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SOME GENERALIZATIONS SUGGESTED BY GOULD'S SYSTEMATIC 
TREATMENT OF CERTAIN BINOMIAL IDENTITIES 

PAULS. BR UC KM AN 
13 Webster Avenue, Highwoocf, Illinois 

In a previous art icle [ l ] , the wri ter has presented properties of certain numbers A 
defined by the generating function 

OO 

(1) f(n) = (1 - u)-'(l + uH = E A « ° • 
n=0 

In addition, Professor H. W. Gould of West Virginia University, in a recently pub-
lished paper [ 2 ] , has indicated several additional identities for the A coefficients. 

We now introduce the generalized numbers A (x) defined by the generating function 

(2) g(u,x) = (1 - u T ^ l + u)X = ] T A n (x)u n , 
n=0 

which is valid for all real or complex x; from this, the following relations are evident: 

(3) f ( u ) . = g (u , - .J ) 

(4) K = A (- \) 

(5) An(x) 
k=0 

where the combinatorial coefficients satisfy the basic relations: 

A useful special result is the identity: 

(1)=H>k(2
k

k) 
225 
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The purpose of this paper is to present some propert ies of the coefficients A (x). 
Gould [2] has demonstrated that most of the identities shown in [l] are old resul t s , citing 
numerous references to substantiate this claim. Likewise, in private communications with 
the wri ter , Gould has indicated that the coefficients A (x) have been studied extensively by 
previous mathematicians. However, Gould [2] indicated that one identity proven in [ l] ap-
peared to be new in the l i tera ture , and restated it in the following form: 

(8) A n " I L r I k)I " I n E l n - k / 2 k + 1 
I k=0 I ' k=0 X / 

Gould, who as well as being a mathematician of the highest order , is an expert in the field of 
information retr ieval , was impressed by the apparent novelty of the relation in (8), and his 
closing remarks in [2 ] stimulated a search for a suitable generalization of (8). This search 
was initiated by the wri ter in an effort to find a single-sum expression for the coefficient 
A2 (x). In this respect , he has failed. However, the wri ter did discover an unexpected gen-
eralization of (8) by empirical methods, and this is expressed in the following elegant form: 

An<x - i)An(-x. i) = | x ; ( V ) l | i : ( ~ x
k ~ ' ) | 

. (k=0 ) I k=0 x ' I 

i/x" A^/-x—1\x--2-n J-*- A A / x - i\x + 1T+ n 
(9) 

k=0 A 2" k=0 

It is easily seen that when x = 0, Eq. (9) reduces to (8). Relation (9) would appear 
to be a new combinatorial identity. 

Before we furnish a proof of (9), we will present a l is t of various identities involving 
the A (x) coefficients, each identity accompanied with a brief indication of the method used 
in i ts derivation. The purpose is to familiarize the reader with some of the known resul ts . 
The A (x)fs satisfy the following second-order recursion: 

(10) (n + l)An + 1(x) - (x + l)An(x) + (x - n J A ^ f c ) = 0 . 

Recursion (10) is easily verified from the definition of A (x) in (5). For x = - \ , it be-
comes recursion (7) in [ 1 ]. 

[n /2 ] / w \ 
(ID An(X) - (-i>» S (-Dk(j)(;\-i) ; 

k=0 

derived by expressing g(u,x) in the form (1 - u)~ ~ x ( l - u2) , and obtaining the convolute. 



1973] TREATMENT OF CERTAIN BINOMIAL IDENTITIES 227 

For x = i , (11) becomes formula (11) in [2]. 

(12) w-i-»u(i)i:^(i)Hi ' 
% / k=0 x ' 

derived by expressing g(u,x) in the form 

/i \ x ~ l /-, ^ 2u \ x (l.u) | l + r - j , 

and obtaining the convolute. For x = - | , this becomes formula (12) in [2] , which was p r e -
viously stated in variant form as formula (22) in [ l ] . NOTE: Identity (12) has been sub-
mitted to Advanced Problems Editor as a proposed problem. 

(13) A (x) = r ) , H 2J 

n (*) 
. (x) = f x \yW0k x. n 

x - k 
k=0 ' " * 

derived by obtaining the convolute of the function g(u,x) expressed in the form 

(1 + u) 

For x = - 1 , this becomes formula (13) in [2]. 

U2 A-2X-1 -t2„ ^ u2n ^(- l ) ku2 k - 2 x 

>z I t e dt = x x — 
0 n=0 " "" k=0 

e^ J L e Qt =
 ZJ-^ZSL, k i (2k-2x) 

0 n=0 l n-
(14) 

^ ( - l ) n A n ( x ) u 2 n - 2 X 

" 2^ 7~7 ; 

n=0 (2n - 2x) I * 1 n! 

(using (12) above). For x = —*s this becomes formula (11) in [ l ] , restated by Gould as 
formula (14) in [2] . 

° (0 

(k) 

(-2>n = ( j )S ^>k fj: \ « 
Relations (15) and (16) a re obtained from (12) and (13) by inversion. For x = - j , (15) and 
(16) become (15) and (16), respectively, in [2] , which Gould obtained by the same method. 

W (k) 
(17) 2 — {1 + (-1)" C ] > = V V- f Aol (x) 

(16) i-«i - \ n ,z^ ™ —^ « k w ^ ^ - ^ 
k=0 

^ { i + (-i)n(^)"1}= L 
1 X ; k=0 W * 2 k w x - 2k 
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i ( / \ - i ) L 2 J (2kn+ i ) 

1 w ; k=° ( 2 k +1) 
as) a — u - c - D - m > = > : ^ * A2k+1(x) x _x -kn_ 1 . 
Relations (17) and (18) are obtained by respectively adding and subtracting (15) and (16). 
When x = - -|, (17) is equivalent to (17) in [2]. 

u °° 
i r a i ™—* / -i\n 2n-2x 

( l - u ^ ) — 1 / t"2^1!! - t* ) X d t =£ (-1} U
 / x , 

(19) 
_ " ( - l ) n + 1A (x) ^ 2 n - 2 x 

" ^ ( x - n ) f X V (2 -uV W 
J ? t - 2 x - l * , 1 ) n u 2n-2x ~ ( - l ) n + 1 A (x) u2n-2x 

(20) / 7T7dt = 2-isnrsr = 2J ( x . n )M • ^ - ^ 
0 n=0 n=0 I n J v 

1 
(21) An(x) = (2n - 2x) (*\ f f2x"1 (2t2 - l ) n d t . 

X ' 0 

A proof of (19) is indicated below. Let the left-hand side of (19) = y, i. e. 

k„2k-2x _ 2 n _ 2 x E / . x - l \ , lVn 2 n V / x \ ( - l ) K u Z K " Z x v ^ a ; 

( n ) ( -D u 2 J k ) (2k- 2x) = 2, V 
n=0 X ' k=0 X n=0 

OO OO 

Y ^ / x \ ( - l ) k u 2 k ~ 2 x V-* / - x - l \ , -vii-k : 
y = Z,(k P W ^ x 7 - S ( n - k ) ^ U 

k=0 X ' n=k x ' 

E t .lXn 2n-2x \~"* (-L) U Ls (2k - 2xT 
n=0 k=0 

We will return to the above expression, but first we will direct our efforts toward finding an 
expression for 6 , as defined above. If we differentiate the integral expression for y and 
its ser ies form: 

OO 

y» = (1 - u 2 ) " x " 1 u " 2 x " 1 ( l - u2)X + 2u(x + 1)(1 - u 2 ) " "^ = J2 (2n - 2x) 6 RM2XI''2K"1 . 
n=0 
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/ . (1 - u2)y' = u " 2 ^ 1 + 2u(x + l ) y ; 

converting this differential equation into ser ies form by means of the foregoing relations, we 
obtain a recursion: (n + 1 - x>^n + 1 = (n + D^n(n = 0, 1, 2, • • •); 1= -2x6Q (x ? 0). By an 
easy induction on this las t recursion, we obtain the expression 

>n = ( - l ) n + 1 / 2(x 

this proves the first identity of (19). We may convert such form as follows, by use of (16): 

y 

(-1) Ak(x) n - l / n \ 2n-2x 

£ ^ £ - 2 W 
°0 k OO 

(-1) Afe(x) - n - k - l / n + k \ 2n+2k-2x 

E ^ 5 " 2 (k ) u k=0 

(-1) A (x)2 2k-2x / n , ! r k - l 
y = Z - ^ ^ /x \ U d - i u 2 ) 

k=0 ( x " k ) W 
which reduces to (19). If we return to the double summation expression for y which we first 
obtained, we arr ive at the interesting identity: 

(22) :—-nx = "E » . ( ! ) 
= y M M \ n - k j 

(X - xV lf „ , k = ( ) 

Relation (20) is similarly obtained from (15) being substituted in the first identity of (20), which 
is readily obtained from the integral expression by direct integration of a geometric s e r i e s . 

Relation (21) is derived from (12), and may be verified by expansion of the integrand in 
(21), t e rm-by- te rm integration and comparison with (12). 

E A (x) °° J (u)un 

_ * _ ( i u )
2 n

 = y *L__ 
/__ _\ / x \ „f„f 2 £^ (x - n)n! p̂ n=0 ( x " n ) l n I n=0 
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Relation (23) is obtained by employing the definition of J (u), the ordinary Besael 
function of n order , and relation (12). 

_ 2n-2x 
( 2 4 ) J r ^ a - t ^ d t = £(-!)*(*)«! 2n - 2x 

n=0 

Relation (24) is obtained by expansion of the integrand and te rm-by- te rm integration of 
the result . 

By the substitution of x = - i in (19)-(21), (23) and (24), we obtain Gould* s 'idantttifis 
(18), (19), (21) (in variant form), (28) and (35) in [2] . 

By the substitutions u = iv, t = is in (19), (20) and (24) (and reconverting back to the 
dummy variables u and t) , we derive the following: 

(25) (1 + u2) 2 v - X -
u °° 

2n-2x -1 f t - ^ t t + tffdt = y;—± 
0J n=0 ( 2 n " 2 X ) ft 

A (x) 2n-2x 

^ ( n - x ^ M (2 + u*)n + 1 
n=0 

(26) 

(27) 

U -2x-l J l , „2n-2x J ! , An(x) u2n-2x 

/ ^ * ^ = ^ ~2X=^l ( n - x ) / x \ 0 n=0 n=0 I n J 

2n-2x 
2x 

If, in (19), we make the substitutions 

v 2 , - * - = * 
2 - u2 2 - t2 

(and then reconvert to the dummy variables u and t), we obtain: 

00 A / \ 2n-2x 
x _ _ A (x) u (28) (1 - u ^ - 1 f r 2 * - 1 (1 - t 2 ) dt = y ; (-Dn s. 

1 + t2
 n = Q (2n - 2x) 15 

The ''conjugate" of (28) is the Mlowing: 
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u
 v oo A /~\ „ 2 n - 2 x 

(29) a + u*)-*-1 f r 2 x - 1 ( 1 + t2) dt = y -± 
/ 1 - t2 ^ (2n 0 - " - n=0 ( 2 n - 2 x ) ft' 

Another genus of relations is obtained by considering variations inform of the basic definition 
of g(u,x) in (2), or related functions. For example, since 

(l + u ) x + r ( l + u ) - x + s = (1 + u ) r + s 

we arr ive at 

S(*")(»: ;)-(r-') • 
This is simply a special case of the Vandermonde convolution theorem; its chief point 

of interest here is the invariance of (30) with respect to x. Setting r = 0 and s = - 1 , as 
a special case of (30), we have: 

k=0 

By considering the convolution of the expression 

(1 + u ) X + r ( l + u j r X + S ( l - u ) " 1 = (1 + u ) r + s ( l - u ) " 1 , 

we obtain the following identity: 

(32) V * T I A„(-r 4- s) - A ( r + s> . 
k=0 X ' 

fcV* • 0 / x^v 

Again, the interesting point in (32) is the invariance with respect to x of the right member. 
When r = 0, s = x, we obtain th 
x in (32), we obtain the recursion: 
When r = 0, s = x, we obtain the expression in (5) for A (x). By setting x = 0 and s 

(33) Vx + r) = 2 . ( k J A n - k ( x ) • 
k=0 

Another interesting identity displaying invariance on x is obtained by considering the con-
volution of (l + u ^ d - u ) " 1 - (l + u ) ~ x + s ( l - u ) " 1 = (l + u ) r + s ( l - u ) ~ 2 . 
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n 

(34) ^ A k ( x + r ) A
n - k ( " " x + s ) = ( n + 1 ) A n ( r + s ) ~ ( r + s ) A n - l ( r + s " X) ' 

k=0 

As special cases of (34), for r = 0, s = 0, we obtain: 

n 

(35) ^2 Ak(x) An-k("x) = n + 1 ' 
k=0 

For r = 0, s = - 1 , (34) yields: 

(36) Yl Ak ( x ) An-k(- x - 1) = 1 + [̂ ] 
k=0 

By considering the sum 

E (l + u ) x + k
 = (1 + u)x ^ (1 + u ) r - 1 

1 - u 1 - u u 
k=0 

we obtain the following recursion: 

r - 1 

k=0 k=0 X / 

For r = 2, we obtain as a special case of (37): 

(38) A (x + 1) = A (x) + A , (x) . 
n nv n -1 

We may also derive (38) by letting r = 1 in (33). As should otherwise be evident, this is 
the same recursion satisfied by the binomial coefficients, i. e. , if j I is substituted for 
A (x). nv 

The l is t of identities in (10)-(38) is by no means exhaustive, and indeed it should have 
by now become evident to the reader that the variety of derivable identities stemming from 
the basic definition in (2) is virtually unlimited. As previously intimated, Gould [2] has ob-
served that far more general resul ts a re available in the existing l i tera ture , and it is p r i -
mari ly for this reason that (10)-(38) have been offered with a minimum of explanation. The 
real purpose of this paper is to give a proof of (9), and the other identities have been pre sen ted 
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solely for the sake of exposition. The proof of (9), which follows, depends on differential 
equations and the method of equating coefficients. The wri ter was unable to obtain a more 
direct proof, and this is left as a project for the interested reader. 

We begin by adopting the following definitions, in the interest of simplicity of expression: 

(39) C n = A n ( x - | ) ; C n = A n ( - x - ^ ) 

(40) Qn = cncrn 

(41) Rn = Q n - Q n _ 1 

(42) -̂(':<)• ^-M 
(43) K = J J 

' n n n 
(44) q = Kt = \ - * 

Some useful relations a re indicated below, which a re evident from the definitions given 
in (39)-(44): 

(45) C = C 1 + J ; ( T = C " 1 + J 
v ' n n -1 n n n -1 n 

(46) • C 1 - 1 ) , i; J -r ''•> , 
n I n I n -1 ' n I n I n -1 
n \ 

n 

^ n 

\({-n)>. 

j n2 

^ n . 

- x 2 J 
(47) K„ = { - I K , = q + » ( " - l > K 

I n 2 1 

Our aim is to first obtain a recursion for the coefficients Q , then to show that the 
same recursion, with the same initial conditions, is satisfied by the expression in the right 
member of (9). The following development makes free use of the relations and definitions in 
(39)-(47): 

R = C C " - C 1 C * , = C C " - ( C - J ) ( C " _ J ) , n n n n -1 n-1 n n n n7 n n 

or 

(48) R = J C " + J C - K . v ' n n n n n n 

If we increase the subscript in (48) by unity, multiply by (n + 1), and apply (45)-(47), 

we obtain: 
(n + l ) R n + 1 = (n + l ) J n + 1 ( C n + J n + 1 ) + (n + 1 ) 3 ^ + J n + 1 ) - (n + D K n + 1 . 

or 
(49) (n + 1)R ^ = (x - i - n)J C" + (-x - J. - n) J C + (n + 1)K a.1 . 

n+1 2 n n 2 n n n+1 

If we decrease the subscript in (48) by unity, and again use relations (45)-(47), we 
obtain: 
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E - = C" - J - + C n J , - K , = (C -1)1 2 ) J 
n -1 n-1 n -1 n-1 n-1 n -1 n n 1 , 1 I n 

\ x + L - n / 

a " J a ) U 4 - 0 T n " ( q + n ^ " ^ ' + (c. 

Multiplying the above throughout by 

. i 
2 

(x + i - n ) ( - x + i - n) 
llJ^LzJL, (q + n f a - D ) = ( . x + i n ) ( c _ J ) j 

n n n -1 2 n n n 
+ (x + SL _n)(C - J )J - nK , or , ^ v 2 n n n n ' 

(50) I 2. + n - 1 J R _, = (-x + J- - n)J C* + (x + I - n)J C + (n - 1)K 
1 « i - i 2 nn * nn n (i* »-')»»-! = 

If we now multiply (48) throughout by 2n and add this result to the sum of (49) and (50), 
we obtain the following recursion: 

(51) (n + 1)R ^ + 2nR + ( ^ + n - l ) R ., = (n + 1)(K n - K ) v n+1 n I n I n -1 v ^ n+1 n 

If, in (51), we substitute for R the expression Q - Q - from (41), and similarly 
for the other subscripts , we obtain a th i rd-order recursion involving the Q f s : 

(n + l ) Q n + 1 + (n - l )Q n + ^ _ n _ X J Q ^ . ^ + n . ^ Q ^ 

This, then, is the recursion which we now seek to demonstrate is also satisfied by the 
expression in the right member of (9). 

We begin by introducing some additional definitions, again for the sake of brevity: 

n 1 n , i , 
^ - x - \: " n _ _ ^ x + i + n 

(53) P = J > J J . ; P = J > J . — — 
n n Z-> n-k t , ' n n Z^r n-k t , 

k = 0
 x - 2 ~ K k=0 x + 2 + R 

(54) h = w(u,x) = -(1 + u)"A" 2 J i . dt ; h = w(u, -x) . 
0 X " l 

The statement of identity (9) may then be condensed to the simple form: 

(55) Q n ^ P n + Pn*-

Since 

n=0 ^ / 
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and 
u 1 °° 1 

-x~J „-x+j-+n 

235 

ff^--z^ 0 n=0 x " 2 " n 

°° n / l \ °° n — 

n=0 k=0 X / x - f - k n = Q k = ( ) x - - - k 

Comparing the la t ter expression with the f irs t definition in (53), we have: 

P u " x + ^ + n P u
+ x + T + n 

(56) h = ^2— ; s imilarly, h = ^ — 
n = 0 (x - \ - n)Jn n = ( ) (-x - \ - n)Jn 

By differentiating h, we obtain the expressions: 

(57) h' = V — 2 ± i — = - P 0 i T X - ^ + Y\ — 
n+1 „ (x - i - n)J 

n=- l n=0 * n 

T o/o " (n + 2)P n + 9 u _ x + -2- + n 

h» = (x + ^ ) P 0 u - x - 3 / 2 + V 22 

( 5 8 ) » -x+i+n 
x 3/2 x i V - ( n + 1 ) ( n + 2 ) P n + 2 U 2 

= (x + ^ ) P 0 u _ X _ 3 / 2 + PlU-X"-2 + J^ ~ — 
„ (x - -I - n ) J 

n=0 2 n 

On the other hand, if we differentiate h, as defined in (54), we obtain: 

h' = -(1 + u r x " 2 V x " - 2 ( l - u ) " 1 + (x + 4)(1 + U ) - X _ 3 / 2 / \—4 dt 
0 

= -(1 + u ) - x - 2 u " x _ i ( l - u ) " 1 - (x + i ) ( l + u ) _ 1 h , 
or: 
(59) (1 - u2)h' + (x + ^)(1 - u)h + (1 + u)"X +^ u - * ^ = 0 . 
By a second differentiation, / x -i- - x - -= i 

(1 - u2)h" - 2uh' + (x + <f)(l - u)h' - (x + i ) h = \ — ^ + T T r 4 ! ( 1 + u)" x + ^u" x ~2 (X + I x-i) 

{^F2 + rr i i}i ( 1 - u2>h* + <x + W - UM ' 
or after simplification: 

(60) (u + u2 - u3 - u4)h" + | (x + | ) + (3x + | ) u - (x + 5/2)u2 - (3x + 5/2)u3}hf 

2 
+ {(x + i ) 2 + (x + -j)(x - 3/2)u - 2(x + i ) u2}h = 0 . 
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By means of the se r i es form for h in (56), for h! in (57), and the identity: 

(i + u) ^u ^ = 2 ^ 1 n ) u 2 ^ u ^+2w "irrr Jnu 2 

n=0 X ' n=0 

we may convert (59) entirely into se r ies form, with certain manipulations based on proper-
ties of the binomial coefficients, designed to maintain the exponent of u in the various ex-
pressions the same (-x + \ + n, in our development), and to contain the factor J in the 

^ n 
denominator of each expression, which may subsequently be cancelled. If we do so, we ob-
tain the following: 

" -(n + 1)P , u - * ^ " * 1 J ^ (x + -L - n ) P u - * * * 4 * V ^ v ; n+1 ; V* VA 2 ll) n -1 £ n=0 (*^-^n ~ ^ 

n = 0 ^x " ? - n ) J
n n=l n n=0 

= 0 . 

If we now equate the coefficients of s imilar powers of u in the above expression and 
simplify by multiplying throughout by (x - |- - n) J , we obtain: 

K 
PA = q + 2 x ; -(n + l ) P n + 1 - (x - \ - n ) P n ^ + (x + \)V^ = (x - fr)(x - J. - n) j i L - , 

o r 

(61) (n + l)(P ^ - P , ) - (x + i ) ( P - P n ) = < - 4 - T + x - i > K (n = l , 2 , - - - ) 
7 n+1 n -1 2 / v n n - 1 ) n + 1 2 1 n 

P0 = 1, Pi = q + 2x . 

By a s imilar , though more complicated manipulation of the ser ies in (56)-(58), we may ex-
p ress (60) in se r i es form, yielding another recursion for the P ' s . The development is 
omitted he re , since it is somewhat lengthy. The interested reader may, with a little elbow 
grease , verify that the following form of the recursion is first obtained: 

(n + D2
 r + 

i ^ n+1 x " t - n 

( x(n + 2 ) + q + n2 + - | n ) ( x n - q - n 2 - i n ) 

* ^ + t ~ n P n - 2 = ° ' (n = 2, 3 , 4, • • • ) 
with 

Pi = q + 2x, P0 = 1, P2 = (^q - l ) z + X Q . 
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By multiplying the lat ter expression throughout by n(x - I - n), simplifying the result , and 
shifting the t e rms around, as the reader may verify, the following form of the recursion is 
obtained: 

( 6 2 ) " n ( n + 1 ) 2 ( P n + l - p n - i > + n ( * + n U + * » ( P n "" Pn-2> 

+ ( | q - n(n + f ) ) ( P n - 1 - P n _ 2 ) +{n(n + 2)(Pn - P ^ ) - (q + n(n - D ) ( P n - 1 - P n _ 2 ) } x 

= 0 

(for n = 2, 3, • • •); with P0 = 1, P t = q + 2x, P2 - ( i q _ 1)2 + x q . 
We may further simplify (61) and (62), if we introduce another symbol: 

(63) V = P - P - , 
n n n -1 

which also yields: 
V + V = P - P v n n+1 *n+l n -1 

By substituting the appropriate expressions in (61) and (62), we obtain: 

(64) (n + 1)(V ... - K , - ) = (x - J- - n)(V + K ) v n+1 n+1 2 n n 
(making use of the relation 

q 
n T I K n - ( n + 1 ) K n+ l " n K n • 

a variant of (47)), and 
-n(n + l)2(Vn + V n + 1 ) + n(q + n(n + J|))(V x + V n ) + (-Jq - n(n + ^ ) ) V n - 1 

(65) 
+ n(n + 2 ) x V n - ( q + n ( n - l ) ) x V _ 1 = 0 . 

Rearranging the te rms in (64), we obtain an expression for xV„ : 

(66) x V n = - x K n + (n + i ) ( V n + Kn> + (n + l ) ( V n + 1 - K n + 1 ) . 

If we substitute the expression in (66) and the corresponding expression with the subscript 
reduced by unity in (65), again use (47) in variant form, and simplify, (65) is transformed to 
the following form: 

(67) (n + l ) V n + 1 + 2nVn + ( j + n - 1 j V n _ 1 = (n + l){Kn + 1 - \ ) + 2xKn . 

The reader may verify the simplification to the above form, using the indicated proce-
d u r e If we now replace the V f s in (67) by the corresponding P n

f s , in accordance with 
(63), we readily obtain the following recursion involving the P f s : 

(n + 1)P ,- + (n - 1)P + [ i - n ~ l J P n - [ S L + n - l \ p 0 n+1 n i n I n -1 I n I n-2 

( 6 8 ) = fo + D(Kn + 1 - K ) +-2xK . 
n+1 n n 
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If we replace x by -x in (68), observing that q and the K f s are even functions of x, we 
obtain the "conjugate" of (68): 

(69) 
(n + 1)P A1 + (n - 1)P + | S L - n - l | P n - | 2 + n - l | P 

n+1 n I n I n -1 I n / n-

fc + wSfru-V-5"* • 
If we add (68) and (69) and divide by 2, we obtain the following recursion involving i (P + P ), 

&. n n 

the te rms involving x cancelling: 

(70) 

(n + l ) , i ( P n + 1 + P^) + ( n - l ) i ( P n + P n ) + ^ - n _ l ^ P ^ + P ^ 

2 + P n _ 2 ) = (n + l ) ( K n + 1 - K n ) . 

Comparing (52) with (70), we see that i (P '•+P" ) satisfies the same recursion as Q . We 
need to demonstrate only that Q = | ( P +P* ) for n = 0, 1, and 2, to complete the proof 
of (55), i. e. , (9). We have already demonstrated that 

P0 = 1, Pi = q + 2x, P 2 = ( i q - l ) 2 + qx . 
Therefore, 

i ( P 0 + P0) = 1 ; ^ (Pi + Pi ) = ^(q + 2x + q - 2x) = q ; 4 (P2 + P2) 

= -*{( |q - D2 + q x + ( i q - l)2 - qx } = (^q - l)2 . 
We may verify that 

C0 = 1, Ci = i + x, C2 = i x 2 + 7/8 = 1 - i q , 

from (5), substituting x - i for x. Then 

Q0 = 1, Qi = ( i + x)( l - x) = q, Q2 = (1 - i q ) 2 . 
This completes the proof of (9). 

The l imits of convergence of the power ser ies in this paper have been ignored, since we 
have treated these ser ies as formal generating functions of the coefficients under investigation. 

