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ENUMERATION OF TWO-LINE ARRAYS 

L.CARLITZ* 
Duke University, Durham, North Carolina 

1. We consider the enumeration of two-line a r rays of positive integers 

(1.1) 
a i a2 • - . a n 

bi b 2 • • • b 
1 L n 

subject to certain conditions. We assume first that 

(1.2) max (a., b.) < min (a.+1> b . + 1 ) (1 < i < n) 

and 

(1.3) m a x ( a . , b.) < i (1 < , i < n) . 
i I 

Let f(nsk) denote the number of a r rays (1.1) satisfying (1.2) and (1.3) and in addition 

(1.4) a „ = b n = k ; 

let g(n,k) denote the number of a r rays (1.1) satisfying (1.2) and (1.3) and 

(1.5) max (a , b ) = k . 

Also put 

(1.6) f(n) = f(n,n), g(n) = g(n,n) . 

Next let h(n,k) denote the number of a r rays (1.1) that satisfy the conditions 

(1.7) 1 = ^ = ai < b2 < a2 < ••• < b n < a n = k 

and 

(1.8) a. < i (1 < i < n) . 

* Supported in part by NSF Grant GP-17031. 
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114 ENUMERATION OF TWO-LINE ARRAYS [Apr. 

Also put 

n 
(1.9) h(n) = Y, h(n,k) . 

k=l 

We shall determine the enumerants f, g, h explicitly. In particular, we show that 

(1.10) «-»-!s(-)(r,f) 
i(.*0 • (1.11) h(n) 

Note that f(n + 1) is the total number of arrays satisfying (1.2) and (1.3), while h(n) is the 
total number of arrays satisfying (1.8) and 

(1.7)' 1 = bt = ai * b2 =s a2 ^ ••• ^ bn =£ a n . 

The conditions (1.2), (1.3) are suggested by one formulation of the ballot problem (for 
references see [2]). On the other hand, (1.2) has also occurred in a problem in multipartite 
partitions [ l ] , [4]. 

2. To begin with, we consider the functions f(n,k), g(n,k). We state some preliminary 
results. 

k 
(2.1) f(n + l ,k) = 2 (2k - 2j + l)f(n,j) (k < n) , 

j=l 

k 

(2.2) f(n + l,k) = J2 g^'J) (k < n + 1) , 
j=l 

k 

(2.3) g(n + l,k) = J2 <2k " 23 + Dgto.j) (k < n) , 
3=1 

k-1 
(2.4) g(n,k) = f(n,k) + 2 ^ f(n,j) (k < n + 1) , 

j=l 
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(2.5) 

ENUMERATION OF TWO-LINE ARRAYS 

k 
g(k + 1, k) = ] T g(j,j)g(k - j + 1, k - j + 1) 

j=l 

To prove (2.1), consider the a r ray 

115 

a l a2 

bt b2 

a k n 
b k n 

where 

max (a., b.) ^ min (a . + 1 , b . + 1 ) 

max (a 9 b ) ^ k , n n 

(1 < i < n) , 

max (a., b.) ^ i (1 < i < n) 

Let j = min (a , b ). For fixed j < k9 we can pick an , b n in 2k - 2j + 1 ways. This 
evidently implies (2.1). 

Equation (2.2) is an immediate consequence of the definitions. The proof of (2.3) is 
s imilar to the proof of (2.1). We consider the a r ray 

ai a2 

bi b2 

an V l 
b b J n n+1 

where now 

max (a , b ) = j , n n J m a x ( a n + r b n + 1 ) = k . 

For fixed j , k , we can pick * , bn+± in 2k - 2j + 1 ways. This yields (2.3). 
As for (2.4), it i s only necessary to observe that corresponding to the a r ray 

a i a2 

where max (a , b ) = k, we have the set of a r r ays 

*i a2 a n - l J 

b n - l J 

where j = min (a , b ). j v n n 
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To prove (2.5), consider 

[Apr. 

(2.6) 1 i ••• i 
| i ••• 

j ••• k 
j 

k - j + 1 

Since 

max (al9 ht) = 1, max (\+1> \+i^ = k » 

there is a leas t j such that 

max (a , b.) = max (a,+1» bj+1> . 

Thus a. - = b. = j . Subtracting j - 1 from each element in the right-hand sub-array of j+1 j+1 
(2.6), we get (2.5). 

A more general resul t is 

k 
(2.7) g(n + k,k) = £ ] g(j,j)g(n + k - j , k - j + 1) (n ^ 1) . 

3=1 

To prove (2.7), we consider the a r ray 

1 1 ••• j 

1 . . . 

j ••• k 

j 

and pick j as in the proof of (2.5). 
Next we have 

n + k - j 

(2.8) 

and 

(2.9) 

f(k + i ,k) = ]T) g(j,j)f(k - j + 1, k - J + 1) 

3=1 

f(n + k,k) = ] p gOJJfto + k - j , k - j + 1) (n ^ 1) 

3=1 

The proof of these formulas is s imilar to the proof of (2.5) and (2.7). 



1973] ENUMERATION OF TWO-LINE ARRAYS 1 1 7 

3. Put 
(3.1) f(n) = f(n,n) = f(n, n - 1), g(n) = g(n,n) , 

oo n 
n k (3.2) F(x,y) = 2 S f(n9k)x l ly 

n=l k=l 

(3e3) G^y> = I ] E g(nsk)xnyk
J 

n=l k=l 

(3.4) F(x) = J^ f(n) x11 

n=l 

(3.5) G(x) = ^ g(n) x n . 
n=l 

We rewrite (2.8) in the form 

k 
(3.6) f(k + 1) = J ) g(j)f(k - ] + 1) 

5=1 
Then by (3.4), 

F(x) = x + ^ f(k + 1). k+1 
x 

k = l 

°o k 

= x + ] T x k + 1 ^ g(j)f (k - j + 1) 
k=l j=l 

OO CO 

= x + Sg(j)xj Sf (k)xk' 
5=1 k=i 

so that 
(3.7) F(x) = x + F(x)G(x) . 

Next, by (2.7), 

oo oo co oo co 

2 g(n+k,k)xn+k = 2 ^ ^ E g(J.i)g(n + k - j , k - j + l) = £ g ( j , j ) x j E g<n+k-l>k)xn + k - 1 

k=l k=l j=l j=l k=l 
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Hence, if we put 

(3.8) Gn(x) = J2 g(n + k - l ,k) x n + k X (n ^ 1) , 
k=l 

we have 

(3.9) G n + l ( x ) = G ( x>G
n

( x> (n ^ 1) . 

Since 

Gtto = J2 g(k,k)xk = G(x) , 
k=l 

it follows that 

(3.10) 

Next consider 

G(x,y) = 

Gn(x) = Gn(x) . 

oo co 

= ]C Es( n'k ) x ny 
n=l k=l 

= X) ^ + k-1,k)xj+k_lyk 
j , k = l 

OO CO 

= 2 y " j + 1 S g(J + k - 1. k ) (xy) j + k _ 1 

3=1 k=i 

oo 

= X) y " 3 + l Q 3 ( x y ) • 

by (3.10). Therefore 

(3.11) G(x,y) = ^ & 
1 - Y ^ ( x y ) 

On the other hand, by (2.3), 
co n + i 

G(x,y) = xy + x ] T ] P g(n + 1, k) x n y k 

n=l k=l 

co oo n k 

= xy + £ g(n + 1, n + l ) (xy) n + 1 + x ^ S Z ^ (2k~2J+1te(n» J ^ V " 
n=l n=l k=l j=l 
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00 n n-j 

k 

Since 

= G(Xy) + x J2 J ] s(n» ̂  y3 ^ ( 2 k + x>y 
n=l j=l k=0 

= G(xy) + x X g(n + j - 1, j ) x n + j _ 1 5^ J ] (2k + l )y k 

n , j=l k=0 

00 n _ i 00 

= G(xy) + x 2 y"n+1 X) (2k + ^Sst11 + i - !• AM*41'1 

n=l k=0 j=l 

<*> n - l 
= G(xy) + x S y~n+1 X { 2 k + i)yk • ° n ( x y ) 

n=l k=0 
00 

= G(xy> + x 2 ( 2 k + Uy-11 Gn+k+1(xy) 
n,k=0 

= G(xy) + xG(y) J - (2k + 1 ) Q k ( x y ) _ 
1 - y^Gfey) k = Q 

k 1 + z 

k=0 & " Z>2 

] P <2k + l)zk = 

it follows that 

(3.12) G(x,y) = G(xy) +
 x G ( x y ) - 1 + G ( x y ) 

1 - y""1G(xy) ( l - G(xy))2 

Comparing (3.12) with (3.11) 9 we get 

1 = x + x 1 + G(xy) 
1 - y"XG(xy) 1 - y_1G(xy) ( l - G(xy))2 

For y = 1, this reduces to 

_ 1 1 + x 1 + G(x) 
T^G® - T^m ( 1 _ G(x))2 

Therefore 
(3.13) G(x)( l - G(x))2 = x ( l + G(x)) . 

Now consider the equation 

(3.14) z ( l - z)2 = x( l + z) , 
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where z = 0 when x = 0. By [3, p. 125], the equation 

(3.15) w = W) (0(o) = x) 

where 0(z) is analytic in the neighborhood of z = 0, has the solution 

(3.16) \ ^ w__ d 9 (x) 
Z-rf n! , n -1 
n=l L ^ x=Q 

Later we shall require the more general result: 

(3.17) f (Z> = «°> + E TT 
n=l 

^n-1 

dxJ ̂  f'(x)<r(x) 
x=0 

If we take 
0(x) = (1 + x)(l - x)~2 , 

then 
00 00 

s=o \ / t=o x ' 
00 00 

x E v)( * ) 
m=0 s+t=m \ / \ / so that 

drf n̂ i r w = ^ - ^ i : ( t
n

+ i ) ( 2 n v 
:=0 t=0 ^ / \ 

Therefore, by (3.13) and (3.16), we get 

(3.18) 

Thus 

(3.19) 

G(x) s£i:(,:1)(*,V-1) 
n=l t=(M ; > ' 

g(n) i§(.^)(fcv-1) 
4. In the next place, by (3.7), 



1973] 

(4.1) 

Then, making use of (3.17) 9 

ENUMERATION OF TWO-LINE ARRAYS 

x F(x) = 

(4.2) 

It is easily verified that 

F(x) = 1 + 2^ n! 
n=l 

1 - G(x) 

d11"1 (1 + x ) n 

, n -1 M .2n+2 
dx (1 - x) J x = 0 

121 

d11"1 (1 + x ) n 

, n -1 H v2n+2 
dx (1 - x) 

= (n 

so that (4.2) yields 

(4.3) 

Hence 

x=0 

00 ,- n -1 

i , !lG-)C"v+1) 
F(x) = x + 

n=l t=0 \ / \ I 

(4.4) *--*§(-)("+', + I) 
To determine g(n,k) we use (3.10)s that is 

(4.5) ] £ g(j + k - 1, k). 
k=l 

J+k-x = GHX) 

Taking f(z) = z ] in (3.17), we get 

n= ĵ 
i 
dxJ 

^ 1 / X M a + *)n \\ 
n-1 \ /n x2n } 

* V (1 - )̂ / J x = 0 
Since 

dxJ ^ ^ ) . . . * g i : , X f c v - ' ) 
it follows that 

(4.6) G3(x) = J 

Hence, by (4.5), 

oo n—i 

n=j t=QX ' / X / 



122 ENUMERATION OF TWO-LINE ARRAYS 

(4.7) g(n, n - j + 

Next if we put 

(4.8) 

»-iz( , : , ) (*v-1) 

Fn(x) = ]T f(n + k - 1, k)x 
k=l 

n+k-1 (n s i) , 

i t follows from (2.9) that 

Fn+l(x) = 2 ] f(n + k ' k)xi n+k 

k=l 

= £ x n + k ^ ) g(j)f(n + k - j , k - j + 1) 
k=l j=l 

OO OO 

n-Hs-1 

so that 
(4.9) 

2 g(j)x3 £ ) f(n + k - 1, k)x] 

5=1 k=l 

Fn + 1(x) = Fn(x)G(x) (n ^ 1) . 

Hence, by (4.9) and (4.1), 

(4.10) 

We now apply (3.17) with 

Since 

we get 
OO 

n 
i F . ^ X ) = f(o) + y — 
x j+lv ' L*t n 

n=j 
It follows that 

Fn+1(x) = FWG^) = ftJgL) 

f(x) = 
1 - X * 

f*(x) = 

1 n-j 
j £ ( j + 

t=0 > 

•*£< 

0(M« 
(1 

' ) 

X3 

- x)2 

n- j -1 

•El 
t=0 

M O ) 

« . • . . . - ) • . > - | J E ( , ; t ) ( 2 n ; , ) + n f 1 ( ] + ; + 1 ) ( 2 ° \ t + 1 

or if we prefer 



1973] 

(4.11) f(n 

ENUMERATION OF TWO-LINE ARRAYS 

+1'k+1)-l(°-k,S(-')Cv')i(-')(-) 
123 

Note that, when n = k9 (4.11) becomes 

f(k + 1) = f(k + 1, k + 

in agreement with (4.4), 
5* The total number of a r rays 

•)-is(i)(r1
t) 

(5.1) 

such that 

(5.2) 

is equal to 

aA a2 •••• an 

bi b2 ••• b n 

( m a x (a., b.) ^ min (a .+ 1 , b . + 1 ) 
| m a x (ai9 b.) ^ i 

(1 < i < n) 
(1 < i < n) 9 

n - l 
(5.3) 

(5.4) 

2 g(n>j) - f(n + 1, n) = f(n + 1) = i £ (t + l)( ^ V + *) ' 

Similarly the total number of a r rays (5a) satisfying (5.2) and an = b n is equal to 

n 
J^ f(n,k) = | (g(n,n) + f(n,n)) . 
k=l 

The numbers f(n,k), g(n5k) can be computed by means of the recurrences (2.1), (2.3). 

Checks a re furnished by (2.2) and (2.4). 

f(n,k) : 

[\ k 
n \ . 

1 
2 
3 
4 
5 

— 6 

1 7 

1 

1 
1 
1 
1 
1 
1 

1 

2 

1 
4 
7 

10 
13 
16 

3 

4 ; 
21 
47 
82 

126 

4 

21 
126 
324 

642 

5 

126 
818 

2300 

6 

818 
5594 

7 

5594J 
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g(n,k) 

° \ 

1 2™" 
J 3 

1 4 
| 5 
I 6 

1 

1 
1 
1 
1 
1 
1 

2 

3 
6 
9 

12 
15 

3 4 

14 
37 
69 

110 

79 
242 
516 

5 

494 
1658 

6 

3294 J 

6. We turn now to h(n,k), the number of a r r ays 

ai 

bi 
such that 
(6.1) 1 = bt = 84 ^ b2 

and 
(6.2) a. ^ i 

It is c lear from the scheme 

a-i a2 

bi b2 

a2 

b2 

< 

. . . an 

b n 

a2 < • • • < b ^ a = k 
4 n n 

(1 < i < n) . 

"" V i k 

• • ' b n - l j 

that 
k j 

h(n,k) = ^ S h ( n " 1 ' S) 

3=1 s=l 
This yields the recurrence 

(6.3) h(n5k) = ^ ( k " S + 1 ) h ( n " l s 

s=l 
(1 =s k < n) 

When k = n , it is understood that (6.3) becomes 

n -1 
(6.4) h(n,n) = ^ (n - s + l)h(n - 1, s) 

s=l 

It i s c lear from the definition that 

(6.5) h(n) = ]j£hfo,k) 
k=l 
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is equal to the total number of a r rays that satisfy (6.2) and 

125 

(6.6) i = b l = a 1 ^ b 2 ^ a 2 : s - - - ^ b n ^ a n 

The first few values of h(n9k) can be computed by means of (6.2): 

h(nsk) 

\ k 

1 

1 2 
3 

1 4 
1 5 

1 

1 

1 

1 

1 

1 

2 

2 

4 

6 

8 

3 

7 

18 

33 

4 

30 

88 

5 

143 

h(n) 

1 

3 

12 

55 

273 

The numbers in the right-hand column are obtained by summing in the rows. Thus the entries 
are h(n) as defined by (6.5). 

We shall now show that 

k 

(6.7) h(k + 1, k) =J2 Mj,j)h(k - ] + 1, k - ] + 1) . 
3=1 

Proof. Consider the scheme 

k - j + 1 

We choose j as the leas t positive integer such that 

a. ,i = b . , - = a. . 
3+1 3+1 3 

Such an integer exists because a, = k. Subtracting j - 1 from each element in the right-
hand sub-array5 we get (6.7). 

Next we have 
k 

(6.8) h(n + k,k) = 2 n0ij)h(n + k - J, k - j + 1) (D * 1) . 
3=1 

To prove (6.8), consider the scheme 

1 . . . j 
1 

3 ooe k 
3 

n + k - j 
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We choose j as above. The res t of the proof is the same. 
Now put 

OO OO 

n k (6.9) H(x,y) = £ £ x n y k • 
n=l k=l 

OO 

(6.10) H(x) = ^ h ( k , k ) x k = Hx(x) , 
k=l 

OO 

(6.11) Hn(x) = ] T h(n + k - 1, k ) x n + k 4 (n > 1) . 
k=l 

Then, by (6.8), 

Hn+1(x) = ^ h ( n + k, k): 
n+lv 

k=l 

n+k x 

k 
2 X 12 Mj, j)h(n + k - j , k - j + 1) 
k=l j=i 

= ^3 h(J»3)xj JT h(n + k - 1, k)x] 

5=1 k=l 

n+k-1 

so that 

(6.12) H
n + i ( x ) = H ( x ) H

n W <n ~ 1) • 

Therefore 

(6.13) H (x) = Hn(x) (n > 1) . 

In the next place 
n 

n k H(x,y) = 2 X)h ( n'k ) x l l y 

n=l k=l 

2 h(j + k - 1, k j x ^ " 1 yk 

] .k=l 
OO OO 

J2 y~3+1 X) Mj + k - l, Wfey)1"*"1 

j=l k=l 
OO 

2 y"j+1 Hj(xy) . 
J=l 
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Thus, by (6.13), 

(6.14) H(x,y) = H(xy) 
1 - y_1H(xy) 

On the other hand, by (683)s 

00 n+1 

H(x,y) = xy + x ] T ] P h(n + l f k)xn y k 

n=l k=l 

oo °° n 

= x y + 2h(n + * » n + D( x y) n + 1 + xZZh ( n + lj k ) * n y k 

n=l n=l k=l 
00 n k 

= H(xy> + x 2 2 *n yk2(k - J + 1 ) h ( n>3 ) 

n=l k=l j=l 
00 n n-j 

= H(xy) + xJ2 S hk>J>*n y 3 Z^ (k + X) yk 

n=l j=l k=0 
00 n -1 

= H ^ y ) + x H h(n + j - 1, jjx*1*3"1 y3 2 <k + Dy k 

n , j= l k=0 

oo n _ l oo 

= H(xy) + x 2 y - n + 1 X ; (k + 1) y k X ) h(° + J " L j M ^ " 1 

n=l k=0 j= l 

H(xy) + x Y, y " n + 1 S ( k + X) ^ H l l ( x y ) 

°° n -1 

Ey"n + 1E 
n=l k=0 

oo 

-n TTn+k+l, = H < x y ) + x J2 (k + ^y"11 H n + k + 1 (xy) 
n,k=0 

oo oo 

= H(xy) + xHCxy) X ) ( k + Dl^fey) £ ) y" n Hn(xy) 
k=0 n=0 

and therefore 

(6.15) H(x,y) = H(xy) + x H ( x y ) 

( 1 - y _ 1 H(xy) ) ( l - H(xy))2 

We now compare (6.15) with (6.14) and take y = 1. This yields 
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which reduces to 

(6.16) 

Applying (3.16), we get 

ENUMERATION OF T^VO-LINE ARRAYS 

1 . . x 
1 - H(x) 1 + 

( l - H(x))3 

Since 

H(x) 

j H - 1 

H(x)(l - H(x))2 = x 

-fS[^-i fc=0 

d "^ (1 - t ) ~ 2 n I = (n - 1)1 
n-1 

. d t 

we have 

(6,17) H(x) 

Applying (3.17), we get 

1 = < • > - > » ( » : ? ) • 
Jt=o x ' 

n=l % / 

H-j«^E^rsi( t j"i ( i- t r2n) 
I dt 

n=] L 

(j ^ 1) 
t=0 

This reduces to 

(6.18) 
n=j X ' 

It follows from (6.11), (6.13) and (6.18) that 

(6.19) h(n, n - j + 

In part icular , for j = 1, we have 

i) = i ( 3 * - 5 . - 1 ) ( 1 j ^ n) 

(n,n) = - ( i 1 • 
9 n I n - 1 / 

(6.20) h(n 

We shall now compute 
n n 

h(n) = S h(n,k) = J2 h(ri9 n - 3 + D • 
k=l j=l 

(6.21) 

[Apr. 
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By (6.19) and (6.21), 

n-1 
h(i 

129 

*-Si(\-V)-i5>-»(*,7"1) 

" 5 ( * , V " 1 ) - J S J ( * , V " 1 ) 

j=0 X / j=o \ / 

= /3n - l \ / 3 n - l \ 
I 2n I " I 2n + 1 1 9 

This reduces to 

(6.22) h(n) 

7. By (5.3), 

(7.1) f(n + 
u = # ) ( - ) 

enumerates the number of a r rays that satisfy (5.1) and (5.2). 
Consider the quantity 

(7.2) ^ n . t ) ^ ) ^ ) ( l . t . n ) . 

Clearly nU(n,t) is an integer Moreover 

™-^:i)(?-v)-^(":0(*,«1)' 
so that (2n + l)U(n,t) is also an integer. Since both nU(n,t) and (2n + l)U(n,t) a re inte-
ge r s , it follows that U(n5t) is itself an integer. The question then a r i ses whether U(n,t) 
can be given a simple combinatorial interpretation. In the special case t = n, we have* by 
(6.22) 
(7.3) U(n,n) = h(n) ; 

however the general case remains open. 
A curious relation between G(x) and H(x) is implied by (3.13) and (6.16): 

(7.4) G(x)( l - G(x))2 = x ( l + G(x)) , 
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(7.5) H(x)( l - H(x))2 = x . 

Since the equation 

(7.6) z ( l - z)2 = u, z(0) = 0 

has the unique solution z = H(u), it follows from (7.4) and (7.5) that 

(7.7) H ( X ( I + G(x))) = G(x) . 

By (3.8), (3.10), (6.11) and (6.13), we have 

OO 

H ( X ( 1 + G W ) j = J^ h(k,k)xk ( l + G(x))h 

k=l 

k 
^ M k , k ) x k £ ( ^ ( x ) 
k=l j=(A ' 

k=l j=l ^ / s=l 

r»=9 n-l-lr4-a_1 =rt * ' 

3 

k 
H(x) + V h(k,k)x" V I \ ] Y g(J + s - 1 , s)x-j+s -1 

= H(x) + 2Lf x 2LJ \ A I li(k:,k:)g(j + s - 1, 
n=2 j+k+s-l=n 

Thus (7.7) yields 

i+k^n x / 
(7.8) g(n) = h(a,n) + ^ I * i h ( k ' k >g( n - k, n - j - k + 1) . 

j+k^ 
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UNIT DETERMINANTS IN GENERALIZED PASCAL TRIANGLES 

MARJORf E BtCKNELL and V. E. HOGGATT, JR. 
San Jose State University, San Jose, California 

There are many ways in which one can select a square a r ray from Pasca l ' s triangle 
which will have a determinant of value one. What is surprising is that two classes of gener-
alized Pascal triangles which arose in [ l ] also have this property: the multinomial coeffi-
cient triangles and the convolution triangles formed from sequences which .are found as the 
sums of elements appearing on rising diagonals within the binomial and multinomial coeffi-
cient tr iangles. The generalized Pascal triangles also share sequences of k x k determin-
ants whose values a re successive binomial coefficients in the k column of PascaPs triangle. 

1. UNIT DETERMINANTS WITHIN PASCAL'S TRIANGLE 

When Pasca l ' s triangle i s imbedded in matr ices throughout this paper, we will number 
the rows and columns in the usual matr ix notation, with the leftmost column the f irs t column. 
If we refer to Pasca l ' s triangle itself9 then the leftmost column is the zero column, and the 
top row is the zero row. 

F i r s t we write Pasca l ' s triangle in rectangular form as the n x n matr ix P = (p. ,) . 

