1 and k = a, and we obtain: 
Corollary of Theorem 2. 

a-1 
(10) F M = "n " zL* 1 i lFn+2(l-a)H 

i=0 ^ / 
)+i ' 

i=0 ^ / 
where 

2 < a < ^ i . 

Special Cases of the Corollary; 
The following two special cases seem worth mentioning. We desire to let a be the 

largest possible number. 
Case 1: 
If n is even, a = n /2 is chosen. Then 

2 x 

(ID FM = > , ( 2 7 ^ J F . + 2 • -sp; 1 ) 
i=0 X / 

and there are n /2 t e rms in the expansion. 
Case 2: 
T£ • J J n + 1 
If n is odd, a = - , 

n -1 
2 

(12) F„ = > A 2 }F.+1 

i=0 V i / 

and the expansion has —— te rms . 
To i l lustrate , let us expand F2i into a five-term se r ies . Then n = 21. Using re la-

tionship (10) and letting a = 5, we have: 

i=0 x / 
13+i J 

which is correct . For the maximum number of t e rms in the expansion we would designate a 
as being 11 and use (12). Then 

! ( " ) 

10 

fioU 
i+1 ' 

F21 = > . I \ 1 F 
i=0 

a relationship which can also be easily verified. 
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BACK TO ANOTHER SUMMATION THEOREM (Theorem 3) 

Once again, we might "invert. f f Our summation theorem (Theorem 1) gave us an ex-
pansion involving Fibonacci numbers as the result of the addition. Now let us give a summa-
tion which resul ts in one Fibonacci numbere This problem may possibly use Theorem 2 to 
the best advantage. 

Starting with a summation involving Fibonacci numbers of prescribed indices, can we 
predict the resulting Fibonacci number? Again recalling Jacobifs advice, we reverse the ex-
pansion of a given Fibonacci number to a sum. Now designate a sum which leads to a p r e -
dictable Fibonacci number. Symbolize m by u, and u + r - (n - r ) /u + 1 by v. Then 
r == v - l - u + k and Theorem 2 becomes: 

Theorem 3. 

k-1 

E / k - l \ k - l - i i 
I i J u u+1 v+i (k-1) (u+1) +v 

for any arbi t rar i ly chosen natural numbers u and v. The number k may be any integer 
grea ter than or equal to 2. 

To il lustrate this summation idea, we try a summation involving F 4 and FT. Here 
we let u = 4, and v = 7, and get: 

sfvy-1-1*1* 
i=0 \ ' 

7+i " 

We predict F^., ? as our result which is correct . 

Pre-assigning the Fibonacci Number Resulting from Summation Theorem 3; 

Formula 3 is a method for a summation which uses prescribed Fibonacci numbers and 
predicts a Fibonacci number as the result . What about assigning the resulting Fibonacci 
number without prescribing Fibonacci numbers involved in the summation? 

This summation, not necessar i ly unique, can be had by considering two cases . 
Case 1. The Fibonacci number to be attained has odd subindex n. We choose u = v 

= 1, and have 

k-1 

s(k ; 1h <13> > A 7 ) F i + 2 = * * „ ! 

Case 2. We wish to obtain a Fibonacci number of even subindex. For this purpose we 
let u and v take on the values 1 and 2, respectively* Here: 
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k-2 

<14> 2,1 i Fi,2 = F2k-
1=0 X / 

Obviously, the number of t e rms in these summations will be (n + l ) / 2 for odd sub-
indices n, and n/2 for even ones. We real ize , however, that our choices for u and v 
have forfeited the ability to discern the powers of F and F which characterize the te rms 
of Theorem 3. 

Pre-Assigning the Fibonacci Number Resulting from Summation Theorem 3 as well as the 
Number of Te rms in the Summation, and Retaining Generality. 

Finally, we prescr ibe the resulting Fibonacci number F as well as k, the number 
of te rms in the summation. Moreover, to avoid the difficulty encountered above, exclude the 
somewhat trivial cases which involve FA = F2 = 1 among the summation t e rms . We im-
pose the condition: u ,v > 3. Fur thermore , the iterative definition of Fibonacci numbers: 

2-J *n+i n+2 
i=0 

inherently provides a summation of two t e rms resulting in a Fibonacci number (even though 
the summation is not of our general type). Therefore, impose the condition: k > 3. Then, 
for all n > 4k - 1; i. e. , for all n > 11, we can do justice to our data by assigning appro-
priate values to u and. v such that 

(15) n = (k - l)(u + 1) + v 

is satisfied. Again, no claim is made for uniqueness. 
For example, to obtain F1A through a summation of three t e r m s , the following choice 

proves successful: 

i=0 X ' 
4 F3+i F l l 

For a summation of three te rms for F1 5 , we can already write: 

i=0 ^ ' i=0 i=0 ^ ' 

F = F 
2+i r 15 
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Lack of Uniqueness — Predicting the Number of Different Summations 

Can you foretell the number of different summation representations of our type, each 
having k t e r m s , and leading to the same Fibonacci number F ? Using relationship (15), 
our prediction becomes: 

If set T is defined by 

T = | t : 4 < t < - n ~ 3 

k - 1 

then the numerosity of T, that i s , the number 

(16) m\-
predicts the possible number of different summations of our type5 each having k t e rms and 
leading to the Fibonacci number F . 

To i l lustrate , there will be 52 ten- term summations of our kind leading to F500. We 

would have: 

i=0 X ' i=0 X 7 i=0 X ' 
53 F23+i 

i=0 X ; 

V = F 
4 * 464+i 500 

then V = L , the Lucas sequence, and so (HI) now gives the correc t expression for (9) in 
[Continued from page 62. ] 

thei 

(*). 

(IV) 

Case 2. A + B = 0. We now obtain from (n) 

f(x + c t ) - f(x + c2) _ U 

ci - c2 
n=0 
X TT ^ • 

where U0 = 0, U, = 1, and U n + 2 = P U n + 1 - QU^ Thus for P = 1, Q = - 1 , Un = F n ; 

and for P = 2, Q = - 1 , U = P , the Pell sequence. For m = 1, 2, • • • , we obtain 

from (IV) 

f(x + c f ) - f ( x + cf) • Vmn 

(V) ^r^— = £ — D f(x) • 
n=0 

Remarks. The same ideas in (*) show that the generating function of the moments of 

the inverse operator 

[Continued on page 84. ] 
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Edited by 

RAYMOND E.WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 

Send all communications concerning Advanced Problems and Solutions to Eaymond E. 
Whitney, Mathematics Department, Lock Haven State College, Lock Haven, Pennsylvania 
17745. This department especially welcomes problems believed to be new or extending old 
resul ts . Proposers should submit solutions or other information that will ass is t the editor. 
To facilitate their consideration, solutions should be submitted on separate signed sheets 
within two months after publication of the problems. 

H-205 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Evaluate the determinants of n o r d e r 

D = 
n 

z 1 
-1 qz 

-1 q2z 

-1 n ~ 2 i 

-1 q z 1 
-1 q z 

A n = 

z 1 
-1 z 

n-2 -1 z q 
-1 z 

H-206 Proposed by P. Bruckman, University of Illinois, Urbana, Illinois. 

Prove the ident i ty : 

n - 1 

1/(1 -xn) = \YJ 1/{1 " X 

k=0 

H-207 Proposed by C. Bridger, Springfield, Illinois. 

Define G, (x) by the re la t ion 

2km/n x e ) 

1 - (x2 + 1)B2 - xs 3 Z Gk(x)sk • 
11=0 

where x is independent of s. 
1. Find a recursion formula connecting the G, (x). 

72 
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2. Put x = 1 and find G, (1) in t e rms of Fibonacci numbers. 
3. Also with x = 1, show that the sum of any four consecutive G-numbers is a Lucas 

number. 

H-208 Proposed by P. Erdos, Budapest, Hungary. 

Assume 

(a, s> 2, 1 < i ^ k) 
a - ^ ! ••- ak! x"l 

is an integer. Show that the 

max > a. -o n ? 
i=l 

where the maximum is to be taken with respect to all choices of the a. fs and k. 

H-209 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Put 
n+1 0 n+l a - B 

u = § , 
n a - B $ 

where a = |3 = #/3 = z. Determine the coefficients C(n,k) such that 

"* = E C(n'k)Un-k+l (n * «• 
k=l 

//-<?/# Proposed by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

Show that a positive integer n is a Lucas number if and only if 5n2 + 20 or 5n2 - 20 
is a square. 

H-211 Proposed by S. Krishman, Orissa, India. 

A. Show that f n J is of the form 2n3k + 2 when n is prime and n > 3. 

B. Show that f ~ f ) is of the form n3k - 2n - n, when n is pr ime. 

(?) 

/ 2 n - 2 \ 

ml represents the binomial coefficient, .f (S _ A\ 

H-212 Proposed by V. £ Hoggatt, Jr., San Jose State University, San Jose, California. 

Let n be a positive integer. Consider n edge-connected squares. How many con-
figurations are there if each row s ta r t s k squares to the right of the row above? (k denotes 
a non-negative integer.) 
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H-213 Proposed by V. £ Hoggatt, Jr., San Jose State University, San Jose, California. 

A. Let A be the left adjusted Pascal tr iangle, with n rows and columns and 0Ts 
above the main diagonal. Thus 

' 1 0 

A -• 1 1 ° 
n ' 1 2 1 0 

T T 
Find A • A where A represents the transpose of matr ix , A 
B. Let 

C = n 

1 

0 

0 

0 

0 

1 

1 

0 

0 

0 

1 

2 

0 

1 

nXn 

where the i column of C is the i row of Pasca l ' s triangle adjusted to the 
n ,-p 

main diagonal and the other entr ies a re 0Ts. Find C • A . 

H-214 Proposed by £ Karst, University of Arizona, Tucson, Arizona. 

Let x = y2 + z2 be the first pr ime in a sequence of 10 pr imes in A. P. and 

x + 22 • 34 = (y + 2 • 32 • 7)2 + (z - 25 • 32)2 

the first pr ime in another sequence of 10 pr imes in A.P. where both sequences have the same 
common difference. The second member after the 10 prime in the f irst sequence is divis-
ible by 17 and has a factor which is the square of a 3-digit prime; the second member be-
fore the f irst pr ime in the second sequence is also divisible by 17, and i ts f irst three digits 
a re a permutation of the last three digits which form a perfect square. The common differ-
ence consists of prime factors, each of them smaller than 17. Find x, y, and z. 

SOLUTIONS 
AN OLD FRIEND REVISITED 

H-118 Proposed by G. Ledin, Jr., San Francisco, California. 