It was initially remarked that this study was originally motivated by a desire to find an 
expression for A2 (x) in single-summation form, and that this effort was unsuccessful. How-
ever, certain resul ts were obtained which suggest a reas of investigation for the interested 
reader . A recursion for the 
introducing a new definition: 
(71) 
By using the property 

reader . A recursion for the A2 (x)fs may be derived in the following manner. We begin by 

(71) T = A2 (x) - A2
 n (x) . 

v n nv ' n - l v 

An^ - V l « 
( » ) 

and recursion (38), we may obtain an alternate expression for T : 
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Tn ={An(x) - V j l x j f J A ^ + A ^ W l , 
or 

(72) T = ( X J A (x + 1) 
n I n I n 

Therefore, \ / 

which yields: 

11 n / \ n / \ 

k=i k=ix 7 k = i ^ / 

k=0 V ' 
(73) A* W = > ,( J ]Afc(x + 1) 

Of course, there is the more obvious identity: 

(74) A^(x) 
k=0 X 7 

which is simply (5) multiplied by A (x). 
Neither (73) nor (74), however, are single-summation expressions, since they involve 

the coefficient A. (x) (or A (x)), which is itself a single-summation expression. K n 
The recursion for the A2(x)fs is obtained by substituting 

T n 

0 
for A (x + 1) in: n 

(n + DAn + 1(x + 1) - (x + 2)An(x + 1) + (x + 1 - n J A ^ x + 1) = 0 , 

which is simply (10) with x + 1 replacing x. By eliminating the combinatorial t e r m s , we 
first obtain a second-order recursion involving the T f s : 

(75) n(n + D 2 T n + 1 - n(x + 2)(x - n)TQ + (x - n)(x + 1 - ^R_1 = 0 . 

By substituting the expression in (71) for the T fs in (75), we are led to the required 

recursion: 

n(n + D2A2 (x) + in(x - n) - (x + l ) 2 U n A 2 ( x ) - (x - n)A2 Jx)\ (rjn\ n+x * J i n n—1 " 
- (x - n)(x + 1 - n)2A2 (x) = 0 n—A 

It should be observed that if the substitution x = —| is made in (76), and the substitu-
tion x = 0 is made in (52), the same recursion resul ts in either case , namely: 
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(77) n(n + 1)2A^+ 1 - (n2 + f-n + })(nA£ + (n + \) A 2 ^ ) + (n + *-)(n - £-)2A£_2 = 0 . 

(It is not immediately obvious that (52) reduces to (77) for x = 0, but if we observe 
that, in such case , Q = A2 and q = -|, we may use known relations to show that 

(n + 1)(K x 1 - K ) v /v n+1 n 
may be expressed in the form: 

- ^ - j |(8.n2 + 14n + 6) Q n + 1 - (4n + 3)Qn - (8n2 + lOn + 3)Qn_1} . 

Substituting this expression in (52), we obtain a form free of terms involving K fs which 
reduces to (77).) 

In passing, 
is suggested below by indicating the first few te rms 

In passing, we leave the reader with one possible form of expression for A2 (x), which 

«™ *<* - (2,C){(2X„)H«-^,(2n-.1).(°'-g:?--')(2n-.2), • ] . 

It is not difficult to prove (78) by induction, as far as it goes, but the subsequent te rms 
become increasingly obscure, as the difficulty in obtaining them also increases . The wri ter 
failed to see any pattern in the te rms of (78), but that is not to say that one does not exist. 

The wri ter gratefully acknowledges the impetus provided by Professor Gould for this 
paper, and his invaluable aid in pointing out the known resul ts . 
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A PROCEDURE FOR THE ENUMERATION OF 4 x JI LATJN RECTANGLES 

F.W. LIGHT, JR. 
326 E. Ewing St., Bel Air, Maryland 21014 

r 
Let M denote the number of normalized (first row in natural order) r X n. Latin r e c -

tangles , M1 = 1 for all n. The M2 are the rencontre numbers [ l ] . Several methods are 
available for computing the M3 [ l , 2, 3 ] . In this report , a procedure is presented that is 

r effective in finding M for r < 4. 

CALCULATION OF M2 AND GENERAL FORMULA FOR M r 
n n 

Consider the diagram (Fig. 1, drawn, as are all the diagrams, for n = 5) consisting 
of an n x n square, made up of n2 cells arranged in n rows and n columns. Label each 
cell with the numerical indices giving its position in the square, writing them as a one-column 
matrix with the row index at the top, and mark those cells whose 2 indices are different. 
Call the marked cells good, the others bad. (For any r , the cells called good will be those 
with all indices different.) Now nexpandn the diagram into " t e r m s " by taking one cell from 
each row and each column, keeping the row indices in natural order . Each term then cor -
responds uniquely to a 2 X n rectangular a r r ay whose first row is in natural order; a term 
made up entirely of good cells corresponds to a normalized Latin rectangle. M2 is the num-
ber of such "all-good" te rms in the expansion. Using the principle of inclusion and exclusion, 
one can read off M2 from the diagram at sight (cf [4]). The expression so obtained is f o r m -
ula (1), below, with A k = n ( k ) , where n ( k ) = n(n - l)(n - 2) - • • (n - k + 1). 

r , n 
For r > 2, one can prepare an analogous diagram of an r-dimensional hypercube (e. g. , 

Figs. 2 and 4), referred to in this report as the n r - cube , and obtain the formula, valid for all 
r > 0. 

n A k 
(1) M^ = ^ ( - l ) k - » £ £ [ ( n - k ) ! ] ^ 1 . 

k=0 

Here A denotes the number of k-tuples in the expansion of the n r -cube . (The word k-r , n 
tuple, in this report , will always mean an ordered set of k bad cel ls , no two of which are 
from the same dimensional level.) A0 = 1 for all r and all n, by definition. 

r ,n 

CALCULATION OF M3 
n 

The diagram is shown in Fig. 2. The layers are numbered from left to right and the 
indices a re written in the order : layer , row, column. (Column matr ices of indices will be 
written in the form (a,b,c) f for typographical convenience.) There are two types of bad 
cel ls : a 1 -ce l ls , having all 3 indices alike, and /3f-cells, having exactly 2 indices alike. The 

241 
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Table 1 
Formulas for the o> k 

(Formulas are valid for k >. 0 and for n as indicated. See text for k = 0. Except 
i k 

for a\9 all co a re 0 for k > 0 and for values of n > 0 not covered by the formulas.) 

ak = n{ak-] + (n - l ) ^ ^ - * + 3 y k ^ + 6(n - 2 ) 6 k " ^ ] i n ( n -1 L n-1 n-1 n - l j / 

ak - 3k(n - l)(n - 2)Sk~* n n-1 

« i -
yk = fP - k(n - l)(n - 2)(2ij£:J- ^ i j ) 

3 k - k(n - 2)[2(0fci +\fcl - 8 ^ ) 
+ (n- 3)^fcl + 2^ : l -«fcl>] 

(n + l ) ( 4 )
€

k = (n - k + l ) 4 « k 

' n n+1 

k+1 
c n+l 

^n = ^ n - k ( n - ^ [ 2 ^ 1 + (n " 2)8n-l] 

.k-1 k-l> 

Xk = 6 k - 2k n n 

+ ^ I i + (n -3)^ :1+fg : t> 

Kl+ (n -2) k-1 + k-1 + k-1 
' n - 1 n -1 n-1 

+ (n - 3)^=1]} 

fi = ek - 2k{ 2 <: i +Xfcl, + (n - 3 ) [*£J + 2 ^ 

3(n - l)(n - 2)f* 

, k = ^k - 3k(n - 2) [ 2 ^ + (n - 3 w £ j 

ak + 2(2n - l)j3k + 3nyk + (6n - 3k) (n - 1)8 k 

+ 3(n-2)Mk
+, k]} 

n(4)77k = (n - k + l ) ^ k
+ 1 - (3k+J - n(n - l ) [ 3 5 k + (n - 2)(ek + 3/*S)] 

(n a 2) 

(a{ - 1) 

(n a 1) 

(n ^ 1) 

(n 2= 2) 

(n ^ 3) 

(n ^ 1) 

(n s 2) 

(n a 2) 

(n > 2) 

(n 

(n 

3) 

2) 

(n s 3) 

(n a 4) 
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good cells (not needed in the calculations when r = 3) a re e f-cel ls . The numbers of each 
cell-type in any layer a re easily ascertained. 

Letting w! stand for either of a*9 /3!, denote as an n3 -w ' -cube the cube that is ob-
tained when all cells in the layer , row and column occupied by a chosen u?-cell of the 
(n + l)3-cube are removed and the remaining par ts of the diagram are allowed to collapse up-
on themselves (i.e., "ranks are closed"), the good or bad nature of each cell being preserved. 
Let w! denote the number of k-tuples in an n3 - uf-cube. I t i s apparent that the n3 - a1-cube 
is identical with the n3-cube and that, for k > 1, 

(2) A k = a*k = n ^ k " ^ + 3n(n - l ) ^ f k " ^ . ' 3,n n n -1 r n -1 

(a*1 = n3 - n and j3fl = a%1 - 2(n - 1), by direct count in the diagram.) 

To find j3f , we can clearly use any j3f-cell in the (n + l)3-cube. Choosing (2 ,1 ,1) ' , 
we get the n3 - j3f-cube of Fig. 3. It differs from the n3 - a f-cube only in the first layer , all 
the differing cells being /3f-cells in the n 3 - a%-cubes. Accordingly, 

(3) j3*k = a? k - 2k(n - 1)^~\ . 
.n n r n -1 

The factor k in the second term on the right enters because of the way in which Mk-tuple" 
has been defined. 

All A can now be calculated, for any given n; when they a re substituted in (1), 
M3 is obtained. 

n CALCULATION OF M^ 
The diagram for the n4-cube is shown in Fig. 4. The dimensional levels are to be 

written in the order: s t r ipe, bar , row, column; the intersection of s tr ipes a and b is called 
the field [ a , b ] . The procedure is analogous to that used above for the case r = 3. There 
a re now, besides the good or e-cel ls , four kinds of bad cells: a -ce l l s , with all indices alike; 
/3-cells, with exactly three indices alike; / - c e l l s , with two distinct pa i rs of like indices, and 
S-cells , with exactly two indices alike. 

The numbers of cells of each type are again easily found, and we have at once the form-
k k k 

ula for A 4 > n = an given in Table 1. j3n is obtained from the n4-j3-cube resulting from 
choosing ( 2 , l , l , l ) f in the (n + l)4-cube (second formula in Table 1), just as j3!

n was ob-
k k 

tained in the case r = 3. y and 5 are not so immediate, but can be found by the method 
' n n J 

outlined below. 
We first analyze the n4 - /3-cube much as we did the n4 - a-cube. That is to say, we 

study the types and topographical distributions of the second members of those pai rs of cells 
of the (n + l)4-cube whose first member is a selected j8-cell. The /3-cell chosen in the 
(n + l)4-cube to obtain the resul ts shown in Fig. 5 is (2 ,1 , l , l ) f . It is useful to observe that, 
in a pair of columns of indices, the two numbers in a row maybe interchanged without affect-
ing the propert ies in which we are interested. There prove to be 13 different cell- types, in-
cluding the five already observed. They are designated by Greek le t t e r s , as shown in Fig. 5. 
(The cells in the first stripe all retain the same designations they had in the n4 - a-cube; 
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Fig= 5 54 - jS-Cube after ( 2 , 1 , 1 , l ) f . (Good cells outlined and cross-hatched.) 
x indicates new good cell; o indicates where good cell i s to be inserted to get 

k k 
y 5 . * indicates where good cell is to be inserted to get 85 (see text), 

each of the lower s tr ipes has the same numbers of cells of types j3, f, • • • 9ir as the second 
s t r ipe, but distributed differently.) 

Now, to find y , note that the n4 - y - c u b e that results from choosing (2,2,1,1) f can 
be obtained from the n4 - /3-cube (Fig. 5) by removing all the good cells from the field [ l , l ] 
and inserting good cells at those places in the first bar indicated with o in the diagram. This 
leads to the third formula in Table 1. 

To get 6 n , choose (2, n + 1, 1 l)f and, in the resulting n4 - 5 - c u b e jump the first 
bar over all the others , so that it becomes the n bar (this will not affect the expansion of 
the cube). This adjusted n4 - 5 - c u b e may be obtained from the n4 - j3-cube of Fig. 5 by r e -
moving all the good cells in [ l ,n ] and inserting good cells at the places in the n"1 bar in-
dicated with *. Thus the fourth formula of Table 1 is obtained. 
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€ i s found by considering all (rather than only the bad) cells of the n4-cube,and p ro -
ceeding as in the derivation of a^ . 

Formulas for £ , • • • , Tig remain to be derived, in order to make the resul ts for y 
and 8 effective. All but ^ j ^ and 7r^ may be found in the following way, AjJ being used as 
example. Choose an appropriate A-cell, such as (2 , l , 3 ,3 ) f in the (n + l ) 4 - j3-cube, noting 
that the chosen cell i s a 8-cell in the (n + I)4 - a-cube. Now adjust 8^ by correcting for the 
"new" good cel ls , marked x in Fig. 5 (i. e. , cells that are good in the /3-cube but bad in the 
a-cube). The cell pai rs that must be examined in this process all prove to be reducible to 
pa i rs of the kinds already introduced. There resu l t s , finally, the formula for A in Table 1. 
All the r e s t of the formulas of Table 1 except the last two a re derived in the same way. 

If the choice of the A-cell had been inappropriate ( e . g . , (2,2,3,3)f)> the procedure 
would have met an impasse and haive failed. This happens for all choices of £-cells and 77-
cel ls , £ can be found, however9 by equating the resul t already known for Pfi+± with that 
obtained by expanding the (n + I)4 - /3-cube in t e rms of the an, • • • , £] | , • • • , £^, 77ĵ . The 
la t ter expansion is analogous to that used to find a£, above, n^ i s found by using all , ra ther 
than only the bad, cells in the diagram, by analogy with the derivation of €̂ . There resul t 
the las t two formulas of Table 1. 

As an initial set of values for the recurrences of Table 1, one can use the a>°, whose 
values a re : for n > 3 , all o>° are 1; for n = 3, TT® is 0 and all others are 1; for 

n o 
n = 2, ejj, n\9 £\ and ff| a re 0 and all others are 1; for n *= 1, a§, Z^0, y j and 8J a re 
1 and all the r e s t a re 0, The o ^ can be checked by direct count in the appropriate diagram. 

k JL 
For any given n > 0, all the A, can now be calculated, and IVT can be found by 

substituting them in( l ) . Some enumerations of 4 Xn Latin rectangles obtained by the method 
here presented a re : 

:M| = 24 
M| = 1,344 
Mj = 393,120 
Mj = 155,185,920 
M$ = 143,432,634,240 . 
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SOME SIMPLE SIEVES 

R. G. BUSCHMAN 
University of Wyoming, Laramie, Wyoming 

1. INTRODUCTION 

An ancient process for generating the sequence of prime numbers is known by the name 
of The Sieve of Eratosthenes. This method is presented in many textbooks and is ra ther 
widely known. However, it seems to be less widely known that, with some modifications, 
other interesting sequences can be generated by essentially a sieve process . In part icular , 
we can obtain the sequence of values for some of the common arithmetic functions. F i r s t we 
shall discuss this Sieve of Eratosthenes and some of i ts modifications, then we will proceed 
to some "s ieves" for generating other sequences. 

2. THE SIEVE OF ERATOSTHENES AND MODIFICATIONS 

We recall that in order to obtain the sequence of pr imes by this method, the sequence 
of integers greater than 1 is first written down. Starting with 2 we then put a slash through 
each second number beyond 2 in this sequence. This leaves 3 as the first number beyond 
2 which is not crossed out, so that we then put a slash through every third number beyond 3. 
(Note that, for example, 6 now has been crossed out twice.) Since 5 is the first number 
beyond 3 which is not yet crossed out, we next put a slash through each fifth number beyond 
5, and continue in a s imilar manner. Those numbers remaining (not crossed out) are pr imes . 

In o rder to place this process in a setting which is more suitable for generalization, we 
will now modify the process in order to generate the sequence of values of what we shall call 
the characterist ic function for prime numbers, denoted by Xp. This function has the values 
Xp(n) = 1 if n is a prime; Xp(n) = 0 otherwise. In Table 1 the construction of the succes-
sive sequences is illustrated. This table is headed by the sequence of natural numbers in 
natural order which will thus indicate the position numbers for the elements of the sequences. 

Table 1 
Successive Sequences for X (n), N = 33 

A<°> 

A( 1> 

A ( 2 ) 

A ( 3 ) 

1 

0 

0 

0 

0 

J2_ 

1 

1 

1 

1 

3 4 

1 1 

I ° 
1 0 

1 0 

5 6 

1 1 

1 0 

I ° 
1 0 

_7_ 

1 

1 

1 

1 

_8_ 

1 

0 

0 

0 

_9_ 

1 

1 

0 

0 

1 
0 

1 

0 

0 

0 

J-
1 

1 

1 

1 

A 
1 

0 

0 

0 

JL 
i 

i 

i 

I 

JL 
I 

0 

0 

0 

JL 
I 

I 

0 

0 

J>_ 
1 

0 

0 

0 

JL 
i 

I 

i 

I 

JL 
I 

0 

0 

0 

9 

1 

1 

1 

1 

2 
A 

1 

0 

0 

0 

_1_ 

1 

1 

0 

0 

J2_ 

1 

0 

0 

0 

J3_ 

1 

1 

1 

1 

JL 
I 

0 

0 

0 

JL 
i 

I 

I 

0 

JL 
I 

0 

0 

0 

J7_ 

1 

1 

0 

0 

_8_ 

1 

0 

0 

0 

_9_ 

1 

1 

1 

1 

3 
__0_ 

1 

0 

0 

0 

J_ 
1 

1 

1 

1 

J2_ 

1 

0 

0 

0 

3 

1 

1 

0 

0 
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The entries in Table 1 are prepared as follows. For the initial sequence, Av , we 
enter 0 in the first position and 1 otherwise for this f irst row of the table and for n £ N , 
The case N = 33 is illustrated. In order to begin the process of sieving, we locate the 
position of the first non-zero element and denote this position by aj (= 2) and then convert 
the entries in positions m a ^ m = 2, 3, 4, ••• (every second entry beyond 2) from 1 to 
0. The resulting sequence is denoted by A ' . The position number of the first non-zero 
entry beyond position QLX in A is denoted by a2 (=3) and every entry in position ma2, 
m = 2, 3, 4, ••• (every third entry beyond 3) is converted from 1 to 0, if the entry is 

(2) (k-1) 
not already 0, in order to produce the sequence A . In general, in the sequence Av 

we locate the position of the f irst non-zero entry beyond position a, 1 and denote its posi-
tion by a , . Then every entry in position ma, , m = 2, 3, 4, ••• (every a , - th entry be-
yond a. ) is converted from 1 to 0, if it is not already 0. This produces the sequence 
A<k>. 

It is worth noting that, of course, the process can be terminated at A ' if a, > 
^ N and the sequence A " coincides with the sequence \ for n < N; that i s , a, = p. . 
The reason that this termination is possible is that the smallest number which a, actually 
sieves out is a,2, since a, a. for a. < a, has been sieved out at an ear l ie r step. k ' k j j k F 

In this construction the actual sieving out of the number n is indicated by the conver-
sion of an entry 1 to an entry 0 in position n of the sequence. If a 0 has already appeared, 
this indicates that the number had been sieved out at a previous step; that i s , the number 
actually possessed a smaller prime factor than the number currently being used as the siev-
ing number. The entire process involves (1) the location of a non-zero element, (2) a count-
ing process , and (3) a change of entry. We note that no divisibility checks a re used. One 
further comment. This process does not involve using any of the sequences A^ for m < 

(k-1) (k) 
k - 1 , but only the sequence A to produce A . As a resul t , those preceding sequences 
need not be saved. Even though the original process i s ancient, in this form it is quite adapt-
able for digital computers. 

For some purposes a simpler sieve which yields slightly different information is of 
value; this is illustrated in Table 2. 

Table 2 
F i r s t Modification, N = 33 

A<°> 

A « 

A ( 2 ) 

A ( 3 ) 

1 

1 

1 

1 

1 

_2_ 

1 

0 

0 

0 

_3_ 

1 

1 

0 

0 

_£_ 
1 

0 

0 

0 

J5_ 
1 

1 

1 

0 

J3_ 
1 

0 

0 

0 

_7_ 

1 

1 

1 

1 

_8_ 

1 

0 

0 

0 

JL 
i 

i 

0 

0 

1 
JL 
I 

0 

0 

0 

j _ 
l 

l 

l 

l 

j _ 
i 

0 

0 

0 

J3_ 
1 

1 

1 

1 

_£_ 
1 

0 

0 

0 

J5_ 
1 

1 

0 

0 

J_ 
1 

0 

0 

0 

7 

1 

1 

1 

1 

_8_ 

1 

0 

0 

0 

Ĵ  
1 

1 

1 

1 

2 
J)_ 

1 

0 

0 

0 

JL 
I 

I 

0 

0 

_2_ 

1 

0 

0 

0 

_3_ 

1 

1 

1 

1 

_4_ 

1 

0 

0 

0 

J>_ 
1 

1 

1 

0 

_6_ 

1 

0 

0 

0 

_7_ 

1 

1 

0 

0 

__8_ 

1 

0 

0 

0 

J9_ 
1 

1 

1 

1 

3 
J)_ 

1 

0 

0 

0 

JL_ 
1 

1 

1 

1 

J_ 
1 

0 

0 

0 

J3_ 
1 

1 

0 

0 

The change of the resul ts i s indicated by the appearance of 1 in position 1 and in the 
appearance of 0 in position p. for pr imes p, ^ N/N*. Hence the resul t is the sequence of 
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values of the character is t ic function for the set which contains 1 and those pr imes satisfy-
ing the inequality N/N" < p k < N. The process is simpler in the sense that for the general 
step we sieve out the numbers ma, for m = 1, 2, 3, 4, • • •; that i s , each a, -th number, 
counting from the beginning. Here the process must be stopped at the sequence A1 ' if 
a k > ^ ' 

These first two processes have the disadvantage in that multiple sieving of elements 
occurs whenever the position number is composite. The following method will eliminate this 
problem for the modified sieve, although it is a much more complicated procedure. 

Consider the sequence A^ where a, = 1 for all k. Since the first 1 beyond posi-
tion 1 which appears is in position a4 -(= 2) we sieve each second element by subtracting 1 
from the entries in position ma, , m = l , 2, 3, 4 , • • • , then we rename the resulting s e -

(1) (1) 
quence A ' . Next, the first 1 which appears beyond position 1 in A is in position a2 

(= 3) and we use the sequence A ; itself to generate the sequence of elements which are to 
be sieved out of A^ to produce A^ . Subtract the entry in position m of A^ ' from the 
entry in position ma2 for m = 1, 2, 3, 4, ••• provided ma2 ^ N. We note that if 2 d i -
vides m, then m = 2mT and in position ma2 = 2mfa2 the entry is 0 so that we subtract 
0 from 0. (This replaces the operation of leaving 0 as 0.) In general, we locate the first 

(k-1) non-zero entry beyond position 1 in A and denote this position by a . , then we sub-
(k-1) t ract the entry in position m of Av from the entry in position ma, for m = 1, 2, 3, 

4 , • • • with ma, < N. The process is stopped at the sequence A if a, > \ T N and the 
final resul t of this second modification is the same as that of the first modification. The de-
tails are illustrated successively in Table 3. 

Table 3 
Second Modification, N = 33 

A ^ " 

A« 

A<2> 

A(3) 

1 2 

1 1 
-1 

1 0 

1 0 

1 0 

3 4 

1 1 
-1 

1 0 
-1 

0 0 

0 0 

5 6 

1 1 
-1 

1 0 
-0 

1 0 
-1 

0 0 

1 
7 8 9 0 

1 1 1 1 
-1 -1 

1 0 1 0 
-1 

1 0 0 0 
-0 

1 0 0 0 

1 2 

1 1 
-1 

1 0 
-0 

1 0 

1 0 

3 4 5 6 

1 1 1 1 
-1 -1 

1 0 1 0 
-1 

1 0 0 0 
-0 

1 0 0 0 

7 8 

1 1 
-1 

1 0 
-0 

1 0 

1 0 

2 
9 0 1 2 

1 1 1 1 
-1 -1 

1 0 1 0 
-1 

1 0 0 0 
-0 

1 0 0 0 

3 4 

1 1 
-1 

1 0 
-0 

1 0 

1 0 

5 6 

1 1 
-1 

1 0 

1 0 
-1 

0 0 

7 8 

1 1 
-1 

1 0 
-1 

0 0 

0 0 

3 
9 0 

1 1 
-1 

1 0 
-0 

1 0 
-0 

1 0 

J__ 

1 

1 

1 

1 

2 3 

1 1 
-1 

0 1 
-1 

0 0 

0 0 

(k 1) A useful way of thinking of the process is that Av ' is expanded by the factor a, and 
subtracted from itself. 

Another method closely related to this second modification and which eliminates mul-
tiple sieving is discussed by G. S. Arzumanjan [ l ] . A geometric construction for the second 
modification is given in [3]. 
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Although these two modifications are not perhaps very important for the problem of 
generating p r imes , they have been presented in detail because of their similari ty to sieves 
for other sequences which will be discussed in the next section. 

3. SEQUENCES OF VALUES OF CERTAIN ARITHMETIC FUNCTIONS 

The sequences which are to be discussed in this section are computed without advance 
knowledge of a table of pr imes; that i s , the generation of the sequence of pr imes is contained 
internally in the process , as needed. 

The first function which we will consider is the number of distinct prime factors of n 
which we denote by o(n). We generate the sequence of values of the function to by a slight a l -
teration of that first modification for the generation of X which was discussed in Sec. 1. In 
the case of pr imes we can think of the composites as falling through the sieve and being discard-
ed; this present alteration can be thought of as collecting those things which fall through our 
sieve in little boxes. In order to indicate how this process goes, let B(0^ be the sequence with 
0 in each position. To produce B^ we add 1 to each second entry of B . The first 0 
which appears beyond position 1 of B ( 1 ' is in position p2 (= 3). We next add 1 to each en-
try in B in position mp2, m = l , 2 , 3 , 4 , ••• to produce B . Continuing in this man-
ner we can state the general step of this iterative process . Locate the first 0 which appears 
beyond position 1 in B* , this will be in position pk- Next add 1 to each entry in B ^ " 1 ^ 
in position mp, , m = 1, 2, 3, 4, • • • for mp, < N. This will produce the sequence B ( k \ 
The process can be stopped at sequence B l " if 2pk > N, since thereafter only one entry, 
the entry in position pfe, will be altered. The remaining entries which are 0 and a re beyond 
position 1 now indicate pr imes satisfying N/2 < p < N , if N > 4, and hence the process can 
be completed by converting the 0 entries to 1 in these positions N/2 < n < N of B ^ " 1 ^ . The 

(k) sequence Bv coincides with the sequence for u for n < N. The resul ts for N = 33 are 
given in Table 4. 

