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BERNOULLI NUMBERS AND NON-STANDARD DIFFERENTIABLE STRUCTURES
ON (4k - 1) - SPHERES

HELAMAN ROLFE PRATT FERGUSON*
Department of Mathematics, University of Washingten, Seattle, Washington

ABSTRACT

A number theoretical conjecture of Milnor is presented, examined and the existence of
non-standard differentiable structures on (4k - 1)-spheres for integers k, 4 = k = 265,

is proved.

1. INTRODUCTION

In 1959, J. Milnor [1] proved the following theorem concerning non-standard differen-
tiable structures on (4k - 1)-spheres.
Theorem 1. If r is an integer, such that k/3 < r = k/2, then there exists a differ-

entiable manifold M, homeomorphic to S4k_1 with A(M) = srsk—rN/ Sy (mod 1), where
S = 22k(22k_:l - 1)Bk /(2k)!, all of the prime factors of the integer N are less than 2(k -
r), B, is the kth Bernoulli number in the sequence B; = 1/6, By = 1/30, By = 1/42,

k
By, = 1/30, .-+, and 2 is an invariant associated with the manifold M.

Milnor presents an algorithm based on Theorem 1, proves structures exist for k = 2,
4, 5, 6, 7, 8, conjectures that Theorem 1 implies the existence of these structures for k>
3, and states that he has verified the conjecture for k < 15. He points out that for k =1
and k = 3 no integers r existin the interval (k/3, k/2] and that for k = 1, two differ-
entiable homeomorphic 3-manifolds are diffeomorphic.

The Milnor algorithm will be described by considering the first seven cases. In each
case an actual lower bound will be calculated for the number of said structures; to calculate
this bound we consider the denominator of the reduced fraction and drop all prime factors
less than 2(k - 1).

L. k =r, r =2,

‘(2)(23 - 1)2B: /2" - 1)B, = (73/3)(1/127), 1b = 127.

2. k=6, r=3.

('Ef )(23 - 1)(25 - 1)ByBy /(2° - 1B = (11/5)(31/73), b = 73.

*Research supported in part by an NSF Summer Teaching Fellow Grant, also by NSF grant
GP-13708, and by the BYU Computer Center (for 20 consecutive hours of computation time!).
Copies of the tables referred to in the text may be obtained from the writer at the address
listed in the current Combined Membership List of the AMS.
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(162> @5 - 1)2BE /(2! - 1)Bg = (2-5-11+13)(312/23-89-691) ,

1b = 23-89:691 .

(13) (2% - 1)@7 - 1)BsB, /(28 - 1)By = (11-13/2-5.7)(31.127/8191) ,

1b = 8191.

(1;;)(25 - 1)(2° - 1)B3Bs /(2 - 1)By = (2%.52.13.17/3)(73/151.3617) ,

1b = 151-3617 .

(15 )(z7 - 1)(2° - 1)ByB; /(217 - 1)By = (2-3-72-13-17-19)/(73-127/43867-131071) ,

1b = 43867-131071.

(280)(27 - 1)@ - 1)BBg /(2Y - 1)Byy = (11-17-19/7)(23-89+127/283-617-524287) ,

1b = 283-617-524287 .

(ig) @° - 1)2B2 /(218 - 1)Byy = (2-58-72.13-17.19/3)(732/283-617-524287) ,

1b = 283-617-524287 .

(16)(27 _ 1)?B /(215 - 1)By = (3-5-11-13.17/7)(127%/31.151+3617) ,

1b = 31.151.3617 .
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There will be [k/2] - [k/3] integers in the interval (k/3, k/2] and one may choose
the largest of the lower bounds. We now restate the positive outcome of the algorithm in the

form of the following

Conjecture 1. Let r be an integer, r & /3, k/2], k = 3,
2k\ ,2r-1 2k-2r-1 2k-1 _ _
(Zk) (2 - 1)@ - l)Ber_r /@2 - 1)Bk = a/b, (a,b) =1,

then there exists a prime number p, p = 2(k - r), such that p divides b.

This purely number theoretic conjecture implies the existence of more than 2(k - r)
non-standard differentiable structures for S4k_1, the (4k - 1)-dimensional sphere. Con-
jecture 1 has, aside from its aesthetic number theoretical interest, the additional signifi-
cance of important topological consequences, and is one more example of the ubiquitous na-

ture of the Bernoulli numbers.

2. REPRESENTATION STRUCTURE OF THE BERNOULLI NUMBERS

Although the Bernoulli numbers have been objects of published mathematical thought
for over two centuries, in some respects, embarrassingly little is known about them. We
shall present the features of these numbers useful to us in examining Conjecture 1.

As a typical beginning point we write [2]

o]
(o)) x@e* - 1) = Z bkxk/kz
k=0
and since b, = 1, by = -1/2, and x/(€® - 1) + x/2 is an even function, we write
= k-1 =
bZk = (-1) Bk and b2k+1 = 0, k= 1.
We have
o0
@ 1 - (1/2) cot (x/2) = 3 Bx>/(2kt
k=1

and by the double series theorem [3], we see that

®) B, = 2L@E/ @0
where
§(2k) = Z n_2k )

n=1
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the Dirichlet series usually referred to as the even zeta function.

to (1) is the umbral recursion [4].

) b + DK - b =

which reduces to

k+1 B
(5) }: . b=

Equation (1) is the reciprocal of

0, b0=1,

o0
3 &£/k + 11
k=0

BERNOULLI NUMBERS AND NON-STANDARD [Feb.

An equivalent definition

and an expression for the bk may be written with symmetric functions of the coefficients of
the reciprocal of (1). We may rather write [5], [6]

o0 o0
(6) x/E - 1) = Z (1™ Z £/ + 1)
m=0 k=1

so that [7]

(7

2k
B = 1Y o™ E( m
m=1

ag, **7, Ak

a
x(1/28.3%2 000 (2k + 1) 2K

where the sum is over the partitions of

2k

2k, }: ai = m,

i=1

(0% )"

m —
((a;a), e (&R )

m!/atbict - -

m! /@) -

@),

2k
)((1;a1)s cry (2k;a2k))
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and there will be p(2k) terms [8]. A variantof (7) is

(8) (-)k_lBk = -(1/2k + 1) + Z ()™ TT pOPsks 24,2, 25k)
p<2k

where the product is over all prime numbers less than 2k, the functions §(p, k, aj, *-*,
azk) are all integers and the sum is over all the partitions of 2k but one.

The calculation of Bernoulli numbers has been a lively subject [9], and there exist
several tables of these numbers. [The most massive is D. Knuty, MTAC, Unpublished
Mathematical Tables File. The caretaker of this file, J. W. Wrench, has informed us that
kg for k= 1(1)250 one can obtain the
exact values of only the first 159 Bernoulli numbers.] To facilitate the computation of

from Knuth's manuscript of 1270D values of 10

Bernoulli and related numbers, Lehmer generalized a process of Kronecker to produce

lacunary recurrences of which the following are typical [10].

[m/2]
© > <-)*zm‘2“Bm_2A( 2 22) = 02 42,
A=0

[m/2]
10) Z: Bm—zx(zz&l::)((‘)hzthﬂ + 1) _ ((m + 2)/2)((_)|:1n/2]2m+1 +1),
>0

bm/3] 2 3 ( 2 3)/6 if 3k -1
m + _ y-@2m + , if m=23k-1,
(11) 2 Bm—SA(G?\ + 3> = g @m + 3)/3. otherwise ,
A=0
gy [(+1)/4] [m/2]
2m + 4} ;m+1-2[(m+1)/4]-2x _ m/2
a2 3 By (sx + 4 ) 2 Rz = (m + 2y
=0
where
M = -34Mm - M and m_ = 2, 0, 3, 10, 14, -12, -99, -338 ,
n n-4 n-8 n
for n =0, 1, 2, 3, 4, 5, 6, 7, respectively.
(13)
[m/6]
T B am+6 ) o 6xz) | (m+ 373, + ) [m0/2 ]2y
m-6A\12\ + 6 6A-+2

=0 if m # 2(3);
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or ~(m + 9/6)® ., + olm/2]miz - (@m+1)/3)5
if m = 23,
where
B o= -27028 o - B Lo
and

?Bn =1, 5, 26, 97, 265, 362, -1351, -13775, -70226, -262087, -716035, -978122,
for n=20,1, 2, 3, 4, 5, 6, 7, 8, 9,-10, 11, respectively.

The point of creating lacunary recurrences is to avoid dealing with all the Br’ say
r <k, to calculate Bk' An example of a recursion relation which is not precisely lacunary
yet satisfies this last condition is

(14)
[k/2]
B, = (k/z)( 2 - f) +k (215) ¥ (—)rBr(zi)(l/(Zk _a)+ 2, BB
r=0 0=r,s=[k/2]

2k
X(Zr, 2s, 2k - 2r, 2k - 25)(1/(2k -2 -1)

which can be proved [11] by repeated integration of the Fourier series for (= - x)/2 and then
using Parseval's Theorem on the result.

From (2) above, we have the identity

(15) (d/dx) (x(l - (x/2) cot (x/2))) = x%/4 + (1 - (x/2) cot (x/2))2 .
Hence, we extract
(2] (r) [ 2k
_ g(r) (2
(16) @k + DB = B~ 2 <2r) BB . »
r=1

where

I

() = 1 if r < [k/2] or r = [k/2], k odd,
8 =0 if r [k/2], k even.

We observe that this '"quasi-convolution'' recurrence involves only positive numbers; hence,

beginning with
(17) By = 1/2-3,

(18) By = 1/2:35,
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(19) By = 1/2:37,
(20) By = (1/2:3%5)(22.5 + 7) = 1/2:3:5,
(21) Bs = (1/2-3%-11)(2%.5 + 7 + 2:32) = (5/2-3-11) ,

By = (1/2:33%-5-7-13)(23.52.7 + 2:5:7% + 22:5.7.11 + 72.11 + 22.32.5.7

(22) + 2:80.5.11) = 691/(2-3-5:7-13) ,

By = (1/2:35-52)(23-5%.7 + 2:5:7% + 22.3%.5.7 + 2%.5.7.11
(23) + 7211 + 2:3%5-11 + 22.5-7-13 + 7213 + 2.3%.7.13

+ 22.5.11.13 + 7.11-13) = 7/(2:3) ,

Bg = (1/2-3%5.17)(25%3.5%.7 + 23.3.5.72 + 24.33.5.7
+24.3.5:7-11 + 22.3-7%-11 + 23-33-5:11 + 24.3-5-7-13
+ 22.3.72.13 + 23.33.7.13 + 24.3.5.11.13 + 22.3.7.11-13
(24) + 25.32.520.7 + 23.32.5.72 + 24.345.7 + 24.32.5.7-11
+ 22.32.72.11 + 23.345.11 + 25.3%.5.13 + 23.32.7.13
+ 243413 + 2452.11.13 + 22.5.7-11-13 + 22.5.7-11-13

+ 72.11.13) = 3617/(2:3-5-17) .

By induction, we express the Bernoulli number Bk by

c(k)
(25) B, = ]—[ p2 sk Z 'l_l'pb(p,r,k)

p<2k+2 r=1 p<2k

Where the products are over the primes less than 2k +2 and 2k, respectively, a(p,k) is
an integer (possibly negative) and b(p,r,k) is a non-negative integer. The number c(k) of

terms in the sum clearly possesses the recurrence

[k/2]
(26) ck) = Z c(r)ck - 1),

r=1

with initial condition c(1) = 1. Kishore [12], [13] has used this technique to develop anal-
ogous structure theorems for Rayleigh functions [14], [15].
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3. DIVISIBILITY STRUCTURE OF THE BERNOULLI NUMBERS

We first cite the well-known [16], [17]
Theorem 2. (Von Staudt-Clausen). If Bk = Pk /Qk are the Bernoulli numbers for
k=1,2, 3, -+ and (Pk’ Qk) =1, then

(27) Q = T—i- P,

p—]l 2k

where the product is over all primes whose totients divide 2k.

This theorem completely characterizes the Bernoulli denominators; hence, questions
of divisibility center around the numerators Pk' A sufficient condition on divisors of Pk
is given in the following [16, p. 261]

Theorem 3. If p®| 2k, p”" f2k, p - 1fk, then p‘"|Pk )

The proof of this theorem follows from a congruence of Voronoi

N-1
- 1)Pk = (—)k_lzk aZk_le Z s2k_1 [sa/N] (mod N) ,
s=1

(28) @2k

where (a,N) = 1 and N is any integer greater than one. Clearly if p2|2k, (a2k

-1)Pp_=
0 (mod p ) and we may select a to be a primitive root g of p® (i.e., if @ =1, g l;al—
ways exists: if w > 1 and gp_l £ 1 (modp?), take a = g; if gp_l =1 (modp?), take
a =g+p).

Equation (28) is a type of congruence used recently [18], [19] to investigate certain
divisors of Bernoulli numerators. Specifically, those primes p such that

(29) p) PPy .- P (0-3)/2

are called regular primes and Kummer [20] proved that for these primes, Fermat's inequal-

p

ity, x° + yp # zP, holds for all nonzero integers x, y and z. We list a number of con-

gruences of the Voronoi type.

(30) 2 s @B @ P (fp /ak @oedp)
p/6<s<p/4

with [16, p. 268], p >3, p - 1*21{

(31) Z 21, Z s2k-1 = (—)k(6p_2k S P 1)Bk/4k (mod p)
p/6<s<p/5 p/3<s<2p/5
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with [19, p. 27], p > 7, 2k <p-1.

(32) > o = R L P DB ek Gmod p)
p/6<s<p/3

with [21], p> 7, 2k <p -1,

(p-1)/2

2k 2k-1
(33) E © - 2r)"" = p2 By (mod p3)
r=1

with [22], 2k # 2 (mod (p - 1)).
(34) PPV 1yl 2 0 (mod pi Y
with [23], p an odd prime, a~ 0, j~ 0, a+j <p- L

From reflections on the divisibility properties of the binomial coefficients, it has been
shown [24] that

(35) 2B = 1 (mod 2™0), for k>1, 22k, 2"k .
Also [25],

(36) ZBk =1 (mod 4), k >1,

and [26],

(37) B, =1- (1/p) (mod pr), for p>2, (- l)pr‘ 2k, pr+1l/2k.
A more elaborate result [2] is

(38) 30By = 1+ GOO(k ; 1) {mod 27000) .

The last depends upon special identities such as

X -1 554
(e

e - 1) - - 1)"1 = (cosh (x/2) + cosh (3x/2)) cosh (5x/2) .

4. APPROACHES TO CONJECTURE 1

Milnor [1, p. 966] asked whether or not
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2k-1

(39) 8(2k)1/(2 - 1)Bk £ 0 (mod 1) .

That this is true for k > 2 is clear by remarking [27] that 22k_1 -1 possesses a primi-
tive divisor ¢, such that q = 1 (mod 2k - 2).

In particular, q > 2k +1 and ¢ must occur in the denominator of the fraction in (39).
We naturally ask whether or not a prime ¢ > 2k + 1 always exists such that

toak-1 ; 2k -2r-1
q2 -1 and qj/zzr 1_q, q}'z Zr-l _ 4, q}'Br, q}'Bk_r.

with k/3 < r < k/2. This suggests
Lemma 1. If ql ZZk_l ~ 1 is primitive and regular, then Conjecture 1 is true for k.
We consider r =k/2 or (-1)/2, k >3. Since q > 2k +1 and qé’Bi for i<
@ - 1)/2, q%’Bi‘, if k is even and q}'Ber_r if k isodd. Also[28], of2! -1, j < 2k-1.
Another natural question is, since Fermat's Last Theorem is true for [29] primes of the

form 22 - 1, are these numbers and their large factors also regular? Alas,
233|B42, 233| 22 _ 1,

As an example of the theorem, k = 15, 2k -1 = 29; 1103|229 -1, yet 1103 is regular;
the nearest irregular primes are 971 and 1061. Also 3391| Biites 3391| Bypgy and 3391| 2113
-1, but 3391}’B23B29 so that irregular primes may be primitive and still satisfy conjecture
1. Similarly for 2631 2131 _ 1 and 263|Bg. These remarks handle cases k = 57, 66. The
number of primitive primes is infinite. so is the number of irregular primes [30] ; Kummer
conjectured that the number of regular primes is infinite. Present tables show that known
regular primes are more numerous than irregular primes. The intersection of these primi-
tive and regular prime sets, though nonempty, is unknown. It is interesting to note in this
connection that

2k-1 2k - 1Y ,2k-2r-1 ar
(40) 297 1= Y (2r N 1) @ - )™ - B, /r,

r=1

which for 2k - 1 prime is a relation between Mersenne [31] numbers and Bernoulli numbers.
We might enjoy having (241{_1 -1, Bk) = 1, for the case of the (8k - 1)-sphere; but
(227 -1, By) = (@1 -1, By) = 2% - 1,

and a similar thing occurs whenever 3! 4k -1, 7|2k; likewise, if 5/4k -1, 31|2k, e.g.,
(2895~ 1, Byyy) 231 .
Another approach to (39) is to seek a large (greater than 2k) prime factor of B, and to

k
apply its existence to Conjecture 1. However, there does not appear to be in the literature
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any theorem (other than a direct calculation [32] proving the existence of a large prime di-
visor of B. Equation (25) suggests that if the b(p, r, k) numbers behave appropriately,
the sum in (25) would be the source of large factors; for the first few cases the sum has a
number of small factors (i. e., equations (17)-(24)). A very general and related problem is

whether or not sums of the type

c(k)
(1) :E: T'T pﬂ(p,r,k)
r=1 p<2k

with the function n(p, r, k) behaving similarly to the b(p, r, k) possess large factors. It
is known 33 that for sums of type (41) where N(p, r, k) > b(p, r, k) (inequality in a rough
distribution sense of the density of primes being greater in one than the other) large factors
arise. One must proceed with considerable care because of the copious factors [34] of a

sum such as

n nk - 1) = nk
(4:2) Z(ah.“’ak)(n_al’.“’n_ak)—(n’.."n> ’

where the sum is over the partitions

k
Zai=n .
i=1

Rather than digging a prime out of Pk’ we recognize the obvious

Lemma 2. For m,n arbitrary positive integers, such that m/n < 1, then there ex-
ists a prime p such that pIn/(m,n) and plm/(m,n).

