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SOME GENERALIZATIONS SUGGESTED BY GOULD'S SYSTEMATIC
TREATMENT OF CERTAIN BINOMIAL IDENTITIES

PAUL S. BRUCKMAN
13 Webster Avenue, Highwood, lllinois

In a previous article [1], the writer has presented properties of certain numbers An
defined by the generating function

@) f) = (- i+ Wt = > A u
. =0

In addition, Professor H. W. Gould of West Virginia University, in a recently pub-
lished paper [2], has indicated several additional identities for the A~ coefficients.

We now introduce the generalized numbers An(x) defined by the generating function
0
(2) gu,x) = @ -wla+w =) A @",
n=0

which is valid for all real or complex x; from this, the following relations are evident:

(3) fu) = glu,-13)

) A=A (-3)
n

®) A () = Z(iﬁ) ,
k=0

(k)
X\ _ X _xx-1) e (x -k +1) X\ _
® (k)"“kl—“ 5 ’ (o) -

@ (;‘) = (1" (X tE- 1)



226 SOME GENERALIZATIONS SUGGESTED BY GOULD'S SYSTEMATIC [Oct.

The purpose of this paper is to present some properties of the coefficients An(x).
Gould [2] has demonstrated that most of the identities shown in [1] are old results, citing
numerous references to substantiate this claim. Likewise, in private communications with
the writer, Gould has indicated that the coefficients An(x) have been studied extensively by
previous mathematicians. However, Gould [2] indicated that one identity proven in [1] ap-

peared to be new in the literature, and restated it in the following form:

n N2 i\ D 1
_ A Y R "3 Yon + 1
(8) Afl_ E(k) _(n)2<n—k)2k+1

k=0 k=0

Gould, who as well as being a mathematician of the highest order, is an expert in the field of
information retrieval, was impressed by the apparent novelty of the relation in (8), and his
closing remarks in [2] stimulated a search for a suitable generalization of (8). This search
was initiated by the writer in an effort to find a single-sum expression for the coefficient
Afl(x). In this respect, he has failed. However, the writer did discover an unexpected gen-

eralization of (8) by empirical methods, and this is expressed in the following elegant form:

n % - l n x - 1
3 3
A (x - —;)An(—x -1 = E ( K ) . E ( K )
k=0

k=0
9

1t is easily seen that when x = 0, Eq. (9) reduces to (8). Relation (9) would appear
to be a new combinatorial identity.

Before we furnish a proof of (9), we will present a list of various identities involving
the An(x) coefficients, each identity accompanied with a brief indication of the method used
in its derivation. The purpose is to familiarize the reader with some of the known results.

The An(x)'s satisfy the following second-order recursion:

(10) (n + 1)An+1(X) - x + 1)An(x) + (x - n)An_l(x) =0.
Recursion (10) is easily verified from the definition of An(x) in (56). For x = —-%, it be-
comes recursion (7) in [1].
[n/2]
_ n kfx\f-=x-1 .
(11) A = (D" Y D (k>(n ) 2k) ;
k=0

derived by expressing g(u,x) in the form (1 - u)—l"x(l -u®)*, and obtaining the convolute.
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For x =4, (11) becomes formula (11) in [2].
n
(12) A = (D ( i) Y 2F ( ﬁ) ol
k=0

derived by expressing g(u,x) in the form

X
a- w*?t (1 +ﬂ.) ,

l1-u

and obtaining the convolute. For x = -1, this becomes formula (12) in [2], which was pre-
viously stated in variant form as formula (22) in [1]. NOTE: Identity (12) has been sub-

mitted to Advanced Problems Editor as a proposed problem.

n (E)
(13) A (®) = (’é)Z \ /kx-n

< x -k
k=0 (k)

derived by obtaining the convolute of the function g(u,x) expressed in the form

-1
x-1 Zu\
(1 + u) 1'1+u/ .

For x = --% , this becomes formula (13) in [2].

©o

0
i 2n k 2k-2x

u
1.2 2

7 U -2x-1 -t _ u (-1)"u
e f e ar = 30 i 2 KT Gk - )

0 n=0 " k=0

(14)

oo

2

n=0 (2n - 2x) (i)n!

(using (12) above). For x = --;, this becomes formula (11) in [1], restated by Gould as
formula (14) in [2].

. _% )nAn(X)uZn-Zx

k
n X - n
2" = E Ak(X)

< X - k
ez (k

n
(16) 2" = (’;)Z (S (i> A x) Z=F

ko ( k)
Relations (15) and (16) are obtained from (12) and (13) by inversion. For X = - -% , (15) and
(16) become (15) and (16), respectively, in [2], which Gould obtained by the same method.

(15)

/21 (5

n-11 nfx\*t _[n](Zk A X -n

() 2 U Y B D DR S o -
k=0 (;k)
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2] (0
n-1 n{x -1 zk +1 -n
(18) 2 1 - (-1) <n) = E

X
- Agenn® x93
(2k + 1)
Relations (17) and (18) are obtained by respectively adding and subtracting (15) and (16).
When x = ——é , (17 is equivalent to (17) in [2].

k=0

ey n 2n—2x
w) XL [l X (1)
0'/ Z (2n - 2x)
(19) .
Z( ll+1A ( ) u2n-2x
- (nj -
-2x~-1 n 2n—2x n+1A (x) 2n-2x
t (-1) u
(20) '——T .
of”tz Z en - 2 I{‘; (X-n)<n> @ + )"
1
(21) A = (2 - 2% (ﬁ) f 2% Lo _ 1)Pgt

A proof of (19) is indicated below. Let the left-hand side of (19) = y, i.e.,

0 ©0

k 2k-2x
y:Z(—x—1>(1)n znz(k)(;i{ilzx ZGUZn-Zx,
n=0 k=0
Or 0 0
k 2k-2x .
_ (-1)"u -x -1 n-k 2n-2k
= 2 (%) e z(n-k)w L
k=0 =k

-X -1

e
n_

]

We will return to the above expression, but first we will direct our efforts toward finding an
expression for Gn, ag defined above. If we differentiate the integral expression for y and
its series form:

0
HeLyElg L ey s gu + D@ - w) Ty = D) @n - 296 o

n=0

y' o= (1 - u?)
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1-uw)y = w2l 2u(x + 1)y ;
converting this differential equation into series form by means of the foregoing relations, we

obtain a recursion: (n + 1 - x)@m_1 = (n+ 1)6n(n =0,1,2,--); 1=-2x0; (x # 0). By an
easy induction on this last recursion, we obtain the expression

_ n+l [
6, = (-1 /z(x - n)(;i);

this proves the first identity of (19). We may convert such form as follows, by use of (16):

) n n
_ ()" 2n-2x g~ 20-2X <x k\k) A%
y = = (X - n) ('1) —
) k ©
) Z (-1) Ak(;i) Z -Z—H—l(ﬁ> o 2n-2x
k=0 & - k)i k) n=k
) k ®©
B (-1) Ak(X) -n-k-1/n + k\ 2n+2k-2x
= Z ( ) X Z—Z k 4
k=0 ¥~ k | n=0
k+1 -k-1
(-1)" A x)2
Kk u2k-2x g _%uz)-k-l ,

vy =, =
k=0 (X'k)<k)

which reduces to (19). If we return to the double summation expressionfor y which we first

obtained, we arrive at the interesting identity:

(22) L =‘Z(§)(_§:;)

X X -k
(X_n)(n) k=0

Relation (20) is similarly obtained from (15) being substituted in the first identity of (20), which
is readily obtained from the integral expression by direct integration of a geometric series.
Relation (21) is derived from (12), and may be verified by expansion of the integrand in

(21), term-by-term integration and comparison with (12).