Table 4 
Sequences for u(n), N = 33 

^or 
B(« 

B ( 2 ) 

B(3) 

B(4) 

B(5) 

B(6) 

S 

1 

0 

0 

0 

0 

0 

0 

0 

""o" 

J2_ 
0 
1 
1 

1 

1 

1 

1 

1 

T" 

J3_ 
0 

0 
1 
1 

1 

1 

1 

1 

~T 

±_ 
0 
1 
1 

1 

1 

1 

1 

1 

"T 

_5_ 

0 

0 

0 
1 
1 

1 

1 

1 

T" 

_6_ 

0 
1 
1 
1 
2 

2 

2 

2 

2 

~ 

J7_ 
0 

0 

0 

0 
1 
1 

1 

1 

"T 

_8_ 

0 
1 
1 

1 

1 

1 

1 

1 

T 

A 
0 

0 
i 
i 

i 

i 

i 

i 

"T 

l 
JL 
0 
i 
i 

i 
i 
2 

2 

2 

2 

IT 

j _ 
0 

0 

0 

0 

0 
1 
1 

1 

T 

_2_ 

0 
1 
1 
1 
2 

2 

2 

2 

2 

T 

J3_ 
0 

0 

0 

0 

0 

0 
1 
1 

"T 

A_ 

0 
1 
1 

1 

1 
1 
2 

2 

2 

T" 

_5_ 

0 

0 
1 
1 
1 
2 

2 

2 

2 

T 

_6_ 

0 
1 
1 

1 

1 

1 

1 

1 

T 

J7_ 
0 

0 

0 

0 

0 

0 

0 

1 

_8_ 

0 
1 
1 
1 
2 

2 

2 

2 

2 

T 

_9_ 

0 

0 

0 

0 

0 

0 

0 

~r 

2 
J0_ 
0 
1 
1 

1 
1 
2 

2 

2 

2 

T" 

J_ 
0 

0 
1 
1 

1 
1 
2 

2 

2 

T 

_2_ 

0 
1 
1 

1 

1 

1 
1 
2 

2 

T 

J3_ 
0 

0 

0 

0 

0 

0 

0 

T" 

_4_ 

0 
1 
1 
1 
2 

2 

2 

2 

2 

T" 

JL 
0 

0 

0 
1 
1 

1 

1 

1 

T 

j>_ 
0 
l 
l 

l 

l 

l 

l 
l 
2 

T" 

J7_ 
0 

0 
1 
1 

1 

1 

1 

1 

T 

J3_ 
0 
1 
1 

1 

1 
1 
2 

2 

2 

T" 

_9_ 

0 

0 

0 

0 

0 

0 

0 

T 

3 
_0_ 
0 
1 
1 
1 
2 
1 
3 

3 

3 

3 

T 

1 2 3 
0 0 0 

1 
0 1 0 

1 
0 1 1 

0 1 1 

0 1 1 
1 

0 1 2 

0 1 2 
•n Qf-nr» 

• P o n j p 
1 1 2 
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Since we are adding 1 to the entry at position n = mp, at the k step, we count the 

factor p^ of n exactly once. Hence we have generated the sequence of values for the func-
tion y; that i s , u(n) appears in position n, ; 

It now becomes an analogous exercise to obtain a sieve process for computing the s e -
quence of values r(n), the number of divisors of n. Similarly, the sequence of values 
a(n), the sum of the divisors of n, can then be computed, 

If we next attempt to compute the values Q(n), the total number of pr ime factors of n, 
the procedure seems to become more complicated. However, one way to proceed is as fol-
lows, starting with the sequence CP ' for which all entries a re 0. In order to construct 
C we want to f irst add 1 to every second entry to count the factor 21, then further add 
1 to every fourth entry to count the factor 22, etc. , until 2 > N. This subprocess for 
counting the factors 2 reminds one of the second modification in Sec. 1, if we consider that 
the first subsequence c\ to be added to C is constructed by entering in position 2m, 
m = 1, 2, 3, 4, • • • , the value 1, then the second subsequence, C2 which is to be added 
to C is constructed by entering in position 2m the value from position m of c } , etc. 
The value 0 is entered otherwise in the subsequences. C is then constructed by adding 
successively c} , c\ , , # e to C . From this discussion we can see that if 2 divides 
n, then an addition of 1 is carr ied out in position n for k = 1, 2, • • • , ar thus the p r o -
cess counts the number of prime factors 2 of n. The steps are il lustrated in Table 5. 

1̂ 
CW 

c<2) 

c(3> 

c ( 4 ) 

c ( 5 ) 

c ( 6 ) 

a 

1 

0 

0 

0 

0 

0 

0 

0 

i 0 

_2_ 

0 
1 

1 

1 

1 

1 

1 

1 

1 

_3_ 

0 

0 
1 

1 

1 

1 

1 

1 

1 

A 
0 
1 
1 

2 

2 

2 

2 

2 

2 

2 

A 
0 

0 

0 
1 

1 

1 

1 

1 

1 

_6_ 

0 
1 

1 
1 

2 

2 

2 

2 

2 

2 

J7_ 
0 

0 

0 

0 
1 

1 

1 

1 

1 

J3_ 
0 
1 
1 
1 

3 

3 

3 

3 

3 

3 

3 

A 
0 

0 
1 
1 

2 

2 

2 

2 

2 

2 

Sequences 

1 
_0_ 

0 
1 

1 

1 
1 

2 

2 

2 

2 

2 

A. 
0 

0 

0 

0 

0 
1 

1 

1 

1 

A 
0 
1 
1 

2 
1 

3 

3 

3 

3 

3 

3 

A 
0 

0 

0 

0 

0 

0 
1 

1 

1 

T a b l e 5 
3 for Q ( n ) , 

_4_ 

0 
1 

1 

1 

1 
1 

2 

2 

2 

2 

A 
0 

0 
1 

1 
1 

2 

2 

2 

2 

2 

A 
0 
1 
1 
1 
1 

4 

4 

4 

4 

4 

4 

4 

J7_ 
0 

0 

0 

0 

0 

0 

0 

I 
1 

N = 

J^ 
0 
1 

1 
1 
1 

3 

3 

3 

3 

3 

3 

A 
0 

0 

0 

0 

0 

0 

0 

1 

= 33 

2 

JL 
0 
1 
1 

2 

2 
1 

3 

3 

3 

3 

3 

A 
0 

0 
1 

1 

1 
1 

2 

2 

2 

2 

_2_ 

0 
1 

1 

1 

1 

1 
1 

2 

2 

2 

J3_ 
0 

0 

0 

0 

0 

0 

0 

1 

_4_ 

0 
1 
1 
1 

3 
1 

4 

4 

4 

4 

4 

4 

_5_ 

0 

0 

0 
1 
1 

2 

2 

2 

2 

2 

A 
0 
1 

1 

1 

1 

1 

1 
1 

2 

2 

J7__ 

0 

0 
1 
1 
1 

3 

3 

3 

3 

3 

3 

A 
0 
1 
1 

2 

2 

2 
1 

3 

3 

3 

3 

_9_ 

0 

0 

0 

0 

0 

0 

0 

1 

3 

A 
0 
1 

1 
1 

2 
1 

3 

3 

3 

3 

3 

1 2 3 

0 0 0 
1 
1 
1 
1 
1 

0 5 0 
1 

0 5 1 

0 5 1 

0 5 1 
1 

0 5 2 

0 5 2 
Q f 

•••"**• & t o p 

1 5 2 
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To form C from C we locate the f irs t 0 beyond position 1, which is at posi-
(2) tion p2 (=3), and repeat the subprocess, but now using p 2 ; that i s , C\ is the sequence 

(2) with 1 in position mp2, m = 1, 2, 3, 4, • • •; C2 is t n e sequence with 1 in position 
mpjj, m = 1, 29 3, 4, • - - ; etc. Then C ® is formed by the addition of c[2\ C2 , ••• 
to C . C2 could also be constructed from c} by entering in position mp2 the entry 

(2) from position m of C\ and 0 otherwise. 
(k 1) The general step is somewhat complicated in its description. Consider C and 

locate the first 0 entry beyond position 1; this will be in position p. by analogy to the 
(k) sieve for pr imes . To begin the subprocess, we form Cj by entering 1 in position mp, , 

(k) m = 1, 2, 3 , 4, • •• , until mp. > N. The subsequence C: i s formed from the subse-
(k) 1 

quence C: by entering in position mp, , m = l , 2, 3, • • • , the entry from position m 
of Ci i and 0 otherwise until mp? > N. The sequences C- are successively added to 
c (k - l ) to produce C ^ . (It is merely for display purposes that the subsequences are form-
ed separately and then added, the addition process , of course, can be carr ied out as one 
progresses . ) The process can be stopped at the same point in the computation as for the 
values of o and the remaining 0 entries converted to 1, using the same reasoning. It is 
not difficult to see that we actually have obtained the values Q(n). 

A slight modification of the entries leads to the sequence X(n) = (-1) , another 
function of interest in the theory of numbers. After the methods outlined above, this be-
comes an exercise. 

4. THE NUMBER OF REPRESENTATIONS OF A NUMBER 
AS A PRODUCT OF NUMBERS CONTAINED IN A GIVEN SET 

We shall next consider the following problem. Given a subsequence S of natural num-
bers 1 < &i < a2 < ' • * , either finite or infinite, we wish to compute the number of distinct 
representations of a number n as the product of elements of the set S; that i s , we wish to 
compute the number of distinct (except for order) representations of n in the form 

bi b2 K 
n = at

 l atL • • • ak
K , 

where the a?s belong to S and the bfs are positive integers. We assume that the set S 
has been generated separately and we let R(n) denote the number of such representations of 
n. The sequence of values of R is to be generated by a modified sieve method. 

The actual process is somewhat analogous to the procedure of Sec. 3 for computing 
the sequence Q. We let R denote the sequence with 1 in position 1 and 0 otherwise. 
In order to obtain the sequence R we bring down 1 into position 1 and then add the 
entry from position 1 of R to the entry at position laj[ of R and enter the sum in 
position dii of R , then the entry from position 2 of R is added to the entry of posi-
tion 2a2 of R and the sum is entered in position 2a2 of R , etc. , but otherwise the 
entry at position k of R is taken as the entry at position k of R . This set of sub-
processes is stopped when maj > N. To continue, the entry from position 1 of R is 



1973] SOME SIMPLE SIEVES 253 

entered in position 1 of R and the entry from position 1 of IT ' is added to the entry 
from position la2 of R and the sum is entered in position a2 of R ' and successively 
in order for m = 1, 2, 3, • • • , the entry at position m of R^2) is added to the entry at 
position ma2 of R and the sum entered in position ma2 of R ' to produce the sequence 
R . (The other entr ies a re carr ied from R ' to R , addition only takes place at the 
positions ma2.) For the general iterative steps in order to obtain R ' from R^ , we 
add the entry from position m of R to the entry from position ma, of R^ ' and enter 

ik) the sum in position ma, of R , running successively through m = 1, 2, 3, • * • and 
/ , -j \ 

stopping if ma, > N. The process terminates at R ' if a, > N. In Table 6 we have 
chosen S = \ 2 , 39 49 5, 129 309 72/ and we indicate the steps of the computation. Note 
the iterative process which occurs within the computation for each sequence. 

Table 6 
R(n) for S = {2, 3, 49 59 12, 30, 72}9 N = 33 

H(0) 

R(1) 

R(2> 

R(3) 

R(4) 

H(5) 

R 

1 

1 

1 

1 

1 

1 

1 

1 

JL 
0 

I 

l 

I 

I 

I 

i 

JJ_ 

0 

0 

1 

1 

1 

1 

1 

J_ 
0 

1 

1 

2 

2 

2 

2 

JL 
0 

0 

0 

0 

1 

1 

1 

JL 
0 

0 

I 

l 

i 

I 

i 

JL 
0 

0 
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The iterative procedure from R to R can be expressed in t e rms of the follow-
ing equations which are to be applied successively for n = 19 29 39 • • • in that order . 

R(k)(n) = R ^ ^ & i ) , if n £ m a k , 

R(k)(n) = R( k _ 1 ) (n) + R( k ) (m)9 if n = mafe . 

For example we have, since a4 = 59 

R(4)(20) = R(3)(20) + R(4)(4) = 0 + 2 = 2 , 

R(4)(21) = R(3)(21) = 0 . 

Special cases of interest a re obtained if a. = p, , then, of course, R(n) = 1 since 
the representation is unique; if a, = k9 then R(n) denotes the number of factorizations of 
n into integers; if a, = k2, then R(n) denotes the number of factorizations of n into pe r -
fect squares; and if a, = p L then R(n) is the character is t ic function for squares . 
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5. SOME FURTHER DIRECTIONS 

The sequence of lucky numbers has been generated by a sieve technique and some of 
the propert ies of this sequence have been ovtained [4 , 6 ] . The question concerning the num-
ber of distinct representations of n as a produce of lucky numbers can be approached by 
means of Sec. 4. A mixed technique of alternately sieving and summing which will generate 
the sequence of k powers is due toMoessner [8 ] ; this is discussed and further references 
a re given in a recent paper by C. T. Long [7]. Beginning with V. Brun [2.] techniques in-
volving double sieving and other modifications have been used to study the twin prime prob-
lem, the Goldbach conjecture, and other problems. An interesting art icle by David Hawkins 
[ 5] on the sieve of Eratosthenes, random sieves, and other mat ters is well worth consulting. 
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FIBONACCI NOTE SERVICE 

The Fibonacci Quarterly is offering a service in which it will be possible for i ts readers 
to secure background notes for ar t ic les . This will apply to the following: 

(1) Short abstracts of extensive resu l t s , derivations, and numerical data. 
(2) Brief ar t ic les summarizing a large amount of research. 
(3) Articles of standard size for which additional background material maybe obtained. 
Art icles in the Quarterly for which this note service is available will indicate the fact, 

together with the number of pages in question. Requests for these notes should be made to 
Brother Alfred Brousseau 
St. Maryfs College 
Moraga, California 94574 

The notes will be Xeroxed. 
The price for this service is four cents a page (including postage, mater ia ls and labor.) 



TOPOLOGICAL INDEX AND FIBONACCI NUMBERS 
WITH RELATION TO CHEMISTRY 

HARUO HOSOYA 
Department of Chemistry, Ochanomszu University, Bunkyo-Ku, Tokyo 112, Japan 

INTRODUCTION 

This paper deals with the discussion on the graphical aspects of the Fibonacci numbers 
through the topological index [l] which has been defined by the present author for non-
directed graphs . 1 

A graph G consists of points (vertices or atoms) and lines (edges or bounds) [2 , 3 ] . 
We are concerned with such connected non-directed graphs that have no loop (a line joining 
to itself) and no multiple lines (double or triple bonds). An adjacency matrix A for graph 
G with N points is a square matrix for the order N with elements 

...V ) 1 if the points i and j a re neighbors, 
ij I 0 otherwise . 

The matr ix character is independent of the way of the numbering of the points. A charac te r -
istic polynomial or a secular polynomial P(X) is defined as2 

(2) P(X) = d e t | A + XE| = £ ) b ^ " 1 , 
i=0 

where E is a unit matr ix of the order N and X is a scalar variable. 
Consider a ser ies of path progressions { S N } , for which P(X) can be expressed as 

(see [4]) 

(3) P(X) ^ E ^ ^ k ^ " 2 " ' 

where N is the number of points and m is [ N / 2 ] . Examples are shown in Table 1 on the 
following page. 

Or ig inal ly this idea came out quite independently from other works especially published in 
mathematical journals. However, thanks to the communications from the colleagues in this 
field, several important papers were found to be relevant to this problem. In this paper the 
relevant papers will be cited as many as possible. 

Al ternat ive definition N 
(2f) PCX) = (-1) det | A - XE | 
can be chosen, which, however, makes no difference in the following discussion. 

255 
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Table 1 

N 

1 
2 
3 
4 
5 
6 
7 
8 

G(SN) 

• 
— 

• — 

k = 

/ 

(" 

= 0 

1 
1 
1 
1 
1 
1 
1 
1 

, \ 
; k ) 

1 

1 
2 
3 
4 
5 
6 
7 

1 = p(G,k) 

2 3 

.1 
3 
6 1 

10 4 
15 10 

4 

1 

m 

] C p ( G ' k ) 
k=0 

" Z = f N 

1 
2 
3 
5 
8 

13 
21 
34 

On the other hand, from the combinatorial theory we know the following relation under 
the name of Lucas (see £5, 6 ] ) . 

m 

(4) 
IN 

k=0 
N 2-r \ k ) ' 

where fN is the N Fibonacci number, which is defined as 

f0 = h = 1, * 
(5) 

fN = f N - l + fN-2 ( N = 2 ' 3 ' - " > ' 

The sums of the absolute values of the coefficients of the character is t ic polynomial for the 
graph \ S N } form the Fibonacci se r i es . This is not new. Turn Table 1 counter-clockwise 
by 45 degrees , and we get the Pasca l ' s triangle or the pyramid of binomial coefficients, 
from which the Fibonacci numbers can be obtained by adding the coefficients diagonally (just 
the reverse of the above procedure! ) . (See [7] . ) 

Let us consider the physical meaning of the combination I Z ) - Consider a group 
of N - k points which are l inearly arranged as in Fig. l a . Choose an arb i t rary set of k 
points (black ci rc les) , place k additional points (crosses) one-by-one below them, and join 
all the N points together by drawing consecutive N - 1 lines as in Fig. lb to get a path p ro -
gression with N points, or N - 1 l ines. This means that the value I 7 I is the number 
of ways in which k disconnected lines (vertical lines in Fig. lb) are chosen from graph £L.. 
* Alternative definition can be used as fi = f2 = 1-
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N-k points 
(a) 

N points 

VV 1 
(v) 

(b) 

Fig. 1 Physical Meaning of 

TOPOLOGICAL INDEX [l] 

Encouraged by the simple relation above 9 let us develop a more general theory. Define 
a non-adjacent number p(Gsk) for graph G as the number of ways in which k disconnected 
lines a re chosen from G. A Z-counting polynomial Q(Y) and a topological index Z are de -
fined respectively as 

m 
(6) Q(Y) = J^ p(G,k)Yk 

k=0 
and 

m 

(7) Z = X p ( G ' k ) = Q(1) ' (See W B ) 

k=0 

Note that for the ser ies of path progressions {S N } in Table 1, the p(G,k) number is nothing 
else but I " , namely, the absolute value of the coefficients of the X " te rm in the 
characteris t ic polynomial P(X). Thus we get 

(8) Z = fN 
N or for brevity 

(80 SN - fN . 

Fur ther , for any tree graph with or without branches but with no cycles, the following 
relation can be proved by t e rm- to - te rm inspection of the expansion of det ,|A+ XE | intoP(X): 

(9) P(X) = J ] ( - l ) k p(G,k)X N " 2 k (G G Tree) . 

k=0 

Examples are shown in Table 2. More comprehensive tables of p(G,k) and Z numbers 
have been published for smaller t ree [8] and non-tree [9] graphs. For non-tree graphs, Eq. 
(9) no longer holds but P(X) can be expressed as the sums of the contributions like the right-
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Table 2 

G 

-J_ 
! 
1 
1 

_ ' _ _ 

| 
_U_ 
_ ! _ _ _ 

I _ _ 

k 
] 

= 0 

1 

1 

1 

1 

1 

1 

1 

1 

p(G,k) 
1 

3 

4 

5 

4 

5 

5 

5 

5 

2 

2 

3 

4 

5 

5 

3 

1 

Z 

4 

5 

6 

7 

9 

10 

11 

12 

hand side of Eq. (9) of subgraphs of G. (See [10, 11].) As well as the characteris t ic poly-
nomial [12, 13] the topological index does not uniquely determine the topology of a graph. 
However, i t is generally observed that the Z value gets smal ler with branching and la rger 
with cyclization. Thus for a group of graphs with the same number of points, Z roughly 
represents the topological nature of the graph. For evaluating the Z values of l a rge r and 
complicated graphs, the following composition principles a re useful. They can be proved by 
the aid of Q(Y). (See [ l , 10].) 

COMPOSITION PRINCIPLES (CP) 

Composition Principle 1 (CP1). (See [ l ] . ) Consider a graph G in Fig. 2a and choose 
from it a line i , (1) Delete line Jt and we get subgraphs L and M. (2) Delete all the 
l ines in L and M that were incident to i and we get subgraphs A, B, ' •e , F . Then the 
topological index Z for G can be obtained as 

(10) G = L X M + A X B X C X D X E X F . 

For applying this principle there i s no restr ict ion in the number of subgraphs incident to the 
chosen line i , since the Z values of a point graph (Sx) and a vacant graph (S0) a re both 
unity, 

(11) So = ^ = 1 . 

Application of CP1 to the terminsil line of graph SN gives the recursion formula 

( 1 2 ) SN = S N-1 + SN-2 ' 



1973] WITH RELATION TO CHEMISTRY 

<S> 

(ffi 

( < 

© 

SM-© 
ran 

o 



260 TOPOLOGICAL INDEX AND FIBONACCI NUMBERS [Oct. 

Comparison of Eqs. (11) and (12) with Eq. (5) yields Eq. (8). 
For graph SN with even N (= 2n) we get the relation 

(13) S0 = S2 + S2 -
2n n n-1 

by choosing the central line as i . This is the graphical equivalent of the relation for the 
Fibonacci numbers [5-7] 

(14) fQ = f2 + f2 , . 
2n n n -1 

Similarly, we get 
(15) S 0 x l = S (S ^ + S J 

2n+l n n+1 n -1 
or 
(16) f„ ^ = f (f J.1 + f n ) . 

2n+l n n+1 n - 1 7 

Corollary to CP1. If the line to be deleted is a member of a cycle, the deletion gives 
only one subgraph L as in Fig. 2b. In this case , we have 

(17) G = L + M . 

By use of this corollary the Z values for the ser ies of N-membered cycles (N-gon, 
abbreviated as C N ) a re obtained as in Table 3. It is apparent from Eq. (17) that 

<18> C N = S N + SN-2 

and the se r ies of these Z values form what are known as the Lucas sequences { g N } ; namely, 
(see [5]) 

C N = % 

(19) gi = 1. S2 = 3 

g N = g N - l + gN-2 ' 

Then Eq. (18) is equivalent to the relation 

(20) % = fN + hl-i • 

From the correspondence relation of Eq. (19), a monogon and a digon may be defined, r e -
spectively, as a point graph Ct (= St) and a graph C2 with two points joined by two lines 
(see Table 3).* 

*By extending this definition a topological index for a graph with multiple bonds can be defined. 
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N 

1 

2 

3 

4 

5 

6 

7 

8 

WITH RELATION TO CHEMISTRY 

G(CN) 

# 

o 
A 
• O 
O 
O 
O 

k = 0 

1 

1 

1 

1 

1 

1 

1 

1 

Composition Principle 2 (CP2). 

Table 3 

p(G5k) 
1 2 3 4 

2 

3 

4 

5 

6 

7 

8 

2 

5 

9 2 

14 7 

20 16 2 

Z 

1 

3 

4 

7 

11 

18 

29 

47 

(See [8].) Consider a graph G ir 
from it a point p. The number of the lines incident to poiiit p should be at least two but not 
necessar i ly be six as in this example,, (1) Divide them into two groups. In this case , we 
chose the division as (a,b,c) and (d,e9f). (2) Delete a group of lines a, b and c in G, 
and we get subgraphs A, B, C and M. (3) Delete another group of lines d9 e and f in 
G, and we get subgraphs D, E , F and L. (4) Delete both of the groups of lines a, b , • • • , 
f in G, and we get subgraphs A, B, • • • , F . With these subgraphs we have 

(21) G = AXBXCXM + DXEXFXL - AXBXCXDXE XF . 

Composition Principle 3 (CP3). Further consider a graph G in Fig. 4a in which two 
subgraphs A and B are joined by path progression Sg, i . e . , three consecutive l ines. 
(1) Delete a line from S3 and rejoin the two resultant subgraphs to get L. (2) Delete one 
more line from S2 in L and rejoin the subgraphs to get M. The Z value for G is given 
by (see Fig. 4) 

(22) G = L + M . 

This is also applied to" the case in which A and B are joined with two paths to form a 
cycle to give the relation (19) (Fig. 4b). 

RECURSIVE SEQUENCES 

A recursive sequence { a ^ } is defined as 
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k 
(23) *N = E C i V i • 

i=l 
Both of the Fibonacci and Lucas sequences a re the special cases with C4 = C2 = 1, C. = 0 
(i > 2) but with different initial conditions. One can find a number of graphical ser ies whose 
topological indices form recursive sequences as in Fig. 5. They can be proved by the com-
position principles. More interesting graphical sequences might be discovered through the 
topological index. 

The most important point in this discussion is that a number of relations in the r ecu r -
sive sequences can be inspected and proved by applying the composition principles to the 
graphical equivalent of the sequences. 

APPLICATION TO CHEMISTRY 

Let us confine ourselves to a class of chemical compounds, saturated hydrocarbons, 
whose topological structure is expressed as a structural formula. An example is shown in 
Fig. 6 for 2-methylbutane (a). Since carbon (C) and hydrogen (H) atoms, respectively* have 
te t ra - and mono-valencies, for describing the whole structure only the carbon atom skeleton 
(b) is sufficient, which is equivalent to graph (c). The se r ies of graphs in Table 1 are read 
in chemical language as methane, ethane, propane, butane, etc. They form a family of 
normal paraffins. Thus the topological indices of normal paraffins are shown to form the 
Fibonacci sequences. Table 3 indicates that the topological indices of cycloparaffins (cyclo-
propane • . . ) form the Lucas sequences. 

As was discussed ear l ie r the topological index does not uniquely determine the topology 
of the molecular s t ructure. For example, normal butane (the 4 entry in Table 1) and neo-
pentane (the 2 n entry in Table 2) both have Z = 5. However, it was shown that the topologi-
cal index can be used as a rough sorting device for coding the complicated s t ructures of 
chemical compounds [14]. 

It was also shown that the topological index of a saturated hydrocarbon is correlated well 
with some of the thermodynamic quantities such as boiling point through i ts entropy, which is 
a measure of the degree of freedom in internal rotations of a flexible molecule [15]. 

Characterist ic polynomials appear in the application of quantum mechanics to the study 
of the electronic structure of molecules. The simplest method is the H'uckel molecular orbital 
method, in which the problem is reduced to obtaining the solution of a secular equation 
P(X) = 0 (see [10, 16, 17]). 

SYNOPSIS 
Define a topological index Z as the sum of the non-adjacent number, p(G,k), which is 

the number of ways in which such k disconnected lines are chosen from graph G. The Z 
values for the path progressions {S N } form the Fibonacci sequences, while those for the 
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H 

H 
I 

H—C 
I 
H 

H—C-H H 
— C -

I 
H H 
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C—H 
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H 

(a) (b) 

(c) 
Fig. 6 Structure and Graph of 2-methylbutane 

ser ies of cycles { C N } the. Lucas sequences. Many relations for them can be proved by the 
aid of the composition principles for Z. Application of Z to chemistry is discussed. 
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BOOK REVIEW: I CHING GAMES 

MARJORIE BICKNELL 
A. C. Wilcox High School, Santa Clara, California 

I Ching Games of Duke Tan of Chou and C. C. TTung, by H. Y. Li and Sibley S. 
Morri l l , The Cadleon P r e s s , P. O. Box 24, San Francisco, California 94101: 1971. 138 
pages plus game pieces. $5.95. 