We write for integers r € (k/3, k/2] , k > 3,

2k 2r-1 2k 2r-1 2k-1

(43) <2r> @ - D@ - )B_ B, /(2 - DB

2k 2r-1 2k-2r-1 2k-1
(44) = (Zr) (Qk /Qer_r)(Z — 1)@ — 1)PrPk—r /(2 l)Pk

_ (2,&) H0 -6, 1)-6, k), 2r-1 ) 2k-2r-1 PP,
t p<2k+2
(45) /
M, M! N, N! ,

where kMk k™k
(46) 6p,k) =1 if (p - 1)' 2k and zero otherwise
with | I

2k-1 k] .
47) 2 -1 = MkM' s Mk = p'<2k p\y(p, ), Mk largest possible,
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and

(48) P =NN, N =] | p?®:K) N largest possible.
k k k k
p<2k
Therefore, we have the following
Lemma 3. If
(49) M, < o0.25( %) a /a.q
kK k : \2r k/ r k-1

for some integer r € (k/3, k/2], then Conjecture 1 is true.
From (3),

-1
(50) BB, /B, = (2‘;) 20@2r){(2k - 21)/L(2K) < % (g‘;)

In fact, [35], for k even,

(51) cw/E) = 3 0 [k

n=1

for v{n) equal to the number of distinct prime factors of n.

By hypothesis

2r-1 2k-2r-1

m/n = (2 - 1)@

- )PP /Mi{Ni{

(52) -1
< 4M N (2k> QQ _/Q <1
k™ 'k \ 2r rk-r’ %k °

But n has no prime factors less than 2k and hence none lessthan 2(k - r) (whether 2k +1
is prime or not, n has no factors less than 2k + 2), so by Lemma 2 there exists some
prime greater than 2k, which provides a non-trivial bound for Conjecture 1. Also, if 2k -
1 is prime, Mg = 1; in general, for say n = 2k - 1, an easily refined inequality is Mk
<2 A0)+20-0970) ) Bulerts totient function.

Since for relatively small k, discovery of a large prime divisor of Pk could require
more than 10%8 centuries with our present technology, Lemma 3 presents itself as a most
opportune calculational device. Using this lemma we have shown Conjecture 3 to be true for
integers k € (3, 265]. The details of this calculation, which appear in the appended tables,
materially suggest the truth of the hypothesis of Lemma 3. These calculations make use of
congruences of type (28), which gives necessary conditions for all divisors of Pk’ conditions
which depend upon properties of the sum
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p¥-1

(53) E g2k-1 [sa/p“’] ! (mod p%) ,

s=1

for a some primitive root of p (a complication can arise here because p = 3511, which
satisfies Zp_l = 1 (mod p%), has a Kummer irregularity of 2).

Of (53), the tables present empirical evidence, the most complete to date; the more
valuable conceptual information in the form of an upper bound inequality on Nk’ for exam-
ple, would be welcome knowledge at this point.
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CONVERGENCE OF THE COEFFICIENTS IN THE k th POWER OF A POWER SERIES

JOSEPH ARKIN
Spring Valley, New York

1. CONVOLUTED SUM FORMULAS

In this paper we investigate generalized convoluted numbers and sums by using recur-

ring power series

-k
m )
(1) 1+ E a, xV = E u(n,k, m) = ,
v=1 n=0

where the coefficients a, and u(n,k,m) are rational integers k = 1, 2, 3, ***, u(0,k,m) =

1 and m=1, 2, 3, **.
By elementary means, it is easy to prove, if

00
@) a-yp* =D ply
v=0

then
<n+k—1) - p®
k-1 n ’
where
b =1, k=1,23 ", n=012""",
and -

(n;;lfil) = @m+k-1/ntk - 1)t

Elsewhere [1], it has been shown that the following convoluted sum formulas hold:

(3) uln,k,2) = Z(“ tEoIT j) (“ ; j) ah ™2 of
j=0
m=20,1,2, "+, k =1,2,3,"°);
and
T

_E:E: kK+n-2r-2)fn-2r -1\ f2r+1 -3\ _S_T_j

(4) u<n:k’3) = [( kK -1 )(21‘ +1 - J> ( ] ) aj a; ag
r=0 j=0

k+n-2r -1 n - 2r 2r - j y S+2 _T-1_j

Ay () ()

15
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where S=n-4r-2+j, T=2r+1-2j, n=20,1,2,*, and k = 1, 2, 3, **°.

The u(n,k,2) in (3) are called '"generalized Fibonacci numbers," the u(n,k,3) in (4)
are called ""generalized Tribonacci numbersy' we shall term the u(,k,4) as the "general-
ized Quatronacci numbers,' and the general expression u(n,k,m) in (1 for m = 5, 6, +-+)
we shall refer to as the ""generalized Multinacci numbers. "

Now in (2) we let

m
y = E awxw m = 2,3, ")

w=1
and put
00 0
@) @ -9 =D uakms® =Y pl
n=0 v=0

and by comparing the coefficients in (5), it is easy to prove with induction, that

T r
2 m-2

Ty
©) Z Z Z Z ¢ (0, m)F(n,m) bl(lli)ri = ulm,k,m) ,

I‘1=O I'2=0 r3=0 I‘m~1=

bem) = n-ry <r1 - Ty T3~ Tmoo T2 Tmo1
? ry - Ty/ \ry - T3 T r ’

m-2 = Fm-1 m-1

where

n-2ry+ry r3-2ry+rs T 2

T -2r 41 -2r T
F,m) = a 2 m-3 T Tm-2 m—lal m-2 m—la m-1

m-2 m-1 m ?
b(k) _(n+k-1r3 -1
n-ry 1-1 ?

and n =0, 1, 2, °°*, m =2, 3, 4, °*".
Of course the convoluted sum formula of the generalized Quatronacci number utn,k,4) is

immediate as a special case of (6, with m = 4).

2. A GENERAL METHOD TO FIND FORMULAS FOR THE u(n,k,m)
AS A FUNCTION OF u(j,l,m) (,j=0,1, 2, ")

In [1] , it has been shown that the following formulas for the generalized Fibonacci num-
bers hold: '

(7 (a% + 4ay)kun - 1, k + 1, 2) = apu@, k, 2) + a3(4k + 2n - 2)uw - 1, k, 2),

where u(0,k,2) =1, u(l,k,2) = a;k, and n,k =1, 2, 3, -=-.

Now, using the results in (7) we are able to write the following: where
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2
A = aj+4ay, B(k,n) =4k+2n-2, u(0,k,2) =1, u(,k,2 = atk, n,k = 1,2,38,°°,
and
um,1,2) = ul - 1, 1, 2)a; + ul@ - 2, 1, 2)a,,
(where a; and a, are rational integers) we have

(8) ul@ - 1, 2, 2)A = u@,1,2na; + u@ - 1, 1, 2)B(1,n)a, ,

(8.1 ul - 1, 3, 2)A22! = (a;a,nB(1, n + 1) + a;a,nB(2,n) + aln@ + 1))uln,1,2)

+ (a2B(1,n)B(2,n) + aja;n( + 1))u - 1,1,2),

and
(8.2) ulm - 1, 4, 2)A%3! = M + N,
where
" a;22nB(1, n + 1)B(3,n) + a;2nB(2,n)B(3,n)
+ ala,n(m + 1)B(3,n) + a;2a;nB(1, n + 1)B@E, n + 1)
M = umn,1,2) ,
+ alanm + 1)@ + 2) + alayn(m + 1)B(1, n + 2)
|+ ajan(n + B, n + 1) + ajh@ + @ + 2)
and
aiB(1,n)B(2,n)B(3,n) + alain@n + 1)B(3,n)
N = | + alaln@ + 1)B@, n + 2) + ajain@ + )B@,n + 1) [ u - 1,1,2) .
|+ afa;nt + 1)@ + 2)

It should be noted that the method used in [1] to derive the formulas (8), (8.1), and(8.2)
may also be used to develop formulas of the ufn,k,2) for values of k = 5 and higher.

In this paper we find for the first time a general method to express the u(n,k,m) as a
function of the u(j,1,m) (G =0, 1, 2, *-+) with m=2 (m = 2, 3, 4, =*) .

Let
m m-2 m-1
- v - v _ v
9) y—1+z avx s Z E dvx, and w E va .
v=1 v=0 v=0

where a, d and b are rational integers, m =2 (m = 2, 3, ***) and
(9.1) M(m) = zy - w(dy/dx) (M(m) is a rational number) .

Now, differentiating the identity y~k = y"k, we have
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(10) k(dy/ax)/y = g /ax
where
k
[e.9]
¢(X)k = Zu(n,k,m)xn 1 = y-k, k=1,2,3,"+, and m =2.
n=0

We then respectively, multiply (9.1) through by k and divide (9.1) through by yk+1

and combine the result with (10). This leads to

k+1

kM) - kzy)/y< = @ /aw

and we have
(11) M) /v = xkz/vE + wxddx)S/dx) .
Now, comparing coefficients in (11), we conclude that

ul@ - 1), k + 1, mkM(@m) =

(12) m-2 m-1
k E um-1-v, k, m)d_ + E up+v+1-m,k, mn+v+1-mb .
v m-v-1
v=0 v=0

To complete (12), we notice it is necessary to solve (9.1), and this is easily accom-
plished by collecting the coefficients of X Comparing the coefficients thenleads to the fol-
lowing 2m - 1 equations: (Note: In what follows Bj = jaj, and also for convenience we have

replaced a  with -a_ G,v=1,2,3, ", m)

(13)

dO = M(m) + B1b0 )

ald0 = dy + Byby + Bsby ,

a,dy = -aydy + dp + Bgby + Bpby + Byby ,

d +B b.+B b, +...+B.b ’
m-2

A ody = -2 gdy -ap 4dp -cer-agdy g m-1"0 * Pm-2"1 1°m-2
818y = By pdy e - agdy g - Ay o+ Byby By Pyt #Bb g
8o = Bpgdy - v - 2gdy g - 8ydy 5+ Bpby e +Boby g
0 = _amdl - te. - a4dm_3 - a3dm_2 + me2 +oeee + B3bm—1 s
0= _amdm-3 - am—ldm—z + mem—z + Bm—lbm—l ?
0 = -a_d + B_b
m m-2 m m-1
(dividing through by a, this last equation becomes 0 = —dm_2 + mbm_l) .

Next we consider in (13) the 2m - 1 equations in the 2m - 1 unknowns M(m), dy, dy,

eee, d ’bO’b15'°'9b

m-2 where for convenience we write

m-1°
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I

S(m,0,0) = M(m) ; S(0,1,0) dy, S(0,2,0)

]
(=N
9

(14.1) SO0, m - 2,0 =4d

-2 5 8(0,0,1)

bl: S(O, 01 2)

I
o
N

80,0,m - 1) =b_ 3 and by = by

The 2m -1 equations in the 2m - 1 unknowns S(g) (where we consider g to run
through all the 2m - 1 combinations one at a time of the S( ) (we also include by) in (14.1))
can be solved by Cramer's rule to obtain

(15) D(m)S(g) = D) ,

where D(m) and D(g) are the determinants given below:

10 0 e 0 0 B, 0 - 0 0
0 1 0 =+ 0 0 ]32 Bl . 0 0
0 - 1 .. 0 0 B, B, 0 0
(15.1) : . . cee . . . cee .

pew = | ° mes Pmeatt P b By Bpopt B O
0 -89 2mg By 2 By Bu gt By By
O -ay1 Pme2 23 3y 0 By 0 Bg By
0 -8y Attt g T3 0 0 B, Bg
0 0 0 - _a;n “Am-1 : 0 - B Bn;-l
0 0 0 «ev 0 -1 0 0 =+ 0 m

(Determinant D(m) = the coefficients of the S(g) )

and

(15.2) D(g) is the determinant we get when replacing in (15.1) the appropriate column of the
coefficients of any S(g) with the column to the extreme left in (13) (the terms in the column

to the extreme left in (18) from top to bottom are: dy, 2y, dy, *++, amy, dgs 0, ==+, 0, 0).
Note. Upon investigation we notice that there is no loss of generality if we put
(15.3) dy = D(m) .
We shall now use the above method to derive formulas for the generalized Multinacci
number.

We first find formulas for the generalized Tribonacci number. We write the generalized

Tribonacci power series as follows:
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o0
(16) (1 - ax - ax? - agx?’)_k = Z uln,k,3)x",

n=0

where k =1, 2, 3, --+, the a are integers and u(0,k,3) = 1.
Now combining (16) with (9.1), we write

@n) M(3) = (dy +dyx)( - asx - ayx? - agx®) + (a; + 22, + 3a5x%) (by + byx + byx?)

and combining (17) with (15.1 and 15.3, with m = 3), we have

It

17.1) dy = D@B) =|0 -a; By By By

and of course applying the directions in (15.2, with m = 3) in combination with the deter-
minant D(3) in (17.1),.leads to the following:

dy = D) = 27a§ + 15ajaya3 - 4a§
dy = 18a1a§ - Ga%a?,

by = 4alas + 33,3y - ajal

(17.2)
by = 9af + Tajasag - 2a
by = 6ajal - 2alag
M(3) = 27a% + 18ajapag + 4a?{a3 - 4a§ - a%a% .

We now combine (16) and (17.2) with (12, with m = 3), which leads to
k(27a} + 18aja,a3 + 4ala; - 4a) - alad)um - 1, k + 1, 3)
= (4aia3 + 3333 - a5af)nu(n,k, 3)
(18)

+ (0 - 1)(9a} + Tajasa; - 2a3) + k(27ad + 15a5a,a5 - 4a§))u(n -1, k, 3)

+ (n - 2)(6a1a§ - 2a§a3) + k(18a1a§ - 6a§a3))u(n -2, k, 3).

(18.1) In (18) it is evident that if we put k = 1 we can find the u(n,2,3) as a function of the
u(,1,3) and also for k = 2 we find u(m,3,3) as a function of the u(m, 2,3), so that we have
u(, 3,3) as a function of the u(n,1,2). In this way, step by step for k > 1 (with induction
added), it is easyto see that we can find formulas of the u(n,k, 3) as a function of the u(n, 1, 3).
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(19) Using the exact methods which lead to (18) and (18.1), we find formulas for the Quatro-
_ nacei (u(n,k,4)) numbers (with k > 1) as a function of the u(n,1,4), and we find formulas
for the generalized Multinacci (u(n,k,m) with m =5, 6, 7, =+ and k > 1) numbers asa
function of the u(n,1,m).

3. THE GENERALIZED MULTINACCI NUMBER EXPRESSED AS A LIMIT

Note. In [1] the generalized Fibonacci number is expressed as the following:

(20) lim @@, k + 1, 2/@ + )@, 1,2)) = @ + ay@d + 4 )'%)k/zkk'
n o 3 ) "l un, 1, = a1(aj zh 0
where
kyn = 1, 2, 3, **° .
In this paper we find asymptotic formulas of the u(n,k,m) (with k,m = 2) expressed
in terms of u(n,1,m), 2, 1, and k.

However, before finding our asymptotic formulas, we make some

(21) SUPPLEMENTARY REMARKS

This author, for the first time, proved the following in 1969 [2] Define

(for a finite f) ,

=0 w=1

€

for a finite t and m, where the dw # 0 are positive integers, the r, # 0 and are dis-
tinct and we say |ry| is the greatest |r| in the ]rW| We then proved the following

Theorem. If

[+¢]
FE/Q = ) u x",
w=0
then
nh—IPoo un/ un—j
(for a finite j = 0, 1, 2, -.+) converges to Iri |, where the ry # 0 in Q(x) are distinct

with distinct moduli and [ry] is the greatest [r| in the |r_].

We are now in a position to discuss the generalized Multinacci number expressed as a
limit.

