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SOME ARITHMETIC FUNCTIONS RELATED TO FIBONACCI NUMBERS 

L. CARLITZ, RICHARD SCOVILLE, and THERESA VAUGHAW 
Duke University, Durham, Worth Carolina 

1. INTRODUCTION 

As i s customary, we define the Fibonacci and Lucas numbers by means of 

F0 = 0, Ft = 1, F = F - •+ F 0 (n > 2) 
u 1 n n-1 n-2 ' 

and 
L0 = 2, L4 = 1, L = L n + L 0 (n > 2) , 

u * n n -1 n-2 ' 

respectively. It is well known that a positive integer N has the unique representation 

(1.1) N = F k i + F k 2 + . . . + F k r > 

where r = r(N) and the k. satisfy 

(1.2) kt ^ 2 , k - k > 2 (j = 2, 3, • • - , r) . 

The representation (1.1) is called the canonical or Zeckendorf representation of N. 
It is proved in [l] that the set A. of integers { N } with kt = t can be described in the 

following way: 
( A9, = {abt _ 1a(n) | n = 1, 2, 3, • • •} 

(1'3) J A ^ - ^ ( 0 ) 1 1 1 = 1.2. 3 , . - .} ( t » 1 . 2 . 3 . . . - ) . 

where juxtaposition of functions denotes composition and 

(1.4) a(n) = [an], b(n) = | > 2 n ] , a = \{1 + \[5) . 

For the Lucas numbers it is known that every positive integer is uniquely representable 

in either the form 
(1.5) N = L0 + L ^ + L ^ + . . . + L k r , 

where 

(1.6) kt ^ 3 , k - k > 2 (j = 2, 3, • - . , r) 

o r in the form 

* Supported in par t by NSF Grant GP-17031. 

337 



338 SOME ARITHMETIC FUNCTIONS RELATED TO FIBONACCI NUMBERS [Nov. 

(1.7) N = L. + L. + ••• + L k , 
kj k2

 K r 
where now 
(1.8) kt > 1, k. - k . ^ > 2 (j = 2, 3, • • • , r) ; 

but not in both (1.5) and (1.7). 
Let B0 denote the set of positive integers representable in the form (1.5) and let B, 

denote the set of positive integers representable in the form (1.7) with kt = t. Then it is 
proved in [2] that 

( 1 # 9 ) ( B0 = (a2(n) + n | n » 1, 2, 3, • • •} 
I Bi » (a2(n) + n - 1 | n = 1, 2, 3, • • • } 

and 

(1.10) I B2t = {b^aW + b W |n = 1, 2, 3, . . .} ft = ^ ^ ^ . . . } ^ 

2t+l B , = {abfc Xa(n) + abfca(n) | n = 1, 2, 3, • • • } 

The functions a(n), b(n) satisfy numerous relations that a re consequences of the 
following. 
(1.11) b(n) = a(n) + n = a2(n) + 1 
and 
(1.12) ab(n) = a(n) + b(n) = ba(n) + 1. 

Moreover if the function e(n) is defined by 

(i-i3) e(N> = v + v + "" ""V1' 
where N is defined by (1.1), then we have 

(1.14) ea(n) == n, eb(n) = a(n) . 

Comparison of (1.9) and (1.10) with (1.3) suggests that it would be of interest to in t ro-
duce the function 
(1.15) c(n) = a(n) + 2n = b(n) + n . 

It i s not difficult to show that bc(n) - cb(n) = 0 or 1. We accordingly define two str ict ly 
monotonic functions r(n), s(n) by means of 

(1.16) bcr(n) = cbr(n), bcs(n) = cbs(n) + 1 . 

The functions r(n) and s(n) are complementary, that i s , the sets (r(n)} and (s(n)} con-
stitute a (disjoint) partition of the positive integers. 

The present paper is concerned with the propert ies of r(n) and s(n) and various r e -
lated functions. In particular we define 
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(1.17) u'(n) = bs(n) + 1 
and 

(1.18) t'(n) = as(n) + n . 
It then follows that 
(1.19) (s) = (ab) U (a2u') ; 
more precisely 
(1.20> st = ab, st? = a2uf , 

where t and tf a re complementary functions. Also 

c(n) G (a) «=* n G (a2u) >j (bs) 

c(n) G (b) «=* n e (br) U (s) 
this i s equivalent to 

(1.21) 
|ca2(n) G (a) (n G (r)) 

cb(n) G (b) (n G (r)) 

It should be noted that the unions above are disjoint unions. 
In these formulas we have used the symbol (f) to denote the range of the function f. If 

f and g a re two strictly monotonic functions such that (f) c (g) s it is clear that there ex-
is ts a str ict ly monotonic function h such that f = gh. In part icular since (b) C (a), there 
exists a function v such that b = av. Also since (cs) C (b), there exists a function z 
such that cs = bz. Similarly we define functions p, x, y9 w by means of 

(1.22) es(n) = rp(n) = ux(n) = uwy(n) , 

so that x = wy. Among various relations among these functions we cite in part icular the 

following. 
(1.23) z(n) = c's(n) 

(1.24) zt(n) = ca(n) + 1, ztf(n) = b2a(n) 

(1.25) tb2(n) = t(n) + b2(n) 

(1.26) tft(n) = tb2(n) - 1 

(1.27) yt(n) = 2n 

(1.28) v(n) = w(2n) . 

The formula 
(1.29) eca(n) = c(n) - 1 

proved in Section 3 can be thought of as one of the basic resul ts of the paper. It was origin-
ally proved in an entirely different way. 
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We may also note the formula 

(1.30) (s) = LJ (a(a2b)kb) , 
k=0 

which i s a consequence of (1.19). There a re s imilar formulas for (r), (u), (uf). 
For the convenience of the reader a summary of formulas is included at the end of the 

paper as well as several brief numerical tables. 
It should be remarked that almost all the theorems in this paper were suggested by 

numerical data. Thus it seems plausible that further numerical data may suggest additional 
theorems. The authors have prepared ra ther extensive tables which will be available from 
the Fibonacci Bibliographical and Research Center. 

2. NOTATION AND PRELIMINARIES 

If f is a function on the set N of positive integers, we let (f) denote the range of f, 
that is 

(f) = (f(n) | n e N } . 
If n, m E N , then 

n,(n < f < m) 

is the number of integers j such that n < f (j) < m. 
If f has the property that f(n + 1) - f(n) > 1 for all n £ N , then we say that f is 

separated. 
If f i s a function such that N / (f) i s infinite, we may define a strictly mono tonic func-

tion f? byi 
(P) = N/ ( f ) . 

This function fr i s called the complement of f. 
2 , 1 ' Theorem. If f i s a str ict ly monotonic function from N to N such that N/(f) 

i s infinite, then 
f(n) = n + rj(f < ffe)) 

f(n) = n + ntf < fT(n)) . 

Proof. Suppose that f(n) = k. Since f i s str ict ly monotonic we have k > n. Clearly 
q (f < k) = n - 1 and by definition of f', some r\ (ff < k) = k - n. Thus 

f(n) = k = n +n(f r < k) = n + r\(p < f(n)) . 

A s imilar argument shows that 

f (n) = n + ntf < ff(n)) . 
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2.2 Theorem. If f i s a strictly mono tonic function and, for some n and j we have 
P(j) = f(n) - l s then j = f(n) - n. 

Proof. We have 
P(j) = f(n) - 1 = n + n (P < f(n)) - 1 

= n + rj(f« < (j) + 1) - 1 

= n + j - 1 . 

Then f (n) - 1 = n + j - 1 and j = f(n) - n. 
2.3. Corollary. [3 9 Th. 3.1]. If f is a separated function then for all n > 1, 

f (f(n) - n) = f(n) - 1 
and 

f'tftn) - n + 1) = f(n) + 1 . 

Proof. This is a direct consequence of the fact that if f is separated, then f(n) - I E 

(P) and f(n) + 1 G (ff). 
2.4. Theorem. If f is separated, then for all n > 1, 

n(Pfo) < f < f(P(n)) + l ) = n . 

Proof. 

n ( f < f(ff(n)) + l ) = ff(n) = n + n(f < f (n)) 

= n(f < f'(n))^-rj((f?(n) < f < f(f'(n)) + l ) 

and the theorem follows. 
2.5. Definition. If f and g are functions, we use juxtaposition to mean composition 

of functions, that i s , 
fg(n) = f(g(n)) . 