(1.1) 

1 

1 

1 

1 

1 

1 

1 

2 

3 

4 

5 

6 

1 

3 

6 

10 

15 

21 

1 

4 

10 

20 

35 

56 

1 

5 

15 

35 

70 

126 

1 

6 

21 

56 

126 

252 

J i i X n 

where the element p . . in the i row and j column can be obtained by 

(i + j - 2 \ 
pij = pi-i,J + p i . M = { i - 1 ) 

and the generating function for the elements appearing in the j column is 1/(1 - x)\ j = 
1, 2, ••• , n. 

Pasca l ' s triangle written in left-justified form can be imbedded in the n X n matr ix 
A = (a..) , 

ij 
131 
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(1.2) 

where 

A = 

1 

1 

1 

1 

1 

L " 

0 

i 

2 

3 

4 

0 

0 

1 

3 

6 

0 

0 

0 

1 

4 

0 

0 

0 

0 

1 

and the column generators are 
• , - ( ! : ! ) 

xj~V(l x)J 

n X n 

The sums of the elements found on the rising diagonals of A, found by beginning at the left-
most column and moving right one and up one throughout the a r ray , a re 1, 1, 2, 3, 5, 8, 13, 

"n+2 F , - + F , the Fibonacci numbers. n+1 n 
Theorem 1.1. Any k X k submatrix of A which contains the column of ones and has 

for its first row the i row of A has a determinant of value one. 
This i s easily proved, for if the preceding row is subtracted from each row successive-

ly for i = k, k - 1, " " , 2, and then for i = k, k - 1, • • • , 3, • • • , and finally for i = k, 
the matr ix obtained equivalent to the given submatrix has ones on its main diagonal and zeroes 
below. For example, for k = 4 and i = 4, 

1 3 3 1 

1 4 6 4 

1 5 10 10 

1 6 15 20 

1 3 3 1 

0 1 3 3 

0 1 4 6 

0 1 5 10 

1 3 3 1 

0 1 3 3 

0 3 1 3 

0 0 1 4 

1 3 3 1 

0 1 3 3 

0 0 1 3 

0 0 0 1 

which is an interesting process in itself, since each row becomes the same as the first row 
except moved successively one space right. 

T Let the n X n matrix A be the transpose of A, so that Pasca l ' s triangle appears 
T 

on and above the main diagonal with i ts rows in vertical position. Then AA = P , the r e c -
tangular Pasca l ' s matr ix of (1.1). That i s , for n = 4, 

AA 

1 

1 

1 

1 

0 

1 

2 

3 

0 

0 

1 
3 

0] 
0 

0 

1 

1 

0 

0 

0 

1 

1 

0 

0 

1 

2 

1 
0 

1 
3 

3 

1 

1 1 1 1 
1 2 3 4 
1 3 6 10 
1 4 10 20 

As proof, the generating functions for the columns of A are 
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and for A T , (1 + x)"* \ j = 1, 2, - •• , n, 
of A A are 

so that the generating functions for the columns 

T^T (>* T )̂'"1 = (r^J j = 1, 2, 

which we recognize as the generating functions for the columns of P . Notice that det A = 
T T 

det A = 1, so that det AA = det P = 1 for any n„ That i s , 
Theorem 1.2. The k Xk submatrix, formed from Pascal*s triangle written in rectan-

gular form to contain the upper left-hand corner element of P , has a determinant value of 
one, 

In P , if the (n - 1) column is subtracted from the n column, the (n - 2)n from 
the (n - 1) , - • • , the 2 from the 3 , and the first from the 2 n , a new a r r ay is formed: 

1 0 0 0 

1 1 1 1 

1 2 3 4 

1 4 10 20 

n x n 

In the new a r ray , the determinant is still one but it equals the determinant of the (n - l ) x 
(n - 1) a r r ay formed by deleting the first row and first column, which a r r a y can be found 
within the original a r r ay P by moving one column right and using the original row of ones 
as the top row. If we again subtract the (k - 1) column from the k column successively 
for k = n - l , n - 2 , e • • , 3, 2, the new a r r a y has the determinant value one and can be 
found as the (n - 2) X (n - 2) a r r a y using the original row of ones as i ts top row and two col-
umns right in P. By the law of formation of Pascal1 s triangle, we can subtract thusly, k 
times beginning with an (n + k) X (n + k) matr ix P to show that the determinant of any n X n 
a r r ay within P containing a row of ones has determinant equivalent to det P and thus has 
value one. By the symmetry of Pasca l ' s triangle and P , any n X.n square a r ray taken 
within P to include a column of ones as i ts edge also has a unit determinant. 

We have proved 
Theorem 1.3. The determinant of any n X n a r r ay taken with i ts f irst row along the 

row of ones, or with i ts first column along the column of ones in Pasca l ' s triangle written in 
rectangular form, is one. 

T T 
Returning to the matr ices A and A , AA gave us Pasca l ' s triangle in rectangular m T form. Consider A A 
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T 

1 
2 
4 
8 

1 
3 
8 

20 

1 
4 

13 
38 

1 
5 

19 
63 

1 
6 

26 
96 

J n X n 

where the first column is 1, 2, 4, 8, • • • , 2 , • • • , with column generators 

(1 - x) j - l 

(1 - 2x)3 

j = 1, 2, , n. Notice that the sums of elements appearing on the rising diagonals are 

15 3, 8, 21, 55, the Fibonacci numbers with even subscripts. 
, m A T In general , A A has f irs t column 1, m, m2, k , with column generators 

[ 1 - (m - l ) x ] j " X 

(1 - mx) 
3 = 1,2,- ,n. 

m T Notice that any k X k submatrix of A A containing the first row (which is a row of ones) 
has a unit determinant, since that submatrix is the product of submatrices with unit de ter -
minants from A and A ~ A , where A A = P . 

In general, if we consider determinants whose rows are composed of successive mem-
bers of an arithmetic progression of the r o rder , we can predict the determinant value as 
well as give a second proof of the foregoing unit determinant propert ies of Pascal1 s triangle, 
The following theorem is due to Howard Eves [ 2 ] . 

Let us define an arithmetic progression of the r order , denoted by (AP) , to be a 
sequence of numbers whose r row of differences is a row of constants, but whose (r - 1) 
row is not. For example, the third row of Pasca l ' s triangle in rectangular form is an (AP)3, 
since 

1 4 
3 

3 

10 20 35 56 
10 15 21 

4 5 6 

A row of repeated constants will be called an (AP)0. The constant in the r row of differ-
ences of an (AP) will be called the constant of the progression. 

Theorem 1.4. (Eves1 Theorem). Consider a determinant of order n whose i row 
(i = 1, 2, • • • , n) is composed of any n successive te rms of an ( A P ) . - with constant a.. 
Then the value of the determinant is the product a -^ • * • an . 
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The proof is an armchair one, since, by a sequence of operations of the type where we 
subtract from a column of the determinant the preceding column, one can reduce the matrix 
of the determinant to one having al9 a2, • • • , a n alongthe main diagonal and zeros e v e r y -
where above the main diagonal. 

Evesf Theorem applies to all the determinants formed from Pasca l ' s triangle discussed 
in this section, with aj = a2 = B • • = a = 1, whence the value of each determinant is one. 
As a corollary to Eves1 Theorem, notice that the n order determinants containing a row of 
ones formed from Pasca l ' s rectangular a r r ay still have value one if the k row is shifted 
m spaces left, k = 1, 2, • • • , n, m ^ 0, where m is arb i t rary and can be a different 
value for each row! 

Corollary 1.4.1. If the k row of an n x n determinant contains n consecutive non-
st zero members of the (k - 1) row of Pasca l ' s triangle written in rectangular form for each 

k = 1, 2, • • • , n, the determinant has value one, 
Since all a r rays discussed in this section contain a row (or column) of ones, we also 

have infinitely many determinants that can be immediately written with a rb i t ra ry value c: 
merely add (c - 1) to each element of the matr ix of any one of the unit determinant a r rays ! 
The proof is simple: since every element in the f irst row equals c, factor out c. Then 
subtract (c - 1) t imes the first row from each other row, returning to the original a r ray 
which had a determinant value of one. Thus, the new determinant has value c. This is a 
special case of a wide variety of problems concerning the lambda number of a matr ix [3] , [4] , 

Eves ' Theorem also applies to the a r rays of convolution triangles and multinomial co-
efficients which follow, but the development using other methods of proof is more informative. 

2. OTHER DETERMINANT VALUES FROM .PASCAL'S TRIANGLE 
Return again to matr ix P of (1.1). Suppose that we remove the top row and left col-

umn, and then evaluate the k Xk determinants containing the upper left corner . Then 

21 = 2, 
2 

3 

3 

6 
= 3, 

2 

3 

4 

3 

6 

10 

4 

10 

20 

4 , 

and the ,k>< k determinant has value (k + 1). 
Proof i s by mathematical induction. Assume that the (k - 1) X (k - 1) determinant has 

value k. In the k X k determinant, subtract the preceding column from each column suc-
cessively for j = k, k - 1, k - 2, • • • , 2. Then subtract the preceding row from each row 
successively for i = k , k - 1 , k - 2, ••• , 2, leaving 

2 1 1 1 
1 2 3 4 
1 3 6 10 
1 4 10 20 

1 1 1 1 
1 2 3 4 
1 3 6 10 
1 4 10 20 

1 1 1 1 
0 2 3 4 
0 3 6 10 
0 4 10 20 

= l + k . 
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Returning to matrix P , take 2 x 2 determinants along the second and third rows: 

1, 
2 3 

3 6 

3 4 

6 10 
= 6, 

4 5 

10 15 
10, 

giving the values found in the second column of Pascal1 s left-justified triangle, for 

(0 (':') C-) 

by simple algebra. Of course, I x l determinants along the second row of P yield the 
successive values found in the first column of Pascal1 s triangle. Taking 3 x 3 determinants 
yields 

1 2 3 

1 3 6 

1 4 10 

= 1, 

2 

3 

4 

3 

6 

10 

4 

10 

20 

= 4, 

3 4 5 

6 10 15 

10 20 35 

10 , 

the successive entries in the third column of Pasca l ' s triangle. In fact, taking successive 
nd rd st 

k x k determinants along the 2 , 3 , • • • , and (k + 1) rows yields the successive en-
t r ies of the k column of Pasca l ' s triangle. 

To formalize our statement, 

Theorem 2.1: The determinant of the k x k matrix R(k,j) taken with its first column 
the j column of P , the rectangular form of Pasca l ' s triangle imbedded in a matr ix , and 
its f irst row the second row of P , is the binomial coefficient 

(!~r) 
To i l lustrate , 
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detR(4,3) 
10 

15 

4 
10 
20 
35 

5 
15 
35 
70 

21 
56 

126 

3 

6 

10 

15 

1 

4 

10 

20 

1 

5 

15 

35 

1 

6 

21 

56 

3 1 1 1 
3 3 4 5 
4 6 10 15 
5 10 20 35 

1 1 1 1 
0 3 4 5 
0 6 10 15 
0 10 20 35 

2 1 1 1 
3 3 4 5 
4 6 10 15 
5 10 20 35 

3 

6 

10 

4 

10 

20 

5 

15 

35 

+ 

2 

3 

4 

5 

3 

6 

10 

15 

4 

10 

20 

35 

5 

15 

35 

70 

= det R(3,3) + det R(4,2) 

-OHO-(0-
Firs t , the preceding column was subtracted from each column successively, j = k, k - 1, 
• • • , 2j and then the preceding row was subtracted from each row successively for i = k, 

k - 1, , 2. Then the determinant was made the sum of two determinants, one bordering 
R(3,3) and the other equal to R(4,2) by adding the j column to the (j + l ) s , j = 1, 2, 
• • • , k - 1. 

By following the above procedure, we can make 

detR(ks j ) = detR(k - 1, j) + det R(k, j - 1) . 

We have already proved that 

d e tR( k , l ) = 1 = ( k k ° ) -

detH(l.j) = j = (j J ° j , 

If 

de tE(k - 1, j) = ( 3 J - 1 
' ) 

det R(k,2) = k + 1 = | k * X J for all k, 

detR(29j) = M J 1 ) for all j . 

and detR(k, j - 1 ) = ( ; i + ^ ~ 2 

) 
then 
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« H * . » - ( , ; v ) * ( , + i - * ) - ( , + r i ) 
for all k and all j by mathematical induction. 

Since P is i ts own transpose, Theorem 2.1 is also true if the words "column'1 and 
"row" are everywhere exchanged. 

T 
Consider PascaPs triangle in the configuration of A , which is just PascaPs rectan-

gular a r ray P with the i row moved (i - 1) spaces right, i = 1, 2, 3, • • • . Form 
T k x k matr ices RT(k, j) such that the first row of RT(k, j) is the second row of A beginning 

Hi T 

with the j column of A . Then ARf(k, j - 1) = R(k,j) as can be shown by considering 
their column generating functions, and since de tA = 1, de tR ! (k , j - 1) = de tR(k , j ) , lead-
ing us to the following theorems. 

T Theorem 2.2. Let A be the n x n matr ix containing PascaPs triangle on and above 
its main diagonal so that the rows of PascaPs triangle are placed vertically. Any k x k sub-

T T 
matr ix of A selected with i ts f irst row along the second row of A and i ts f irst column 

Hi T 
the j column of A , has determinant value 

/ k + j - 2 \ 

I k ) 
T Since A is the transpose of A , wording Theorem 2.2 in te rms of the usual Pascal 

triangle provides the following. 
Theorem 2.3. If PascaPs triangle i s written in left-justified form, any k x k matrix 

selected within the a r ray with i ts first column the first column of Pascal1 s triangle and its 
Hi 

first row the i row has determinant value given by the binomial coefficient 

(*-i-') 
3. MULTINOMIAL COEFFICIENT ARRAYS 

The trinomial coefficients arising in the expansions of (1 + x + x2) , written in left-
justified form, are 

(3.1) 

1 

1 

1 

1 

1 

1 

1 

2 

3 

4 

5 

1 

3 

6 

10 

15 

2 

7 

16 

30 

1 

6 

19 

45 

3 

16 

51 

1 

10 

45 

4 

30 

1 

15 

where the entry t.. in the i row and j column is obtained by the relationship 
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i] 1-1,3 1-1.3-1 1-1,3-2 

The sums of elements on rising diagonals formed by beginning in the left-most column and 

n+3 
counting up one and right one are the Tribonacci numbers 1, 1, 2, 4, 7, 13, •• 
T n+° + Tn+1 + Tn" ^ s i n P a s c a * f s triangles the left-most column is the zero column and 

th the top row the zero row.) 
If the summands for the Fibonacci numbers from the rising diagonals of Pasca l ' s t r i -

angle (1.2) in left-justified form are used in reverse order as the rows to form an n x n 
matr ix 

Ft = ( y , fij = ( i - j j 

which has the rows of Pasca l ' s triangle written in vertical position on and below the main d i -
T agonalj and the matrix A is written with Pasca l ' s triangle on and above the main diagonal, 

T then the matrix product FjA is the trinomial coefficient a r r ay (3.1) but written vertically 
ra ther than in the horizontal arrangement just given. To i l lustrate , when n = 7, 

FiAJ 

1 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

1 

2 

1 

0 

0 

= 

0 

0 

0 

1 

3 

3 

1 

"1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

4 

6 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

5 

1 

2 

3 

2 

1 

0 

0 

0" 

0 

0 

0 

0 

0 

1 

1 

3 

6 

7 

6 

3 

1 

"1 

0 

0 

0 

0 

0 

0 

1 

4 

10 

16 

19 

16 

1 0 

1 

1 

0 

0 

0 

0 

0 

1 

5 

15 

30 

45 

51 

45 

1 1 

2 3 

1 3 

0 1 

0 0 

0 0 

0 0 

1" 

6 

21 

50 

90 

126 

141 

1 

4 

6 

4 

1 

0 

0 

• 

1 

5 

10 

10 

5 

1 

0 

1 

6 

15 

20 

15 

6 

1 

Generating functions give an easy proof. The generating function for the j column of Ft 

i s [ x ( l + x ) ] J _ 1 , j = 1, 2, B 8 e . The generating function for the j column of A is 

(1 + x ) j - l 1, 2, th so the generating function for the j column of F^P is 
[ 1 + x( l + x)]*1 or (1 + x + x 2 r , so that FAA has the rows of the trinomial triangle as 
i ts columns. Since det Fj T T 

det A = 1, det FjA = 1, and n x n determinants contain-
ing the upper left corner of the trinomial triangle have value one. Fur ther , any k x k sub-

T matr ix of FjA containing a row of ones has a unit determinant, for any k x k submatrix of 
T FjA selected with a row of ones is always the product of a submatrix of Ft and a submatrix 
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T of A containing a row of ones, both of which here have unit determinants. Lastly, any 

T T 
k x k submatrix of FtA having its f irst row along the second row of FjA and its first 

th T 
column the j column of F4A is the product of a submatrix of Ft with a unit determinant T and a k x k submatrix of A satisfying Theorem 2.2, and thus has determinant value 

H"2) • 
We can form matr ices F analogous to FA using the rising diagonals of the triangle 

of multinomial coefficients arising from the expansions of (1 + x + x2 + • • • + x m ) , m > 1, 
n ^ 0, as the rows of F , so that the rows of the multinomial triangle appear as the col-
umns of F written on and below the main diagonal. (In each case , the row sums of F 

m & m 
are 1 = r , = r2 = • • • = r m , r n = V l + rQ_2 + • • • + r Q _ m , n > m + 1.) The matr ix 
product F A will contain the coefficients arising from the expansions of 

(1 + X + X2 + . . . + X m + 1 ) 

written in vertical position on and above the main diagonal. As proof, the generating func-
tions of columns of F m are [x(l + x + • • • + x1*1)]3"1, j = 1, 2, • • • , n, while the g e n e r -
ating function for the j t n column of A is (1+x) 3 , j = 1, 2, • • • , n, so that the gen-

th T 
©rating function for the j column of F A is 

[1 + ( x ( l + x + . . . H - X 1 1 1 ) ) ] 3 " 1 = [1 + x + x2 + . . . + x m + 1 ] 3 " , j = l , 2, . . . , n . 

If a submatrix of F m A T is the product of a submatrix of F m with unit determinant 
and a submatrix of F-^Q^A-1- taken in the corresponding position, it will thus have the same 
determinant as the submatrix of F m _ 1 A T . Notice that this is true for submatrices taken 

rr> 

across the first or second columns of F m A T . Since FjA has i ts submatrices with the 
same determinant values as the submatrices of A T taken in corresponding position, and 
these values are given in Theorem 2.2, we have proved the following theorems by mathemat-

T ical induction if we look at the transpose of F m A . 
Theorem 3.1. If the multinomial coefficients arising from the expansions of (1 + x + • • • 

m n 
+ x ) , m ^ l , n ^ O , are written in left-justified form the determinant of the k x k 
matrix formed with i ts first column taken anywhere along the leftmost column of ones of the 
a r ray is one. 

Theorem 3,2. If the multinomial coefficients arising from the expansions of (1 + x + • - • 
+ x m ) n , m ^ 1, n ^ 0, are written in left-justified form the determinant of the k x k 
matrix formed with i ts first column the first column of the a r ray (the column of successive 
whole numbers) and i ts f irst row the i row of t 
terminant value given by the binomial coefficient 
whole numbers) and i ts f irst row the i row of the multinomial coefficient a r ray , has de -

(k+M 
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4. THE FIBONACCI CONVOLUTION ARRAY AND RELATED CONVOLUTION ARRAYS 

by 
If {a.} and {b.} a re two sequences, the convolution sequence {c}°° i s given 

1 , •_-! J 1—-I 1 1—1 i=l 3=1 

Ci = atbi, c2 = a2bi + a ^ , c3 = a3bx + a2b2 + a ^ , 

c = V̂  a b n JL-i k n-•k+1 
k=l 

If g(x) is the generating function for { a . } , then [g(x)] is the generating function for 
the k convolution of {a.} with itself. 

The Fibonacci sequence, when convoluted with itself j - 1 t imes, forms the sequence 
in the j column of the matr ix C = ( c . ) below [ l ] , where the original sequence is in the 
leftmost column 

C = 

1 

1 

2 

3 

5 

8 

1 

2 
5 

10 

20 

38 

1 

3 

9 

22 

51 

111 

1 

4 

14 

40 

105 

256 

1 

5 

20 

65 

190 

511 

1 

6 

27 

98 

315 

924 

n x n 

For formation of the Fibonacci convolution a r ray , 

c . c. . . + c. 0 . + c. . - . 1-1,3 i - 2 3 j i , j - l 

Let the n x n matrix Fj be formed as in Section 3 with the rows of Pascal1 s triangle 
in vertical position on and below the main diagonal, and let the n x n matr ix P be Pasca l ' s 
rectangular a r ray (1.1). That FjP is the Fibonacci convolution a r ray in rectangular form 
is easily proved. The generating functions for the columns of PA a re [x( l + x)] J~ , while 
those for P are 1/(1 - x)J , j = 1, 2, • • • , n, so that the generating functions for the col-
umns of FjP are l / [ l - x( l + x)] J or 1/(1 - x - x2)\ the generators of C, the Fibonacci 
convolution array . Since det Ft = det P = 1, det F*P = 1, and any n x n matrix formed 
using the upper left corner of the Fibonacci convolution a r r ay has a unit determinant* 

Further , since submatrices of C taken along either the first o r second row of C are 
the product of submatrices of Ft with unit determinants and similarly placed submatrices of 
P whose determinants are given in Theorems 1.3 and 2 .1 , we have the following theorem. 

Theorem 4.1. Let the Fibonacci convolution triangle be written in rectangular form and 
imbedded in an n >< n matr ix C. Then the determinant of any k x k submatrix of C placed 



142 UNIT DETERMINANTS OF GENERALIZED PASCAL TRIANGLES [Apr. 

to contain the row of ones is one. Also, the determinant of any k x k submatrix of C s e -
lected with i ts first row along the second row of C and its f irst column the j column of 
C has determinant value given by the binomial coefficient I ?~ J 

The generalization to convolution triangles for sequences which a re found as sums of 
rising diagonals of multinomial coefficient triangles written in left-justified form is not 
difficult 

Form the matrix F as in Section 4 to have i ts rows the elements found on the rising 
diagonals of the left-justified multinomial coefficient triangle induced by expansions of 
(1 + x + . . . + x m ) , m ^ 1, n ^ 0. Then F P is the convolution triangle for the sequence 
of sums of the rising diagonals just described, for F has column generators [x( l + x + • • • 
+ xm)]* '~ and P has column generators 1/(1 - x)J, making the column generators of F P 
be 1/(1 - x - x2 - • • . - x m + 1 ) 3 , j = l , 2, • • • , n, which for j = 1 is known to be the gen-
erating function for the sequence of sums found along the rising diagonals of the given mult i-
nomial coefficient triangle [5] . 

As before, since a submatrix of F P is the product of a submatrix of F with unit 
m H m 

determinant and a s imilarly placed submatrix of P with determinant given by Theorems 1.3 
and 2.1 when we take submatrices along the f irst or second column of F P , we can write 
the following. 

Theorem 4.2. Let the convolution triangle for the sequences of sums found along the 
rising diagonals of the left-justified multinomial coefficient a r ray induced by expansions of 
(1 + x + . . . + x m ) , m ^ 1, n ^ 0, be written in rectangular form and imbedded in an 
n x n matrix C*. Then the determinant of any k x k submatrix of C* placed to contain the 
row of ones is one. Also, the determinant of any k x k submatrix of C* selected with i ts 
f irst row along the second row of C* and its first column the j column of C* has de ter -
minant value given by the binomial coefficient i [ " 

The convolution triangle imbedded in the matrix C* = ( a . ) of Theorem 4.2 has 
c . = c. - . + c. _ . + • • • + c. . 4- c. . . . If we form an a r r ay B = (b..) with rule of ij l - l , j 1-2,] i - m , j 1,3-1 J i j ' 
formation b. . = b. . . + b. n . + . . . + fc> . + h . + b. . - , B becomes the powers of 2 13 l - l , ] 1-2,] 2,3 1,3 1,3-1' F 

convolution ar ray . 
1 1 

1 2 

2 5 

4 12 

8 28 

6 64 

1 

3 

9 

25 

66 

168 

rising diagonal 

1 

4 

14 

44 

129 

360 

sums 

1 

5 

20 

70 

225 

681 

1 

6 

27 

104 

463 

1291 

are 1, 2, 5, 13, 

... 

... 

... 