Solve the dif ference equation 

n+2 n+2 n+1 n 

with Ci = a, C2 = b, and F , the n Fibonacci number. 
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Solution by Clyde A. Bridger, Springfield, Illinois. 

Write the following se r ies of equations, beginning with n = l , 

75 

C3 = F3 C2 + a 
C4 = F4 C3 + C2 

We see at once that 

n+1 n+1 n n -1 
Cn+2 = F n+2 C n+l + C n 

C3 = Fa b + a = 

C4 = F4(F3b + a) + b 

etc. So the solution in determinant form is 

b a 
-1 F3 

a 
F 3 0 - 1 

""n+2 

b 
1 
0 
0 

a 

F 3 

- 1 
0 

0 
1 

F 4 

-1 

0 
0 
1 

F 5 

0 0 

0 0 
"n+1 

0 
1 

F4 

0 

0 
0 
0 

0 

0 
0 
0 

-1 *n+2 
as may be verified by expanding in t e rms of the minors of the las t row. 

The ratio of two adjacent solutions of the difference equation can be developed into a 
continued fraction. Write, using the above sets of equations, ' 

c4 

c3 

Cn+2 
C n + 1 

F3 + E 

TP -I 
n+2 F _,, + n+1 

F4 

n 

, 1 

1 
1 

+ 

F 3 + f 
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Also solved by R. Whitney. 

ANOTHER OLD TIMER 

H-108 Proposed by H. E. Huntley, Hutton, Somerset, U.K. 

Find the sides of a tetrahedron, the faces of which are all scalene triangles s imilar to 
each other, and having sides of integral lengths. 

Solution by the Proposer. 

The interesting ar t ic le , "Mystery Puzzle and Phi , n by Marvin H. Holt (Fibonacci Quar-
ter ly, Vol. 3, No. 2, p . 135) contains a solution. See H. E. Huntley1 s The Divine Propor-
tion, Dover, New York, N. Y. , 1970, pp. 108-109, Section entitled "The Tetrahedron 
Problem. " 

SHADES OF THE PAST 

H-86 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, Calif. (Corrected) 

P q 
Let p ,q be integers such that p + q ^ l , q ^ O ; show that if x (x - 1)M - 1 = 0 has 

roots r l 9 r2 , 
for i = 1, 2, 

r , and (x - l ) p - x p = 0 has roots s i , p+q l 

, p + q. 
s , then s. p+q i 

Solution by L Carlitz, Duke University, Durham, North Carolina. 

Presumably the problem should read: 
Show that if xp(x - l ) q - 1 = 0 has roots rl9 r2, 

has roots Si, s2, 
, r and (y - l ) p + q - y p = 0 

p+q J J 
, s , , then the roots can be so numbered that p+q' 

rP+Q 
i s? 

1 
(i = 1, 2, • • ' , p + q) 
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Proof. Consider the transformation 

x - l - 1 

y - 1 ' 
This implies 

x 

Hence S if x satisfies x^(x - l ) q = 1, we get 

Q P+q 
y ^ = x

 =
 x

 = XP+Q 

(x - l ) q xP(x - l ) q 

This evidently yields the stated result , 

PARTIAL SOLUTION 

H-125 Proposed by Stanley Rabinowitz, Far Rockaway, New York. 

Define a sequence of positive integers to be left-normal if given any string of digits, 
there exists a member of the given sequence beginning with this string of digits, and define 
the sequence to be right-normal if there exists a member of the sequence ending with this 
string of digits. 

Show that the sequences whose n te rms are given by the following are left-normal 
but not r ight-normal. 

a. P(n), where P(x) is a polynomial function with integral coefficients. 
b. P , where P is the n pr ime. 

ns n F 

c. nl 
d. F , where F is the n Fibonacci number. 

n n 

Partial Solution by R. Whitney, Lock Haven State College, Lock Haven, Pennsylvania. 

b. The art icle "Initial Digits for the Sequence of P r i m e s , " by R. E. Whitney (Amer. 
Math. Monthly, Vol. 79, No. 2, 1972, pp. 150-152) established apositive relative logarithmic 
density for the set of pr imes with initial digit sequence ( a , a _-, • •" , a -} in the set of 
p r imes . Thus P is left-normal. On the other hand, no member of P ends in " 4 , " so 
P is not r ight-normal. n & 

I believe that the left-normality of F can also be established with a density argument. 

Editorial Note 

The following l is t represents those problems for which no solutions have been submitted. 
Le t ' s fight problem pollution! 

H-76, H-84, H-87, H-90, H-91, H-84, H-100, H-110, H-113, H-114, H-115, H-116* 
H-122, H-125 (partial), H-130, H-146, H-148, H-152, H-170, H-174, H-179, H-182. 

This l ist represents problems less than or equal to H-185. 



NUMBERS COMMON TO TWO POLYGONAL SEQUENCES 

DIANNE SMITH LUCAS 
China Lake, California 

The polygonal sequence (or sequences of polygonal numbers) of order r (where r is 
an integer, r > 3) may be defined recursively by 

(1) (r , i) = 2(r, i - 1) - (r, i - 2) + r - 2 

with (r,0) = 0 , ( r , l ) = 1. 
It i s possible to obtain a direct formula for (r , i) from (1). A particularly simple way 

of doing this is via the Gregory interpolation formula. (For an interesting discussion of this 
formula and its derivation, see [ 3] . ) The resul t i s 

(2) (r , i) = i + (r - 2)i(i - l ) / 2 = [(r - 2)i2 - (r - 4) i ] /2 . 

It is comforting to note that the fTsquaren numbers — the polygonal numbers of order 4 — ac -
tually are the squares of the integers. 

Using either (1) or (2), we cam take a look at the f irst few, say, triangular numbers 
(r = 3) 

0, 1, 3 , 6, 10, 15, 21, 28, 36, 45, ••• . 

One observation we can make is that three of these numbers are also squares — namely 0, 1, 
and 36. We can pose the following question: Are there any more of these " t r iangular-square" 
numbers? Are there indeed infinitely many of them? What can be said about the numbers 
common to any pair of polygonal sequences? 

We shall begin by answering the las t of these questions, and then return to the other 
two. Suppose that s i s an integer common to the polygonal sequences of o rders rA and r2 

(say rA < r 2 ) . Then there exist integers p and q such that 

s = [(rj - 2)p2 - ( r i - 4)p]/2 = [ (r2 - 2)q2 - (r2 - 4)q]/2 , 

so that 

(3) ( r i - 2)p2 - (rt - 4)p = (r2 - 2)q2 - (r2 - 4)q , 

This paper is based on work done when the author was an undergraduate research par t ic i -
pant at Washington State University under NSF Grant GE-6463. 
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and in fact, since both sides of the equation (3) are always even, every pair of non-negative 
integers p , q which satisfy (3) determine such an integer s. 

As a quadratic in p , this has integral solutions, so — since all coefficients are inte-
gers — the discriminant 

( r i _ 4)2 + 4(r4 - 2)(r2 - 2)q2 - 4(rj - 2)(r2 - 4)q 

must be a perfect square, say x2, so that 

x2 = 4(rA - 2)(r2 - 2)q2 - 4(rt - 2)(r2 - 4)q + (rt - 4)2 . 

As a quadratic in q, this also has integral solutions, and the discriminant — and hence 
1/16 of the discriminant — must again be a perfect squre, say y2, so that 

(4) y2 - ( r i - 2)(r2 - 2)x2 = (rt - 2)2(r2 - 4)2 - (n - 2)(r2 - 2)(rj - 4)2 , 

where p and q are given by 

(ri - 4) + x (rx - 2)(r2 - 4) + y 
( 5 ) P = 2(r4 - 2) q = 2(rt - 2)(r2 - 2) 

Although it can be shown, by solving (5) for x and y and substituting into (4), that every so-
lution of (4) gives a solution of (3), it should be noted that some of the integer solutions of (4) 
may not give integer values for p and q. Nevertheless, (4) and (5) give us all possible can-
didates for integer solutions of (3). 

Now (4) i s in the form of Pe lPs equation, y2 - dx2 = N, which has a finite number of 
integral solutions in x and y if d is a perfect square while N does not vanish. For then 
the left side can be factored into (y - ax)(y + ax), where a is an integer; and N has only 
finitely many integral divisors. 

So we already have a partial answer to our question. If (rA - 2)(r2 - 2) is a perfect 
square and the quantity on the right side of (4) i s non-zero, we have only finitely many candi-
dates for integers common to the two sequences of o rde rs r1 and r2. 

On the other hand, if (rt - 2)(r2 - 2) is a perfect square and the right side of (4) is zero , 
then (4) reduces to a l inear equation in x and y: 

y = ±N/Tr"i - 2)(r2 - 2)"x 

Since the coefficient of x is an integer, this has infinitely many integral solutions. 
An analysis of the right side of (4) reveals that, with T-± / r2, this quantity vanishes 

only when one of rA and r2 i s 3 and the other is 6. In that case , (4) becomes y2 - 4x2 = 0, 
or y = ±2x; and equations (5), with y replaced by ±2x, become p = (x - l ) /2 ; q =? (1 ± x) /4 . 
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At this point it i s not too hard to see that for infinitely many integers x, the above 
equations yield non-negative integral values for both p and q. Therefore, there a re i n -
finitely many hexagonal-triangular numbers. In this case , however, we have taken the long 
way around; for it can be shown directly, using (3), that indeed every hexagonal number is 
also a tr iangular number. 

It remains for us to investigate what happens when (r1 - 2)(r2 - 2) i s not a perfect 
square (and here the right side of (4) is necessar i ly non-zero). If this is the case , then there 
a re infinitely many positive integral solutions to (4) if there is one such solution [ 2, p. 146 ] , 
But in fact we can always exhibit at leas t one solution — namely xt = r l 9 yt = r ^ r j - 2) — 
corresponding to p = q = 1. We still have the job, however, of showing that infinitely many 
of these solutions of (4) give us integer solutions of (3). 

Consider the related equation 

(6) u2 - (ri - 2)(r2 - 2)v2 = 1 . 