0

A () J () u®

2n _
23) z & - 1) Exj atnt (qu™ = Z x - oo’
n=0 nj n=0
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Relation (23) is obtained by employing the definition of Jn(u), the ordinary Bessel
function of nth order, and relation (12).

u

2n-2x
(24) f 2=l y¥gp = E (-1) ( ) e

0 n=0

Relation (24) is obtained by expansion of the integrand and term-by-term integration of
the result.

By the substitution of x = __; in (19)-(21), (23) and (24), we obtain Gould's identities
(18), (19), (21) (in variant form), (28) and (35) in [2]. _

By the substitutions u = iv, t = is in (19), (20) and (24) (and reconvertingback to the
dummy variables u and t), we derive the following:

u ]
2n-2x
(25) @ + u2)*-1 f 2l s )%ar = Y -
0 n=0 (@n - 2x) n)
) E An(x) 2n-2x
X 9 \h+1
- x)(n) @ + u?)
by ° A ( 2n-2
26) 1:—:?.x—l i Z 2n—2x _ Z 0 X) y2h-2x
1 - t2 2n - ZX (Il _ X) X (2 _ uZ )n+1
0 n=0 n
u 0
2n-2x
-2x-1 2\ X _ X\ u
@) ft (1+t)dt—z<n>——-—2n_2X
0 n=
If, in (19), we make the substitutions
u’ = v, £ - s?
2 - ul 2 -t

(and then reconvert to the dummy variables u and t), we obtain:

* A_(0u"2%
(28) Q- w)*1 f ~2x-1 @ - )% .

D™
1+t E (2n_2x)z;i$

The ""conjugate' of (28) is the following:
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0 2n-2x
2 A x)u
(29) (1+u)x1ft—2x—l(1+t) dt:z n
1 -t = @n - 2x)

Another genus of relations is obtained by considering variations in form of the basic definition

of g(u,x) in (2), or related functions. For example, since

xX+r 1 -xX+8 r+s

1+uw + w = (1 +wu )

we arrive at

IO NS

This is simply a special case of the Vandermonde convolution theorem; its chief point
of interest here is the invariance of (30) with respect to x. Setting r = 0 and s = -1, as

a special case of (30), we have:
- \
3 Z(’é‘)(;"_‘é) - (‘nl/ - "
/

k=0

By considering the convolution of the expression

@+ e+ a0t - ar0a-w?t,
we obtain the following identity:
n
X+ r _
(32) > (n i K)Ak(—r +5) = A(r+s)

k=0

Again, the interesting point in (32) is the invariance with respect to x of the right member.
When r = 0, s = X, we obtain the expression in (5) for An(x). By setting x = 0 and s =

x in (32), we obtain the recursion:

n
(33) An(x + 1) = Z (E)An__k(x)

k=0

Another interesting identity displaying invariance on x is obtained by considering the con-

xX+r a- u)'l S+ )-x+s( 1 )r+s a- u)—Z.

volution of (1 + u) -w) " = (1+u
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n
(39 Y AK+DA (x+8 = @m+DAC+e) - (+A (r+s -1
k=0
As special cases of (34), for r = 0, s = 0, we obtain:
n
(35) DA M®A (X =n+1.

k=0

For r = 0, s = -1, (34) yields:
n

(36) DSOAMA (x-1 =1+ [{n]
k=0

By considering the sum

r-1 <k
(1 + u) =(1+u)x_(1+u)]f-1
1-u 1-u u

k=0

we obtain the following recursion:

r-1 n
(37) ZAn(x+k) =Z(H_E+1>Ak(x)
k=0 k=0

For r = 2, we obtain as a special case of (37):

(38) An(x +1) = An(x) + An— X) .

X
We may also derive (38) by letting r = 1 in (33). As should otherwise be evident, this is
the same recursion satisfied by the binomial coefficients, i.e., if (i) is substituted for
An(x).

The list of identities in (10)-(38) is by no means exhaustive, and indeed it should have
by now become evident to the reader that the variety of derivable identities stemming from
the basic definition in (2) is virtually unlimited. As previously intimated, Gould [2] has ob-
served that far more general results are available in the existing literature, and it is pri-
marily for this reason that (10)-(38) have been offered with a minimum of explanation. The

real purpose of this paper istogive aproof of (9), and the other identities have been presented



1973] TREATMENT OF CERTAIN BINOMIAL IDENTITIES 233

solely for the sake of exposition. The proof of (9), which follows, depends on differential
equations and the method of equating coefficients. The writer was unable to obtain a more
direct proof, and this is left as a project for the interested reader.

We begin by adopting the following definitions, in the interest of simplicity of expression:

(39) C,=Ak-3; T =A(x-4)
(40) Q, = cnﬁn
(1) R = Q- Qg

X - 4 -x - 4
42) Jn=(n2); 3n=( n2>
(43) K = Jnin
(44) q =K =} -x

Some useful relations are indicated below, which are evident from the definitions given
in (39)-(44):

(45) Cn = Cn-l + Jn; Cn = Cn—l + Jn
X + %_ -n _ -X + ;— -n\ _
(46) Jn - n Jn—l; Jn = n Jn-l
(3 -n? -
— q + n(n - 1)
@7 Ky = 2 K1 5 Kpo1 -
n n

Our aim is to first obtain a recursion for the coefficients Qn, then to show that the
same recursion, with the same initial conditions, is satisfied by the expression in the right
member of (9). The following development makes free use of the relations and definitions in
(39)-(47):

R =CC -c_ .C =cn?3’n_(cn-Jn)(6n-3n),
or

(48) R =JC +3C_ -K

If we increase the subscript in (48) by unity, multiply by (n + 1), and apply (45)-(47),
we obtain:

(n + 1)Rn+1 = (n + 1)JI1+1

(C,+3 ) +@+1J € +J )-@0+IK

n+l n+1°’

or
= R (o} x - L - n7T
(49) (n + l)Rn+1 (x > n)JnCn + (-x 5 n) Jncn + (n + l)Kn+1 .

If we decrease the subscript in (48) by unity, and again use relations (45)-(47), we
obtain:
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=3 = el T —-.-.n_
Rn-l = Ch19p1 Cn—lJn—l - Ko (Cn - Jn)(x L1 n)Jn
2

2
n = n
+(Cn_Jn)( 1 )Jn_(q+nin—1; X,
-X + F - n
Multiplying the above throughout by

(x+%—-n)(—x+l-n)

5 _g+nn-1 (g+nn-1) - 1 T
n - n ’ n Rn-l =(x+g- n)(€n - Jn)Jn
. -
or + (X + 5 n)(Cn - Jn)Jn - nKns
9 _ = (- L. c L )T -
(50) (n e 1) Bp_1 (x +3 n)Jncn Tty n)Jncn + DKD

If we now multiply (48) throughout by 2n and add this result to the sum of (49) and (50),

we obtain the following recursion:
q -
(51) n + 1)Rn+1 + Zan + (I-f +n - 1>Rn—1 = (n + 1)(Kn+1 - Kn)

If, in (51), we substitute for Rn the expression Qn -Q from (41), and similarly

n-1
for the other subscripts, we obtain a third-order recursion involving the Qn's:

m +DQ,; + 0 - 1Q, +(% -n- 1)Qn-l - (% - 1)Qn—2

(52) =
= (n + 1)(Kn+1 - Kn)
This, then, is the recursion which we now seek to demonstrate is also satisfied by the
expression in the right member of (9).
We begin by introducing some additional definitions, again for the sake of brevity:

n x—%-n n x+%+n
(53) P =3 )7  ——— P =733
n n n-k L _k n n n-k Ly +k
k=0 X-5- k=0 Y
—X——l u t‘x-é —
(54) h = w(u,x) = -1 +n) 2 f =T dt ; h = w, -x)
0

The statement of identity (9) may then be condensed to the simple form:
(55) Q =@ +P).