The I Ching Games, whose names translate as "The Wisdom Plan" and "The Beneficial 
to Wisdom Plan , " a re considered among the most important ever written, since they are 
thought to improve the player 's ability to learn while advancing his psychological development. 
The first game is also called the Tangram, being a seven-piece dissection of a square into a 
smal ler square, five isosceles right tr iangles, and a parallelogram, which can be r e -
assembled into an infinite variety of recognizable pictures. The 15-game is a dissection of 
a square to also include the c i rc le , and the problems become jigsaw puzzles of a thousand 
delights. 

The authors, as well as hoping to re-introduce the Tangram game and introduce the 15-
game to the West for the f irs t t ime, give a history of the games and describe their relation-
ship to the I Ching, the ancient Chinese Book of Change, the oldest book now known. 



THE NUMBER OF SDK'S IN CERTAIN REGULAR.SYSTEMS 

DAVID A. KLARNER 
Stanford University, Stanford, California 

ABSTRACT 

Let (als • • • , a k ) = a denote a vector of numbers , and let C(u,n) denote the n X n 
cyclic matr ix having (als • • • , a k , 0, • • • , 0) as its first row. It is shown that the sequences 
(det C(a,n) : n = k9 k + 1, • . . ) and (per C(a,n) : n = k, k + 1, • • •) satisfy l inear homo-
geneous difference equations with constant coefficients. The permanent, per C, of a matr ix 

s i s n 7T C is defined like the determinant except that one forgets about (-1) where 77 is a 
permutation. 

INTRODUCTION 

While she was a student at Lowell High School, Beverly Ross [2] generalized an exer-
cise given by Marshall Hall, J r . [ l ] , and found an elegant solution. Hallfs exercise was 
posed in the context of systems of distinct representat ives, or SDRfs for short. Let 
A = (Al9 • • • , A m ) denote an m-tuple of se t s , then an m-tuple (al5 • • • , a m ) with a. €= A. 
for i = 1, • • • , m is an SDR of A if the elements al9

 8 •e , a m are all distinct. Hall 's ex-
erc ise is the case m = 7 of the following problem posed and solved by Ross: Let A. = { i , 
i + 1, i + 2/ denote a 3-set of consecutive residue c lasses modulo m for i = 1, • • • , m. 
The number of SDR!s of (Ai : i = 1, e • e , m) is 2 + L m where L m is the m t h term of the 
Lucas sequence 1, 3, 4, 7, 11, — ° defined by Lj = 1, L2 = 3 and L n = L

n _ i + L n _ 2 for 
n = 3, 4, *' •. For example, it follows from this resul t that the solution to Hall 's exercise 
is 2 + L7 = 31. 

In this note we give a new proof of Ross1 theorem, and indicate a generalization. 

ROSS1 THEOREM 

We shall require a simple result which appears in Ryser [3]; namely, the number of 
SDR!s of an m-tuple B* = (Bl s • • • , B m ) of sets B ^ • • • , B m is equal to the permanent of 
the incidence matr ix of 13. Since this fact is an immediate consequence of definitions, we 
give them here . Let m and n denote natural numbers with m < n, and let Bl 9 • • • , B m 

denote subsets of { 1, • • • , n} . The incidence matrix [b(i, j)] of "B = (Bt, • • • , B m ) is 
defined by 

i 1 , if j G B. , 
b ( i ^ = J 0 , if j $ B . , 

for i = 1, • • • , m and j = 1, • • * , n. The permanent of an m X n matrix [r(i,j)] is de-
fined to be 
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per [r(i,])] = V \ ( i , 7 r l ) r ( 2 , t f 2 ) ••• r(m,7Tm) , 

where the index of summation extends over all one-to-one mappings 77 sending \ 1 , • • • , m} 
into ( l , * • • , n} . 

The incidence matrix C of the m-tuple "K = (Al9 • • • , A m ) of sets Aj, • • • , A 
considered by Ross is an m X m cyclic matrix having as i ts first row (1 ,1 ,1 ,0 ,* • • ,0); 
that i s , the first row has its first three components equal to 1 and the res t of its components 
equal to 0. For example, the incidence matrix for Hall 's exercise is 

cf = 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

1 

1 

1 

Ross ' Theorem is equivalent to showing that per C 
three sequences of ma t r i ces : 

D3 

1 1 1 ' 
O i l 
1 0 1 

D4 

1 1 1 0 " 
0 1 1 1 
0 0 1 1 
1 0 0 1 

= 2 + L . To do this, we define 

D, 

1 1 1 0 0 

0 1 1 1 0 

0 0 1 1 1 

0 0 0 1 1 

0 0 0 

Eo = 
1 1 0 
1 1 1 
0 1 1 

Fa = 
1 1 1 
0 1 1 
0 0 1 

1 

1 

0 

0 

1 

1 

1 

0 

0 

1 

1 

1 

0 

0 

1 

1 

F, = 

1 1 1 0 
0 1 1 1 
0 0 1 1 
0 0 0 1 

FR = 

[1 
1 

0 

0 

L° 
[1 

0 

0 

0 

L° 

1 

1 

1 

0 

0 

1 

1 

0 

0 

0 

0 

1 

1 

1 

0 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

0 

1 

1 

1 

0 

0 

0 

0 

1 

1 

0 

0 

1 

1 

1 

Let per C = c ^ m m 
ing 

per C = c , per D = d , per E = e , and per F = f . We use the follow-F m m ^ m m ^ m m ' * m m 
propert ies of the permanent function. F i r s t , the permanent of a 0-1 matrix is equal to 
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the sum of the permanents of the minors of the lf s in a row or in a column of the matr ix . 
Second, the permanent of a matr ix is unchanged by permuting the rows or by permuting the 
columns.of the matrix. Third, the permanent of a matr ix having a row or column of 0f s is 
equal to 0. Fourth, the permanent of a square matr ix is equal to the permanent of the t r an s -
pose of the matrix. Expanding per C in te rms of the minors of the V s in the f irst row 
of C , we find m 
(1) c m = 2 d m - l + e m - l ^ = 4 , 5 , • • • ) • 

Expanding per D in te rms of the minors of the l f s in the f irst column of D , we find 
° m m 

(2) + f ., • ,. _, (m = 4, 5, • • •) m m - 1 m - 1 ' 

It is easy to show that 
(3) e = e n + e _ (m = 4, 5, • • •) * m m - 1 m-2 J ' ' ' 

(4) m - 1 

Using the system (l)-(4) it is easy to show by induction that e 
th 

F ^ , where F m+1 m 
denotes the mulx term of the Fibonacci sequence ( 1 , 1 , 2 , 3 , • • • ) , d = 1 + F , and c « 

2 + 2F + F 
m - 1 m 

2 + F - + F ^ m - 1 m+1 2 + L for m m 3, 4, 

A GENERALIZATION 

Let a = (als • • • , a^) denote a k-tuple of numbers and let T denote a k X (k - 1) 
matr ix having all of it's entr ies in the set {o, a.u • • • , a ^ } . For each n ^ k define an n X n 
matr ix C(T,n) as follows: 

C(T,n) = 

n 1 

0 

T2 

\ 

a4 

0 

a k 

ai 

The first k - 1 columns of C(T,n) have the upper triangular half Tj of T in the upper 
right corner , and the lower triangular half T2 of T in the lower left corner. All other en-
t r ies in the first k - 1 columns of C(T,n) are 0. The remaining n - k + 1 columns of 
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C(T,n) consist of n - k + 1 cyclic shifts of the column (a^-, • • • , a2, al9 0, • • • , 0). 
Given a k X (k - 1) matr ix T having all of its entr ies in {o, a l s • • • , a^} and hav-

ing (t^, • •• , t ^ ^ ) as i ts top row, we expand per C(T,n) by the minors of elements in the 
top row of C(T,n). It turns out that these minors always have the form C(T., n - 1) where 
T. is a k x (k - 1) matrix having all its entr ies in (o , a4, • • • , a^} . Thus, there exist 
k X ( k - 1) matr ices T, • • • , T having all their entr ies in {o, a1} • • • , a j j such that 

k 
(1) pe rC(T ,n ) = " / t . per C(T., n - 1) , 

i=l 

where t = a, . (If we are dealing with determinants, (-1) must be put into the summand.) 
We have an equation like (1) for each matrix T; hence, we have a finite system of equa-

tions if we let T range over all possible k X (k - 1) matr ices with their entr ies in {o, al9 

• • • , a^}. The existence of this system of difference equations implies the existence of a dif-
ference equation satisfied by the sequence (per C(T,n) : n = k, k + 1, • • •) for each fixed 
matrix T. (This is also true for the sequence (det C(T,n) : n = k, k + 1, • • • ) . ) A conse-
quence of the foregoing is the result proved by Ross, but evidently much more is t rue. 

Let rl9 • • • , r n denote natural numbers with 1 = rA
 < • • • < r n = k, and for each 

natural number m ^ k define the collection 3" = { A 1 S • • • , A m } of sets Ai of residue 
c lasses modulo m where 

A. = { r t + i, • • • , r n + i} . 

Let a(m) denote the number of SDR!s of A , then the sequence (a(m) : m = k, k + 1, • • •) 
satisfies a l inear homogeneous difference equation with constant coefficients. The proof of 
this fact follows the proof of Rossf Theorem given in the preceding section. 

Note that our existence theorem has a constructive proof, but we do not have an explicit 
expression for a difference equation satisfied by the sequence (per C(T,n) : n = k, k + 1, • • • ) . 
This gives r i se to a host of interesting research problems. For example, give a difference 
equation satisfied by the sequence (per C(k,n) : n = k, k + 1, • • •) where C(k,n) is the cy-
clic n x n matrix having as its first row (1, • • • , 1, 0,. • " , 0) consisting of k lTs fol-
lowed by n - k 0fs. 
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ROOTS OF FIBONACCI POLYNOMIALS 
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Usually the roots of polynomial equations of degree n become more difficult to find 
exactly as n increases , and for n ^ 5, no general formula can be applied. But, for c e r -
tain c lasses of polynomials, the roots can be derived by using hyperbolic trigonometric func-
tions. Here, we solve for the roots of Fibonacci and Lucas polynomials of degree n. 

The Fibonacci polynomials F (x), defined by 

Ft(x) = 1, F2(x) = x, Fn + 1(x) = xFn(x) + Fn_1(x) , 
and the Lucas polynomials L (x), 

Li(x) = x, L2(x) = x2 + 2, Ln + 1(x) = xLn(x) + L ^ f c s ) , 
have the auxiliary equation 

Y2 = xY + 1 

which a r i ses from the recurrence relation, and which has roots 

/nX x + 's/ x2 + 4 Q x - N/ x2 + 4 (1) a = s , P = ~ 9 

It can be shown by mathematical induction that 

n _n 
"n1"' a - B ' —nv (2) F (x) = 2-^4- • Ln(x> = «n + ^ 

The first few Fibonacci and Lucas polynomials are given in Table 1. Observe that, when 
x = 1, F (x) = F and L (x) = L , the n Fibonacci and Lucas numbers, respectively, 
See [1] for an introductory article on Fibonacci polynomials. 

Now, we develop formulae for finding the roots of any Fibonacci or Lucas polynomial 
equation using hyperbolic functions defined by 

sinh z = (e - e" ) /2 , cosh z = (e + e" )/2 
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Table 1 
Fibonacci and Lucas Polynomials 

F L (x) 
n n n 

x* + 2 
x3 + 3x 
x4 + 4x2 + 2 
x5 + 5x3 + 5x 
x6 + 6x4 + 9x2 + 2 
x7 + 7x5 + 14x3 + 7x 
x8 + 8x6 + 20x4 + 16x2 + 2 
x9 + 9x7 + 25x5 + 30x3 + 9x 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
X 

X 2 

X 3 

X 4 

X 5 

X 6 

X 7 

X 8 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

1 
2x 
3x2 + 1 
4x3 + 3x 
5x4 + 6x2 + 1 
6x5 + 10x3 + 4x 
7x6 + 15x4 + 10x2 + 1 

which satisfy, among many other identities, 

cosh2z - sinh2 z = 1 

cosh iy = cos y, sinh iy = i sin y 

If we let x = 2 sinh z, then v x2 + 4 = 2 cosh z, and from (1), a = cosh z + sinh z = 
e while jS = sinh z - cosh z = - e " . Then, 

Thus 

(3) 

n fln zn / lXn -nz 
F (x) = a - g = e - <-» e 

a - P e
z + e " z 

T / v n , 0n nz , / lVn -nz 
L (x) = a + j8 = e + (-1) e 

p /v\ = sinh 2nz , , = cosh (2n + l ) z 
J 2 n w c o s h z ' J 2 n + l w cosh z 

L 2 / v = 2 cosh 2nz, L (x) = 2 sinh (2n + l)z . 

Now, clearly the polynomial equation equals zero when the corresponding hyperbolic 
function vanishes. For z = x + iy (see [2] , p. 55) 

I sinh z |2 = sinh2 x + sin2 y 

|cosh z |2 = sinh2 x + cos2 y . 

Thus, since for real x, sinh x = 0 if and only if x = 0, this implies that the zeroes of 
sinh z are those of sinh iy = i sin y, and the zeroes of cosh z are the zeroes of cosh iy = 
c o s y . Thus, we can easily find the zTs necessary and sufficient for F (x) and L (x) to 
be zero. 
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Example. F2n(x) = 0 implies that sinh 2nz = 0, cosh z ^ 0, so that sin 2ny = 0, 
cos y i 0, so 2ny = k77 and z = iy. Thus, x = + 2i sin k77/2n, k = 0, 1, 2, • •• , n - 1. 
Specifically, the zeroes of F6(x) are given by x = +2i sin k77/6, k = 0, 1, 2, so that x = 
0, ±i, ±iN/3. As a check, since F6(x) = x(x2 + i)(x

2 + 3), we can see that the formula is 
working. 

F 2 1(x) = 0 only if cosh (2n + l)z = 0, cosh z f 0, or when cosh (2n + l)iy = 
cos (2n + l)y = 0, cos y f 0. Then, (2n + l)y = (2k + l)7r/2, SO that 

. i(2k + 1)77 
Z l y (2n + 1)2 ' 

so that 
, 0 . . / 2 k + l \ 77 , A T -, 

x = +2i sm I , J • rr , k = 0, 1, • •• , n - 1 . 

To summarize, taking x = 2 sinh z leads to the following solutions: 

F2n(x) = 0 : x = ± 2i sin —• , k = 0, 1, • • • , n - 1 

F 2 n + 1 (x) = 0 : x = ± 2i sin f | ^ 4 J • ^ , k = 0, 1, • • • , n - 1 / 2 k + l \ 77 
"^2n + iy 2 : 

/2k + l \ £ 
\ 2n j ' 2 : L2n(x) = 0 : x = ± 2i sin I—57— ) • - , k = 0, 1, • • • , n - 1 

k7T 
L 2 n + l ( x ) = 0 : X = ± 2 i s i n 2 ^ T T ' k = 0, l , . . - . n - l . 

Compare with Webb and Pa rbe r ry [3]. 
Suppose that, on the other hand, we s tar t over again with x = 2i cosh z so that 

N/ x2 + 4 = 2i sinh z, and a = i e z , /3 = ie" Z . Then, by (2), 

- / zn - z n \ / 
^ . v .n-11 e - e \ _ .(n- 1) sinh nz 

sinh z \ e - e / 

(4) 
L (x) = enz + e " n z = 2 - i n c o s h n z . n 

Now this looks better. For the Fibonacci polynomials, F (x) = 0 when sinh nz = 0, sinh z 
^ 0. Since sinh nz = 0 if and only if sin ny = 0 or when z = iy, we must have ny = ±k77 
so that z = ±ik77/n. Since i cosh iy = i cos y, x = 2i cosh z = 2i cos k77/n, k = 1, 2, • • • , 
n - 1 . 

Now, for the Lucas polynomials, L (x) = cosh nz = 0 if and only if cos ny = 0, or 
when ny is an odd multiple of 77/2, and again z = iy, so that x = 2i cosh z becomes 
x = 2i cos (2k + l)77/2n, k = 0, 1, • • • , n - 1. 

To summarize, taking x = 2 cosh z leads to the following solutions: 
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F (x) = 0 : x = 2i cos — k = 1, 2, • * * , n - 1 
n n 

L (x) = 0 : x = 2i cos ( 2 k
0

+ 1)7T , k = 0, 1, • • • , n - 1 n 2n 

Actually, there is another way, using F 0 (x) = F (x)L (x). Now, if we can solve 
aXi n n = 0, then the roots of L (x) a re those n 

Please note how this agrees with our resul ts : 
F (x) = 0, then the roots of L (x) a re those roots of F 9 (x) which are not roots of F (x) m n uW n 

F2 n(x) = 0 x = 2i cos ^ , k = 1, 2, ' ' • , 2n - 1 

Fn(x) = 0 x = 2i cos %& , j = 1, 2, • • • , n - 1 

Ln(x) = 0 x = 2i cos ( 2 j
2

+
n

1 ) 7 r , j = 0, 1, • • • , n - 1 . 

Thus the roots separate each other. 
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1. INTRODUCTION 

Generating functions provide a starting point for an apprentice Fibonacci enthusiast who 
would like to do some research. In the Fibonacci P r imer : P a r t VI, Hoggatt and Lind [ l ] d i s -
cuss ordinary generating functions for identities relating Fibonacci and Lucas numbers. Al-
so, Gould [2] has worked with generalized generating functions. Here, we use exponential 
generating functions to establish some Fibonacci and Lucas identities. 

2. THE EXPONENTIAL FUNCTION AND EXPONENTIAL GENERATING FUNCTIONS 

The exponential function e appears in studying radioactive decay, bacterial growth, 
compound interest , and probability theory. The transcendental constant e = 2.718 is the 

x base for natural logarithms. However, the part icular property of e that interests us is 

\A v3 
M\ „x i j . x , x , x , J x . V^ x 

n=0 

Then 

e - l + j? + - g j - + ~ ^ j - + 4 J 

and algebra shows that 

(2) e ^ - e ^ = ( l - l ) + ^ ^ + i 2 4 ^ + ^ - ^ + ... . 

To relate (2) to Fibonacci numbers , if F n is the n Fibonacci number defined by 
Fi = F2 = 1, F x 1 = F + F nf and if a = (1 + Vl>)/2, p = (1 - N/"5)/2, then it is well 

1 c n+1 n n-1 
known that 

(3) F n = (<*n - pn)/(a - j3) . 

Thus, dividing Eq. (2) by (a - p) gives 

a t fit F ^ F2t2 F81? F4t^ * n 
1! £~J n n! 

n=l 
a - P 1! 2! 3! 4! 
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t° since F0 = 0, we can add the te rm F0 -^ and write the following exponential generating 
function for Fibonacci numbers: 

OO 

at i3t ,n 
(4) e - j = y F L . 
v a - /3 Z-* n n! 

n=0 
An elementary companion to the Fibonacci exponential generating function generates 

Lucas number coefficients* The Lucas numbers a re defined by Li = 1, L2 = 3, L + L -
J l * n n -1 

= L - , and have the property that 
(5) L n = an + /3n . 

If the power ser ies for e and e are calculated and then added t e rm-by- te rm, the resul t 
i s 

oo 

(6) e + e r = > L -7 . 
Z—t n n! 
n=0 

For a novel use for these elementary generating functions, the reader is directed to [3] 
for a proof that the determinant of eQ is e n , where Q = ( - 0 J . 

3. PROPERTIES OF INFINITE SERIES 

We l is t without proof some propert ies of infinite se r ies necessary to our development 
of exponential generating functions. 

Given 

^ t n ^ t n 
A(t) = > a i , . and B(t) = > b ^ , L^J n n! ' Z—i n n! 

n=0 n=0 
it follows that 

A(t) B(t) 

(7) 

= E ( EuKVklnT ' 
n=0 \ k=0 X ' I 

A(t)B(-t)=E(L(-l)n-k(n
kKUS 

n=0 \ k=0 ^ ' / 

Thus, if B(t) = e , then b = 1 for all n, and 

/ n 

A(t) ef ^ ' -E s(jk)S 
n=0 \ k=0 X ' / 
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To help the reader with the double summation notation, let 
oo oo 

T-^ tn \ - ^ t n A ( t > = E n If «* B^ = E If ° 
n=0 n=0 

Then 

/ n 

A(t)B(t) = ~ 
n=0 \ k = 0 X ' / 

-(j>&*((!)-(i>)&*((!)-(0-(;>)i+-
oo oo 

t 4t2 ,. 2t v ^ t(2t)n V * 2 n t n + 1 

= 0 + ir+"2r + 'e' +te = E -V- = E -sr 
n=0 n=0 

V (n + D 2 n t n + 1 

- La (n + 1)! 
n=0 

OO 

£^ n! 

( " ) 

(na^V 

where 1 , I is the binomial coefficient, 

(A = n! 
1 k I k!(n - k)f 

4. EXPONENTIAL GENERATING FUNCTIONS FOR FIBONACCI IDENTITIES 

Generating function (4) and algebraic propert ies of a and /3, the roots of x2 - x - 1 = 
0, give us an easy way to generate Fibonacci identities. Useful algebraic propert ies of a = 
(1 + is/T>)/2 and 0 = (1 - \l"5)/2 include: 

. o?/3 = - 1 a2 = a + 1 F n = (an - /3n)/(a - /3) 

a - j3 = ^5 
a

m = a F + F L = a
n + ^ n 

j_ o -, HI m - 1 n r 

a + p = 1 

Take B(t) = e t and A(t) = ( e a t - e^)/(a - 0). (See Eqs. (1) and (4).) Then their 
se r ies product A(t) and B(t) gives 
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tn e(a+i)t _ e(P+l)t Qah _ J$h 
^ l i L r l k / ' k / n ! a - p or - 0 
n=0 \ k = 0 X 7 

F, 

(8) 
tJ 

2n 
n=0 

n 
zLr F 2n n! 

On the left, we used ser ies property (7). On the right, we multiplied A(t) B(t) and used 
algebraic propert ies of a and p9 and then combined our knowledge of Eqs. (1) through (4). 
Lastly, equating coefficients of t /n ! gives us the identity 

k=0 X ' 

If we follow the same steps with B(t) = e~ and A(t) = (e^ - <s )/{a - p), then 

n=0 \ k=0 w / 

(9) °° 
-/3t -a t „ ^ ,n 

S^T/5 2 ^ ("1} Fn nT ' 
n=0 

The identity resulting from (9) is 

2 <Wi) 
k=0 X ' 

F. = ( - l ) n + 1 F k n 

The technique, then, is this: Take B(t) and A(t) as simple functions in terms of 
powers of e. Follow algebra as outlined in Eqs. (1) through (7), and equate coefficients of 
n - t cP't j3 t̂ 

t / n ! The reader is invited to use B(t) = e" and A(t) = (e - eH )/(a - p) to derive 

F O 1 = F 2k n 
k=0 

For an identity relating Fibonacci and Lucas numbers , let 

A(t) = (eat - ePt)/(a - p) , B(t) = e°* + ePt 
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Since B(t) is the generating function for Lucas number coefficients (see Eq. (6)), computing 
the ser ies product A(t) B(t) gives 

00 / n \ oo 
/ / \ \ , n 2at 281 j i 

<"> 2 ( 2 ( 0 r * L » - t h - '-^r-- E **. £r • 
n=0 \ k=0 / n=0 

yielding 

k=0 
. = 2 n F . k n 

Similarly, let A(t) = B(t) = (eat - ePt)/ifx - /3), leading to 

/ n 

n=0 \ k=0 / V ' 

e2at + e 2^ t _ 2 e t } 

(11) = ^ l ( 2 n L n - 2 ) L , 

n=0 

n 

E ( k ) F k F n - k = l ( 2 \ - 2 > ' 
k=0 

at Bt The reader should use A(t) = B(t) = e + eK to derive 

k=0 

ni, nin, 
To generalize, try combinations using e and e , such as 

Aft) = (ea fc - e^ *)/(« - /3), B(t) = e* t + eP l , 

which generalize Eq. (10) as follows: 

°o / n \ _ m, 0 0 m , °° 

E l X^fA \ t n _ e2a t - e2 / 3 t _ V n tn 

I Z - r l k J F m k L m n - m k ) n T STTjg ^ 2 F m n nT 
n=0 \ k=0 / n=0 

By taking Aft) = B(t) = (e - eP )/(a - 0), Eq. (11) becomes 
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00 / n \ / n r nHiA2 

V[y/n\F F V - ha *_«f ' 
Z-/1 Z-* I k / mk mn-mk I n ! 1 a - p 
n=0 \ k=0 X ' / \ 

- n m, 0 0 m, / m1/aiiiv, 
( n l ) = i C e 2 0 t + e2^ t - 2 e ( a ^ >*) 

OO 

= y ; i ( 2 n L - 2 L n ) ^ . 
A—/ 5 mn m n! 
n=0 

m, fim 
The generalization of (12) found by A(t) = B(t) = e^ + e^ is 

n=0 \ k=0 

00 / n \ 2 
/ / \ \ ,n m, 0m, * 

0 m, o/3m^. / m L O m u 
(12-) = e 2 " * + e2^ * + 2e ( " ^ } t 

OO 

= y > n L + 2 L n ) ^ —̂< mn m n! 
n=0 

The reader should now experiment with other simple functions involving powers of e. 
A suggestion is to use some combinations which lead to hyperbolic sines or cosines, which 
are defined in te rms of e. 