With (rt - 2)(r2 - 2) not a perfect square, this has infinitely many integral solutions, gene-
rated by 

u n + v n N/(rx - 2)(r2 - 2) = (uj + v t sli^ - 2)(r2 - 2 ) ) n , 

where ul9 vA is the smallest positive solution [2 , p. 142]. We obtain ul9 v4 by inspection. 
In part icular , u2, v2, given by 

u2 + v2 N/(rx - 2)(r2 - 2) = (ux + vt *J(rt - 2)(r2 - 2) )2 , 

i s a solution of (6), and by expanding the right side and comparing coefficients, we get 

u2 = u | + (ri - 2)(r2 - 2)vJ 
(7) 

v2 = 2u1v1 

Now infinitely many (but not necessari ly all) of the positive solutions of (4) are given by 

(8) y n + 1 + x n + l N / ( r 1 - 2 ) ( r 2 - 2 ) = (u, + v. ^ ( r t - 2)(r2 - 2) )(yn + x^ {rt - 2)(r2 - 2)) 

where u., v. is any positive solution of (6) [2, p. 146], say u2, v2. Again comparing co-
efficients, we get 

V l = U2\ + ( r l " 2 ) ( r 2 " 2 ) v2Xn ' 
x in = v0y + u0x , n+1 2Jn 2 n ' 

(9) 

with the side conditions x4 = r4 , yA = r2(rA - 2). 
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Consider the f irs t of equations (9). This can, by adding a suitable quantity to each side, 
be changed to 

y n+l + ( r i " 2 ) ( r 2 " 4 ) + ( r i " 2 ) ( r 2 - 4H% - 1) = u2(yn + ( r 1 -2 ) ( r 2 -4 ) ) 

+ (rx - 2)(r2 - 2)v2xn , 

and using (6) and (7)9 we get 

y n+l + < r i " 2)(3?2 " 4 ) = U 2 ( y n + ( r i " 2 ) ( r 2 " 4 ) ) + 2( l>1 " 2 ) ( r 2 " 2 ) u l v i x
n 

- 2 ( r 1 - 2 ) 2 ( r 2 - 2 ) ( r 2 - 4 ) v 2 (10) 0 /_ 0>2/„ ow„ ,w.2 

Recalling that y1 = r2(rx - 2), clearly 

yt = - ( r j - 2)(r2 - 4) (mod 2(rj - 2)(r2 - 2)) ; 

and letting n = k in (10), we see that if 

y k = -(rA - 2)(r2 - 4) (mod 2(rt - 2)(r2 - 2)) 

for some integer k, then each term on the right of (10) is divisible by 20^ - 2)(r2 - 2). 
Hence the left side of (10) is divisible by this same quantity, and 

y k+l s ~ ( r i " 2 ) ( r 2 " 4 ) ( m o d 2 ( r i " 2 ) ( r 2 ~ 2 ) ) e 

By mathematical induction, and with reference to the second of equations (5), all of the y f s 
given by (9) produce positive integral values for q. 

Similarly, the second of equations (9) can be transformed into 

Xnn-1 + ( r i " 4 ) + (U2 " 1 ) ( r i " 4 ) + V 2 ( r i " 2 ) ( r 2 " 4 ) = V 2 ( y n + ( r i " 2 ) ( r 2 " 4 ) ) 

+ u2(xn + (r t - 4)), 

and again using (6) and (7), we get 

x n+ l + (l>1 " 4 ) = v 2 ^ n
 + ( ri " 2>(r2 " 4 » + u 2< x

n
 + r i - 4)) 

( 1 1 ) - 2v2(ri - 2)(r2 - 2)(rt - 4) - 2u1v1(r1 - 2)(r2 - 4) 

Since 

y n = -(r* - 2)(r2 - 4) (mod 2{vt - 2)(r2 - 2)) 

for all n, certainly 
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y n = -(r j - 2)(r2 - 4) (mod 2(vt - 2)) . 

We have that 

xt = - ( r i - 4) (mod 2(ri - 2)) , 

since xj = v1 ; and it can be seen from (11) that if 

x k s -fri - 4) (mod 2(rA - 2)) 

for some integer k, then 

x k+l 5 " ( r i " 4 ) ( m o d 2 ( r * " 2 ) ) * 

That i s , 2(rA - 2) divides x + (r1 - 4) for every positive integer n. 
To summarize, for (rt - 2)(r2 - 2) not a perfect square, we have exhibited (in (9)) in-

finitely many — but not necessar i ly all — of the solutions to the Pell-type equation (4); and all 
of these give positive integral solutions p ,q of (3). These, in turn, give integers s which 
are common to the two polygonal sequences of o rders rA and r2. 

In view of the above, we can now state the following theorem: 
Theorem. Given two distinct integers rt and r2 , with 3 < rj < r2 , each defining 

the order of a polygonal sequence, there are infinitely many integers common to both s e -
quences if and only if one of the following is t rue: 

i. ri = 3 and r2 = 6S or 
ii. (rA - 2)(r2 - 2) is not a perfect squre. 
In pract ice, given part icular integers rt and r2, we can get all of the solutions of (4) 

by using at most finitely many equations of the form (8), with a different x1} yt for each one. 
Some of these equations can be eliminated or modified to leave out those solutions which give 
non-integer values for either p or q. We may then obtain equations generating all pa i r s 
p ,q for which ( r^p) = (r2,q); and, if desired, finitely many equations generating the num-
bers s common to the two sequences. The procedure for finding all solutions of (4) is ardu-
ous and depends errat ical ly on the actual values of rj and r2. For the general machinery, 
see G. Chrystal [ l , pp. 478-486]. 

Now we can easily answer our questions about triangular squares. Letting rx = 3 and 
r2 = 4, (rt - 2)(r2 - 2) becomes 2, which is not a perfect square. There a r e , then, infin-
itely many triangular squares. A s a mat ter of fact, this result has been known for some time. 
To exhibit these numbers , we note that since the coefficient of q in (3) becomes 0, we can 
get a formula like (4) by applying the quadratic formula only once. The result is 

x2 - 8q2 = 1 
o r 
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(12) x2 - 2y2 = 1 , 

where p = (x - l ) / 2 and q = y /2 . Conveniently enough, (12) is already in the form of (6); 
and since xt = 3, yt = 2 is the smallest positive solution, all non-negative solutions of (12) 
a re given by 

(13) x n + ynN/2 = (3 + 2<s/2)n (n = 0, 1,. 2, •• • ) . 

Certainly the "next" solution is given by 

x ^ + y ^ ^ 2 " = (x + y N/"2)(3 + 2 N / I ) , n+1 ^n+l v n J n / v ' J 

and by comparing coefficients we get 

x f- = 3x + 4y , 
n+1 n Jxi 

v = 2x + 3v 
Jn+1 n ^n J 

with (from (13)) x0 = 1, y0 = 09 

It follows by induction from (14) that all values of y a re even non-negative integers , 
and all x f s a re odd positive integers. Therefore, for any solution p ,q of (3) — in non-
negative integers and with rt = 3, r2 = 4 — there exists an n (n = 0, 1, 2, . . . ) such that 

P = P n = (x - l ) / 2 
(15) n n 

q = q = y /2 

where x , y a re given by (14)* Fur thermore , p , q given by (15) forms a non-negative 
integral solution for any n, since the x f s are always odd and all of the y f s a re even, 

All tr iangular square numbers, then, a re given by 

(16) Sn = fc£ + p n ) / 2 = <£ . 

Solving (14) with x0 = 1, y0 = 0, we get 

x n = [(3 + 2<\/2)n + (3 - 2 \ / 2 ) n ] / 2 

y n = [(3 + 2N/2)n - (3 - 2N/2)n]/2Nj2 , 

and combining these with (15) and (16), we obtain 

(17 + 12N/2)n + (17 - 12 \ /2 ) n - 2 
Sn " ~ 32" 
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where s i s the n t r iangular-square number. 
n th 

Likewise, we can compute a formula for the n triangular-pentagonal number. The 
result is 

- (2 - N / 3 ) ( 9 7 + 5 6 N / 3 ) H + (2 + N / 3 ) ( 9 7 - 56A/3)11 - 4 
Sn — — ~ — — . 

This agrees with a resul t recently published by W. Sierpinski [ 4 ] . 
I am thankful to Dr. D. W. Bushaw, whose suggestions and encouragement made the 

writing of this paper possible. 
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m 
M"1 = E ^ Dk 

k=0 
is given by 

m* 
(VII) 2 TT ^ = l/tAe01* + B e°2 t> 

k=0 

We now note that for Case 2, where A + B = 0, Eq. (VIE) does not exist for t = 0, and 
hence there is no inverse operator M" . Thus, a sufficient condition for M~ (see CD) to 
exist i s that A + B ^ 0, i. e . , Case 1. For A + B ^ 0, one readily finds that 

\ ( ^ 2 \ - A ^ ) (VIII) (A + B)m* = (c2 - CiTH, 

where H, (x|A) is the Eulerian polynomial cited in (*). 
Many more identities can be quoted. Indeed, for m, n = 0, 1, • • • , one has 

[Continued on page 11&* ] 



A PRIMER FOR THE FIBONACCI NUMBERS 
PART XI: MULTISECTION GENERATING FUNCTIONS FOR THE 

COLUMNS OF PASCAL'S TRIANGLE 

VERWER E. HOGGATT, JR., and JAWET CRUMP AWAYA 
San Jose State University, San Jose, California 

1. INTRODUCTION 

Let 

f ( x ) = ^ a n x n 

n=0 

be the generating function for the sequence | a | . Often one des i res generating functions 
which multisect the sequence j a J-, 

00 

G i ( x ) = ] C a i + m j x 3 * ft = 0, 1. 2, • • • , m - 1) . 
1=0 

For the bisection generating functions the task is easy. Let 

Hi(x2) = f(x) y(-x) t 

H2<x*) = f<x> - J < - x ) ; 

then clearly Hj(x2) and H2(x2) contain only even powers of x so that 

00 00 

Hl(x) = 2 a2n ^ *** H2(X) = 2 a2n+l X" 
n=0 n=0 

are what we are looking for. 
Let us i l lustrate this for the Fibonacci sequence. Here 

00 

f(x) - x
 2 - ^ F n X n ; 

1 " x - x n=0 

then 

85 



86 A PRIMER FOR THE FIBONACCI NUMBERS [Feb. 

Hi(x) = — - 5 = V T. n 

F x 1 - 3x + xz * - ? ^ n 
n=0 

and 

1 - x _ \ ^ „ „n 
1 - 3x + x2 H2(x) 2=2^F2n+lX • 

n=0 

Exercise: Find the bisection generating functions for the Lucas sequence. 
Let us find the general multisecting generating functions for the Fibonacci sequence, 

using the method of H. W. Gould [ l ] . The Fibonacci sequence enjoys the Binet Form 

*n a - B > a 2 P 2 

Let f(x) = 1/(1 - x); then 

x n = gtf(amx) - j33f(pmx) 
2-^i mn+j A a - p 
n=0 

1 / o? /33 \ 
a - 6 l ., m . 0 m J 

^ \1 - a x 1 - )3 x / 
i ni • ni- i 0 m- i 

1 - (am + /3m)x + (<*/3)mx2 

F . + (-I)3 F x 
= J m * , (j = 0 , l , 2 , - - - , m - l ) , 

1 - L x + ( - l ) m x2 

m ' 
smce cw3 = - 1 , a +8 = L , and 

n 0n 
n or - j3 " 

Exercise: Find the general multisecting generating function for the Lucas sequence. 
The same technique can be used on any sequence having a Binet Form. The general 

problem of multisecting a general sequence rapidly becomes very complicated according to 
Riordan [ 2 ] , even in the classical case. 