2.6. Theorem. If f, g, h and k are all s tr ict ly mono tonic, and if f = gfh and g = 

f k , then 
f kf = g?hf . 

Proof. We have 
(ff) = (g) U (g?hO = (fk) U (gfhO 

and 
tf») = (ffk) U (ffkf) . 

Since all functions are strictly monotonic, these a re disjoint unions, and hence 

(Pk») = (g'h») . 
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Again using str ict mo no tonicity, we must have 

f'k' = gThf . 

2.7. Definition. If 

exis ts , we set 

lim M 
n—»MX> n 

,. f(n) c„ = lim -L-z-f n—^oo n 

2.8. Theorem. If f and ff a re complementary str ict ly monotonic functions and 

f(n) 

exists and ^ 0, then 

exis ts , and we have 

lim 
n—-»oc n 

am m 
n—^oe n 

(i) i + A = i 
cf cff 

(ii) cf + cf? = c f • cff . 

2.9. Definition. If p is any real number, then [p] is defined to be the greatest in-
teger less than or equal to p, and {p} denotes p - [p] > 

2.10. We shall make extensive use of the functions a, b, c, e defined in [ l ] . For 
convenience, we recall the definitions, and state some proper t ies , of these functions. 

(2.11) a(n) = [an] where a = \(1 + N/5*) 

(2.12) b(n) = [>2n] = a(n) + n 

(2.13) c(n) = [(a + 2)n] = a(n) + 2n . 

(2.14) b(n) = a2(n) + 1 

(2.15) ab(n) = a(n) + b(n) = ba(n) + 1 

(2.16) ab(n) + 1 = a(b(n) + 1) 

(2.17) a2(n) + 1 = a(a(n) + 1) 

n E (a) «=> a ( n + 1) = a(n) + 2 
(2.18) b(n + 1) = b(n) + 3 

c(n + 1) = c(n) + 4 

(2.19) 
n E (b) «=> a(n + 1) = a(n) + 1 

b(n + 1) = b(n) + 2 
c(n + 1) = c(n) + 3 
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2 , 2 ° - Theorem. Suppose that 

an = m + et (0 < et < 1) 

am = k + e2 (0 < e2
 < D 

then 
e2 + aej = 1 + et . 

Proof. We have 

a2n = am + ae± = (a + l)n = on + n 

= m + ej + n 

= k + e2 + (X€i . 

From the definition, m = a(n), k = a2(n) and k + 1 = b(n) = m + n = [a2n] . Thus k + 1 = 
m + n and so 

k + 1 + et = k + <E2 + aet 

and the resul t follows. 
2 - 2 1 , Theorem [4]. For all n9 

(i) n E ( a ) < = > { < m } > — 
a2 

(ii) n E (b) <=> {an} < -i- . 
a2 

2.22. Theorem. We have 

H(a < n) = a(n) - n . 

Proof. This follows from the fact that a(n + 1) - a(n) is 1 if n E (b) and 2 if n E 
(a). Since a(l) = 1, we have a(n) = n + H (a < n) . 

The following formulas follow from 2.22. 

rj(b < n) = n - 1 - n(a < n) 

(2.23) = n - 1 - (a(n) - n) 

= 2n - 1 - a(n) . 

(2.24) n(b < a(n)) = a(n) - n = n(a < n) . 

Recall that the function e was originally defined in te rms of the Zeckendorf represen-
tation of n. In [1, Th. 6] it is shown that 
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eb(n) = a(n) 
(2.25) 

ea(n) = n . 

We l is t some propert ies of e. 

(2.26) e(n) = n(a < n) 

(2.27) e(n) = n(a < n + 1) = a(n + 1) - (n + 1) 

(2.28) e(n) = n + l l 

. ° J 
3. BASIC RESULTS 

3.1. Theorem. For all n, 0 < bc(n) - cb(n) < 1. 
Proof. Recall that b(n) = [>2n] by (2.9). Thus 

bc(n) = [>2c(n]} = |>2<b(n) + a)] 

= [a2b(n) + a2n] 

= [a2[a2n] + a2n] 
and 

cb(n) = b(b(n)) + b(n) 

= [cir2[a2n]] + [a2n] . 

It i s evident that bc(n) > cb(n), and 0 < bc(n) - cb(n) < 1. 
3.2. Corollary. If cb(n) G (b), then cb(n) = bc(n). If cb(n) G (a), then cb(n) = 

bc(n) - 1 = a2c(n). 
Proof. Since for all r , b(r + 1) - b(r) > 2, then if cb(n) G (b), it follows that cb(n) 

= bc(n). If cb(n) G (a), then cb(n) = bc(n) - 1 = a2c(n). 
3 #^' Definition. We define two str ict ly mono tonic complementary functions r and s 

by means of 
( (r) = {n | cb(n) = bc(n)} 

(3.4) { 
( (s) = {n I cb(n) = bc(n) - l} 

3*5, Theorem. For all n, car(n) = acr(n) - 1 and cas(n) = acs(n) - 2. 
Proof. By definition, cbr(n) = bcr(n), that i s , 

abr(n) + 2br(n) = acr(n) + cr(n) . 

Then 
acr(n) = abr(n) + 2br(n) - cr(n) = abr(n) + br(n) - r(n) 

= abr(n) + ar(n) 
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and 
car(n) = bar(n) + ar(n) 

= abr(n) - 1 + ar(n) 

= acr(n) - 1 

Similarly, cas(n) = acs(n) - 2. 
3.6. Theorem. If ca(n) E (a)s then ca(n) = a(c(n) - 1) . 
Proof. Case 1. if n E (r), then ca(n) = ac(n) - 1, and evidently if ca(n) E (a), we 

must have ca(n) = a(c(n) - 1). 
Case 2. If n E (s), then ca(n) == ac(n) - 2. Thus if ca(n) E (a), it must be 

that ca(n) + 1 E (b) (by (2.15))9 and hence ca(n) = a(c(n) - 1). 
3.7. Theorem. For all n, cs(n) E (b). 
For the proof of this theorem, we require some preliminary lemmas. 
3.8. Lemma. If n E (s), then a(n) $ (s). 
Proof. Let n E (s). Then cb(n) = a2c(n) and ac(n) = ca(n) +2. Thus 

a2c(n) = a(ac(n)) = a(ca(n) + 2) . 
But also 

cb(n) = ca2(n) + 4 = c(ca(n)) + 4 , 
by (2.15). 

Now suppose that ca2(n) E (a). Then by Theorem 3.6, ca2(n) = a(ca(n) - 1). Since 
three consecutive integers cannot all be in (a), it must be that ca2(n) + 2 G (b), ca2(n) + 1 
E (a), and ca2(n) + 3 E (a). Then 

ca2(n) + 3 = a(ca(n) + 1) 

ca2(n) + 1 = a(ca(n)) 

ca2(n) = aca(n) - 1 = ca(a(n)) 

and by Theorem 3.5, a(n) E (r). 
On the other hand, if ca2(n) E (b), we must have ca2(n) + 1 E (a), and precisely one 

of ca2(n) + 2, ca2(n) + 3 must be in (b). Thus ca2(n) + 1 = aca(n) and so aca(n) - 1 » 
ca(a(n)) and by Theorem 3.5, a(n) E (r). 

3.9. Lemma. For all n, cabr(n) = bacr(n) and cabs(n) = bacs(n) - 2. 
Proof. The proof is manipulative. We show first for all n, cab(n) = 7a(n) + 4n - 1, 

as follows: 
cab(n) = bab(n) + ab(n) by (2.10) 

= ab2(n) - 1 + ab(n) by (2.12) 

= ab(n) + b2(n) - 1 + ab(n) by (2.12) 

= 2ab(n) - 1 + ab(n) + b(n) by (2.9) 
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cabfri) = 3ab(n) - 1 + a(n) + n by (2.9) 

= 3(a(n) + b(n)) - 1 + a(n) + n by (2.12) 

= 4a(n) + 3(a(n) + n) - 1 + n by (2.9) 

= 7a(n) + 4n - 1 . 

Similarly, using the fact that acr(n) = car(n) + 1, we get cabr(n) = 7ar(n) + 4r(n) - 1, and 
from acs(n) = cas(n) + 2 , we get cabs(n) = 7as(n) + 4s(n) + 1, and the resul t follows. 