First, we consider when m = 3 and we multiply equation (18, with k = 1) throughby
1/nu( - 1, 1, 3) to get
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M@Bu@ - 1, 2, 3)/nu@ - 1, 1, 3) = byu(n,1,3)/u@ - 1, 1, 3)
©22) + ((n - )by +dg)utn - 1,1,3)/u@ - 1,1, 3)n
+ ((n - 2)by +dy)um - 2,1,3)/uld - 1,1,3)n

(23) In (21) we have u(n,1,3)/u(n - 1,1,3) = r where r is the greatest root in
x5 - ax? - ax - a3 = 0,
so that equation (22) may be written as
(23.1) REEON M@Bu@ - 1,2,3)/nu@ - 1,1,3) = rby + by + by/r = (say) L(@3).
Now, we multiply (18, with k = 2) through by

M(3)/n?u(m - 1, 1, 3),
to get

2M(3)2um - 1, 3, 3)/n?un - 1, 1, 3) =
+ [ulm, 2, 3)M@B)by /num - 1,1,3)][u@,1,3)/un,1,3)]
+ (0 - Dby + 2dy)utn - 1, 2, 3)/n2um - 1, 1, 3)

+ [(( - 2)by +2d;)u(n - 2,2,3)M(3)/n2um - 1,1,3)] [u - 1,2,3)/ut - 1,2,3)],
where combining this result with (23.1), and with n— o, leads to

lim, (@ M(3)2um - 1,3,3)/n*ul - 1,1,3)) = bLE)r + bLEB)/r

24 = (byr + by + by /DLEB) = (L(3)2

We continue with the exact method that gave us (24) step by step and with induction,
which leads us (for k = 1, 2, *++) to:

The generalized Tribonacci number expressed as a limit
. k k k
(25) Sm & (M@) ulm,k + 1,3)/( + 1)7um, 1,3) = LE)T,

where L(3) is defined in (23.1).
Now, with the exact method that was used in finding (25) applied to the equation in (12)
and step by step (and with added induction), we prove that: ‘

The generalized Multinacci number expressed as a limit is

(26) i (k! (M(m))ku(n,k + 1,m)/(n + 1)ku(n, 1,m)) = (L(m))k )
where
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m-1
Jim M@n)u@,2,m)/@ + Du@,1,m) = E b, r'™" = (say) Lem),
v=0
r is the greatest root in
m
xm—z a x2V oo,
W
w=1

the M(m) and the bV are found by using Cramer's rule as defined in (15) through (15.3),
m=2,3,4,***,n=0,1,2, -, k=1,2,3,**, and u(,k,m) = 1.

4., A GENERALIZATION OF THE BINOMIAL FORMULA

Put
m m
_ ’ A n
y = Zawx Ea(n,l,m)x s
w=0 n=0
so that
m k mk
(27) yk = ( E ay XW) = E a(n,k,m) e ,
w=0 =0
where m =1, 2, 3, ***, k=1, 2, 3, -, and the a, are arbitrary numbers (a5 # 0).
k-1

It is evident that y~ "y = yk, and combining this identity with (27) and then comparing

the coefficients, leads to

m
(28) a(mk - q, k, m) = E a(v,1,m)amk - q - v, k - 1, m) ,

=0
where g ranges through the values q =0, 1, 2, **+, mk-m, k=2,3,4, -, and m =

1, 2, 3, *--.
Differentiating equation (27) leads to

-m m mk

v E : \4 E : v

k E a(v, k - 1,m)x va(v,1,m)x = va(v,k,m)x" ,
v=0 v=1 v=1

and comparing the coefficients in this result, we have
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m

(29) (mk - gla(mk - q, k, m) = k E va(v,1,m)a(mk - q - v, k - 1, m) ,
v=1

where q ranges through the values q =0, 1, 2, *+¢y, mk-m, k=2,3,4, -+, and
m=1, 2, 3, *°-.

We multiply equation (28) through by mk - q so that the right side of (28) is now an
identity with the right side of (29), and arranging the terms in this result leads to

(mk - @)a(0,1,m)a(mk - g, k - 1, m)

(30) m
= E a(v,1,m)afmk - q - v, k - 1,m)(vk - mk + q) .
v=1
Then replacing k with k + 1 in (30), we have
(mk + m - g)a(0,1,m)a(mk + m - g, k, m)
(31) s
E a(v,l,mamk + k - g - v, k, m)((v - m)k + 1) + g,
v=1

where m,k =1, 2, 3, -+, q ranges through the values q = 0, 1, 2, -, mk, mk+k-q

=v =0, anditis evident that
k _ k
a(O’k’m) = (a(ox 1:m)) ’ and a(mk: k:m) = (a(m: 1:m)) .
As an application of (30) we find a value for a(l,k,m). Let mk +m - q = 1, so that

m
a(0,1,m)a(l,k,m) = Ea(v,l,m)a(l -v, k, m)(vk +v - 1),
v=1

then
a(0,1,m)a(l,k,m) = ka(0,k,m)a(l,1,m) = k(a(O,l,m))ka(l,l,m)

and we have
a(l,k,m) = k(@(©,1,m)*ta(,1,m)
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ON THE GREATEST COMMON DIVISOR OF SOME BINOMIAL COEFFICIENTS

E. G.STRAUS
University of California, Los Angeles, California

Henry W. Gould [1] has raised the conjecture

o el ()02 - o) (1 ()

which we shall prove in this note.
It is convenient to express the proof in terms of the p-adic valuation of rationals.
Definition. Let r = p (a/b) where (a,p) = (b,p) = 1 then Ir]p =p

We need only two properties of this valuation.

(2) Ultrametric inequality. |a + b|p = max{lalp, Iblp} ;

and for all integera a;, **+, a, we have

(3) |gcd (ag, ==+, an)lp = max{'ailp, cee, |an|p} .

In view of (3) we can rephrase (1) as follows.

Conjecture. For all primes p we have

Gl Gl g =

If we divide both sides by

(22|

p

3

p

b

p

(2-3)

(4) max % )
p

-1n -2 .- 0 -k+2)
k + 1)1

,

we get the equivalent conjecture

My, k) = max {|@ - K@ -k + D+ D, [nkk + D], [0+ Dol -k + D]}

(5)

[l

max {|(0 - k + Dk + ], |l - k)@ -k + D], @+ D+ 1)|p}

My(n, k)

It thus suffices to prove My = My; and My; = M; by deriving contradictions from the
assumptions that one of the terms in M; exceeds M, or one of the terms in M, exceeds
M;. Since My(n,k) = My(-k - 1, -n - 1) this involves only three steps.

25
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Step1. It
o - D@ -k + v+ D] > M
then
b, < |n -k, =1 s |k+1|p =1

]nlp<{k+llp=1, so |n+1ip=1

|2l = I+ D], < o - K], = max{ ol [k} < |n - K,

a contradiction.
Step 2. If
okl + D}, > My
then

In—k+lﬂp<|n|p51 =) |n—k|p=1

]n—k+qp=|m—kM1—k+DE‘:W&+1m)slmp

Feb. 1973

o1l < el = |@+ D) - @ -k+ D] = max{|p+1 |-k}

< [kl
a contradiction
Step 3. 1If
|(n + nn - k + 1)|p > M,
then
A
|n - k‘p < In + 1|p
|k+1|<|n—k+l| S0 |k|=1.
P p P

The first inequality now yields

e+ 1)) < |+ 1) = |0 -k + 6+ 1Hp = max {|n -lqp,|k + 1&}

< In + 1|p

a contradiction.

We have thus completed the proof of M;(n,k) = My(n,k) = My(-k - 1, -n - 1) and hence
by symmetry the proof of My(n,k) = My(-k - 1, -n - 1) = My(-k - 1, -n - 1) = M;(n,k).
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A TRIANGLE WITH INTEGRAL SIDES AND AREA

H.W. GOULD
West Virginia University, Morgantown, West Virginia

The object of this paper is to discuss the problem [3] of finding all triangleshaving in-
tegral area and consecutive integral sides. The class of all such triangles is determined
uniquely by a simple recurrent sequence. We also examine other interesting sequences as-
sociated with the triangles. Such triangles have been of interest since the time of Heron of
Alexandria and the reader is referred to Dickson's monumental history [9, Vol. 2, Chapter
5] for a detailed account of this and similar problems up to 1920,

The area, K, of a triangle having sides a, b, ¢ must satisfy the formula of Heron

K% = s(s - a)(s - b)(s - ¢),
where

s =(a+b+c)2.

Letting the sides of our triangle be u -1, u, u+1, wehave s = 3u/2 and the equation

3ul(u? - 4)
- 16

() K? =

Evidently u must be even; for if u were odd then both u* and u® - 4 would be odd
and 16 could not divide into the numerator. In order for 3N to be a perfect square it is
necessary that N be a multiple of 3. However, u®? cannot be a multiple of 3 without also
being a multiple of 9, and so the only way to account for the factor 3 in the numerator is
to impose the Diophantine equation u? - 4 = 3v2, or

(2) u? - 3v2 = 4,

All solutions to the problem will be determined by solving this equation for u, making cer-
tain that we obtain even values of u.

Equation (2) is of the general class u® - Dv?® = 4 and a complete solution of this equa-
tion may be found in LeVeque [5, Vol. 1, p. 145]. The substance of the solution, as it applies
to our work is that if uy +vp\/D is the minimal positive solution of u? - Dv? = 4, D #
square, D > 0, then the general solution for positive u,v is given by the symbolic formula

uy + V1\/f’)n

u+V\/ﬁ=2(—§——- , @=0,1,2,)

27
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where v and u are found by expanding the right-hand side by the binomial theorem and
equating radical and non-radical parts. It is easily seen that the minimal positive solution
of (2) is 4 + 2V3 so that the general solution is given by

u+ w3 = 2@ + V3"

1

n
230 (2) e v
k=0

[n/2] [(-1)/2],
=2 Z ( 2‘;{) 2283k 4 o0/3) Z <2kn+ 1) gh-2k-lgk
k: k=0
Thus we have
[n/2]

n+1 n k
=2y <2k> /0" .
k=0

However, it is easy to split up the binomial expansion and obtain the well-known formula

[n/2]
Yo (5)* - Hawvar ca-vart

k=0

whence we have

It

(3) l1=lln=(2+\/§)n+(2—\/§)n, (n 0, 1,2, ).

It is of interest to point out that we could also write

) u

_ A+ v+ a-ve™
n

n 2

but the former relation is easier to use in practice. We also remark that it is easy to prove
by induction that u as determined by (3) is indeed even. A shorter derivation of (3) is to
note that

2u = +vW3) +u-vw3) =22 +vV3+22 -Vv3" .

Cf. the solution given by E. P. Starke [7].

We also have the recurrence relation
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(5) Wiag = 4un+1 - (wy = 2, uy = 4)

since this recurrence is associated with the characteristic equation
X2 = 4x - 1

whose roots are 2 +V/3, 2 -1/3. The recurrence relation allows us to compute a short

table of values of u, as follows:

n u o= u
0 2
1 4
2 14
3 52
4 194
5 724
6 2702
7 10084
8 37634
9 140452
10 524174
11 1956244
12 7300802
13 27246964
14 101687054
15 379501252
16 1416317954
17 5285770564
18 19726764302
19 73621286644
20 275758382274

Actually our problem is an old one, rational triangles having always been of interest.
A solution of the form (3) was given, for example, by Reinhold Hoppe in 1880 [4] Also, Cf.
solutions in [7], [8]

The first six triangles, together with their areas, are:

1, 2, 3, 0

3, 4, 5, 6
13, 14, 15, 84
51, 52, 53, 1170

193, 194, 195, 16296
723, 724, 725, 228144
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The triangle 3, 4, 5 is the only right triangle inthe sequencebecause (u - 1)% +u? = (u + 1)2
implies u( - 4) = 0 which has only the one non-trivial solution. The triangle 13, 14, 15
has been used widely in the teaching of geometry. In fact the writer first became aware of
this example during a course in college where the triangle was used as a standard reference
triangle. Such a triangle has rational values for its major constants, as we shall see here,
and so makes it possible to have problems with 'nice' answers. For example, in this case
the sines of the three angles in the triangle are 4/5, 12/13, and 56/65. The radii of the es-
scribed circle are 21/2, 14, and 12. The altitudes are 168/13, 12, and 168/15. Cf. [7]

It is easy to conjecture that the area K = Kn satisfies the recurrence relation

(6) K o = MK 4 -K., ®y, = 0, Ky = 6).

If this were true, we could find an explicit formula for K since the characteristic equation
for (6) is x®-14x +1 = 0, whose roots are 7 +4y/3. For suitable constants A,B we
should then have

K = AT +4/3)" + BT - 4/3)".

From the initial values, A,B are easily determined and we find that

n

K = ‘—@ 3(7 +4/3)" - (7 - 4\/§)“$
which simplifies to
@ K, = ¥2 3(2 VI - @ - \/§>2"f :

According to the review in the Fortschritte [4] it was in this form that Hoppe found the area.
Now (7) follows from (6) which we conjectured from tabular values of K. However it is
easy to show that Kn given by (7) satisfies (6). Thus we shall prove (6) by proving (7) in a
novel way, as follows.
By (1) we have, for any triangle Tn’

16K% = 3u®@? - 4),
n n n
and it is easy to see that (3) implies

(8) ufl=u + 2,

whence

2 = 2 _ = -
16Kn = 3 0 + 2)(uZn - 2) = 3(112n 4) 3(1141,l 2) ,

2
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so that we have the formula

. 3
2 -
©) Kn = 16 (u4n -2
Thus
(10) K, 7 w, -272,

However a short calculation shows that in fact

(2 - \/§)4n + (2 _ \/§)4n _ 9

-2,

@ +vHE - @ - vE2l

= Uyp
whence formula (10) gives (7) which we wanted to prove.

We remark that relation (8) is very useful in checking a table of w and was used for
this purpose here to be certain of the value of uy.

The radius, r, of the inscribed circle of any triangle is given by the formula K = rs.

In the case at hand this gives

us - 4 u 2
(11) rzzrzzliz:uz—AL:n 2n
n a2 12 12 12
and it is easy to prove that
(12) Tiig = 4rn+1 -, (g = 0, vy = 1)

so that every triangle Tn has an integral inradius. The first few values of r are 0, 1, 4,
15, 56, 209, 780, 2911, 10864, -,

Noting that recurrence relation (12) is the same as relation (5) we suspect that there
are other intimate relations between u and r. Indeed, the theory of continued fractions
provides us an interesting result. Some very handy information on continued fractions is
given by Davenport [2] and especially the table on page 105. First of all, our original equa-
tion (2) may be transformed as follows. Since u is even, say u = 2x, we have 4x% - 3y =

4, whence v is even, say v = 2y, and so the equation can be written as

(13) x -3y =1

which suggests that we examine the familiar continued fraction expansion for V/3. Indeed,

and the first few convergents are
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2

(=]

H E b

] et
;—-\lw
rh!q
paf
cnlw
&l =3

[ENEN]

12 5
1°7°3

b

-
(]

The interesting point here is that every other numerator is one-half W while every other
denominator is precisely L By means of some simple transformations we can bring out
the relation more strikingly. In fact the continued fraction

14) c-1+4 1111 111 1 11
has successive convergents

1 2 1
I°1°%°

so that each numerator is -%u and each denominator is r. If can be shown that the continued
fraction (14) converges to /3. Let us show that —;u/r also tends to \/3. We have, by (11)

™o
1l

w
il

w

] =
", |8
oD
=}
oo
!
S

u? 1 .
— 3 as n— o ,
4
1 - =
ul

so that we can say that our general Tn has the interesting property that

u

(15) lim = /3 .

2
n—s o T
n
It is interesting to recall Heron's formula (iterative) for the square root of 3 :

5a_ + 9
n

%41 T 3a_+5 °
n

Starting with a; = 5/3 we find the successive approximations

26 265 1351
* 15 * 153 * 780 °

ol o

These approximations, especially the value 1351/780, are of historical interest.
One may find formulas for the radii of the escribed circles for the class Tn by re-
calling that [1, p. 12]

rs = (s - a)ral = (s - b)r]O = (s - c)rC .
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Further interesting relations follow from the two formulas

i+r_1
ra

(16) r, 4T +r, =T +4R,

=

+ L
T

s

[=n
o

where R = radius of the circumcirle. Also we recall that r = (s - a) tan —;A, with other
similar formulas.

Thus we have

2 - 3 p2fu-
an w Tz ¢ (u+2>

3
2 = 2 W -
(18) T 7 u 4) ,
whence by (11), T, = 3r,
3 u + 2

2 = 2 2
(19) rc—4u(u_2).
The radii of the three escribed circles are easily calculated and the first few values are as
followsa:

21 130 1164 6878 50795

(20) a0 2 5 s T s T T3
(21) rb : 0, 3, 12, 45, 168, 627, 2340,

234 679 11946
(22) rc tr o, 6, 14:, —-5— N —4— R 19 , °ce .

Relations (16) become

1,1 _ 2
(23) FIE i
a (¢]
and
_ 6r: + 2
(24) ra+rc—4R—2r——-—r—-———

the last step following because of the fact that we shall find R = 2r + 1/2r.
Ags a simple example of the check afforded by (23), we have (0 = 5}

19 11 19 s 1 _19% + 3.112
11946 * 6878 ~ 2-3.11-181 = 2.19-181 ~ 2.3.11.19.181

361 + 363 2 2

= 23.11.19-181 ~ 311-19

2
3(209)  3r
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One discerns a Pellian equation in this calculation also.
We may combine (23) and (24) to obtain a product formula, which is

(25) rr = 9r2 + 3,
ac
The equation
2 -— =
X (ra + r, x + r.T, 0

has for roots the radii Tos Tos and when we substitute into this equation by means of (24)

and (25), we have the equation
X% - (6r2 + 2)x + 9r3 + 3r = 0,

Solving this by the quadratic formula, we obtain the novel formulas

_ 32 +1 -Vsar? +1

(26) a T
and

3r2 +1 +V3r: +1
27 r =

¢] T

which are rather elegant results, especially since 3r?+ 1 is a perfect square.