Since
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and
4 t—x—-% * u—X+1f+n
- ) T s X ——
0 n=0 * 77 - "
0 n 0 n -
—x+-1f+n -X - _:21 1 —x+1i+n Jn_k
LD PR 3 N T DL Ve
n=0 k=0 S n=0 k=0X 7 3
Comparing the latter expression with the first definition in (53), we have:
1 1
0 Pn u—X+-z.+n _ 0 :_ﬁn u+x+_2_+n
(56) h = Z—————; similarly, h = Z

1 1 T
=0 x - ;- n)Jn (-x - 5 - n)Jn

n=0

By differentiating h, we obtain the expressions:

0 -x+1+4n © -x+1+4n
-P u 1 -n + 1)P u 2
(57) ho= Y ——ni}-—-—-— = P4 Y n+l
1
=_1 n+l n=0 (X -3 - n)Jn
o -x+d4n
n+2)P  u %
_ 1 —X—3/2 n+2
b= G+ 5) Pou > Tn+1

n=-1

(58) 1
-X+=+n
n+ 1)n + 2)Pn+2u 2

0
% _x 1
(x+-%)P0uXS/2+P1uX7+Z

1
n=0 x -3 -0J,

2

On the other hand, if we differentiate h, as defined in (54), we obtain:

1
1 1 _ %o u _X_'Z
b= -+ Wi - w7 x4 P +uw x-3/2 of t1 e
1 1 -
= —@ I - T - e DA+ 0T e,
or:
_x+1 _x_.%
(59) (1 -vud)h' + (x+§Q-wh+@+uw)" 2Zu =0.
By a second differentiation, % + % X - _; rd ot
(1 - ud)h" - 2uh' + (x + 4)@ - wWh' - (x + $)h ={T+1+u @ +w™ 2u™2
A JELE | PR 1
— _ 1 -
= At {@ - v+ x+ )@ wh}

or after simplification:

60) (u+ u? - u - ub)h" + {(x +4) + (Bx + %)u - (x + 5/2)u® - (3x + 5/2)u3}h'

+{(x + P+ (x + P - 3/2u - 2(x + _;)Zuz}h =0 .
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By means of the geriés form for h in (56), for h' in (57), and the identity:

x+} -x-% - 'X+§1 x4+ X-4 - (-x + § x+i+n
(1+u E n 7 u + E =T Jpu ? ,

n=0

we may convert (59) entirely into series form, with certain manipulations based on proper-
ties of the binomial coefficients, designed to maintain the exponent of u in the various ex-

pressions the same (-x + 1 +n, in our development), and to contain the factor Jn in the

2
denominator of each expression, which may subsequently be cancelled. If we do so, we ob-

tain the following:

0 -x+ +n © —x+ -+n
Z.-(n + l)Pn-H +Z (x +-L . n)P 1Y t
n0 X - F-ndy n=
...x+.i.+n ] _x+1 =)
P («x + 1) 1
+(x+.1)2 ._(x+1)§:_5‘_.___+§:_n_:_1i'j'nu‘x"'i+n
(x - T - n)J n=1 n=0

If we now equate the coefficients of similar powers of u in the above expression and
simplify by multiplying throughout by (x - %— - n) Jn, we obtain:

K
Py =q+28; -0+ PP - (x-F - n)P +(x+-21-)Pn=(x—«fr)(X—%--n)n—£-}-l,
or
- - 4 - = 9 -4 =
61) @+1H® . -P )-&+HPE@ -P ) {n o S Z}Kn (=1,2,-+")

P():l, P1=q+2x .

By a similar, though more complicated manipulation of the series in (56)-(58), we may ex-
press (60) in geries form, yielding another recursion for the Pn's. The development is
omitted here, since it is somewhat lengthy. The interested reader may, with a little elbow

grease, verify that the following form of the recursion is first obtained:

2 4 4 -q-n?-
"(n+1)2P . x(p + 2) +q +n +EnP+xn q-n znP
n+1 n n-1

D -L- n
X=-3z-n x-%1-n

-'—'—“-"*—'—"‘q h n2 =1 = = see
‘ + T Pn_z =0 H (n - 2, 33 4:, ) ’

with , \

Py = q + 2%, P, =1, Py, = (.2q - 1) + xq .
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By multiplying the latter expression throughout by n(x - ;- - n), simplifying the result, and
shifting the terms around, as the reader may verify, the following form of the recursion is
obtained:

-nm + DAP L - P g) +tolg oo + NP - P o)

*(4q -n + D)@, -P ) +{nw+D@ -P ) -@+n0-D)P, ; -P o )}x
=0

(for n =2, 3, --+); with Py =1, P; = q+2x, Py (-'ZLq - 1?4+ xq.
We may further simplify (61) and (62), if we introduce another symbol:

(63) V =P -P )
which also yields:

By substituting the appropriate expressions in (61) and (62), we obtain:

(64) (0 + DV, - K ) = - -0V, +K)

(making use of the relation

q -
=3 +TKn = (n + 1)Kn+1 - nKn s
a variant of (47)), and

. -n@ o+ DAV + V) +nlg +n@ o+ )V L+ V) + (Ja -0l + IV

+n(n+2)an— (g + nn - 1))an_1 = 9,

Rearranging the terms in (64), we obtain an expression for an :

= 1 -
(66) xV = xK + 0+ DOV +K)+@+ DV, -K,)

If we substitute the expression in (66) and the corresponding expression with the subscript
reduced by unity in (65), again use (47) in variant form, and simplify, (65) is transformed to

the following form:

q = -
(67) (n + 1)Vn+1 + ZnVn +(H+n - 1)Vn_1 (n + 1)(Kn+1 Kn) +2XKI‘1 .

The reader may verify the simplification to the above form, using the indicated proce-
dure. If we now replace the Vn's in (67) by the corresponding Pn's, in accordance with

(63), we readily obtain the following recursion involving the Pn's:

q a
(n + 1)Pn+1+ n - 1)Pn + (H -1n - l)Pn__1 - <n +n - 1) Pn_2

(68) =@+ DK, - K)+2xK .
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If we replace x by -x in (68), observing that q and the K 's are even functions of x, we
obtain the ""conjugate' of (68):

— P 5 -q-.- _ —_— _ g' _ —
n + l)Pn+1 + (n - 1)Pn + (n n l)Pn_1 (n +n 1) Pn_2

= +DEK ., -K)-2xK .