3.10. Lemma. For all n, bcb(n) = cb2(n), that i s , (b) C (r). 
Proof. We first have, for all n, 

cb2(n) = ab2(n) + 2b2 (n) 

= ab(n) + 3b2 (n) 

= ab(n) + 3(ab(n) + b(n)) 

= 4ab(n) + 3b(n) 

Case 1. n € (r). Then bcb(n) = b2c(n) and 

b2c(n) = abc(n) + bc(n) 

= ac(n) + 2bc(n) 

= ca(n) + 1 + 2cb(n) (by Corollary 3.2 
and Theorem 3.5) 

= ab(n) + a(n) + 2(ab(n) + 2b(n)) 

= 3ab(n) + a(n) + 4b(n) 

= 4ab(n) + 3b(n) 

Case 2. n 6E (s). Then cb(n) = a2c(n) and we have 

bcb(n) = ba2c(n) = ba(ac(n)) 

= ab(ac(n)) - 1 

= a2c(n) + bac(n) - 1 

= cb(n) + abc(n) - 2 

= cb(n) + ac(n) + bc(n) - 2 

= cb(n) + cafe) + cb(n) + 1 (by Corollary 3 2 
and Theorem 3.5) 

= 2(ab(n) + 2b(n)) + (ba(n) + a(n)) + 1 

= 3ab(n) + 4b(n) + a(n) 
= 4ab(n) + 3b(n) 
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3.11. Lemma. We have (s) C (a). 
The proof follows immediately from Lemma 3.10. 
Proof of Theorem 3,7. If n E (s), then n = a(j)9 for some integer j s where j e£ (s) 

by Lemma 3.8. Since n E (s), we have 

beta) - 1 = cb(n) 

bc(n) + 2 = cb(n) + 3 

= c(b(n) + 1) by (2.16) 

= c(ba(j) + 1) = cab(j) = bac(j) by (2.12) . 

Thus bc(n) + 2 E (b), which implies that c(n) E (b) by (2.19). This completes the proof of 
Theorem 3.7. 

3.12. Corollary. For all n9 cas(n) E (a). 
Proof. By Theorem 3.89 cs(n) = b(j) for some integer j . Then 

cas(n) = acs(n) - 2 by Theorem 3*5 

= ab(j) - 2 

= a3(j) 

3.13. Theorem. If ca(n) E (b), then ca(n) = a(c(n) - 1) + 1. 
Proof. We need only consider n E (r)9 since if n E (s)9 ca(n) E (a). Thus, if n E 

(r)9 ca(n) = ac(n) - 1. If ca(n) E (b), then ca(n) - 1 = a(c(n) - 1) and the resul t follows. 
Recall that the function e satisfies 

e(a(n)) = n 

e(b(n)) = a(n) . 

Note f±iat e(n) = rj(a ^ n). 
3.14. Theorem. For all n9 eca(n) = c(n) - 1. 
Proof. We have shown that if ca(n) E (a), then ca(n) = a(c(n) - 1), and if ca(n) E (b), 

ca(n) = a(c(n) - 1) + 1. In either case9 eca(n) = c(n) - 1. 
3 » 1 5 ' Theorem. For all n9 ecb(n) = ac(n). 
Proof. Case 1. If n E (r), cb(n) = bc(n) and ecb(n) = ebc(n) = ac(n). 

Case 2. If n E ( s ) 9 cb(n) = a2c(n) and ecb(n) = e(a2c(n)) = ac(n). 

4. THE FUNCTIONS c», 0 , 0 f , ^ , i|/! 

In this sections we consider some functions which ar ise in a natural way from the r e -
sults of Section 39 and give some of their properties8 Recall that cf denotes the comple-
mentary function to c. We shall require some propert ies of cf

9 given in the following. 
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4-1 # Theorem. We have 

(i) c'b(n) *= c(n) - 1 

c!tb(n) - 1) = c(n) - 2 

cT(b(n) + 1) = c(n) + 1 

cf(b(n) + 2) = c(n) + 2 

(ii) c(n) + cf(n) = 5n - 1 

(iii) c!(n) = n + n(b < n) 

(iv) cfa(n) = c'(a(n) + l) - l 

(v) cfab(n) = ca(n) + 1 . 

Proof. Since cT(c(n) - n) = c(n) - 1 (by Theorem 2.2) and c(n) - n = b(n), we have 
c!b(n) = c(n) - 1. The res t of (i) follows from the fact that c(n + 1) - c(n) > 3 for all n 
(see (2.15) and (2.16)). 

The proof of (ii) is straightforward. For example, 

cb(n) + c!b(n) = ab(n) + 2b(n) + c(n) - 1 

= a(n) + 4b(n) + n - 1 

= 5b(n) - 1 . 

To see (iii), use (i) and the fact that n(b < b(n)) = n - 1 and n(b K a(n)) = a(n) - n (see 
(2.20)). Both (iv) and (v) follow from (i). 

4.2. Theorem. For all n, ec(n) E (c!). 
Proof. Case• 1. If n E (a), say n = a(j), then ec(n) = c(j) - 1 = cfb(j). 

Case 2. If n E (b), say n = b(j), then ec(n) = ac(j). We have seen that 
ac(j) i s either ca(j) + 1 or ca(j) + 2; in either case , ac(j) E (cf). 

We may now define a strictly mono tonic function 0 by the equality 

ec(n) = c?0(n) . 

The complementary function $f is also of interest . 
4 ' 3 , Theorem. For all n, 

(i) >a(n) = b(n) 

(ii) 0br(n) = abr(n) 

(iii) ^bs(n) = abs(n) + 1 . 
Proof. 

(i) eca(n) = c(n) - 1 = cTb(n) = cT0a(n) 

(ii) ecbr(n) = acr(n) = car(n) + 1 = cT(bar(n) + 1) 
= cf(abr(n)) = c!0br(n) 
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(iii) ecbs(n) = acs(n) = cas(n) + 2 = c!(bas(n) + 2) 

= cUabs(n) + 1) = cJ0bs(n) . 

4.4. Theorem. The function $f is separated. 
Proof. We show that for all n, 0(n + 1) - $(n) < 2. It then follows that for all n, 

0'(n + 1) - 0'(n) > 2. Since (b) C (0), then for all n, 0(n + 1) - </>(n) < 3. If </)(n) G (b2), 
then 0(n + 1) - 0(n) = 2. If 0(n) G (ba), then 0(n) + 1 G (ab) and 0(n) + 2 G(ab + 1), and 
it follows that either 0(n) + 1 or 0(n) + 2 is in (0). If 0(n) G (a2), then 0(n) + 1 = 0(n + 1) 
and if 0(n) G (ab), then 0(n) + 2 = 0(n + 1). This completes the proof. 

^s 5 e Theorem. If n is any integer not of the form n = as(j) + 1 , then. 0!(n) = a2(n). 
If n = as(j) + 1 for some j , then 0f(n) = a(a(n) - 1). 

Proof. Since by Theorem 4 .3we have 

(0) = (b) U (abr) U (abs + 1) 

it follows that 

(00 = (a2) U (abs)/(abs + 1) . 

We next show that 0!(as(j) + 1) = abs(j) for all j . We have 0bs(j) = abs(j) + 1 . Since 
abs(j) G (0T)j then by Theorem 2.2 we have 

0bs(j) - 1 = 0'(0bs(j) - bs(j)) 

= 0'(abs(j) + 1 - bs(j)) 

= f (as(j) + 1) 

= abs(j) 

Next,, if n = as(j) + 1, then 

a(a(n) - 1) = a(a(as(j) + 1) - 1) = a(a2s(j) + 2 - 1 ) = a(a2s(j) + 1) = a(bs(])) . 

Thus if n = as(j) + 1, 0!(n) = a(a(n) - 1). Now (0f) differs from (a2) only in that 

0f(as(n) + 1) = a(a(n) - 1) = abs(n) 

while a2(as(n) + 1) = abs(n) + 1. Thus since 0f and a2 are str ict ly mono tonic, we must have 
0f(n) = a2(n) for all n not of the form as(j) + 1, and 0f(n) = a(a(n) - 1) for n = as(j) + 1 
for some j . 