34, , the Fibonacci num-
bers with odd subscripts . This convolution a r r a y has both unit determinant propert ies d i s -
cussed in Section 1 because it fulfills EvesT Theorem. In fact, all the convolution a r rays of 
this section fulfill Eves ' Theorem, so that any k x k matrix placed to contain a row of ones 
in any one of these convolution a r rays has determinant value one. 
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5. CONVOLUTION ARRAYS FOR DIAGONAL SEQUENCES 
FROM MULTINOMIAL COEFFICIENT ARRAYS 

Let the n x n matrix D be 

D = 

n x n 

where the row sums of D are the rising diagonal sums from Pascal1 s triangle (1.2) found by 
beginning at the leftmost column and going up 2 and to the right one, namely, 1, 1, 1, 2, 3, 
4, 6, 9, 13, • • • . The column generators of D are [ x ( l + x 2 ) ] 3 , j = 1, 2, •••. Then, the 
matr ix product DP, where P is the rectangular Pascal matrix (1.1), is the convolution t r i -
angle for the sequence 1, 1, 1, 2, 3, 4, 6, 9, 13, • • • , un+i = u + u , for the column 

n n—^ 
generators of DP are l / [ l - x ( l + x 2 ) ] J = 1/(1 - x - x 3 ) J , j = 1, 2, • • • , n, where the 
generating function for j = 1 is given as the generating function for the sequence discussed 
in [5]. The resul ts of Theorem 1.3 and 2.1 can be extended to cover the matr ix DP as 
before. 

Now, consider the sequence of elements in Pasca l ' s triangle that lie on the diagonals 
found by beginning at the leftmost column of (1.2) and going up p and to the right 1 through-
out the a r r ay (1.2). (The sum of the elements on these diagonals are the generalized Fibon-
acci numbers u(n; p , l ) of Har r i s and Styles [6].) Place the elements from successive di-
agonals on rows of a matrix D^p, 1) in reverse order such that the column of ones in A lies 
on the diagonal of D1(p,l) . Then the columns of D^pj l ) a re the rows of Pasca l ' s triangle 
in left-justified form but with the entr ies separated by (p - 1) zeroes . Notice that det D^p, ! ) 
= 1. The column generators of D^p, ! ) are [ x ( l + x P ) ] j , j = 1, 2, • • • , so that the column 
generators of D^p.DP are l / [ l - x( l + x'p)]^ = 1/(1 - x - x P + ) \ j = 1, 2, • • • , n, the 
generating functions for the convolution a r ray for the numbers u(n; p , l ) (see [5]). The 
same arguments hold for Di(p, l )P as for DP = 0 ^ 2 , 1 ) ? , so that D ^ p . D P has the deter -
minant propert ies which extend from Theorems 1.3 and 2.1. 

Now, the same techniques can be applied to the elements on the rising diagonals in all 
the generalized Pascal triangles induced by expansions of (1 + x + • • • + x m ) , m ^ 1, n ^ 
0. Form the n x n matrix D (p, 1) so that elements on the diagonals formed by beginning 
in the leftmost column and going up p and right one throughout the left-justified multinomial 
coefficient a r r ay lie in reverse order on i ts rows. D (p, 1) will have a one for each element 
on its main diagonal and each column will contain the corresponding row of the multinomial 
a r r ay but with (p - 1) zeroes between entr ies . Generating functions for the columns of 
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D (p,l) a re [x( l + x p + x 2 p + . . - + x ( m ~ 1 ) p ) ] j
s j = 1, 2, • • . , n, while for P they a r e , 

of course , 1(1 - x) . The generating functions for the columns of D (p, l)P a re then 

1/[1 - x { l + X
P + x 2 P + - . , + x ( m - 1 ) P ) ] 2 

1/[1 - x - x ? + 1 - x 2 ? + 1 . tm-WP+l j 1 , j . i , a, . . . . n . 

which, for j = 1, is known to be the generating function for the diagonal sums here con-
sidered [5]. 

Since again the k x k submatrices of the product D (p, 1)P taken along either the first 
o r second row of D (p, 1)P have the same determinants as the correspondingly placed k x k 
submatrices of P , we look again at Theorems 1.3 and 2.1 to write our final theorem. 

Theorem 5.1. Write the convolution triangle in rectangular form imbedded in an n x n 
matr ix C* for the sequence of sums found on the rising diagonals formed by beginning in the 
leftmost column and moving up p and right one throughout any left-justified multinomial co-
efficient array., The k x k submatrix formed to include the first row of ones has determinant 
one. The k x k submatrix formed with its f irst row the second row of C* and its f irst 

th m 

column the j column of C * has determinant given by the binomial coefficient 

(l*r') 
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THE DENSITY OF THE PRODUCT OF ARITHMETIC PROGRESSION 

S. K. STEIN 
University of California, Davis, California 

This paper is devoted to the proof of the following theorem. 
Theorem. Let a, b, c, and d be positive integers such that (a,b) = 1 = (c,d), 

Then the density of numbers of the form 

(ax + b)(cy + d) , 

where x and y range over the positive integers , is 

1 
(a,c) 

The question arose in the study of the density of products of sets of integers. 
The proof is elementary except for the use of Dirichlet fs theorem on pr imes in an a r -

ithmetical progression. 

1. INTRODUCTION 

Let A be a set of positive integers. For a positive integer n let A(n) denote the 
number of elements in A that lie in the interval [ l , n ] . The upper density of A, 5(A), is 
defined as 

lim supA(n)/n . 

Similarly, the lower density of A, IHA), is defined as 

lim inf A(n)/n . 
n —• °o ' 

If 8(A) = "6(A), A is said to have a density, 5 (A), which is the common value of i ts lower 
and upper densities. For instance, the arithmetic progression ax + b has density l / a . 

Consider, as another example, the set 

S = {(2x + l)(2y + 1 ) | x ,y > l } , 

which we will abbreviate to 
{(2x + l)(2y + 1)} . 

145 
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S is clearly contained in the set of odd numbers, {2t + l } , whose density is 1/2. However, 
S does not exhaust this progression, since no prime is in S. But since the set of pr imes 
has density 0, S has density 1/2, the same density as the set {2t + l } . This sets the 
stage for the following concept, which will be used often in the proof of the main theorem. 

Definition. Let a, b , c, and d be positive integers. The set 

S = {(ax + b)(cy + d)} 

is full if it has the same density as the arithmetic progression 

{(a,c)t + bd} , 
namely l / ( a , c ) . 

Since S l ies in {(a,c)t + bd} , the definition simply as se r t s that S fills the p rog res -
sion except for a set of density 0. 

The proof of the main theorem depends pr imari ly on the following lemma. 
Lemma 2.3. Let a, b, and d be positive integers such that (a,b) = 1. Then the set 

{(ax + b)(ay + d)} is full, that i s , has density l / a . 
The general outline of the proof of the theorem is illustrated by the following example, 

which will be helpful as a reference point when following the proof. 
Say that we wish to prove that {(2x + l)(9y + 1)} is full, that i s , has density 1/(2,9) = 

1. We begin as follows. The progression {2x + l} is the disjoint union of the nine 
progressions 

{l8x + l } , {l8x + 3}, • • • , {l8x + 1 + 2i}, • • • , {l8x + 17} . 

The progression {9y + l} is the disjoint union of the two progressions 

{ l8y + l} and {l8y + 10} . 

Consequently, {(2x + l)(9y + 1)} is the union of the eighteen sets 

{{(I8x + 1 + 2i)(18y + 1 + 9j)} | 0 < i < 8, 0 < j < l} . 

It is not hard to show that these eighteen sets a re disjoint. If we showed that each is full, 
that i s , has density 1/18, we would be done, for then {(2x + l)(9y + 1)} would have density 
18/18 = 1. Lemma 2.3 shows that fifteen of the eighteen sets a re full. Three cases remain, 
namely 

(i) {(18x + 3)(18y + 10)} 

(ii) {(18x + 9)(18y + 10)} 

(iii) {(18x + 15)(18y + 10)} . 
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Let ^ and 6 denote the lower and upper densities of {(2x + l)(9y + 1)}. Clearly 5 ^ 
o* <:;L. We know at this point that 

1 - 3/18 < 6 . 
This completes the first stage. 

The second stage consists of repeating the argument of the first stage on each of the 
unsettled cases (i), (ii), and (iii). 

Analysis for case (i): Write (lSx + 3)(18y + 10) as 

6(6x + l)(9y + 5) , 

and t reat {(6x + l)(9y + 5)} by the method already illustrated. It turns out that {(6x + 1) X 
(9y + 5)} is the disjoint union of the six sets 

{{l8x + 1 + 6i)(18y + 5 + 9])} I 0 < i < 2, 0 < j < l} . 

Each is covered by Lemma 2.3, hence has density 1/18. Thus the density of {(18x + 3)X 
(18y + 10)} is 

i JL = JL 
6 ' 18 18 ' 

(Note that {(18x + 3)(18y + 10)} is full, even though not covered by Lemma 2.3.) 
Analysis for case (ii): Write (18x + 9)(18y + 10) as 

18(2x + l)(9y + 5) , 

and apply the argument of the f irst stage to 

(1.1) {(2x + l)(9y + 5)} . 

It turns out that (1.1) is the disjoint union of the eighteen sets 

{(18x + 1 + 2i)(l8y + 5 + 9j) | 0 < i < 8, 0 < j < l } . 

Fifteen a re covered by Lemma 2.3 and have a total density of 15/18. Three cases remain, 

{(18x + 3)(18y + 14)}, {(18x + 9)(18y + 14)}, {(18x + 15)(18y + 14)} . 

Analysis for case (iii): Write (18x + 15)(18y + 10) as 

6(6x + 5)(9y + 5) . 
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It turns out that {(6x + 5)(9y + 5)} splits into six cases , each covered by Lemma 2.3, and 
case (iii) has density (1/6) (6/18) = 1/18. 

Combining these three cases , we find at the end of the second stage that 

1 - 3/182 < ^ < 6" < i . 

Note that the sets removed at each stage by Lemma 2.3 are full. 
It turns out that as the process is continued through the third and higher s tages, Lemma 

2.3 disposes of some se ts , and they are full, while the amount left unsettled at the n stage 
diminishes toward 0 as n—»oo8 

The proof of the theorem shows that the phenomena exhibited by this example occur in 
general. 

2. LEMMAS 

We shall make use of the following two basic number-theoretic lemmas. The notation 
is in the form in which it is used in the proof of the theorem. 

Lemma 2.1. Let a, B, c, and D be positive integers such that (a,B) = 1 = (c,D). 
Then 

[ M • fesH - i-i • 
To prove this, consider first the case where a and c are powers of the same prime 

af cT 

p , a = p and c = p . The general case follows immediately by using the prime factor-
ization of a and c. 

Lemma 2.2. Let a, b, c? and d be positive integers such that (a,b) = 1 = (c,d). 
Then the sets 

{([a,c] x + b + ia)([a,c] y + d + jc)} , 
0 < i < ( [ a , c ] / a ) - 1, 0 < j < ( [ a , c ] / c ) - 1 , 

a re disjoint. 
Proof. Assume that 

(b + ia)(d + jc) = (b + i'a)(d + j»c) (mod [a,c]) , 
o r equivalently, 

(i - if)ad = (jf - j)bc (mod [a,c]) . 
Then 

(i - if)ad = (jf - j)bc (mod c/(a,c) ) , 
hence 

(i - iT)ad = 0 (mod c/(a,c)) . 

Since ad and c/(a,c) are relatively pr ime, it follows that 

i - if = 0 (mod c/(a,c)) . 
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But 
0 < Ji - i»| < ([a,c]/a) - 1. 

Since 
[ a , c ] / a = c/(a ,c) , 

it follows that i = i?. Similarly, j = j f , and the lemma is proved. 
The next lemma depends on certain propert ies of pr imes that we now review. If p l 9 p2, 

• • • , p. a re distinct pr imes9 then the set of positive integers divisible by none of them has 
density 

k 
1 1 (1 " PJ"1) . 
i=l 

Consequently, if p j , p2, •e • , Pi, • • • is an infinite sequence of pr imes such that 

EPJ;1 = °°> 

then the set of positive integers divisible by at least one of the p.f s has density 1. 
Dirichlet fs theorem on pr imes in arithmetic progressions implies that if a and b are 

relatively prime positive integers , then the arithmetic progression {ax + b} contains an in-
finite set of p r imes , p l 9 p2, • a • , Pi> • • ' , and J ^ p " 1 = °°. 

With this background we are ready for the main lemma. 
Lemma 2.3. Let a , b , and d be positive integers such that (a,b) = 1. Then the set 

{(ax + b)(ax + d)} 

is full, that i s , has density l / a . 
Proof. Consider the set {az + bd}. By Dirichlet fs theorem, the density of the subset 

of {(ax + b)(ay + b)} that is divisible by at least one prime p of the form ax + b is l / a . 
If n = az + bd is divisible by p , there is an integer q such that 

n = az + bd = pq . 

Taking congruences modulo a we have 

bd = pq (mod a) . 

Hence 

bd = bq (mod a) , 

and since (a,b) = 1, 
d = q (mod a) . 
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Thus q has the form ay + d, and we conclude that n = az + bd is an element of {(ax + b)x 
(ay + d)}. This proves the lemma. 

3. PROOF OF THE THEOREM 

Let S be the set 

(3.1) {(ax + b)(cy + d)} , 

where (a,b) = 1 = (c,d). We wish to prove that S is full. To begin, let ^ and § be the 
lower and upper densities of (3.1). Clearly 6 < l / ( a , c ) . We will now show that £ = l / ( a , c ) . 

The progression {ax + b} is the disjoint union of the [ a , c ] / a progressions 

{[a ,c] x + lb + ia)}, 0 < i < ( [a , c ] / a ) - 1. 

Similarly, {ay + d} is the disjoint union of the [ a , c ] / c progressions 

{[a ,c ] y + d + j c} , 0 < j < ( [a , c ] / c ) - 1 . 

Thus, by Lemma 2.2, S is the disjoint union of the 

Ta,cl 0 [ a , c ] 
c a 

sets 
(3.2) {([a,c] x + b + ia)([a ,c] y + d + jc)} , 

0 < i < ( [ a , c ] / a ) - 1, 0 < j < ( [a , c ] / c ) - 1 . 

For convenience, let B = b + ia and D = d + jc in (3.2). Note that (a,B) = 1 = (c,D). 
Some of the sets (3.2) are covered by Lemma 2.3. Let us call them "good.Tf Some may not 
be and will be called "bad. " (It will turn out that all of them are full.) 

If (c,B) = 1 or if (a,D) = 1 then the set (3.2) is good. Lemma 2.3 shows that it is 
full. 

If (c,B) > 1 and (a,D) > 1 the set (3.2) is bad. In order to have a reasonable bound 
on the upper density of the finite union of these bad sets (3.2), it i s necessary to determine 
how many there are of them. 

F i r s t compute the number of B = b + ia, 0 ^ i ^ ( [ a , c ] / a ) - 1 that are not relatively 
prime to [ a , c ] , or , since (a,b) = 1, not relatively prime to c. To do so, let p l s p2, • • • , 
p, be the distinct pr imes that divide c but not a. (There may be no such pr imes . ) As i 
runs through pAp2 • • • Pk consecutive integers , B = b + ia runs through a complete residue 
system modulo pip2« • • p^, of which 

P1P2 ••• Pk - $(PiP2 ••• Pk) 
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are not relatively prime to c. Similarly, let qlf q2, • • • , q m be the pr imes that divide a 
but not c. The number of bad sets of the form (3.2) i s then 

(i - n <. - ̂ »)(1 - n a - ,r.) [a ,c] t [a,c1 
a c 

There may be no bad se t s , in which case the proof is already complete. 
Each good set of type (3.2) is full, by Lemma 2.3. Each bad set of type (3.2) has upper 

density at most l / [ a , c ] . Hence, the upper density of the union of the bad sets is at most 

^.M.M/n,.,:,,)' 
L J \ P4 ac / 

which equals 

Let 

( l / (a ,c)) (17 a - Pr,Y 

\ P i | a c / 

At the end of the first stage it is known that 

£ ^ l / (a , c ) - k . 

Each of the bad sets in stage 1 is then treated as in the example. That i s , a bad set 

{([a,c] x + B)([a,c] y + D)} 

<-»*»{%&*+T£B)(M>*VJS)\ 
(Keep in mind that ( [ a , c ] ,B) = (c,B) and ( [a ,c ] ,D) = (a,D).) 

The set 

is written as 

!(•&#"• T&)(*# ' *Wir )} 
i s then decomposed into products of progressions with equal moduli, as S was. The common 
modulus i s 

(3 3) na>cJ [ a ' c ] l 
{a'"' L1S3T ' (c,D)J • 
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whose prime divisors are clearly among the pr imes that divide [ a , c ] . (In fact, by Lemma 
2 .1 , (3.3) equals [a, c ] , but this fact plays no role in the proof.) 

After completing stage 2, we then have 

6 > l / ( a , c ) - k2 . 

th Similarly, the n stage shows that 

6 > l / (a ,c ) - k n . 

Consequently, _6 ^ l / ( a , c ) , and S has density l / ( a , c ) . This concludes the proof. 

4. REPRESENTATION OF INTEGERS BY THE FORM axy + bx + cy 

The theorem has as an immediate consequence the following information about the r e p -
resentation of integers by a certain polynomial form. 

Theorem 4.1. Let a be a positive integer, and let b and c be non-negative integers. 
Then the set of integers expressible in the form 

axy + bx + cy 

for some positive integers x and y has a density equal to 

a 
( a ' b ) ( a ' c ) ( ( ^ ) ' I 57b) ) 

Proof. The equation 
z = axy + bx + cy 

is equivalent to the equation 

az = (ax + c)(ay + b) - be 

= (a, c) (a, b) I T ? x + , < \ I 7—r\ y + , . | - be . 
\^(a,c) (aTc) H (a,b) J (a,b)y 

By the theorem, the set of integers z of the form axy + bx + cy thus has density 

a . 1 1 . 1 
(a,c) " (a,b) " / a a \ 

^(a,c) ! (a,b)j 

This completes the proof. 
In part icular , Theorem 4.1 shows that if (a,b) = 1 or if (a,c) = 1, then the set 

{axy + bx + cy} has density 1. 



n- FIBONACCI PRODUCTS 

SELIVIO TAUBER 
Portland State University, Portland, Oregon 

1. NOTATION 

Let (j) be the n--dimensional vector space, i . e . , for 

x = Oi, x2, • • •, xn] e 0n
s xl9 x2, • - , xn e 01 . 

In addition, let I be the set of positive integers , J the set of non-negative integers , 
I(n) C I , be such that if k E l(n) then k < n, J(n) C J , be such that if k E J(n) then 
k < n. W(n) C 0 n is such that if K E W(n), where K = [kl9 k2, • • • , k n ] , then k E J , 
for m E l(n). In part icular , U = [ l , 1, • • • , l ] E W(n). 

With K E W(n) and X E 0 n , we write 

(1) XK = x f ^ . . . x ^ = f T x m m . 
m=l 

and in part icular 

(2) X = xtx2 • • • x n 

Also 

(3) |x| = X) 
n 

x 
m 

m=l 

and 

P 
( 4> I] f(K) 

K=0 

i s the sum of all elements of the form f(K) where the component of K, L e. , k , m E I(n), 
take all integer values such that 0 < k < p , where P = [pl5 p2, • • • , pn] E W(n). 

Let E(m) be the partial translation operator for the variable x , i. e. , 

(5) E(m)f(xk) = 6 ^ f ( x k + 1) , k , m E I(n) , 

where 0^ is the Kronecker delta. In addition, let A(m) = E(m) - I d , Id being the identity 
operator. Using the vector notation introduced ear l ie r , we have 
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(6) E = [E( l ) , E(2), • • • , E ( Q ) ] 

(7) A = [ A ( l ) , A(2), • • , A(n)] 
and 

E U = E(1)E(2) ••• E(n), A U = A(1)A(2) ••• A(n) . 

2. FIBONACCI AND LUCAS PRODUCTS 

Let F(m) be the general te rm of the Fibonacci sequence, L(m) the general te rm of 
the Lucas sequence as defined in [ l ] and H(m) the general te rm of the generalized Fibon-
acci sequence. Using the notation introduced in Section 1, we have with 

K = [kt, k2, • • • , kn] G W(n) 

(8) FCK) = [F(ki), F(k2), • • • , F(kn)] 

(9) LOO = [L(ki), L(k2), • • - , L d ^ ) ] 

(10) H(K) = [H(ki), H(k2), • • - , H(kn)] 
and 

(11) f(K) = [F (K) ] U = f \ F(k ) 
m=l 

(12) A(K) = [L(K)] U = | 7 L < k
m > 

m=l 

(13) h(K) = [H(K)]U = TT H(km) . 
m=l 

The numbers f(K), A(K), and h(K) a re called the n-Fibonacci, Lucas and generalized Fib-
onacci products. 

3. RECURRENCE RELATIONS 

According to [l] we have for the three sequences considered 

(14) F(k + 2) = F(k + 1) + F(k ) 
m ' m v m 

which we can write 

(15) E(m)A(m)F(k ) = F(k ) 
m m 

or 
(16) [E(m)A(m) - I d ] F ( k ) = 0 . 

J m 
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Starting from (15) we can write 

F T F(m)A(m)F(k ) = p f F(k ) , 

o r 

o r again 

m=l - m=l m 

EUAUf(K) = f(K) , 

(17) ( E U A U - Id)f(K) = 0 . 

Thus the Fibonacci products satisfy a recurrence relation s imilar to the one dimension, 
i . e . , (16). The same applies to the Lucas and generalized Fibonacci products, i . e . , 

(18) ( E U A U - Id)A(K) = 0 , 

(19) ( E U A U - Id)h(K) = 0 . 

4. OTHEE RELATIONS 

The relations given in [ l , pp. 59-60] can be generalized for n-Fibonacci and Lucas 
products. We il lustrate by two examples: 

(i) Relation (I 14) reads: L(m) = F(m + 2) - F(m - 2 ) , or 

L(m + 2) = F(m + 4) - F(m) 
or , on operator form 

(20) E2(m)L(m) = [E4(m) - Id]F(m) . 
But 

E4(m) - Id = [E(m) - Id] [E(m) + Id][E2(m) + Id ] , 
where E(m) - Id = A(m). 

E(m) + Id = 2M(m) 

where M(m) is the partial mean operator. We define correspondingly 

M = [M(l)s M(2), • • • , M(n)] , 

and 

TJ -AT 

M = n M(m) • 
m=l 

In addition let 
P(m) = E2(m) + Id, P = [P(l) , P(2), • • - , P(n)] , 

and 
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P U = P(1)P(2) • • • P(n) = f " 7 P(m) 
m=l 

Apr. 1973 

We take now the product of both sides of (20) which we rewrite 

(21) 

o r 
(22) 

n n 
P [ E 2 ( m ) L & ) = j ^ 2 A ( m ) M ( m ) P ( m ) F ( k ) 
m=l m=l 

E2UX(K) = 2nAUMUPUf(K) , 

which is the relation corresponding to (I 14) of [l] for n-Fibonacci and Lucas products. 
(ii) Relation (I 41) can be written 

2q 

£ (2k)F<2k + p> = 5QF(2(^ + P } > 
k=0 ' 

or , introducing the variable m and the usual operators 

(23) 

2q 

2 ft 
k =0 x 

m 

2k 
E m (m)F(pm) 

q k 2 q m 5 RE m ( m ) F ( p m ) 

Taking the product over m from m = 1 to m = n and using the notation 

A(>)=(?). 
m=l \ m / \ / 

where 
K = [ k t , k2, • • • , k n ] E W(n) , Q ,P G W(n) , 

we obtain the formula corresponding to (I 41), i. e. , 

(24) 
" 2Q 

z(?) 
K=0 

E2K _ 5 !Q | E 2Q f(P) = 0 

REFERENCE 
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SOME CORRECTIONS TO CARLSON'S 
"DETERMINATION OF HERONIAN TRIANGLESi 

DAVID SIWGMASTER 
Polytechnic of the South Bank, London, SE1 

In [ 1 ] , Carlson presents a determination of all Heroniantriangles, i .e . , triangles with 
integral sides and area. He correct ly shows that every such triangle, or a multiple thereof, 
can be split into two Pythagorean tr iangles, i . e . , right triangles with integer sides. Unfor-
tunately, he then makes a common e r r o r in incorrectly assuming that all Pythagoreal t r i a n -
gles a re of the form: 
(1) u2 + v2, u2 - v2, 2uv , 
ra ther than the cor rec t form: 
(2) a(u2 + v 2 ) , a(u2 - v 2 ) , 2auv , 

(One can easily verify that 15, 9, 12 is a Pythagorean triangle which cannot be e x -
pressed by (1). The same e r r o r is also made in [ 2] . ) 

Using the form (2) with Carlson1 s main theorem, we have the following cor rec t form of 
his 

Corollary 1. A triangle is Heronian if and only if i ts sides can be represented as 

(i) a(u2 + v 2 ) , b(r2 + s 2 ) , a(u2 - v2) + b(r2 - s2) , 
where auv = brs : 
(ii) a(u2 + v2)9 b(r2 + s 2 ) , a(u2 - v2) + 2brs , 
where 2auv = b(r2 - s2) : 
(iii) a(u2 + v 2 ) , b(r2 + s 2 ) , 2auv + 2brs , 
where a(u2 - v2) = b(r2 - s2); or : 
(iv) a reduction by a common factor of a triangle given by (i), (ii), or (iii). 