5. GENERATING FUNCTIONS FOR MORE GENERALIZED IDENTITIES 

To get identities of the type 

n 

k=0 
F = F 

k+r 2n+r 

Hi 
note that the r derivative with respect to t of A(t) is 

Z fn 
n+r n! 

n=0 

so that if A(t) = (eat + ept)/(a - p)t B(t) = e t , 

_ ^ / JL^ / n \ \ tn t r /e<*t _ /3t \ are(a+l)t ^ ( p + D t 
2-/ ( Z ) ( k ) Fk+r I ET = e Dt ( 6 a - J ) = 2 ^ I i3 G 

n=0 \ k=0 / X ' 

(13) „ r "2t RT Ph A 
=

 a e - P e = V* F L 
a _ j3 Z-f 2n+r n! 

n=0 
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all of which suggests a whole family of identities; e. g. , for 
4m, /D^m, , 

A(t) = (ea l - eP l)/(a - 0), B(t) = el , 

,n 4rm (a 4 m +l ) t 0 4 rm (/34m+l)t 
F I —- = a - ]3 e ^ 

4mk+r I n ! a - j3 
n=0 \ k = 0 

A 2m, 2 m , 0 2 m u . 2m, 2 m I / D 2 m u 
4rm a (a -f/3 )t p 4 rm a (a +/3 )t 

(14) = 2 2 — " P e a - p 

J2m x2mn+4mr n! 
n=0 
£ •£• »• 

From the other direction one can get identities of the type 

<*> m, Dm, (aF +F n )t (j3F +F n )t 

E ,n a t £ t v m m - 1 ' ^ m m - 1 ' 

^ t_ _ e - e r _ e - e 
mn n! ~ a - j3 a - j3 

n=0 
(15) 

, , <*F t j3F t \ °° / n • . n 

n=0 \ k=0 

Taking the r derivative of Eq. (15) leads to 

oo oo / n \ 

( 1 6 ) JLJ F mn+rm iTT = 2 ^ I 2 - M k I F m - 1 F m F k+rm J nf 
n=0 n = 0 \ k = 0 / 

Replace rm by s in Eq. (16) and compare with Vinson's resul t [4, p. 38], 
See also H. Leonard [5]. 
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NOTES ON BINOMIAL COEFFICIENTS: IV- PROOF OF A CONJECTURE OF GOULD 
ON THE GCD'S OF TWO TRIPLES OF BINOMIAL COEFFICIENTS 

DAVID SINGMASTER 
Polytechnic of the South Bank, London, and 

Institute Matepnatico, Pisa, Italy* 

Let n and k be integers, n ^ 2, and 1 — k — n - 1. Hoggatt has recently noted 
that 

Gould [ l] conjectures that \ / \ 

« » ( ( : : ;)• (- ' »)• (" i *)) • O C D((" ; ')• (« - ')• (* : 0 ) • 
In this note, I shall prove this conjecture and obtain the corollary that these GCD's are equal 

«» ((;:i)-(;:i)-(v)-(';i))-
e oroceedinss:, k 

(0. 
Before proceeding, let us note that the six binomial coefficients involved form a hexagon 

about I . J in the Pascal triangle. The two groups of three involved are the two equilateral 
triangles of this hexagon. 

Theorem. For n ^ 2, and l ^ k ^ n - 1 , we have that 

GCD ((S:!).(r4(°;f c^vM^M) 
Proof. Let the two GCD's be Gt and G2, respectively. We write out the involved 

section of the Pascal triangle as: 

a b c d 
a + b b + c c + d , 

a + 2b + c b + 2c + d 

where b + c = ( M , etc. Then Gt = GCD(b, c + d, a + 2b + c) and G2 = GCD(c, a + b,. 
b + 2c + d). (If k = 1 (or k = n - 1) then a = 0 (or d = 0). The following argument still 
holds in these cases , but one can see that Gt - G2 = 1 = GCD (a, b , c, d) directly.) 

e I e l e 
We shall show that p | Gt if and only if p | G2, for any prime power p . 

*This work was supported by a research fellowship of the Italian National Research Council. 
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Case 1. If p e | b and p e | c, then p e j Gt iff p e | (a,d) iff p e | G2 . 
Case 2. If p e j[ b and p e \ c, then p e \ Gt and p e \ G2 . 
Case 3. If p e j b and p e j( c, then p e \ G2. Suppose that p e IG^ Then we have 

p j c + d and p e | a + c, whence p e | a and p e j[ d. We claim that the four conditions 
p | a, p | b , p | c and p | c + d are inconsistent. For this we require a lemma. 

Lemma. For 0 < k < n., 

p e | ( n
k ) • * ^ e | ( k

n
+ i ) 

implies p | k + 1. 
Proof. Let n = 2 a , p and b = 2fo.p be the p-ary expansions of n and k. A r e -

sult of Glaisher [2, Corollary 6.1] a s se r t s that 

p*i (:) 

if and only if a is the number of borrows in the p -a ry subtraction n - k. Consider now b0 

and a0. If 0 < b0 < a0 or a0 < b0 < p - 15 then n - k and n - (k + 1) have the same 
number of borrows. If b0 = a0

 < p - 1, then n - (k + 1) has more borrows than n - k. 
Hence b0 = p - 1 is the only ca.se consistent with 

P ( n
k ) « * p e | ( k

n
+ i ) 

Corollary. For 0 < k < n, 

pe|fk) and p e | ( k + i ) 
implies p | n - k. 

Proof. Use I tx I = I " . I and the Lemma 

P 

hence p n - k + 1, and we have 

\ k / \ n - k / 
"'- ^heo'rem, we 

| ( l :0"' •* p,l(':0 
Returning to the Theorem, we have 

e = b 

hence p | k. Thus p | n + 1. Now c + d = I k * ± 1. Let n = ^ a . p 1 and k + 1 = s b . p 1 be 
the p -a ry expansions. From p | n + 1, we have a0 = p - 1 and from p | k, we have b0 = 
1. Hence n - (k + 1) has the same number of borrows as (n - 1) - k. From Glaisher !s r e -
sult and 

p e H v ) - ° ' 
we deduce that pej / fk + 1 ] = c + d, which demonstrates the claimed inconsistency. Thus, 
in Case 3, p { G j and p j( G2. 

Case 4. If p | b and p | c, then the symmetry of the binomial coefficients converts 
this to Case 3 and this completes the theorem. 

Corollary. Gt = G2 = GCD(a,b,c,d). 
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Proof. We have Gt = G2 from the Theorem and so we have Gt | b , G} | c, Gt | e + d, 
Gt I d, G-L I a and Gt | GCD(a,b,c,d). Conversely, GCD(a,b,c,d) clearly divides GA. 
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LETTERS TO THE EDITORS 

Dear Edi tors : 
On page 165 of Professor CoxeterTs Introduction to Geometry (New York, 1961), we 

read: "In 1202, Leonardo of Pisa , nicknamed Fibonacci ("son of good nature") , came across 
his celebrated sequence • • • . » ' 

This translation of Leonardo's nickname differs, of course , from the one ITve saen in 
the Quarterly. 

Who can solve the historic mystery for us? 
Les Lange 

Dean, School of Science 
San Jose State University 

San Jose , California 

Dear Editors: 
Thank you for the reprints I have just received. Sorry to bother you again, but some-

how the main sentence from "An Old Fibonacci Formula and Stopping Ru les , " (Vol. 10, No. 
6) was omitted. The formula is 

00 

F(n) = 

9n+l 
0 J 

and it is based on WaldTs proof that the defined stopping rule is a real stopping rule (the p ro -
cess terminates after a final number of steps with probability 1). 

R. Peleg 
Jerusa lem, Israel 



POLYNOMIALS ARISING FROM REFLECTIONS ACROSS MULTIPLE PLATES 

BJARNE JUNGE and V. E. HOGGATT, JR. 
San Jose State University, San Jose, California 

1. INTRODUCTION 

It is known that reflections of light rays within two glass plates can be expressed in 
te rms of the Fibonacci numbers as mentioned by Moser [ l ] . Here , we will explore what 
happens when the number of glass plates is increased. As will be seen, a new set of s e -
quences and polynomials a r i ses . 

Assume that one s ta r t s with a single light ray and that the surfaces of the glass plates 
a re ha l f -mi r rors , such that they both t ransmit and reflect light. The initial reflection, as a 
light ray enters the stack of plates, is ignored. Let P(n,k) be the number of possible d i s -
tinct light paths, where n is the number of reflections and k the number of plates. Figure 
1 i l lustrates the part icular case of two glass plates for n = 0, 1, 2, and 3, where we a l -
ready know that the possible light paths resul t in the Fibonacci numbers. The dots on the 
upper surface in this figure indicate the s tar t of a light ray for a distinct possible path for 
each part icular number of reflections. 

I\iy^vi 
P ( 0 , 2 ) = l P ( l , 2 , ) = 2 P ( 2 , 2 ) = 3 

P ( 3 , 2 ) = 5 

Figure 1 

We will now derive a matr ix equation which relates the number of distinct reflected 
paths to the number of reflections and to the number of glass plates and examine a sequence 
of polynomials arising from the characteris t ic equations of these matr ices . 

285 
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2. THE k X k MATRIX Qfe 

Consider the bundle of distinct paths along which each light ray has been reflected ex-
actly n times in a collection of k glass plates , as shown in Fig. 2. Let Q(n,i) be the 
number of rays added by reflection to the bundle at the surface i , l < i < k, at which 
point the rays make the n reflection. Since the number of rays emerging from the stack 
of k plates after exactly n reflections is identical to the number of possible distinct light 
paths for n reflections, 
(1) P(n,k) = Q(n,k) for all n and k . 

n+1 r e f l e c t i o n s 

Q ( n , 0 ) 

Q (n, 1) 

Q (n, 2) 

Q (n+ l , k ) 

Q (n+1 ,k-1) 

Q ( n + l , k - 2 ) 

Q (n, k-1) 

Q (n, k) 

Q (n+1, 1) 

Q (n+1, 0) 

n r e f l e c t i o n s 

Figure 2 

From Figure 2, the following set of equations is then obtained: 

Q(n + 1, k) = Q(n,k) + Q(n, k - 1) + • • • + Q(n,2) + Q(n,l) 

Q(n + 1, k - 1) = Q(n,k) + Q(n, k - 1) + • • • + Q(n,2) 

Q(n + 1, 2) = Q(n,k) + Q(n, k - 1 ) 

Q(n + 1, 1) = Q(n,k) 

We can write this set of equations as a matr ix equation, 

(2) 

Q(n + 1, k) 1 

Q(n + 1, k - 1) 

Q(n + 1, 2) 

Q(n + 1, 1) 1 

= 

11 

1 

1 

| l 

1 

1 

1 

0 

1 

1 

0 

0 

1 

1 

0 

0 

ljl 
0 

0 

oil 

| |Q(n,k) 

Q(n, k - 1 ) 

Q(n, 2) 

IIQ(n, 1) 

and define Q, as the square matr ix of order k which a r i ses with i ts elements above and on 
the minor diagonal all ones and with all zeros below the minor diagonal^ 
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(3) Q,, 

1 

1 

1 

1 

1 

1 

1 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

0 

0 

0 k X k 

Next, we find a recursion relation for the characteris t ic polynomials for the matr ices 
Qk . We let 

(4) Dk(y) = det(Qk - y y , 

where Q, i s given by (3) and I, i s the identity matr ix of o rder k. We display Eq. (4) as 

(5) D j y ) = 

| i - y 
I 
I 

I 

1 i 

I 
I -

I 

I 
0 

y 

I 
I 

i - y •• 

o 
o 

l 

l 

0 

- y 
0 

ii 

0 

0 

0 

- y | k X k 

The determinant on the right side of (5) is now modified by subtracting row 2 from row 1, 
after which column 2 is subtracted, resulting in (6): 

(6) 

- 2 y 

y 
0 

0 

l 

y 
i -

I 

l 

0 

y 
o 
l 

i - y •• 

0 

o 

0 

l 

0 

- y 
0 

l 

0 

0 

0 

- y k X k 

This determinant (6) is then expanded by the elements in the f irst column, giving 

(7) D,(y) = (-2y)Ai - yA2 + ( - l ) k + 1 A 3 , 

where Al9 A2, and A3 are cofactors still to be evaluated. When AA and A3 are expanded 
by the elements in their las t row and column, respectively, they become At = -yD. Q(y) and 

k_ A3 = (-1) JD, 2(y). If the determinant A2 is expanded according to the elements of its f i rs t 
row, the resulting determinant according to the elements of its las t row, and finally this new 
determinant according to the elements of its las t row, one finds A2 = y3^^ ^(y)* The above 
expressions for Al9 A2, and A3 are then substituted into Eq. (7), which yields the result 
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(8) Dk(y) = (2y2 - l)Dk_2(y) - y*Dk_4(y) , 

the desired recursion formulas for the polynomials D, (y) for all k ^ 1. 

3. THE COEFFICIENTS OF D (y) AND RECURSION FORMULAS FOR P(n,k) 

The polynomials D (y) can be expanded in power ser ies in y as 

(9) Dn^=SAn,iy n-i 
A • y 

n , i J 

i=0 

where A . a re constants. By substituting these power se r ies into the recursion formula (8) 
and equating coefficients of like powers of y, the following recursion relation among the co-
efficients are obtained: 

(10) A . = 2A 0 . - A 0 . 0 - A . . , 0 < i < n , 
n , i n - 2 , i n -2 , i - 2 n -4 , i ' ' 

where we take A . = 0 whenever i < 0 or n < i. For n = 2, 4 , 6 and n = 1, 3, 5, 
one obtains from the recursion formula (8), 

D2(y) = y2 - y - 1 

D4(y) = y 4 - 2 y 3 - 3 y 2 + y + l 

D6(y) = y6 - 3y5 - 6V4 + 4y3 + 5y2 - y - 1 

Di(y) = -y + 1 

D3(y) = -y3 + 2V2 + y - 1 

D5(y) = -y5 + 3V4 + 3V3 - 4y2 - y + 1 . 

The coefficients A . can now be evaluated by using the above polynomials and recursion n, l 
relat ions, resulting in the set of specific formulas in addition to those of (10): 

A 2 n , 0 " X 

A 0 n = -n 2 n , l 

2n,2n = A 2 n , 2 n - 1 = ^ 

A 2n ,2n-2 = ^ ^ " « 

A 2n ,2n -3 = ^ ' ^ ~ 2> 

A2n+1,0 _ 1 

A 0 ,- - = n + l 2n+l, 1 
A - A - ( D n + 1 

2n+l,2n 2n+l,2n+l y~ ' 

A 2 n + l , 2 n - l = ^ " ^ 

A 2 n + l , 2 n - 2 = ^ 2 » " « • 

These sets of formulas for the coefficients will then permit one to write the polynomials 
D (y) as power se r ies in y, which is very useful in obtaining recursion formulas for P(n,k). 
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If we let Dn(y) = 0 in the power se r ies expansion (9), the resulting equation implies 
that 

(11) ^ A M P ( n - i , k) = 0 
i=0 

for all k. Then, Eq. (11) is the recursion relation for the numbers P(n,k), and for k ^ 5, 
we can write 

P(n + 1, 1) = P(n , l ) 

P(n + 2, 2) = P(n + 1, 2) + P(n,2) 

P(n + 3, 3) = 2P(n + 2, 3) + P(n + 1, 3) - P(n,3) 

P(n + 4, 4) = 2P(n + 3, 4) + 3P(n + 2, 4) - P(n + 1, 4) - P(n,4) 

P(n + 5, 5) = 3P(n + 4, 5) + 3P(n + 3, 5) - 4P(n + 2, 5) - P(n + 1, 5) + P(n, 5) . 

4. A GENERATING FUNCTION FOR THE POLYNOMIALS D (y) 

Theorem 1. A generating function for D (y) is 

oo 

(12) [ 1 - y(y + l ) t ] [ l - (2y2 - l) t + y H 2 ] - 1 = £ T>2n(j)t'1 ' 
n=0 

Proof. In Eq. (12), multiply both sides by the denominator on the left side to obtain 

(13) 1 - y(y + l)t = [1 - (2y2 - l)t + y*t2] • J ] D^ttfl? 
n=0 

= D0(y) + [D,(y) - (2y* - l)D0(y)]t 

+ E [D2n+4^ " (2y2 " 1)D2n+2(y) + ^ n ^ 

Equating like powers of t on the left and right sides of Eq. (13), one obtains 

D0(y) = 1 

D2(y) = (2y2 - l)D0(y) - y(y + 1) = y2 - y - 1 

D2 n + 4(y) = (2y* - DD2 n + 2(y) - ^ ( y ) 
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Since these las t three equations a re in full agreement with the recursion formulas derived 
ea r l i e r , one concludes that the theorem has been proved. 

Theorem 2. A generating function for D _ (y) is 

OO 

(14) [y + l - y ^ H i - (2y2 - i)t + y V ] " 1 = £ i>2n+1(yHn . 
n=0 

The proof of this theorem readily follows if one uses the same procedure as in proving the 
preceding theorem. 

The generating functions of Eqs. (12) and (14) can be used to obtain closed form solu-
tions for D (y) and D (y) with the aid of the following equations from Rainville [2]: 

(i5) (i - Z)"a = E ^ 
n=0 

(16) 

(17) 

n 
(ft)n = T T ( a + k - 1) = a(a + l)(a + 2) • • • (a + n - 1), n 2= 1 , 

k=l 

(a)0 = 1, a ± 0 . 

<*> n / <*> [n/2] v 

n=0 k=0 ^ ' n=0 k=0 \ ' 

By applying Eqs. (15) and (17) to the denominator of Eq. (12), 

[1 - (2y2 - l)t + yH2]""1 = £ [ ( D n / n ! ] [ (2y2 - l ) t - y*t2] n 

n=0 

(18) = >J > - ( - i r K l ( 2 y 2 - i ) n - V k t n + k 

n=0 k=0 

[n/2] 
E E (-i>k(nkkV-i>n"2Vktn 

n=0 k=0 \ / 

Hence, 
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t ] [ l -

[n/2] 

[l - y(y + l ) t ] [ l - ( 2 / - l ) t + y*t2f 

(19) n=l k=0 \ / 

<*> [(n-l)/2] 

k \ in, ^ n - 2 k 4k ,n , ., 
k ] (2y - 1) y t + 1 2 £ ^k(n 

n=l k=0 \ 

& + D S n £ ^ ("1)k(n " k " ')(2^ " D ^ W 
n=l k=0 > 

Now 

(20) 2 D 2n ( y ) t n = E D 2 n ( ^ + * 
n=0 n=l 

Therefore, by equating coefficients of like powers of t in Eq. (12), a closed-form solution 

[n/2] 
for D ? (y) is extracted: 

D 2 n ( ^ = E ^h^^'^'^y^ 
k=0 ^ ' 

( 2 1 ) [(n-D/2] 
/ , i\ V * / i \ k / n - k - l \ / r > 2 - n - 2 k - l 4k 

y(y + D 2 ^ ^ ( k f y " x ) y ' 
k=o \ / 

The closed-form solution for D (y) follows readily from the above derivation, 

[n/2] / x 
D 2 n , l ^ = ^ « E ^ n k k ^ - « 

k=0 ' 

2 ^ n - 2 k y 4 k 

( 2 2 ) [(n-l)/2] , v 

-y» E ( - W n " J " 1 ) « y 1 - « n " 2 t l y 4 k -
k=0 > ' 
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REMARK ON A PAPER BY DUNCAN AND BROWN ON THE SEQUENCE 
OF LOGARITHMS OF CERTAIN RECURSIVE SEQUENCES 

L. KUIPERS 
Southern Illinois University, Carbondale, Illinois 

and 
JAU-SHYONG SHIUE 

National Chengchi University, Taiwan 

In the present paper, it is shown that the main theorem in [1] , see p. 484, can be e s -
tablished by using one of J. G. van der Corput?s difference theorems [2]. Moreover, by 
using a theorem of C. L VandenEynden [3] we show the property that the sequence of the 
integral par ts of the logarithms of the recursive sequence under consideration is also uni-
formly distributed modulo m for any integer m > 2. 

Lemma 1. Let (x ), n = 1, 2, • • • , be a sequence of real numbers. If 

l im (x , - - x ) = a , n —• oo n+1 n ' 

a i r rat ional , then (x ) is u. d. mod 1 ( [2 ] , p. 378). 
Lemma 2. Let (x ), n = 1, 2, • • • , be a sequence of real numbers. Assume that 

the sequence (x / m ) , n = 1, 2, • • • , is u. d. mod 1 for all integers m > 2. Then the 
sequence of the integral parts ([x ] ), n = 1, 2, • • • , is u. d. mod m [3] . 

For the notion of uniform distribution modulo m we refer to [ 4 ] . 
Theorem. Let (V ), n = 1, 2, • * • , be a sequence generated by the recursion relation 

(1) V ^ = a. nV _,_. , + • • • + a-V _,, + a„V , n > 1 , 
n+k k-1 n+k-1 1 n+1 O n ' ' 

where a0, al5 • • • , a^_^ a re non-negative rational coefficients with a0 f- 0, k is a fixed 
integer, and 

(2) Vt = n . V2 = y2, • • • , Vk = y k 

a re given positive values for the initial t e rms . It is assumed that the polynomial 

k k-1 
x — aj i x _ . . • _ a-jx — an 

has k distinct real roots j3ls /32, • • • , jS^ satisfying 0 < | j3, | < • • • < | /3, | and such that 
none of the roots has magnitude equal to 1. Then: 

1. The sequence (log V ), n = 1, 2, ••• , is u. d. mod 1 [ l ] . 
2. The sequence ([log V ] ) , n = 1, 2, • •* , is u. d. 
Proof. By (1) and (2), we have that 
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k 

3=1 

where the coefficients av a2i • • • , a^ a re uniquely determined by assumption (2). Let p 
be the larges t value of j for which a. f- 0. We have p > 1. Hence 

P 
V = Y a. $ . n Z J ] K ] 

j=l 
Now 

,7 „ ^n+1 . , /?n+l V ,n »i^i + • • • + ct P n+1 i r i p p n 
—— = 5 ; — ^Ha -* ^ D a s n~*°° ' 

Vn QfijSf + . . . + a f p 

1 1 p p 
since jSj | jS —• 0 (as n—»oo), i = 1, 2, • • • , p - 1, because of the conditions on the abso-
lute values of the p.. (From the conditions follows that p > 0.) Hence we have that 

l o g v
n + 1 - l o g V n - » log/3 , as n->oo • 

The number j3 is algebraic and therefore log j3 is an irrational number (see [ l ] ) . Hence 
Lemma 1 applies and we obtain that the sequence (log V ) is u. d. mod 1. This proves 
Duncan and Brown's result. 

In order to show the second part of the theorem we observe that for every integer m ^ 2 

logV ,- logV p 
& n+1 & n *p 

-* _x. as n—• oo , 
m m m 

hence the sequence ((log V ) /m) , n = 1, 2, ••• is u. d. mod 1, and according to Lemma 
2 we obtain that the sequence of the integral par ts ([log V ] ) is u. d. mod m for every 
integer m > 2. 

Remark. By restr ict ing the order of the recurrence we may relax the conditions on the 
coefficients a. and the initial values of V . The values of elements of (V ) can be nega-
tive in that case , and so we obtain a result regarding the logarithms of the absolute value cf 

V 
Let (V ), n = 1, 2, • • • , be a sequence generated by the recurrence 

n+2 1 n+1 0 n 

where Vj = y1} V2 = y2- W e assume that yl9 y2, a0 and aA are rational numbers, where 
Yi and y2

 a r e ^ ° J a n d fy a n ( i a i not both 0. Moreover, it is assumed that the poly-
nomial x2 - aAx - a0 has distinct real roots , jS1 and j32, one of which has an absolute value 
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different from 1. Then the sequence (loglv J ) is u. d. mod 1, and the sequence of inte-
gral par ts ([log|V !]) is u. d. 

Proof. We have 

_ (72 - T i ^ f " 1 - (72 - lih^T1 

V n - _ j g — p - , 

where 
Pi = H a i + ^ l + 4a 0 ) , j32 = \(^ - ^ + 4a0) 

Now 

log | v n + 1 | - l o g | v n | = log n+1 
(72 - 7ihWi - (72 - 7 i i W 

(72 - YiMPT1 - (72 - 7ii3i)i32
1-1 

We may suppose that \pt\ -f 1, |j32 /pt\ < 1. 
Since log |V + 11 - log |v l - ^ l o g l i S j as n—•co, and as IjSj is algebraic when fit is 

algebraic, we may complete the proof in the same way as done above. 
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REPRESENTATIONS AS PRODUCTS OR AS SUMS 

R.G.BUSCHMAN 
University of Wyoming, Laramie, Wyoming 

1. INTRODUCTION 

In a previous paper [l] the idea of a "sieve" was extended in order to give a method for 
the computation of the sequences of values for certain functions which occur in the theory of 
numbers. Some of the important functions are generated as the sequences of coefficients of 
suitable Dirichlet ser ies or of suitable power ser ies ; see, for example, G. H. Hardy and 
E. M. Wright [2, Chapters 17 and 19], We will consider the s imilar problems of the num-
ber of representations of an integer as a product with factors chosen from a given set of pos-
itive integers and the problem of the number of representations of an integer as a sum with 
t e rms chosen from a given set of positive integers. Although quite analogous, the two prob-
lems are rare ly mentioned together. 

To be specific, we consider a subsequence S = {a }, of positive integers , finite or 
infinite, which satisfies the conditions aA < a2

 < a3
 < • • • with 1 < aA for the case of prod-

ucts and 0 < aA for the case of sums. Our problems can then be stated as (1) compute the 
number, R(n), of distinct representations of a number n as a product of the form 

b. b, 
n = a.J a, • • • , 

with a. G S, b. > 0, and (2) compute the number, P(n), of distinct representations of a 
number n as a sum of the form n = bjaj + b^a^ + • • • , a. E S, b^ > 0. Analogous problems 
are obtained by the restr ict ion bj = 1; these a re (lf) compute the number, Rf(n), of distinct 
representations of a number n as a product of the form n = a,a, , • • • , a. £ S, that i s , of 
distinct factors, and (2!) compute the number, P?(n), of distinct representations of a number 
n as a sum of the form n = a. + a. + • • • , a. E S, that i s , of distinct t e rms . The generat-

j K l 
ing functions for the sequences R, P , Rf, and P ! a re given by 

11(1 - a"8)""* = £Rfci)n~B • 

11(1 - x V 1 = X>Cn)xn , 

0 ( 1 + a" 8 ) = E R ' ( n ) n ' S , 

11(1 + x8"1) = X > ! ( n ) x n . 
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The reciprocals of these generating functions a re also of interest . For example, those for R 
and P lead to generalizations of the Mobius function (ft(n) is obtained for a. = p.) and of the 
Euler identity (whis is obtained for a. = i) , respectively, 

11(1 - a7S) = X)M(n)n - s 

0 ( 1 - x *) = £ K ( n ) x n 

2. REPRESENTATIONS AS A PRODUCT 

From the generating function we can develop a "sieve" technique ("sieve" used in the 
sense given in [l]) for computing the values of the sequence R. The generating function is 
rewritten in the form 

nd a - s ) _ 
n IH1 + a - + a ; 2 s

 + ) , 

where the products extend over a E S. We need to know the sequence \ a } f o r l £ n £ N 
in advance as the input, if we are to compute R(n) for 1 ^ n ^ N. Table 1 i l lustrates this 
process for the input sequence of Fibonacci numbers 2, 3, 5, 8, • • • . 