It is now possible to define a new strictly mono tonic function *// by ^(n) = e0!(n). 
4 o 6 e Theorem, ^(n) = a(n) for all n not of the form as(j) + 1, and i//(n) = a(n) - 1 

for n = as(j) + 1, Thus </f(as(j) + 1) = a(as(j) + 1) - 1 = bs(j). 
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Proof. This follows from Theorem 4.5, and the definition of the function e. 
Now ^ f , the complementary function to */>, is also strictly monotonic, and we have 

W/!) = (b) U (bs + l ) / (bs ) . 

4-7- Theorem. *|/!r(n) = br(n) and */>!s(n) = bs(n) + 1. 
Proof. We first show that */>!s(n) = bs(n) + 1. By Corollary 2.3, we have, since bs(n) 

+ 1 E (<("), and bs(n) G (i//), 
bs(n) + 1 = *H*/>(as(n) + 1) - (as(n) + 1) + 1) 

= <//f(bs(n) - as(n)) 

= «Ms(n)) 

The r e s t of the proof is analogous to the proof of Theorem 4.5. 
Using the resul ts of this section, we can easily derive various formulas. 
4.8. Theorem. 

(i) $s(n) = bes(n) 

(ii) «/>a(n) + 0Ta(n) = 00Ta(n) - l 

(iii) 0T$s(n) = abs(n) 

(iv) $0fs(n) = abs(n) - 1 

(v) 00!r(n) = bar(n) 

(vi) 0s(n) + c's(n) = 3s(n) . 

5. THE FUNCTIONS r AND s AND SOME RELATED FUNCTIONS 

In this section, we consider the functions r and s in detail, and introduce some im-
portant auxiliary functions. 

5.1. Theorem. The function s is separated. 
Proof. Suppose, on the contrary, that consecutive integers n, n + 1 a re in (s). Then 

both n, n + 1 must be in (a) by Lemma 3.10, and both c(n) and c(n + 1) must be in (b) 
by Theorem 3.6. Since n, n + 1 a re both in (a), we must have n = ab(j) for some j . 
Then 

c(n + 1) = c(ab(j) + 1) = cab(j) + 4 . 

If j G (r), then cab(j) + 4 = bac(j) + 4, and if j G (s), then cab(j) + 4 = bac(j) + 2 . In 
either case , since for any integer k, ba(k) + 2 and ba(k) + 4 are both in (a), we must have 
c(n + 1) G (a), which i s a contradiction. Thus s is a separated function. 

5 s 2 , Lei*11**8- WW C (s). 
Proof. The proof is manipulative like the proof of Lemma 3.10. Using the definition 

c(n) = a(n) + 2n, one first shows that, for all n, 
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cbab(n) + 1 = 7ab(n) + 4bto) - 3 . 

Case 1. n E (r). Then we have 

cbto) = bc(n) (Corollary 3.2) 

ac(n) = ca(n) + 1 (Theorem 3.5) 

cab(n) = bac(n) (Lemma 3.9) . 

351 

Then 
bcabto) = b2ac(n) 

= a2c(n) + 2bac(n) 

= bc(n) - 1 + 2(abc(n) - 1) 

= cbto) - 1 + 2(ac(n) .+ bc(n) - 1) 

= cb(n) - 1 + 2(ca(n) + 1) + 2cb(n) - 2 

= 3(ab(n) + 2b(n)) + 2(ba(n) + a(n) + 1) - 3 

= 5ab(n) + 6bto) + 2ato) - 3 

= 7ab(n) + 4bto) - 3 

= cbabto) + 1 

Case 2. n E (s). Then 

cbto) = be(n) - 1 (Corollary 3.2) 

ac(n) = ca(n) + 2 (Theorem 3.5) 

cab to) = bac(n) - 2 (Lemma 3.9) . 

By Corollary 3.12 we have ca(n) E (a)9 and since ca(n) + 2 = ac(n), we have ac(n) - 1 
(b). By Theorem 3.7, we have c(n) E (b)5 say c(n) = b(j). Then 

cab (n) = bab(j) - 2 

= b(ba(j) + 1) - 2 

= b2a(j) + 2 - 2 

= b2a(j) 

Thus bacto) - 2 E (b), and so bac(n) - 2 = b(ac(n) - 1). Now 

bcabto) = b2(ac(n) - 1) 

= ab(ac(n) - 1) + b(ac(n) - 1) 
= a(ac(n) - 1) + 2b(ac(n) - 1) 
= a(ca(n) + 1) + 2b(cs(n) + 1) 
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Since ca(n) E (a), we have ca(n) = a(c(n) - 1), and so 

bcab(n) = a(a(c(n) - 1) + 1) + 2b(a(c(n) - 1) + 1) 

= a2(c(n) - 1) + 2 + 2[a(a(c(n) - 1) + 1) + a(c(n) - 1) + l ] 

= 3(a2(c(n) - 1) + 2) + 2a(c(n) - 1) + 2 

= 3(b(c(n) - 1) + 1) + 2a(c(n) - 1) + 2 

= 3b(c(n) - 1) + 2a(c(n) - 1) + 5 

= 3b(c(n) - 1) + 2ca(n) + 5 

Since c(n) E (b), then c(n) - 1 E (a) and we have bc(n) = b(c(n) - 1) + 3. Then 

bcab(n) = 3(bc(n) - 3) + 2ca(n) + 5 

= 3(cb(n) - 2) + 2(ba(n) + a(n)) + 5 

= 3(ab(n) + 2b(n) - 2) + 2a(n) + 2ab(n) - 2 + 5 

= 5ab(n) + 6b(n) + 2a(n) - 3 

= 7ab(n) + 4b(n) - 3 

= cbab(n) + 1 . 

This completes the proof. 
5*3 , L e K i m a * For all ns a2(bs(n) + 1) E (s). 
Proof. 

cb(a2(bs(n) + 1)) = cb(b2s(n) + 1) 

= c(b3s(n) + 2) 

= cb3s(n) + 7 

= b2cbs(n) + 7 

= [b2a(acs(n)) + 3] + 4 

= ab2(acs(n)) + 4 

But ab2(n) + 4 = a(bab(n) + 1) for all n, so cb(a2(bs(n) + 1)) E (a), and this completes the 
proof. 

5.4. Lemma. If a2(n) E (s), then n '= bs(k) + 1 for some integer k. 
Proof. F i r s t note that ab(b(n) + 1) = ab2(n) + 3 , and ab(a(n) + 1) = aba(n) + 5. Since 

s is separated, if a2(n) E (s), there must be some integer a(j) so that aba(j) + 1 < a2(n) 
< ab(a(j) + 1) - 1. Thus 

a2(n) = aba(j) + 3 
and 
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a2(n) + 2 = a(a(n) + 1) = ab(a(j) + 1) . 
Then 

a(n) + 1 = b(a(j) + 1) = ba(j) + 3 = ab(j) + 2 
and 

a(n) = a(b(j) + 1) 
so that 

n = b(j) + 1 . 

We now show that j = s(k) for some integer k. F i r s t ca2(n) E (b) gives: 

ca2(n) = ca2(b(j) + 1) = a(ca(b(j) + 1) - -1) + 1 E (b) 

so that ca(b(j) + 1) - 1 E (a). We also have? 

ca(b(j) + 1) = c(ab(j) + 1) = cab(j) + 4 

and we have seen before that cab(j) + 4 is always in (a)* Thus 

ca(b(j) + 1) = a(c(b(j) + 1) - 1) . 

Now it must be that 
ca(b(j) + 1) - 1 = a(c(b(j) + 1) - 2) 

and hence 
c(b(j) + 1) - 2 E (b) 

by (2.7, (iii).). But 

c(b(j) + 1) - 2 = cb(j) + 3 - 2 = cb(j) + 1 E (b) . 

Thus bc(j) = cb(j) + 1 and j E (s). We now have the following: 
5.5. Theorem, (s) = (ab) U (a2(bs + 1)). 
We can now prove 
5.6. Theorem. c(n) E (a) if and only if n E [(a) U (bs)]/(s) . 
Proof. Clearly if n E (bs)5 c(n) E (a), and ff n E (s), then c(n) E (b). Also, if 

n E (br), then 'c(n) E (b). Thus, suppose n E (a) / (s) . Then suppose ca2(j) E (b). Then 
a(j) <£(s), since cas(n) E (a) for all n. Thus cba(j) = bca(j). Now if ca2(j) £ (b), then 
ca2(j) = a(ca(j) - 1) + 1 so that ca(j) - 1 £ (a), Then b(ca(j) - 1) + 3 = bca(j) and 

cba(j) = c(a3(j) + 1) = ca3(j) + 4 = b(ca(J) - 1) + 3 . 
Then 

ca3(j) = b(ca(j) - 1) - 1 E (a) , 
Now, since a2(j) $ (a), we have 
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ca(a2(j)) + 1 = aca2(j) , 

so that if ca2(j) ' £ (b), then ca3(j) C (b). This i s a contradiction, and the proof i s complete. 
5.7. Corollary. c(n) e (b) ?=±n E (br) U (s) . 
We now introduce some additional functions, defined as follows: 

(i) u»(n) = bs(n) + 1 

(5.8) (ii) t»(n) = as(n) + n 

(iii) bz(n) = cs(n) . 