We turn now to the angles of our triangles. From the functional relations

(28) 2K = absinC = bcsinA = casinB ,

we find (by means of (1))

2 _
(29) sin? A = g -4
(u + 1)
(30) sin? B = g vt - 4)
W - 12
2
(31) sin? C = % -4
(w - 1)

Letting n—w, each of these tends to 3/4. This agrees with the fact that in an equi-
lateral triangle the three sines would be each \/3/2. Of course, our special triangle Tn be—
haves at « as an equilateral triangle insofar as angular measurements are concerned, but

never becomes truly an equilateral triangle because the sides never become equal. Wemay
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illustrate this behavior in another way. It is well known that the square of the distance be-
tween the circumcenter and incenter in any triangle is R(R - 2r). Since, as we have re-
marked, it can be shown in our case that R = 2r + 1/2r the number in question has the
value R/2r. Itis also known that R >2r in any case. However, R - 2r = 1/2r which
can be made as small as we wish by choosing n sufficiently large. (It follows from (12) that

r is an increasing sequence.) Thus we have

(32) lim R -2r ) =0
n —o0 n n
and
R
(33) lim —2 =1 .

n 2r
-— 00 n

It follows then that the distance between circumcenter and incenter tends to 1. Only if
these two points come together can we speak truly of an equilateral triangle. Of course; in a
finite triangle, with R fixed say, then as 2r approaches R, R(R - 2r) tends to zero. In
our case, however (R - 21(')_1 and R increase at the same rate, i.e., n—o. The reader
will find other peculiarities of Ty «

Let us agree to write {P - Q| for the distance between points P and Q. Let N =
circumcenter; N = orthocenter; I = incenter; G = centroid; M = Nine-point center; A,
B, C = vertices. Then we have the following known distance relationships for an arbitrary

triangle:

lN—HlZ=9R2—(az+b2+c2)=9|N—G|2=%|G—HIZ;

|1 =mf = ar? + 222 - b2+ 02+ o)
|1—Nl2 = RR - 21);
|1-al-]i-8| ]1-c| = e ;
lo -1 = 2o - x|;
- = <ol = gl

In our special triangles we also have the following:

(34) ab+bc+ca=3ut-1=23u -1=3u, +5,
n 2n

and

(35) a2 + b2 +c2 = 3u2+2 =3u, +8 = 36r2+14 .

2n
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Thus we have

2
(36) |N—H|2=9(2r+§1£> - 36r2 - 14 = 4 + 2 |

and since r increases steadily with n we see that for T , the circumcenter and orthocenter
will be two units apart.

Moreover,

|x - af

4(2r + 1/2r)2 + 2r2 - 1(36r2 + 14)

1-1/r R

whence in T the incenter and orthocenter are also one unit apart.

It is then extremely simple to draw the Euler line for T, :

N G I=M H

The Euler line from N to H is two units long and the incenter lies on it and in fact coin-
cides with the Nine-Point center. This then gives some idea of the behavior of T .

In Figure 1 is shown the standard location of the common points in an arbitrary finite
triangle. The Nine-point circle has quite a history, having been studied as long ago as 1804.
It was first called ''le cercle des neuf points" by Terquem in 1842 in Vol. 1 of the journal

Nouvelles Annales de Matheématiques. The circle has many properties; it passes through the

midpoints of the sides and the feet of the altitudes, it is tangent to the inscribed circle; its
residue is $R; it bisects any line segment drawn from the orthocenter to the circumcircle.
Thus it has more than nine points associated with it, and has been called an n-point circle,
Terquem's circle, the medioscribed circle, the circumscribed midcircle, Feuerbach's cir-
cle, etc. A very interesting history has been givenby J. S. MacKay [6]. Coxeter [1, p. 18]
quotes Daniel Pedoe: "'This circle is the first really exciting one to appear in any course on
elementary geometry. "

We have now to return to a discussion of the circumradius R. From the formula

_abc
K = 4R
we have in our case
@2 1 ufl -1 u, + 1
(37) R=R =% =~ "6 - " 6r '
or also
(38) R2 = _u .
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Figure 1

But by (11) we have u® = 12r? + 4, so

R - (12r2 + 3)2 _ (4r® + 1)2
- - H

3(12r%) 4v?

whence

_ 1
(39) R = 2r+—2-17

as we suggested earlier. The first few values of R are
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5 65 901 12545 174725
©s: 7§ 730 112 °® ~418 °

or

1 1 1 1 1 1
0+_’2+§’8+§’30+_3—0’112+m’418+4—1-§’1560+m’

It is certainly more interesting, for example, in the triangle 13, 14, 15 to think of the
circumradius as 8 + 1/8 than as 65/8; this together with the inradius being 4. (We apolo-
gize for writing 1/0 but wish to be suggestive. )

The sequence of numbers 1, 5, 65, 901, 12545, **- incidentally, has an interesting

recurrence. Now we know that these are just 2r times R, so let us define a special se-

quence by

(40) g, = 2rR = 2ran.

Then g, = (u? - 1)/3, but also

(41) €9 — 148 ., -8, - 4 (g = 1, g4 = 5).

This completes our present discussion of the properties of special number sequences
associated with the class of triangleshaving consecutive integers as sides and having integral
areas. The really crucial matter was right at the beginning where it was necessary to set up
a criterion for the triangles. It is not enough to guess formula (3) or (5), as we must rule out
any other possibility. This we accomplished by setting up the equation (1) and arguing to (2)
as a necessary condition. That it is a sufficient condition is clear. Any three consecutive
numbers (>1) do generate a real triangle, and sequence (3) turns out to have integral area.

We close by suggesting other possible problems. Let u >2 and consider triangles

having integral areas and sides 2u -1, u, 2u+1, Then s = 5u/2, and

s-a=%(u+2), s -b = 3u/2, s—c=%(u—2).
Then

15u2@u? - 4)

K2 = s(s - a)(s - b)(s -¢) = 16

Again, u must be even. Thus we have evidently to impose the equation

(42) u? - 15v% = 4 .
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The rest of the discussion is similar to what we presented above.

Again, let the sides be consecutive Fibonacci numbers. Then

n+1 nt1) = Frpu
and

s—a=Fn,s—b=Fn_1,a—c=0.
Thus K = 0. But this is trivial. No triangle is formed; just a degenerate line segment. It
would be of interest to modify the values so as tohave some really interesting Fibonacci tri-
angle with integral area. We leave this as a problem for any interested reader. Can one,
for instance, make anything interesting with sides Fm -d, Fm, Fm +d for suitable values
of d? What interesting Pellian equations and recurrences might be associated with a
tetrahedron ?
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A NEW LOOK AT FIBONACCI GENERALIZATION

N. T. GRIDGEMAN
National Research Council of Canada, Ottawa, Canada

1. INTRODUCTION

Our parent topic will be sequences, in the broadest sense. That is to say, we shall be
dealing with ordered infinite sets of numbers, mostly or usually positive integers, whose
character is determined by (a) some given subsequence of s members, and (b) afunction
linking any given member to its immediate preceding s - ad. In this context the case of
s =1 is trivial, whereas the case of s = 2 includes many well known examples, in partic-
ular those called the Fibonacci and Lucas sequences. Some of the examples of the case
8 = 3 have been discussed under the name of Tribonacci sequences.

Here we restrict attention to s = 2. In characterizing such sequences we use the
letters A and B to denote the given pair (and only coprime A and B will be admitted).
The determining function will be linear, with parameters N and M. Thus the term follow-
ing B will be NA + MB; the next NB + M(NA + MB); and so on. Similarly, the term pre-
ceding A will be (B - MA)/N; and the next A/N - M(B - MA)/N2?; and so on. Each term
is in fact expressible as aA + bB, where the coefficients a and b are polynomials in N
and M, and if we work through the algebra the results shown in Table 1 will be reached.

Note that we have not so far mentioned ordinal numbers associated with the terms of
the sequence. In thinking of the formal sequence, extending to infinity in both directions, we
have to realize that there is an arbitrariness inputting ordinals in one-to-one correspondence
with the terms. But it is patently convenient to associate the term A with "first," so that
all terms less than A are associated with nonpositive ordinals. Not the least reason for
this choice is that the structure of the sequence is such that the expression for terms smaller
than A is different from, and more complicated than the expression for terms greater than
B (the former involve alternating algebraic signs).

Examining Table 1 we observe that it contains the apices of Pascal Triangles, and it is

not difficult to show that, with the proposed ordinal convention, the nt]n term is

® . It . . .
Q) Z (n_il__lz)MA+(n_;_2)B Nan-Zl-Z @ > 2
i=0
and
o0
@ Pt (-n - i 1) MA - (—n h i)B N1y n-2i o<1,
m=

40
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Table 1
POLYNOMIALSIN N AND M SPECIFYING THE SEQUENCE
(ONE TERM PER LINE) OF [aA +bB ], WHERE a = f(N,M) AND b = f'(N, M)

a = Coefficient of A b = Coefficient of B
-(N75M5 + 4N"4MP + 3NT3M) N-5M4 + 3N“4MZ + N3
N74M4 + 3NT3M2 + N2 (N4 + 2NT3M)
-(N73MB + 2N"ZM) N3M2 + N2
N72M? + N1 -(N-2M)
-(N-1np) N-1
_______1_______________________________0 ______________________
0 1
"—“1\; ______________________________ 1;[ _______________________
NM M2 + N
NM? + N2 M + 2NM
NM? + 2N*M M% + 3NM? + N2
NM4 + 3NZMZ + N° M® + ANM® + 3N*M
NM® + 4NZM® + 3N®M ME + 5NM4 + 61M%M2 + N°

2. A TWO-PARAMETER SEQUENCE

In what follows, we shall concentrate on an important special case of the '"s = 2" lin-
ear sequences, namely, that with A = M = 1. The setting of A at unity is actually less
of a restriction than at first appears, in that any sequence with A # 1 can be transformed
to the "unity" set by division of every term by A. This new sequence will retain most of the
properties of its original form, with the notable exception of number-theoretic properties.
The setting of M at unity not only introduces a major simplification into the structure, but,
as we shall see later, it ties in with a natural extension of the classic Fibonacci Rabbit
Problem.

Let us fix a notation at this point. We shall use F to denote the nth member of

B;N;n
the sequence whose parameters are B 0) and N (=1). Thus

(3) ;‘FB’N’l B 1; FB’N:Z - B
F = NF F °

-+
B,N,n B,N,n-2 B,N,n-1
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Normally, B and N will be integers. The case of N being any real number >-1/4 is
worth special consideration; it yields monotonically increasing sequences many of whose
properties are shared with those of N integral; but it will not be explored here. Further-
more, we shall not be specifically concerned with n negative (although it will occasionally
have to be referred to in explication of certain formulas).

The generating function of the sequence is worth noting here. It is theleft-hand side of
the identity

" o]
(4) 1+x(B-1/N _ Z FB,N,nN—an—l )

Cox o ox2
N-x-x =1

This can be verified by multiplying out. And setting B = N = 1 we of course obtain the
familiar generating function of the "original' Fibonacci sequence, which is 1/(1 - x - x2).
We shall use {B,N} to denote the sequence itself, and it must be pointed out at once
that not all { B,N} are unique, sequence-wise. Some may differ only in "key,' to borrow
the musical term, in the sense that a shift in the ordinals (the n-sequence) will make them

identical. For example, the following three sequences can be equalized by such shifts:

n : -3 -2 -1 0 1 2 3 4
{0,1}: 5 -3 2 -1 1 0 1 1
{1,1}: 2 -1

{2,2}: -1 1 o 1 1 2

Explanation is superflulous.
Another type of hidden identity (for the segments with n > 0) is multiplicative, and is
illustrated below:

n : -1 0 1 2 3 4 5

{0,383} : 4/9 -1/3 1 0 3 3 12
{0,3}/3: 4/27 -1/9 1/3 4
{1,8} : 1/3 o0 1 1 4 7 19

o

Thus {O,N}, divided throughout by N isidentical, overpositive n (apart from a 2n-keyshift),
to {1,N}.

Using a subscript to denote keyshift, we can summarize the algebra of these sequences
as follows:
(5) {0,Y} = Y(1,Y} 4 = Y{¥ + 1,Y}43

which of course includes the special case of Y = 1, illustrated above. Furthermore, if
B|N, then
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(6) {x,Y} = x{¥/X +1,Y}u
which has a special case X = Y, so that
(7) {x,Y} = x{2,Y} = 2x{Y/2 + 1,Y}4, (Y even)

And if Y = X(X - 1), the sequence is simply the powers of X, and is infinitely divisible
by X — but every quotient is identical to the original dividend, apart from a shift of key,
Symbolically,

®) = x21 X 21 .

FX(x-1),X,n
Finally, if X > Y+1, all {X,Y} are unique.

In Figure 1, the distribution pattern of these hidden identities is shown for some of the
lower B and N, Each cell is to be regarded as containing a complete sequence {B,N}
— specifically, { X,Y}. A blank cell is understood to contain an irreducible sequence (in
the sense that it cannot be transformed, by division and/or shift of key, into a smaller-B
sequence). Hatched cells contain sequences that are powers of B/. Black cellshold all other

reducible sequences.

1234856789101 12131415161718 1920

woAand up~|%

10
K]

12
13
14
15
16
"
18
19
20

Fig. 1 Distribution of Three Types of {B,N}: (i) reducible (black);
(ii) powers of B (stippled); (ii) irreducibles.

In the Appendix are collected for reference F for n = 1(1)25, and for certain

B,N,n
B (#5) and N (#10). Of the possible total of 50 combinations of B and N, only 34 have
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been tabulated: 14 were omitted because of their being reducibles, and 2 because of their be-
ing merely sequences of powers (which in this context are uninteresting). The omissions, in
short, are conditioned by Fig. 1.

3. PROLIFIC FIBRABBITS

The sequence {1,1} is the original Fibonacci sequence, and {3,1} is the Lucas
sequence — and we can now see why the Lucas sequence is normally regarded as the one
rext' to the Fibonacci sequence; it is because the intervening {2,1} is really {1,1_},' with

a unit shift of key. We may note in passing that (for any given fixed N, say Y) the identity

© Fivon " F1,v,m2 T Fysz,v,no1
yields the well known relation between member of the Fibonacci and Lucas sequences when
we set Y at unity.

The interesting thing about {1,N} is that it furnishes solutions to the Fibonacci Rabbit
problem generalized to the situation in which each pair gives birth to N pairs at a time, in-
stead of one. This is perhaps best appreciated by reference to a time-table, as in Table 2.

Table 2

NUMBER OF PAIRS OF IMMORTAL RABBITS ALIVE,
BY MONTH (t) AND GENERATION (g in N®),
IN A BREEDING REGIME THAT UNFAILINGLY YIELDS N PAIRS PER MONTHLY BIRTH

! t _=1 N NN N3 Nt N5 NS 1Sum wh;n N = 5
0 1 1 1 1
1 1 1 1 1
2 1 1 2 3 4
3 1 2 3 5 7
4 1 3 5 11 19
5 1 4 3 8 21 40
6 1 5 1 13 43 97
7 1 6 10 4 21 85 217
8 1 7 15 10 1 34 171 508
9 1 8 21 20 5 55 341 1159
10 1 9 28 35 15 1 89 683 2683
11 1 10 36 56 35 6 144 | 1365 6160
12 1 11 45 84 70 21 1 233 | 2731 | 14209
13 1 12 55 120 126 56 7 377 5461 32689

We imagine, after Fibonacci, a pair of month-old rabbits mated in an enclosure, and giving

birth to N new pairs every month thereafter; and each of the new pairs breeds similarly
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after a month's maturation. The table can be readily constructed from elementarycensider-
ations, with each column representing a generation, beginning at the zeroth — and the con-
struction is in fact the familiar tilted Pascal Triangle. At the beginning of the second month
there will be 1+ N pairs; at the beginning of the third there will be 1 + 2N pairs, and so
forth. Clearly, the sums in the end columns will be

0

(10) Z(“ - i - 1)Ni

i=0

— which is expression (1) with A = B = M = 1 and the utilization of Pascal's Rule for the
addition of binomial coefficients. In other words, Eq. (10) is Fl,N,n .

It is possible to sophisticate the treatment by allowance for deaths, the simplest situa-
tion being to schedule the death of a mated pair of rabbits immediately after the birth of its
m® litter. Hoggatt and Lind [2] have shown how this can be done for the classic case, in
which N = 1. For N2 1 the crude arithmetic of the population growth is straightforward
enough, but it does not condense well, The population increment from the gth generation at

time n (=t +1) can be written

0
ifg-1 h h-m h-m-1 h-2m -1
o Fer(r) (1) () Come)(om)
i=0

where

h=n-g-im-2,

and the summation of (11) over all g and all time points to n gives the required population
size at n. This is clumsy, but a compact operation is elusive.

Actually, allowance for restricted litteringand for mortality does not make a great dif-
ference to the population, which, with N > 1, soon becomes enormous. For example,
Fl, 5,23 = 3912 125 9;3(211, and if we limit m to 5 (and remove the parents subsequently),
the population at the 23"~ month will still be 3 759 051 250, which is 96 percent of the for-
mer figure (and represents more than one pair of rabbits for every human being onearth).

Incidentally, in considering litters with more thantwo siblings, we can easily cope with
a sex ratio other than 50:50. Suppose, for instance, that litters of five bucks and four does
are to be substituted for the classic one buck and one doe (perlitter): we carry out the arith-
metic for N = 4, and then multiply the answer by the factor (4 +5)/4; this will give us the

required population (in, of course, rabbits, not pairs of rabbits).