Carlson1 s incorrect form of Corollary 1 had three conditions numbered (3), (4) and (5) 
corresponding to our (i), (iii) and (iv) without the parameters a and b. It appears that the 
original Corollary 1 neglected to consider that the common side of the two Pythagorean t r i -
angles might be of the form u2 - v2 in one and of the form 2rs in the othei*. If one c o n -
structs a short table of Pythagorean triples from (1), one has: 

u 
2 
3 
3 
4 
4 
4 

V 

1 
1 
2 
1 
2 
3 

u2 + v2 

5 
10 
13 
17 
20 
25 

u2 - v2 

3 
8 
5 

15 
12 

7 

2uv 
4 

6 
12 

8 
16 
24 
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One immediately wants to construct a Heronian triangle from 10, 8, 6 and 17, 15, 8, ob-
taining 10, 17, 21. This construction is of form (ii) of the corrected Corollary 1, but does 
not fit into Carlson 's (3), (4) or (5). To see that (5) does not apply, suppose that it did. Then 
we must put together either: 

10c, 6c, 8c and 17c, 15c, 8c, which gives 16c = 2u2 and 32c = 2r2, which is im-
possible; or: 

10c, 8c, 6c and 17c, 8c, 15c, which gives 18c = 2u2 and 25c = 2r2, which is 
impossible. 

(Possibly Corollary 1 may apply in i ts original form to the splitting by one of the other 
altitudes.) 

Carlson1 s Lemma 2 is unclear. (The following remarks assume the reader has 1 at 
hand.) What he has proven, but not clearly stated, is that an isosceles Heronian triangle is 
obtained by putting together two equal Pythagorean triangles. The first step of the proof, 
that a primitive Heronian triangle has only one even side, is not proven until four pages la ter , 
on p. 505. The fact that the side of the isosceles triangle is odd is not used, only the fact 
that the base is even is needed and this holds for any isosceles Heronian triangle since it holds 
for primitive ones. Carlson 's parameter Q is simply the altitude on the base and his result 
A = nQ is direct from the ordinary area formula. (There may be some historical interest 
in using Hero's formula for the area , but I would not consider the added interest to be worth 
the added complexity.) Fur ther , to obtain primit iveness, one must make assumptions on GCD 
(u,v) and the parity of u and v. We give the following c lea re r and cor rec t form of Car lson 's 

Lemma 2. A triangle is an isosceles Heronian triangle if and only if i ts sides can be 
represented as : 
(i) a(u2 + v 2 ) , a(u2 + v 2 ) , 4auv ; 
or : 
(ii) a(u2 + v 2 ) , a(u2 + v 2 ) , 2a(u2 - v2) . 
The triangle is then primitive if and only if 

a = 1, GCD(u,v) = 1 and u ^ v (mod 2). 
Incidentally, it is possible to obtain different representations of isosceles Heronian t r i -

angles. Consider the Pythagorean triangles 30, 18, 24 (obtained from u = 2, v = l , a = 
6) and 25, 7, 24 (obtained from u = 4, v = 3, a = 1). These fit together to form the 
isosceles Heronian triangle 25, 25, 30 which reduces to 5, 5, 6. 

REFERENCES 
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AN OBSERVATION ON FIBONACCI PRIMITIVE ROOTS 

DANIEL SHANKS 
NavaS Ship R & D Center, Bethesda, Maryland 

and 
LARRY TAYLOR 

UN I VAC Division, Sperry Rand Corporation, New York, New York 

1. OBSERVATION 
A prime p has a Fibonacci Primitive Root g if g is a primitive root of p that 

satisfies 
(1) g2 & 1 + g (mod p) . 

Some propert ies of the F . P . R.fs a re proven or conjectured in [ l ] . Another property that was 
not noticed then is given in the following. 

Theorem. If p = 3 (mod 4) has g as a F . P . R. , then g - 1 and g - 2 a re also 
primitive roots of p. 

Examples. From [ l , Table 1, p. 164]. 
p = 11 has 8, 7, 6 as primitive roots; 
p = 19 has 15, 14, 13 as primitive roots; 
p = 31 has 13, 12, 11 as primitive roots. 

Proof. Since 
gig - 1) = 1 (mod p) , 

g - 1 i s the inverse of g (mod p) and therefore is a primitive root of p if g i s . Next, 

(g - l ) 2 = g2 - 2g + 1 = -g 4- 2 (mod p) 

from (1) and, since p = 4k + 3, 

Therefore, 

(g - l ) 2 k + 1 = -1 (mod p) 

(g - 1) s g - 2 (mod p) , 

and since 2k + 3 is prime to 4k + 2, g - 2 is also a primitive root of p. 

2. ASYMPTOTIC DENSITY 

What ratio r of all p r imes p = 3 (mod 4), asymptotically speaking, have such a 
triple of primitive roots? By [ l , p. 167] it is immediate that the proper conjecture is 

? 
1 8 (2) r = ±1 A = 0.35427 39286 91876 

where A is Art in 's constant. By the discussion in [ l ] there i s little doubt that (2) i s true 
even though it i s not now provable. 
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3. OTHER TRIPLES 

Another cri terion, entirely different, for three consecutive primitive roots i s this, cf. 
[2 , p. 80, Ex. 61] . If 

p = 8k + 7 and q = 4k + 3 
are both pr ime, then 
(3) p - 2, p - 3, p - 4 
are primitive roots of p. 

This i s easily proven. As an example, p = 23 (having q = 11) has 21, 20, 19 as 
primitive roots. 

Now, what pr imes p simultaneously satisfy both sufficient conditions, and thereby have 
both tripLes, that in (3) and the 

(4) g, g - 1, g - 2 

triple above? It is easily seen that any such p must satisfy p = 119 (mod 120) and there-
fore that the run (3) extends, at least , to 
(5) p - 2, p - 3, p - 4 , p - 5, p - 6. 

The smallest example is p = 359 with primitive roots 

(4a) 106, 105, 104, also 103, 
and 
(5a) 357, 356, 355, 354, 353 . 

The next example is p = 479 with 
(4b) 229, 228, 227, also 226, 
and the powerful run 
, h) 477, 476, 475, 474, 473, also 
K 0) 472, 471, 470, 469, 468, 467. 

The run of 11 in (5b) is due to the fact that 479 is a "negative square. " See [ 3 , Table II, 
p. 436] and the discussion there for an explanation of this las t point. 
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A GROUP-THEORETICAL PROOF 
OF .A THEOREM IN ELEMENTARY NUMBER THEORY 

HUGO S. SUN 
Fresno State College, Fresno, California 

J L< Ho £
s 

.2 _ t / J * T \ , „ o S , r n _ n „„ -, «S+1 

It is well known that if 

N = 2* P ; j p 2 * 2 . - - p 

then the number of solutions to the congruence x2 = 1 (mod N) i s 2D if I = 0 or 1, 2 
if i = 2 , 2 S + 2 if £ s> 3 [2, 
this fact. To fix the idea, let 

N = 2 ^ ^ . . . p g
b = 2 N0 = p ^ N i = . . . = p g

S N s 

s+2 if i = 2, 2 if £ ^ 3 [2, pe 191]. In this note, we give a. group-theoretical proof oT 

/ h Hence N. = N/p. , and the N. a re relatively pr ime, identifying 2 with p0 

Lemma. Let k0, kj , • •• , k s be integers such that k0N0 + kjNi + • • • •+ 
e0 = ±1, or ±1 + some power of 2, ê  = ±1 for 1 ^ i ^ s, and let 

I 

M = e0k0N0 + ejkiNi + • • • + e&kQNQ 

Then for any choice of e., 0 ^ i ^ s, (M,N) = 1. 
Proof. Since p. IN. for i f j and p. 4-N., p. must not divide k., otherwise p. 

would divide 1. Suppose (M,N) ^ 1, then some p. |M, but this p. must then divide 
e.k.N., which is impossible. 

Theorem. The number of solutions to the congruence x2 = 1 (mod N) is 2 if i = 
0 or 1, 2 S + 1 if i = 2, and 2 S + 2 if i ^ 3 . 

Proof. Let <c>. be a cyclic group of order N. F i r s t notice that a nontrivial auto-
morphism A of < c > takes c to c , where (x, N) = 1; if X is of order 2, then x2= 1 
(mod N). Moreover, since every solution XQ of x2 = 1 (mod N) is prime to Ns A(c) = c ° 
i s an automorphism of order 2. Since the automorphism group of a cyclic group is abelian, 
the set of automorphisms of order 2 form a subgroup. The order of this subgroup is the 
number of solutions to the congruence x2 = 1 (mod N). 

N i Each Sylow p.-subgroup is generated by c l and is character is t ic in < c > . An auto -
i N* !N« —N* 

morphism A of order 2 must take c 1 to c * or C 1 for 1 ^ i < S Since X2 = 1 (mod 
p ) has only two solutions ±1 for an odd prime p. As for the 2-Sylow subgroup < c °>, if 
i ts order is 2, it admits only the identity automorphism; if i ts order is 4, it admits 2 auto-
morphisms, namely c ° - • c ° and c ° -* c" °; if i ts order is 2 , i > 3, it admits 4 
automorphisms, with the other two being 
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G N 0 ^ ^ 0 ( 2 ^ ^ 1 ) ^ e N o ^ N o ^ - 1 - ! ) # 

We have thus seen that an automorphism X of o rder 2 either leaves aSylow p.-subgroup 
elementwise fixed or takes its elements to their inverses o r , in case of the Sylow 2-subgroup 
of o rder 2 ^ 8 , takes the elements to their 2 ± 1 powers. 

Conversely, mappings that act on one Sylow subgroup as above and leave all others 
elementwise fixed are automorphisms of order 2 and so are their compositions. In fact, 
let X be such a mapping, 

MO = Me**'*"'****) = A(ck<>N0)X(ckiNi)-.. X(ck^) = (ce°k°N°) ( c 6 ^ ) 
. . . ( c e s k s N S ) = CM f 

clearly (M,N) = 1 by the lemma and X is an automorphism of order 2. 
Since the group of automorphisms of order 2 i s a direct product of the groups of auto-

morphisms of order 2 of i ts Sylow subgroups, the conclusion of the theorem is established. 

REFERENCES 
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Please make the following corrections on e r r o r s occurring in "The Autobiography of 
Leonardo Pisano ," appearing on page 99, Volume 11, No. 1, February 1973: 

Page 100, line 13 — The fourth word in this line should be "quedam," not "quedem." 
Page 101, line 11 — Please underline "per qualche giorno." 

line 5 from bottom — Please underline the last word, "in. " 
Page 102, line 6 — Please change the last underscored word from "posta" to "postea." 

line 21 — Please underline the words "disputationis conflictum." 
Page 103, line 1 — Please change the word "reconing" to read "reckoning." 

line 20 — Please change the last word on this line to read "u/^2 . " 
line 33 —Please change the next to last word to read " a ^ . " 
line 5 from bottom — Please read the sixth from last word as " (&. " 

Page 104, line 1 — Please underline the word "a lgor ismum." 

[Continued on page 168. ] 



PERIODICITY OF SECOND-AND THIRD-ORDER 
RECURRING SEQUENCES 

C.C. YALAVIGI 
Mercara, Coorg, India 

Define a sequence of generalized Fibonacci numbers 

(1) { w n } " = {wn(b,c; P.Q)}" 

by 

(2) wn = b w n l + cwn_2 , 

where n denotes an integer ^2, w0 = P and w1 = Q. Considering a special form of this 
sequence 

D. D. Wall [l] has shown that 

{wn % " ^ w n ( l s l ; ° 9 l ) ^ > 

,(D {wn
l (mod m)}°̂  

(where m denotes a positive integer) is simply periodic. Our objective is to point out a 
rigorous proof of the same and extend it to the sequence of Tribonacci numbers 

(3) {T }°° = {T(b f c ,d ; P,Q,R)}T . 
n o n 

This sequence of numbers is defined by 

(4) T = bT n + cT 0 + dT Q , v ' n n-1 n-2 n-3 

where n denotes an integer > 3 , T0 = P9 Tt - Q and T2 = R. 
Theorem a. 

(w^ (mod m)}0 

is simply periodic. 

Proof. Let 
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a. 
m = i W 

J 

where j = 1, 2, " • , i and p. represents a pr ime. Since 

a. °° 
{ w ^ (mod p . 3 } n J O 

i s known to be periodic [ l ] , we denote the length of the period 

a °° 
( w ^ (mod p M 

1 1 J 0 

by k. and write J 3 
2L a 

(5) w ^ = 0 (mod p j ) , w ^ = 1 (mod p j ) . 
3 3 3 

Then it i s easy to show that 

< L 2 . . . k i - ° <mod #>• ^ . . . k i 5 ° < m o d *"2> • - . 

(6) and 

' S k j . - k i + l H X ^ d p f 1 ) ' ^ - . . k i + 1 s X ( m o d p ^ 2 ) ' • " ' 
/- v a. 

w, , i J.I = 1 (mod pi ) . k1k2- • • ki+1 **• 

Therefore, it follows that 

^ • • • k i 5 ° ( m o d m ) 

(7) and 

W kfk 2 - . -k i + l S * < m 0 d m ) 

and 

{w (mod m)} 

becomes simply periodic. 
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Theorem b. If (b, c, P , Q, m) = 1, then {wn (mod m)}* is simply periodic. 
Proof. Let 

N f f = (w (b,c, o,i)}:. 

^ 9 j j ; — A, uLicu. lLimo uccn snuwii ILL IOJ , m a t ^ v" 

is simply periodic. Also, since 
For p denoting a prime s if (b,c,p) = 1, then it has been shown in [3] , that {w( ' (mod p)}^ 

(2) (2) 
w = pw + cQw ' , 

n * n ^ n-1 
it follows that if (b , c ,P ,Q ,p ) = 1, then {w (modp)}0 is simply periodic, and the tech-
nique of Theorem a renders that (w (mod m)}0 is simply periodic. 

Theorem c. Let 
CO 

{V9 )} = { T n ( l f l f l ; 0,0,1)}* . 0 
Then 

{Ti 9 ) (modm)}c 
is simply periodic. 

Proof. We have shown in [2] , that { T (mod p)}0 is simply periodic and the proof 
r ?9T~~ i°° n 

that ( T (mod m))0 i s simply periodic follows from the technique of Theorem a. 
Theorem d. If (b, c, d, P , Q, R, m) = 1, then { T (mod m)}0 is simply periodic. 
The proof of this theorem is s imilar to that of Theorem c and is left to the reader . 
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ON SOLVING NON - HOMOGENEOUS 
LINEAR DIFFERENCE EQUATIONS 

MURRAY S.KLAMKIN 
Scientific Research Staff, Ford Motor Company, Dearborn, Michigan 

In a recent paper, Weinshenk and Hoggatt [l] gave two methods for obtaining the gen-
era l solution of the difference equation 

(1) C _,0 = C ^ + C + n m . 
n+2 n+1 n 

One method is by expansion and the other by operators . However, in the lat ter method there 
are still some open convergence questions. Here we give another method which is equivalent 
to one of the operator methods but which avoids the convergence question. It will be valid 
for any l inear difference equation with constant coefficients and with any non-homogeneous 
t e rm on the right-hand side. The solution will be given in t e rms of the solutions of the cor -
responding homogeneous equation. 

We consider the equation 

(2) L(E)A = G , 
n n 

where the l inear operator is given by 

L(E) = E r + a i E r + a 2 E r + - • • + a 

and the ajTs are constants. The corresponding homogeneous equation, L(E)A = 0 , can be 
solved in the standard way in te rms of the roots of L(x) = 0. We will denote a solution of 
the homogeneous equation by the sequence { B . } and for simplicity we will assume that the 
initial conditions on the B.'s are such that 

I 
(3) - L - = B0 + Btx + B2x2 + • • • . 

1 + a4x + a2x2 + • • • + ajjc37 

If we had chosen arbi t rary initial conditions for the B.Ts, then the numerator (1) on the left-
hand side would have been replaced by some polynomial entailing a further calculation subse-
quently. This procedure is analogous to solving l inear non-homogeneous differential equations. 
One first solves the homogeneous equation subject to quiescent conditions and then obtains the 
general solution by a convolution in terms-of the non-homogeneous term and the lat ter solution. 

To solve (2), we first write down a generating function of the solution, i. e. , 

A(x) = A0 + AtK + A2x2 + . . . + A r x r + • • • . 
Then 
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atxA(x) = a ^ x + ajAjx2 + . . . + a j A ^ x 1 " + • • • , 

a2x2A(x) = S^AQX2 + . . . + a2Ar_2x + . . . s 

a xrA(x) = a rAoxr + ••• . 
Adding: 

A(x)(l + SLtK + a2x2 + . . . + a r x r ) = S0 + SiX + S2x2 + . . . + S ^ x 1 " - 1 

where 
+ Goxr + Gixr + 2 + G2xr+2 + 

S. = a.A0 + a._lAi + A._2A2 + . . . + a0A. (a0 = .1) . 

Now using (3) and carrying out the multiplication, we obtain the convolution 

A = (S n B + S-B n + S0B + . . . + S , B ,} 
... n L 0 n 1 n-1 2 n-2 r - 1 n - r - F 

+ (G n B + G,B , + G0B 0 + ••• + G BA} (n > r) . 
L 0 n - r 1 n - r - 1 2 n - r - 2 n - r 0J v ' 

The top par t of the right-hand side of (4) corresponds to the complementary (homogeneous) 
solution of (2) whereas the bottom par t corresponds to the part icular solution. It is to be 
noted that the method is valid even if the non-homogeneous right-hand side of (2) is part of the 
complementary solution (i. e. , if L(E)G = 0) . 

We now apply this technique to (1). One complementary solution of (1) is of course the 
Fibonacci sequence 1, 1, 2, 3, e - ° . Thus, 

= Fi + F2x + F3x3 + 
1 - x -

Solution (4) now becomes 

C n = C 0 F n + l + <C0 + C l > F n + F l ( n " *>* + F2(n - 3 ) m
 + • • • + F n _ 2 ( l ) m 

o r 

n -1 
C = C n F , + CLF + V * F. (n - i - l ) m (n ^ 2) . 

n 0 n -1 1 n ZLr 1 
i=l 

This corresponds to the solution in [l] provided a stopping rule is used there. 
In their concluding r emarks , the authors of [l] raise the question of determining con-

ditions under which their operational methods for obtaining a part icular solution are valid. 
They point out the example of D. Lind that if C + 1 - c

n
 + n w e r e t o D e solved by their oper-

ational method, one would obtain 
CO 

(5) ^ - A r R =-I>k» • 
k=0 

which diverges unless some stopping rule is involved. However, the divergent solution can be 
justified if one considers i ts analytic continuation. F i r s t replace n by nS where R (s) > 1. 
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Then in terms of the Biemann Zeta function, 

C = J L + - J _ + ^ _ + . . . 
n s s+1 s+2 

: = ( j _ + J _ + J _ + i \ - { ( f l ) 
n l l S 2S 3S ( n - l ) S j 

However, the zeta function can be analytically continued for R (s) < 1 and for negative in-
tegers it is given by [2] 

«-2m) = 0 , 4(1 - 2m) = ( - l ) m B /(2m), m = 1, 2, 3, ••• , 

£(0) = -1 /2 (B a re the Bernoulli numbers). 

Now letting s = -1 above, gives the valid part icular solution 

C = ( l + 2 + 3 + - - - + n - l ) - {(-1) . 

Since the constant £(-1) satisfies the homogeneous equation, it can be deleted. 
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[Continued from page 162. ] 

ERRATA 
Please make the following correction to MA New Greatest Common Divisor Property of the 
Binomial Coefficients," appearing on p. 579, Vol. 10, No. 6, Dec. 1972: 

On page 584, las t equation, for 

ft::) — (i::V 
In "Some Combinatorial Identities of Bruckman," appearing on page 613 of the same issue , 
please make the following correction. 

On the right-hand side of Eq. (12), p. 615, for 
2k 2 k 

read 2k + 1 2k + 1 



A RELIABLiTY PROBLEM" 

MURRAY S.KLAMKIN 
Scientific Research Staff, Ford IVtotor Company, Dearborn, Michigan 

and 
R.S. FISHMAN 

Raytheon Company, Bedford, Massachusetts 

ABSTEACT 

An m Xn a r r a y of elements is considered in which each element has a probability p 
of being reliable. The a r r ay as a whole is considered reliable if there does not exist in the 
a r ray any polydominoe of a given form in any orientation having all of i ts elements unreliable. 
A method is given for determining the probability of reliability for the a r r ay and solutions 
are worked out explicitly for several special cases . 

1. INTRODUCTION 

We are given an m X n a r ray 

1 

2 

; 

m 

1 2 n 

in which each of the mn elements has a given probability p of being reliable (and a prob-
ability q of being unreliable where p + q = 1). The m X n matrix as a whole will be con-
sidered reliables if and only if, there does not exist in the a r ray , any polydominoe of a given 
form in any orientation having all of its elements unreliable. The problem then is to calcu-
late the probability of reliability of the ar ray . The special ease where m = 2 and the given 
polydominoe is a 2 X 1 arose in the design of a low-altitude detection antenna. If any 2 X 1 
polydominoe had both its elements unreliable, then the antenna could not fulfill i ts detection 
mission. 

The specific cases to be considered here explicitly are the following: 

Array size Failure polydominoe 

(Ct) 2 X n 
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(C2) 

(C8> 

(c4) 

(c5) 

A RELIABILITY PROBLEM 

Array size Failure polydominoe 

2 x n 

2 X n 

[Apr. 

3 X n 

3 X n 

q 

q 

1 q 
q 

1 q 

1 q 
q 

q | 

q 
q 

1 q 

q 
q 

2. PROBABILITY FOR RELIABILITY 

For all the cases , we will let P denote the probability of the 2X n or 3 X n a r ray 
being reliable. For the 2 X n a r ray , A , B , C , D will denote the respective probabil-
i t ies of reliability of the a r ray if the end 2 X 1 polydominoe has the form 

P P 
P 1 ' l~q 

q i q 
p I ' R 

and then 

(1) P = A + B + C + D . n n n n n 

For the case (Ct), D = 0 and B = C . Here, for. an A +- a r ray , the end 2 X 2 
polydominoe must have one of the three following forms: 

P P P P q p 

P P 1 ' q P ' P P 

Thus, 
(2) A L1 = p2(A + B + C ) n-M F n n n 

For a B - a r r ay , the end 2 X 2 polydominoe must have one of the two forms 

p p q P 

P q ' p q 

and thus 
(3) 
and similarly 
(4) 

B n + 1 = P q ( A n + C n ) 

C ^- = pq(A + B ) n+1 F ^ n n 
On eliminating B and C , we obtain 
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( 5 ) A n + 1 = ? 2 p n • 

( 6 ) P n + 1 = P P n + P"An > 
and then 

( 7 ) P n + 1 = P p n + P ^ P n - l ' 
For initial conditions, we have 
(8) At = p2, Bt = pq = C4, Dt = 0. 
Whence, 
(9) p 1 = i _ q2s p 2 = 2p2 - p4 . 

171 

The solution of (7) is then given by 

Pn = M ? + k2rn , 

where r l 9 r2 a re the roots of x2 = px + p3q and constants kl9 k2 a re determined so as to 
satisfy (9). This gives 

where a = ^ p2 + 4p3q . 
For (C2), it then follows as before that 

(11) A Q + 1 - p^(An + B n + C n + Dn) , 

(12) B n + 1 = C n + 1 = pq(An + B n + C n ) , 

(13) D n + 1 = q ^ 
subject to the initial conditions, 
(14) At = p2, Bt = pq = C l s Dt = q2 . 
Eliminating B , C , D , we obtain 

(15) A n + 2 = (p2 + 2pq)An + 1 + p2q2An - 2p3q3An_1 . 