We also have the corresponding complementary functions u, t and zf . 
The reasons for considering these functions are made evident in the following theorem. 
5.9. Theorem. We have 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

Proof. (i) 

(u<) = {n | a2(n) G (s)} 

(t<) = {» | s(n) e (a2)} 

(t) = (n |s(n) 6 (ab)} 

st(n) = ab(n) 

st'(n) = a2(bs(n) + 1) = aVdi) 

zt(n) = cs(n) + 1 

zt'(n) = cbs(n) + 1 

z(n) = c's(n) . 

is clear from Theorem 5.5. To see (ii) we t 
and t! and show that we then have tf (n) = as(n) + n. In the proof of Lemma 5.4, it was shown 
that 

abas(n) < a2(bs(n) + 1) < ab(as(n) + 1) 

for all integers n. From (ii), we have a2(bs(n) + 1) = stT(n), and stas(n) = abas(n) (that 
i s , a2(bs(n) + 1) is the n value of s of the form a2(bs(j) + 1), and abas(n) is the as(n) 
value of s of the form ab(j)). Now stas(n) = s(t!(n) - 1 ) , so that tf(n) = tas(n) + 1. From 
Theorem 2.1 , we have 

t'(n) = n + nft < tf(n)) 

= n + nft < tas(n) + 1) 

= n + as(n) 

Pa r t s (iii) and (iv) follow from (ii). 
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To see (v)i Case 1. n E (r)e Then from the definition5 bzt(n) = cst(n) = cab(n) = 
bac(n). Then ztdi) = ac(n) = ca(n) + 1 since n E (r)„ 

Case 2. n E (s). Then bzt(n) = cst(n) = cab(n) E (b) and since n E ( s ) , cab(n) = 
bac(n) - 2 = b(ac(n) - 1). Then zt(n) = ac(n) - 1 = ca(n) + 1 since n E (s). 

To see (vi): 
cst'(n) = ca2(bs(n) + 1) 

= c(b(bs(n) + 1) - 1) 

= c(b2s(n) + 1) 

= cb2s(n) + 3 

= bcbs(n) + 3 

= ba2cs(n) + 3 

= b(a2cs(n) + 1) . 

So zt!(n) = a2cs(n) + 1 = cbs(n) + 1. 
For (vii) s we have first 

cfst(n) = cfab(n) = cadi) + 1 = zt(n) . 

On the other hand, 

cbs(n) + 1 = cf(b2s(n) + 1) = c*(b(bs(n) + 1) - 1) 

= c!(a2(bs(n) + 1)) 

= c!str(n) = zt?(n) . 

5,10e Theorem. s(n) = c(n) if and only if tf(n) = b2(n)e 

Proof. We use the fact that tf (n) = as(n) + n, and consider the cases n E (r) and 
n E (s). If n E (r) and s(n) = c(n), then 

tf(n) = ac(n) + n = ca(n) + 1 + n 

= ba(n) + 1 + a(n) + n 

= ab(n) + b(n) 

= b2(n) 

If n E (s>, then c(n) E (b) and c(n) = s(n) is not possible. 
Now suppose tf(n) = b2(n). Then 

asdi) + n = ab(n) + b(n) 

= ab(n) + a(n) + n 
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and 
as(n) = ab(n) + a(n) 

= ca(n) + 1 

Then ca(n) + 1 (E (a). If ca(n) + 1 = ac(n), then we have c(n) = s(n) as required. If 
ca(n) + 2 = ac(n)s then we have n E (s), and ca(n) E (a), ca(n) + 1 E (b) (Theorem 3.5). 
Thus if as(n) = ca(n) + 1, then n E (r) and c(n) = s(n). 

5 s l l ° Corollary. If s(n) = c(n)s then n E (r). 
5«12° Theorem. If s(n) = c(n)9 for some n, then 

s(tf(n) + 1) = c(tf(n) + 1 . 

Proof. If s(n) = C(Q), then we have n E (r) and tf(n) = b2(n). Then 

ca2b(n) = a(cab(n) - 1) 

= a(bac(n) - 1) = a(a3c(n)) 

= a2(a2c(n)) = ba2c(n) - 1 

= abac(n) - 2 

= stac(n) - 2 

= stas(n) - 2 

= stf(n) - 5 
On the other handf 

c(a2b{n)) = c(b2(n) - 1) = cb2(n) - 4 . 
Thus we have 

eb2(n) = ab2(n) - 1 

cb2(n) + 3 = sb2(n) + 2 

= st?(n) + 2 

= s(tf(n) + 1) (by Theorem 6.5 (iv)) . 

Since cb2(n) + 3 = c(b2(n) + 1) = c(t?(n) + 1), the proof is complete. 
5 e * 3 e Theorem. If s(n) = c(n), then z(n) = 5n - 1. 
Proof. By Theorem 6.1 (iv) we, have 

z(n) = 2s(n) - es(n) = 3s(n) - (s(n) + es(n)) = 3s(n) - (as(n) + 1) 

= 3c (n) - ac(n) - 1 = 3a(n) + 6n ~ (ca(n) + 1) - 1 since n E (r) 

= 3a(n) + 6n - 1 - b(n) - 2a(n) 

= 5n - 1 . 
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Other results of this nature are easily obtained; for example: 
5*1^' Corollary. If s(n) = c(n), then 

(i) rb(n) = c?b(n) = c(n) - 1 

(ii) z?(4n - 1) = 5n - 2 . 

It should be noted that since s(l) = c( l) , for example, it follows that there are infin-
itely many values of n for which s(n) = c(n). We l is t the values of n < 101 for which 
s(n) = c(n): 

Table 1 

n 

! s(n) = c(n) 

1 

3 

6 

21 

9 

32 

22 

79 

40 

144 

43 

155 

48 

173 

56 

202 

61 

220 

64 

231 j 

We note that t?(l) + 1 = 6 and tf(6) + 1 = 40, and tf(9) + 1 = 61, while t !( l) + 4 = 9, 
tf (6) + 4 = 43, tf(9) + 4 = 64, One might conjecture that if s(n) = c(n), we have not only 
s(tf(n) + 1) = c(tf(n) + 1), but also s(t?(n) + 4) = c(V(n) + 4). 

Using the fact that (s) = (ab) U (a2u?) where (uf) = (bs + 1), we may express (s) as 
an infinite union as follows: 

5*1 5 e Theorem. We have 
QO 

(s) = U (a(a2b)kb) . 
k=0 

Proof. The proof is by induction. We first show that every x E (s) satisfies 

(5.16) x = a(a2b)kb(j) 
for some integers k, j . 

For n = 1, we have s(l) = ab(l). Suppose n given, and for all k < n we have 

(5.17) s(k) = a(a2b)jb(m) 

for some integers j and m (depending on k). Now s(n) might be of the form ab(N)s for 
some N, in which case s(n) satisfies (5.16), or else s(n) = a2u?(N) for some N. In the 
la t ter case , we have 

uf(N) = bs(N) + 1 

and since s(n) = a2uf(N), it must be that N < n* By the Induction assumption, 

s(N) = a(a2b)jb(m) 

for some integers j and m, and so 
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s(n) = a2u'(N) 

= a2(bs(N) + 1) 

= a2(ba(a2b)jb(m) + 1) 

= a2(ab(a2b)jb(m)) 

= a(a2b)j+1b(m) 

This completes the induction, and we have 

00 

(5.18) (s) C I J (a(a2b)kb) . 
k=0 

To show inclusion in the other direction, let m be a fixed integer. We show by induc-
tion that every integer of the form 

(5.19) K = a(a2b)kb(m) k = 0 , 1 , 2 , . . . ) 

satisfies K E (s). 
When k = 1, we have ab(m) E (s). Suppose for some integer k > 1 we have 

a(a2b) b(m) G (s), say 
s(N) = a(a2b)kb(m) . 