2. COLUMN GENERATORS OF PASCAL'S TRIANGLE 

The column generators of Pasca l ' s left-justified triangle (3], [4] , [5] , a re 
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We now seek generating functions which will m-sec t these, 

87 

¥m> k; x) = Z (* + V "") xn+k+lj (i = 0, 1, ••• , m - 1) 
n=0 

We first cite an obvious little lemma. 
Lemma 1. 

m 

© - E ^ O - C i " 1 ) • 
3=1 

Definition. Let G. . (x), i = 0, 1, 2, • • • , m - 1, be the m generating functions 
— 1 , K 

^ / \ \ T ^ fi + k + m n | in Gi,k(x) = L J V k ) x 

Lemma 2. 

xG. . (x) + x2G. - . (x) + • • • + x m G. _,, , (x) ^ , x i ,k I - I , k i -m+l ,k 
G (x) = L— 5 

1 - x 

The proof follows easily from Lemma 1. 
Let 

n(m-l) 
( 1 + x + x 2 + 9 9 e + x m - l ) n = J- /n\ xJ 

j=0 m 

define the row elements of the m-nomial triangle. Fur ther , let 

f.(m, k; x) = / s (. ^ . _ \ xJ , i = 0, 1, • • • , m - 1 , £ f (' +kjm)= 
where j is such that i + jm ^ k(m - 1). These a re multisecting polynomials for the rows 
of the m-nomial triangle. Now, we can state an interesting theorem: 

Theorem. For i = 0, 1, 2, ° •e , m - 1, 
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x f.(m,k; x) 
1 G.(m,k; x) .--=-

(1 - x ) k + 1 

Proof. Recall f irst that the m-nomial coefficients obey 

t) - ( V ) •(;:*) • - • ( r . \ ; l l ) 
\ / m \ / m \ / m \ / m 

where the lower arguments are non-negative and less than or equal to n(m - 1). 
Clearly9 for k = 0, from the definition just before Lemma 2, 

G i , 0 ( x ) = ~^K> * = 0, 1 , 2 . . . . , m - 1 
1 - X 

Assume now that 
k+i - t . iru x f (m,k; x ) 

G (x) = 1 ^^x— 

for i = 0, 1, 2, 3, • • • j (m - 1). From Lemma 2, 

Thus, 

G (X) - X G i - l ^ ( x ) + " - + x m G i - m + l ? k ^ 
1 - x 

m - 1 / 
k+(i-s)+s+jm+l as 

- s + jml 
s = 0 \ j=Q N / 

X 

G i , k + l ( x ) = ~ k+2~ 
(1 - x m ) 

fm-1 

JLL*\ / ' l i - s + im J 
k+l+i+jm 

3=0 \ s=0 
k+2 

(1 - x ) 

x k + H V ^ / k + l \ x jm 

1± 
k+2 

At m \ 
(1 - X ) 

k+l+i » , . m.v x f. (m,k; x ) 
— ' m k+2 

(1 - x m ) 
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This completes the induction. 
The x merely pof 

separated by m - 1 zeros . To get rid of the zeros , let 
The x merely position the column generators . Here the non-zero entr ies are 

x f.(m,k; x) 
G i ( m ' k ; x ) = „ * , k + i 

(1 - x) 

for i = 0, 1, 2, • • • , m - 1. This concludes the proof of the theorem. 
If we write this in the form 

fi + jm + k \ 
^ k ) 

v V i + jm + k \ xj+k+l = j=0 
y(k-) k+i+j 

G.Cm.k; x) - ^ , . A „ 

it emphasizes the relation of the multisection of the k column of Pasca l ' s triangle and the 
multisection of the k row of the m-nomial triangle. 

3. A NEAT GENERATING FUNCTION 

Lemma 3 

(:)-±0)(-fl 
This is easy to prove by starting with 

(:)-(v)-(-0 

-(•;!)«'(;::)-(;:i)-
Apply (A) to each term on the right repeatedly. 

Now let H.(m,k; x) m-sec t the k column of Pasca l ' s triangle (i = 0f 1, 2, e • • , 
m - 1); then, using Lemma 3, it follows that 

Lemma 4 

i n 

.(m9k; x) = 1 ^ x y j f 1 ^ ) H.(m,k - j ; x) 



90 A PRIMER FOR THE FIBONACCI NUMBERS Feb. 1973 

The resul ts using the method of Polya for small m and i seem to indicate the follow-
ing [ 3 ] . 

Theorem. The generating functions for the rising diagonal sums of the rows of Pascal1 s 
triangle i + jm (all other rows are deleted) are given by 

H.(x) = (L±-5) , i = o, 1, . . . , m - 1 . 
1 - x(I + x) 

Exercise: Show that 

m - 1 
X™^ iTT / m, 1 
ZJ X H i ( x > = -——i. • 
~* 1 - x( l + x ) 

This is a necessary condition which now makes the theorem plausible. These are the 
generalized Fibonacci numbers obtained as rising diagonal sums from Pasca l ' s triangle, be-
ginning in the left-most column and going over 1 and up m 3 . The theorem is proved by 
careful examination of i ts meaning with regards to Pasca l ' s triangle as follows: 

a+x)i
 m=j^a+ X)m n + i=jp it(m{n ~ 3 3 ) + 1 ) * n 

1 - x( l + x) n = Q n = ( ) j = 0 \ / 

Recall that ( £ ) = 0 if 0 < n < k. 

ILLUSTRATION 

n = 0 x°(l + x) 0 + i = 1 + x 
n = 1 x1(l + x)2 + 1 = x + 3x2 + 3x3 + x4 

n = 2 x2(l + x)4 + 1 = x2 + 5x3 + 10x4 + 10x5 + 5x6 + x7 

n = 3 x3(l + x)6 + 1 = x3 + 7x4 + 21x5 + • • • 

Sum: 1 + 2x + 4x2 + 9x3 + 19x4 + 

Here , m = 2 and i = 1. Now, write a left-justified Pascal1 s triangle. Form the s e -
quence of sums of elements found by beginning in the left-most column and proceeding right 
one and up two throughout the ar ray: 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, • • • . Notice that the 
coefficients of successive powers of x give every other te rm in that sequence. 

The general problem of finding generating functions which multisect the column gener-
a tors of Pasca l ' s triangle has been solved by Nilson [ 6 ] , although interpretation of the num-
era tor polynomial coefficients has not been achieved as in our las t few theorems. 
[Continued on page 104. ] 



A CURIOUS PROPERTY OF UNIT FRACTIONS OF THE FORM 1/d WHERE (d, 10) = 1 

BROTHER ALFRED BROUSSEAU l 

St. Mary's College, California 
HAROLD ANDERSEN 2 and JEROME POVSE 3 

San Carlos High School, San Carlos, California 

INTRODUCTION 

One of the rewards of teaching is seeing your students discover for themselves a p ro -
found mathematical result . Over twelve years of teaching I have had more than my share of 
such observances. Perhaps the most rewarding came about as a "spin off" of a problem deal-
ing with the nature of a repeating decimal. A student at San Carlos High School, Frank 
Stroshane, made the original discovery described in this article while trying to find out why 
with some fractions i ts period has a "nines-complement" split, that i s , i ts period can be 
split into two halves that have a nines complement relationship. For example: 1/7 = .142857 
has 1 and 8; 4 and 5; and 2 and 7. Frank, typical of talented students, found a differ-
ent "gem. " He could not prove his resul t but it was clear to me and the others with whomhe 
shared it that it was unquestionably t rue. It is this observation and its subsequent justifica-
tion that represents the main thrust of the art icle. 

The property alluded to i s : 
Theorem. The period of a fraction of the form l / d where (d, 10) = 1 can be com-

pletely determined without dividing. 
For example, to find the decimal expansion of 1/7 we "know" (this knowledge will be 

proven later) that the last digit in the period must be 7. Now, multiply this terminal digit by 
our "magic" number 5 (this too will be explained later) . Continue the process of multiply-
ing f±ie previous digit by 5 (allow for carr ies) until the digits of the period repeat. The full 
process follows: 

a. 1/7 has 7 for i ts last digit and its period 7 

b. Multiply the 7 by 5 giving 3
5 ? w h e r e g i g ^ ^ ^ 

c. Multiply the 5 by 5 and add the 
previous ca r ry of 3 giving 8157 where 2 is the ca r ry 

4 
d. Repeating the process gives 2857 
e. Again giving 1 

42857 

Prov ided the proof of the algorithm described in the art icle. 
2A teacher at San Carlos High School. Presented the problem that led, after several yea r s , 
to the proof. He also compiled this art icle. 

3A student at San Carlos High School. Discovered the magic number and provided most of the 
lemmas and their proofs leading to Brother Brousseaufs proof. 

91 
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f. Again giving 

A CURIOUS PROPERTY OF UNIT FRACTIONS 
2 

[Feb. 

142857 
g. Again giving 

which indicates the period is repeating. 

0 
7142857 

Therefore 1/7 = .142857 
Before launching into a statement of the algorithm employed and i ts proof, some p r e -

l iminaries need to be established. We have assumed that all fractions of the form l / d 
where (d,10) = 1 have a decimal expansion which repeats , furthermore they begin their 
period immediately.* F i r s t a Lemma about the final digit in the repeated block. 

Lemma. If l / d = . a ^ • • • a^ where (d,10) = 1, then 

Proof. Since 

then 

subtracting 

d • a^ = 9 mod 10 

d • a^ ends in a 9 . 

l / d = .ajag ••• ak 

10 
d aja2 •• • ak • a - ^ • •• ak 

10k - 1 a i a2 • ' • a k 

10* n,k-l .k-2 

but 

or 

a* . lO""* + a2 • 10" '" + . . . + a k _ 1 l 0 1 + 8^.10° 

rJs-1 rtk-2 10" - i = d(at • 10" x + a2• • 1 0 " u + • • • + ak_1 • 101 + aR • 10°) 

10 - 1 = 9 (mod 10) 

d(ax • 1 0 k - 1 + a2 • 1 0 k " 2 + . . . + & 10) + d • a k = 9 (mod 10) 

d • a k = 9 (mod 10) 

d(ai • 1 0 k _ 1 + a2 . 1 0 k " 2 + . . . + a ^ • 10) = 0 (mod 10) 

d • a k = ION + 9 

where N is some integer; that i s , d'a^ ends in a 9. 
This shows that in expanding any unit fraction of the type described, the product of the 

denominator and the last digit must end in a nine. Hence 1/7 has for the last digit in i ts 

*See The Enjoyment of Mathematics, Rademacher and Toeplitz, pp. 149-152. 
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period a 7; l / l l has for the las t digit in its period a 9; and 1/23 has for the las t digit in 
i ts period a 3. 