4. ™ AND THE EXPLICIT FORMULAS

A sequence of the kind we are discussing may intuitively be expected to have a limiting

ratio of adjacent terms, and in fact it is well established that such a ratio exists and is
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independent of B. But it is not independent of N. By extension from the familiar treatment

of the case of { 1, 1}, we write the auxiliary equation

N L I = L ¢
(12) N N N Ty
d divid . Tn—2 R
and divide it by N to give, after rearrangement,
T2 _ - =
(13) N TN N 0.

The roots of (13) are 1/2 + NN + 1/4, and we identify the positive root with the required
limiting ratio, T. The other root, we note, is 1 -T_ .

N
So the asymptotic growth rate (per unit interval) of all {B, 1} (including the original
Fibonacci and Lucas sequences) is 1/2 + N5/2 = 1.618034 +++; thatof all {B,2} is 1/2 +

N9/2; that of all {B,3} is 1/2 + N1I3/2 = 2.302775 *++; and so on. These asymptotes are
approached rapidly: turning to the sums at the right foot of Table 2, for example, we
shall find that 377/233 = 1.618 «--, that 5461/2731 = 2.000 **+, and that 32689/14209 =
2,301 -,

The powers of TN can be expressed in terms of two F's, thus:
F n NAN + 1

n _ Tiaex,x,n T F1N,
N 3

(14) T

and

F -F NAN + 1
(15) Tl—\In _ _1+2X,Xyn 21,N,n (_1/N)n ,

where X is the particular value of N and determines B in the first F of the numerator.

The quantity 7.. can be used to derive explicit expressions for any F by virtue

N B,N,n

of the relation

(16) F = kT

1 n-1
B,N,n =~ KTn  * k(- Ty) J

where the k's are constants that can be evaluated from our knowledge of the two parametric

members of the sequence

F =1=k1+k2
and

F =B=k1TN+k2(1—TN) s

whence
ky = (’TN +B - 1)/(2TN - 1)
ky = (TN - B)/(21'N -1 .

Therefore,
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T B Tn-l T T n-1
. =(N+B 1)N +(N B)(1 N)
B,N,n ZTN -1

am
1 n
(Tg+B - Dy - DT = (g - BT - 7o)
N(ZTN - 1)

T..T - =
(because N( N 1) = N),

1t is perhaps worthwhile recasting (17) without 7. In so dbingwe write NN + 1/4 = R,

N
and obtain

18 F _IN-®-1@/2 -RI@/2+0)" - [N-@B-1)@/2+R)]@/2 -R"
B, N,n 2NR :

It is here to be noted that, in particular,

_ /2 +R" - @/2 - R
1,N,n 2R ?

(19) F

which, with N = 1, yieldsthe established explicit formula for a member of the original Fib-
onacci sequence. And, again,
— n / n
(20) FS,N,n = (1/2 + R + (1/2 - R)" ,
which, with N = 1, yields the established explicit formula for a member of the Lucas

sequence.

5. SOME IDENTITIES

Our topic is rich in interesting identities, and in this section a few of the more impoxr-
tant ones will be set out together with their degeneralizations to more familiar forms. We
omit proofs, which can be constructed on traditional (and mostly inductional) lines —many
exercises and problems can in fact be drawn from the statements.

One of the simplest and most revealing of the identities, an almost obvious consequence

of expression (1), is

(21) Fo,Non = N9 Nyn-2 T BFi N1
An allied identity is
(22) F =X

B, N,n ¥y Nn-1 T FBox,N,n

with the special case in which X = B - 1:

(23) = (B - )F

FB,N,n 1,N,n-1 * F1i,n,n

Summations of terms and powers of terms are often neatly expressible. For example:
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n
(@4) 2o F i = Fp oy, pep - BN
=1

and its relation to the familiar {1, 1} is plain to see.
The sum of squares to a given n can be eompactly expressed for N = 1:

n
2 = _ _

(25) 251,10 = TB,1,0 B, 1,001 - B - D

i=1
but less so for B = 1:

n 32 2 _ _ 9 B 9 _ _
(26) E 2 = NFlsN»n—l NN N 1)F1,N,n Fl,N,n+1 N -1
' 1,N,1 TN + DN - 2

i=1

which, with N = 1, becomes

= (F2 + F? - F2 )/2 =

1,104 T Fi,1,0 7 F1,1,0-1 Fi1,0f1,1,041 °

A central identity, with several useful reductions, is

(27) = (1)1 (B2-B-N) .

FB, N,nFB, N,n4x+y ~ FB, N, n+xFB, N,n+y i, N, xFl, N,y

Setting y = -x, and bearing in mind that F1 N
to

=2 B — n+x-1, n-x-1_9
(28) F5,Nn = ¥B,N,n-x'B,N,nsx = 1 N LN, x

_ n-1
,on = (-1 NnFl,N,n’ we can reduce (27)
(B2 - B - N).
And setting x = -y = 1 gives us

(29) F2 = ()2 iB-oN .

B,N,n ~ FB, N,n—lFB, N,n+1

Lastly, as regards reduction of (27), if we set x =y =n' -1, and n = 1, we obtain (after

depriming n'):

(30) F2 B2 -B-N)

- = 2
B,N,n FB,N,Zn—l Fl,N,n—l

(and this, when B = N = 1, becomes the well known two-consecutive-square identity in

{1,1}.

A general "adjacent products' identity is

(1) = NFp nn-1FB,Nx F PN B N1 ~ B - DF

FB,N,1r1+x B, N,n+x-1
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which, when x = n, can be expressed in several forms:

Fe,non = FB,N,n™FB,Nyn-1 * Fo,Nyni1) ~ ® - DFp 201
(32) = B, N,n41 - NFE,N,n-1 - B - DFp o
= 2P N,0FB,N,n#1 ~ FB,Nyn - B - DFp N 201
(and from the first of which we readily infer that iff B = 1, then FB, N, 2n must be com-
posite (being divisible by FB, N,n))'
If, in (31), we put x = 2n, the result is

@3 Fp,N,30 = M, n,n-17B,N,20 * FB,N,0F B, N, 2001 ~ B - VFp 303
And here are two cubic relations that apply when B is unity:

FiNyen — ONF1,nn-1F1,N,nF 1, wpne + O F DFY g
B = F:)Z‘l,N,n+1 + NF%,N,n - N31'?31,N,n—1

— the former of which, incidentally, tells us that F (mod 3) is always composite.

1,N,0

6., SOME MISCELLANEOUS POINTS

1. In Section 2, it is mentioned that real N < -1/4 is out of court, so to say. The
reason is that the discriminant of the roots of the generalized Fibonacci quadratic is zero at
N = -1/4, and negative beyond. At N = -1/4 we have that FiNon = n/zn—l, so that

E] 2

™ = [lim, n—»w]@® + 1)/2n = 1/2.
At N < -1/4 the terms of the sequence take alternating algebraic signs, and there is no
limiting ratio in the usual sense; what happens of course is that T N moves onto the gaussian
plane.

2. The number-theoretic properties of {B,N} need examination. It seems clear that
the main theorems of divisibility and primality [3] applicable to {1, 1} also apply, mutatis
mutandis, to {1,N}. And squares are rare among the F's in the Appendix (outside of {1, 1},
in which it is known that only F1,1,12 B,N,4) I find only
F1,4,8 = 441, and F1,8,6 = 225, (Note that X(X - 1),X , which is a sequence of powers,
contains an infinity of squares, but this is an oddity.)

is a square, and beyond F

Interesting problems in this area take the form: In how many ways, if at all, can a
given natural number be represented as FB N.n ?
9 9
3. The digits of a Fibonacci number, at a given decimal place, occur in cycles along

the ascending sequence. Lagrange, says Coxeter [1], observed that the final digits of { 1, 1}
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repeat in cycles of 60. The question naturallyarises as to the cycling pattern of other {B,N}.

The answer is in Table 3.

Table 3
CYCLE SIZE OF REPEATED FINAL DIGITS IN {B,N} (EXCLUDING Fo x.1)
3 E)
N mod 10
o 1 2 3 4 5 6 7 8 9
B mod 5
0, 1, and 2 1 60 4 24 6 3 20 12 24
12 4 24 6 3 4 12 24
1 60 24 20 6 24
REFERENCES

1. H. S. M. Coxeter, Infroduction to Geometry, Wiley, New York, 1967, p. 168,

2. V. E. Hoggatt, Jr., and D. A, Lind, '""The Dying Rabbit Problem,' Fibonacci Quarterly,
Vol. 7, No. 4 (1969), pp. 482-487,

3. N. N. Vorob'ev, Fibonacci Numbers, Blaisdell Publishing Company, New York, 1961,

Saturday, October 21, 1972

9:15 a. m.
9:30 - 10:20
10:30 - 11:20
11:30 - 12:00
1:30 - 2:20
2:30 - 3:20
3:30 - 4:10

APPENDIX

B,N,n TO n = 25

The tables appear on the following pages.

VARIOUS F

,.p-<>-0—<>—0

CONFERENCE PROGRAM
FIBONACCI ASSOCIATION MEETING
San Jose State University, Macquarrie Hall

Registration

SOME QUASI-EXOTIC THEOREMS
Dmitri Thoro, Professor of Mathematics, San Jose State University

GENERALIZED LEO MOSER PROBLEMS
Pat Gomez, Student, San Jose State University

FUN WITH FIBONACCI AT THE CHESS MATCH AND THE BALL PARK
Marjorie Bicknell, Mathematics Teacher, A. C. Wilcox High School

INTERVALS CONTAINING INFINITELY MANY SETS OF ALGEBRAIC
INTEGERS — Raphael Robinson, Professor of Mathematics,
University of California, Berkeley

SOME ADDITION THEOREMS IN NUMBER THEORY
C. T. Long, Professor of Mathematics, Washington State University,
Visiting University of British Columbia

SOME CONGRUENCESOF THE FIBONACCINUMBERSMODULO A PRIME,
V. E. Hoggatt, Jr., San Jose State University

Lot sea
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LINEARLY GENERALIZED FIBONACCI NUMBERS

FB,N,n WITH B = 2
N
3 5 7 9
n
1 1 1 1 1
2 2 2 2 2
3 5 7 9 11
4 11 17 23 29
5 26 52 86 128
6 59 137 247 389
7 137 397 849 1541
8 314 1082 2 578 5 042
9 725 3 067 8 521 18 911
10 1667 8 477 26 567 64 289
11 3 824 23 812 86 214 234 488
12 8 843 66 197 272 183 813 089
13 20 369 185 257 875 681 2 923 481
14 46 898 516 242 2 780 692 10 241 282
15 108 005 1 442 527 8 910 729 36 552 611
16 248 699 4023 737 28 377 463 128 724 149
17 572 714 11 236 372 90 752 566 457 697 648
18 1 318 811 31 355 057 289 394 807 1616 214 989
19 3 036 953 87 536 917 924 662 769 5 735 493 821
20 6 993 386 244 312 202 2 950 426 418 20 281 428 722
21 16 104 245 681 996 787 9 423 065 801 71 900 873 111
22 37 084 403 1903 557 797 30 076 050 727 254 433 731 609
23 85 397 138 5 313 541 732 96 037 511 334 901 541 589 608
24 196 650 347 14 831 330 717 306 569 866 423 3 191 445 174 089
25 452 841 761 41 399 039 377 978 832 445 761 11 305 319 480 561
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LINEARLY GENERALIZED FIBONACCI NUMBERS
FB,N,n WITH B = 3
N
1 4 5 7 8 10
n
1 1 1 1 1 1 1
2 3 3 3 3 3 3
3 4 7 8 10 | 11 13
4 7 19 23 31 35 43
5 11 47 63 101 123 173
6 18 123 178 318 403 603
7 29 311 493 1025 1387 2 333
8 47 803 1383 3 251 4611 8 363
9 76 2 047 3 848 10 426 15 707 31 693
10 123 5 259 10 763 33 183 52 595 115 323
11 199 13 447 30 003 106 165 178 251 432 253
12 322 34 483 83 818 338 446 599 011 1585 483
13 521 88 271 233 833 1081601 2 025 119 5908 013
14 843 226 203 652 923 3 450 723 6 817 107 21 762 843
15 1 364 579 287 1822 088 11 021 930 23 017 259 80 842 973
16 2 207 1484 099 5 086 703 35 176 991 77 554 115 298 471 403
17 3 571 3 801 247 14 197 143 112 330 501 261 692 187 1106 901 133
18 5 778 9 737 643 39 630 658 358 569 438 882 125 107 4 091 615 163
19 9 349 24 942 631 110 616 373 1144 882 945 2 975 662 603 15 160 626 493
20 | 15 127 63 893 203 308 769 663 3 654 869 011 10 032 663 459 56 076 778 123
21 | 24 476 | 163 663 727 861 851 528 11 669 049 626 33 837 964 283 207 683 043 053
22 |39 603 | 419 236 539| 2 405 699 843 37 253 132 703 | 114 099 271 955 768 450 824 283
23 | 64 079 |1073 891 447 | 6 714 957 483| 118 936 480 085| 384 802 986 219 | 2 845 281 254 813
24 FLOS 682 (2750 827 603 |18 743 456 698 379 708 409 006 |1 297 597 161 859 |10 529 789 497 643
167 761 |7046 403 391 |52 318 244 113|1 212 263 769 601 [4 376 021 251 611 |38 982 602 045 773 |

25
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LINEARLY GENERALIZED FIBONACCI NUMBERS
FB,N,n WITH B = 4
N\ x
\ 1 2 5 6 7 9 10
n
1 1 1 1 1 1 1 1
2 4 4 4 4 4 4 4
3 5 6 9 10 11 13 14
4 9 14 29 34 39 49 54
5 14 26 74 94 116 166 194
6 23 54 219 298 389 607 734
7 37 106 589 862 1201 2101 2 674
8 60 214 1684 2 650 3 924 7 564 10 014
9 97 426 4 629 7822 12 331 26 473 36 754
10 157 854 13 049 23 722 39 799 94 549 136894
11 254 1706 36 194 70 654 126 116 332 806 504 434
12 411 3414 101 439 212 986 404 709 1183 747 1873 374
13 665| 6 826 282 409 636 910 1287 521 4179 001 6 917 714
14 1076 13 654 789 604 1914 826 4 120 484 14 832 724 25 651 454
15 1 741 27 306 2 201 649 5 736 286 13133 131 52 443 733 94 828 594
16 2 817 54 614 6 149 669 17 225 242 41 976 519 185 938 249 351 343 134
17 4 558 109 226 17 157 914 51 642 958 133 908 436 657 931 846 1299 629 074
18 T 375 218 454 47 906 259 154 994 410 427 744 079 2 331 376 087 4 813 060 414
19 11 933 436 906 133 695 829 464 852 158 1365103 121 8 252 762 701 17 809 351 154
20 19 308 873 814 373 227 124 1 394 818 618 4 359 311 604 29 235 147 484 65 939 955 294
21 31 241 1747 626/ 1041 706 269 4 183 931 566 13 915 033 451 103 510 011 793 244 033 466 834
22 50 549 3 495 254| 2 907 841 889| 12 552 843 274 44 430 214 679 366 626 339 149 903 433 019 774
23 81 790; 6 990 506| 8 116 373 234| 37 656 432 670| 141 835 448 836| 1 298 216 445 286 3 343 767 688 114
24 (132 339) 13 981 014|22 655 582 679|112 973 492 314| 452 846 951 589| 4 597 853 497 627| 12 378 097 885 584
25 1214 129 27 962 026) 63 237 448 849|338 912 088 3341 445 695 093 441|16 281 801 505 201|45 815 774 766 994
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LINEARLY GENERALIZED FIBONACCI NUMBERS
FB,N,n WITH B = 5
N
1 2 3 6 7 8 9
n
1 1 1 1 1 1 1 1
2 5 5 5 5 5 5 5
3 6 7 8 11 12 13 14
4 11 17 23 41 47 53 59
5 17 31 47 107 131 157 185
6 28 65 116 353 460 581 716
7 45 127 257 995 1377 1837 2 381
8 73 257 605 3113 4 597 6 485 8 825
9 118 511 1376 9 083 14 236 21 181 30 254
10 191 1025 3191 27 761 46 415 73 061 109 769
11 309 2 047 7 319 82 259 146 067 242 509 381 965
12 500 4 097 16 892 248 825 470 972 826 997 1369 076
13 809 8 191 38 849 742 379 1493 441 2 767 069 4 806 761
14 1309 16 385 89 525 2 235 329 4 790 245 9 383 045 17 128 445
15 2 118 32 767 206 072 6 689 603 15 244 332 31 519 597 60 389 294
16 3 427 65 537 474 647 20 101 577 48 776 047 106 583 957 214 545 299
17 5 545 131 071 1 092 863 60 239 195 155 486 371 358 740 733 758 048 945
18 8 972 262 145| 2 516 804 180 848 657 496 918 700 1211 412 389 2 688 956 636
19 || 14 517 524 287 | 5 795 393 542 283 827 1 585 323 297 4 081 338 253 9 511 397 141
20 || 23489 1048 577 13 345805 | 1 627 375 769 5063 754 197 13 772 637 365 33 712 006 865
21 || 38 006 2097 151 | 30 731 984| 4 881 078 731 16 161 017 276 46 423 343 389 119 314 581 134
22 || 61 495| 4 194 305| 70 769 399 | 14 645 333 345 51 607 296 655| 156 604 442 309 422 722 642 919
23 || 99 501| 8 388 607|162 965 351 | 43 931 805 731 | 164 734 417 587 | 527 991 189 421 1 496 553 873 125
24 11160 996 |16 777 217 {375 273 548 |131 803 805 801 | 525 985 494 172 |1 780 826 727 893 | 5 301 057 659 396
25 ||260 497 |33 554 431 |864 169 601 {395 394 640 187 |1 679 126 417 281 |6 004 756 243 261 ‘118 770 042 517 521




ON THE LENGTH OF THE EUCLIDEAN ALGORITHM

E.P. MERKES and DAVID MEYERS
University of Cincinnati, Cincinnati, Ohio

Throughout this article let a and b be integers, a> b > 0. The Euclidean algo-

rithm generates finite sequences of nonnegative integers,

{q and {r. "

J =1 J j=1
such that
a = qgib + 1y, 0< r;< b,
b = gry + T3, 0< r; < 1y,
Ty = Qggry + Ty, 0 < r3< 1y,
1)
= < <
Th-3 -1"n-2 * Tho1° 0 Ta-1 Th-2
T = ann—l + T r, = 0 .