Whence, 
A n = ktvf + k2r£ + k 3 r n , 

where r l 9 r 2 , r 3 a re the roots of 
x3 = (p2 + 2pq)x2 + p2q2x - 2p3q3 

and the constants kl9 k2, k3 are determined from the initial conditions (note that here At = 
A2 = p2, A3 = p 4 [ l + 2pq + 5q2]). Then Bn> C , D n and P n are easily determined. 

For (C3), we have (11) and 
(16) B .- = C _,, = pq(A + B + C + D ) , 

n+1 n+1 ^ n n n n ' 
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(17) 
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D J 1 = q2(A + B + C ) n+1 ^ n n n 

[Apr. 

(again all subject to conditions (14)). On eliminating D , we obtain 

(18) A ^, = p2 A + B + C + q2(A - + B - + C J n+1 F n n n ^ n -1 n-1 n-1 

(19) 
Whence, 
(20) 
Then, 

where r. a re the roots of 
I 

PBn+l = P C n + l = q A n + l ' 

A J.I = P(P + 2q)(A + q2A -.) • 
n+l r\r < i / \ n M n - 1 

A 1 n , I n 

A
n = Mi + k2r2 , 

x2 = p(p + 2q)(x + q3) 

and the k. fs a re determined from the initial conditions. 
Then B , C , D and P are found from (14), (17) and (1). 
For the 3 Xn a r r a y s , we let A , B , C , D , E , F , G , H denote the respective J n n n n n n n n 

probabilities of reliability of the a r ray if the end 3 X 1 polydominoe has the form 

p 
p 
p 

» 
p 
p 
q 

* 
p 
q 
p 

> 
q 
p 
p 

3 

q 
q 
p 

j 

q 
p 
q 

» 
p 
q 
q 

» 
. _ . 

q 
q 

and 
(21) 

For (C4), 
P = A + B + C + D + E + F + G + H n n n n n n n n n 

E = G = H = 0 , B = D , n n n n n 

(22) At = p3, B t = C t = Dt = p2q, Ft = pq2 , 

(23) 

(24) 

(25) 

(26) 
For (C5), 

A _,, = p3(A + B + C + D + F ) , n+1 ^ n n n n n 

B _,_, = D _,, = p2q(A + C + D ) , n+1 n+1 F M n n n 

C ^ = P2q(A + B + D + F ) , n+1 ^ M n n n n 

F .., = pq2(A + C ) n+1 FM n n 

B = C = D , E = G , n n n n n 

(27) At = p3, Bt = C t = Dt = p2q, Ej = Fx = Gt = pq2, Ht = q3 



1973] 

(28) 

A RELIABILITY PROBLEM 

A n + 1 " P3 pn • 
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(29) 

(30) 

(31) 

(32) 

B ; n + l = P ^ P n • 

E _LI = PQ2(A + B + C + D + F + G ) n+1 FM n n n n n n 

F . - = pq2P , n+1 ^ n 

H J.1 = q3<A + B + c + D + F ) . 
n+1 n n n n n 

Although we can ca r ry out the elimination process for (C4) and (C5) by means of the 
operator E and then determine P in t e rms of the roots of a higher order polynomial, it is 
not worthwhile. In these cases (and even some of the pr ior ones)9 one can just use a computer 
on the recurrence relations to determine the P f s . 

n 

3. HIGHER ORDER POLYDOMENOES 

The previous methods, with some adaptation, will also apply when the failure poly-
dominoe is of higher order than the previous ones. As in the last two cases , it will suffice to 
just get the appropriate recurrence equations. If the failure polydominoe is of the type 

rr 
in a 3 X n a r ray , then we would need t e rms A , B , 
a r ray whose end 2 X 3 polydominoe has the forms 

, corresponding to a reliable 3 X n 

p 
p 
p 

p 
p 
p 

5 

P 
P 
P 

P 
P 
q 

t 

p 
p 
p 

p | 
q 
p 

etc. 

This will, of course, lead to an increased number of recurrence relations. Other a r -
rays which can be solved similarly are cylindrical and torodial ones as well as higher dimen-
sional ones. 



THE FIRST SOLUTION OF THE CLASSICAL EULERIAN 
MAGIC CUBE PROBLEM OF ORDER TEN 

JOSEPH ARKIN 
197 Old Nyack Turnpike, Spring Valley, New York 10977 

In this paper for the first time three Latin cubes of the tenth order have been super-
imposed to form an Eulerian cube. A Latin cube of the tenth order i s defined as a cube of 
1000 cells (in ten rows, ten columns, and ten files) in which 1000 numbers consisting of 100 
zeros , 100 ones, • • • , 100 nines, a re arranged in the cells so that the ten numbers in each 
row, each column, and each file are different. 

In this paper, we actually solved two problems, since in addition to having solved the 
Eulerian cube of order ten, we have also made the cube magic (for the first time). A magic 
cube i s such that the ten cells in each diagonal (or "diameter") and in every row, every file, 
and every column is the same — namely, 4995 (see [ l ] ) . 

In what follows, it will be noted that each of the ten SQUARES contain 100 cells and each 
cell contains a three-digit number. Now, if we delete the third digit on the right side in each 
and every cell, it is easily verified that each of the ten SQUARES has become pairwise 
orthogonal. 

In 1779, Euler conjectured that no pair of orthogonal squares exist for n = 2 (mod 4). 
Then in 1959, the Euler conjecture was shown to be incorrect by the remarkable mathema-
tics of Bose, Shrikande and Parker [2]. Recently (in 1972) Hoggatt and this author extended 
Bose, Shrikande and Parker1 s work by finding a way to make the 10 X10 square pairwise o r -
thogonal as well as magic. For a square to be magic, each of the two diagonals must have 
the same sum as in every row and in every column — namely (since we a re considering the 
sum of ten cells with two digits in each cell), 495 (see [3] ). 

Let us label the cells in each square as follows: (row, column, square number) = 
(r, c, s) = some number in a cell. For example, the number 763 in Square Number 0 
reads 763 = (0,0,0) , or say we wish to consider the number 338 in Square Number 1: we 
then write 338 = (6, 2, 1). 

THEN THE SUM OF EACH DIAGONAL (OR "DIAMETER") IN THE FOLLOWING FOUR-
DIAMETER MAGIC CUBE IS, RESPECTIVELY, 

9 9 9 9 
^ (r,c,s) = ^ (9 - r , c , s ) = ^ ( r , 9 - c , s ) = ^ ( 9 - r , 9 - c , s ) = 4995. 

r,c,s=0 r,c,s=0 r,c,s=0 r,c,s==0 

Now, let us define a magic route as that path which goes through ten different squares 
and passes through one cell in each square and no_ two cells that the route t raverses are in 
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the same file, and the sum total of the numbers in the ten cells that make up this magic route 
equals 4995. 

Then it may be easily shown that any cell in the cube begins a magic route. For example: 

(4,2,0) + (8,4,1) + (6,0,2) + (0,7,3) + (5,8,4) + (9,5,5) 
+ (1,3,6) + (3,1,7) + (2,6,8) + (7,9,9) = 4995. 

For the convenience of the reader , we l is t , respectively, the numbers represented by nota-
tion above — 754, 321, 737, 575, 762, 003, 480, 396, 648, and 319.) 

Note: The general method of how to find magic routes in singly-even magic cubes (ex-
cept 2 and 6) will be given in the forthcoming paper mentioned above. 

SQUARE NUMBER 0 

763 886 540 979 015 428 601 354 232 197 

279 963 097 654 832 301 728 186 440 515 

897 340 463 201 579 632 154 915 028 786 

140 454 901 063 628 715 879 297 586 332 

932 228 754 815 163 086 597 401 379 640 

328 697 132 740 486 563 215 079 954 801 

554 032 286 128 701 997 363 840 615 479 

415 779 828 532 397 240 986 663 101 054 

686 501 315 497 254 179 040 732 863 928 

001 115 679 386 940 854 432 528 797 263 

SQUARE NUMBER 1 

472 

385 

100 

564 

059 

816 

221 

693 

938 

747 

138 

072 

864 

621 

316 

900 

759 

485 

247 

593 

264 

700 

672 

047 

421 

559 

338 

116 

893 

985 

085 

921 

347 

772 

193 

464 

516 

259 

600 

838 

793 

159 

285 

916 

572 

638 

447 

800 

321 

064 

616 

847 

959 

493 

738 

272 

000 

364 

585 

121 

947 

416 

521 

185 

200 

393 

872 

038 

764 

659 

821 

538 

093 

300 

647 

785 

164 

972 

459 

216 

359 

664 

716 

238 

885 

021 

993 

547 

172 

400 

500 

293 

438 

859 

964 

147 

685 

721 

016 

372 



THE FIRST SOLUTION OF THE CLASSICAL EULERIAN 
MAGIC CUBE PROBLEM OF ORDER TEN 

SQUARE NUMBER 2 

190 

413 

952 

071 

346 

665 

737 

508 

224 

889 

924 

390 

671 

537 

465 

252 

846 

113 

789 

008 

771 

852 

590 

389 

137 

046 

424 

965 

608 

213 

313 

237 

489 

890 

908 

171 

065 

746 

552 

624 

808 

946 

713 

265 

090 

524 

189 

652 

437 

371 

565 

689 

246 

108 

824 

790 

352 

471 

013 

937 

289 

165 

037 

913 

752 

408 

690 

324 

871 

546 

637 

024 

308 

452 

589 

813 

971 

290 

146 

765 

446 

571 

865 

724 

613 

337 

208 

089 

990 

152 

052 

708 

124 

646 

271 

989 

513 

837 

365 

490 

SQUARE NUMBER 3 

987 

131 

266 

323 

418 

502 

875 

049 

750 

694 

250 

487 

523 

075 

102 

766 

618 

931 

894 

349 

823 

666 

087 

494 

975 

318 

150 

202 

549 

731 

431 

775 

194 

687 

249 

923 

302 

818 

066 

550 

649 

218 

831 

702 

387 

050 

994 

566 

175 

423 

002 

594 

718 

949 

650 

887 

466 

123 

331 

275 

794 

902 

375 

231 

866 

149 

587 

450 

623 

018 

575 

350 

449 

166 

094 

631 

223 

787 

918 

802 

118 

023 

602 

850 

531 

475 

749 

394 

287 

966 

366 

849 

950 

518 

723 

294 

031 

675 

402 

187 

SQUARE NUMBER 4 

606 

827 

578 

255 

783 

199 

362 

934 

041 

410 

541 

706 

155 

962 

899 

078 

483 

627 

310 

234 

355 

478 

906 

710 

662 

283 

841 

599 

134 

027 

727 

062 

810 

406 

534 

655 

299 

383 

978 

141 

434 

583 

327 

099 

206 

941 

610 

178 

862 

755 

999 

110 

083 

634 

441 

306 

778 

855 

227 

562 

010 

699 

262 

527 

378 

834 

106 

741 

455 

983 

162 

241 

734 

878 

910 

427 

555 

006 

683 

399 

883 

955 

499 

341 

127 

762 

034 

210 

506 

678 

278 

334 

641 

183 

055 

510 

927 

462 

799 

806 
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SQUARE NUMBER 5 

525 

642 

014 

788 

891 

930 

403 

257 

369 

176 

069 

825 

988 

203 

630 

314 

191 

542 

476 

757 

488 

114 

225 

876 

503 

791 

669 

030 

957 

342 

842 

303 

676 

125 

057 

588 

730 

491 

214 

969 

157 

091 

442 

330 

725 

269 

576 

914 

603 

888 

230 

976 

391 

557 

169 

425 

814 

688 

742 

003 

376 

530 

703 

042 

414 

657 

925 

869 

188 

291 

903 

769 

857 

614 

276 

142 

088 

325 

591 

430 

691 

288 

130 

469 

942 

803 

357 

776 

025 

514 

714 

457 

569 

991 

388 

076 

242 

103 

830 

625 

SQUARE NUMBER 6 

044 

598 

329 

836 

605 

277 

180 

761 

412 

953 

312 

644 

236 

780 

577 

429 

905 

098 

153 

861 

136 

929 

744 

653 

080 

805 

512 

377 

261 

498 

698 

480 

553 

944 

361 

036 

877 

105 

729 

212 

961 

305 

198 

477 

844 

712 

053 

229 

580 

636 

777 

253 

405 

061 

912 

144 

629 

536 

898 

380 

453 

077 

880 

398 

129 

561 

244 

612 

936 

705 

280 

812 

661 

529 

753 

998 

336 

444 

005 

177 

505 

736 

977 

112 

298 

680 

461 

853 

344 

029 

829 

161 

012 

205 

436 

353 

798 

980 

677 

544 

SQUARE NUMBER 7 

239 

904 

745 

417 

120 

051 

696 

382 

873 

568 

773 

139 

017 

396 

951 

845 

520 

204 

668 

482 

617 

545 

339 

168 

296 

420 

973 

751 

082 

804 

104 

896 

968 

539 

782 

217 

451 

620 

345 

073 

582 

720 

604 

851 

439 

373 

268 

045 

996 

117 

351 

068 

820 

282 

573 

639 

145 

917 

404 

796 

868 

251 

496 

704 

645 

982 

039 

173 

517 

320 

096 

473 

182 

945 

368 

504 

717 

839 

220 

651 

920 

317 

551 

673 

004 

196 

882 

468 

739 

245 

445 

682 

273 

020 

817 

768 

304 

596 

151 

939 
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SQUARE NUMBER 8 

311 

056 

433 

609 

567 

784 

948 

870 

195 

222 

495 

511 

709 

848 

084 

133 

267 

356 

922 

670 

909 

233 

811 

522 

348 

667 

095 

484 

770 

156 

556 

148 

022 

211 

470 

309 

684 

967 

833 

795 

270 

467 

956 

184 

611 

895 

322 

733 

048 

509 

884 

722 

167 

370 

295 

911 

533 

009 

656 

448 

122 

384 

648 

456 

933 

070 

711 

595 

209 

867 

748 

695 

570 

033 

822 

256 

409 

111 

367 

984 

067 

809 

284 

995 

756 

548 

170 

622 

411 

333 

633 

970 

395 

767 

109 

422 

856 

248 

584 

011 

SQUARE NUMBER 9 

858 

760 

681 

992 

274 

443 

019 

126 

507 

335 

607 

258 

492 

119 

743 

581 

374 

860 

035 

926 

092 

381 

158 

235 

819 

974 

707 

643 

426 

560 

260 

519 

735 

358 

626 

892 

943 

074 

181 

407 

326 

674 

060 

543 

958 

107 

835 

481 

719 

292 

143 

435 

574 

826 

307 

058 

281 

792 

960 

619 

535 

843 

919 

660 

081 

726 

458 

207 

392 

174 

419 

907 

226 

781 

135 

360 

692 

558 

874 

043 

774 

192 

343 

007 

460 

219 

526 

935 

658 

881 

981 

026 

807 

474 

592 

635 

160 

319 

243 

758 
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ON K-NUMBERS 

SELMOTAUBER 
Portland State University, Portland, Oregon 

1. INTRODUCTION 

We call K-numbers the numbers defined by 

(1) K(k,n) = £ <-Dm(£) 
m=0 x 7 

In [l5 p. 249], the following resul ts a re given: K(ksn) = 0 for k < n and K ( l , l ) = 
(-1) k! . We shall study general K-numbers and shall complete the definition by writing 
K(k,n) = 0 for k ,n < 0. We shall use two resul ts given in [ l ] : 

(2) 

cf. p. 246, No. 3, and 

E ( P ) = ( p + y 
s=0 

(3) t " - ^ ( t + l f ^ = 0 , 

cf. p. 249. 
The K-numbers are met in certain problems in combinatorics. 

2. RECURRENCE RELATION 

It will be observed in (1) that the term for m = 1 can be omitted since i t is zero. 

Consider 
n+1 

K(k,n + 1) - Z ( -Dm(nm1)m k 

m=0 

and the difference 

n+1 
S = K(k,n + 1) - K(k9n) = ] £ (-1)1 

m=0 

n + l \ / n \ 
m / " \m) 

n + 1 / \ 
E . ..xm/ n \ k 

(-l] ( m - l ) m ' 
m=0 x * 

179 
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where use has been made of the relation 

But 

so that 
( a \ b + 1 / a + l \ 

b J a + 1 I b + 1J ' 

n+1 

m=0 ^ ' 

k+1 K(k + 1, n + l) / (n + 1) 

thus the K-numbers satisfy the recurrence relation, 

(4) 
o r 
(4a) 

K(k + 1, n + 1) = (n + 1) [K(k, n + 1) - K(k,n)] 

K(k,n) = n[K(k - 1, n) - K(k - 1, n - 1)] . 

3. NUMERICAL RESULTS 

We observe that 

(5) K(k,l) = £ (-1)1 

m=0 
(i) m = -1 

Using the resul ts of Section 1 and (4), we obtain the following table of K(k,n): 

\ n 

k \ 

1 

2 

3 

4 

5 

6 

7 

1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

2 

2 

6 

14 

30 

62 

126 

3 

-6 

-36 

-150 

-540 

-1806 

4 

24 

240 

1560 

8400 

5 

-120 

-1800 

-16800 

6 

720 

15120 

7 

-5040 

4. HORIZONTAL SUMS 

Consider the "horizontal sum 
k k n 

S 

[Apr. 

E K(k,n) = £ £ (-l)m (Amk - £ (-l)m
m

k £ I A , 
n=0 n=0 m=0 \ ' m=0 n=0 * ' 
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and using (2) 

S = £ (-Dm k f k t 1 iV " m I m + 11 
m=0 \ / 

Let in (3) 
q = m + l 5 t = - 1 , a. = k, p = k + 1 , 

then (3) becomes 
k+1 

(-1) m 
m=- l 

or 
k 

(-D - 2J (-D m 
m=0 

thus 
k 

(6) S = J^ K ( k ' n ) = ( - X ) " • 
n=0 

5. GENERATING FUNCTION FOR THE K-NUMBERS 

To find the generating function of the K-numbers9 we use a technique given in [2] . We 
have 

OO 

(7) GK(k,n) = £ K(k9n)tk = u(n,t) , 
k=0 

and 
oo 

Y, K(k + 1, n)tk = GK(k,n)/t = u(n, t ) / t 
k=n-l 

OO 

2 K(k + 1, n + l ) t k = GK(k, n + l ) / t = u(n + 1, t ) / t = GK(k + 1, n + 1) . 
k=n 

According to (4) it follows that 

GK(k + 1, n + 1) = (n + 1) [GK(ks n + 1) - GK(k,n)] 
orj substituting, 

u(n + 1, t ) / t = (n + l)u(n + 1, t) - (n + l)u(n,t) , 

which shows that u(n,t) is a solution of the difference equation 

I k + 1 \ = o 
l m + 1 J U ' 

I m + 1 I 
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(8) [1 - t(n + l)]u(n + 1, t) + t(n + l)u(n,t) = 0 . 

We solve (8) using the classical technique given in [2] and obtain 

„/n rt - (2t)(3t) ••• (nt) 
U l n , t ; " (2t - l)(3t - 1) . . . (nt - 1) 

According to (5), K(k,l) = - 1 , thus 

u( l , t ) = n i r f 2 - i j u ( l , t ) / r ( n + 1 - i V 

u(l , t ) = £ K(k , l ) t k = - ^ t k = t /( t - 1), | t | < 1 , 

k=l k=l 

thus substituting into u(n,t) / 

(9) u(n,t) = GK(k,n) = n! r( 1 - \ ]/r( n + 1 - \ J , 

which is the generating function for the K-numbers. 

6. QUA SI-ORTHOGONAL NUMBERS OF THE K-NUMBERS 

According to [3] and correcting an e r r o r committed there, since the K-numbers sa t -
isfy a relation of the form 

n _ M(n + 1) n _ 1 _ n -1 
^k ~ N(n + 1) * k - l N(n) ^ k - 1 ' 

where clearly (cf. (4a)), N(n) = - l / n , M(n) = (n - l ) / n , so that, still according to [3] the 
quasi-orthogonal numbers satisfy the relation 

A£ = M(k)A^_1 + N(k)A^"J ; 

calling L(k,n) the numbers quasi-orthogonal to the numbers K(k,n), we have 

(10) L(k,n) = ^ - j j ^ L(k - 1, n) - i L(k - 1, n - 1) . 

Through the quasi-orthogonality condition we get L(k,k) = (-1) /k! , and since K(k,l) = -1 
it follows that for k > 1, 

k 
£ K(k,n) = 0 . 
n=l 
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It will also be easily verified that L(k, 1) = - l / k . We thus obtain the following table of val-
ues of L(k,n): 

k= 
1 
2 
3 
4* 
5 -1 /5 5/12 -7/24 1/12 -1/120 

-1 
-1 /2 
-1 /3 
-1 /4 

1/2 
1/2 

11/24 
-1/6 

-1 /4 1/24 

7. RELATIONS TO STIRLING NUMBERS 

We consider the numbers 

l. e. , 

a)(k,n) = (-l)kk!L(k,n) , 

L(k,n) = (-l)kw(k,n)/k! . 

By substituting into (10) we obtain 

a>(k,n) = -(k - l)a>(k - 1, n) + co(k - 1, n - 1) , 

which is the recurrence relation for Stirling numbers of the f irst kind (cf. [2, p. 143]). 
Since cu(l,l) = 1 = S t ( l , l ) , w(2,l) = -1 = St(2 , l ) , e t c . , it follows that co(k,n) = St(k,n), 
the Stirling numbers of the first kinds thus 

(12) L(ksn) = (-l)kSt(k9n)/k! . 

Similarly it can be easily checked that the K-numbers are related to the Stirling numbers of 
the second kind st(k,n) by the relation 

(12a) K(k,n) = ( - l )V . st(k9n) . 

REFERENCES 

1. E. Netto, Lehrbuch der Kombinatorik, Chelsea, N. Y. , Reprint of the second edition of 
1927. 

2. Ch. Jordan, Calculus of Finite Differences, Chelsea, N. Y. , 1950. 
3. S. Tauber, "On Quasi-Orthogonal Numbers ," A me r. Math. Monthly, 72 (1962), pp. 365-

372. 



ADVANCED PROBLEMS AND SOLUTIONS 
Edited by 

RAYMOND E. WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 

Send all communications concerning Advanced Problems and Solutions to Raymond E. 
Whitney, Mathematics Departments Lock Haven State College, Lock Haven, Pennsylvania 
17745. This department especially welcomes problems believed to be new or extending old 
resul ts . Proposers should submit solutions or other information that will ass is t the editor. 
To facilitate their consideration, solutions should be submitted on separate signed sheets 
within two months after publication of the problems. 

H-215 Proposed by Ralph Fecke, North Texas State University, Denton, Texas 

a. Prove 
n+2 
J ^ 2*P. s 0 (mod 5) 

for all positive integers, n; P. is the i te rm of the Pell sequence, Pj = 1, P2 = 2, 

b. Prove 
Lucas sequence. 

b. Prove 2nL = 2 (mod 10) for all positive integers n; L n is the n term of the 

H-216 Proposed by Guy A. R. Gui/lotte, 229 St. Joseph Blvd., Cowansville, Quebec, Canada. 

Let G be a set of rational integers and m & 

n=l 

G 
log 

^ ^ O ^ ! < F 2 n + l > m 

7T 

4 

Find a formula for G m 

H-217 Proposed by S. Krishna, Orissa, India. 

A. Show that 

24n-4x-4 /2x + 2 \ A n - 2x - 2 \ , , , , lX 
(x + l j 5 ( 2 n - x - l ) (mod 4n + 1) 

184 
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where n is a positive integer and - l < x < 2 n - l and x is an integer, also. 
B. Show that 

^4n-4x-6 i ( 2x + 4 1 , A n - 2x - 2 \ A . , . , , ox x + 2 j + \ 2 n - x - 1 J = ° (mod 4n + 3> 

where n is a positive integer and -2 < x < 2n - 1 and x is an integer, also. 

H-218 Proposed by V. £ Hoggatt, Jr., San Jose State University, San Jose, California. 