FINDING THE "MAGIC NUMBER" 

An algorithm for determining the magic number is as follows: 
lo Find the terminal digit in the period (see Lemma). 
2. Multiply by d. 
3. Add 1. 
4. Drop final digit in sum. (It will always be zero. ) 
5. This number will be the nmagic number ." 
Briefly, if m is the nmagic number, , f 

\ + 1 
10 

where d is the denominator of the given unit fraction, a, i s the terminal digit in the period 
of l / d , and k is length of period. Therefore, using the above algorithm, the "magic num-
ber" for the following unit fractions a re : 

a. For 1/7 the magic number is 5, since 

* - 7(7) + 1 
b - — - J Q — 

b. For l / l l the magic number is 10, since 

1U io 

c. For 1/27 the magic number is 19, since 

7(27) + 1 
19 10 

d. For 1/43 the magic number is 13, since 

3(43) + 1 13 10 
etc. 

PROOF OF ALGORITHM 

On inspection one can see this algorithm is equivalent to finding the quantity which on 
being multiplied by 10 and divided by the denominator gives a remainder of 1. That i s , 
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10m = 1 (mod d) . 

If we visualize the process of division in complete detail, m is the remainder in the 
division process just pr ior to the remainder 1 which initiates a new cycle. 

How does one go about justifying such an algorithm? F i r s t , it may be pointed out that 
the length of the period of such a decimal is found by the smallest value of k for which 

10k = 1 (mod d) , 

where d is an odd integer.* Thus for 7 

101 = 3 (mod 7); 102 = 2 (mod 7); 103 = 6 (mod 7); 

104 = 4 (mod 7); 105 = 5 (mod 7); 106 = 1 (mod 7) . 

Note also that these quantities are the successive remainders in the division process . The 
magic number is given by 105 = 5 (mod 7). In other words, the magic number m is the 

k - l 
least positive residue for which 10 = m (mod d). It is also the las t remainder in the di-
vision process that precedes a remainder of 1 which is the first remainder. That is 

1 0 k _ 1 = r k (mod d) , 

where r, is the last remainder where the length of period is k. 
To understand the ensuing analysis, let us parallel division by 7 and the correspond-

ing notation that will be employed. 

.142857 a a a a a a 
1 2 3 4 5 

7 ) 1.000000 d ) 1.0 0 0 0 0 0 
7 

30 
28 

20 
14 

60 
56 

40 
35 

50 
49 

1 

n i 

»2 

r30 

n3 

TF 
n4 

r50 

n5 

r60 

n6 

* The proof of this statement can be found in The Enjoyment of Mathematics. 
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In the above illustrations n2 = a2'd, while r30 is the remainder with a zero attached. 
From the nature of the division operation we have the following equations: 

10 r-L = at • d + r2 

10 r2 = a2 • d + r3 

10 r ^ = a • d + r k 

Talking 

implies 

and 

leads to 

or equivalently 

and 

leads to 

or 

o r 

and in general 

10 r k = a .̂ • d + l . 

r j = 1; 10 • rt = 9Lt • d + r2 

10 = aj • d + r2 or 10 - a4 • d = r2 

10 • r2 = a2 • d + r3 

10 • (10 - 84 • d) = a2 • d + r3 

102 - r3 = (10ai + a2) d 

102 = r3 (mod d) 

10 • r 3 = a3 • d + r4 

10(102 - 10 a4 • d - a2 • d) = a3 • d + r4 

103 - r 4 = (102 ax + 10 a2 + a3)d 

103 s r4 (mod d) 

10* = r i + 1 (mod d) . 
k-1 Now since r, = 10 (mod d) where r, i s the last remainder in the division process 

for the unit fraction which has a decimal expansion with a period of length k it follows ( re-
calling 10k = 1 (mod d) ) , 

r | = (lO1^'1)2 = 10 2 k ~ 2 = 10k~2 = r k _ 1 (mod d) 

rk_^1 = 10k~2 (mod d) 
or equivalently 

so that 

4 = d ' bk + r k - l ' where b, is an integer. Therefore 
r k . r k _ x = 1 0 k " 1 1 0 k ' 2 = 1 0 2 k " 2 = 1 0 k " 3 = r k _ 2 (mod d) 

In general , 
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Hence 
W x = ^k~1^k'X"1 = 102k~X-2 = 10k-X-2 = rk_x_x (mod d) 

4 = d • bk + r k - l 
r k ' r k - l = d * b k - l + r k - 2 

r k * r k - 2 = d ' b k -2 + r k - 3 

r k * r 2 = d • b 2 + 1 

where the b.?s are integers. 
From the first set of relations, 

aĵ d = 10r,_ - 1 

therefore 

k 
r k a k d = 1 0 4 - r k = lOd . bR + 10 V l - r R 

= 1 0 d - b k + a k _ l d 

r k a k = l O b j ^ H - a ^ 

This shows that the product of a magic number r. by the last digit in the period a gives the 
penultimate digit in the period, viz, a, . Continuing in like manner: 

since 10 r k -- r k - i = 

\ - i d = 1 0 r k - i - r k 
r k V i d = 10rkrk-i - 4 

= l O d - b ^ + l O r ^ - d - b ^ 

= 1 0 d . b k _ 1 + a k _ 2 d - d b k 

= a ] s_2d o r simplifying, 

V k - 1 = 1 0 b k - l + ak-2 - \ 

rk\-l + b k = 1 0 b k - l + a k -2 • 

" r k - l 

This shows that multiplying r k by ak , the next to last digit in the period and adding bk 

from previous operation gives a, 2 as the last digit. In general, 

a. .d = 10r, A - r , N J . 
k-A k-A k-A+1 

r k a k - x d = 1 0 r k - r k - x - r k - r k - x + i 
= 10 d • b k _ x + 10 r ^ ^ - d b k _ x + 1 - r k _ x 

since 1 0 r k _ x _ 1 - r k _ x = d.ak_x_1 or 
= l O d l ^ ^ - d b ^ ^ + d . ^ ^ , 

o r 
r, • a, . + b. x , . = 10 b, . + a, . ' . k k-A k-A+1 k-A k-A-1 

This shows that the process continues at each step of the operation and completes the proof. 
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FINAL COMMENTS 

It is not difficult to expand the remarks concerning unit fractions developed in this a r -
ticle to all fractions of the form c/d where 0 < c < d and (d,10) = 1* Also the fact that 
the remainders in the division process are all relatively prime to the division is useful in de -
termining the length of the period of a given fraction. A proof of this result concludes the 
ar t icle . 

Theorem. All of the remainders in the division process associated with l / d where 
(d, 10) = 1 are relatively prime to d. 

Proof. Since r j = 1 then (r,d) = 1. 

10 r t = aA • d + r2 (0 ^ r2 < d) . 

It must be that (r29d) = 1 since if 

(r2,d) = t i ; (tt ± 1) 

then 

r2 = ptt and d = ktt . 

10 = ajlkti) + p t j = (a-^k + p)tj . 

Therefore, tt must divide 10.but (d, 10) = 1 and d = ktj hence a contradiction and (r2,d) 
= 1. Continuing, 

10 r2 = a2 • d + r3 (0 < r3 < d) . 

Again it must be that (r3,d) = 1 since if 

(r8,d) = t2 (t2 £ 1) 

then 

r3 = pt2 and d = pt2 

10 Tt = a2 • k ° t2 + pt2 = (a2 • k + p)t2 

but (t2,ri) = 1 since ( d , ^ ) = 1 hence t2 must divide 10 but (d,10) = 1 thus (r2,d) = 1. 
Since the argument continues in like manner, the theorem is proved. 

EDITORIAL COMMENT 
Marjorie Bicknell 

Puzzles intimately related to the resul ts of the paper, "A Curious Proper ty of Unit 
Fractions of the Form l / d Where (d,l) = 1 , " have the following form: 

Find a number whose left-most digit is k which gives a number l / m as large when k 
is shifted to the far right-end of the number. 
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The solution to such puzzles can be obtained by multiplying k by the "magic multiplier" 
m to produce the original number, which is the repeating block of the period of c/d, where 
m is the nmagic number1' for d, and 1 < c < d. 

For example, find a number whose left-most digit i s 6 which gives a number 1/4 as 
large when 6 is shifted to the far right end of the number. Multiplying 6 by the "magic 
multiplier" 4 as explained in the paper above gives a solution of 615384, which is four 
times as great as 153846. Notice that 

* 10 

gives the solutions, in positive integers , 

d . a, = 39 = 39 • 1 = 13 • 3 , 

where d = 13 or d = 39 give the same solution as follows. 1/13 ends in 3, 2 / 1 3 ends 
in 6, 

4 X 13 " 15 

has the original number of the puzzle as i ts period. 
As a second example, r e - r ead the puzzle using k = 4 and m = 2. Multiplying 4 

using the "magic multiplier" 2 yields 
421052631578947368 

which is twice as large as 
210526315789473684 . 

Here 2 in the "magic number" formula produces 

2 = (d • ^ + 1)/10 

so that 
d • ak = 19 = 19 • 1 . 

1/19 ends in 1, 4/19 ends in 4, 2-4/19 = 8/19 which has the original number as i ts 
period. (14/19 also ends in 4 but 2*14 > 1 9 . ) 

One can also find l / m , (m,10) ^ 1 by methods of this paper. 1/6 = (1/2)(1/3). Find 
1/3 = .3333 • • • without dividing. Then (.5) x (.3333 •• •)> remembering that the multipli-
cation on the right begins with 1 to ca r ry , makes .1666 • • • . 