Table 1 
Product Representations, S = \2 , 3 , 5, 8, 13, ••• } 

B ( 0 ) 

R ( 1 ) 

R (2 ) 

R ( 3 ) 

R (4 ) 

R 

1 

1 

1 

1 

1 

1 

1 

2 

0 

1 

1 

1 

1 

1 

3 

0 

0 

1 

1 

1 

1 

4 

0 

1 

1 

1 

1 

1 

5 

0 

0 

0 

1 

1 

1 

6 

0 

0 

1 

1 

1 

1 

7 

0 

0 

0 

0 

0 

0 

8 

0 

1 

1 

1 

2 

2 

9 

0 

0 

1 

1 

1 

1 

1 
0 

0 

0 

0 

1 

1 

1 

1 

0' 

0' 

0 

0 

0 

0 

2 

0 

0 

1 

1 

1 

1 

3 

0 

0 

0 

0 

0 

1 

4 

0 

0 

0 

0 

0 

0 

5 

0 

0 

0 

1 

1 

1 

6 

0 

1 

1 

1 

2 

2 

7 

0 

0 

0 

0 

0 

0 

8 

0 

0 

1 

1 

1 

1 

9 

0 

0 

0 

0 

0 

0 

2 
0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

0 

1 

2 

0 

0 

0 

0 

0 

0 

3 

0 

0 

0 

0 

0 

0 

4 

0 

0 

1 

1 

2 

2 

5 

0 

0 

0 

1 

1 

1 

6 

0 

0 

0 

0 

0 

1 

7 

0 

0 

1 

1 

1 

1 

8 

0 

0 

0 

0 

0 

0 

9 

0 

0 

0 

0 

0 

0 

3 
0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

2 

0 

1 

1 

1 

2 

2 

To begin, let R denote the sequence with 1 in position 1 and 0 in position n for 
,(D 2 £ n < N. In order to obtain the sequence R we bring down 1 into position 1 and then 

add the entry from position 1 of R to the entry at position la-j of R and enter the 
sum in position aA of R , then the entry from position 2 of R* ' is added to the entry 
in position 2aA of R* ' and the sum is entered in position 2a! of R ' ' , etc. At position 
n ^ ma! of RW we simply use the entry from position n of R . This set of subproces-
ses using a^ is stopped when maj > N. To continue, the entry from position 1 of R ' ' is 
entered in position 1 of R and in general the entry in position n of R^ ' is computed 
successively for 1 < n £ N by either entering in position n of R^ ' the entry from position 
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n of R if n j4 ma2, but if n = ma2 by adding the entry at position m of R^2' to the 
entry at position ma2 of R ' 1 ' and entering the sum in position n of R ® . For the general 
i terative step going from R ^ - D to R^k', since R ^ ( n ) sometimes depends on previous 
entr ies in R ' k ' , we use these formulas sequentially for n = 1, 2, 3 , • • • , 

R(k)(n) = R( k-1 }(n) if aR j n , 

R(k)(n) = R ^ " 1 ^ ) + R ( k ) ( n / a k ) if a k | n . 

We stop each subprocess when ma^ > N and we stop the entire process when a^ > N; the 
resul t is the sequence of values of R for 1 < n < N. It should be noted that the sequence 
•p(R-i; c a n ke d e s t r 0 y e c i entry-by-entry as R^ ' is generated. 

The reasoning behind the workings of the process is as follows. Suppose that we have 
already generated the sequence R ' k ~ l ' . We want to multiply that ser ies generated by the 
function 

k-1 _i 
H (1 - a " s ) ., n 

n=i 
by the ser ies 

(1 - a " 8 ) " 1 = 1 + a" s
 + a " 2 s

 + 

This is equivalent to the generation of R^) from R ^ - 1 ' . Actually9 this multiplication is 
equivalent to successively expanding the scale for Rlk-D by a factor a k and adding the ex-
panded resul t to 
is denoted by c 
panded resul t to the sequence R^ ' itself. This is illustrated in Table 2 in which R^ " '(n) 

n 

C l C 2 c 
m ' c a k ' 

Ci 

Table 2 
Product Pat tern 

c2a^ e'' c mak ' ' 
c2 e'' c m " * 

• c a k 2 . -

c a k '" 

' cmak2 

' c m a ] j 

c m 

From the diagram in Table 2 we note that rows, beginning with the second, are repeats 
of the first row, but with the scale expanded successively by the factor a^. If we consider a 
column which is to be summed, we note that the quantity to be added to c n a is merely the 
sum appearing in the column headed by c , hence we obtain the iteration equations. 

In the intermediate steps the number R^'(n) has an interpretation as the number of 
representations of n as a product using only elements of the finite subsequence als a2, • • • , 

v 



298 REPRESENTATIONS AS PRODUCTS OR AS SUMS 

3. REPRESENTATIONS AS A SUM (PARTITIONS) 

[Oct. 

Here we have a quite closely analogous case to that of the previous section. The gen-
erating function is rewritten 

a _ 1 a 2a 
n ( i - x n ) « n ( i + x n + x n + . . . ) . 

In Table 3 the operations a re diagrammed analogous to Table 2 except that here we notice that 
the rows are shifted by an amount a. and then successively added to the (k - 1)-sequence. 

C0 Ci C2 ' • 

Table 3 
Sum Pattern 

' C a k
C a k + 1 " ' C 2 a k " - C 3 ^ ' 

co ci - • * c a k •' • c2ak • 

°o ••• X-
co • 

•• c m a k 

•• c(m-l)ak 

•• c(m-2)ak 

* " 

(Here the sequence is indexed from 0.) Reading the columns as in Table 2 we have the inter-
ation formulas 

p ( k ) ( n ) = p ( k - l ) ( n ) if a k | n , 

P( k )(n) = P( k" : I )(n) + P ( k ) (n - aR) if aR < n . 

The initial sequence P corresponds to R '; a 1 appears in position 0 and 0 appears 
otherwise. The process is stopped similarly. It is of interest to note that a, 5 n here r e -
places a, | n and that n - a, replaces n/a, . In Table 4, the case of the Fibonacci sequence 
1, 2, 3, 5, 8, ••• is illustrated. 

Table 4 
Sum Representations, S = { l , 2, 3, '5, 8, 13, • • • } 

yoT 
P(i) 

p(2) 

p(3) 

p(4) 

P 

0 

1 

1 

1 

1 

1 

1 

1 

0 

1 

1 

1 

1 

1 

2 

0 

1 

2 

2 

2 

2 

3 

0 

1 

2 

3 

3 

3 

4 

0 

1 

3 

4 

4 

4 

5 

0 

1 

3 

5 

6 

6 

6 

0 

1 

4 

7 

8 

8 

7 

0 

1 

4 

8 

10 

10 

8 

0 

1 

5 

10 

13 

14 

9 

0 

1 

5 

12 

16 

17 

10 

0 

1 

6 

14 

20 

22 

11 

0 

1 

6 

16 

24 

27 

12 

0 

1 

7 

19 

29 

33 

13 

0 

1 

7 

21 

34 

41 

14 

0 

1 

8 

24 

40 

49 

15 

0 

1 

8 

27 

47 

59 

16 

0 

1 

9 

30 

54 

71 

17 

0 

1 

9 

33 

62 

83 

18 

0 

1 

10 

37 

71 

19 

0 

1 

10 

40 

80 

20 21 

0 0 

1 1 

11 11 

44 48 

91 102 

99 115 134 157 
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In the intermediate steps the number P (n) denotes the number of partitions of n 
involving only those numbers a1? a2, • • • , a k . 

4. REPRESENTATIONS WITH DISTINCT ELEMENTS 

If it is required that the representations involve no repeated elements, that i s , " square-
free" products or "pairfree" sums, the generating functions a re simpler and hence the com-
putational process is also simpler. By reasoning somewhat analogous to the previous two 
sections we obtain the recurrence formulas 

R^k )(n) = R . * ^ ( o ) if a, \ n , 

R' ( k )(n) = R ' ^ f c i ) + R ' ^ W a k ) if \ | n , 

where we s tar t with R f ^ ( l ) = 1 and Rf^ '(n) = 0 for n > 1. The case of distinct te rms 
of a sum is quite analogous to this. Starting with P!^ J>(0) = 1, P1^ '(n) = 0 for n > 0 we 
obtain the recurrences 

P.( k )(n) = P . ^ (n) if a, * n . 

3.W (n) pi* - 1 )^ ) + p i ^ - ^ d i - ak) if a, < n 

The only alteration required to change the formulas of the previous sections to these 
is the change in the upper index on the second term. Tables 5 and 6 display the computations 
of Rf and Pf for the Fibonacci sequence. 

Table 5 
Squarefree Products , S = {2, 3 , 5, 8, 13, • • • } 

H.(0) 

R f(D 

R.<» 

Rf(3) 

R 

1 

1 

1 

1 

1 

1 

JL 

0 

1 

1 

1 

1 

J3_ 

0 

0 

1 

1 

1 

J^ 

0 

0 

0 

0 

0 

_£_ 

0 

0 

0 

1 

1 

J3_ 

0 

0 

1 

1 

1 

LL 

0 

0 

0 

0 

0 

JL 

0 

0 

0 

0 

1 

_9_ 

0 

0 

0 

0 

0 

1 
JL 

0 

0 

0 

1 

1 

JL 

0 

0 

0 

0 

0 

JL 

0 

0 

0 

0 

0 

J5_ 

0 

0 

0 

0 

1 

JL 

0 

0 

0 

0 

0 

A 

0 

0 

0 

1 

1 

JL 

0 

0 

0 

0 

1 

J7_ 

0 

0 

0 

0 

0 

JL 

0 

0 

0 

0 

0 

JL 

0 

0 

0 

0 

0 

2 
J)_ 

0 

0 

0 

0 

0 

_1_ 

0 

0 

0 

0 

1 

J_ 

0 

0 

0 

0 

0 

j^ 

0 

0 

0 

0 

0 

_4_ 

0 

0 

0 

0 

1 

JL 

0 

0 

0 

0 

0 

_6_ 

0 

0 

0 

0 

1 

J7_ 

•0 

0 

0 

0 

0 

_8_ 

0 

0 

0 

0 

0 

J)_ 

0 

0 

0 

0 

0 

3 
J)_ 

0 

0 

0 

1 

1 

J^ 

0 

0 

0 

0 

0 

2 

0 

0 

0 

0 

0 

Table 6 
Pairfree Sums, S = { l , 2, 3, 5, 8, 13, • • -} 

P.C0) 

P,u> 

1 2 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 
0 1 

0 0 

0 0 

(Continued on following page.) 
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Table 6 (Continued 

1 2 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 

[Oct. 

3 
9 0 1 

p.<2> 

P.(3) 

p. <4 

p.(5> 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 2 1 2 2 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 2 1 2 2 1 3 2 2 3 1 2 2 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 2 1 2 2 1 3 2 2 3 1 3 3 2 4 2 3 3 1 4 3 3 5 2 4 4 2 5 3 3 

5. OTHER FORMS 

As was remarked in the first section, the reciprocals of the generating functions a re 
also of interest . Tables 7 and 8 i l lustrate these analogs for the Fibonacci sequence. 

M (0) 

T ( D 

M 

M (3) 

Table 7 
Product "Reciprocals" S = -j 2, 3, 5, 8, 13, • • •} 

1 2 
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M w + 1 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(2) + 1 - 1 - 1 0 0 + 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

+ 1 - 1 - 1 0 - 1 + 1 0 0 0 + 1 0 0 0 0 + 1 0 0 0 0 0 0 

M +1 - 1 0 - 1 + 1 0 - 1 0 + 1 0 0 - 1 0 + 1 + 1 0 0 0 0 

Table 8 
Sum "Reciprocal ," S = { l , 2, 3 , 5 , 8, 13, • • •} 

K(o) 

K ( l ) 

K(2) 

K(3) 

K(4) 

K 

0 

+1 

+1 

+1 

+1 

+1 

+1 

1 

0 

-1 

-1 

-1 

-1 

-1 

2 

0 

0 

-1 

-1 

-1 

-1 

3 

0 

0 

+1 

0 

0 

0 

4 

0 

0 

0 

+1 

+1 

+1 

5 

0 

0 

0 

+1 

0 

0 

6 

0 

0 

0 

-1 

0 

0 

7 

0 

0 

0 

0 

+1 

+1 

8 

0 

0 

0 

0 

0 

-1 

9 

0 

0 

0 

0 

-1 

0 

1 
0 

0 

0 

0 

0 

-1 

0 

1 

0 

0 

0 

0 

+1 

+1 

2 

0 

0 

0 

0 

0 

-1 

3 

0 

0 

0 

0 

0 

-1 

4 

0 

0 

0 

0 

0 

+1 

5 

0 

0 

0 

0 

0 

0 

6 

0 

0 

0 

0 

0 

0 

7 

0 

0 

0 

0 

0 

0 

8 

0 

0 

0 

0 

0 

+1 

9 

0 

0 

0 

0 

0 

-1 

2 
0 

0 

0 

0 

0 

0 

-1 

1 

0 

0 

0 

0 

0 

0 
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Note that the only alterations required in the techniques used involves the changes of signs; 
this is equivalent to switching the primed and unprimed formulas and subtracting the second 
te rms instead of adding these t e rms . 

All of the cases which have been considered are special cases of the general formulas 

n ( l + f (a k )a^ s + f (a^)a" 2 s + . . . ) = J > ( n ) n ~ s , 
a 2a, 

n ( l + g(ak)x k + g(a^)x ^ + • • •) = £ G ( n ) x n . 

Other cases can certainly be derived and similar lines of reasoning can be carr ied out for the 
simpler cases . More complicated cases can also be worked out, if the process is general-
ized somewhat, but they become messy. 
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Please make the following changes in the ar t ic le , "A New Look at Fibonacci Generaliza-
tions, " b y N. T. Gridgeman, appearing in Vol. 11, No. 1, pp. 40-55. 

Page 40, Eqs. (1) and (2). Please insert an opening bracket immediately following the 
summation sign, and a closing bracket immediately following "B" in both cases . In Eq. (2), 
please change the lower limit of the summation to read: "i=0" instead of "m=0. " 

Page 41 , Table 1. Please add continue signs, i. e. , '. '. , at the end of the table. 
Page 42, line 14 from bottom: Please correc t spelling from "superf luous" to "super-

fluous. " 
Page 42, line 7 from bottom: Please inser t a space between "over" and "positive. " 
Page 44, line 10: Please change "member" to read " m e m b e r s . " 
Page 45, Eq. (11): Please add an opening bracket immediately before I __ 1 1 and a 

closing bracket at the end of the line. 
Page 46, line 10: Please change the first fraction to read " V"9/2 = 2 j n 

Page 47, Eq. (18): Please correc t the numerator to read: 
[N - (B - l ) ( l / 2 - R)] (1/2 + R)n - [N - (B - l ) ( l / 2 + R)] (1/2 - R)n 

[Continued on page 306. ] 



MULTIPLE REFLECTIONS 

LEO MOSER and MAX WYMAN 
University of Alberta, Edmonton, Alberta, Canada 

Let us consider a set of k parallel plane p r i sms and a m i r r o r arranged as follows: 

(glass) 

(mirror) 

Let f (n) be the number of paths which s tar t at the top of the plate and reach plate r 
after n upward reflections. Fur ther , let A = (aA-) be a k X k enumerating matrix such 
that 

(1.1) f r ( n ) = X arj f j ( n " 1] 

3=1 

If F(n) denotes the one column matr ix 

(1.2) F(n) 

fi(n) 
f2(n) 

fk(n) 

then (1.1) can be written 
(1.3) 
Hence, by iteration we have 
(1.4) 

F(n) = AF(n - 1) 

F(n) = A1 F(0) . 

Thus (1.4) provides an explicit solution for F(n) in t e rms of F(0). This form is not 
suitable to compute the asymptotic behavior of F(n) for large values of n. We now d e r i v e s 
second explicit form by means of which the asymptotic behavior is easily calculated. 

302 
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The characterist ic equation of the matr ix A is 

(1.5) |XI - A | = Ak + cfe A1*"1 + . . . + c0 = 0 . 

Let us assume that the roots of (1.5) are Als A2> " *"» A. a n d t n a t t n e s e roots are distinct. 
The case of multiple roots can also be treated easily by the method we shall use. 

Since every matrix A satisfies i ts own characterist ic equation we also have 

(1.6) A k + c. n A ^ 1 + . . . + CQI = 0 . 
n-k Multiplying by A , we have 

(1.7) A n + C j^A 1 1 - 1 + . . . + c0An"k = 0. 

From (1.4) and (1.7) we immediately have 

(1.8) F(n) + ck_1F(Q - 1) + . . . + C 0 F ( Q - k) = 0 , 

and 
(1.9) fr(n) + ck__1fr(n _ 1) + . . . + c0f r(n - k) = 0 . 

However, Eq. (1.9) depends for its solution on the equation 

(1.10) Ak + V l ^ " 1 + ' " + C ° = ° -

Hence, the general solution for (1.9) is 

<l a i> f r ( n ) = S BrjXjj ' 
3=1 

where the constants B, . do not depend on n. Since k is considered fixed we may consider 
the matr ices 1, A, • • • , A as having been computed. Hence from (1.4) and the boundary 
conditions we may consider f ,(0), f r ( l ) 9 • •• , fr(k - 1) as being known. Hence from (1.11) 
we will have k equations that determine B ^ B ^ , • • « , B r k . Explicit expressions for 
these constants can be given. From (1.10)we can easily seethe asymptotic behavior of fr(n). 
Let us write A. in the form A = r . exp (id.). Further let us assume rj = r2 = • • • = r 
> r p + 1 > r p + 2 > . . . > r k . Clearly, 

k 

(1.12) frfe) - r f 2 By exp (in0 ) . 

3=1 

If p = 1 then 

(1.13) f (n) - A? B T 
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Example. If the matr ix A is given by 

[Oct. 

(1.14) A = 

the characterist ic determinant 

(1.15) 

1 
1 
1 

1 

D k 

1 
2 
2 

2 

(A) = 

1 
2 
3 

3 

| x i . - A l 

1 
2 
3 

k 

can be shown to satisfy the recurrence relation 

(1.16) Dk(A) = (1 - 2A)Dk_x(A) - A2Dk__2(A), D0(A) = 1, Bt(X) = 1 - A 

The solution of (1.16) is easily obtained to be 

Dk(A) = H 

(1.17) 

( , vk 
(1 - 2A) + ^(1 - 2A)2 - 4A2 \ 

I 

( 
+ K (1 . 2A) - N/(1 - 2A)2 - 4A2 

) ' 
HRj + KR2 

where H, K a re constants depending on A but not on k. Filling the boundary conditions, 
we find 
(1.18) Dk(A) = (Rx + R 2 ) /2 + (Ri - R2)/(2Nf(l - 2A)2 - 4A2) , 

where RA and R2 a re defined in (1.17). 
In order to find the roots of D. (A) = 0 we make the substitution 

(1.19) 
Hence (1.19) becomes 

cos k.6 + 

2(1 + cos 6) 4 SGC 2 

1 + cos 
s in i 

sin k# = 0 , 

sin (k +\)Q 
—•—:—n cos % 6 = 0 

sin v * 

Obviously, the roots of (1.19) are 

(1.20) 6 = sir 
k + • 

s = 1, 2, 
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w h e r e s = 0 m u s t be exc luded b e c a u s e of the d e n o m i n a t o r . Hence the r o o t s of D, (A) = 0 

a r e given by 

(1.21) A = { sec* I ^ — r 1 > s = l s 2 , -\«*(W$T)> 

Obviously only k are dis t inct , and arranged in order of magnitude we have 

(1.22) At i 

Thus 

(1.23) 

i»*(wH)- ^ = l " ^ ^ ) . "'.a* - i^ffTl)-

f (n) 
r v ' - ^ ^ ( f f i V r J j 1 

r l • 

TWO NUMERICAL CASES 

C a s e 1. k = 2. 

D2(A) 1 - A 1 
1 2 - A 

Â  - 3 A + 1 = 0 , 

. _ 3 + ^ 5 _ 3 - N / 5 
At _ s 9 A2 ~ o 

fi(0) = 0 , f2(0) = 1, fj(l) = 1, f2(l) = 2 , 

fj(n) = B u x f + B 1 2 A n , 

0 = B u + B 1 2 

1 = B ^ A i + B12A2 

S i m i l a r l y , 

Bu -
Ai - A2 

and B1 2
 = 

Ai - A2 

t 1 \ 1 /A n x n \ _ 1 ^n (1 ^2n^ 
fA(n) = — (At - A2 ) = — Ai (1 » A2 ) 

f2(n) = B2iAi + B22A2 

1 / s + ^Y1 

B21 

1 - B2i + B2 2 

2 = B2iAi + B22A2 

2 - X2 _ ! + ^ 5 2 - Ai 1 . ^ 5 
Ai - A2 2 ^ 5 

B22 A2 - Ai 2 \ / 5 
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which gives the complete solution. 
Case 2. k = 3. 

Xf = I s e c ^ f ) , X2 = i s ec ' ( ^ j , A3 = { s e M \ 

£t(0) = 0 f2(0) = 0 f3(0) = 1 

fjd) = 1 f2(l) = 2 fs(l) = 3 

ft(2) = 6 f2(2) = 11 f3(2) = 14 

Thus 

f3(n) = B31xf + B^A? + BS3xf 

+ Boo + Bo; 

Solving simultaneously, 

53i "*• ^32 "*" -̂ 33 

3 - B^iXi + B32X2 + B33A3 

14 = &$\\t + B32A2 + B33A3 

A2A3 - 3(A2 + A3) + 14 
B31 = 

(At - A2)(A! - A3) 

Calculating A1} A2, A3 and substituting above gives B31 = 0.537, so that 

(n) - 0.537 U sec ( H J V 
2n 

f8(n 

[Continued from page 301. ] 

Page 49, Eq. (33): Please change the last number on the line from " 3 " to " 1 . M 

Page 49, Line following Eq. (34): Please raise " (mod 3) M to the main line of type. 
Page 49, line 6 from bottom: Please inser t brackets around X(X - 1), X. 
Page 53, line 2 from bottom: In the third column from the left, please change the 

number to read: " 2 750 837 603 . " 



RECURSION -TYPE FORMULAE FOR PARTITIONS INTO DISTINCT PARTS 

DEAN R. HICKERSON 
University of California, Davis 

A recursion formula for p(n), the number of partitions of n, is given by the Euler 
identity 

p(n) = p(n - 1) + p(n - 2) - p(n - 5) - p(n - 7) 

+ p(n - 12) + ptn - 15) - - + + . . . 
(1) 

= ^ ( - D i + 1 p ( n - ^ (3i2 + i)) , 

where the sum extends over all integers i, except i = 0, for which the arguments of the 
partition function are nonnegative (see [ l ] ) . 

This paper presents a recursion type formula for q(n), the number of partitions of n 
into distinct pa r t s , in terms of p(k) for certain k < n. In addition a recursion type formula 
is presented for q (a ,m,n) , the number of partitions of n into distinct par ts congruent to 
+ a (mod m) , in te rms of p(k) for certain k < n. 

Theorem 1. If n > 0, and q(n) is the number of partitions of n into distinct pa r t s , 
then 

(2) q(n) = 2 3 t-^Pfo - {3i2 + i]) • 

where the sum extends over all integers i for which the arguments of the partition function 
a re nonnegative. 

Proof. We have 

oo oo °o 

£ q ( n ) x n ^ ( 1 + x 1 ) = J J ( l - x J ) " 

n=0 i=0 j=0 

•jj{(i - x*)u -.-x1)} = ( x > ) x j ) • iT( i -(x2)i> 
i=0 \ j = 0 / i=0 

3i2+i 

j = 0 / \ i=-oc / \ j=0 

307 
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e resul t follows by equating < 
Corollary. If n ̂  0 , then 

and the resul t follows by equating coefficients of x on both sides of this equation, 

q(n) = p(n) + ^ ( - 1 ) ^ - (3i2 - i)) + p(n - (3i2 + i))} 
i=l 

= p(n) - p(n - 2) - p(n - 4) + p(n - 10) + p(n - 14) - p(n - 24) 

- p(n - 30) + + - - • • • . 

Proof. This follows from Eq. (2) by rearranging the right-hand side. 
Theorem 2. If m ^ 3, 1 -* a < m / 2 , n > 0 and q(a,m,n) is the number of par t i -

tions of n into distinct par ts congruent to ±a (mod m), then 

(3) q(a,m,n) = £ p f^ -^ l f 1 ) 
L|(n+aj) 

Proof. We have 

n=0 i=0 
E , , n I I r , - , im+a w - , im+m-av\ 

q(a ,m,n)x = | | ( ( 1 + x )(1 + x )} 
i=0 

oo oo n /- im+m " T T / / i im+m W l , im+a W l , im+m-av\ (1 - x ) • {(1 - x )(1 + x )(1 + x )> 
i=0 i=0 

/ °° \ -A 
I \ ~ ^ /-\ im I T T / / 1 r m \ / i , n n + a - m W l _, r m - a ^ = I > p ( i ) x J • I M (1 - x )(1 + x )(1 + x )) . 

J=0 / r= l 

By JacobiTs identity, 
oo oo 

]"[{(! - q2r)(l + zq^V + rV'"1)} = 2 z J q j 2 

r=l 

with 

m m 
IT a"T 

q = x and z = x 

we find 
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f]{(l - x r m ) ( l + x r m + a - m ) ( l + x r m - a ) } = J2 x 1 1 1 ^ " ^ . 
r= l j=^o 

Therefore, 

n=0 \ i=0 / \j=-oo 

Since p(i) = 0 for i < 0S we have 

2 ^ q ( a , m , n ) x n = I £^ p(i)xiXXX J J J^M x 
n=0 \ i=-°o / \ j=_. 

Thus, 

q(a,m,n) =/]) 
fn -(m(iJj^) - aj] \ 

where the sum extends over all integral values of j for which 

n - y m ( i l±J J . aj J 
m 

is an integer. Clearly, this is an integer if and only if m|(n + aj). Therefore, 

q(a9m'n) = 2 p(!H^-j-fj) • 
m|(n+aj) X 7 

as required. 
Corollary. Let m ^ 3, 1 < a < m / 2 , and n ^ 0. Let 

a' = T575) ^ mi = Taflj • 
If (a,m) I n, then q(a,m,n) = 0. If (a,m) | n and j 0 is some solution of the congruence 

aij = -J5JE) (mod mi) ' 
then 



310 RECURSION-TYPE FORMULAE FOR PARTITIONS INTO DISTINCT PARTS [Oct. 

E / / n + aj0 jjj + j 0 \ (m\ . mx * y 

pl I ~ m 2~) \~ \ 3 ° m i + T - ai/ki 

Proof. If (a,m) | n, then there a re no values of j for which m (n + aj), There-
fore, the sum in Theorem 2 is empty and q(a,m,n) = 0. 