(69)

If we add (68) and (69) and divide by 2, we obtain the following recursion involving —; (Pn+ ?n),
the terms involving x cancelling:

1 b2 (n-1)4 P d_n-1)4 b=
+1)3®@ , +P )+ l)Z(Pn+Pn)+(n n 1)2(Pn—1+Pn—1)

(70)
—(% *tan- 1)%(Pn-2 * T;n—2) = (n+1)(Kn+1 - Kn)

Comparing (52) with (70), we see that —;(Pn + T”n) satisfies the same recursion as Qn' We
need to demonstrate only that Qn = -; (Pn + fn) for n = 0, 1, and 2, to complete the proof
of (55), i.e., (9). We have already demonstrated that

Pp =1, Py =gq+2x, Pp=(iq-1%+qgx.

Therefore,

-;(Po'*‘?o):l; —;(P1+T51) '%(Q"'ZX"'CI-ZX):Q; %(Pz"'ﬁz)

I

3{Ga - D +ax + (Ja- D¥-ax}=(§q-1°

1 {(a g q ax q .

We may verify that : z
Cp=1, € =4+x, ©Cp=4x2+78=1-14q,

from (5), substitufing x - 4 for x. Then
Q=1 Q=W+ -%=q Q=0-4d?.

This completes the proof of (9).

The limits of convergence of the power series in this paper have been ignored, since we
have treated these series as formal generating functions of the coefficients under investigation.

It was initially remarked that this study was originally motivated by a desire to find an
expression for A;(x) in single-summation form, and that this effort was unsuccessful. How-
ever, certain results were obtained which suggest areas of investigation for the interested
reader. A recursion for the Afl(x)'s may be derived in the following manner. We begin by
introducing a new definition:

(71) T, = Afl (x) - Afl

_1(x) .

[ x
AR -A & —<n) s

By using the property

and recursion (38), we may obtain an alternate expression for Tn:
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T, ={A,@ -A 0HA ®+A ],

or
X
(72) Tn = <n)An(X + 1)
Therefore,
n n n
IEEDY (TR B 3 (3 IR
k=1 =1 =1
which yields:
n
(73) AR = Z(§>Ak(x +
k=0

Of course, there is the more obvious identity:

n
(74) Alx) = An<x>2(§) ,
k=0

which is simply (5) multiplied by An(x).
Neither (73) nor (74), however, are single-summation expressions, since they involve
the coefficient Ak(x) (or An(x) ), which is itself a single-summation expression.

The recursion for the Afl(x)'s is obtained by substituting

X
n
for An(x +1) in:

@+ DA x+1)-&+2AK+D+E+1-nDA &+1) =0,

which is simply (10) with x + 1 replacing x. By eliminating the combinatorial terms, we
first obtain a second-order recursion involving the Tn's:

(75) n(n + 1T

- nx + 2)(x - n)T‘n +(x -n)x+1- n)Tn__1 = 0.
By substituting the expression in (71) for the Tn's in (75), we are led to the required
recursion:
272 2 2 2
nn + 1) An+1(x) + {n(x -n) - (x+1) }{nAn(X) - (x - n)An_l(X)}

(76)
- x-nx+1- n)zAil_z(x) =0

It should be observed that if the substitution x = --% is made in (76), and the substitu-

tion x = 0 is made in (52), the same recursion results in either case, namely:
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272 2 41 1 2 1) A2 1)(n - L)2A2 =
(77) n(n + 1) An+1—(n +2—n+I)(nAn+(n+z-)An_1)+(n+2)(n Z)An_:2 0.
(It is not immediately obvious that (52) reduces to (77) for x = 0, but if we observe

that, in such case, Q = Afl and q = 11, we may use known relations to show that

(n + 1)(Kn+1 - Kn)
may be expressed in the form:

1 2 2
s (&’ + 14n +6)Q ;- én +3)Q - (80 + 10n +3)Q .}

Substituting this expression in (52), we obtain a form free of terms involving Kn's which
reduces to (77).)
In passing, we leave the reader with one possible form of expression for A121(X)’ which

is suggested below by indicating the first few terms:

_[2n x x nd +2n% +3n -4 x
(78) Aﬁ(")”(n){(2n)+‘§(’1+2><2n-1)+( S0 - 4 )<2n—2)+ }

1t is not difficult to prove (78) by induction, as far as it goes, but the subsequent terms
become increasingly obscure, as the difficulty in obtaining them also increases. The writer
failed to see any pattern in the terms of (78), but that is not to say that one does not exist.

The writer gratefully acknowledges the impetus provided by Professor Gould for this
paper, and his invaluable aid in pointing out the known results.
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A PROCEDURE FOR THE ENUMERATION OF 4 x n LATIN RECTANGLES

F.W. LIGHT, JR.
326 E. Ewing St., Bel Air, Maryland 21014

Let MII; denote the number of normalized (first row in natural order) r X n. Latin rec-
tangles, M:l = 1 for all n. The M?l are the rencontre numbers {1]. Several methods are
available for computing the M‘I”1 [1, 2, 3]. In this report, a procedure is presented that is

effective in finding Mrf for r < 4.

CALCULATION OF M?l AND GENERAL FORMULA FOR Mz

Consider the diagram (Fig. 1, drawn, as are all the diagrams, for n = 5) consisting

of an nxn square, made up of n?

cells arranged in n rows and n columns. Label each
cell with the numerical indices giving its position in the square, writing them as a one-column
matrix with the row index at the top, and mark those cells whose 2 indices are different.
Call the marked cells good, the others bad. (For any r, the cells called good will be those
with all indices different.) Now "expand'" the diagram into "terms" by taking one cell from
each row and each column, keeping the row indices in natural order. Each term then cor-
responds uniquely to a 2X n rectangular array whose first row is in natural order; a term
made up entirely of good cells corresponds to a normalized Latin rectangle. MIZ1 is the num-
ber of such '"all-good" terms in the expansion. Using the principle of inclusion and exclusion,
one can read off Mfl from the diagram at sight (cf [4]). The expression so obtained is form—
ula (1), below, with A%,n = n(k), where n®) = n(n - D -2) - @-k+1).

For r > 2, one canprepare an analogous diagram of an r-dimensional hypercube (e. g. ,
Figs. 2 and 4), referred to in this report as the nT-cube, and obtain the formula, valid for all
r > 0.

n Ak
r k “r,n 7 -1
(1) MI1 = E (-1) = [(a - k)] .
k=0

Here Ai n denotes the number of k-tuples in the expansion of the nT-cube. (The word k-
El

tuple, in this report, will always mean an ordered set of k bad cells, no two of which are

from the same dimensional level.) A‘;‘ n= 1 forall r and all n, by definition.