THE AUTOBIOGRAPHY OF LEONARDO PISANO 

RICHARD E.GRIMM 
University of California, Davis, California 

For the mathematical h i s tor ian interested in biographical detailss Leonardo Pisano, 
better known to readers of this journal as Fibonacci, was a frustratingly modest genius. In 
his extant writings he tells us next to nothing of himself. In only one place, the second pa ra -
graph of the 1228 edition of his revised Liber Abbaci (Book of Calculation), f irst published in 
1202., does he convey to us information about his ear l ie r life; and even then the information, 
given merely as an incidental backdrop for his explanation of his purpose in writing the Liber, 
i s very scanty and lamentably lacking in the precision which he displays in his mathematical 
elucidations. This second paragraph had, in the 1202 edition, been placed at the very begin-
ning of the book; but in the revised, second edition of 1228, Leonardo wrote a dedication to 
the celebrated court astrologer of Frederick II, Michael Scott, who had requested a copy of 
the work, and thus this dedication became the work1 s f irst paragraph, with the "autobiograph-
ical paragraph" following immediately after it. Today1 s mathematicians are familiar with 
only this second, revised edition, since it is the one which Baldassare Boncompagni printed 
as Volume 1 of his two-volume Scritti di Leonardo Pisano (Rome, 1857-1862). Although 
Boncompagni knew of the existence of six manuscripts containing this autobiography, he based 
his edition — the f irst , and still the only complete printed edition which we possess — on only 
one manuscript , the handsome but frequently badly faded Conventi Soppressi C. I. 2616, 
dated to the early fourteenth century. This manuscript is now housed in the Biblioteca 
Nazionale Centrale in Florence; for convenience, I shall hereafter refer to i t as Boncompagni's 
manuscript. 

His failure to collate his manuscripts and his reliance upon a manuscript often difficult 
correct ly to read led Boncompagni into an astonishing number of e r r o r s , both o f t ranscr ip -
tion and of punctuation. The brief autobiographical second paragraph is unfortunately not 
immune from either type of e r ror ; yet this section forms the basis for most of the statements 
about Leonardo1 s early life which are found in current histories of mathematics, encycloped-
i a s , and special ar t ic les . Unfortunately, there has also been a considerable amount of em-
broidering upon Leonardo's spare Latinity by many of those who have employed Boncompagni1 s 
text — which is to say all scholars who during the past eleven decades have written on Leo-
nardo 's life. It i s not my intention here to refute point-by-point the many extravagant s ta te-
ments found about Leonardo in this more than century-old l i tera ture . Instead, I wish to p r e -
sent the second paragraph anew, basing my text on a collation of the six manuscripts which 
contain it. Following the text I shall offer a translation, along with some footnotes, keyed 
both to the Latin text and to the translation. Let me state at once that not all the problems in 
this paragraph are hereby forever resolved. I hope only that some misconceptions about 

99 
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Fibonacci can be laid aside and that we can more accurately assess what his Latinity does 
allow us to asse r t . 

Cum genitor meus a patr ia publicus scriba1 in duana bugee pro pisanis m e r c a -
toribus ad earn confLuentibus constitutus preesse t , me in pueritia mea ad se venire 
faciens, inspecta utilitate et commoditate futura, ibi me studio abbaci per aliquot dies2 

s tare voluit et doceri. Vbi ex mirabili magisterio in ar te3 per novem figuras indorum 
introductus, scientia ar t i s in tan turn mihi pre ceter is placuit, et intellexi ad illam4 

quod quicquid studebatur ex ea5 apud egyptum, syr iam, gr.eciam, sil iciam, et provin-
ciam cum suis vari is modis, ad que loca negotiationis causa7 postea6 peragravi per 
multum studium et disputationis didici conflictum8. Sed hoc totum etiam, et a lgor is -
mum atque ar tem pictagore9 quasi e r r o r e m computavi respectu modi indorum. Quare, 
amplectens str ict ius ipsum modum indorum et attentius studems in eo, ex proprio sensu 
quedam addens et quedem etiam ex subtilitatibus euclidis geometrice ar t i s apponens, 
summam huius l ibr i , quam intelligibilius potui, in quindecim capitulis distinctam com-
ponere laboravi, fere omnia que inserui cer ta probatione ostendens, ut extra perfecto 
pre ceter is modo hanc scientiam10 appetentes instruantur, et gens latina11 de cetero, 
sicut hactenus, absque ilia minime inveniatur. Si quid forte minus aut plus iusto vel 
nee essar io interim si , mihi deprecor indulgeatur, cum nemo sit qui vitio careat et in 
omnibus undique sit c ircumspectus.1 2 

After my father 's appointment by his homeland as state official1 in the customs 
house of Bugia for the Pisan merchants who thronged to it, he took charge; and, in view 
of i ts future usefulness and convenience, had me in my boyhood come to him and there 
wanted me to devote myself to and be instructed in the study of calculation for some 
days2. There , following my introduction, as a consequence of marvelous instruction in 
the art3 , to the nine digits of the Hindus, the knowledge of the ar t very much appealed 
to me before all o thers , and for it4 I realized that all i ts aspects5 were studied in Egypt, 
Syria, Greece, Sicily, and Provence, with their varying methods; and at these places 
thereafter6, while on business7, I pursued my study in depth and learned the give-and-
take of disputation8. But all this even, and the algorism, as well as the ar t of Py tha -
goras9 I considered as almost a mistake in respect to the method of the Hindus. There -
fore, embracing more stringently that method of the Hindus, and taking s t r ic te r pains 
in i ts study, while adding certain things from my own understanding and inserting also 
certain things from the niceties of Euclid1 s geometric a r t , I have striven to compose 
this book in i ts entirety as understandably as I could, dividing it into fifteen chapters. 
Almost everything which I have introduced I have displayed with exact proof, in order 
that those further seeking this knowledge, with its pre-eminent method10, might be in-
structed, and further, in order that the Latin11 people might not be discovered to be 
without it , as they have been up to now. If I have perchance omitted anything more or 
l ess proper or necessary, I beg indulgence, since there is no one who is blameless and 
utterly provident in all things.1 2 
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1. This unsatisfactory translation is the most that should be advanced for publicus 
scr iba, I feel. Its vagueness matches the vagueness of the Latin. We simply do not know 
the precise nature of the position held by Leonardo1 s fathere He was appointed (constitutus) 
by Pisa to this post, which certainly involved duties at Bugia (present-day Bugie in Algeria) 
in connection with the Pis an duana, a word which we perhaps translate too easily as customs-
house. The text as it stands offers no basis for much of the standard lore found in biograph-
ies of Leonardo regarding his father as ' ' s ec re ta ry , " "merchan t / ' "agent ," "business man," 
"head of a factory, " "warehouse head," etc. 

2. Note that Leonardo says specifically that his father wanted him to be instructed for 
some days in the study of calculation. The phrase per aliquot dies , which looks like a r en-
dering of the Italian per qualche giorno, is vague indeed, but it would be generous to consider 
i t to imply more than a fortnight. Fur ther , this was the period of time Leonardo1 s father 
wanted him to study the Habacus. " How much time he actually spent at Bugia in his study 
Leonardo does not tell us . Finally, it should be noted that Leonardo uses the word abbacus 
for "calculation. " By the twelfth century, in the la t ter par t of which Leonardo was born, the 
older meaning of abacus as a calculation board h a d grown to include the operations which the 
abacus performed, namely calculation in general. 

3. Just who gave Leonardo this "marvelous instruction" is not stated. It has been 
frequently assumed that his instructor was Moorish, but there is no hint of this in the text. 

4. My translation is the best I have been able to do with ad ill am, which I strongly 
suspect i s corrupt , though all the manuscripts have it. As it stands, ilia must refer to 
either scientia, the knowledge of the Hindu system, or to a r s , the a r t of i ts exposition; but 
ad ill am as a shorthand way of saying ad illam cognoscendam or discendam ("for learning it") 
is very harsh , and the loss of the gerundive early in the manuscript tradition is a strong 
probability. 

5. The difficult quicquid studebatur ex ea, coming immediately after the strange ad 
il lam, compels us to refer _ea and ilia to the same thing; the phrase can be tortured into sense 
by taking "whatever was studied of i t" to mean "all there was of it was studied," and hence 
"all i ts aspects were studied," as the present translation renders it. It is somewhat myst i -
fying that Leonardo mentions these part icular five regions as containing all aspects of the 
Hindu lore , when we know that he also spent time in Constantinople. Did his g rec ia em-
brace the Byzantine capital? 

6. The word for " thereaf ter ," postea, gives us no indication of the amount of time 
which elapsed between Leonardo1 s boyhood experiences in Bugia and his t ravels around the 
Mediterranean. It i s very probable that he returned to P isa and went abroad again several 
years la ter , after reaching maturity. It should not be forgotten that he was still a lad (in 
pueritia mea, as he says) when he came to Bugia. 

7. This rendering, "while on business," i s based on an examination of the six autobio-
graphical manuscripts . Boncompagni1 s manuscript reads ad queloca negotiationis tarn postea 
peragraui per multum studium et disputationis didici confLictum. With this reading, tarn 
must modify postea, and negotiationis is genitive with loca: " . . . to which places of business 
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so much la ter I wandered, through [= in the course of?] considerable study," etc. (italics 
mine). This is an extremely forced rendering. Tarn postea is bad Latin for tan to postea; I 
cannot believe Leonardo wrote it , especially since all the other manuscripts give causa in-
stead of tarn. In the ligature employed by the scr ibes copying Leonardo1 s manuscripts in the 
twelfth to the fourteenth century, r £ , tarn, a n d c a , causa, are easily confused. The phrase 
ad que loca negotiationis causa post a i s , I think, Leonardos succinct way of saying "Later , 
while on business at these places. " 

8. Peragravi per multum studium I have rendered as "I pursued my study in depth. " 
The phrase possibly means that in Egypt, Syria, and the other lands he has just mentioned, 
Leonardo utilized the opportunities which his business t r ips provided to investigate the Hindu 
number system more thoroughly. The final phrase et disputationis didici conflictum, also 
cryptic, seems a reference to the medieval practice of discussion and debate on set topics. 
Leonardo, it may be surmised, sought out local scholars on his business t r ips and mastered 
not only the theoretical material of the Hindu number system, but also the method of expound-
ing it in scholarly debate. 

9. The Latin he re , from sed to pictagore, i s a m a r e ' s nest of difficulty which has not 
been adequately investigated by those who have read it. Almost certainly, to judge by the 
variety of readings which the manuscripts exhibit at this point, there is deep - p o s s i b l y i n c u r -
able — textual corruption, and my translation must rely in par t on emendation. There are 
three principal a reas of difficulty. 

(1) Does hoc to turn, "all t h i s , " refer to the disputationis conflictum at the end of 
the preceding sentence? Or does it have as appositive algorismum two words l a t e r? I 
doubt the la t ter alternative. Hoc to turn, algorismum, "all this , a lgor i smus ," would 
almost certainly be a reference to al-Khwarizmi, the great ninth-century Arab mathe-
matician, whose very name was corrupted to "algorism" and referred to the practice of 
calculating with Hindu numbers. Would Leonardo say that he regarded algorism as 
quasi e r r o r e m when compared to the methods of the Hindus? (I propose a tentative an-
swer in the next note.) Again, Leonardo has not previously discussed hoc totum, algo-
rismum; the hoc should refer to something under discussion. One is practically forced 
back to the preceding disputationis conflictum, the method of argumentation itself, which 
Leonardo would then be contrasting with the theoretical basis of the system of Hindu 
numerals . This is a poor contrast at best, and I am not happy with it. 