Suppose (a,m) | n and 

a i j » 5 "ra (mod mi)-
Then for any integer j , m I (n + aj), if and only if j = j 0 (mod mt). By Theorem 2, 

00 / \ 

q(a,m,n) = £ p(-Lai_ji_U) 
jEJoCmodmi) ^ ' 

« / n + a(j0 + kmj) (j0 + k m ^ 2 + (j0 + knij) \ 
= L H - " ^ s / 

k=-oo N ' 

* / / n + aj0 ]J + j 0 \ / m? / m.! anij 
Jom! + — - _ k] 

But 

* _ _a_ m _ a 
m m (a,m) (a,m) ai 

so the proof is complete. 
Example. Let m = 3 and a = 1. Then (a,m) = 1 , aA = 1, and mt = 3. The con-

gruence for j 0 is jo == -n (mod 3). 
If n = 0 (mod 3), let j 0 = 0. Then 

q( l ,3 ,n) £'(*-(*'+*k|-(s)*||'(*-(* "-*")) 
(i-(}*•* '•)) I-»(*)•»(*-«) •»(§-•) + P 

+ P 
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If n = 1 (mod 3) , let j 0 = - 1 . Then 

q( l ,3 ,n) 2 ^ - f k l 

l*+i^ 

» ( ^ - - ) + P ( ^ - 3 3 ) + P ( ^ - 4 8 ) + p 

If n = 2 (mod 3) , let j 0 = 1. Then 

q(l ,3 ,n) J>(->^)) 
(n ) 0O 

k=l 

• » ( H 1 - » ) * > > ( J I T 1 - » ) + > ' ( H 2 - « ) -

REFERENCE 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
RAYMOND E.WHITNEY 

Lock Haven State College, Lock Haven, Pennsylvania 

Send all communications concerning Advanced Problems and Solutions to Raymond E. 
Whitney, Mathematics Department, Lock Haven State College, Lock Haven, Pennsylvania 
17745. This department especially welcomes problems believed to be new or extending old 
resul ts . Proposers should submit solutions or other information that will ass is t the editor. 
To facilitate their consideration, solutions should be submitted on separate signed sheets 
within two months after publication of the problems. 

H-221 Proposed by L Carlitz, Duke University, Durham, North Carolina 

Let p = 2m + 1 be an odd pr ime, p f 5. Show that if m is even then 

if m is odd, then 

F = 0 (mod p) 

Fm+1 " ° ( m o d p ) 

L = 0 (mod p) m v 

Lm+1 " ° ( m o d p ) 

( « • 

(G)-
( $ • 

m 

« ) 

- 1 ) 

i •i 
(§) where f — I is the Legendre symbol. 

H-222 Proposed by Ft. E. Whitney, Lock Haven State College, Lock Haven, Pennsylvania. 

A natural number, n, is called semiperfect, if there is a collection of distinct proper 
divisors of n whose sum is n. A number, n, is called abundant if a(n) > 2n, where a(n) 
represents the sum of the distinct divisors of n (not necessari ly proper). Finally a number, 
n, is called weird* if it is abundant and not semiperfect. 

Are any Fibonacci or Lucas numbers weird? (All known weird numbers are even.) 
* Elementary Problem E2308, American Mathematical Monthly, 79 (1972), p. 774. 

H-223 Proposed by L. Carlitz and R. Scoville, Duke University, Durham, North Carolina. 

Let S be a set of k elements. Find the number of sequences (A1? A2, • • •, A ) where 
each Aj is a subset of S, and where A1 G A2, A2 2 A3, A3 G A4, A4 2 A5, etc. 

312 
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H-224 Proposed by V. £ 

Le t 

ADVANCED PROBLEMS AND SOLUTIONS 

Jr., San Jose State University, San Jose, California. 

1 1 1 1 
1 2 3 4 

A = I 2 5 9 14 
3 10 22 

nXn 

313 

denote the Fibonacci convolution determinant, and 

B = 

2 3 4 
5 9 14 

10 22 

n + 1 

nXn 

where the first row and column of A have been deleted. Show 
(i) A = 1 and 

(ii) B = n + 1. 

H-225 Proposed by Guy A. R. Guillotte, Quebec, Canada. 

Let p denote an odd prime and x p + yp = z p for positive integers , x, y, and z. 
Show that for a large value of p, 

* z , z 
p = + . z - x z - y 

Also show that 

z - x z - y 

H-226 Proposed by L Carlitz and R. Scoville, Duke University, Durham, North Carolina. 

(i) Let k be a fixed positive integer. Find the number of sequences of integers (a1? 

a?, • • • , a ) such that *' n 
0 < a. < k (i = 1, 2, ••• , n) 

and if a. > 0 then a^ f \_-y for i = 2, • • • , n. 
(ii) Let k be a fixed positive integer. Find the number of sequences of integers (a1? 

, a ) such that n 
0 < a. < k (i = 1, 2, ••• , n) 

and if a. > 0 then a. 4 a. ., for i = 2, • • • , n; moreover a. = 0 for exactly r values of 
I l ' l - l l J 
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SOLUTIONS 

PROBABLY? 

H-179 Proposed by D. Sing master, Bedford College, University of London, England. 

Let k numbers pA, p2, • • • , Pk be given. Set a = 0 for n < 0; a0 = 1 and de-
fine a by the recursion 

n J 

n 
a = \ p. a . n > 0 . n Ci *i n-i 

i=l 

1. Find simple necessary and sufficient conditions on the p. for lim a to exist 
and be a) finite and non zero, b) zero , c) infinite. 

2. Are the conditions: p. > 0 for i = l , 2, • • • , p 1
> 0 and 

i=l 

sufficient for l im a to exist, be finite and be nonzero ? 
n -+00 n 

Comment by the Proposer 

This problem ar i ses in the following probabilistic situation. We have a k-sided die (or 
other random device) such that the probability of i occurring is p. . We have a game board 
consisting of a sequence of squares indexed 0, 1, 2, • • • . Beginning at square 0, we use 
the die to determine the n number of squares moved, as in Monopoly or other board games. 
Then a gives the probability of landing on square n. Since the average (expected) move 
is 

n 
E = S * • Pi ' 

i=l 

one would hope that a -* l / E . If all p. = l / k , this can be seen. 
The restrict ion px > 0 (or some more complicated restriction) is necessary to avoid 

situations such as pj = 0, p2 = 1 which gives a2 = 1, a2 + - = 0 for all n. 

Editorial Comment 

Since p. would not be defined for i > k, an infinite set of numbers {pj , p2, • • •} 
would have to be given. 



AN INEQUALITY IN A CERTAIN DIOPHANTINE EQUATION 

D. A. BUTTER 
I.T.T. Lamp Division, 330 Lynway, Lynn, Massachusetts 01901 

The Diophantine Equation 

(1) xf + • • • + xP - yp , 

where p is an odd prime number > 1 9 n ^ 2 and 1 < xA ^ • • • ^ xn 9 is known to possess 
general solutions for n = 2, p ~ 2; n = 3, p = 3; for other values of n and p , no gen-
eral solutions are known9 although computer searches for solutions of such equations can 
easily be carr ied through by assigning a value to y and n and then allowing the correspond-
ing x ! s to take all values from x t = • • • ' = x n * 1 to xA = • •• = x n = y - 1; in each case , 
different pr imes p are tested to see whether Eq. (1) is satisfied. The labor involved, how-
ever , is drastically reduced by realizing that for a given n and y possible pr imes p which 
can satisfy Eq. (1), have an upper bound, above which no solutions a re possible. This s ta te-
ment is a consequence of examining propert ies of the function \p which is defined by 

(2) i/r = (xj + . . . + x n ) / y , 

where y is given by Eq. (1)9 subject to the restr ict ions stated above. The relevant property 
of ip is given by the following: - 1̂  

Theorem. The function *// is bounded above by n p and below by (1 + 2p/y) or 1 
depending on whether the solution to Eq. (1) are integers or not, respectively. 

Proof of Theorem. From elementary calculus 

m 

and i|/ has a turning point when 

The conditions 

d* - 2-r & *** x. l 
i - i x 

gg - 0 (1 £ i s n) 

| i = 0 and | ± - 0 < * ' « 

resul t in the equations 

(3) xf + *. • + x? + . • • + x p - xf"1 (xA + • •• + x. + • • • + x n ) = 0 

315 
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(4) x? + • • • + x? + •»• + x P - xP" 1 (xi + • • • + x. + • • • + x ) = 0 . v ' x l n l * I n 

Subtracting Eq. (3) from Eq. (4) gives the condition for a turning point as 

(5) xx - x2 « . . . = x n . 

1-1 
From which we deduce that max (t//) = n . The lower bound of x depends on whether the 
x»s a re restr ic ted to integers. Thus if the xfs a re non-integral, then we note that y p = 
xf + • • • + x p < (xi + • • • + x n ) p so that 1 < i/>. If the x ' s a re integers only, we use the 
little Fermat theorem x P = x. (mod p). But since (xP - x.) is even and p is odd by h y -
pothesis, it follows that x p s x. (mod 2p) and hence using Eq. (1) we deduce that xt + • • • 
+ x m s y (mod 2p) from which it follows immediately that y + 2p < xt + • • • + x . The 
case of p ^ i deserves special attention. Using the same reasoning as above, we obtain the 
inequality: _ 
(6) y + 2 < xx + ••• +x . < \l n y . 

Moreover, it is easy to derive solutions for the equation 

m 

for any n by using the well known general solution for n = 2 — i . e . , the identity (2ab)2 + 
(a2 - b2) = (a2 + b2) . Thus putting a = n, and b = n + 1, we obtain: 

(2n + I)2 + (2n(n + 1) )2 + (2n(n + 1) + l)2 . 

Now putting n = m (m + 1) and using Eq. (6) gives: 

(7) (2m + l ) 2 + (2U)2 + (2U(U + 1) )2 = (2U(U + 1) + l)2 , 

with U = m (m + 1). It is easy to use induction to show that this method gives an identity in 
m. We may write m = a/b and multiply throughout by b2 to obtain an identity in a and 
b. 



A PRIMER FOR THE FIBONACCI NUMBERS: PART XII 

VERNER E. HOGGATT, JR., and NANETTE COX 
San Jose State University, San Jose, California 

and 
MARJORIEBICKNELL 

A. C. Wilcox High School, Santa Clara, California 

ON REPRESENTATIONS OF INTEGERS USING FIBONACCI NUMBERS 

In how many ways may a given positive integer p be written as the sum of distinct Fib-
onacci numbers , order of the summands not being considered? The Fibonacci numbers a re 
1, 1, 2, 3, 5, • • • , F , • • • , where Fx = 1, F2 = 1, and F + 2 = F + F for n > 1. 
For example, 10 = 8 + 2 = 2 + 3 + 5 is valid, but 10 = 5 + 5 = 1 + 1 + 8 would not be valid. 
The original question is an example of a representation problem, which we do not intend to 
answer fully here. We will explore representations using the least possible number or the 
greatest possible number of Fibonacci numbers. 

1. THE ZECKENDORF THEOREM 

F i r s t we prove by mathematical induction a lemma which has immediate application. 
Lemma: The number of subsets of the set of the first n integers , subject to the con-

straint that no two consecutive integers appear in the same subset, is F ? , n > 0. 
Proof. The theorem holds for n = 0, for when we have a set of no integers the only 

subset is <$, the empty set. We thus have one subset and F0+2 = F2 = 1. 
For n = 1, 2 subsets: { l } , <p; F1 + 2 = F3 = 2 

n = 2, 3 subsets: { l } , {2}, 0; F2 + 2 = F4 = 3 
n = 3, 5 subsets: {1,3}, {3}, {2}, { l } , 0 ; F3 + 2 = F5 = 5 . 

Assume that the lemma holds for n < k. Then notice that the subsets formed from the first 
(k + 1) integers are of two kinds — those containing (k + 1) as an element and those which 
do not contain (k + 1) as an element. All subsets which contain (k + 1) cannot contain e le-
ment k and can be formed by adding (k + 1) to each subset, made up of the (k - 1) inte-
ge r s , which satisfies the constraint. By the inductive hypothesis there are F, 2 subsets 
satisfying the constraint and using only the f irst k integers, and there are F. + 1 subsets 
satisfying the constraints and using the first (k - 1) integers. Thus there a re precisely 

Fk+2 + Fk+1 = Fk+3 = F(k+l)+2 

subse ts satisfying the constraint and using the first (k + 1) integers. The proof is complete 
by mathematical induction. 

Now, for the application. The number of ways in which n boxes can be filled with zeros 
or ones (every box containing exactly one of those numbers) such that no two "ones" appear in 

317 
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adjacent boxes is F 2- (To apply the lemma simply number the n boxes.) Since we do not 
wish to use all zeros (<#>, the empty set in the lemma) the number of logically useable a r -
rangements is F 9 - 1. Now, to use the distinctness of the Fibonacci numbers in our r ep -
resentations, we must omit the initial FA = 1, so that to the n boxes we assign in order the 
Fibonacci numbers F2, F3, • • • , F ... This gives us a binary form for the Fibonacci posi-
tional notation. The interpretation to give the "zero" or "one" designation is whether or not 
one uses that part icular Fibonacci number in the given representation. If a one appears in the 
box allocated to F, , then F, is used in this particular representation. Notice that since 
no two adjacent boxes can each contain a "one ," no two consecutive Fibonacci numbers may 
occur in the same representation. 

Since the following are easily established identities, 

F 2 + F 4 + . . . + F 2 k = F 2 f c + 1 - 1 , 

•'2k+l = F 2 k + 2 

using the Fibonacci positional notation the larges t number representable under the constraint 
with our n boxes is F ^0 - 1. Also the number F ,., is in the n box, so we must be n+2 n+1 
able to represent at most F ? - 1 distinct numbers with F2, F3, • • • , F n + 1 subject to the 
constraint that no two adjacent Fibonacci numbers are used. Since there are F 9 - 1 dif-
ferent ways to distribute ones and zeros in our n boxes, there are F 9 - 1 different r ep -
resentations which could represent possibly F 9 - 1 different integers. That each integer 
p has a unique representation is the Zeckendorf Theorem [ l ] : 

Theorem. Each positive integer p has a unique representation as the sum of distinct 
Fibonacci numbers if no two consecutive Fibonacci numbers are used in the representation. 

We shall defer the proof of this until a la ter section. Now, a minimal representation of 
an integer p uses the least possible number of Fibonacci numbers in the sum. If both F, 
and F, appeared in a representation, they could both be replaced by F. - , thereby r e -
ducing the number of Fibonacci numbers used. It follows that a representation that uses no 
two consecutive Fibonacci numbers i s a minimal representation a n d a Zeckendorf 
representation. 

2. ENUMERATING POLYNOMIALS 

Next, we use enumerating polynomials to establish the existence of at least one minimal 
representation for each integer. 

An enumerating polynomial counts the number of Fibonacci numbers necessary in the 
representation of each integer p in a given interval F < p < F m + 1 in the following way. 
Associated with this interval is a polynomial P 1(x). A term ax J belongs to P ..(x) if 
in the interval F < p < F - , there are a_ integers p whose minimal representation r e -
quires i_ Fibonacci numbers. For example, consider the interval F6 = 8 < p < 13 = F7. 
Here, we can easily determine the minimal representations 
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8 = 8 
9 = 1 + 8 

10 = 2 + 8 
11 = 3 + 8 
12 = 1 + 3 + 8 . 

Thus, P5(x) = x3 + 2x2 + x because one integer required 3 Fibonacci numbers, 3 integers 
required 2 Fibonacci numbers, and one integer required one Fibonacci number in its mini-
mal representation. We note in passing that all the minimal representations in this interval 
contain 8 but not 5. We now l is t the first nine enumerating polynomials. 

F ^ P < F x 1 P Ax) 
m * m+1 m - 1 

m = 1 1 £ p < 1 0 = P0(x) 

m = 2 1 < p < 2 x = P4(x) 

m = 3 2 < p < 3 x = P2(x) 

m = 4 3 < p < 5 x 2 + x = P3(x) 

m = 5 5 < p < 8 2 x 2 + x = P4(x) 

m = 6 8 < p < 13 x3 + 3x2 + x = P5(x) 

m = 7 13 < p < 21 3X3 + 4x2 + x = P@(x) 

m 

m 

8 21 ^. p < 34 x4 + 6X3 + 5x2 + x = P^(x) 

9 34 < p < 55 4x4 + lOx3 + 6x2 + x = P8(x) 

We shall now proceed by mathematical induction to derive a recurrence relation for the 
enumerating polynomials P (x). It is evident from the definitions that an enumerating poly-
nomial for F < p < F + 2 is the sum of the enumerating polynomials for F m < p < F m + 1 

and F < p < F ? . Also it will be proved that the minimal representation of any integer 
p in the interval F < p < F ( 1 contains F but not F ... If we added F , 0 to each ^ m m+1 m m - 1 m+z 
such minimal representation of p in F < p < F + we would get a minimal representa-
tion of an integer in the interval 

T, = T ? + T ? < D < F + F = F 
m+1 m m+2 ~ p m+1 m+2 m+3 

Clearly the enumerating polynomial for this interval is xP Jx) since each integer p in 
this interval has one more Fibonacci number in its minimal representation than did the co r -
responding integer p in the interval F < p < F -. 

Next, the integers p in the interval F 9 < p < F „ require an F 9 in this 
minimal representation while all the numbers in the interval F - £ p < F 9 have F -
in their minimal representation. In each of these minimal representations remove the F -
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and put in an F 2- The resulting integer will have a minimal representation with the same 
number of Fibonacci numbers as was required before. In other words, the enumerating poly-
monial P 1 (x) is also the enumerating polynomial for 

F - F + F < D T < F - F + F = L 
m+2 m+1 m+1 "" p m+2 m+1 m+2 m+1 

Now, the intervals F + 2 < p? < L - and L < pT < F „ are not overlapping and 
exhaust the interval F „ < p < F + „ . Thus, the enumerating polynomial for this interval 
is 

P m + 1 W = Pm(x) + xP m _ 1 (x ) , P0(x) = 0, Pi(x) = x , 

which is the required recurrence relation. 
Now, to show by mathematical induction that the minimal representation of any integer 

p in the interval F < p < F - contains F but not F .., re-examine the preceding 
steps. Each minimal representation in the interval F IO < p < F IO contains F lrt ex-* ^ m+2 — F m+3 m+2 
plicitly since we added F to a representation from the interval F < p < F - and by 
the inductive hypothesis those representations did not contain F - but all contained F . 
Next, for the representations froni F ^ < p < F ? , all of which used F - explicitly 
by inductive assumption, we removed the F - and replaced it by F ? so that each r ep -
resentation in F ^0 < p < F 10 contains F J O but not F ( 1 . Thus, if the integers p 

m+2 — * m+3 m+2 m+1 ' & ^ 
in the previous two intervals , namely, F 5 P < F - and F .. < p < F ? , had 
Zeckendorf representations, then the representations of the integers p in the interval F „ 
< p < F o are also Zeckendorf representations. 

Now, notice that P (1) is the sum of the coefficients of P (x), or the count of the 
numbers for which a minimal representation exists in the interval F - < p < F 9. But, 
P (1) = F because PH(1) = P2(l) = 1 and P ^ ( 1 ) = P (1) + 1 • P ,(1), so that the m m 1 W * m+1 m m - 1 
two sequences have the same beginning values and the same recursion formula. The number 
of integers in the interval F J i

< p < F ,„ is F , o - F .., = F , so that every inte-& m+1 ^ m+2 m+2 m+1 m J 

ger is represented. Thus, at least one minimal representation exists for each integer, and 
we have established Zeckendorf s theorem, that each integer has a unique minimal represen-
tation in Fibonacci numbers. Notice that this means that it is possible to express any integer 
as a sum of distinct Fibonacci numbers. Also, notice that the coefficients of P (x) are the 
summands along the diagonals of Pasca l ' s triangle summing to F with increasing powers 
as one proceeds up the diagonals beginning with x. 

3. THE DUAL ZECKENDORF THEOREM 

Suppose that, instead of a minimal representation, we wished to write a maximal r ep -
resentation, or , to use as many distinct Fibonacci numbers as possible in a sum to represent 
an integer. Then, we want no two consecutive Fibonacci numbers to be missing in the r ep -
resentation. Returning to our n non-empty boxes, for this case we wish to fill the boxes 
with zeros and ones with no two consecutive zeros . Here we consider n ones interposed 
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by at most one zero. Thus, we have boxes to zero or not to zero. These zeros can occur 
between the left-most one and the next on the right, between any adjacent pair of ones, and 
on the right of the last one if necessary. Thus, there a re precisely 2 n possibili t ies, or , 
2 maximal representations can be written using n Fibonacci numbers from among 1, 2, 
3 ' 5 ' " • » F 2n+1 ' 

Now, associate with integers p in the interval F - l < p < F - l an enumerating 
maximal polynomial P* . (x) which has a term axJ if a of the integers p require j _ Fib-
onacci numbers in their maximal representation. For example, in the interval F6 - 1 = 7 
< p < 12 = F7 - 1, the maximal representations are 

7 = 5 + 2 
8 = 5 + 2 + 1 
9 = 5 + 3 + 1 

10 = 5 + 3 + 2 + 1 
11 = 5 + 3 + 2 + 1 . 

Thus, P5(x) = x4 + 3x3 + x2 because one integer requires 4 Fibonacci numbers, 3 integers 
require 3 Fibonacci numbers , and one integer requires 2 Fibonacci numbers in its maximal 
representation. Notice that all maximal representations above use 5 but none use 8. The 
f i rs t eight enumerating maximal polynomials a re : 

F - l < p < F J . 1 - l PL ,W 
m J- m+1 Hi-1 

m = 2 0 < p < 1 1 = P*(x) 

m 3 1 < p < 2 x = P2*(x) 

m = 4 2 < p < 4 x2 + x = P3 (x) 

*, m = 5 4 < p < 7 x3 + 2x2 = P4(x) 

m = 6 7 < p < 12 x4 + 3X3 + x2 = P5*(x) 

m = 7 12 < p < 20 x5 + 4x4 + 3x3 = Pg (x) 

8 20 < p < 33 x6 + 5x5 + 6X4 + x3 = P 7 (x) m 

m = 9 33 < p < 54 x7 + 6x6 + 10x5 + 4X4 = P*(x) 

As before, we now derive the recurrence relation for the polynomials P*(x). 
Lemma. Each maximal representation for integers p in the interval F m - 1 < p < 

F , i - l contains explicitly F n. m+1 F J m - 1 
Proof. We can add F to each maximal representation in the interval F - 1 < p < 

F , -, - 1 and these numbers fall in the interval m+1 

2F - 1 < pf < F ,„ - 1 . m F m+2 
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We can also add F to each maximal representation in the interval F ., - 1 < p < F ,., m ^ m - 1 ^ m+1 
- 1 and these numbers fall in the interval 

F , n - 1 < pT < 2F - 1 . m+1 ^ m 

These two intervals a re non-overlapping and exhaustive of the interval 

F L 1 - l < p < F _ L O - l . m+1 ^ m+2 

Thus, each maximal representation in this interval contains explicitly F . 
Thus, the enumerating polynomials P*(x) for maximal representations satisfy 

P*(x) = x [P*_x(x) + P*_2(x)] , Pf(x) = 1, P2*(x) = x , 

and again P*(l) = F . This establishes that each non-negative integer has at least one max-
imal representation. 

Returning to the table of the f irs t eight polynomials P*(x), by laws of polynomial addi-
tion, adding the enumerating maximal polynomials yields a count of how many numbers r e -
quire k Fibonacci numbers in their maximal representation. So, it appears that 

n=l 
^P*(x) = Pf(x) + P2*(x) + P3*(x) + P4*(x) + P5*(x) + - - • + P* (x) + . . . 

= 1 + x + (x2 + x) + (x3 + 2x2) + (x4 + 3x3 + x2) + • - -

= 1 + 2x + 4x2 + 8X3 + • • • + 2 k x k + • • • 

(That this is indeed the case is proved in the two lemmas following the Dual Zeckendorf 
k Theorem.) In other words, 2 non-negative integers require k Fibonacci numbers in their 

maximal representation. But requiring that each integer has at least one maximal represen-
tation exhausts the logical possibilit ies. Thus, each integer has a unique maximal represen-
tation in distinct Fibonacci numbers, which proves the Dual Zeckendorf Theorem [2]: 

Theorem. Each positive integer has a unique representation as the sum of distinct Fib-
onacci numbers if no two consecutive Fibonacci numbers are omitted in the representation. 

Lemma. Let fx(x) = 1, f2(x) = x, and f + 2 ( x ) = x f +i(x) + f
n ^ ^ e t h e F i D O n a c c i 

polynomials. Then 
P*(x2) = xn~Xf (x), n > 0 . n n 

n-l„ x f 

Proof. We proceed by mathematical induction. Observe that 

Pf(x2) = 1 = xHM , 

p*(x2) = x2 = xlf2(x) f 

p*(x2) = x2[p*_i(x2) + P*_2(X2)] . 
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Assume that 

Thus 
P * o<x2) = x n - 3 f Q(x) 

n -2 r - . , n - 3 , P*(x2) = ^ [ x ^ ^ x ) + x n - " \ _ 2 ( x ) ] 

= ^K-l^ + fn-2( x )3 = x I 1 " l f n ( x ) 

Lemma. 
oo 

2mJL*-™ 1 - 2x 
n=l 

P*(x) 

Proof. The Fibonacci polynomials have the generating function 

Effxl t 1 1 " 1 

n=l 

Now let x = t, and then by the previous lemma, 

00 00 

- — i — = y \ (x)x11-1 =y^p*(x2) = —i. 
1 _ x2 _ x2 Z « # n Z-# n x _ , 
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n=l n=l 
Therefore, 

_op 
p*(x) = - — 1 — = 1 + 2x + 4x2 + •. • + 2 n x n + I n 1 - 2x 

n=l 

Notice that the polynomials P*(x) have as their coefficients the summands along the 
rising diagonals of Pascal1 s triangle whose sums are the Fibonacci numbers but in the r e -
verse order of those for P (x). In fact, the minimal enumerating polynomials P ( x ) and 
the maximal enumerating polynomials P*(x) a re related as in the following lemma: 

Lemma. 
P (x) = x m P * (l/x) for m > 1 . m ' m 

Proof. This relationship will be proved by mathematical induction. 

m = 1: Pi(x) = x = x ^ P f U / x ) ] 

m = 2: P2(x) = x = x2(l/x) = x 2 [ P f ( l / x ) ] 

m = 3: P3(x) = x2 + x = x 3 ( l /x + l /x 2 ) = x3[ P3*(l/x) ] . 
Assume that 
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P k - l ( x ) = x k _ l p k _ l ( l / x ) ' 
Pk(x) = x k P*( l /x ) . 