CALCULATION OF M%

The diagram is shown in Fig. 2. The layers are numbered from left to right and the
indices are written in the order: layer, row, column. (Column matrices of indices will be
written in the form (a,b,c)! for typographical convenience.) There are two types of bad
cells: at-cells, having all 3 indices alike, and B'-cells, having exactly 2 indices alike. The

241
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of -4
o
‘5[
layer
Fig. 1 52-Cube. Fig. 2 5°-Cube (which is also the 5% - a'-Cube). (Good cells
(Good cells outlined outlined and cross-hatched.)

and cross-hatched)

Fig. 3 5% - B'-Cube After (2,1,1)'. (Good cells outlined and cross-hatched.)

bar
oc
Y
stripe 3 stripe
S
. Y )
b

Fig. 4 5%Cube (which is also the 5% - @-Cube. (Good cells outlined and cross-hatched.)
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Table 1

Formulas for the wﬁ

243

(Formulas are valid for k > 0 and for n as indicated. See text for k = 0. Except

for a}, all wﬁ are 0 for k > 0 and for values of n >0 not covered by the formulas

ozlé _ n{aﬁ_l + - 1)[43 3yﬁj + 6 - 2)8{1::}]} (@

1
(o 1

Bi = aﬁ - 3kn - 1)(n - Z)Sij @
YE = BE - ki - D@ - 2EnET- s50]) o

o5 = 65 - ki - 2 20871 + MK - 8D

+ @ - k] + 2gk-l en_1>] @

m+ ¥ ei =(@-k+ 1)4%1;1 - k:i ®
k _ .k -1 k-1
Cn =y - k(n - 1)[23n_1 + (n - 2)§n_1] (n
= RUREIT. = SR 1 B
K <o o - ad st
Je-1 k-1, pk-1
TVpor T - AT +§n'1)]} o
k _ sk o f k-1 B N S
Ay = by 2T - z)[ SlagleaT]
+ @ - 3)#%:%]} (n
e = € - zk{Z(OEZ AR + @ - 3)[3"11? P 2%,7)
+@ - 4)7r§ ﬂ} l
k _ .k k-1 k-1
v, = B, - 3k - 2)[26n_1 + (- 3)“11-1] o
- {ot + @ - 0l + o+ 1K)
+ 3@ - Z)ME + Vﬁ]} @

a¥k = - ks 04, - 5] - oo - D355+ @ - (el + b o

=

v

v

v

v

v

v

v

v

v

v

v

I\

.)

2)

1)

1)

1)

2)

3)

1

2)

2)

2)

3)

2)

3)

4)
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good cells (not needed in the calculations when r = 3) are €'-cells. The numbers of each
cell-type in any layer are easily ascertained.

Letting ! stand for either of o', 8, denote as an n3 -u'-cube the cube that is ob-
tained when all cells in the layer, row and column occupied by a chosen w'-cell of the
(n + 1)3-cube are removedand the remaining parts of the diagram are allowed to collapse up-

on themselves (i.e., "ranks are closed'), the good orbad nature of each cell being preserved.

Let w'ﬁ denote the number of k-tuples in an n® - w'-cube. Itisapparent that the nd - a'-cube
is identical with the n3-cube and that, for k > 1,

ko k _ k-1 k-1
(2) A = a'n = noz'n__:L + 3n(m - 1)[3’n

3,n
(3)

(oz'%l =nd-n and B':l = a’i} - 2(n - 1), bydirect count in the diagram.)

To find B'E , we can clearly use any S'-cell in the (n + 1)%-cube. Choosing (2,1,1)*,
we get the n3 - p'-cube of Fig., 3. It differs from the n® - a'-cube only in the first layer, all
the differing cells being f'-cells in the n3 - o'-cubes. Accordingly,

3) B = ot - 2k - ]
The factor k in the second term on the right enters because of the way in which "k-tuple"
has been defined.
All Al;,n can now be calculated, for any given n; when they are substituted in (1),
M! is obtained.
CALCULATION OF M%

The diagram for the nt-cube is shown in Fig. 4. The dimensional levels are to be
written in the order: stripe, bar, row, column; the intersection of stripes a and b is called
the field [a,b]. The procedure is analogous to that used above for the case r = 3. There
are now, besides the good or ¢-cells, four kinds of bad cells: a~cellg, with all indices alike;
B-cells, with exactly three indices alike; y-cells, with two distinct pairs of like indices, and
6-cells, with exactly two indices alike.

The numbers of cells of each type are again easily found, and we have at once the form-
ula for Ali,n = ozlli given in Table 1. BE is obtained from the n*-B-cube resulting from
choosing (2,1,1,1)!' in the (n + 1)4-cube (second formula in Table 1), just as B'E was ob-
tained in the case r = 3. Yxli and SE are not so immediate, but can be found by the method
outlined below.

We first analyze the n% - f-cube much as we did the n? - a-cube. That is to say, we
study the types and topographical distributions of the second members of those pairs of cells
of the (n + 1)%-cube whose first member is a selected B-cell. The S-cell chosen in the
(n + 1)*-cube to obtain the results shown in Fig, 5is (2,1,1,1)'. It is useful to observe that,
in a pair of columns of indices, the two numbers in a row maybe interchanged without affect-
ing the properties in which we are interested. There prove to be 13 different cell-types, in-
cluding the five already observed. They are designated by Greek letters, as shown in Fig. 5.

(The cells in the first stripe all retain the same designations they had in the n? - a—cube;
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ﬁébﬁoyoyfgﬁéﬁyﬁA %7 | 6 ALy 18 PUPUA
112181912 1p 157 71 [ 817 A el 2]y [fel A ] 8] 7] o] 22
Dyﬂ)\ﬂ#é‘yz\up—)\AV§$/M§$ RS
olgﬂ)\/z.ﬁ?/“l\ APEE WA /’*4525
?705106\937 /“’/\l'/‘bfffglﬂ-#ﬂggv/\)\%%?’/
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7L 2y
:)? :9* /Lf
R o
) drs)

Fig. 5 5%- p-Cube after (2,1,1,1)'. (Good cells outlined and cross-hatched.)
x indicates new good cell; o indicates where good cell is to be inserted to get

yl; . * indicates where good cell is to be inserted to get 815{ (see text).

each of the lower stripes has the same numbers of cells of types B, {, *--,7 as thesécond
stripe, but distributed differently. )

Now, to find -yl;, note that the n* -7y -cube that results from choosing (2,2,1,1)' can
be obtained from the n% - B-cube (Fig. 5) by removing all the good cells from the field [1,1]
and inserting good cells at those places in the first bar indicatedwith o inthediagram. This
leads to the third formula in Table 1.

To get SE, choose (2, n+1, 11)' and, in the resulting n?-8§-cube jump the first
bar over all the others, so that it becomes the nth bar (this will not affect the expansion of
the cube). This adjusted n? -§ -cube may be obtained from the n? - g-cube of Fig. 5 by re-
moving all the good cells in [1,n] and inserting good cells at the places in the ot par in-
dicated with *. Thus the fourth formula of Table 1 is obtained.
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GE is found by considering all (rather than only the bad) cells of the nt-cube, and pro-
ceeding as in the derivation of arg .

Formulas for gi, e, 71-% remain to be derived, in order to make the results for yﬁ
and 5}; effective. All but ¢ g and 'n-g may be found in the following way, )\% being used as

example. Choose an appropriate A-cell, such as (2,1,3,3)" in the (n + 1)¢ - f-cube, noting
that the chosen cell is a §-cell in the (n + 1)* - a-cube. Now adjust 8% by correcting for the
"new' good cells, marked x in Fig. 5 (i.e., cells that are good in the S-cube but bad in the
a~cube). The cell pairs that must be examined in this process all prove to be reducible to
pairs of the kinds already introduced. There results, finally, the formula for ,\.ﬁ inTable 1.
All the rest of the formulas of Table 1 except the last two are derived in the same way.

If the choice of the A-cell had been inappropriate (e.g., (2,2,3,3)!), the procedure
would have met an impasse and have failed. This happens for all choices of £-cells and 7
cells, ‘fﬁ can be found, however, by equating the result already known for ﬁﬁﬁ with that
obtained by expanding the (n + 1) - S-cube in terms of the aﬁ, cee, §§, sy 55, n'rl}. The
latter expansion is analogous to that used to find oz%, above. 7 E is found by using all, rather
than only the bad, cells in the diagram, by analogy with the derivation of € % There result
the last two formulas of Table 1.