Let 
1 0 0 
0 1 0 
0 1 1 0 

• • • 2 1 , „ 
' nXn 

represent the matr ix which corresponds to the staggered Pascal Triangle and 

1 1 1 1 
B = 1 1 2 3 4 

1 3 6 10 # v/ 
, / n X n 

represent the matr ix which corresponds to the Pascal Binomial Array. Finally, let 

/ l 1 1 1 
C = I 1 2 3 4 

* 2 5 9 14 , N/ 
/ nXn 

represent the matr ix corresponding to the Fibonacci Convolution Array. Prove AB = C. 

H-219 Proposed by Paul Bruckman, University of Illinois, Urbana, Illinois. 

Prove the ident i ty 

•-""(^E^y^f^T=£(•)• 
i=0 ^ ' i=0 

where 
(x - i + 1) / x \ x(x - l)(x - 2) -

(x not necessar i ly an integer). 

H-220 Proposed by L Car/itz, Duke University, Durham, North Carolina. 

Show that 
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E k k r r* 2r a z _ y v a q z 

where 
(z)n = (1 - z)(l - qz) ••• (1 - q ^ z ) , (z)0 = 1 . 

SOLUTIONS 
ANOTHER PIECE 

H-125 Proposed by Stanley Rabinowitz, Far Rockaway, New York. 

Define a sequence of positive integers to be left-normal if given any string of digits, there 
exists a member of the given sequence beginning with this string of digits, and define the s e -
quence to be right-normal if there exists a member of the sequence ending with the string of 
digits. 

Show that the sequence whose n te rms are given by the following are left-normal but 
not r ight-normal. 

a. P(n), where P(x) i s a polynomial function with integral coefficients. 

b. P , where P is the n pr ime. 

c. n! 

d. F , where F is the n Fibonacci number. 

Partial solution by R. Whitney, Lock Haven State College, Lock Haven, Pennsylvania. 

Using a theorem of R. S. Bird*, one may show that each of the above is left-normal. 
If 

lim Jgl = 0 , 
n —• 00 S n 

where 6 = 1 or 6 is not a rational power of 10 or if 

,. n+1 , ,. n n+2 . 
l im —=— = °° and l im = 1 , 

n - • 00 $ n _ > 00 2 
n Sn+1 

then { s } is left-normal (extendable in base 10). n n=l 

,. P(n + 1) 
n —• °o P(n) 

hence ( P ( n ) j i s left normal. 

*R. S. Bird, "Integers with Given Initial Digi ts ," Amer. Math. Monthly, Apr. 1972, pp. 
367-370. 
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U m o o <5_+l>i = „ ^ h m n!(n + 2); = 
n _ * n ! n "* °° <(n + 1)0* 

thus l n ' ) n = 1 is left-normal. 

^ ,. Fn+1 1 + ^5" 

thus { F J J is left-normal, also. The only question which remains is the demonstration 
that the sequences are not r ight-normal. 

(c) is easy, since n! is divisible by 4 for n > 4. Clearly no factorial, then, ends 
in 21, in part icular. The final problem which remains is the question of right-normality for 
(a) and (d). 

COMMENT ON H-174 

H-174 Proposed by Daniel W. Burns, Chicago, Illinois. 

S n ) = 1 be the sequence defined by S = nk. 
Define the Burns Function,, B(k), as follows: B(k) is the minimal value of n for which 

each of the ten digits, 0, 1, • • • , 9 have occurred in at least one S where 1 < m < n. 
For example, B(l) = 10, B(2) = 45. Does B(k) exist for all k? If so, find an effective 
formula or algorithm for calculating it. 

Comment by R, E. Whitney, Lock Haven State College, Lock Haven, Pennsylvania. 

Using the theorem by Bird, referred to in the above H-125, we have 

l i m i S _ ± l ) k = 1 ^ ( ^ ^ 
n —»°° nk L Jn=l 

is left-normal, or extendable in base 10. Thus, in part icular , the sequence 123 • • • 90 oc -
curs at {nk} . The existence of B(k) now follows by well ordering. One can show that 
B(2k) > B(k) and other assorted inequalities. 

ANOTHER REMARK 

H-182 Proposed by S. Krishna, Orissa, India. 

Prove or disprove: 

m 

(i) S ~ " ° (mod 2m + ^ ' 
k=l k 2 

and 

(ii) Y] 1 = 0 (mod 2m + 1) 
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when 2m + 1 is prime and la rger than 3. 

Comment by R. £ Whitney, Lock Haven State College, Lock Haven, Pennsylvania. 

It is well known* that 
2m 

(iii) Y] ~ = 0 (mod 2m + 1) , 
k=l k 

when 2m + 1 is prime and la rger than 3. 
Set 

m m 
a i = yi — and g 2 = T 2 •—-— 

Using (iii), we have 
1 /4a i + a 2 = 0 (mod 2m + 1) 

or 
0"! + 4o"2 = 0 (mod 2m + 1) . 

From the above, it follows that (i) and (ii) a re equivalent. 

NOT THIS TIME 

H-193 Proposed by Edgar Karst, University of Arizona, Tucson, Arizona. 

Prove or disprove: If x + y + z = 2 - 1 and x3 + y3 + z
3 = 2 - 1, then 6n + 1 

, 06n+l . and 2 - 1 are pr imes . 

Solution by Paul Bruckman, University of Illinois, Urbana, Illinois. 

The following part icular solution is sufficient to prove that the conjecture is false. If 
(x,y,z) = (1, 2 n - 2 n - 1, 2 n + 2 n - 1), it is easily verified that this solution satisfies the 
requirements (a) x + y + z = 2 - 1, and (b) x3 + y3 + z3 = 2 - 1. Moreover, this 
is true for all non-negative integers n, in part icular when n = 4, i. e. , 6n + 1 = 25, which 
is not pr ime. It might be of interest to determine if any other solutions, not necessar i lyDio-
phantine, exist, although this was not attempted here . 

Also solved by T. Carro/i D. Finkel, and D. Zeit/in. 

The editor would like to acknowledge solutions to the following Problems: 
H-173, H-176 Clyde Bridger; H-187 K. Wayland and D. Pr ies t , E. Just , G. Wulczyn, 

and J. I re ; H-190 L. Frohman, R. Fecke, L. Carl i tz , P. Smith; H-191 L. Carlitz; H-192 
L. Carl i tz , D. Zeitlin, and P. Bruckman. 

* Hardy and Wright, The Theory of Numbers, Oxford University P r e s s , London, 1962, p. 90. 



THROUGH THE OTHER END OF THE TELESCOPE 

BROTHER ALFRED BROUSSEAU 
St. Mary's College, California 

Base two has this interesting property that all integers may be represented uniquely by 
a sequence of zeros and ones. If instead of starting with base two, we had started with the 
sequence of ones and zeros and correlated the integers with them, then we would have seen 
that it is powers of two that correspond to a representation one followed by anumber of zeros . 
This is what is meant in the title by looking through the other end of the telescope, 

Table 1 
CORRELATION OF INTEGERS WITH 1-0 REPRESENTATIONS 

Representations Integers Representations Integers 

1 

10 

11 

100 

101 

110 

111 

.000 

1 

2 

3 

4 

5 

6 

7 

8 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

10000 

9 

10 

11 

12 

13 

14 

15 

16 

If we continue this sequence of ones and zeros , will a one followed by zeros always be a power 
of two? Yes it wilL For example^ the four zeros in the representation of 16 will take on all 
the changes from 0001 to 1111 and bring us to 31 so that 100000 will be 32* In general , 
if there is a one followed by r zeros representing 2 the last number that can be represent -
ed before increasing the number of digits will be: 

2 r + (2 r - 1) = 2 r + 1 - 1 . 

r+1 Thus, the next representation which is a 1 followed by r + 1 zeros will represent 2 

But is there anything particularly sacred about the way our sequence of ones and zeros 
has been chosen? Must it even be that the ones in various positions must represent the power 
of a number? 

Suppose we change the rules for creating our succession of representations by insisting 
that no two ones be adjacent to each other,, 

189 
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Table 2 
CORRELATION OF INTEGERS WITH 

NO TWO ONES ADJACENT 
Representations Integers Representations 

1 

10 

100 

101 

1000 

1001 

1010 

10000 

10001 

10010 

10100 

10101 

100000 

100001 

100010 

100100 

100101 

101000 

101001 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

101010 

1000000 

1000001 

1000010 

1000100 

1000101 

1001000 

1001001 

1001010 

1010000 

1010001 

1010010 

1010100 

1010101 

10000000 

10000001 

10000010 

10000100 

10000101 

1-0 RE] PRESENTATIONS, 
TO EACH OTHER 

Integers 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

Representations 

10001000 

10001001 

10001010 

10010000 

10010001 

10010010 

10010100 

10010101 

10100000 

10100001 

10100010 

10100100 

10100101 

10101000 

10101001 

10101010 

100000000 

Integers 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

It is a matter of observation from this table that one followed by zeros is a Fibonacci number. 

If we take the series as Ft = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 

21, F 9 = 34, F10 = 55, then the one in the r place from the right represents F 
r+r 

Will this continue? Consider one followed by nine zeros or F^Q- Since there may not 
be a one next to the f irs t one, the numbers added to Fj[0 in the succeeding representations 
a re all the numbers up to and including 33, so that the final sum can be represented with ten 
digits is 55 + 34 - 1 = 89 - 1. Thus one followed by ten zeros is 89 or F ^ . A similar a r -
gument can be applied in general. 

What happens if we insist that no two ones have less than two zeros between them? 
Again we can form a table. (See Table 3.) The sequence of integers that correspond to one 
followed by zeros i s : 1, 2, 3, 4, 6, 9, 13, 19, 28, 4 1 , • • • . Is there a law of formation of the 
sequence? It appears that 

9 

13 

19 

28 

41 

= 

= 

= 

= 

= 

6 

9 

13 

19 

28 

+ 

+ 

+ 

+ 

+ 

3 

4 

6 

9 

13 
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Table 3 
CORRELATION OF INTEGERS WITH 1-0 REPRESENTATIONS, 

NO TWO ONES SEPARATED BY LESS THAN TWO ZEROS 
Representations Integers Representations Integers Representations Integers 

191 

1 

10 

100 

1000 

1001 

10000 

10001 

10010 

100000 

100001 

100010 

100100 

1000000 

1000001 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

1000010 

1000100 

1001000 

1001001 

10000000 

10000001 

10000010 

10000100 

10001000 

10001001 

10010000 

10010001 

10010010 

100000000 

15 

16 

17 

18 

19 

. 20 

21 

22 

23 

24 

25 

26 

27 

28 

100000001 

100000010 

100000100 

100001000 

100001001 

100010000 

100010001 

100010010 

100100000 

100100001 

100100010 

100100100 

1000000000 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

or if the te rms of the sequence are denoted by T s 

n+1 T + T 0 n n-2 

Will this continue? If we go beyond 41 the la rges t number that can be represented before in-
creasing the number of digits i s 1000000000 plus 1001001e Since this puts a 1 three places 
beyond the f irst 1 and is the la rges t number that can be represented of this type. Hence one 
followed by 10 zeros is 41 + 19 or 60. Evidently the argument can be applied in general. 

Going one step furtherf we set the condition that two ones may not have l e s s than three 
zeros between them. 

Table 4 
CORRELATION OF INTEGERS WITH 1-0 REPRESENTATIONS, 

NO TWO ONES SEPARATED BY LESS THAN THREE ZEROS 

Representations Integers Representations Integers Representations Integers 

1 

10 

100 

1000 

10000 

10001 

100000 

1 

2 

3 

4 

5 

6 

7 

100001 

100010 

1000000 

1000001 

1000010 

1000100 

10000000 

8 

9 

10 

11 
12 

13 

14 

10000001 

10000010 

10000100 

10001000 
100000000 

100000001 

100000010 

15 

16 

17 

18 
19 

20 

21 

(Table continues on the following page.) 
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Table 4 (Continued) 
Representations Integers Representations Integers Representations Integers 

1000000001 

1000000010 

1000000100 

1000001000 

1000010000 

100000100 

100001000 

100010000 

100010001 

1000000000 

We note that 

22 

23 

24 

25 

26 

suggesting the relation 

27 

28 

29 

30 

31 

1000010001 

1000100000 

1000100001 

1000100010 

10000000000 

32 

33 

34 

35 

36 

14 

19 

26 

36 

L+l 

= 

= 

= 

= 

= 

10 

14 

19 

26 

T 
n 

+ 

+ 

+ 

+ 

+ 

4 

5 

7 

10 

T 
n-
-3 

The following table summarizes the situation out to the case in which two ones may not have 
l e s s than six zeros between them (system denoted S6). 

Table 5 
th NUMBERS REPRESENTED BY A UNIT IN THE nx PLACE FROM THE LEFT 

FOR VARIOUS ZERO SPACINGS 

n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

So 

1 

2 

4 

8 

16 

32 

64 

128 

256 

512 

1024 

2048 

4096 

8192 

16384 

32768 

Si 

1 

2 

3 

5 

8 

13 

21 

34 

55 

89 

144 

233 

377 

610 

987 

1597 

s2 
1 

2 

3 

4 

6 

9 

13 

19 

28 

41 

60 

88 

129 

189 

277 

406 

s3 
1 

2 

3 

4 

5 

7 

10 

14 

19 

26 

36 

50 

69 

95 

131 

181 

s4 
1 

2 

3 

4 

5 

6 

8 

11 

15 

20 

26 

34 

45 

60 

80 

106 

s5 
1 

2 

3 

4 

5 

6 

7 

9 

12 

16 

21 

27 

34 

43 

55 

71 

s6 
1 

2 

3 

4 

5 

6 

7 

8 

10 

13 

17 

22 

28 

35 

43 

53 

(Table continues on following page.) 
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Table 5 (Continued) 

n 

17 

18 

19 

20 

So 

65536 

131072 

262144 

524288 

^ 

2584 

4181 

6765 

10946 

s2 
595 

872 

1278 

1873 

S3 

250 

345 

476 

657 

s4 
140 

185 

245 

325 

s5 
92 

119 

153 

196 

S6 

66 

83 

105 

133 

To represent a given number in any one of these systems it is simply necessary to keep sub-
tracting out the la rges t number l e s s than or equal to the remainder. Thus to represent 342 
(base 10) in S4, we proceed as follows.* 

342 - 325 = 17 
17 - 15 = 2 . 

The representation is 10000000000100000010, Representations of 342 in all the systems 
are as follows. 

So 
Si 

s2 
S3 

s4 
s5 
s6 

101010110 

101000101010 

100010000001001 
10001000100001000 

10000000000100000010 

1000000000001000001000 

100000000000000100000010 

GENERATING FUNCTIONS OF THESE SYSTEMS 

The following a re somewhat more advanced considerations for the benefit of those who 
can pursue them. A generating function as employed here i s an algebraic expression which on 
being developed into an infinite power ser ies has for coefficients the t e rms of a given sequence. 
Thus for S0J it can be found by a straight process of division that formally: 

= 1 + 2x + 22x2 + 23x3 + 2 ^ + • • • . 
1 - 2x 

For Sjj the Fibonacci sequence, it is known that 

1 + x 

1 - x - x2 
= F2 + F3x + F4x,i + FsX* + 

The process of determining such coefficients may be illustrated by this case, Set 

1 + x 

1 - x - x2 
a<) + ajx + a2x2 + a3x3 + a4x4 + 
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so that on multiplying through by 1 - x - x2, 

1 + x = (1 - x ~ x2) (a0 + aAx + a2x2 + a3x3 + a4x4 + • • •) . 

This must be an identity so that the coefficients of the powers of x on the left-hand side must 
equal the coefficients of the corresponding powers of x on the right-hand side. Thus: 

a0 = 1 
ai - ao = 1, so that at = 2 
a2 - at - a<) = 0, so that a2 = 3 
% - a2 - aix= 0, so that a3 = 5 

and since in general an - a n - a 0 = 0, it is c lear that the Fibonacci relation holds for n n—x n—& 
successive sets of t e rms of the sequence, so that the Fibonacci numbers must continue to ap-
pear in order with a = F 9 . 

On the basis of the initial t e r m s of the sequence and the type of recursion relation in-
volved, the generating function for S2 should be: 

1 + x + x2 

which can be verified in the same way as for Sj_. 
In general for S, , the generating function would be: 

l + x + x2 + . . . + x 
- k+1 
1 - X - X 

CONCLUSION 

There is an endless sequence of number representations involving only ones and zeros 
with the following propert ies: 

1. In each system, every number has a unique representation. 
2. In the system S, (two ones separated by not l e s s than k zeros) , the recursion r e -

lation connecting the numbers represented by units in the various positions i s : 

T n + 1 = T n + Vk • 

3. The well known unique representations in base 2 and by means of non-adjacent F ib-
onacci numbers (Zeckendorf's Theorem) a re the first two of these number represen-
tations, namely, S0 and Sj . 



THE GOLDEN RATJO AMD A GREEK CRJSJS* 

G. D. (Don)CHAKERIAN 
University of California, Davis, California 

The story of the discovery of irrat ional numbers by the school of Pythagoras around 
500 B . C . , and the devastating effect of that discovery on the Pythagorean philosophy is well 
known. On the one hand there was an undermining of the Pythagorean dictum "All is number," 
the conviction that everything in our world is expressible in t e r m s of integers or rat ios of 
integers. On the other hand, many geometric arguments were invalidated. Namely, those 
proofs requiring the existence of a common unit of measurement for any given pair of line 
segments were seen to be incomplete. Credit for the discovery of incommensurables is 
generally accorded to Hippasus of Metapontum. One may read, for example, in the excellent 
t reat ise of Van der Waerden [ 5 ] , the legends of the fate that befell Hippasus for publicizing 
this and other secre ts of the Pythagoreans. A brief and very readable account of these mat -
te rs may be found in Meschkowski [ 4 ] . 

This note concerns itself with the question of how incommensurables might plausibly 
have been discovered. In part icular , it will be seen how a study of the Golden Ratio could 
lead one to stumble onto the existence of incommensurable segments. The basic idea p r e -
sented here is certainly not new and represents only a slight variant of ideas suggested in 
Meschkowski [ 4 ] and a definitive article by Heller [ 2 ] , It is hoped that the presentation 
given here might be of pedagogical value. In part icular , a development along the lines given 
here might serve as a suitable vehicle for a classroom investigation of topics dealing with the 
history of irrat ional numbers or topics involving early Greek geometry and the Golden Ratio. 

We begin by recalling that two line segments are commensurable, that i s , have a com-
mon unit of measure , if each can be subdivided into smaller segments of equal length u (the 
length u being the same for both segments). In this case , if the two given segments have 
lengths a and b, respectively, we have 

(1) a = mu and b = nu 

for some positive integers m and n. Thus, for commensurable segments, we have the ratio 
a /b = m/n is a rational number. Conversely, if we are given two line segments of lengths 
a and b such that the ratio a/b is equal to m/n , where m and n are positive integers , 
then the number u = a /m = b/n will serve as a common unit of measure , so the segments 
are commensurable. Thus commensurable pai rs of line segments are precisely those for 

* Revised version of a lecture given before the Fibonacci Association in San Francisco on 
April 22, 1972. 

195 
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which the ratio of the lengths is a rational number, and incommensurable pa i rs are those for 
which the ratio is an irrat ional number. 

The best known example of an incommensurable pair of segments i s given by a side and 
diagonal of a square. In a square, the ratio of diagonal length to side length is \/~2, which 
an easy number theoretic argument (as given in Book X of Euclid's Elements) shows to be i r -
rational. But historical evidence indicates that the discovery of incommensurables came 
about in a purely geometric fashion, and the known geometric proofs that diagonal and side of 
a square are incommensurable seem to have the nature of being concocted after the initial 
discovery was well known. The reader will find the standard geometric argument in Eves 
[ 1, p. 60]. One would like to see a pair of line segments whose incommensurability can be 
more intuitively grapsed in a purely geometric manner. This is where the Golden Ratio en-
gers the scene. 

The Pythagoreans were much taken with the propert ies of the regular pentagon, whose 
vert ices are also the vert ices of the Pythagorean symbol of health, the regular five-pointed 
s ta r . 

A B 

Figure 1 

The Golden Ratio is the ratio of the diagonal length of a regular pentagon to the side length. 
Designating this ratio by the symbol <j>, we have from Fig. 1, 

Some simple geometry shows that in Fig. 1, triangle ACB is an isosceles triangle with apex 
angle 36p and base angles 72° each. Such a triangle we shall call a Golden Triangle. Then 
the Golden Ratio is the ratio of side to base in any Golden Triangle. A property of the Golden 
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Triangle that undoubtedly intrigued the Pythagoreans is that when one draws the bisector of a 
base angle, there appears another smaller Golden Triangle. Thus in Fig. 2, if triangle ACB 
is a Golden Triangle and AD bisects the angle at A, then triangle BAD is also a Golden 
Triangle. 

A B 

Figure 2 

To see why this is t rue, observe in Fig. 2, that Y BAD = Y CAD = 36® and Y A B D = 72°. 
It follows that ^ A D B = 72®, so triangle BAD is indeed a Golden Triangle. In this self-
replicating property of the Golden Triangle l ies the key to the incommensurability of i ts side 
and base. If one next draws the bisector of the angle at D to a point Df on AB, then draws 
the bisector of the angle at Df to a point Dn on BDS and continues this process indefinite-
ly , one obtains an infinite sequence of smaller and smaller Golden Triangles. We shall see 
in a moment how the existence of this sequence contradicts the possibility that the side and 
base of the triangle might be commensurable. 

It will be crucial to our argument to observe that in Fig. 2, AD = CD, which follows 
from the fact that ^ D A C = ^_DCA = 36@, 

How then does one see geometrically that the side and base of a Golden Triangle are not 
commensurable? We might place ourselves in the sandals of an ancient Greek philosopher 
ruminating over a Golden Triangle ACB sketched in the sand. Wondering about a common 
unit of measure of AC and AB, we imagine it i s possible to subdivide AC and AB into 
smaller segments all of the same lengthy say u. Subdividing BC into segments of the same 
length u we obtain an flevenly subdivided'' triangle that might look something like triangle 
ACB in Fig. 3, where all the little segments are supposed to have the same length u. Now 
comes a crucial observation. Suppose we draw the bisector of the base angle at A9 in ter -
secting the opposite side in a point D. What can we say about D? The crucial observation 
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A B 

Figure 3 

is that D must be one of the subdivision points! The reason is simple. Referring to Fig. 2, 
recal l that AB = AD = CD. Thus CD, being equal to AB, must be an integral multiple 
of u, hence D must be a subdivision point. Thus appears a basic revelation: If we have 
any evenly subdivided Golden Triangle, then the bisector of a base angle must strike the op-
posite side in a subdivision point. Figure 4 i l lustrates this, with the bisector AD also 
subdivided. 

Figure 4 
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But triangle BAD is also an evenly subdivided Golden Triangle; hence if the bisector DDf 

o f ) L A D B i s drawn, the point D1 where it s t r ikes side AB must also be one of the original 
subdivision points, as indicated in Fig. 5. 

Figure 5 

Repeating the process on the evenly subdivided Golden Triangle D'DB, we next see that the 
bisector of V_BDfD must strike BD in one of the original subdivision points Dn. It now 
becomes clear that we can repeat this procedure endlessly, drawing successively angle b i -
sectors DDf, D!Dn, DMDMf, "B

9 striking at each step the different subdivision points Df, 
D n , D n f , ' " . Since at each step of this procedure we strike one of our original subdivision 
points, we have arr ived at a contradiction, there being only finitely many such points. Thus 
we see that an evenly subdivided Golden Triangle is impossible, and hence the side and base 
are not commensurable. 

It is of interest to examine an algebraic proof of the irrationality of the Golden Ratio 0 
that paral lels the preceding geometric argument. We begin by deriving an important equation 
satisfied by 0. Since ACB and BAD are s imilar Golden Triangles in Fig. 2, we have 

, . , BC = AjB = AB AB = 1 
{S) ™ AB BD BC - DC BC - AB f~^T ' 

where we also used the fact that DC = AB and made some minor algebraic adjustments. If 
now we have 0 = m/n , with m , n positive integers , then Eq. (3) implies 

(4) m = , _ 1 = n 
n ^ 0 - 1 m - n ' 
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Since 0 > 1, we automatically have m > n, and defining mf = n and nT = m - n, we 
obtain <f> = mf/nT

s with mf,nf positive integers and m > mf. Repeating the process we 
obtain positive integers m" , nn with </) = m n / n n and m' > m". Repeating the procedure 
endlessly we obtain an infinite decreasing sequence of positive integers m > mf > m" > • • • , 
a contradiction. Hence there do not exist positive integers m9,n such that 0 = m / n , and 
we have proved that 0 is not rational. 