Then, by the recurrence relations for the polynomials P (x) and P*(x) , 

P k + l W = P k f e ) + X P k- l ( X > 
= x k P * ( l / x ) + x x ^ P ^ U / x ) 

= X k + 1 ( l / x ) [ P * ( l / x ) 4- P ^ d / x ) ] 

= x k + 1 P * + 1 ( l / x ) 

which establishes the lemma by mathematical induction, 
Then, both the minimal and maximal representations of an integer are unique. Then, 

an integer has a unique representation in Fibonacci numbers if and only if i ts minimal and 
maximal representations are the same, which condition occurs only for the integers of the 
form F - 1, n > 3 [3] . In general, the representation of an integer in Fibonacci numbers 
is not unique, and, from the above r emarks , unless the number is one less than a Fibonacci 
number, it will have at least two representations in Fibonacci numbers. But, one need not 
stop here . The Fibonacci numbers F n and F 0 ,., can each be written as the sum of d i s -^ 2n 2n+l 
tinct Fibonacci numbers 1, 2, 3, 5, 8, • • • , in n different ways. For other integers p, 
the reader is invited to experiment to see what theorems he can produce. 

We now turn to representations of integers using Lucas numbers. 

4. THE LUCAS CASE 

If we change our representative set from Fibonacci numbers to Lucas numbers , we can 
find minimal and maximal representations of integers as sums of distinct Lucas numbers. 
The Lucas numbers are 2, 1, 3, 4, 7, 11, '*• , defined by L0 = 2 , L4 = 1, L2 = 3, 
L _ L 1 = L + L 1S n > 1. (See Brown [6a].) n+1 n n-1 L J 

The derivation of a recursion formula for the enume rating minimal polynomials Q (x) 
for Lucas numbers is very s imilar to that for the polynomials P (x) for Fibonacci numbers,, 
Details of the proofs are omitted here . Now, for integers p in the interval L < p < L - , 
the enumerating minimal polynomial Q 1 (x) has a te rm dx^ if d of the integers p r e -
quire j . Lucas numbers in their minimal representation. For example, the minimal r e p r e -
sentation in Lucas numbers for integers p in the interval 11 = L5 < p < L6 = 18 a re : 

11 = 11 
12 = 11 + 1 15 = 11 + 4 
13 = 11 + 2 16 = 11 + 4 + 1 
14 = 11 + 3 W = 11 + 4 + 2 
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so that Q4(x) = 2 x 3 + 4 x 2 + x since 2 integers require 3 Lucas numbers, 4 integers r e -
quire 2 Lucas numbers, and one integer requires one Lucas number. Notice that L5 = 11 
is included in each representation, but that L4 = 7 does not appear in any representation in 
this inverval. Also notice that we could have written 16 = 11 + 3 + 2. To make the minimal 
representation unique, it is necessary to avoid one of the combinations L0 + LA or LA + L3: 
we agree not to use the combination L0 + L2 = 2 + 3 in any minimal representation unless 
one or both of Lj and L3 also appear. The first nine Lucas enumerating minimal polynom-
ials follow. 

m = 1 

m = 2 

m = 3 

m = 4 

m = 5 

m = 6 

m = 7 

m = 8 

m = 9 

L m 

1 

3 

4 

7 

11 

18 

29 

47 

76 

< 

< 

< 

< 

< 

< 

< 

< 

< 

< 

P < 

P < 

P < 

P < 

P < 

P < 

P < 

P < 

P < 

P < 

m + 1 

3 

4 

7 

11 

18 

29 

47 

76 

123 

2X4 -

7x4 + 

2x5 + 16x4 + 

2X3 

5X3 

*• 9 x 3 

14x3 

2 Ox3 

+ 

+ 

+ 

+ 

+ 

Q -, (x) ^ m - 1 ' 

2x 

X 

2x2 + x 

3x2 + x 

4x* + x 

5x2 + x 

6x2 + x 

7x2 + x 

8x2 + x 

= Qo(x) 

= Qi(x) 

= Q2(x) 

= Q3(x) 

= Q4(x) 

= Q5(x) 

= Q6(x) 

= Q7(x) 

= Qs(x) 

Similarly to P (x), by the rules of polynomial addition and because of the way the polynom-
ials Q (x) are defined, 

jti 

Qn+1(x) = Qn(x) + xQn_1(x) , Q0(x) = 2x, Qt(x) = x , 

is the recursion relation satisfied by the polynomials Q (x). Here we have the same r ecu r -
sion formula satisfied by the polynomials P (x), but with different starting values. Notice 
that Q (1) = L . As before, Q Al) is the sum of the coefficients of Q n - 1 (x) s or , the 
count of the numbers for which a minimal representation exists in the interval L n < p < Ln + 1» 
which contains exactly L - - L = L - integers. Thus, each integer has at least one 
minimal representation in distinct Lucas numbers. 

Now, let us reconsider the n boxes. To have a minimal representation, we wish to 
fill the n boxes with zeros or ones such that no two ones are adjacent and to discard the 
arrangement using all zeros . As before, there are F n + 2 - 1 such arrangements. Now, 
establish a Lucas number positional notation by putting the Lucas numbers LQ} L ^ li2t Lg, 
• • • , L 1 into the n boxes. Again, the significance of the ones and zeros is determination 
of which Lucas numbers are used in the sum. ' But, notice that L0 + L2 = Lĵ  + L3, which 
would make more than one minimal representation of an integer possible. To avoid this prob-
lem, we consider the first four boxes and reject L0 + L2 whenever that combination occurs 
without L4 or L2. If such four boxes hold then there are (n - 4) remaining boxes which 
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0 1 0 1 

can hold F 2 compatible arrangements. Thus, rejecting these endings eliminates F 
arrangements , making the number of admissible arrangements F + 2 - F „ - 1 = L - 1. 
But the Lucas sequence begins with L0 = 2, so that the number L is in the box numbered 
(n + 1). Therefore, using the first n Lucas numbers and the two constraints , we can have 
at most L - 1 different numbers represented, for 

L i + L 3 + • -

L2 + L 4 + • • 

* + L 2 k - 1 " L 2 k 

+ L 2 k - 2 = L 2 k - 1 

- 2 

- 1 

and the L0 + L2 ending was rejected, 
Then, we can have at most L - 1 different numbers represented using L0> h1, • • • , 

L , but the enumerating minimal polynomial guarantees that each of the numbers 1, 2, 3, 
• • • , L - 1, has at leas t one minimal representation. Thus, the minimal representation of 
an integer in Lucas numbers , subject to the two constraints given, is unique. This is the 
Lucas Zeckendorf Theorem. 

For the maximal representation of an integer using distinct Lucas numbers , again we 
will need to use adjacent Lucas numbers whenever possible. In our n boxes, then, we will 
want to place the ones and zeros so that there never are two consecutive zeros . Also, we 
need to exclude the ending ht + L3 in our representations to exclude the possibility of two 
maximal representations for an integer, one using L0 + L2 = 5 and the other LA + L3 = 5. 
We will use the combination LA + L3 only when one of L0 or L2 occurs in the same maxi-
mal representation. 

Now, let the enumerating maximal polynomials for the Lucas case for the interval L & 
p < L - be Q* (x), where dxJ is a term of Q* ..(x) if d of the integers p require j _ 
Lucas numbers in their maximal representation. For example, the maximal representation 
in Lucas numbers for integers p in the interval 11 = L5 < p < L6 = 18 a re : 

11 

12 

13 

14 

15 

16 

17 

= 
= 
= 
= 
= 
= 
= 

7 

7 

7 

7 

7 

7 

7 

+ 3 

+ 3 

+ 3 

+ 4 

+ 4 

+ 4 

+ 4 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

1 

2 

2 

2 

3 

3 

3 

+ 

+ 

+ 

+ 

-f 

1 

1 

1 

2 

2 + 1 

so that Q|4(x) = x5 + 4X4 + 2X3, since one integer requires 5 Lucas numbers , 4 integers r e -
quire 4 Lucas numbers, and 2 integers require 3 Lucas numbers in their maximal represen-
tation. The first nine polynomials Q*(x) follow. 



X5 

X6 

1 + 6x6 

+ 

+ 

+ 

X3 

X4 

4x4 

5x5 

9x5 

Q* ^m-
2x = 

x2 = 

+ 2x2 = 

+ 3x3 = 

+ 2x3 = 

+ 5X4 = 

+ 2x4 = 

Qo*(x) 

Q*(x) 

Q2*(x) 

Q3*(x) 

Q4*(x) 

Q|(x) 

Q6*(x) 

1973] A PRIMER FOR THE FIBONACCI NUMBERS: PART XII 327 

m F m+1 
m = 1 1 < p < 3 

m = 2 3 < p < 4 

m = 3 4 < p < 7 

m = 4 7 < p < 11 

m = 5 11 < p < 18 

m = 6 18 < p < 29 

m = 7 29 < p < 47 

m = 8 47 < p < 76 x8 + 7x7 + 14x6 + 7x5 = Q*(x) 

m = 9 76 < p < 123 x9 + 8x8 + 20x7 + 16x6 + 2x5 = Qg(x) 

The recursion relation for the polynomials Q*(x) can be derived in a s imilar fashion 
to P*(x), becoming n & 

Q*+ 1W = x[Q*(x) + Q*_1(x)]J Q0*(x) = 2x, Qf(x) = x2 . 

Notice that the same coefficients occur in the enumerating minimal Lucas polynomial Q (x) 
and in the enumerating maximal Lucas polynomial Q*(x). The relationship in the lemma be-
low could be proved by mathematical induction, paralleling the proof of the s imilar property 

(x) and 
i 
Lemma. 

of P (x) and P*(x) given in the preceding section. 

Q (x) = x m + 1 Q * (1/x) for m > 1 . 
^ m ' ^ m ' 

Also, the polynomials P*(x) and Q*(x) are related as follows: 
Lemma. 

Q*__1(x) = xl*(x) + x2P*_2(x), n * 1 , 

which could be proved by mathematical induction. Notice that the lemma above becomes the 
well known identity, L = F + F Q, when x = 1. n—j. n n—A 

Now we return to our main problem. 
By laws of polynomial addition, if we add all polynomials Q*(x), the coefficients in the 

sum will provide a count of how many integers require k Lucas numbers in their maximal 
representation. Then, it would appear that 

00 

n=0 
Q* (x) = Q0*(x) + Q*(x) + Q2*(x) + Q3*(x) + Q4*(x) + . . . + Q*(x) + 

= 2x + x2 + (x3 + 2x2) + (x4 + 3x3) + (x5 + 4x4 + 2x3) + • 

= 2x + 3x2 + 6x3 + 12X4 + 24x5 + • • • + 3 -2 k " 2 x k + • • • , 
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k-2 ^ 

so that 3«2 integers require k Lucas numbers in their maximal representation, k > 2. 
A proof that this is the cor rec t computation of the sum of the polynomials Q*(x) follows. 

Lemma. If 
Q*(x) = 2x, Qf(x) = x2, and Q*(x) = x[Q*_1(x) + Q*_ 2 to ] , 

then 
Q * ^ ) = xn + 1

Lfn(X) + fn_2(x)] , 

where f (x) a re the Fibonacci polynomials. 
Proof. To begin a proof by mathematical induction, observe that 

n = 1: <$(x2) = 2x2 = x2(l + 1) .= x1 + 1[fi(x) + f-i(x)] 

n = 2: Qf(x2) = x4 = x3(x + 0) = x2+1[f2(x) + f0(x)] . 

Assume that the lemma holds for (n - 1) and (n - 2). Then 

Q*(x2) = x 2 [Q*^(x 2 ) + Q*_2(x2)] 

= x2{xn + 1[fn(x) + fn_2(x)] + ^ [ f n - 1 W + fn_3(x)]} 

= Xn+2{[Mn(x) + f^ fe ) ] + [ x f n - 2 W + ^ ( X ) ] } 

= x n + 2 [ f n + 1 ( x ) + f n ^ ( x ) ] , 

establishing the lemma by mathematical induction for n > 1. 
Using known generating functions for the Fibonacci polynomials as before, 

c t v , n + l t2 

.f (x)t = - n 1 - xt - t2 
n=l 

OO 

JLmJ n" 
n+l = tfq - xt) 

n=l 2 ! - * - « 
Adding, 

Setting t = x, 

1 " xt ~ * 1 ^ 1 

T^TT =Z)xI1+1[fn<x> + f„-2<x>] =^K-i^ • 
1 - 2 x n=l i £ l 

Therefore, 
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,Q*(x) 2x 
2x = 2x + 3xz 

2x 2x + > 3 -2 n - 2 x n 

n=0 n=2 
«k-l To seethe reason for the peculiar coefficients 3*2 "J", examine the eight possible ways 

to fill the first four boxes with zeros and ones. Then see how many numbers requiring n 
Lucas numbers in their maximal representation could be written. In other words, consider 
how to distribute n ones without allowing two consecutive zeros . The eight cases follow. 

L3 

1 
1 
0 
1 
1 
1 
0 
0 

L2 

1 
0 
1 
1 
0 
1 
1 
1 

Count of Possibili t ies (n ^. 4) 
2 n-4 

excluded 
2 n -3 

2 n -3 

2 n " 3 

2 n -3 

2 n-4 
0 n -3 

Summing the seven useable cases gives 
5-2n"3 + 2»2n"4 = 6-2n"3 = 3-2n~2, n ^ 4 , 

possible maximal representations. The endings with a zero in the left-most box would r e -
quire that the L4 box contain a one, while all would have either an L4 or an L5 appearing 
in the representation. The endings listed above do not give the numbers requiring 1, 2, or 
3 Lucas numbers in their maximal representation. So, the endings given above, do not in-
clude the representations of 1 through 9, 11 and 12, which give the f irs t three terms 2x + 3x2 

+ 6x3 of the enumerating maximal Lucas polynomial sum and explain the i r regular f i rs t t e rm 
in the sum of the polynomials Q*(x). The numbers not included in the count of possibilities 
above follow. 

J4 

1 

1 

L 3 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

L 2 

0 

0 

0 

1 

1 

1 

0 

1 

1 

1 

1 

L i 

1 

0 

1 

1 

0 

1 

1 

1 

0 

1 

0 

Lo 

0 

1 

1 

0 

1 

1 

1 

0 

1 

0 

1 

repres en ting: 

1 I 
2 \ 2 X 

3 J 
4 

5 ' 

6 

7 

8 

3x2 

\ 

6X3 

9 1 " 1 12 
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k-2 Now, the enumerating maximal polynomial guarantees that 3*2 ~ integers require k 

Lucas numbers in their maximal representation, but examining the possible maximal r e p r e -
k-2 

sentations which could be written using k Lucas numbers shows that at most 3-2 differ-
ent representations could be formed. That i s exactly one apiece, so the maximal represen-
tation of an integer using Lucas numbers subject to the two constraints, that no two consecu-
tive Lucas numbers are omitted and that the combination L3 + L1 is not used unless L0 or 
L2 also appear, is unique. 

5. CONCLUDING REMARKS 

Much interest has been shown in the subject of representations of integers in recent 
years . Some of the many diverse new resul ts which a r i se naturally from this paper a re r e -
corded here with references for further reading. 

That the Fibonacci and Lucas sequences are complete has been shown in this paper, 
although the property was not named. A sequence of positive integers , al9 a2, • • • , a , • • • , 
is complete with respect to the positive integers if and only if every positive integer m is the 
sum of a finite number of the members of the sequence, where each member is used at most 
once in any given representation. (See [4] , [5].) For example, the sequence of powers of 
two is complete; any positive integer can be represented in the binary system of numeration. 
However, if any power of 2, for example, 1 = 2°, is omitted, the new sequence is not com-
plete. It is surprising that, for the Fibonacci sequence where a = F , n > 1, if any one 
a rb i t ra ry number F, is missing, the sequence is still complete, but if any two arb i t ra ry 
Fibonacci numbers F and F are missing, the sequence is incomplete [4] . 

The Dual Zeckendorf Theorem has an extension that character izes the Fibonacci numbers. 
Brown in [2] proves that, if each positive integer has a unique representation as the sum of 
distinct members of a given sequence when no two consecutive members of the sequence are 
omitted in the representation, then the given sequence is the sequence of Fibonacci numbers. 

Generalized Fibonacci numbers can be studied in a manner s imilar to the Lucas case. 
A set of particularly interesting sequences arising in Pasca l ' s triangle appears in [6]; the 
sequences formed as the sums of elements of the diagonals of Pascal1 s left-justified triangle,, 
beginning in the left-most column and going right one and up p throughout the ar ray . (The 
Fibonacci numbers occur when p = 1.) Or, the squares of Fibonacci numbers may be used 
(see [7]), which gives a complete sequence if members of the sequence can be used twice. 
Other ways of studying generalized Fibonacci numbers include those given in [8] , [9] , [10] ,9 

and [11]. 
To return to the introduction, Carlitz [12] and Klarner [13] have studied the problem 

of counting the number of representations possible for a given integer. Tables of the number 
of representations of integers as sums of distinct elements of the Fibonacci sequence as well 
as other related tables appear In [14]. The general problem of xepresentations of integers 
using the Fibonacci numbers , enumerating intervals , and positional binary notation for the 
representations were given by Ferns [15] while [16] is one of the ear l ies t references follow-
ing Daykin [8]. The suggested readings and the references given here are by no means ex-
haustive. The range of representation problems is bounded only by the imagination. 
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YE OLDE FIBONACCI CURIOSITY SHOPPE 

Edited by 
BROTHER ALFRED BROUSSEAU 

St. Mary's College, California 

Let S(X2) symbolize the sum of the digits of X2 on the base q. For example, 
S(92)5 = S(142)5 = 5 since 92

5 = 311. 
The following is a method for finding q such that S(X2) = X when X is given. For 

example S(72)8 = 7 since l\ = 61. 
Step 1. List all the factors of X except X itself. 
Step 2. List all the factors of X - 1. 
Step 3. Multiply each factor of X by one of the factors of X - 1, discarding all prod-

ucts grea ter than X - 1. The retained products are the ten!s digits of the X2 that we seek. 
si 

Step 4. The unit 's digits can be obtained by simple subtraction of the quantities in 
three from X. 

Step 5. q can now be computed by simple arithmetic. 
Example. S(212) = 2 1 . Find all values of q. 

Step I: 
Step II: 
Step III: 

1(20) 
3(18) 

1 
1 
3 
7 

2(19) 
6(15) 

1 
2 4 
2 4 
6 12 

14 
4(17) 
12(9) 

3 7 
5 10 
5 10 

15 

5(16) 
15(6) 

20 
20 

10(11) 
7(14) 

20(1) 
14(7) 

Step IV: 

The quantities in parentheses are the unitfs digits. 
Step V: For example, for 5(16), 5b + 16 = 441 in base ten so that b = 85 expressed 

as a base ten number. The bases taken in order a re 
421 211 106 85 43 22 
141 71 36 29 61 31 

The problem i s : Why does this method work?. 
Harlan L. Umansky, Emerson High School, Union City, N . J . 

• * • 

If eleven alternate te rms of any Fibonacci sequence a re added and divided by L11(199), 
the resul t i s the middle term of the group of eleven t e rms added together. 

Example. Using the ser ies beginning 1, 4, • • • , 

157 +411 + 1076 + 2817 + 7375 + 19308 + 50549 + 132339 + 346468 + 907065 + 2374727 = 3942292 

Dividing by 199 gives 19308. 

Brother Alfred Brousseau, St. MaryTs College, California 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. H1LLMAN 

University of New Mexico, Albuquerque, New Mexico 87131 

Each proposed problem or solution should be submitted on a separate sheet or sheets , 
preferably typed in double spacing, in the format used below, to Professor A. P. Hillman, 
Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New 
Mexico 87131. 

Solutions should be received within four months of the publication date of the proposed 
problem. 

DEFINITIONS 

F0 = 0, Fi = 1, F _, = F ^ + F ; L0 = 2, ^ = 1, L ^ = L _,_- + L . 
u ' x ' n+2 n+1 n ' u ' a ' n+2 n+1 n 

PROBLEMS PROPOSED IN THIS ISSUE 

B-262 Proposed by Herta T. Freitag, Roanoke, Virginia 

(a) Prove that the sum of n consecutive Lucas numbers is divisible by 5 if and only if 
n is a multiple of 4. 

(b) Determine the conditions under which a sum of n consecutive Lucas numbers is a 
multiple of 10. 

B-263 Proposed by Timothy B. Carroll, Graduate Student, Western Michigan University, Kalamazoo, Michigan. 

Let S = a11 + b n + c11 + dn where a, b, c, and d are the roots of x4 - x3 - 2x2 + x 
+ 1 = 0. 

(a) Find a recursion formula for S . 
(b) Express S in t e rms of the Lucas number L . 

B-264 Proposed by R. M. Grass/, University of New Mexico, Albuquerque, New Mexico. 

Use the identities F^ - F ^ F ^ = ( - l ) n + 1 and F^ - F n _ 2 F n + 2 = ( - l ) n to obtain a 

factorization of F4 - 1 „ n 

B-265 Proposed by Zalman Usiskin, University of Chicago, Chicago, Illinois 

Let F and L be designated as F(n) and L(n). Prove that 

n -1 . 
F (3 n ) = T T [L(2-3R) - 1] . 

k=0 

333 
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B-266 Proposed by Zalman Usiskin, University of Chicago, Chicago, lilino is 

Let L be designated as L(n). Prove that 

n-1 
L(3n) = T T [L(2-3K) + l ] . 

k=0 

B-267 Proposed by Marjorie Bicknell, A. C. Wilcox High School, Santa Clara, California. 

Let a regular pentagon of side p , a regular decagon of side d, and a regular hexagon 
of side h be inscribed in the same circle . Prove that these lengths could be used to form a 
right triangle; i. e. , that p2 = d2 + h2 . 

SOLUTIONS 

OF THREE, WHO IS SHE? 

B-238 Proposed by Guy A. R. Guillotte, Cowansville, Quebec, Canada. 

Can you guess WHO IS SHE? This is an easy simple addition and SHE is divisible by 29. 
WHO 

IS 
SHE 

Solution by John l/l/. Milsom, Butler County Community College, Butler, Pennsylvania. 

Although it is not stated in the problem, assume (as is customary) that distinct le t ters 
represent distinct digits. 

The le t ter I must be replaced with the number 9 (base 10). W is one less than S. 
Examining the three-digit numbers which a re divisible by 29, there a re three sets of numbers 
which satisfy the conditions imposed by the problem. 

WHO 6 2 8 714 7 4 3 
IJ5 97 98 98 

SHE 7 2 5 812 8 4 1 
Thus WHO IS SHE can be 
1. 628 97 725 

2. 714 98 812 

3. 743 98 841 

Also solved by Harold Don Allen, Paul S.Bruckman, J. A. H. Hunter, Robert Kaplar, Jr., Edgar Karst, David Zeitlin, and the 
Proposer. At least one of the solutions was found by Kim Bachick, Warren Cheves, and Herta T. Freitag. A solution with W = 
Ewas found by Richard W. Sielaff. 

INEQUALITY ON GENERALIZED BINOMIALS 

B-239 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Let p > 0, q > 0, u0 = 0, \it = 1 and u 1 = pun + qu ^ (n > 1). Put 
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Show that 

(*) 

. i = U U • • • U , , - / 11- U • • • U. , < !M = 1 
k f n n -1 n-k+1 ' 1 2 k' J 01 

Solution by Graham Lord, Temple University, Philadelphia, Pennsylvania. 

Let 

L H S P - P 2 
- i j j k + i kj " F | k 

When n = 2 and k = 1 the inequality is not s t r ic t since L = 0. Now 

L = (u , ,.. u, , . - p2u . u, )u2 • • • u2 . l 0 u . , - / u2 • • • u? u, M -v n-k+1 k+1 F n-k k n n-k+2 n-k+1 / 1 k k+1 
Also 

u . , - u. , _ - p2u . u. = (pu . + qu . - ) (pu, + qu. - ) - p2u . u. n-k+1 k+1 F n-k k F n-k H n-k-1 F k M k-1 ^ n-k k 
= pq(u . u. - + u . - u, ) + q2u . n u. - . ^H n-k k-1 n-k-1 k M n-k-1 k-1 

Since u, for k > 0, p , and q are positive, L is a product of positive numbers except for 
n = 2, k = 1. 

Also solved by H. W. Gould and the Proposer. 

THE MISSING LUCAS FACTOR 

B-240 Proposed by W. C. Barley, Los Gatos High School, Los Gatos, California. 

Prove that, for all positive integers n, 3F + 2
F n + 3 i s a n e x a c t d i v i s o r o f 

7F3 - F3 - F3 . n+2 n+1 n 

Solution by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let F be denoted by a, b , c, and d when m is n, n + 1, n + 2, and n + 3, r e -in J 

spectively. Let E = 7c3 - b3 - a3. Then E = 7c3 - (d - c)3 - (2c - d)3 = 3cd(3c-d) and so 
(3cd) | E as desired. (One may note that the remaining factor 3c - d equals L n + 1 - ) 

Also solved by Wray G. Brady, Paul S. Bruckman, James D. Bryant, L. Carlitz, Warren Cheves, Herta T. Freitag, J. A. H. 
Hunter, Edgar Karst, Graham Lord, F. D. Parker, David Zeitlin, and the Proposer. 

THREE FACES OF A POSSIBLE PRIME 

B-241 Proposed by Guy A. R. Guil/otte, Cowansville, Quebec, Canada. 

If 2 F 2 - F 2 - - 1 and 2F2 + 1 are both prime numbers, then prove that 
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F2 + F F 
2n 2n - l 2n+l is also a prime number. 

Solution by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

Since 
F 0 _L1 FQ n - F2 = 1, 2F 0 n F 0 _,, - 1 = 2F2 + 1 = F2 + F 0 , F 0 x 1 2n+l 2n - l 2n 2n- l 2n+l 2n 2n 2n- l 2n+l 

If any one of these three equal expressions represents a pr ime, so do the other two. 

Also solved by James D. Bryant, Edgar Karst, David Zeitlin, and the Proposer. 

FIBONACCI-PASCAL PROPORTION 

B-242 Proposed by J. Wlodarski, Proz-Westhoven, Federal Republic of Germany. 

Prove that 

(W>->) = F - F m • m+1 

for infinitely many values of the integers m, n, and k (with 0 < k < n). 

Solution by the Proposer. 

Let 

R 

Then 
(0*W 

R = [n!/k!(n - k)!][(k - l)!(n - k + l)!/n!] = (n - k + l ) /k . 

Then we can make R equal to F. / F .. by choosing k as tF - and n as tF „ - 1, 
with t any positive integer. 

ANOTHER ELUSIVE PLEASING PROPORTION 

B-243 Proposed by J. Wiodarski, Proz-Westhoven, Federal Republic of Germany. 

Prove that 

( : ) * ( " • ) 
= F - F 

m • m+1 

for infinitely many values of the integers m, n, and k (with 0 < k < n). 

Solution by the Proposer. 

Here the given ratio of binomial coefficients equals (n - k + l ) / (n + 1) and this becomes 
F / F - when n = tF - - 1 and k = tF - , with t any positive integer. 