(2) The words etiam et are in five of the autobiographical manuscripts but are 
strange. If the reading is cor rec t , etiam should probably be taken with hoc totum (= "all 
th is , even"), and et algorismum should mean "and the algorismus." Once again, would 
Leonardo regard this algorism as "almost a mistake" when compared with the Hindu 
system? If the text i s kept as i s , l e an only believe that Leonardo intends some contrast 
between the Hindu system as transcribed through the Arabs and the "original" system 
developed in its pure form by the Hindus. Had he seen some ear l i e r work of the Hindus 
in his t ravels which made the Arab adaptation seem inferior? Kurt Vogel in his art icle 
on Fibonacci in the Dictionary of Scientific Biography (Vol. IV, pp. 603-613), speculates, 
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p. 605, that Fibonacci might mean the la ter algorismus l inealis, reconing with l ines, 
but this seems unlikely. When algorismus is mentioned by itself, without qualifying 
adjective, it would have for Leonardo1 s readers but one reference, and that is to the 
Hindu system of calculation. 

(3) The final phrase , atque ar tem pictagore, is the last of the three things which 
Leonardo regards as "almost a mistake" when compared to the Hindu system. Bon-
compagnifs text reads atque arcus pictagore, a phrase which has considerably exer -
cised the ingenuity of scholars . What, they have asked, a re Pythagoras1 a r c s ? The 
answer, I suspect, i s "a scribal concoction. n My reasons for so believing and my j u s -
tification for the proposed emendation are as follows. 

A. The l i terature on Pythagoras, so far as I have ascertained, contains no a l -
lusion to any such phrase , and since Leonardo here considers pictagore impor-
tant enough to be classified alongside the algorismus, discussed above, it i s logical to 
assume that he is making a reference to some large category of Pythagorean mathema-
tics which paral lels the algorismus. A reference to the "a rcs of Pythagoras" is too 
esotoric and restr ic ted, even if Leonardo (and presumably, his readers) knew some-
thing about Pythagoras which we today do not. 

B. Of the six autobiographical manuscripts , only Boncompagnifs clearly reads 
a rcus , written in ligature d r c ^ by the scribe. One other manuscript, the Biblioteca 
Laurenziana No. 783, written at least a century la ter than Boncompagni1 s, reads 
which could stand for a rcus , though in extensive checking elsewhere I have found the 
long us ending for fourth declension nouns such as arcus and gradus written out by the 
scr ibe. The other four manuscripts all omit the word arcus; three have atque pictagore, 
one (obviously guilty of a slip) adque pictagore. It should be noted that two of these are 
roughly contemporary with Boncompagni1 s manuscript and that the la t ter has no special 
claim to paleographic superiority. 

C. To balance algorismum, a noun is needed between atque ("and also") and 
pictagore ("of Pythagoras"). In the four "noun-less" manuscr ipts , which on other 
grounds appear to belong to a common tradition, it seems obvious that for some reason 
the word after atque dropped out early. Could this word have been a rcus? In manu-
script , the two words would have appeared as dt<?j dnc° ; I find it difficult to believe 
that some early scribe would have careless ly omitted a relatively uncommon word like 
a rcus . He might, however, have been guilty of haplography if he had found dty3 3fife\ 
atque a r tem, since both words are common (the word a r s appears thrice in this pa ra -
graph) and in manuscript more closely resemble each other than do atque arcus . 

D. The scribe of Boncompagnifs manuscript, moreover , has already shown 
himself to be guilty of confusing £ and t_ when he read C& as tarn instead of causa. 
Hence it is possible that, finding something like d.r£e ? he read drcn

9 hence arcus . 
E. Certainly ar tem pictagore, "the a r t of Pythagoras," makes excellent sense 

in context, balancing as it does the ear l ie r mention of the a r s of the Hindus and the 
immediately following mention of the a r s of Euclid. It also serves as a satisfactory 
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balance to algorismum, If the interpretation of the word which I have given above is 
accepted. 

F . I propose, then, ar tem instead of the arcus of Boncompagni's text, as a 
more reasonable, though — I freely admit — by no means certain reading. Arcus , 
however, should be given a decent burial , since both logically and paleographically it 
i s unworthy of serious consideration. 
10. The Latin he re , from ut through scientiam, is ra ther murky, and the manuscripts 

admit considerable variation. However, three of the autobiographical manuscripts have Bon-
compagni!s reading, and I have kept it, though other interpretations of the text than the one 
my translation implies are possible. 

11. Leonardo1 s name for the Italians. 
12. To me , this last sentence might well serve as a motto for scholars who write 

books. LeonardoTs humility graces his genius. 

[Continued from page 90. ] 

A PRIMER FOR THE FIBONACCI NUMBERS 

REFERENCES 

1. H. W. Gould, "Generating Functions for Products of Powers of Fibonacci Numbers ," 
Fibonacci Quarterly, Vol. 1, No. 2, April , 1963, pp. 1-16. 

2. John Riordan, Combinatorial Identities, Wiley, 1968, Section 4.3. 
3. V. E. Hoggatt, J r . , and Marjorie Bicknell, "Diagonal Sums of Generalized Pascal T r i -

angles ," Fibonacci Quarterly, Vol. 7, No. 4, Nov. 1969, pp. 341-358. 
4. Marjorie Bicknell, "A P r i m e r for the Fibonacci Numbers — P a r t VIII: Sequences of Sums 

from Pasca l ' s Triangle,"Fibonacci Quarterly, Vol. 9, No. 1 (Feb. 1971), pp. 74-81. 
5. V. E. Hoggatt, J r . , "A New Slant on Pasca l ' s Tr iangle ," Fibonacci Quarterly, Vol. 6, 

No. 5, Oct. 1968, pp. 221-234. 
6. Paul Nil son, "Column Generating Functions in Recurrence Tr iang les , " San Jose State 

University Master ' s Thesis , August 1972. 

Renewal notices, normally sent out to subscribers in November or December, are now 
sent by bulk mail . This means that if your address has changed the notice will not be for-
warded to you. If you have a change of address , please notify 

Brother Alfred Brousseau 
St. Mary 's College 
St. Mary 's College, California 



ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by 
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Send all communications regarding Elementary Problems and Solutions to Professor 
A. P„ Hillman, Dept. of Mathematics and Statistics, University of New Mexico, Albuquerque, 
New Mexico 87106. Each problem or solution should be submitted in legible form, prefer -
ably typed in double spacing, on a separate sheet or sheets , in the format used below. Solu-
tions should be received within four months of the publication date. 

Contributors (in the United States) who desire acknowledgement of receipt of their con-
tributions are asked to enclose self-addressed stamped postcards. 

DEFINITIONS. The Fibonacci numbers F and the Lucas numbers L satisfy F M 
n n J n+2 = F ^ + F , F0 = 0, Fi = 1, and L l 0 = L ^ + L , L0 = 2, Li = 1. n+1 n ' u * J n+2 n+1 nJ u ' 1 

PROBLEMS PROPOSED IN THIS ISSUE 

B-250 Proposed by Guy A. R. Guillotte, Montreal, Quebec, Canada. 

DO 
YOU 

LIKE 
SUSY 

In this alphametic, each let ter stands for a part icular but different digit, nine digits being 
shown here . What do you make of the perfect square sum SUSY? 

B-251 Proposed by Paul S. Bruckman, San Rafael, California 

A and B play a match consisting of a sequence of games in which there are no t ies. 
The odds in favor of A winning any one game is m. The match is won by A if the number 
of games won by A minus the number won by B equals 2n before it equals -n. Find m 
in te rms of n given that the match is a fair one, i. e. , the probability i s 1/2 that A will win 
the match. 

B-252 Proposed by Wray G. Brady, Slippery Rock State College, Slippery Rock, Pennsylvania. 

Prove that 

V bit = A 
£-j i!j!k! n! * 

i+j+k=n 
105 
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B-253 Proposed by Wray G. Brady, Slippery Rock State College, Slippery Rock, Pennsylvania. 

Prove that 

(-l)kL4j_ol^ _ ( - l ) k F , 
LJ iljSkl u LJ 

J+2k 
iijlk! 

i+j+k=n i+j+k=n 

B-254 Proposed by Clyde A. Bridger, Springfield, Illinois. 

Let A = a + b + c and B = d + e +1 where a, b , and c a re the roots of 
x3 - 2x - 1 and d, e, and f are the roots of x3 - 2x2 + 1. Find recursion formulas for the 
A and for the B . Also express B in te rms of A . n n ^ n n 

B-255 Proposed by L Carlitz and Richard Scoville, Duke University, Durham, North Carolina. 

Show that 

2k ̂ n > / k=0 
[(n - 1)F ... + (n + l ) F n , ] / 5 . un+l n - 1 -

2k=% x / ' k=0 

SOLUTIONS 

FIBONACCI SUM OF FOUR SQUARES 

B-226 Proposed by R. M. Grassl, University of New Mexico, Albuquerque, New Mexico. 

Find the smallest number in the Fibonacci sequence 1, 1, 2, 3, 5, ••• that i s not the 
sum of the squares of three integers. 

Solution by Paul S. Bruckman, San Rafael, California. 

It i s a well-known result hi number theory (see, for example, The Higher Arithmetic, 
by H. Davenport, p. 127, Harper Torchbooks, 1960) that any number of the form 4 (8v + 7) 
is not representable as the sum of three squares , whereas all other numbers are represent -
able. The first few numbers in this sequence a re as follows; 

7, 15, 23, 28, 31, 39, 47, 55, • • • . 

The smallest number of this set which is also a Fibonacci number is 55, which is 
therefore the solution to the problem. 

Also solved by Ralph Fecke, J. A. H. Hunter, Peter A. Lindstrom, C. B. A. Peck, Stephen Rayport, and the Proposer. 
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GENERALIZATION OF RECKE'S FORMULA 

B-227 Proposed by H. V. Krishna, Manipal Engineering College, Manipal, India. 

Let H0, Hi, H2, ••• be a generalized Fibonacci sequence satisfying H , 0 = H .- + 
n+4 n+± 

H (and any initial conditions H0 = q and Hi = p). Prove that 

F l H s + F2H6 + F3H9 + . . . + F n H 3 n = F n F n + 1 H 2 n + 1 . 

Solution by John W. Milsom, Butler County Community College, Butler, Pennsylvania. 

This i s a generalization of Problem B-153 in which it was established that 

F iF 3 + F 2 F 8 + F0F9 + ••• + F F 0 = F F , - F 0 _,- . 16 L b d a n 3 n n n+1 2n+l 

An induction proof follows. 