In both the preceding proofs we may avoid the construction of infinite sequences by ap-
pealing to the fact that any nonempty set of positive integers contains a smallest element. In 
the case of our geometric proof, suppose there existed evenly subdivided Golden Triangles. 
With each such subdivided triangle associate the total number of subdivision points. Then 
there i s a smallest such integer N and corresponding evenly subdivided Golden Triangle. 
But then by bisecting a base angle of this triangle we produce an evenly subdivided Golden 
Triangle with l ess than N total subdivision points. This contradiction shows that there ex-
is t no evenly subdivided Golden Triangles. In the case of our algebraic proof of the i r ra t ion-
ality of 0, suppose there existed positive integers m and n such that 0 = m/n . With 
each such representation associate the numerator in. Then there is a smallest such integer 
m for which 0 = m/n . But then Eq. (4) gives </> = n/ftn - n), which is a representation 
with still smaller numerator. The contradiction shows that there is no representation 0 = 
m/n with positive integers m and n. Hence 0 is not rational. 

No discussion of these mat te rs would be complete without mentioning how fromEq. (3), 
or from i ts equivalent 

(5) <t> = i + 1 , 

one may obtain rational approximations to 0 by rat ios of successive Fibonacci numbers , with 
the analogous geometric approximations to a Golden Triangle by integer-sided triangles. 
Having mentioned it, we now leave i t , hoping that any reader unfamiliar with these mat te rs 
will, with whetted appetite, consult the fine book of Hoggatt [3] for a detailed exposition of 
the relationship between geometry and the Fibonacci numbers. 
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INTERSECTIONS OF LINES CONNECTING TWO PARALLEL LINES 

FREDERICK STERN 
San Jose State University, San Jose, California 

The purpose of this note is to show that the geometrical method used by the author [ l ] 
in proving that the sum of the f irst n positive integers is ^n(n + 1) also can be used in 
proving the following result . Given two parallel lines with p points on the f irst , and q 
points on the second. Suppose each of the p points is joined by a straight line to each of the 
q points. Assume that between the parallel l ines, no more than two lines intersect at any 
point Then the lines joining the points have |pq(p - l)(q - 1) intersections between the 
parallel l ines. 

A proof of this resul t is as follows: 

Label the p points al9 a2s - • • , ap so that if the index j is greater than the index i , 
the directed line segment from a. to a. is in the same direction for each choice of i and 
j , i , j = 1, 2, • • • , p and i < j . (Thus the labeling is9 for example, from left to right or 
bottom to top.) See Fig. 1. Label the q points b l f b2, • • • , b q in a s imilar manner and so 
that for i < j , the directed line segment from bj to bj is in the opposite direction as that 
from ax to a . Denote by (a., b . ) , i = 1, 2, • - • , p and j = 1, 2, • •• , q the line be-
tween a. and b.. 

i 3 
b4 b3 b2 b t 

— f . _ ,̂ -̂ u , ffl - —,___-,. 
at a2 a3 

Fig. 1 (p = 3, q = 4) 

Generally we shall place the pq lines sequentially in a certain order , to be specified, 
and count the number of intersections which ar i se . The order of placement is lexicographic: 

(at.bi), ( a^b^ ,— , (a i > b q ) , (a 2 ,b 1 ) ,— ,(a2»bq),— , ( a ^ b i ) , —,,(ak3bq)9 — , ( a p , b i ) , " - , ( a p , b q ) . 

The first set of lines ( a^b j ) , '' * , ( a i , b q ) contributes no intersections. See Fig. 2. 

a4 a2 a3 
Fig. 2 (p = 3, q = 4) 

201 
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Considering the second set of q lines (a2, bt), • • • , (a2, bk), • • • , (a2, b q ) , none of them 
intersect with each other and (a2. bk) intersects with (k - 1) previously placed l ines: 

(al9 b i ) , (al9 b 2 ) , • • • , (a1? bk_i) . 

Thus these q lines contribute 

d + 2 + .. . + q - 1 ) = a ia^ i ) 

intersections. See Fig. 3. 

Fig, 3 (p = 3, q = 4) 

The third set of q lines (a2, bt)9 • • - , (a3, b q ) do not intersect with one another. The line 
(a3, b^) does intersect with the lines (a l f bj) and the lines (a2, bj) for j = 1, 2, • • • , 
(k - 1). Since here k may be equal to any of the integers 1, 2, • • • , o r q, the third set of 
lines contributes 2(1 + 2 + • • • + q - 1) intersections. See Fig. 4. 

Fig. 4 (p = 3, q = 4) 

Similarly, the r set of q lines (a r , b ^ , • • • , (a r , b q ) , r = 1, 2, • • • , p do not in ter-
sect with each other. The line (a r , b k ) intersects with the lines (aj, bj) , i = 1, 2, • • • , 
r - 1 and j = 1, 2, • • • , (k - 1). Thus placement of the line (a r , b]_) contributes no inter-
sections, placement of (a r , b 2 ) contributes (r - 1)(1) intersections, placement of (a r , 03) 
contributes (r - 1)(2) intersections, placement of (a r , bk) contributes (r - l)(k - 1) in ter-
sections and finally, placement of (a r , b q ) contributes (r - l)(q - 1) intersections. In 
total, the r set of lines contributes (r - 1)(1 + 2 + • • • + q - 1) intersections. 

Since the r set contributes (r - 1)(1 + 2 + • • • + q - 1) intersections and the index 
r may be 1, 2, • • • , or p we have that the total number of intersections is 
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P 
^ (r - 1)(1 + 2 + - - + q - 1) = (1 + 2 + • • • + p - 1)(1 + 2 + • • • + q - 1) , 
r= l 

which i s , as shown in [ l ] by the same method of sequential line placement, also equal to 

p(p__l) q ^ l ) =Xm(p_lHq_1)t 

Proof by G. Polya. In a private communication, Professor Polya has given the follow-
ing shorter proof: Consider the trapezium of which the intersecting line segments are the 
diagonals. (See Fig. 5. The trapezium consists of (bl9 D2), (b3, a 2 ) , (a2, a 3 ) , (a3, bj) .) 

Fig. 5 (p = 3, q = 4) 

Each trapezium is determined if a pair of points on each line is chosen and each different 
trapezium determines a different one of the intersections. Since there are 

(0(0- p(p - 1) q(q - 1) 
2 ' 2 

such choices, the result follows. This lat ter method of proof and the result a re quite s imilar 
to the solution of the problem of finding the number of intersections of the diagonals of aeon-
vex polygon of n sides as discussed in [ 2 ] . 
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A GEOMETRIC TREATMENT OF SOME OF THE ALGEBRAIC 
PROPERTIES OF THE GOLDEN SECTION 

JOSEPH L. ERCOLANO 
Baruch College, CUNY 

Our object is to present a single geometric setting in which it i s possible to deduce 
some of the more familiar algebraic propert ies of the golden section, 0. In this setting, we 
also uncover some less familiar propert ies of 0 and some extensions and generalizations of 
the "golden" sequence: 

1, 0, f, 03, . . . , 0 n , ••• . 

The setting in which we will work is motivated by consideration of the following prob-
lem: construct a semi-circ le on a given setment AB, Locate a point P on the semi-circ le 
so that the length of the projection of PA on AB is equal to PB. (See Fig. 1.) Since in 
right triangle APB, PB is the mean proportional between AB and GB, and since AG «= 
PB, we conclude that G is the golden section of AB. (For a more familiar construction of 
G, cf. [1].) 

Figure 1 

The right triangle APB is not "golden." In fact, if we normalize by taking GB = 1, 
then AG = PB = (1 + fs/5)/2, which as usual, we denote by 0. Since PG is easily seen to 
have length \/^>, we deduce from right triangle PGB the property that 02 = 0 + 1. Using 
this property in conjunction with right triangle APB, we conclude that PA = 03'2. So, we 

204 



A GEOMETRIC TREATMENT OF SOME OF THE ALGEBRAIC 
Apr. 1973 PROPERTIES OF THE GOLDEN SECTION 205 

see that the ratio of the legs of right triangle APB is 's/$\ Nevertheless, this normalized 
right triangle is the one with which we shall work. 

At B construct a perpendicular on the same side of AB as P and extend AP until 
it meets the perpendicular at P2. At P2 construct a perpendicular meeting the extension of 
AB at B2. Set Px = P , B0 = G, and Bt = B. (See Fig. 2.) 

Figure 2 

From above, we have that AB0 = 0, B0B! = 1, ABj = 02, P - ^ = 0, AP t = 03'2. 
The following lengths a re easily deduced from these, the Pythagorean theorem, and s imi la r -
ity arguments: P t P 2 = 01/% P2Bi = 03/% A p 2 = 0 » BiB2 = 0, P2B2 = 02. AB2 = ABt + 
BiB2 = 02 + 0 = 0(0 + 1) = 03. (See Fig. 2.) 

Since AP2 = APA + PiP 2 , and AB2 = AB0 + BQB! + BjB^ we deduce (purely g e o m e -
trically) two more propert ies: 05'2 = 03 2 + 01'2 , 03 = 20 + 1. 

The procedure for continuing now is clear: in the same manner as we constructed t r i -
angle AP2B2 from triangle A B ^ , we construct a new triangle AP3B2 from AP2B2, and 
so on. That i s , we can generate a sequence of right triangles APjBi, AP2B2, 
• • • having the following character is t ics : 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

AP B , n n 

P B = 0n, n n n r 

AB 
n 

AP = n 

n + l B n 

.n+1 
= 0 , n 
^(2n+l)/29 

= 0 ( 2 n + 1 ) / 2 , 

B n B n + l = ^ n 

= 1, 

= o, 

n = 

n 

= 0 

2, 

1 

1* 

= 

, 1 

3 , • • 

2, • 

&9 o s 

0, 1, 

, 2, • 

• 

.. 

2, 

. . 
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(vi) 
(vii) 

(viii) 

(ix) 

implying 

implying 

P P n n+1 * 
(2n-l)/2 

AB = AB . + B .B , n n -1 n -1 n 
^n+1 0 n + 0J 

n = 1, 2, 3, •• 
n = 1, 2, 3, 
n -1 

AP _ = AP + P P j . - , n+1 n n n+1 
^(2n+3)/2 = ^(2n+l)/2 

n = 1, 2, 3, 

tf l(2n-l)/2 

ABj = AB0 + B0Bl9 implying 02 = 0 + 1 
AB2 = ABX + B ^ , implying 03 = 20 + 1 
AB3 = AB2 + B2B3, implying 04 = 30 + 2 
AB4 = AB3 + B3B4, implying 05 = 50 + 3 

[Apr. 

We note that the geometric result in (ix) demonstrates the equivalence of the geometric 
sequence 1, 0» 02> 03, • • • and the Fibonacci sequence 1, 0, 0 + 1, 20 + 1, • • • , implying 
that the sequence 1, 0, 02, 03, • • • is a "golden" sequence. 

Having constructed a sequence of triangles "on the right" of the golden cut G in Fig. 1, 
we now construct a sequence "on the left. " Drop a perpendicular from G to AP, in tersect-
ing AP at P0. From P0 drop a perpendicular to AB intersecting AB at BJ. Repeat this 
procedure once more , obtaining PJ on AP and B£ on AB. Set B0 = G, PA = P , and 
Bi = B. (See Figure 3.) From above, we know that AB0 = 0 = PiBi, B0Bi = 1, APj = 
03 2, and PJBQ = 01 2. Our object is to compute the lengths of the remaining segments in 

Fig. 3. The same kinds of arguments as above result in the following: 

P0P1 = 0 
P'P0 = 0 
P J B ; = (j>~3'2 

3/2 
AP, 

• i - " 2 (See Figure 3.) 

P0B0 = 1, B'Bo = 0 _ 1 , AB} = 1, 
APJ = 0-i/2, PJB} = 0"1, B»B} = 0~2, ABJ 

P0B} -1/2 

and 

Figure 3 
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Again, the continuation procedure is c l ean we can generate a sequence of right t r i -
angles AP0B0, AP»B^, APJBJ, • • • , AP£Bf

n, • •• , with the following character is t ics : 

(i) P;pn = f 0, 1, 2, 
-n+1 (ii) AB^ = 0~" ' - \ n = 0, 1, 2, 

(iii) AP^ = </>" •(2n-l)/2 n = 0 ,1 ,2 , -

( i v ) P n B n + l = 0 " ( 2 n + 1 ) / 2
s n = 0, l f 2, -

(v) B i + l B i = -(n+1) n = 0 , l , 2 , -

(vi) Pf ^ Pf 
n+1 n 

(vii) ABT 

,-(2n+3)/2 ?> , n = 0 , 1 , 2 , ' 

(where PJBJ P0B0) 

(where ABJ = AB0) . 

(where APJ = AP0) . 

(where PJBJ = P0BJ) 

(where BJBJ = B<B0) 

• (where PJPJ = PJP0) . 

ABf ,- + B' Bf , n = 0 ,1 ,2 , • n+1 n+1 n 9 implying 

(viii) APf AP' , n+1 + P< 

•n+1 0"n + f*-1 

n+l P n 9 n = ° J ±9 2 ' ""' 9 implying 
-(2n-l) /2 _ ,-(2n+l)/2 + ,-(2n+3)/2 

BJB0 + BJBi + BJB< + (ix) AB0 

0 = 1/0 + 1/02 + 1/03 + 

(x) AP0 = P;P 0 + P<PJ + PJPJ + • • 

0i/2 = 0-s/2 + 0-5/2 + ^ 

+ B' B» + n+1 n implying 

+ l / 0 + ( n + 1 ) + 

+ P< ^ Pf + n+1 n implying 

+ 0-(2n+3)/2 + 

Remark 1: A more familiar geometric setting for property (ix) i s a rectangular spiral 
(cf. [ l ]) the length of whose n side i s 0~n. (See Fig. 4.) Figure 3 suggests that if one 

were to "unfold" the rectangular spiral onto a straight line, the union of the sides, B' - B* , 
would be a segment with length equal to ABQe (An analogous remark can be made for proper-
ty (x).) 

BJ 

E. 
B5 Bl 

Bft 

Figure 4 

Remark 2: Figure 3 suggests the following generalization of propert ies (ix) and (x): 

0 k = ^ k - 2 + «>k-3 + + 0"1 + 1 + (j) + 0 + 
for k = 0, ± 1 / 2 , ±2/2, ±3/2, 
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In Figure 2, we see that the "golden sequence," 1, $, $ 2 , • • • , </) , • • • has its geo-
metr ic analogue in the sequence of altitudes P0B0, PiB1} P2B2, • • • , P B , • • •. In that 
same figure, the sequence of altitudes PtB0, P2Bj, P3B2, • • • , P -B , ••• suggests a 

/ / / n+x n 
second sequence which is also golden: 01 , $3 , 05 , • • • . (That this sequence is geo-
metric is clear; property (viii) demonstrates that it is also a Fibonacci sequence.) The fol-
lowing a re additional extensions of the golden sequence suggested by the appropriate sequences 
of altitudes in Figs. 2 and 3 (we include the above two for completeness): 

(1) 1, 0, $ 2 , 03, • • • , 0 " , • • • (Golden Sequence) 

(2) 1/0, 1/f, 1/03, • •• , l/ipn
9 ^ . 

(3) • • • , l/f, l/4>n_1, • • • , 1/0 , 1, 0, 02, </>3, • • • , 01 1 ' 1 , • • • 

(4) </2,(/)3/2, 05/2, . . . , V 2 n - 1 ) / 2 , ••• 

(5) 0"i/2, 0"3/2, 0 - A . . . , 0-(2n~1) /2, . . . 
(6) . . . 0 - » * - W / a , . . . , r l / 2 , 01/2,^3/2, / 2 s . . . § 0 (2n- l ) /2 9 . . . 

As a final remark , we consider the sequence suggested by the complete sequence of altitudes 
in Fig. 3: 

• • • , P f B » - , P ! B f , Pf .B>, P? , B ! , , • - • , P ' B ' , P ' B ' , P A B L , PABA , n n+1' n n n -1 n9 n -1 n-1 J 1 2 1 1 0 1' 0 0 
P -B A , P-B., , • • » , P B .,, P B , ••• . 1 0' 1 1* ' n n - l s n n' 

This geometric sequence, with ratio 01'2, is evidently 

. . . ^ - ( 2 n + l ) / 2 ( ^ - n > r ( 2 n - l ) / 2 ) ^ - 1 ) , . . . ^ , , - , , ^ 1 § 

/ 2 , • . -• . . 0(2n-1)/2, ^, - . 

Although this is not a Fibonacci sequence (and Hence, not golden), it contains each of the 
golden sequences, (l)-(6), as subsequences, and has the easily verified property that any 
subsequence consisting of alternate te rms of the sequence, i s in fact, a golden sequence. 

REFERENCE 

1. H. E. Huntley, The Divine Proportion, Dover, New York, 1970. 

WmmJkTTJk 
In "Ye Olde Fibonacci Curiosity Shoppe," appearing in Vol. 10, No. 4, October, 1972, 

please make the following changes: 
Page 443: In the first line of the second paragraph, inser t the word "ten" between "of" 

and "consecutive," so that it reads L!.... the sum of the squares of ten consecutive Fibonacci 
U 

numbers i s always d i v i s i b l e by F1Q= 55 • 
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A Fibonacci sequence is one which is governed by the relation 

(1) T _ = T + T -
n+1 n n-1 

among successive te rms . From this simple beginning we arr ive at numerous recursion r e -
lations for related sequences of various types. These form the starting points for the gen-
eralized Fibonacci shift formulas to be treated in this paper. 

Given any number of Fibonacci sequences such as : 

F : 1 , 1 , 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ••• 

(2) L : 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, ••• 

T : 1, 4, 5, 9, 14, 23, 37, 60, 97, 157, 254, 411, 665, 1076, 1741, 2817, 4558, ••• 

We can consider terms such as F Q, L , ,, T . and combine these to form a Fibonacci 
n-3 n+4 n-1 

expression of some degree. For example 

F2 L T + L4 - T3 F 
n-3 n+4 n-1 n+4 n -1 n -3 

would be spoken of as a homogeneous Fibonacci expression of the fourth degree. But we might 
also have subsets of te rms of these sequences in which only every other term is involved in 
successive values of the given expression. Such te rms would be of the form F , L , , 
T 9 , where a, b, and c are fixed constants. In general, if t e rms are of the form 
F , , L , , , T , , speak of such te rms as being of class m. mn+a mn+b mn+c * to 

Now the recursion relations for homogeneous expressions of any degree for a given 
c lass are Fibonacci coefficients which are built up from certain subsequences of the Fibonacci 
sequence (F ). For class 1 (m = 1), the Fibonomial coefficients are formed from F1? F2 , 
F3 , F4 , * * e . In analogy to the binomial coefficients 

<3> I ' 1 = 1H~^ = r„ /,! ( r \ r! 

3 J j ! (r - ])! 

where r = r ( r - l ) ( r - 2) • • • (r - j + 1), we have for the Fibonomial coefficients 

209 
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[ F i t 

[Apr. 

L j J L r _ j J 

F F F • • • F F 
r r - 1 r -2 2 1 F F F • • • F F F F • • • F F 

J j - 1 ]-2 " V l r - j r - j - 1 V l 

where 

For example, 

= [ F r ] . / [ F ] ! 
r 3 3 

[F ] = F F • • • F ._,- . L r j r r _ ^ r-j+1 

F i o F 9 F 8 F 7 
F t 1 0 ' 4 ] = FlF2F3F4 = 8 5 ° 8 5 

For c lass 2 (m = 2), the Fibonomial coefficients are formed from F2 , F 4 , F 6 , F 8 , F1 0 , " " . 
And in general for class m, the Fibonomial coefficients are formed from F , F n , F 0 , & m ' 2m 3m 
F . , • • • . (For background on the Fibonomial coefficients and their relation to Fibonacci 
recursion formulas see references 1, 2, 3, 4, 5, and 6.) 

To distinguish the various types of Fibonomial coefficients, we shall introduce the fol-
lowing symbolism. 

F [class, o rder , index] = F [ m , r , n ] 

Thus the previously given F [10,4] would be written F [ l , 10 ,4] . As another example 

F [ 2 , 8 , 3 ] == (F 1 6 F 1 4 F 1 2 ) / (F 2 F 4 F6) = 2232594. 

It may be noted that F [ m , r , 0 ] = 1 by definition. 
We need as well symbolism for homogeneous Fibonacci expressions of class m, de -

gree d and running subscript n. These will be denoted 

Thus we might have 
H [class, degree, subscript] = H[m,d ,n ] 

F* H[3 ,4 ,n] = F 3 n L 2 3 n + 1 T 3 n _ 2 - *• ^ . 

The starting point of our shift formulas can be given as follows. For m even, 

d+1 
(5) H [m, d, n + 1] = ^ 3 (-D1 ^ [ m , d + 1, i ]H[m, d, n + 1 - i] . 

i=l 

For m odd, 
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d+1 
(6) H[m, d, n + 1] = ] T (-1) [ ( i ~ 1 ) / 2 ] F [m, d + 1, i ]H[m, d, n + 1 - i] 

i=l 

where the square brackets in the exponent signify the greatest integer function. Upward shift 
formulas can be derived from (5) and (6). For m even, we have 

d+1 
(7) H[m, d, n - 1] = ^ (-1)1_1F [m, d + 1, i]H [m, d, n + i - 1] 

i=l 
For .m odd and d odd, 

d+1 
(8a) H[m, d, n - 1] = ]T) (-1) f ( i + 2 ) / 2 ^ F [m, d + 1, i ]H[m, d, n + i - l ] 

i=l 
For m odd and d even, 

d+1 
(8b) H[m, d, n - 1] = ] T (-1) f ( i _ 1 ) / 2 ^ F [ m , d + 1, i ]H[m, d, n + i - l ] . 

i=l 

It may be noted that in all the formulas (5) through (8) the coefficients are numerically the 
same differing only in sign. 

The shift formulas considered in this article give H[m, d, n + k] in te rms of 
H [m, d, n ] , H [m, d, n - l ] , e • • for a downward shift of k. A second set of formulas give 
H [m, d, n - k] in t e rms of H [m, d, n ] , H [m, d, n + l ] , • • ' for an upward shift of k. 

We shall proceed by examining the l inear case for various c lasses , then expressions of 
the second degree, and so on until formulas applying to all degrees and c lasses emerge. 

FIRST DEGREE, m = 1 
H [ l , 1, n + 1] = H [ l , 1, n] + H [ l , 1, n - 1] . 

We substitute H [ l , 1, n] = H [ l , 1, n - 1] + H [ l , 1, n - 2 ] . To avoid a great deal of wr i t -
ing the following scheme showing only coefficients will be employed. 

1 
1 1_ 
2 1 

2 2 

Substitution line 

k = 3 3 2 
3 3_ 

k = 4 5 3 

It appears that H [ l , 1, n + l ] = F k + 1 H [ l , 1, n] + F^Hfl , 1, n - l] a well known Fibonacci 
shift formula. 
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In the other direction H [ l , 1, n - l ] = - H [ l , 1, n] + H [ l , 1, n + l ] . Schematically 

k = 1 

k = 2 

k = 3 

k = 4 

- 1 1 
+1 

2 
- 1 
- 1 
- 2 
- 3 

2 
2 
3 
5 

- 3 
- 3 

leading to the relation 
H [ l , 1, n - k] = ( - l ) k { F k + 1 H [ l , 1, n] - F k H [ l , 1, n + l]\ 

m = 2 
The initial relation is 

H[2, 1, n + l] = 3H[2, 1, n] - H[2, 1, n - l] . 
In t e rms of coefficients 

k = 1 

k « 2 

k = 3 

k = 4 

3 - 1 
9 
8 

- 3 
- 3 
24 
21 

- 8 
-8 
63 
55 

- 2 1 
- 2 1 

Generalizing 
H[2, 1, n + k] = F 2 k + 2 H [ 2 , 1, n] - F2 f eH[2, 1, n - l ] . 

For m = 3, coefficients are as follows: 

k = 1 4 1 
k = 2 17 4 
k = 3 72 17 
k = 4 305 72 

To identify these quantities, consult a table of Fibonomial coefficients (see [7] , for example) 
for m = 2. Then it can be seen that 

H[3 , 1, n + k] = F [ 3 , k + 1, l ] H [ 3 , 1, n] + F [3, k, l ] H [ 3 , 1, n - l ] . 