Then a2uT (N) G (s), and since 

a2(bs(N) + 1) = a2(ba(a2b)kb(m) + 1) 

= a2(ab(a2b)k(b(m)) 

= a(a2b)k+1b(m) 

we have a(a2b) b(m) G (s). Thus for all m, we have 

{ a(a2b)kb(m) I k = 0, 1, 2, • • • } C (s). 

This completes the proof. 
Using Theorem 5.15 and the fact that (r) U (s) = H , it is easy to prove 
5.20. Corollary. 

(r) (b) U U (a(a2b)kab) U Q (a(a2b)ka3) 
L k=0 J L k=0 J 

Since u?(n) = bs(n) + 1 (n = 1, 2, •••)» we have 
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5.21. Corollary. 
00 

(u») = U (ab(a2b)kb) . 
k=0 

In a s imilar fashion, one can find "infinite union" formulas for many of the other func-
tions mentioned in this paper. However, we have not been able to give any such formula for 
tf. 

Theorem 5.15 suggests the definition of a set of functions j f, i as follows: 

(5.22) s(fk(n)) = a(a2b)kb(n) . 

It is evident, for example, that f0(n) = t(n). The functions f, a re completely described in 
the next theorem. 

5.23. Theorem. For all n, ffe(n) = (t!)kt(n). 
Proof, The proof is by induction on k. It is c lear that f0(n) = t(n). Suppose for some 

k > 0, we have 
(5.24) fk_x(n) = ( t ' ^ t f o ) (n = 1, 2, 3, - - ) . 
Then 

s t ! ( f k - i ( n ) ) = a 2 ( b s ) f
k _x( n ) ) + i) 

= a2(ba(a2b)k_1b(n) + 1) 

by the induction assumption. This gives 

stUfk_1(n)) = a2(ab(a2b)k_1b(n)) 

and it follows that 

a(a2b)kb(n) 

fk(n) = t»fk_1(n) 

Then for all k, we have £(n) = (tf) t(n). This completes the proof. 
In Section 6, we shall show that t?t(n) = tb2(n) - 1 and also tft(n) = t(b2(n) - 1) + 1 

(Theorem 6.3). In view of this , we have the following inequalities for the functions f. . 
5.25. Theorem. For all integers j and k, k > 0, 

f ^ b ^ j ) - 1) < fk(j) < ^ ( ^ ( J ) ) . 

In addition, if 
f

k _ l ( b 2 0) ~ 1) < fk to) < fk_x(b2(j)) 
then m = j . 

Proof. Since t!t(n) = t(b2(n) - 1) + 1, we have 

f k - l ( b 2 ( j ) ~ 1} = (tf)k"lt<b2(3) - 1) = (tf)k_1(tU(j) - 1) < (tOkt(j) , 

and since tft(n) = tb2(n) - 1, we have 
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f k - l ( b 2 ( j ) ) = ( ^ " ^ ( J ) ) 

= (t»)k_1(t»t(j) + 1) •> (t»)kt(j) . 

To see that f,(j) i s the only value of f, between f, _1(b2(j) - 1) and f._1(b2(j)), consider 
for example f, (j - 1). By the preceding argument, 

fk(j - 1) < ^ ( ^ ( J - D) < ^ ( ^ ( J ) - 1) 

since f. 1 is s tr ict ly monotonic and b2(j - 1) < b2(j) - 1. On the other hand, we have 

fk(j + i) > zk-i{b2{i + 1] ~ 1} > f k - i ( b 2 ( j ) ) 

since f, _1 i s s tr ict ly monotonic, and b2(j + 1) > b2(j) + 1. This completes the proof. 

6. CONTINUATION 

In this section, we give various formulas involving the functions introduced in Section 5. 
6.1. Theorem. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

Proof. 

z(n) = c(z(n) - s(n)) + 1 

s(n) = b(z(n) - s(n)) + 1 

az(n) - as(n) => es(n) 

z(n) + es(n) = 2s (n) 

az(n) - as(n) = a(z(n) - s(n)) + 1 . 

(i) Case 1. zt(n) = ca(n) + 1 and st(n) = ab(n). Ti 

zt(n) -- st(n) = ca(n) + 1 - ab(n) 

= ba(n) + a(n) + 1 - ab(n) 

= a(n) 

and so zt(n) = c(zt(n) - st(n)) + 1. 
Case 2. ztf(n) = cbs(n) + 1 and stf(n) = a2(bs(n) + 1). As above, we show 

that zt?(n) - stT(n) = bs(n), and (i) follows. 
To see (ii), we have 

z(n) = c(z(n) - s(n)) + 1 

= b(z(n) - s(n)) + z(n) - s(n) + 1 
and this proves (ii). 

For (iii), we have (since as(n) = s(n) + es(n) - 1) 
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az(n) = ebz(n) = ecs(n) = ecaes(n) 

= ces(n) - 1 = bes(n) + es(n) - 1 

= aes(n) + es(n) + es(n) - 1 

= (s(n) + es(n) - 1) + es(n) 

= as(n) + es(n) . 

To see (iv), we use z(n) = cfs(n) = s(n) + n(b < s(n)). Then 

z(n) - s(n) = (s(n) - 1) - n(a < s(n)) 

= s(n) - [n(a < s(n)) + l ] 

= s(n) - es(n) . 

Finally, (v) follows from 
z(n) = a(z(n) - s(n)) + 2(z(n) - s(n)) + 1 

a(z(n) - s(n)) = 2s(n) - z(n) - 1 

= es(n) - 1 

= az(n) - as(n) - 1 . 

6.2. Remark. Theorem 6.1 could also have been proved by noting that z(n) - s(n) is 
a mono tonic function satisfying 

(z - s) = (a) U (bs) . 

6.3. Theorem. 
(i) t?t(n) = a2b(n) + t(n) 

(ii) tb2(n) = t(n) + b2(n) 

(iii) t't(n) = tb2(n) - 1 

(iv) n(t(n) < t' < t(n) + b2(n)) = n . 
Proof. 
(i): by definition, 

tft(n) = ast(n) + t(n) = a2b(n) + t(n) 

(ii): We know t(as(n)) = t(tf(n) - n) = tf(n) - 1 by Theorem 2.2. Then 

t(ast(n)) = t't(n) - 1 

t(a2b(n)) = t^t(n) - 1 

t(a2b(n) + 1) = tft(n) + 1 = a2b(n) + t(n) + 1 

tfo2(ii) = b2(n) + t(n) .. 
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Statement (iii) follows directly from (i) and (ii), and statement (iv) follows from (iii) and 
Theorem 2.4. 

6.4. Theorem. 

(i) tsta(n) = t(n) - 1 + sta(n) 

(ii) tstbtn) = ta(n) + stb(n) 

(iii) tab(n) = te(n) + ab(n) - 6 

where 6 = 0 if n E ( b ) and 8 = 1 if n E (a). 
(iv) taba(n) = t(n) - 1 + aba(n) 

(v) tab2(n) = ta(n) + ab2(n). 

Proof. For the proof, we require the following identities (See Section 2): 

b2(n) = aba(n) + 2 

ab2(n) = b2a(n) + 3 . 

Since tf(n + 1) - tf (n) > 4 for all n, we have 

t(b2 - k) = tb2 - k - 1 for k = 1, 2, 3 

t(b2 + k) = tb2 + k for k = 1, 2, 3 . 
and 

To see (i), we have 
tsta(n) = tab(n) = t(b2(n) - 2) 

= tb2(n) - 3 

= t(n) + b2(n) - 3 

= t(n) + (b2(n) - 2) - 1 

= t(n) + aba(n) - 1 

= t(n) + sta(n) - 1 

Statement (ii) follows similarly. Statements (iv) and (v) a re simply restatements of (i) and 
(ii). For (iii), note that ea(n) = n and eb(n) = a(n) and apply (i) and (ii). 

It is of some interest to determine for what values of n the difference s(n + 1) - s(n) 
takes on the value 2 (or 3, or 5), and similarly for tT(n -HI) - tf(n). The next theorem 
gives a complete description of this. 