The integers r is the greatest common divisor of a and b and qn2 2.

n-1
Define {(a,b) to be the number of divisions n in the algorithm (1). Some basic prop-

erties of f(a,b) are

@) fa,a) = 1;

(ii) f(ac,bc) = fLa,b), ¢ > 0;
(iii) fa + b,b) = La,b);

(iv) f(a + b,a) = 1+ g(a,b) .

Each of these properties is proved directly from the definition (1). Property (ii) permits us
to assume a and b are relatively prime.

This paper is concerned with maximizing f(a,b) when the integers a and b are drawn
from certain subclasses of positive integers. There are some classical results in this di-
rection such as the theorem of Lamé [3, p. 43] which states that f£(a,b) is never greater
than five times the number of digits in b. We begin with a known result, the proof of which
is instrumental for the justification of the main theorem of the paper.

Theorem 1. Let {FJ} be the Fibonacci sequence generated by
(@) Fivg = Fj+1,,+ Fp F =0 Fy=1 (=-1,01,2 ).
Eciterial note: This iz not our standerd riboreccei sequernce.

56



Feb, 1973 ON THE LENGTH OF THE EUCLIDEAN ALGORITHM 57

If a < Fm+1 or b < Fm for some integer m > 0, then #@a,b) < «F = m.

m+1’ Fm)
Proof. From (1) the rational number a/b has a continued fraction expansion

11 1
—_— ss s = < = i < =
d + a3+ T, 0T G=ism q =z

a
(3) - @t
. th th . . . .
The k™ numerator Ak and the k™ denominator Bk of this continued fraction are deter-

mined from the equations

(4) A, = q A A

k - %fgor t B

B (k=1,2,“-,n),

k-2’ k= 9Br-1 T Beog
where

Ag =1, By = 0, Ay = qy, B; =1 [2,p. 3].

Since ) > 0 for each index k =n, it follows from (4) that

Moreover, by (1) and (4) we have a = An’ b = Bn .
Suppose a and b are integers for which n = f(a,b) = m. Since Gy =Z1 (1=k=n)),
we have Ay = Fy, Ay = Fy, Ay =Fy + Fy = Fy, and, in general,

= = = < <
Ak = Ak—l + Ak_2 = Fk—l + Fk-z Fk (1 k n) .
Finally, since q4, = 2, we have by (2)
An = 2An—l * An = ZFn-l * Fn-z = Fn—l * Fn = Fn+1

Similarly, B, = F (1=k< n) and B = F_. Furthermore, A = F if and only if
k k-1 n n n n+l
= =k < = = i i = < k< =
1 1=k <n), a4, 2 and Bn Fn if and only if A 1 1< k <n), q4, 2.
Since a= A = F

n n+1 = Fm+1
first part of the implication in the statement of the theorem proved. The fact that L(F

£
and b = B][1 = Fn = Fm, we have the contrapositive of the

m+l,
Fm) = m is a consequence of the statements concerning equality of Am and Bm with Fm+l
and F_, respectively [1].

The ordered pairs of integers (a,b) can be partially ordered by defining (a,b)a(a',b")

if a=< a' and b = b'. Relative to this partial order, the theorem states, in particular, that

(Fm+1,Fm) is the "first' pair for which f{(a,b) = m, i.e., if (', b')a(Fm+1, Fm), then
< = =
f{a',b") 1(Fm+l,Fm) unless a' Fm+1 and b' Fm"
The proofs of our next results are dependent on the following known lemma.
Lemma 1. F =FF +F F =1,2,°¢°) .
—— ptq P aq p-1"g-1 ®>a )
Proof. Set S =F F +F _F .. Then by (2)
—_ p.q p g "p-lg-1
S = (F + F JF + F F .F F _F =8 .

F = +
P:q p-1 p-2""¢q p-1"g-1 p-1" g+l p-27¢q p-1,q+1
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Repeated application of this identity yields

s =8 = F,F 0Fprqz = Fpig

+
Psq 1,g+p-1 1" p+g-1 F

Corollary (Lamé). If m is the number of digits in the integer b, then £(a,b) = 5m.
e > 10" by induction. For n = 1, Fg = 13 > 10, If the
inequality is valid for an integer n, then by Lemma 1

Proof, We first show F

= > 810" + 2 10% = 2L R > o0t
F5n+6 F5n+1F5 + F5nF4 8.10" + 5 10 5 10 10
since
1
> =
F5n 2 F5n+1 :

Thus, the inequality is valid for all integers.
Now if b has m digits, then b < 10™ and, hence, b < Fg o +1- By Theorem 1 it
follows that £(a,b) < 5m + 1 and Lamé theorem is proved.
It is interesting to observe that equality is possible in Lamé theorem if b < 103, If b
has four digits, then b < Fy; = 10946 and, by Theorem 1, £(a,b) < L(Fy,Fy) = 20,
More generally, equality cannot hold in the Corollary for m > 3. Indeed, by Lemma 1kanld
+

the argument used in the proof of the corollary, we have Fp > 10k implies Fp 45 > 10

Since Fy > 104, it follows that F_ > 16" for m =4, If b < 10™ (m = 4), then

< =
L(a,b) L(F F5m) 5m .

5m+1’

The next problem considered in this article pertains to the number of distinct pairs
(a,b) such that

(F Ja(a, b)a(F F )

m+1’ Fm m+2° " m+1

and {(a,b) = m. We prove there are m + 1 such pairs and obtain formulas for the integers
a and b that comprise the pairs. It is convenient to establish these resultsfrom a sequence
of lemmas.

Lemma 2. Let the Euclidean algorithm for a and b, a and b are relatively prime,
be (1) where for some integer m (1 < m < n) -q, = 2 and 4 = 1 K#m, 1=k <n),
q, = 2. Then

a= Fn+1 * Fn-m+1Fm—1

and

b = Fn + ]5‘n_m+1Fm_2 .

Moreover, (a,b)a(F ., F ).

n+2 n+1
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Proof. From the proof of Theorem 1, we have that the kth numerator and denomina-

tor of the continued fraction expansion for a/b when f(a,b) = n satisfy, for k < m, the
conditions Ak = Fk’ Bk = Fk-l' From this fact and (4), we have
Am = ZFm—l * Fm—z = Fm * Fm—l = Fm * FOFm

Bm = ZFm—2 * Fm—3 = Fm—l * Fm—Z = Fm—l + FOFm—Z ’

1 (Fm * Fm—l) * Fm—l = Fm+1 * FlFm

-1°

Am+ -1’
Brn = Fppq v P o) *Fp o = Fpy v FiF o

Thus, by induction, we obtain

n-1 Fn—l * Fm—an—m—l ’

n-1 Fn-z * Fm—ZFn-m—l :

I

1]

Finally, by (4) and these formulas,

An = 2Fn-l * Fn-z + (ZFn—m+1 * Fn—-m-Z)Fm—l = Fn+1 * Fn—m+1Fm-1
and, similarly, Bn = Fn + Fn-m+1Fm-2' Therefore, a = An and b = Bn and the first
part of the lemma is proved.
Next, by Lemma 1, it follows that
< = = - <
Fn+1 An Fn+1 * Fn—m+1Fm—1 Fn+1 * Fn Fn—-mFm—Z Fn+2
imi < <
and, similarly, Fn Bn Fn+1'
This lemma gives us n - 2 pairs (m = 2, 3, ***, n - 1) of integers (a,b) such that
< < < <
Fn+1 a Fn+2’ Fn b Fn+1 ’

and f£(a,b) = n. Since I(Fnﬂ, Fn) and

ME oo F) = LF o +F, F ) =LF 4, F)=n,

there are so far n pairs in the range

(F F )a(a, b)oz(Fn_(_2 , F o)

n+1’ n+l

for which £(a,b) = n. The fact that there exists only one additional such pair is proved by

the next two lemmas.
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Lemma 3. Let q = 1 k=1,2,+,n-1), q, = 3 in the Euclidean algorithm
(1) for the relatively prime integers a and b. Then

a = F + F b=F +F
n n-

n+1 n-1’ 2°
and
(Fpyp> Fpla@ba® o0 F o 4) .
If e =1 k=1,2,+*+,n-1), q, > 3, then the corresponding integers a and b obey
: - > N
the inequalities a Fn+2 and b Fn 410
Proof. From the proof of Theorem 1, we have A =F and B =F when
_— n-1 n-1 n-1 n-2
q = 1 A=k<n) If q, = 3, then by (4),
An = 3Fn—1 + Fn—Z = Fn + ZFn_l = Fn+1 + Fn—l
- _ ; < <
and, similarly, Bn Fn+Fn—2' Since Fn_2 Fn—l Fn’ we have
= < =
a An Fn+1 + Fn Fn+2
and
= < =
b Bn Fn + Fn—l Fn+1 .
. = <k < = = >
Next, if % =1 (1 =k <n) and a, = 4, we have An—l = Fn—l and Bn—l = Fn_z.
By (4)
a = An = 4An—l * An—z = 41?n—l * Fn—2
= > =
Fn+1 * 2Fn—l Fn+1 * Fn Fn+2

Similarly, b = Bn > Fn+1'
Lemma 4. Let the Euclidean algorithm for the integers a and b be (1), where e = 2

Lav a+ lan e indi s K o7 wo P
for at least three indices K or where G‘p > 2, Q, >3 for I <p,m <n,

n+2°

Proof. Let g =2 for k =m, p (1=m <p <n). Then, paralleling the proof of
Lemma 2, we obtain

(5) a= A =F +
n n+l Fn—m+1 Fm—l N Fn—p+1 Fp-l :

Now the last expression is greater than Fn 42 provided

(6) F F

n-m+1 F

>
m-1 + Fn—p+1 Fp—l n'

Since

5]
\Y%
Do =
5]

n-s+1 Fs-1
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for 1 =s =n by Lemma 1, the inequality (6) is valid. We conclude from (5) that

If»for some index m, 1= m <n, we have 9y = 3, then A, = F, for k=1, 2,

k k
«e., m -1 and by (4)

= = >
Am 3Fm—l * Fm—z Fm+1 * Fm-l Fm+1 ’
= > =
Am+1 = (Fm+1 * Fm—l) + Fm—l Fm+1 * Fm Fm+2 :
By induction, Ak > Fyq for m =k < n. Now
> =
An = 2An—1 + An—2 ZFn + Fn—-l Fn+2
>

so a Fn+2'

The final case to consider is when 9, = 2 for some index m, 1= m < n and a4, =

3. As in the proof of Lemma 2, it is easily shown that

Aksz+Fm—1Fk—m k =m,m+1, ***,n - 1).
Thus,
An = 3An—l * An—Z = 31:‘n—l + Fn—z + (3Fn—m—1 + Fn--m—Z)Fm—l
>
= F TPt T Y Fam 1Fme1 7 Fraee
provided

F F

n-m+1 " m-1 +F F

>
n-m-1"m-1 Fn—z :

This is the case since, by Lemma 1,

DN =
r

>
Fn—s+1 Fs—l

for 1 = s = n and, hence,

1
> = >
F F F 2(Fn+F ) F

n-m+1 Fm—l * n-m-1"m-1 n-2 n-2°

Therefore, a > Fn+2 in all cases considered in this Lemma,
Collecting the results in the last three lemmas, we have proved the following:
Theorem 2. Let A be the set of ordered pairs (a,b) such that (a,b)a(Fn+2,Fn+1).

There are exactly n +1 pairsin A such that £(a,b) = n. These pairs are obtained from

the formulas
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m=0,1, 2, *+-, n), where F_2 =F . =0 and Fj for each j = 0 is the jth Fibon-

-1
acci number (2).
The results in Theorem 2 were suggested to the authors by considering a number of

special cases on an IBM 360/65 computer.

REFERENCES

1. R. L. Duncan, ''Note on the Euclidean Algorithm,' The Fibonacci Quarterly, Vol. 4
(1966), pp. 367-368.

2. O. Perron, Die Lehre von den Kettenbruchen, Vol. 1, Teubner, Stuttgart, 1954,

3. J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, 1939.

————
LETTERS TO THE EDITOR
Dear Editor:

In the paper () by W. A. Al-Salam and A. Verma, "Fibonacci Numbers and Eulerian
Polynomials, " Fibonacci Quarterly, February 1971, pp. 18-22, an error occurs in (9), which

is readily corrected. I will generalize their (4) by defining a general polynomial operator
M by
0] Mf(x) = Af(x + c¢q) + Bf(x + cy), ¢y # ¢y,

where f(x) is a polynomial and A, B, ¢;, and c, are given numbers. With D = d/dx,
we note that M = Ae®tP + Be®P 5o that

©0 n ©0 Cn
Cq 2
Mf(x) = A Z — D f(x) + BZ - D(x) ,
=0 n=0

or
©o
AW
(I1) Af(x + ¢q) + Bf(x + cy) = Z —n—,n D(x) ,
=0
where Wn = Aci1 + Bcgrl is the solution of Wn+2 = PWn+1 - QWn and cy; # cy arethe roots

of x> = Px-Q. In (¥, Eq. (4) is a special case of (I) with A =u and B =1 -u. There
are two cases of (II) to consider:

Casel. A+B # 0. If A = B, we obtain from (II)

0

Vv
(IIm) B + o) + Hx + 0p) = D, =2 Do,
n=0
= - = 2 —
where V, = 2, V4 =P, and Vn+2 = PVn_l_1 - QVn. If ¢y and cy are roots of x x+1,

[Continued on page 71.]



ON SUMMATIONS AND EXPANSIONS OF FIBONACCI NUMBERS

HERTA T. FREITAG
Hollins, Virginia

INTRODUCTION

One of the early delights a neophyte in the study of Fibonacci numbers experiences may

be an encounter with some elementary summation properties such as

n
ZFi = Fp- 1.
i=1

As soon as his curiosity is aroused, he may wish to investigate summations which "skip" a
constant number of Fibonacci numbers, for instance the problem of obtaining a formula for
the sum of the first n Fibonacci numbers of odd position index.

But — as has often been observed — mathematicians are like lovers; give them thelit-
tle finger, and they will want the whole hand. Can one find a relationship which spells out
the sum of any finite Fibonacci sequence whose subindices follow the pattern of an arithmetic

progression?

A SUMMATION THEOREM (Theorem 1)

Seeking a pattern for the sum of a number of equally spaced Fibonacci numbers means

a concern with
n
ZFD. ) (nl = k.i+r) )
X i
i=0

r is a non-negative integer, whereas k is a natural number.

Let us use the Binet formula

n n — —_
Fo=2=P wih 2= 22 * Vg b= L8 -5
N5

We also note that ab = -1. The nth Lucas number, Ln’ is Ln =a"+ b". Then

n
2o,
=0 !

63
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becomes:

n
1 N ftr  iktr, 1 | p o@D _ g g piDk
_— a -b ) = —|a T -b T
"lgi=0 NCRR a -1 b -1

[P KT | oT ek g - (O _pT ek g

NE[)F +1 - 1, ]

Performing the indicated operations and again employing the Binet formula, we are ready to

give the sum of n Fibonacei numbers beginning with Fr' The sequence continues equally

spaced such that (k - 1) Fibonacci numbers are left out from any one term to the next.
Theorem 1.

n

k min(k, r)+t
D F () gy + D Flok ~ Forr * P

2T -
-~ k@{-1)4+r K )
i=1 D7 +1 - Ly

where k is any natural number and r any non-negative integer. The number t is defined

by:
¢ = €0, when r <k
- il, when r >k °

Since Flr'k vanishes for r = k, t need not be defined in this case.
At
by the
Reduction Formula: (2)
If r=71 (mod k), i.e.: r = ak +T where a is a natural number and 0< T <k,

then

ention should be drawn to the fact that we may restrict r tothe condition 0 < r <k

n n
2 Fitksr = 2. Fa+i-1)k+T
i=1 i=1
n-+a a
=2 F o 1)keT - > Fi ket *
i=1 i=1

While the restriction on T is useful for reduction purposes, it is not a necessary condition
for relationship (2).

Special Cases of Theorem 1.

We notice that the result of our summation involves an expression which combines no
more than four terms. Thus, this relationship would be quite helpful whenever n is "fairly

large." For r = 0, the special case
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n k

. -)°F, +F - F

3) E: Fki _ nk k (n+1)k

k
-1)" +1 - Lk

may merit attention.