To conclude, the formulas that apply in the first degree case are as follows. 

m odd 
H[m, 1, n + k] = F [ m , k + 1, l ] H [ m , 1, n] + F [m, k, l ] H [ m , 1, n - l ] 

H[m, 1, n - k] = (- l ) k{F [m, k + 1, l ] H [ m , 1, n] - F [m s k, l ] H [ m , 1, n + l ]} 

m even 
H[m, 1, n + k] = F [m, k + 1, l ] H [ m , 1, n] - F [ m , k, l ] H [ m , 1, n - l ] 
H[m, 1, n - k] = F [m, k + 1, l ] H [ m , 1, n] - F [ m , k, l ] H [ m , 1, n + l ] 
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SECOND DEGREE 

As an example of the way in which the coefficients are calculated consider the case 
m = 3 and downward shift. 

k = 1 17 17 -1 
289 289 -17 

k = 2 306 288 -17 
5202 5202 -306 

k = 3 5490 5185 -306 
93330 93330 -5490 

k = 4 98515 93024 -5490 

The leading quantity identifies as F [3, k + 2, 2 ] , the final quantity as F [3, k + 1, 2 ] . The 
middle quantity is F [3 } k + 2, l ] F [ 3 , k, l ] . 

The general formulas for the second degree are as follows: 
m odd 
H[m9 2, n + k] = F [ m , k + 2S 2]H[m 9 2 s n] + F [ m , k + 2, 1] F [m9k, 1]H [m, 2, n - l ] 

- F [m s k + l , 2]H[m, 2, n - 2] 

H[m, 2, n - k] = F [m, k + 2, 2 ]H[m f 2 ,n] + F[m 5 k + 2, 1] F [m,k, l ]H[m 9 2, n + l ] 

- F [ m , k + 1, 2]H[ms 2, n + 2] . 
m even 
H[ms 2, n + k] = F [ m , k + 2, 2]H[m9 2, n] - F [ m , k + 2S l ] F [m,k, l ] H [ m , 2, n - 1] 

+ F [m, k + 1, 2 ]H [m, 2, n - 2] 

H[m9 2, n - k] = F [m, k + 2, 2]H[m929n] - F [ m , k + 2, 1] F [m,k, 1]H [m, 2, n + 1] 

+ F [m, k + 1, 2] H [m, 2, n + 2] . 

For the third and fourth degrees , the resul ts are given only for the downward shift case 
since the coefficients in the upward shift case are numerically the same. 

THIRD DEGREE 

m odd 

H [m, 3, n + k] = F [m, k + 3, 3] H [m, 3, n] + F [m, k + 3S 2] F [m, k, 1] H [m, 3, n - 1] 

- F [ m s k + 3 9 l ] F [ m s k + l 9 2 ]H[m 9 3 9 n - 2 ] - F [m, k + 2, 3]H [m, 3, n - 3] . 
m even 

Same coefficients and functions with signs + - + - . 
FOURTH DEGREE 

m odd 

H[m,4 9 n + k] = F [ m , k + 4 9 4 ]H[m,4 ,n ] + F [m, k + 49 3] F [m9k, 1]H [m, 4, n - l ] 

- F [ m , k + 4 ,2 ]F [m 9 k + l 9 2 ] H [ m 9 4 , n - 2 ] 

- F [ m , k + 4 9 l ] F [ m , k + 2 9 3]H[m,4 9 n - 3 ] + F[m9 k + 3,4]H[m, 4, n - 4 ] . 
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m even 
Same expression with alternating signs. 

The situation can be summarized as follows as a working hypothesis. 
1. The coefficients for the downward and upward formulas a re the same in absolute 

value for corresponding te rms . 
2. These coefficients for class m, degree d and shift k a re as follows: 

F [ m , d + k, d ] F [ m , k - 1, 0] 

F [ m , d + k, d - l ] F [ m , k, 1] 

F[m9 d + k, d - 2 ] F [ m , k + 1, 2] 

F[m 9 d + k, l ] F [ m , k + d - 2, d - 1] 

F [ m , d + k, 0 ] F [ m , k + d - 1, d] . 

3. The sign patterns for the various cases a r e : 
Odd degree Down Up 

m odd + + - - (-l)k[+ - - +] 
m even + _ + _ + - + -

Even degree 
m odd + + — + + — 
m even +_ + _ + _ + _ 

Formulas covering all cases are as follows: 
m odd 

d+1 
(9) H[m,d,n+k] = ^ ( - l ^ ' ^ ^ F t n ^ k + d , d - i + l ]F[m,k+i-2, i - l ]H[m,d, n - i + 1] . 

i=l 
(10a) for d odd 

d+1 
H[m,d, n - k] = ( - l ) k ] T (- l ) f 1 / / 2V[m, k + d, d - i + l ]F[m, k + i - 2, i - l ] H [ m , d , n + i - 1 ] . 

i=l 
(10b) for d even 

d+1 
H[m, d , n - k ] = ] P (-1) ^ " ^ ^ F l m , k + d, d - i + l ]F[m, k + i - 2, i - l]H[m, d, n + i - 1] . 

i=l 

m even 
d+1 

(11) H [ m , d , n + k ] = ^ ( - l ) 1 _ 1 F[m, k+d , d - i + l]F[m, k + i - 2 , i - l ] H [ m , d, n - i + l ] . 
i=l 
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d+1 
(12) H[m,d , n - k ] = ^ ( - l ) 1 _ 1F[m, k + d, d - i + l ]F[m, k + i - 2 , i - l]H[m, d, n + i - l ] . 

i=l 

PROOF OF THESE FORMULAS 

The formulas a re true for k = 1 since formulas (9) through (12) reduce to the respect-
ive formulas in (5) through (8). Assume then that these formulas a re true for k. To go to 
k + 1, substitute for H[m, d, n] either up or down as the case may be, using formulas (5) 
through (8). Consider first the case of downward shift For m odd, the sign pattern for 
t e rms after substitution i s : 

+ — + + — + 

+ + — + + — 
where the second line represents the sign pattern for the substituted quantity H[m, d, n], 
For m even, the sign pattern for te rms after substitution is 

In either case the pattern var ies modulo 4. 

m odd 
By (5), 
H[m, d, n] = F[m, d + 1, l]H[m, d, n - l ] + F[m, d + 1, 2]H[m, d, n - 2] 

- F[M, d + 1, 3]H[m, d, n - 3] - F[m, d + 1, 4]H[m, d, n - 4] • • • . 

Substitution into (9) gives: 

H[m, d, n + k] = | F [ m , d+k , d - l ] F [ m , k , 1] + F[m, d + l , l ] F [ m , d + k,d]}H[m, d, n - l ] 

+ | - F [ m , d+k , d - 2 ] F [ m , k + l , 2 ] + F[m, d + l ,2 ]F[m, d + k ,d ]}H[m,d ,n -2 ] 

+ | - F [ m , d + k , d - 3]F[m, k + 2,3] - F[m, d + 1, 3]F[m, d + k ,d]}H[m,d,n- 3] 

+ {F[m, d + k , d -4 ]F [m, k + 3,4] - F[m, d + l ,4]F[m, d + k, d]}-H[m,d, n - 4 ] 

COEFFICIENT OF H[m, d, n - 4j - l ] 

This is given by: 
F[m, d + k, d - 4j - l ]F[m, k + 4j , 4j + l ] + F[m, d + 1, 4j + l ]F[m, d + k, d] 

= FHi(d+k)Fm(d+k-l) " ' Fm(k+4j+2) Fm(k+4j)Fm(k+4j-l) ' ' ' F m k 
F m F 2 m ' " ' F m(d-4 j - l ) F m F 2 m ' ' ' Fm(4j+1) 

F m(d+l ) F md ' ' ' Fm(d-4j+l) Fm(d+k)Fm(d+k-l) ' ' ' Fm(k+1) 
F F F F F F 
r m 2 m ° " m(4j+l) r m 2 m " 9 dm 
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Fm(d+k)Fm(d+k-l) " ' Fm(k+4j+2) Fm(k+4j)Fm(k+4j-l) Fm(k+1) 
F m F 2 m " "' F in(d-4j- l ) F m F 2 m ' ' " Fm(4j+1) 

s, L + Fm(d+l)Fm(k+4j+l) ) 
x | mk F tA ... ( 

{ m(d-4]) ) 
The expression 

F mk F m(d-4j ) + Fm(d+l)Fm(k+4j+l) 

can be modified using the relation 

(13) F F . + F _,_ F _ = F F j . ^ , 
a b a+r b+r r a+b+r 

where r is odd, giving the resul t 
Fm(4j+l)Fm(d+k+l) ' 

which leads to the final value of the coefficient of H [m, d, n - 4j - l ] after substitution 
F [ m , d + k + 1, d - 4j] F [ m , k + 4j , 4 j ] . 

That this is the correc t value is seen from the following considerations. The quantity is a 
coefficient in the expansion for H[m, d, n + k]. If the subscripts of all the HTs are raised 
by 1 to give an expression for H [m, d, n + k + 1 ] , it is seen that this quantity is the co-
efficient of H[m, d, n - 4j] , By formula (9) with k replaced by k + 1 and i = 4j + 1, we 
obtain for the coefficient of H[m, d, n - 4j] the value 

F[m, k + d + 1, d - 4j - 1 + l ]F[m, k + 1 + 4j + 1 - 2, 4j + 1 - l ] 

= F[m, k + d + 1, d - 4j]F[m, d + 4j , 4j] 

the resul t obtained by our analysis. 

COEFFICIENT OF H[m, d, n - 4j - 2] 

The development proceeds as before, ending with the following quantity in brackets 

_ F +
 Fm(d+l)Fm(k+4j+2) 

mk F /, A. „v 
m(d-4j-l) 

The expression 

" F m k F m ( d - 4 j - l ) + Fm(d+l)Fm(k+4j+2) = Fm(4j+2)Fm (d+k+1) 
using the relation 
(14) F , F, , - F F, = F F ,, , where c is even . v ' a+c b+c a b c a+b+c 

The final result is 
F[m, d + k + 1, d - 4 j - l ]F[m, k + 4j + 1, 4j + l ] . 
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This is the coefficient of H[m, d, n - 4j - 2] in the expansion of H[m, d, n + k]e Shifting 
the H subscripts up one, this should be the coefficient of H[m, d, n - 4j - l ] in the expan-
sion of H[m, d, n + k + 1], Replacing k by k + 1 and i by 4 j + 2 in (9) one finds for 
the coefficient of H[m, d, n - 4j - 1] in the expansion of H[m, d, n + k + 1] 

F[m, d + k + 1, d - 4 j - 2 + l ]F[m, k + 1 + 4j + 2 - 2, 4j + 2 - l ] 

= F[m, d + k + 1, d - 4 j - l ]F[m, k + 4j + 1, 4j + 1] 

in agreement with our analysis. 

For the coefficient of H[m, d, n - 4j - 3], the signs of the quantities in brackets a re 
- and - with an odd subscript difference so that the formula (13) applies giving a resul t with 
a negative sign. For the coefficient of H[m, d, n - 4j - 4] the signs a re + and - with the 
la t ter predominating to give a negative sign. 

The final te rm in the expansion after substitution would be 

( - l ) t d / 2 JF[m, d + k, d] 

This is to be compared with the final term in the expansion of H [m, d, n + k + 1 ]. Using 
formula (9) this should be 

(-1) f ( d + 1 " 1 ) / 2 ^F [m, d + k + 1, d - d - 1 + l ]F[m, k + l + d + 1 - 2 , d + 1 - 1] 
o r 

(_1 }[d/2] F [ n i j d + k j d j 9 

which agrees with the resul t obtained by the substitution. 

m even. Downward shift 

The coefficients are the same so that we need simply consider the sign pattern. 

4j + 1 4j + 2 4j + 3 4j + 4 
(1) - + - + 
(2) + - + 
(3) + - + 

(1) is the sign pattern of te rms that remain in the original expression. 
(2) is the sign pattern of the substituted te rms . 
(3) is the sign pattern of the resulting expression. 
Since the subscript differences a re all even, formula (14) will apply in all these cases . 

m odd, d odd, k odd, Upward shift 
4j + 1 4j + 2 4j + 3 4j + 4 

(1) + + 
(2) + - - + 
(3) + - - + 
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Not e that for 4j + 1 and 4j + 3 the subscript difference is odd and formula (13) applies. 
The final set of signs is correct since k + 1 is even. 

m odd, d odd, k even. Upward shift 
4j + 1 4j + 2 4j + 3 4j + 4 

(1) + + 
(2) + + 
(3) + + 

The final set of signs is correc t since k + 1 is odd. 

m odd, d even, Upward shift 
4j + 1 4j + 2 4j + 3 4j + 4 

(1) + - - + 
(2) -f + 

(3) + + - -

the signs being correc t for this case also. 
For m even and upward shift, the sign pattern is the same as for m even and down-

ward shift. 
To conclude, two examples are given to show the generality of these shift formulas and 

the manner of using them. 
Example 1. Let 

H[3 l 4 > n] = L | n _ 4 F 3 n + 2 T 3 n _ 1 

We wish to express H[3, 4, n + 4] in te rms of H[3, 4, n] and quantities with lower sub-
script. By our shift formulas we have: 

H[3, 4, n + 4] = F[3,8s4]H[3,4,n] + F[3 ,8 ,3]F[3 ,4 , l ]H[3, 4, n - l ] 

- F[3,8,2]F[3,5,2]H[3,4, n - 2] - F[3, 8, l ]F[3 , 6, 3]H[3,4, n - 3] 

+ F[3,8,0]F[3,7,4]H[3, 4, n - 4] . 

Let n = 3 for purposes of checking. Then 

L17F23T20 = 10212563270 LgFuTg + 2410834608 -72 h2
2FBTb 

- 31721508-5490 L?.1F5T2 - 23184 417240 L ^ F g T - j 

+ 31716035 L i 7 F _ i T _ 4 

o r 
7055823593395596 

should equal 
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10212563270-646140 + 173580091776*2646 - 174151078920*20 

- 9673292160(-98) + 31716035-10092 
which checks out. 

Example 2. Let 

H[3, 4, n] = T4
3n_? 

H[3, 4, n - 3] = F[3,7,4]H[3,4,n] + F[3, 7, 3]F[3, 3, l]H[3, 4, n + l ] 

- F[3, 7, 2]F[3, 4,2]H[3,4, n + 2] - F[3, 7, l ]F[3 , 5, 3]H[3,49 n + 3] 

+ F[3,6,4]H[3, 6, n + 4] . 

Let n = 2. 

Tt1 0 = 31716035 T i t + 31716035*17 T | - 1767779-306 T | 

- 5473v 5490 Tg + 98515T^ 

Ti 1 0 = 2124 = 2019963136 . 

The right-hand side equals: 

31716035*16 + 539172595*256 - 540940374-38416 - 30046770*12960000 + 98515-4162314256 

which checks. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAN 

University of New Mexico, Albuquerque, New Mexico 

Each proposed problem or solution should be submitted on a separate sheet o r sheets, 
preferably typed in double spacing, in the format used below, to Professor A. P . Hillman, 
Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New 
Mexico 87106. 

Solutions should be received within four months of the publication date of the proposed 
problem. Contributors in the United States who desire acknowledgement of receipt of contr i -
butions a re asked to enclose self-addressed stamped postcards. 

DEFINITIONS 

F0 = 0, Ft = 1, F ,„ = F _,- + F ; L0 = 2, L* = 1, L ^0 = L _,, + L . 
u 1 n+2 n+1 n u 1 n+2 n+1 n 

PROBLEMS PROPOSED IN THIS ISSUE 

B-256 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Show that L - 3(-l) is the product of two Lucas numbers. 

B-257 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Show that [L + 3(-l) ]/5 is the product of two Fibonacci numbers. 

B-258 Proposed by Paul Bruckman, University of Illinois, Chicago, Illinois. 

Let [x] denote the greatest integer in x, a = (l + ^ 5 ) / 2 , and e n = { l + ( - l ) n } /2 . 

Prove that for all positive integers m and n: 
a. nF _ = [naF 1 + e , 

n+1 L n J n 
b. nF , = F { [ naF 1 + e ) + nF ., F 

xn+n m L L n J nJ m - 1 n 
B-259 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Characterize the infinite sequence of ordered pai rs of integers (m, r ) , with 4 ^ 2r ^ 
m, for which the three binomial coefficients 

(m - %\ (m - 2\ (m - 2\ 
{r -2J' Vr " !/' V r ) 

are in arithmetic progression. 

220 
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B-260 Proposed by John L Hunsucker and Jack Nebb .University of Georgia, Athens, Georgia. 

Let a(n) denote the sum of the positive integral divisors of n. Show that cr(mn) > 
a(m) +a(n) for all integers m > 1 and n > 1. 

B-261 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let d be a positive integer and let S be the set of all nonnegative integers n such 
that 2 - 1 is an integral multiple of d. Show that either S = { o } or the integers in S 
form an infinite arithmetic progression, 

SOLUTIONS 
SLIGHT MISPRINT, OTHERWISE FINE 

B-232 Proposed by Guy A. R. Guillotte, Quebec, Canada. 

In the following multiplication alphametic, the five le t te rs F , Q, I, N, and E r e p r e -
sent distinct digits. The dashes denote not necessar i ly distinct digits. What a re the digits 
of FINE FQ? 

FQ 
FQ 

FINE 

(The number of dashes has been corrected.) 

Solution by Ralph Garfield, The College of Insurance, New York, New York. 

We first observe that F must be 9. Fur thermore , Q must be 5 or more since 
942 = 8836, which does not give a first digit of 9. Clearly, since E and Q are distinct, 
Q cannot be 5 or 6. Also, since F and Q a re different, Q cannot be 9. Hence Q 
must be 8. Then 982 = 9604 gives 9604 98 as FINE FQ. 

Also solved by Sister Marion Beiter, Ashok K. Chandra, J. A. H. Hunter, John W. Milsom, Charles W. Trigg, David Zeitlin, and 
the Proposer. 

A FIBONACCI QUADRATIC 

B-233 Proposed by Harlan L Umansky, Emerson High School, Union City, New Jersey. 

Show that the roots of F .x 2 - F x - F ,., = 0 a re x = -1 and x = F ,., / F „. 
n -1 n n+1 n+1 n-1 

Generalize to show a similar result for all sequences formed in the same manner as the F ib-
onacci sequence. 
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Solution by Graham Lord, S. U. N. Y., Binghamton, New York, 

Let a be any sequence satisfying a = a _1 + a ~, for all n. Then 

P(x) = a .x2 - a x - a ^ = a , x - (a _,_, - a - )x - a _ n -1 n n+1 n -1 n+1 n -1 n+1 
= (a . x - a _ )(x + 1) . n -1 n+1 

Hence the roots of P(x) = 0 a re - 1 and a - / a . . In part icular , if a = F the 
first half of the question is also solved. 

Also solved by Sister Marion Better, Paul S. Bruckman, Ashok K. Chandra, Herta T. Freitag, Ralph Garfield, J. A. H. Hunter, 

Edgar Karst, Peter A. Lindstrom, Graham Lord, John W. Milsom, Paul Salomaa, David Zeitlin, and the Proposer. 

DUPLICATING A CUBE ? 

B-234 Proposed by W. C. Barley, Los Gatos High School, Los Gatost California 

Prove that 

L3 = 2F3
 n + F 3 + 6F n F 2 . n n -1 n n -1 n+1 

Solution by Paul S. Bruckman, University of Illinois, Chicago, Illinois. 

Since F = F , - - F -» we may cube both sides and obtain 
n n+1 n-1 J 

F 3 = F 3 ^ - 3F2 F , + 3F ^ F2 , - F 3 , . n n+1 n+1 n-1 n+1 n-1 n-1 

Adding 2F3
 1 + 6F 1 F 2 - to both sides of this expression, we obtain 

2F3 , + F3 + 6F - F2 = F3 + 3F2 F n + 3F _,, F 2 + F3 = (F _,, + F n )3 = L 3 . n-1 n n -1 n+1 n+1 n+1 n -1 n+1 n-1 n-1 n+1 n - 1 7 n 

Also solved by James 0. Bryant, Ashok K. Chandra, Warren Cheves, Herta T. Freitag, Ralph Garfield, J. A. H. Hunter, Edgar 

Karst, Peter A Lindstrom, Graham Lord, John W. Milsom, Paul Salomaa, David Zeitlin, and the Proposer. 

A PROPERTY OF F1 6 

B-235 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Find the larges t positive integer n such that F i s smaller than the sum of the cubes 
of the digits of F . 

Solution by Ashok K. Chandra, Graduate Student, Stanford University, California. 

We need only check for all n such that F < 4«93 = 2916, for if F has n digits, 
n > 5, then n-93< 1 0 n - 1 < F . 
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n = 15 16 17 18 

F = 610 987 1597 2584 
Now, 

2584 > 23 + 53 + 83 + 43 , 
and 

1597 > I3 + 53 + 93 + 73 , 
but 

987 < 93 + 83 + 73 . 

Hence the larges t n is 16, and F = 987. 
I wrote a short computer program to determine the la rges t n for an arb i t rary power, 

and obtained the following resul ts : 

Power 

2 
3 
4 
5 
6 
7 
8 
9 

n 

11 
16 
19 
24 
29 
34 
39 
42 

5, 
63s 

267, 

F 
n 

89 
987 

4,181 
46,368 

"514,229 
,702,887 
,245,986 
,914,296 

Also solved by Paul S. Bruckman, Paul Salomaa, Charles W. Trigg, and the Proposer. 

TWO HEADS NOT BETTER THAN ONE 

B-236 Proposed by Paul S. Bruckman, San Rafael, California. 

Let P denote th 
not appear. Prove that 

Let P denote the probability that, in n throws of a coin, two consecutive heads will 

P = 2 n F ^ . 
n n+2 

Solution by J. L Brown, Jr., Pennsylvania State University, Pennsylvania. 

A sequence of Hfs and TTs of length n is called admissible if two heads do not appear 
together anywhere in the sequence. Let a be the number of admissible sequences of length 
n. Then there a re a admissible sequences of length n + 1 which end with a T, while 
there a re a admissible sequences of length n + 1 ending in an H (since any such s e -
quence must actually end in TH). Thus a = a + a . Combined with the initial values 
at = 2 and a2 = 3, we find a^ = F n + 9 for n > 1 and the required probability becomes 
F 2 / 2 as stated. 
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NOTE: Essentially the same problem occurs as Problem 62-6 in SEAM Review (solution in 
Vol. 6, No. 3, July 1964, p. 313) and as Problem E2022 in American Mathematical Monthly 
(solution in Vol. 74, No. 10, December, 1968, p. 1117). See also Problem 1, p. 14 in An 
Introduction to Combinatorial Analysis by John Riordan (J . Wiley and Sons, Inc. , 1958) and 
Problem B-5 in the Fibonacci Quarterly (solution in Vol. 1, No. 3, October, 1963, p. 79). 

Also solved by Ashok K. Chandra, Ralph Garfield, Peter A. Lindstrom, Graham Lord, Bob Prielipp, Paul Salomaa, Richard W. 

Sielaff, and the Proposer. 

G.C.D. PROBLEM 

B-237 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Let (m,n) denote the greatest common divisor of the integers m and n. 
(i) Given (a,b) = 1, prove that (a2 + b2, a2 + 2ab) is 1 o r 5. 

(ii) Prove the converse of Pa r t (i). 

Solution by Paul Salomaa, Junior, M. I. T., Cambridge, Massachusetts. 

(a2 + b2, a2 + 2ab) = (a2 + b2 - [ a2 + 2ab] , a2 + 2ab) = (b2 - 2ab, a2 + 2ab) . 

Let p be a pr ime (or 1) such that 

p | (a2 + b2, a2 + 2ab) . 
Then 

p J (b2 - 2ab) and p | (a2 + 2ab) . 

But (p,a) = (p,b) = 1, for if not, p|(a2 + b2) would imply p|(a,b) forcing p = 1. Hence 
pj(b - 2a) and p|(a + 2b). So 

p | [ b - 2a + 2(a + 2b)] , 

i . e . , p|5b. Since (p,b) = 1, we have that pi 5, so p = 5 o r p = 1. If 

p2 J (a2 + b2, a2 + 2ab) , 
then 

p2 [ (b - 2a) and p2 j (a + 2b) , 

hence p2J5b, so in this case p = 1. In part icular , 52 A (a2 + b2, a2 + 2ab). For the con-
ve r se , let (a,b) = d. Then d2 (a2 + b2, a2 + 2ab). Hence d2 5 or d2 1, and in either case , 
d = 1. 

Also solved by Ashok K. Chandra, Herta T. Freitag, Graham Lord, and the Proposer. 