As an initial set of values for the recurrences of Table 1, one can use the w?l, whose
0 ijs 0 and all others are 1; for

3
n=2, €,ud ‘fg and 7§ are 0 and all others are 1; for n =1, o, 610. 7(1’ and &) are

values are: for n >3, all wg are 1; for n =3, =

1 and all the rest are 0. The w} can be chécked by direct count in the appropriate diagram.
For any given n > 0, all the AIZ , Can now be calculated, and M‘ll1 can be found by

H
substituting them in (1), Some enumerations of 4 X n Latin rectangles obtained by the method

here presented are:

M = 24
M = 1,344
M} = 393,120
M} = 155,185, 920
M3 = 143,432,634,240 .
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SOME SIMPLE SIEVES

R. G. BUSCHMAN
University of Wyoming, Laramie, Wyoming

1. INTRODUCTION

An ancient process for generating the sequence of prime numbers is known by the name
‘of The Sieve of Eratosthenes. This method is presented in many textbooks and is rather
widely known. However, it seems to be less widely known that, with some modifications,
other interesting sequences can be generated by essentially a sieve process. In particular,
we can obtain the sequence of values for some of the common arithmetic functions. First we
shall discuss this Sieve of Eratosthenes and some of its modifications, then we will proceed

to some ''sieves' for generating other sequences.

2. THE SIEVE OF ERATOSTHENES AND MODIFICATIONS

We recall that in order to obtain the sequence of primes by this method, the sequence
of integers greater than 1 isfirst written down. Starting with 2 we thenput a slash through
each second number beyond 2 in this sequence. This leaves 3 as the first number beyond
2 which is not crossed out, so that we then put a slash through every third number beyond 3.
(Note that, for example, 6 now has been crossed out twice.) Since 5 is the first number
beyond 3 which is not yet crossed out, we next put a slash through each fifth number beyond
5, and continue in a similar manner. Those numbers remaining (not crossed out) are primes.

In order to place this process in a setting which is more suitable for generalization, we
will now modify the process in order to generate the sequence of values of what we shall call

the characteristic function for prime numbers, denoted by X This function has the values

p*
Xp(n) =1 if n is a prime; Xp(n) = 0 otherwise. InTable 1 the construction of the succes-
sive sequences is illustrated. This table is headed by the sequence of natural numbers in

natural order which will thus indicate the position numbers for the elements of the sequences.

Table 1
Successive Sequences for Xp(n), N = 33

1 2 3
123456 7890123456789012345¢6789¢0123

A(O) 0 11111111111111111111111

1=
[
[
=
(==Y
[
[
[
=

A(l) 011010101010101010101010101010101

A@ | 0110

=
()
[
o
o
[en]
[
(]
[
[

0010100010100010100

A(3) 011010100010100010100010000010100

247
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The entries in Table 1 are prepared as follows. For the initial sequence, A(O) , Wwe
enter 0 in the first position and 1 otherwise for this first row of the table and for n = N.
The case N = 33 is illustrated. In order to begin the process of sieving, we locate the
position of the first non-zero element and denote this position by a; (=2) and then convert
the entries in positions may, m = 2, 3, 4, --- (every second entry beyond 2) from 1 io
0. The resulting sequence is denoted by A(l). The position number of the first non-zero
entry beyond position a; in A(l) is denoted by a, (=3) and every entry in position ma,,
m = 2, 3, 4, --+ (every third entry beyond 3) is converted from 1 to 0, if the entryis
not already 0, in order to produce the sequence A(Z) . In general, in the sequence A(k—l)
we locate the position of the first non-zero entry beyond position 2
tion by 2 Then every entry in position ma,, m = 2, 3, 4, -+ (every ak-th entry be-

and denote its posi-

yond ak) is converted from 1 to 0, if itis not already 0. This produces the sequence
(k)
A,

It is worth noting that, of course, the process can be terminated at A(k_l) if a >

NN and the sequence Al-D)

coincides with the sequence Xp for n £ N; that is, 2 = P
The reason that this termination is possible is that the smallest number which 2 actually
sieves out is af{, since akaj for a]. < 2 has been sieved out at an earlier step.

In this construction the actual sieving out of the number n is indicated by the conver-
sion of an entry 1 to an entry 0 in position n of the sequence. If a 0 has already appeared,
this indicates that the number had been sieved out at a previous step; that is, the number
actually possessed a smaller prime factor than the number currently being used as the siev-
ing number. The entire process involves (1) the location of a non-zero element, (2) a count-
ing process, and (3) a change of entry. We note that no divisibility checks are used. One
further comment. This process does not involve using any of the sequences A(m) for m <
k - 1, but only the sequence A(k"l) to produce A(k). As a result, those preceding sequences
need not be saved. Even though the original process is ancient, in this form it is quite adapt-
able for digital computers.

For some purposes a simpler sieve which yields slightly different information is of

value; this is illustrated in Table 2.

Table 2
First Modification, N = 33

1 2 3
1234567890123456789012345¢6 7890123

A(O) 1 111111111111111111111111

=
-
[y
o=t
=
=
=
=t

A(l) 101010101010101010101010101010101

A(Z) 100010100010100010100010100010100

A(3) 100000100010100010100010000010100

The change of the results is indicated by the appearance of 1 in position 1 and in the

appearance of 0 in position Py for primes P < JN. Hence the result is the sequence of
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values of the characteristic function for the set which contains 1 and those primes satisfy-
ing the inequality NN < Py < N. The process is simpler in the sense that for the general
step we sieve out the numbers ma, for m =1, 2, 3, 4, ---; thatis, each ak—th number,
counting from the beginning. Here the process must be stopped at the sequence A(k'l) if
ay > NT.

These first two processes have the disadvantage in that multiple sieving of elements
occurs whenever the position number is composite. The following method will eliminate this
problem for the modified sieve, although it is a much more complicated procedure.

Consider the sequence A(O) where a = 1 for all k. Since the first 1 beyond posi-
tion 1 which appears is in position a; (= 2) we sieve each second element by subtracting 1
from the entries in position ma , m = 1, 2, 3, 4, ---, then we rename the resulting se-

@

quence A Next, the first 1 which appears beyond position 1 in A(l) is in position ay

(= 3) and we use the sequence A(l) itself to generate the sequence of elements which are to

& to produce A(Z). Subtract the entry in position m of A(l) from the

be sieved out of A
entry in position ma; for m =1, 2, 3, 4, --- provided may; = N. We note that if 2 di-
vides m, then m = 2m' and in position may; = 2m'a; the entryis 0 so that we subtract
0 from 0. (This replaces the operation of leaving 0 as 0.) In general, we locate the first

non-zero entry beyond position 1 in A(k_l)

and denote this position by s then we sub-
tract the entry in position m of A(k_l) from the entry in position ma, for m =1, 2, 3,
-1 "¢ 2 > NN and the

final result of this second modification is the same as that of the first modification. The de-

4, ++» with ma, < N. The process is stopped at the sequence A

tails are illustrated successively in Table 3.

Table 3
Second Modification, N = 33

1 2 3
123456789012345617890123456 7890123

A(O) 1111111111111111111111111111111

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

A(l) 010101010101010101010101010101

-0 -1 -0 -1 -0 -1 -0 -1 -0 -1

A(Z) 1000 0100010100010100010100010100
-0 -0 -0 -1 -0

A(3) 100000100010100010100010000010100

A useful way of thinking of the process is that A(k' 1) is expanded by the factor a and
subtracted from itself.