SFiH - F F H 3i n n+1 2n+l 
i=l 

for n = 1. Assume that for some positive integer k that 

2>.: H = F F H 3i rk k+1 2k+l 
i=l 

The difference between 

k+1 

Z Fi H3i 
i=l 

and 

E'i H 3i 
i=l 

i s F. - H„. „. If it can be shown that 

F k + l F k + 2 H 2 k + 3 F k F k + l H 2 k + l F k + l H 3 k + 3 ' 

then it will follow that 
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k+1 

Z - . r F i H 3 i = F k + l F k + 2 H 2 k + 3 ' 
i==l 

F k+1 Fk+2 H2k+3 ~ F k F k + l H 2 k + l = F k+1 (Fk+2 H2k+3 " F k H 2 k + l ) 

= F k + l [ ( F k + l + F k ) ( H 2 k + l + H 2 k + 2 ) " F k H 2 k + l ] 

= F k+l ( F k+l H 2kH-3 + F k H 2k+2 ) 

F k+ l H 3k+3 ' 

This las t statement follows from the known statement of equality 

H , = F ..H + F H J_-n+r r - 1 n r n-KL 

with n = k + 1 and r = 2k + 2. Thus it can be said for all positive integral values of n 
that 

FiH3 + F2H6 + F3H9 + • • • + F EL = F F ^ H0 _ . 
16 ^ b 6 a n 3n n n+1 2n+l 

Also solved by Paul S. Bruckman, A. Carroll, Herta T. Freitag, Ralph Garfield, Pierre J. Malraison, Jr., C. B. A. Peck, A. Sivasu-

bramanian, David Zeitlin, and the Proposer. 

A CYCLICALLY SYMMETRIC FORMULA 

B-228 Proposed by Wray G. Brady, Slippery Rock State College, Slippery Rock, Pennsylvania. 

Extending the definition of the F to negative subscripts using F_ = (-1) " F , 
prove that for all integers k, m, and n 

( - l ) k F F . + ( - l ) m F , F + ( - l ) n F F. = 0 . 
n m-k k n-m m k-n 

Solution by Paul S. Bruckman, San Mafaei, California 

Using the Binet definitions of the Fibonacci and Lucas numbers , 

where 

_ / n , n w n r T n . n 
F = (a - b ) / \ / 5 , L = a + b , 

n // \ » n » 
a = i ( l + N/5) , b = | ( 1 - N/5) ; 

2 ^ 
, i x k _ „ , .^k, n , n w m-k , m - k , . _ 
(-1) F n F m _ k = (-1) (a - b )(a - b ) - 5 

. . x k / m+n-k .n-m+k, . xm-k n-m-hk, .^m-k , , m + n - k w _ = (-1) (a - b (ab) - a (ab) + b )/5 

= "B1("1) Lm+n-k ' "5(~1 ) Ln~m+k ' 

since ab = - 1 . Similarly, 
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and 
^ " V n - m " J < - « m W m " I ^ V n . m 

( _ l ) n
F F = i(-l)nL ^ -i(-l)kL ._,_ 
m k-n 5N m+k-n 5 v m-k+n 

Adding these three expressions, the term on the R. H. S. vanish, yielding the desired result . 

Also solved by Herta T. Freitag, R. Garfield, C. B. A. Peck, David Zeitlin, and the Proposer. 

A N ANALOGUE OF B-228 GENERALIZED 

B-229 Proposed by Wray G. Brady, Slippery Rock State College, Slippery Rock, Pennsylvania. 

Using the recursion formulas to extend the definition of F and L to all integers n, 
prove that for all integers k, m, and n 

( - l ) k L F . + ( - l ) m L , F + ( - l ) n L F. = 0 . 
n m-k k n -m m k-n 

Solution by David Zeitlin, Minneapolis, Minnesota. 

To solve B-228 and B-229 simultaneously, we let { H } satisfy H .„ = H , - + H . 
Then it is well known that 

(1) ( - l ) a H. F . = H ^. F j_. - H r , F n . 
v I j a-H a-fj a-HH-j a 

In (1) we let (a, i, j) = (k, ns m - k ) , (m, k, n - m ) , and (n, m, k - n ) and add the r e -
sults to obtain 

which contains B-228 and B-229 as special cases* 

Also solved by Paul S. Bruckman, Herta T. Freitag, R. Garfield, C. B. A. Peck, and the Proposer. 

A SIMPLE RESULT, GENERALIZED 

B-230 Proposed by V. E Hoggattf Jr., San Jose State University, San Jose, California. 

Let { c } satisfy 

C ^ - 2C - - C ^ 0 + 2C A l + C = 0 n+4 n+3 n+2 n+1 n 

and let 
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G = C „ - C . , - C . 
n n+2 n+1 n 

Prove that ( G } satisfies Gn+? = GR+1 + G^ . 

Solution by David Zeitlin, Minneapolis, Minnesota. 

Theorem 1. Let A and B be real constants, and let 

Wn+4 = A W n + 3 + B W n + 2 + ( 3 " B " 2 A ) W n + l + (2 - A - B)Wn 

for n = 0, 1, • • • . Let 

Then 
Q u.o = W ^ + (1 - A)W + (2 - A - B)W . ^n+2 n+2 n+1 n 

Q a.o = Q j.1 + Q » n = 0 , 1 , 
^n+2 ^n+1 ^ n ' 

Theorem 1 is proved easily and gives the desired result for A = 2 and B = 1. We 
also have 

Theorem 2. Let A be a real constant and let 

W , o = AW x 0 + (2 • A)W ^ + (1 - A)W n+3 n+2 n+1 n 

for n = 0, 1, * ' ' . Let 

Then 
Q = W _ + (1 - A)W ^n n+1 n 

Q ^.o = Q J.I + Q » n = 0 , 1 , 
^n+2 ^n+1 ^n 

Also solved by Paul S. Bruckman, Herta T. Freitag, R. Garfield, Peter A. Lindstrom, John W. Mi/so m, C. B. A. Peck, Richard 
W. Sielaff, A. Sivasubramanian, and the Proposer. 

GENERALIZED FIBONACCI SEQUENCES 

B-231 Proposed by V. £ Hoggatt, Jr., San Jose State University, San Jose, California. 

A GFS (generalized Fibonacci sequence) HQ, H I , H2, ••• satisfies the same recursion 
formula H + 2 = H - + H as the Fibonacci sequence but may have any intial values. It is 
known that 

H H , „ - H 2
x 1 = ( - l ) n c , n n+2 n+1 v ' ' 

where the constant c is characterist ic of the sequence. Let { H } and { K } be GFS and 
let 
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Show that 
C n = H 0 K n + H l K n - l + H 2 K n - 2 + - - - + H n K 0 

C , 0 = C _ l - + C + G 
n+2 n+1 n n ' 

where {G n } is a GFS whose character is t ic i s the product of those of { H } and { K } . 

Solution by Paul S. Bruckman, San Rafael, California. 

Let G^ = C - C 1 - C . By the definition of C , we obtain: n n+z n+l n n 

n+2 n+1 n 
5 = Y* H.K Q̂ . - V H.K ^ . - V H.K . n L-d 1 n+2-i £^ I n+l- i JL** I n- i G 

L 

i=0 i=0 i=0 
n 

= H _ K n + H ,-K- - H„J.1Kn + T * H. (K _ . - K _,_- . - K .) n+2 0 n+1 1 n+1 0 d—d I n+2-i n+l- i n- i 

i=0 

= Hn+2K0 + H n+1 K 1 ' Hn+1K0 

(since the t e rms in the summation vanish) 

= (H ... + H /Krv + H t1K- - H MKA = H .-.K-i + H KA . n+l n ' 0 n+l 1 n+1 0 n+1 1 n 0 

Substituting the lat ter expression for G in the following, we obtain: 

G ^ G , - G2 = (H ^JK- + H ^-.KJCH K, + H -K n ) - (H x 1 K , + H K n ) 2 
n+1 n -1 n n+2 1 n+1 O n 1 n-1 0 n+1 1 n 0 

= H n + 2 H n K l + H n H n + l K 0 K l + H n + 2 H „ - l K 0 K l + H n + l H n - l K 0 

" H n + l K i " 2 H n H n + l K 0 K l " H n K 0 

= K i ( H n + 2 H n " Hn+1> + K 0 K l < H n H n + l + H n + 2 H n - l " 2 H „ H n + l > 

+ K 0 < H n + l H n - l - H n > ' 

The coefficient of K | in the above expression, by hypothesis, is equal to (-1) c. The 
coefficient of KQKI may be expressed as : 

H JH •- H H , = (H _,_- + H )H n - H (H + H - ) n+2 n-1 n n+1 n+1 n n-1 n n n -1 
= H ^ H n -H2 = (-l)n~V= -(-l)nc . n+1 n-1 n v v ' 

The coefficient of K2, is also equal to - ( - l ) n c . Therefore, 

G n + l G n - l ~ G n = {~1^c^\ ' KoKi - K?) = (-l)nc K\ - K0(Ki + K0) 

= (-l)nc(Kl - K0K2) = (-lf^cd , 
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where d is the character is t ic of the sequence { K } . It remains now to prove that { G } is 
a GFS. Using the expression G = H .-.K-, + H K0> derived above, we see that 

' G .i-o - G _L1 - G = (H J Q - H ^ 0 - H ^ )K- + (H ^ - H ^ - H )Kft = 0 . n+2 n+1 n n+3 n+2 n+1 1 n+2 n+1 n 0 

Also solved by R. Garfield, C. B. A. Peck, and the Proposer. 

[Continued from page 84. ] 
p / \ oo v p 

/TV\ V"M P i r(p-k) rk,,, , m(p-k) mkv V"* mn+r ^n,,, x 
( I X ) X , k c i c2 «x + c t

 VF ' c 2 ) = > D f(x) , ±(i) 
k=0 \ ' 

£-J nl 
n=0 

(X) £ r ( - l ) k M c f ( P - k ) c 2
r k f ( x + c f ( P " k ) c ? * ) l / ( c t - c2) 

00 UP ^ 

E mn+r ^n . , * - 5 - D f(x) . 
n=0 

David Zeitlin 
Minneapolis, Minnesota 

Dear Editor: 

I recently noted problem H-146 in Vol. 6, No. 6 (December 1968), p. 352, by J . A. H. 
Hunter of Toronto. (I am a slow reader . ) I don?t know whether you have printed a solution 
as yet; in any case , the answer is in a paper by WilhelmLjunggren, Vid. -Akad. Avhandlinger 
I , NR. 5 (Oslo 1942). 

Indeed, P 7 = 169 is the only non-trivial square Pell number. 

Erns t M. Cohn 
Washington, D.C. 
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