6.5. Theorem. 
(i) s(tb(n) + 1) = stb(n) + 3 

(ii) s(tas(n) + 1) = stas(n) + 3 
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(iii) s(tar(n) + 1) = star(n) + 5 

(iv) s(tf(n) + 1) = stf(n) + 2 

(v) t?(tf(n) + 1) = tftf(n) + 4 

(vi) t?(tar(n) + 1) = tftar(n) + 9 

<vii) t!(tb(n) + 1) = t'tb(n) + 6 

(viii) tf(tas(n) + 1) = t!tas(n) + 6 . 

Proof, (i). stb(n) = ab2(n). Since ab2(n) + 3 = ab(b(n) + 1 ) , s i s a separated func-
tion, and (ab) C (s), and we must have ab(b(n) + 1) = s(tb(n) + 1). 

(ii). stas(n) + 3 = abas(n) + 3 = a2(bs(n) + 1), and so stas(n) + 3 = stf(n). 
This proves (ii). 

(iii). star(n) + 5 = abar(n) + 5 = ab(ar(n) + 1)8 We have seen that if a2('j) E (s) 
and ab(n) < a2(j) < ab(n + 1), then we must have n E (as). This proves (iii). 

(iv). s(tf(n) + 1) = s(tas(n) + 2), and we have 

stas(n) = abas(n) 

stasCn) + 3 = a2(bs(n) + 1) = stf(n) 

stas(n) + 5 = ab(as(n) + 1) = s(tf(n) + 1) . 
This proves (iv). 

(v). t*t'(n) = ast?(n) +tf(n) and 

tf(tf(n) + 1) = as(tf(n) + 1) + (tf(n) + 1) 

= a(st!(n) + 2) + tf(n) + 1 . 

Now st!(n) G (a2), so stT(n) + 1 E (b) and we have 

a(stf(n) + 2) = a(stf(n) + 1) + 1 

= (ast?(n) + 2) + 1 = ast?(n) + 3 . 

Then 

tf(tf(n) + 1) = astf(n) + tf(n) + 4 = t?t'(n) + 4 f 

and (v) is proved. 
(vi). tf(tar(n) + 1) = as (tar (n) + 1) + tar(n) + 1 

= a(star(n) + 5) + tarfa) + 1 

= a(abar(n) + 5) + tar(n) + 1 . 

Now abar(n) + 2 E (b2)s so abar(n) + 4 E (b) and abar(n), abar(n) + 1, abar(n) + 3 a re all 

in (a), while abar(n) + 2 and abar(n) + 4 a re in (b). Then by 2.18 and 2.19, 
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a(abar(n) + 5) = a(abar(n)) + 8 
and we have 

tf(tar(n) + 1) = a(star(n)) + tar(n) + 9 

= as(tar(n)) + tar(n) + 9 

= tftar(n) + 9 . 

In a s imilar manner one proves (vii) and (viii). 
6.6. Corollary. 

(i) s(n) = 3 + 3rj(tb < n) + 3q(tas < n) 

+ 5H(tar < n) + 2r|(tf < n) 

(ii) t!(n) = 5 + 4ri(t' < n) + 6r)(tb < n) 

+ 6rj(tas < n) + 9r|(tar < n) 

(iii) 2s{n) - t'(n) = 1 + n(tar < n) . 

6-7- Theorem. b(n) = r(2n - ri(u? < n)) . 
Proof. 

(r) = (b) U (a2)/(a2u') 

= (b) U (b - l)/(bu» - 1) . 
Thus 

n ( r < b(n)) = 2n - 1 - n(bu* - 1 < b(n)) 

= 2n - 1 - q(uf < b(n)) . 

The resul t follows, since b(n) G (r). 
6 ' 8 , C o r o ^ a r y ' bu!(n) = r(2u!(n) - n ) , and 

b(uf(n) - 1) = r(2u!(n) - n - 1) = b2s(n) . 

Proof. The first statement is clear from Theorem 6.5. Since buf(n) - 1 = a2u*(n) G (s), 
it follows from the definition of r that r(2uf(n) - n - 1) = b(u!(n) - 1). Since u!(n) - 1 = 
bs(n), we have r(2uf(n) - n - 1) = b2s(n). 

7. PROPERTIES OF OTHER RELATED FUNCTIONS 

There a re many additional functions which come about naturally from the consideration 
of relations between the functions r , s, t , t f , u, u f , and zs and the functions a, b, c, e. 
In this section we define the most interesting of these functions and l is t some of their 
propert ies . 

7.1. Definitions. 

(i). Since (es) C (r), we define a str ict ly monotonic function p by: es(n) = rp(n). 
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(ii). Since (b) (~ (u), we define a str ict ly mono tonic function v by 

b(n) = uv(n). 

(iii). Since (es) = (b) U (abs + 1) C (u), we define a strictly mono tonic function x by 

es(n) = ux(n) . 

(iv). Since (ab)f = (a2) u (b) C (u), we define a strictly monotonic function w by 

(ab)f = (uw) . 

(v). Since (es) C (ab)f = (uw), we define a strictly monotonic function y by 

es(n) = uwy(n) . 

(vi). Since (z) C (c!) by Theorem 5.9 (vii), we define a strictly monotonic function A 

by 
c(n) = zfA(n) . 

(vii). Put a(n) = pt(n). Define a monotonic function r by? 

r(u(n)) = a(u(n)) - 1 

r(u*(n)) = a(uf(n)) . 

(viii). Define a function K by? 

K(n) = n(b < c(n)) . 

7.2. Theorem. pt(n) = 2n - rj(u? < n) 

ptf(n) = 2as(n) + 1 - n(u! < as(n) + 1) . 

Proof. Since est(n) = b(n) = rpt(n)9 i t follows from Theorem 6.8 that pt(n) = 2n -
rj(uf < n). Recall that for all n5 tas(n) = t?(n) - 1. Thus t(as(n) + 1) = t?(n) + 1. We know 
rp(tas(n)) = b(as(n)) and rpt(as(n) + 1) = b(as(n) + 1). Since as(n) + 1 $ (ur), it follows 
that b(as(n) + 1) - 1 G (r), and so 

rp(t(as(n) + 1) - 1) = b(as(n) + 1) - 1 
that is j 

rptf(n) = b(as(n) + 1) - 1. 
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By Theorem 6.8, we have 

b(as(n) + 1) = r(2(as(n) + 1) - n ( u ! < as(n) + 1)) 
and so 

b(as(n) + 1) - 1 = r(2(as(n) + 1 ) - x\ (u» < as(n) + 1) - 1) 
which gives 

ptf(n) = 2as(n) + 1 - rj (u» < as(n) + 1) 

and this completes the proof. 
7 ' 3 , Theorem. v(n) = b(n) - r j ( s < n ) -
Proof. We will show that, for all n, 

(7.4) v(b(n) + 1) = vb(n) + 2 

(7.5) v(s(n) + 1) = vs(n) + 2 

(7.6) v(a(n) + 1) = va(n) + 3 if a(n) $ (s). 

Then since v(l) = 2 , we have 

v(n) = 2 + 2H(b < n) + 2H(s < n) 

+ 3n(a < n) - 3n(s < n) 

(7.7) = 2 + 2(n - 1) + n(a < n) - r] (s < n) 

= 2n + (a(n) - n) - n (s < n) 

= b(n) - rj (s < n). 

We first prove (7.4). Since b(n) = uv(n), we have b2(n) = uvb(n). Now b2(n) + 1 G (u), 
since (uf) = (bs + 1) and b2(n) + 1 ^ bs(j) + 1 for any n, j because (s) C (a). Thus 

u(vb(n) + 1) = uvb(n) + 1 
and 

u(vb(n) + 2) = uvb(n) + 2 . 

Since uvb(n) = b2(n) and uvb(n) + 2 = b2(n) + 2 = b(b(n) + 1) = uv(b(n) + 1 ) , it must be that 
v(b(n) + 1) = vb(n) + 2 , as required. To see (7.5), note that uvs(n) = bs(n), and uvs(n) + 1 
= u!(n). Then u(vs(n) + 1) = uvs(n) + 2 and u(vs(n) + 2) = bs(n) + 3. But bs(n) + 3 = 
b(s(n) + 1) by (2.15), that i s , 

u(vs(n) + 2) = uv(s(n) + 1) 
and so 

vs(n) + 2 = v(s(n) + 1) . 
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As for (7.6), suppose a(n) 6£ (s). Then we show that none of uva(n) + 1, uva(n) + 2, 
uva(n) + 3 a r e in (uf). Since a(n) $ (s), uva(n) + 1 = ba(n) + 1 <$ (uf), since (uf) = 
(bs + 1). Also, uva(n) + 2 = ba(n) + 2 = ab(n) + 1 by (2.13) and clearly ab(n) + 1 ^ bs(j) + 1 
for any n, j . Finally uva(n) + 3 = ba(n) + 3 = b(a(n) + 1) <$ (uf) and we have uva(n) + 3 = 
uv(a(n) + 1). Thus v(a(n) + 1) = va(n) + 3 for a(n) $ (s). This completes the proof. 