Another method closely related to this second modification and which eliminates mul-
tiple sieving is discussed by G. S. Arzumanjan [1]. A geometric construction for the second

modification is given in [3].
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Although these two modifications are not perhaps very important for the problem of
generating primes, they have been presented in detail because of their similarity to sieves

for other sequences which will be discussed in the next section.

3. SEQUENCES OF VALUES OF CERTAIN ARITHMETIC FUNCTIONS

The sequences which are to be discussed in this section are computed without advance
knowledge of a table of primes; that is, the generation of the sequence of primes is contained

internally in the process, as needed.
The first function which we will consider is the number of distinct prime factors of n

which we denoteby w(n). We generate the sequence of values of the function w by a slight al-
teration of that first modification for the generation of X which was discussed in Sec. 1. In
the case of primes we can think of the composites as falling through the sieve and being discard-
ed; this present alteration can be thought of as collecting those things which fall through our
sieve inlittle boxes. In order to indicate how this process goes, let B(O) be the sequence with
) (0). The first 0
is in position p; (= 3). We next add 1 to each en-

0 in each position. To produce B we add 1 to each second entry of B

(1)

which appears beyond position 1 of B
® in position mp,, m =1, 2, 3, 4, :-- to produce B(z). Continuing in this man-
ner we can state the general step of this iterative process. Locate thefirst 0 which appears
(k-1) (k-1)
in position mp,, m = 1, 2, 3, 4, -+ for mp, < N. This will produce the sequence B(k).
(k-1)

try in B

beyond position 1 in B , this will be inposition Py Next add 1 to each entry in B

The process can be stopped at sequence B if Zpk > N, since thereafter only one entry,

the entry in position Pys will be altered. The remaining entries which are 0 andarebeyond
position 1 now indicate primes satisfying N/2 < p <N, if N2> 4, and hence the process can

be completed by convertingthe 0 entriesto 1 inthese positions N/2 < n < N of B(k_l). The

sequence B(k) coincides with the sequence for w for n < N. The results for N = 33 are

given in Table 4.
Table 4
Sequences for w(n), N = 33

1 2 3
123456789 0123456178901234561789012
B9 ] 000000000000000000000000000000O00
i 1+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1

B(l) 0101010101101 010101010101010101010

T 1 1 1 1 1 1 1 1 1 1
5@ 01110201110201110201110201110201

T 1 1 1 1 1
B(3) 011112011202012102021102111103011
1

p¥ 0111121112020221020 2 102111203011

T 1 1

3(5) 01111211121202210202220211120301 2

T 1

3(6) 011112111212122102022202121203012

T Stop

) 0 1111211121212 2112122212 121213112
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Since we are adding 1 to the entry at position n = mp, at the kth step, we count the
factor Py of n exactly once. Hence we have generated the sequence of values for the func-
tion w; that is, w(n) appears in position n. :

It now becomes an analogous exercise to obtain a sieve process for computing the se-
quence of values 7(n), the number of divisors of n. Similarly, the sequence of values
o(n), the sum of the divisors of n, can then be computed.

If we next attempt to compute the values $i(n), the total number of prime factors of n,
the procedure seems to become more complicated. However, one way to proceed is as fol-

lows, starting with the sequence C(O) for which all entries are 0. In order to construct

C(l) we want to first add 1 to every second entry to count the factor 2!, then further add

1 to every fourth entry to count the factor 2%, etc., until Zk > N. This subprocess for

counting the factors 2 reminds one of the second modification in Sec. 1, if we consider that

the first subsequence C§1) to be added to C(O) is constructed by entering in position 2m,

m=1, 2, 3, 4, -+, the value 1, then the second subsequence, Cgl) which is to be added

(1)

to C(O) is constructed by entering in position 2m the value from position m of C;’, etc.

The value 0 is entered otherwise in the subsequences. C(l)

successively cﬁl), Cgl), cee to C(O).

is then constructed by adding
From this discussion we can see that if 2% divides
n, then an addition of 1 is carried out in position n for k =1, 2, -+-, a' thus the pro—

cess counts the number of prime factors 2 of n. The steps are illustrated in Table 5.

Table 5
Sequences for Q(n), N = 33
1 2 3
123456789012345678901234567890123
¢ | 000000000000000000000000000000O0 00O
i i1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
iy 1 1 1 1 1 1 1
T 1 1 1
! 1
1
¢ 010201030102010401020103010201050
T 1 1 1 1 1 1 1 1 1 1
1 1 1
1
c® | 011202032103011403021104013202051
1 1 1 1 1 1
1
c®l 011212032203012403031104213203°005°1
T 1 i 1
c® | 011212132203022403032104213303051
T 1 1
c® 011212132213022403032204213303075 2
1 1
c® | 01121213221312240303220422330305 2
T Stop
Q 011212132213122413132214223313152
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To form C(Z) from C(l)
tion p; (=3), and repeat the subprocess, but now using py; that is,

with 1 inposition mpy,, m =1, 2, 3, 4, <++; C2

()

we locate the first 0 beyond position 1, which is at posi-

ng) is the sequence

is the sequence with 1 in position
is formed by the addition of ng), ng),
(

could also be constructed from 012) by entering in position mpy the entry

mpd, m =1, 2, 3, 4, ---; etc. Then C
to ¢, @

from position m of C§2) and 0 otherwise.

(k-1) and

The general step is somewhat complicated in its description. Consider C
locate the first 0 entry beyond position 1; this will be in position Py by analogy to the
sieve for primes. To begin the subprocess, we form C§k) by entering 1 in position mp,
m=1, 2, 3, 4, -+, until mp, > N. The subsequence C;k) is formed from the subse-
quence CJQ_{) by entering in position. mp , m=1, 2, 3, *-+, the entry from position m
of C](lf)l and 0 otherwise until mpf{ > N. The sequences C}k) are successively added to
ck-1) o produce c, (It is merely for display purposes that the subsequences are form-
ed separately and then added, the addition process, of course, can be carried out as one
progresses.) The process can be stopped at the same point in the computation as for the
values of w and the remaining 0 entries converted to 1, using the same reasoning. It is
not difficult to see that we actually have obtained the values Q(n).

A slight modification of the entries leads to the sequence A(n) = (—I)Q(n) , another
function of interest in the theory of numbers. After the methods outlined above, this be-

comes an exercise.

4. THE NUMBER OF REPRESENTATIONS OF A NUMBER
AS A PRODUCT OF NUMBERS CONTAINED IN A GIVEN SET
We shall next consider the following problem. Given a subsequence S of natural num-
bers 1 < a; < ay < -+, either finite or infinite, we wish to compute the number of distinct
representations of a number n as the product of elements of the set S; that is, we wish to

compute the number of distinct (except for order) representations of n in the form

n = 3‘101 alioz aik ,
where the a's belong to S and the b's are positive integers. We assume that the set S
has been generated separately and we let R(n) denote the number of such representations of
n. The sequence of values of R is to be generated by a modified sieve method.

The actual process is somewhat analogous to the procedure of Sec. 3 for computing
the sequence Q. We let R(O) denote the sequence with 1 in position 1 and 0 otherwise.