It is evident that Theorem 1 embraces the basic elementary summation formulas of
this kind. Obviously, k = 1, r = 0 yields:

n
ZF1=Fn+Fn+1'1=Fn+2'1 ’
i=1

which is the formula we previously quoted for the sum of the first n Fibonacci numbers,

However, it is aesthetically satisfying that the summation formulas for the first n
Fibonacci numbers of odd indices and those of even indices also become special cases of our
pattern. Thus, by letting k = 2 and r = 0, we get

n
ZFZi = Fonar ~ 1
i=1

whereas r = 1 yields:

n
~ZF2i—1 = Fon -
i=1

If one relationship combining the two cases were required, Theorem 1 — for k = 2 and r =

0 or 1 — becomes:

n

) = -1F F
L F2(1_1)+r = Fonsa-a - -1 2-r  r °’
=1

or, more simply:

n
(4) Z Fz(i—1)+r = Fopar-g ¥ -1 -
-1

It may be instructive to check other cases of small "skipping numbers" k. Owing to
reduction formula (2), the condition r < k does not limit the generality of the results.
For k = 3 we obtain

n I
Y e S T
3(i-1)+r % ’

i=1
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which may also be stated as

n
F - |r - 1]
_ 3ntr-1
) 2 Faiinyer = 3 .
i=1
and, for k = 4, we have
n T
Z ¥ _ R S T -1) Fpp- Ty
4(i-1)+r 5
i=1
or, alternatively:
n
_ r+1
6) ZF4(1-—1)+r - 1:‘Zn—ZFZnH‘ +[ 2 ]
-

These equivalences, relationships (5) and (6), may easily be verified by straight sub-
stitution of the few r-values to which we are restricted. All of these formulas can, however,
readily be established either by using the Binet formula, or else, employing mathematical
induction. They were stated here merely as a matter of interest since none of them seem
too obvious,

Two further observations may be mentioned.

We might wish to impose the condition r = k on Theorem 1. Then

)5F

@ 2o Fy -

nk - Tk T Fi
¥ +1 -1

k

Clearly, the summation formula for the first n Fibonacci numbers of even subindex is a
special case of this.

It may also be of interest to note that on the basis of Theorem 1, Lk divides into all
sums of our kind, provided k is odd, i.e., the number of Fibonacci numbers ''skipped over"

in our summation is even. If this number were odd, (2 - Lk) would be a divisor of our sum.

AN EXPANSION THEOREM (Theorem 2)

But hasn't Jacobi advised us: "Man muss immer umkehren' (one must always turn
around)? Thus — having obtained summation results as expressions involving Fibonacci
numbers — we may now experiment with an inversion and pose the problem: Gan a Fibonacci
number be expanded into a series reminiscent of an expansion for the nth power of abinomial ?

Partly analogous to Theorem 1, and primarily for the sake of developing some notions,
we symbolize our Fibonacci numbers Fn as ka . where all letters representnon-negative
integers.

The proposed expansion reads:
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Theorem 2.
k-1 !
_ k- 1\ k-1-i_i _
Fn = Z( i )Fm Fm+1 Fmar-kerieg 0 (@ = km +1).
i=0

In our proof, we use mathematical induction on n. Symbolizing Theorem 2 by R(n),
we readily verify R(n) for the first few natural numbers. Now we need to show that the
correctness of R(s - 1) and of R(s) implies correctness of R(s + 1), where s represents

any natural number. This means that we investigate whether

k- 1\ k-1-i i
( i )Fm Frned [Fmrest * Frnroorie)

equals
k-1 k-1-i _i
( i )Fm Fm+1 Fm+r—k+i+2 °

However, the iterative definition of Fibonacci numbers assures the correctness of this equal-
ity and, hence, completes the proof.

As an illustration, we might wish to expand Fy; by letting m =3 and r = 2. We
assert that

which is easily verified.

Special Cases of Theorem 2,

Some special cases might be pointed to. Considering Fibonacci numbers with even

subindex, Theorem 2 reduces to:

n
5-1
Zo1).i
(8) F o= (2 ; )2 Fa (/2)+
i=0
But those of odd subindex may be expanded on the basis of
n-3
2 /n -3
- 2 i
) Fn - E( ; >2 F(9—11)/2+i :

A Corollary of Theorem 2.

We propose a corollary of expansion formula 2 (Theorem 2) which gives a prescribed
number of terms for the expansion. Let the symbol a stand for that number. In our
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condition n = km + r we stipulate that m = 1 and k = a, and we obtain:

Corollary of Theorem 2.

a-1
_ a-1
(10) Fn - Z( i >Fn+2(1—a)+i ?
i=0
where
< < D+ 1
2 = aZ= 5 .

Special Cases of the Corollary:

The following two special cases seem worth mentioning. We desire to let a be the
largest possible number.
Case 1:

If n iseven, a = n/2 is chosen. Then

n
5-1
2.1
(11) Fp = Z (2 i )Fi+2
i=0
and there are n/2 terms in the expansion.
Case 2:
If n isodd, a =n-2+1 s
n-1

2
n-1
(12) Fp = E( 2 >F1+1
i=0 i

+1
2
To illustrate, let us expand F, into a five-term series. Then n = 21. Using rela-

terms.

and the expansion has 2
tionghip (10) and letting a = 5, we have:

4

\
~ 4
Fa = ) (i)F13+i :

i=0
which is correct. For the maximum number of terms in the expansion we would designate a
as being 11 and use (12). Then

10

_ 10
Fau = Z(i)FHl ’

i=0

a relationship which can also be easily verified.
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BACK TO ANOTHER SUMMATION THEOREM (Theorem 3)

Once again, we might "invert." Our summation theorem (Theorem 1) gave us an ex-
pansion involving Fibonacci numbers as the result of the addition. Nowlet us give a summa-
tion which results in one Fibonacci number. This problem may possibly use Theorem 2 to
the best advantage.

Starting with a summation involving Fibonacci numbers of prescribed indices, can we
predict the resulting Fibonacci number? Again recalling Jacobi's advice, we reverse the ex-
pansion of a given Fibonacci number to a sum. Now designate a sum which leads to a pre-
dictable Fibonacci number. Symbolize m by u, and u+r-(@-1r)/u+1 by v. Then
r=v-1-u+k and Theorem 2 becomes:

Theorem 3.

k-1

k - 1\ k-1-i i _
Z( i )Fu FonFyai = Fen @)+
i=0

for any arbitrarily chosen natural numbers u and v. The number k may be any integer
greater than or equal to 2.

To illustrate this summation idea, we try a summation involving F, and Fy Here
welet u =4, and v= "7, and get:

k-1

k- 1\ k-1-i i
Z( i )3 5Fpy -

i=0
We predict F as our result which is correct.

5k+2

Pre-assigning the Fibonacci Number Resulting from Summation Theorem 3:

Formula 3 is a method for a summation which uses prescribed Fibonacci numbers and
predicts a Fibonacci number as the result. What about assigning the resulting Fibonacci
number without prescribing Fibonacci numbers involved in the summation?

This summation, not necessarily unique, can be had by considering two cases.

Case 1. The Fibonacci number to be attained has odd subindex n. We choose u =v

= 1, and have

k-1

k-1 ~
13) Z( i )Fi+2 = For1

i=0

Case 2. We wish to obtain a Fibonacci number of even subindex. For this purpose we

let u and v take on the values 1 and 2, respectively. Here:
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k-2

—fk -1
(14) L( i )F1+2 = Fop-

i=0

Obviously, the number of terms in these summations will be (n +1)/2 for odd sub-
indices n, and n/2 for even ones. We realize, however, that our choices for u and v
have forfeited the ability to discern the powers of Fu and FV which characterize the terms
of Theorem 3.

Pre-Assigning the Fibonacci Number Resulting from Summation Theorem 3 as well as the
Number of Terms in the Summation, and Retaining Generality.

Finally, we prescribe the resulting Fibonacci number Fn as well as k, the number
of terms in the summation. Moreover, to avoid the difficulty encountered above, exclude the
somewhat trivial cases which involve F; = Fy = 1 among the summation terms. We im-

pose the condition: u,v =2 3. Furthermore, the iterative definition of Fibonacci numbers:

1
Z bn+i = Fn+2
i=0

inherently provides a summation of two terms resulting in a Fibonacci number (even though
the summation is not of our general type). Therefore, impose the condition: k = 3. Then,
for all n2> 4k - 1; i.e., for all n > 11, we can do justice to our data by assigning appro-
priate values to u and. v such that

(15) n=@-1Du+1 +v

is satisfied. Again, no claim is made for uniqueness.
For example, to obtain F,; through a summation of three terms, the following choice
proves successful:

2

— 2\ 2-i_i ~
L(i)FS FyFgy = Fyp -

i=0
For a summation of three terms for F;5, we can already write:
2 2 2

2 \.2-i i R AT _ 2 \.2-i i _
Z(i)F3 FyFry= 2 Fy F5F5u™ Z(i)Fs Fe¥au = Ti5

i=0 i=0 i=0
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Lack of Uniqueness — Predicting the Number of Different Summations

Can you foretell the number of different summation representations of our type, each
having k terms, and leading to the same Fibonacci number Fn? Using relationship (15),
our prediction becomes:

If set T is defined by

T=%t:45t<n—3$,
then the numerosity of T, thatis, the number
n-3
(8) [+=3] -3
predicts the possible number of different summations of our type, each having k terms and

leading to the Fibonacci number Fn .

To illustrate, there will be 52 ten-term summations of our kind leading to Fgp. We

would have:
9 9 9
9\ .9-i_i ~ 9\, 9-i i _ 9\, 0-i i
2 (1) Foy FopFpy = Z<1>F53 FogFigq = Z(i)F52 FosFogu
i= i=0 i=0

ML

o\ 9. i _
i)FB FyFueai = Fs00

[Continued from page 62. ]
then Vn = Ln’ the Lucas sequence, and so (III) now gives the correct expression for (9) in
(%),

Case 2. A +B = 0. We now obtain from (II)

fx + ¢q) - f(x + cy) * Un 0

a) Cq - Cy =ZT! D7k

n=0
where Uy =0, Uy =1, and U g = PUn+1 - QUn. Thus for P =1, Q = -1, U = F
and for P =2, Q = -1, Un = Pn’ the Pell sequence. For m =1, 2, **+, we obtain
from (IV)

fx + ™) - f(x + ) o Voo e

(V) Cy - Cy - Z n! (X) °

n=0

Remarks. The same ideas in (%) show that the generating function of the moments of
the inverse operator

[Continued on page 84. ]



ADVANCED PROBLEMS AND SOLUTIONS

Edited by
RAYMOND E. WHITNEY
Lock Haven State College, Lock Haven, Pennsylvania

Send all communications concerning Advanced Problems and Solutions to Raymond E.
Whitney, Mathematics Department, Lock Haven State College, Lock Haven, Pennsylvania
17745. This department especially welcomes problems believed to be new or extending old
results. Proposers should submit solutions or other information that will assist the editor.
To facilitate their consideration, solutions should be submitted on separate signed sheets

within two months after publication of the problems.

H-205 Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Evaluate the determinants of nt][l order

z 1 z 1
-1 gz 1 -1 =z q
1 g%z 1 -1 o
D = beescsosenesasnoes o ases s s A = sesee e eeereccecnne
n n
-1 qn~2z 1 -1 =z qn_2
-1 qn_lz -1 z

H-206 Proposed by P. Bruckman, University of lliinois, Urbana, llinois.
Prove the identity:

=}
i
[y

/@ -5 = 2 1/a-x. o2km/m)

0

=
1l

H-207  Proposed by C. Bridger, Springfield, lllinois.

Define Gk(x) by the relation

o0
1 = z G 6055 |
1 - (&% + 1)s? - xg®

n=0

where x is independent of s.

1. Find a recursion formula connecting the Gk(x).

72
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2. Put x = 1 and find Gk(l) in terms of Fibonacci numbers.
3. Also with x = 1, show that the sum of any four consecutive G-numbers is a Lucas

number.
H-208  Proposed by P. Frdos, Budapest, Hungary.
Assume

_n > = i =
aglagl - gl =2 1=1=§

is an integer. Show that the

n o,

Nofon

k
max a, =
z : i

i=1

where the maximum is to be taken with respect to all choices of the ai's and k.

H-209 Proposed by L. Carlitz, Duke University, Dur/lam(, North Carolina.
Put

where o =8 = o8 = z. Determine the coefficients C(n,k) such that

n

n p—

7z = E C(n,k)un__k_'_1 n= 1).
k=1

H-210  Proposed by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania.

Show that a positive integer n is a Lucas number if and only if 5n% +20 or 5n% - 20

is a square.

H-211  Proposed by S. Krishman, Orissa, India.

A. Show that (2;1) is of the form 2n%k + 2 when n is prime and n > 3.

B. Show that (in__ﬁ) is of the form n% - 2n - n, when n is prime.

1
( 1;11) represents the binomial coefficient, _JTIH{E-_—TJ'

H-212  Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California.

Let n be a positive integer. Consider n edge-connected squares. How many con-
figurations are there if each row starts k squares to the right of the row above? (k denotes

a non-negative integer. )
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H-213  Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California.

A. Let An be the left adjusted Pascal triangle, with n rows and columns and 0's
above the main diagonal. Thus

Find An . A;f where A;f represents the transpose of matrix, An
B. Let

o o o ©

nxn

where the ith column of Cn is the ith row of Pascal's triangle adjusted to the
T

main diagonal and the other entries are 0's. Find Cn . An .

H-214  Proposed by E. Karst, University of Arizona, Tucson, Arizona.

Let x = y2 +z2 be the first prime in a sequence of 10 primes in A. P. and

x+22.30 = (y+2.3.7% + (z - 25.3)°

the first prime in another sequence of 10 primes in A.P. whereboth sequences have the same
common difference. The second member after the 10th prime in the first sequence is divis-
ible by 17 and has a factor which is the square of a 3-digit prime; the second member be-
fore the first prime in the second sequence is also divisible by 17, and its first three digits
are a permutation of the last three digits which form a perfect square. The common differ-

ence consists of prime factors, each of them smaller than 17. Find x, y, and z.

SOLUTIONS
AN OLD FRIEND REVISITED

H-118 Proposed by G. Ledin, Jr., San Francisco, California.
Solve the difference equation

Cn+2 = Fn+ch+1 * Cn =1

with C4y = a, Cy = b, and Fn’ the nth Fibonacci number.
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Solution by Clyde A. Bridger, Springfield, lllinois.

Write the following series of equations, beginning with n = 1,
C3 = F3 Cz + a
C4 = F4 C3 + Cz
C5 = F5 C4 + C3
Cn+1 = Fn+lcn + Cn-l
Crhiz = FraaCpi1 T Cy
We see at once that
_ | b a
C3 = Fyb+a =| ] F3|
b a 0
C4 = F4(F3b +a)+b =]-1 F3 1
0 -1 F,
etc. So the solution in determinant form is
b a 0 0 -. 0 0
-1 F3 1 0 .- 0 0
0 -1 F, 1 =+ 0 0
0 0 -1 Fg oo 0 0
Cn+2 - o e ees .
0 0 . Fn+1 1
0 0 0 -0 3 Fpp

as may be verified by expanding in terms of the minors of the last row.
The ratio of two adjacent solutions of the difference equation can be developed into a

continued fraction. Write, using the above sets of equations, ‘

Cs
- a
'C—z F3 +B
21_ = Fy + ! Fy + !
Cs 47 Cy/Cy 4 Fy +
Cn+2 - F + 1
Cn+1 n+2 F+1+ 1
n T
n
1
= .
+ =
F3 5
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Also solved by R. Whitney.

ANOTHER OLD TIMER
H-108  Proposed by H. E. Huntley, Hutton, Somerset, U.K.

Find the sides of a tetrahedron, the faces of which are all scalene triangles similar to
each other, and having sides of integral lengths.

Solution by the Proposer.

The interesting article, ""Mystery Puzzle and Phi," by Marvin H. Holt (Fibonacci Quar-
terly, Vol. 3, No. 2, p. 135) contains a solution. See H. E. Huntley's The Divine Propor-

tion, Dover, New York, N. Y., 1970, pp. 108-109, Section entitled '"The Tetrahedron
Problem. "

18 /
[/ 12

/ :

SHADES OF THE PAST

[o o]

H-86  Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, Calif. (Corrected)

P
Let p,q be integers such that p+q =1, q =0; showthat if x" (x - 1)0'l -1 =0 has
TOOtS Ty, Tgy =+ rp+q and (x - 1)p+q -xP = 0 has roots Siy Sgs "%, Sp+q then sg =
r?—‘-p for i=1,2,+*,p+a.

Solution by L. Carlitz, Duke University, Durham, North Carolina.
Presumably the problem should read:

Show that if xp(x - 1)q -1 =0 has roots ry, Ty, **+, T and (y - 1)p+q - yp =0

ptq
has roots sy, 89, **°, sp +q? then the roots can be so numbered that
+ :
P B G=1,2,""*,p+aq .

1 1
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Proof. Consider the transformation

1
Xx-1-= -1
This implies
_ X
y =% -1
Hence, if x satisfies xP(x - 1)0J =1, we get
a_ x4 Pt _ Pt

x-1n% Px-1d

This evidently yields the stated result.

PARTIAL SOLUTION
H-125  Proposed by Stanley Rabinowitz, Far Rockaway, New York.

Define a sequence of positive integers to be left-normal if given any string of digits,
there exists a member of the given sequence beginning with this string of digits, and define
the sequence to be right-normal if there exists a member of the sequence ending with this
string of digits.

Show that the sequences whose nth terms are given by the following are left-normal
but not right-normal.

a. P(n), where P(x) is a polynomial function with integral coefficients.

b. Pn’ where Pn is the nth prime,

c. n!

d. Fn’ where Fn is the nth Fibonacci number.

Partial Solution by R. Whitney, Lock Haven State College, Lock Haven, Pennsylvania.

b. The article "Initial Digits for the Sequence of Primes,' by R. E. Whitney (Amer.
Math. Monthly, Vol. 79, No. 2, 1972, pp. 150-152) established apositive relativelogarithmic
density for the set of primes with initial digit sequence {an, a 1T al} in the set of
primes. Thus Pn is left-normal. On the other hand, no member of Pn ends in "4," so
Pn is not right-normal.

I believe that the left-normality of Fn can also be established with a densityargument.

Editorial Note

The following list represents those problems for which no solutions have been submitted.
Let's fight problem pollution!

H-76, H-84, H-87, H-90, H-91, H-84, H-100, H-110, H-113, H-114, H-115, H-116,,

H-122, H-125 (partial), H-130, H-146, H-148, H-152, H-170, H-174, H-179, H-182,

This list represents problems less than or equal to H-185,
B v e 4



NUMBERS COMMON TO TWO POLYGONAL SEQUENCES

DIANNE SMITH LUCAS
China Lake, California

The polygonal sequence (or sequences of polygonal numbers) of order r (where r is
an integer, r > 3) may be defined recursively by

1) (ryi) = 2(r, i - 1) - (ryi -2 +1r -2

with (r,0) =0, (r,1) = 1.

It is possible to obtain a direct formula for (r,i) from (1). A particularly simple way
of doing this is via the Gregory interpolation formula. (For an interesting discussion of this
formula and its derivation, see [3].) The resultis

2) (ryi) =i+ (r - 2)iG - 1)/2 = [(r - 2)i%* - (r - 4)i]/2.

It is comforting to note that the '"square' numbers — the polygonal numbers of order 4 — ac-
tually are the squares of the integers.
Using either (1) or (2), we can take a look at the first few, say, triangular numbers
(r=23)
0, 1, 3, 6, 10, 15, 21, 28, 36, 45, *** .

One observation we can make isthat three of these numbers are also squares — namely 0, 1,
and 36. We can pose the following question: Are there any more of these "triangular-square"
numbers? Are there indeed infinitely many of them? What can be said about the numbers
common to any pair of polygonal sequences?

We shall begin by answering the last of these questions, and then return to the other
two. Suppose that s is an integer common to the polygonal sequences of orders r; and 1y

(say ry <ry). Then there exist integers p and q such that
s = [(r; - 2)p* - (r; - 4)p]/2 = [(rz - 20 - (r; - 4)q]/2,
so that

3 (r; - 2p% - (r; - 4p = (rz - 2 - (r; - 4)q,

This paper is based on work done when the author was an undergraduate research partici-
pant at Washington State University under NSF Grant GE-6463.
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and in fact, since both sides of the equation (3) are always even, every pair of non-negative
integers p,q which satisfy (3) determine suck an integer s.
As a quadratic in p, this has integral solutions, so — since all coefficients are inte-
gers — the discriminant
(ry - 4% + 4(r; - 2(ry - 2)9% - 4(r; - 2)(r; - 4)g
must be a perfect square, say x%, so that

x2 = 4(r; - 2{ry - 2)q% - 4r; - 2)(ry - g + (@©; - 4%,

As a quadratic in ¢, this also has integral solutions, and the discriminant — and hence

1/16th of the discriminant — must again be a perfect squre, say y%, so that
(4) yE - (g - 2(ry - 2)x* = (r; - 22%ry; - 4% - (v - 2(ry - 2)(xy - 4)?,

where p and g are given by

(ry - 4) + x (g - Dy - &) +y
(5) e ) 17 2o -2, - 9

Although it can be shown, by solving (5) for x and y andsubstituting into (4), that every so-
lution of (4) gives a solution of (3), it should be noted that some of the integer solutions of (4)
may not give integer values for p and ¢q. Nevertheless, (4) and (5) give us all possible can-
didates for integer solutions of (3).

Now (4) is in the form of Pell's equation, y% - dx? = N, which has a finite number of
integral solutions in x and y if d is a perfect square while N does not vanish. For then
the left side can be factored into (y - ax)(y + ax), where a is an integer; and N has only
finitely many integral divisors.

So we already have a partial answer to our question. If (r; - 2)(r; - 2) is a perfect
square and the quantity on the right side of (4) is non-zero, we have only finitely many candi-
dates for integers common to the two sequences of orders ry; and ..

On the other hand, if (ry - 2)(ry - 2) is a perfect square and the right side of (4) is zero,

then (4) reduces to a linear equation in x and y:
y = :L—'\/Iri - Z)irz - Z)X .

Since the coefficient of x is an integer, this has infinitely many integral solutions.

An analysis of the right side of (4) reveals that, with r; # ry, this quantity vanishes
only when one of r; and r, is 3 and the otheris 6. In that case, (4) becomes y* - 4x% = 0,
or y = +2x; and equations (5), with y replaced by +2x, become p = (x - 1)/2; g = (1 + x)/4.
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At this point it is not too hard to see that for infinitely many integers x, the above
equations yield non-negative integral values for both p and q. Therefore, there are in—
finitely many hexagonal-triangular numbers. In this case, however, we have taken the long
way around; for it can be shown directly, using (3), that indeed every hexagonal number is
also a triangular number.

It remains for us to investigate what happens when (r; - 2)(ry - 2) is not a perfect
square (and here the right side of (4) is necessarily non-zero). If this is the case, then there
are infinitely many positive integral solutions to (4) if there is one such solution|[ 2, p. 146 ],
But in fact we can always exhibit at least one solution — namely x; = ry, y3 = Iy(ry - 2) —
corresponding to p = q = 1. We still have the job, however, of showing that infinitely many
of these solutions of (4) give us integer solutions of (3).

Consider the related equation
(6) u? - (ry - 2)(ry - 2v2 = 1.

With (ry - 2)(ry - 2) not a perfect square, this has infinitely many integral solutions, gene-
rated by

un + Vn \eri - 21“1'2 - 2; = (u1 + vy \l‘ri - Z;Zrz - 2))n N

where u;, v; is the smallest positive solution [2, p. 142]. We obtain uy, vy by inspection.
In particular, u,, vy, given by

uy + Vo '\Nri - 2”1‘2 - 2; = (u1 + vy '\/II‘I - 2”1‘2 - 2))2 N
is a solution of (6), and by expanding the right side and comparing coefficients, we get

u = u+ (r; - 2)(r, - 2V
(7)

Vo = 2u1V1
Now infinitely many (but not necessarily all) of the positive solutions of (4) are given by
Z - = (w K - Z (T; - 2) (@, - 2)
(8) Yo+1 +xn+1'\/ ;- 2)(r; - 2) (U,l1 + vy Ny - 2) (1, 2))(yn +Xn'\/ ry - 2)(ry - 2))

where u;, v, is any positive solution of 6) [2, p. 146], say uy, vy, Again comparing co-

efficients, we get

y

1 = Yy + (r1 - 2)(r2 - 2)v2xn ,

) -
Xpy1 = Va¥p T U%, o

with the side conditions x; = 1y, y; = ro(ry - 2).
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Consider the first of equations (9). This can, by adding a suitable quantityto each side,
be changed to

y

n+1 + (I'1 - 2)(1'2 - 4:) + (1'1 - 2)(1‘2 - 4:)(1.12 - 1) = uz(yn+(r1—2)(r2—4))

+ (I‘i - 2)(]:'2 - 2)V2Xn 3
and using (6) and (7), we get

Yppp + (1 - (g - 4) = wly + (v - 2)(ry - 4) + 2(ry - 2(r; - duyvyx

(10) - 2(ry - 2)2(ry - 2)(r; - V] .

Recalling that y; = ry(ry - 2), clearly

yi = -(r; - 2(ry - 4 (mod 2(r; - 2)(ry - 2);
and letting n = k in (10), we see that if

Vi = -y - 2(r; - 4 (mod 2(ry - 2)(r; - 2))

for some integer k, then each term on the right of (10) is divisible by 2(r; - 2)(ry - 2).
Hence the left side of (10) is divisible by this same quantity, and

Vs = -(ry - 2)(ry - 4) (mod 2(ry - 2)(ry - 2)).

By mathematical induction, and with reference to the second of equations (5), all of the yn's
given by (9) produce positive integral values: for q.
Similarly, the second of equations (9) can be transformed into

X T -4+ - Dirg - 4) +vp(ry - 2)(rp - 4) = voly, + (ry - 2)(ry - 4))

+up(x + (ry - 4)),

and again using (6) and (7), we get

Xoaq t (ry -4 = nly, + (v - 2)(rp - 4) + uz(xn + 1y - 4))

(11) - 2V% (I'i - 2)(1'2 - 2)(1‘1 - 4:) - 21.11V1(I‘1 - 2)(1'2 - 4) .

Since
y. = ~(r; - 2)(ry - 4) (mod 2(r; - 2)(ry - 2))

n

for all n, certainly
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y, = -(ry - 2)(ry - 4) (mod 2(r; - 2)) .

We have that
Xy = —(ry - 4) (mod 2(r; - 2)),
since x; = ry; and it can be seen from (11) that if

X

= - -4 (mod 2(ry - 2)

for some integer k, then

X4 = -(ry - 4  (mod 2(r; - 2)).
That is, 2(r; - 2) divides X+ (r; - 4) for every positive integer n.

To summarize, for (r; - 2)(ry - 2) not a perfect square, we have exhibited (in (9)) in-
finitely many — but not necessarily all — of the solutions to the Pell-type equation (4); and all
of these give positive integral solutions p,q of (3). These, in turn, give integers s which
are common to the two polygonal sequences of orders r; and r,.

In view of the above, we can now state the following theorem:

Theorem. Given two distinct integers r; and 1, with 3= r; < ry, each defining
the order of a polygonal sequence, there are infinitely many integers common to both se-
quences if and only if one of the following is true:

i. ry =3 and ry, = 6, or

ii. (ry - 2)(ry - 2) is not a perfect squre.

In practice, given particular integers r; and r,;, we can get all of the solutions of (4)
by using at most finitely many equations of the form (8), with a different xy, y; for each one.
Some of these equations can be eliminated or modified toleave out those solutions which give
non-integer values for either p or g. We may then obtain equations generating all pairs
p,q for which (ry,p) = (ry,q); and, if desired, finitely many equations generating the num-
bers s common to the two sequences. The procedure for finding all solutions of (4) is ardu-
ous and depends erratically on the actual values of r; and r;. For the general machinery,
see G. Chrystal [1, pp. 478-486].

Now we can easily answer our questions about triangular squares. Letting ry = 3 and
ry =4, (r;-2)(ry-2) becomes 2, which is not a perfect square. There are, then, infin-
itely many triangular squares. As a matter of fact, this result has been known for some time.
To exhibit these numbers, we note that since the coefficient of q in (3) becomes 0, we can
get a formula like (4) by applying the quadratic formula only once. The result is

or
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(12) x2 - 2y% = 1,

where p = (x - 1)/2 and q = y/2. Conveniently enough, (12) is already in the form of (6);
and since x; = 3, y; = 2 is the smallest positive solution, all non-negative solutions of (12)
are given by

(13) x +y NZ = (3+2vD)" @=0,1,2, ).

Certainly the '"next" solution is given by

X

w1t VpaNZ = Gy Y NDIE + 2NE)

and by comparing coefficients we get

Xn +1 3xn + 4yn ’

(14)

1

Yn+1 2xn + 3yn ’
with (from (13)) %, = 1, y; = 0.

It follows by induction from (14) that all values of y, are even non-negative integers,
and all xn's are odd positive integers. Therefore, for any solution p,q of (3) — innon-

negative integers and with ry = 3, ry = 4 — there existsan n (0 = 0, 1, 2, ...) suchthat

p=p =& -1)/2
(15) n

9 =9 =y, /2

where X» ¥, are given by (14). Furthermore, Pps 9y given by (15) forms a non-negative
integral solution for any n, since the xn's are always odd and all of the yn's are even.

All triangular square numbers, then, are given by

(16) s, = @ +p)/2 =2 .

Solving (14) with xy = 1, y, = 0, we get

[(3 + 2NZ)™ + (3 - 2NT))/2

(B +282)" - (3 - 242)"|/2NT ,

X
n

Yn

and combining these with (15) and (16), we obtain

_ a7+ 1242)" + (17 - 1247)" - 2
n 32 i
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where Sy is the nth triangular-square number.
Likewise, we can compute a formula for the nth triangular-pentagonal number. The

result is

_ 2 - N3)(97 + 5683)" + (2 + N3)(97 - 56§3)" - 4
n 48 ] ‘

S

This agrees with a result recently published by W. Sierpir{ski [4].
I am thankful to Dr. D. W. Bushaw, whose suggestions and encouragement made the

writing of this paper possible.
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L e oo J
[Continued from page 71. ]
o0
m*
-1 k k
M = —kT D
k:
is given by
© *
, -~ T K ¢yt cot
(VII) }__‘,Ft = 1/(Ae t" + Be %)

We now note that for Case 2, where A +B = 0, Eg. (VH) does not exist for t =0, and
hence there is no inverse operator m L Thus, a sufficient condition for M1 (see () to
exististhat A +B # 0, i.e., Casel., For A +B # 0, one readily finds that

-A/B) :

Many more identities can be quoted. Indeed, for m, n = 0, 1, ***, one has

C1

* k
(VIII) (A -+ B)mk = (CZ - 01) Hk <m
where H (x|)) is the Eulerian polynomial cited in (¥).

[Continued on page 112. ]



A PRIMER FOR THE FIBONACCI NUMBERS
PART Xl: MULTISECTION GENERATING FUNCTIONS FOR THE
COLUMNS OF PASCAL'S TRIANGLE

VERNER E. HOGGATT, JR., and JANET CRUMP ANAYA
San Jose State University, San Jose, California

1. INTRODUCTION

Let

]

f(x) = Z anxn

n=0

be the generating function for the sequence {an}. Often one desires generating functions

which multisect the sequence {an },
00
G;(x) = z ai+m].x3, G=0,1,2 -, m - 1).

j=0

For the bisection generating functions the task is easy. Let

Hy(x2) = f(x) +2f(-x) ,
my6) = [ IR

then clearly Hy(x2) and H,(x?) contain only even powers of x so that

o0 00
Hi(x) = E 290 <" and Hy(x) = E 3041 "
n=0 n=0

are what we are looking for.

Let us illustrate this for the Fibonacci sequence. Here

[*e]

fx) = = =§ ann,
1-x - x? =
n=0

then
85
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00

Z Fon X

n=

H;(x)

1 - 3x +x2

and

o0

_1-x
Ha (%) = Z Fops1 X

_ 2
1 3X + X =0

Exercise: Find the bisection generating functions for the Lucas sequence.
Let us find the general multisecting generating functions for the Fibonacci sequence,

using the method of H. W. Gould [1] The Fibonacci sequence enjoys the Binet Form

_ozn_Bn 1 +45 _1-\5%
P aop — b=

Let f(x) = 1/(1 - x); then

n s - plEE™x)
Z an+j X = Xa - B =
0

_ 1 od gl )
Q_B<1-amx 1 - %%

d - g jod? - g™
o —p * P ——E—ﬁ_x

1- @ +g™)x + @™

P+ (DIF_x
= L in ’ (j=091’2:“')m_1)’
1- me + (-1)

since o = -1, o +f =L_, and

Exercise: Find the general multisecting generating function for the Lucas sequence.
The same technique can be used on any sequence having a Binet Form. The general
problem of multisecting a general sequence rapidly becomes very complicated according to

Riordan [2], even in the classical case.

2, COLUMN GENERATORS OF PASCAL'S TRIANGLE

The column generators of Pascal's left-justified triangle [3], [4], [5], are
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= 2
= —_— = n n 3 ® o 0
G ) = . Z(k) e kK =0,1,2, - .
1 - x) =N

We now seek generating functions which will m-sect these,

o0
Gi(m, k; x) = E (1+kk+ mn) xn+k+1, G =0,1,*,m-1).
n=0
We first cite an obvious little lemma.

() -2 ()« (1)

=1

Lemma 1.

Definition. Let Gi k(x), i=0,1,2, -, m-1, bethe m generating functions

00
_ i+ k +mn i+mn-+k
o0 = 30 (1) o

n=0
Lemma 2.
2 . m
o ) - XGi,k(X) + X Gi—l,k(x) + + X Gi—m+1,k(x)
i k+1 m :
1-x
The proof follows easily from Lemma 1.
Let
n(m-1)
(1+x+x2+---+xm'1)n= E )
Y/ m
=0

define the row elements of the m-nomial triangle. Further, let

) = k j .
fi(m,k,x)—Z(i+jm)mx, i=0,1, ,m -1,

=0

where j is such that i +jm =k(m - 1). These are multisecting polynomials for the rows
of the m-nomial triangle. Now, we can state an interesting theorem:
Theorem. For i =0,1,2, °**, m-1,
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xk+i fi(m, k; x)

G,(m,k; x) = —
i a - x) +1

Proof. Recall first that the m-nomial coefficients obey

O O Gy e (5,

where the lower arguments are non-negative and less than or equal to n(m - 1).

Clearly, for k = 0, from the definition just before Lemma 2,

i
G (& = ——, i=0,1,2, >+, m-1.
’ 1 -x
Assume now that
xk+1 fi(m,k; xm)

1

G, ® =
ik - Xm)k+

for i=0,1,2,3, ***, (m - 1). From Lemma 2,

m
XGi-l,k(X) +oeee + X Gi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>