(1)

In order to obtain the sequence R

oY)

we bring down 1 into position 1 and then add the

(0)

entry from position 1 of R and enter the sum in

(1)

position a; of R, then the entry from position 2 of R
(0)

to the entry at position 1la; of R
& is added to the entry of posi-
and the sum is entered in position 2ay; of R(l), etc., but otherwise the

(1) (O). This set of sub-
(1)

processes is stopped when ma, > N. To continue, the entry from position 1 of R is

fion 2a; of R

entry at position k of R is taken as the entry at position k of R
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(2) (1)

entered in position 1 of R and the entry from position 1 of R is added to the entry

from position la, of R(l) and the sum is entered in position ay of R(z) and successively

in order for m =1, 2, 3, -+, the entry at position m of Rr(®) is added to the entry at

(1) (2)

position ma, of R

and the sum entered in position ma, of R
(@)
R™.

)

to produce the sequence

to R(z), addition only takes place at the
(k-1)
H

(The other entries are carried from R

positions ma,.) For the general iterative step, in order to obtain R(k) from R
(k) (k-1)

we

add the entry from position m of R and enter

to the entry from position ma of R
the sum in position may of R(k), running successively through m =1, 2, 3, -+ and
(k-1) if 2 > N. In Table 6 we have
chosen S = {2, 3, 4, 5, 12, 30, 72} and we indicate the steps of the computation. Note

the iterative process which occurs within the computation for each sequence.

stopping if ma, > N. The process terminates at R

Table 6
R@m) for S ={2, 3, 4, 5, 12, 30, 72}, N = 33

1 2 3
123456 7890123456789012345617890123

(0)

R 100000000000O0OO0O0OCO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OOOCO0OO
R ) 110100010000000100000000000000O0O10
R @ 111101011001000101000001001000010

R(3) 11120102100200030100000200100003P90

4) 111211021102001301020002101001036P0

®) 11121102110300130102000310100103090

R 111211021103001301020003101002¢03290

(k-1) (k)

to R

ing equations which are to be applied successively for n = 1, 2, 3, --- in that order.

The iterative procedure from R can be expressed in terms of the follow-

rREw = R V), i n £ ma,_,

rR9w = R® V) + 8% @), if n = ma, .

For example we have, since ay = 5,

r% @20 = R® @) + 8% =0+2 = 2,

rW @1y = R® @y = o .

Special cases of interest are obtained if 2 = P then, of course, R(@) = 1 since
the representation is unique; if a = k, then R(n) denotes the number of factorizations of
n into integers; if a = k%, then R(n) denotes the number of factorizations of n into per-

fect squares; and if . = pf{, then R(n) is the characteristic function for squares.



254 SOME SIMPLE SIEVES Oct. 1973
5. SOME FURTHER DIRECTIONS

The sequence of lucky numbers has been generated by a sieve technique and some of
the properties of this sequence have been ovtained [4, 6]. The question concerningthe num-
ber of distinct representations of n as a produce of lucky numbers can be approached by
means of Sec. 4. A mixed technique of alternately sieving and summing which will generate
the sequence of kth powers is due to Moessner [ 8]; this is discussed and further references
are given in a recent paper by C. T. Long [7]. Beginning with V. Brun [2] techniques in-
volving double sieving and other modifications have been used to study the twin prime prob-
lem, the Goldbach conjecture, and other problems. An interesting article by David Hawkins

[ 5] on the sieve of Eratosthenes, random sieves, and other matters is well worth consulting.
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TOPOLOGICAL INDEX AND FIBONACCI NUMBERS
WITH RELATION TO CHEMISTRY

HARUO HOSOYA
Department of Chemistry, Ochanomizu University, Bunkyo-Ku, Tokyo 112, Japan

INTRODUCTION

This paper deals with the discussion on the graphical aspects of the Fibonacci numbers
through the topological index [1] which has been defined by the present author for non-
directed graphs. !

A graph G consists of points (vertices or atoms) and lines (edges or bounds) [2, 3].
We are concerned with such connected non-directed graphs that have no loop (a line joining
to itself) and no multiple lines (double or triple bonds). An adjacency matrix A for graph

G with N points is a square matrix for the order N with elements

_ § 1 if the points i and j are neighbors,
(1) a., = !
ij 0 otherwise
The matrix character is independent of the way of the numbering of the points. A character-

istic polynomial or a secular polynomial P(X) is defined as?

N
@) P(X) = det|a + XE| = 3 X',
i=0

where E is a unit matrix of the order N and X is a scalar variable.
Consider a series of path progressions { SN}, for which P(X) can be expressed as
(see [4])

m
@ PX) = 3 (-1)k<N l;k> xR
k=0

where N is the number of points and m is [N/2]. Examples are shown in Table 1 on the

following page.

10riginally this idea came out quite independently from other works especially published in
mathematical journals. However, thanks to the communications from the colleagues in this
field, several important papers were found to be relevant to this problem, In this paper the
relevant papers will be cited as many as possible.

2Alternative definition N
(2" P(X) = (1) det |A - XE |

can be chosen, which, however, makes no difference in the following discussion.
255
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Table 1
m
N -k
N G(sy) ( . ) = p(G,k) D p(G,k)
k=0
k=10 1 2 3 4 _ ., _
=7 = f
1 ® 1 1
2 — 1 1 2
 J— 1 2 3
4 —— 1.3 5
5o — — 1 4 3 8
6 @ ————— 1 5 13
7T @ ———— 1 6 10 4 21
§ @——_——— .- —— 1 7 15 10 1 34

On the other hand, from the combinatorial theory we know the following relation under

the name of Lucas (see [5, 6]).

(4) fN=>:<N1_<k)’

k=0
where fN is the Nth Fibonacci number, which is defined as

fo = fl = 1,*
(5)
f. =1¢ + £ N = 2,3, +-°)

The sums of the absolute values of the coefficients of the characteristic polynomial for the
graph {SN} form the Fibonacci series. This is not new. Turn Table 1 counter-clockwise
by 45 degrees, and we get the Pascal's triangle or the pyramid of binomial coefficients,
from which the Fibonacci numbers can be obtained by adding the coefficients diagonally (just
the reverse of the above procedure!). (See [7].)

Let us consider the physical meaning of the combination ( N ;{ k ) . Consider a group
of N - k points which are linearly arranged as in Fig. la. Choose an arbitrary set of k
points (black circles), place k additional points (crosses) one-by-one below them, and join
all the N points together by drawing consecutive N - 1 lines as in Fig. 1b to get a pathpro-
gression with N points, or N - 1 lines. This means that the value ( N L_{ k is the number

of ways in which k disconnected lines (vertical lines in Fig. 1b) are chosen from graph SN

¥Alternative definition can be used as f; = Iy = 1.
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N-k points
) ° (a)
o [+ ® ® o o ®
N points

o0——0

A

Fig. 1 Physical Meaning of (N a k)

k

TOPOLOGICAL INDEX [1]

Encouraged by the simple relation above, let us develop a more general theory. Define
a non-adjacent number p(G,k) for graph G as the number of ways in which k disconnected
lines are chosen from G. A Z-counting polynomial Q(Y) and a topological index Z are de-
fined respectively as

m
(®) QY = Y, p@, kY
k=0
and
m
@ z =2, 0GR =W . (ee [1].)
k=0

Note that for the series of path progressions { SN} in Table 1, the p(G,k) number is nothing

else but (N Lj: k , hamely, the absolute value of the coefficients of the XN_Zk term in <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>