7.8. Theorem. 
| xt(n) = v(n) 

|xt f (n) = au'(n) - n (s < a s ( n ) ) . 

Proof. From the definition, est(n) = uxt(n). Since st(n) = ab(n), we have b(n) = 
uxt(n). On the other hand, uv(n) = b(n), and so xt(n) = v(n). 

For the second statement, we require the fact that tas(n) + 1 = tf(n) (this follows 
from Theorem 2.2 and the fact that tf(n) - n = as(n)). Then 

xtas(n) = vas(n) = bas(n) - rj (s < as(n)) 
and also 

uxtas(n) = uvas(n) = bas(n) 

uxtas(n) + 1 = bas(n) + 1 = abs(n) 

uxtas(n) + 2 = abs(n) + 1 = auf(n) . 

Since est!(n) = uxt'(n) and estf(n) = auf(n), we must have uxtas(n) + 2 = uxtf(n). Since 
uxtas(n) + 1 = abs(n) £ (u), we have 

uxt?(n) = u(xtas(n) + 2) , 
and so 

xtf(n) = xtas(n) + 2 

= bas(n) + 2 » n ( s < as(n)) 

= au?(n) - n (s < as(n)) . 

This completes the proof. 

Table 2 

n 

tf(n) 

xtf(n) 

1 

5 

11 

2 

14 

30 

3 

20 

42 

4 

29 

60 

5 

35 

72 

6 

39 

79 

7 

45 

91 

30 

207 

416 

50 

342 1 

686 

7.9. Theorem. w(2n) = v(n) and w(2n - 1) = v(n) - 1. 

Proof. Since (ab)f = (b) U (b - 1) and (ab)1 = (uw) it is c lear that uw(2n) = b(n) 
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and uw(2n - 1) = b(n) - 1. On the other hand, b(n) = uv(n), and so w(2n) = v(n). Since 
b(n) - 1 E (n) for all n, we have b(n) - 1 = uv(n) - 1 = u(v(n) - 1) = uw(2n - 1), and 
w(2n - 1) = v(n) - 1. 

7.10. Theorem. w(n) =n+r j (2a 2 u < n). 
Proof. We require the fact that 

(u1) = (abes) = (ab2) U (abau») . 

It follows that (u) = (ab)1 U (abau). 
Note that abau(j) = ba2u(j) + 1. Then 

ba2u(j) = uv(a2u(j)) = uw(2a2u(j)) . 

Since abau(j) £f (uw) and 
abau(j) + 1 = b2u(j) - 1 G (uw) , 

we have 

(7.11) w(2a2u(j) + 1) = w(2a2u(j)) + 2 . 

On the other hand, since (u) = (ab)T U (abau), if n is not of the form 2a2u(j) for some j , 
then w(n + 1) = w(n) + 1. The theorem follows. 

7.12. Corollary. wT(n) = 2a2u(n) + n. 
Proof. By Theorem 7.10, w(2a2u(n)) = 2a2u(n) + n - 1 and 

w(2a2u(n) + 1) = 2a2u(n) + n + 1. 

For all n not of the form n = 2a2u(j), we have w(n + 1) = w(n) + 1 and thus 

(wf) = (2a2u(n) + nj n = 1, 2, 3, • • • } . 

As usual, w? is taken to be monotonic, and the theorem follows. 
7.13. Corollary. 

(i) b(n) = uv(n) 

(ii) b(n) - 1 = uv'(v(n) - n) 

(iii) b(n) - 1 = u(v(n) - 1) 

(iv) abau(n) = uvT(a2u(n) + n) . 

Proof, (i) is evident from the definition of v. Statements (ii) and (iii) follow from the 
fact that b(n) - 1 = uv(n) - 1 = u(v(n) - 1), and then by Theorem 2.2 v(n) - 1 = vT(v(n) - n) 
since v i s a separated function. To see (iv), note that abau(n) = ba2u(n) + 1 . Then 
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abau(n) = uv(a2u(n)) + 1 

= u(v(a2u(n)) + 1) . 

By Corollary 2.3 we have 
vf(v(a2u(n)) - a2u(n) + 1) = v(a2u(n)) + 1 . 

By Theorem 7.9 we have 

v(a2u(n)) + 1 = vf(w(2a2u(n)) - a2u(n) + 1) 

= vf(2a2u(n) + n - 1 - a2u(n) + 1) 

= vf(a2u(n) + n) . 

This completes the proof. 
7.14. Theorem. yt(n) = 2n and yt!(n) = 2euT(n) - 1. 
Proof. By the definition of y, we have 

est(n) = b(n) = uwyt(n) = uv(n) . 

We know by Theorem 7.9 that v(n) = w(2n), and so wyt(n) = w(2n), that i s , yt(n) = 2n. 
Secondly, estf(n) = auf(n) = a(bs(n) + 1) = b(as(n) + 1) - 1 = uwytf(n). Now 

b(as(n) + 1) = uv(as(n) + 1) = uw(2as(n) + 2) 
and since 

b(as(n) + 1) - 1 G (uw) , 
we have 

w(2as(n) + 1) = wytf(n) . 

Now euf(n) = as(n) + 1, and so 

2as(n) + 1 = 2euT(n) - 1 = ytf(n) . 

This completes the proof. 
7 - 1 5 - Theorem. A(n) = 3n - n(uf < n). 
Proof. We show that if n = bs(j) for some j , then X(n + 1) = \{n) + 2, and for all 

other n we have X(n + 1) = A.(n) + 3. Then clearly 

A(n) = 3n » n (bs < n) 

(7.16) = 3n - n ( b s + 1 < n) 

= 3n - rj (uf < n) . 
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In the proof, we shall require the fact that zt(n) = ca(n) + 1 and ztf(n) = cbs(n) + l . 
Case 1. n = a(j). Then c(n) = ca(j) = z!Aa(j), and ca(j) + 1 = zt(j). By 2.18, 

c(a(j) + 1) = ca(j) + 4 = z'A(a(j) + 1) . 

Since (z) C (c + 1), we have ca(j) + 2 and ca(j) + 3 5 (zT), and so X(a(j) + 1) = Aa(j) + 3. 
Case 2. n = b(j) where j €f (s). Then b(j) = a2(j) + 1, and zta(j) = ca2(j) + l . Also 

zfAa2(j) = ca2(j) and zfXb(j) = cb(j) = ca2(j) + 4. Again ca2(j) + 2 and ca2(j) + 3 E (zT), and 
we have Xb(j) = A(b(j) - 1) + 3. Since j (£ (s), cb(n) + 1 G (z?), and so a re cb(n) + 2 and 
cb(n) + 3. By 2.19, cb(n) + 3 = c(b(n) + 1) = z'A(b(p) + 1). Thus A(b(n) + 1) = Ab(j) + 3. 

Case 3. n = bs(j). Then cbs(j) + 1 = ztf(j), cbs(j) = z'Abs(j), and cbs(j) + 3 = 
c(bs(j) + 1) = zfA(bs(j) + 1). Since cbs(j) + 2 £ (z»), we have A(bs(j) + 1) = Abs(j) + 2. This 
completes the proof. 

The function r is of interest for the following reasons. Recall that the function r sa t -
isfies (r) = (b) U (a2u). Thus we get (er) = (a) U (au), and er is not strictly monotonic. 
In part icular , if r(k) = b(n) - 1 and r(k + 1) = b(n), then er(k) = er(k + 1) = a(n); o~(n) = 
k + 1) and r(n) = k. On the other hand, if r(k) = buf(n), then er(k - 1) f er(k) and 
er(k + 1) f er(k); that i s , the value er(k) = au!(n) is not repeated, and we have 

ptuHn) = oru^n) = ru'(n) . 

7 , 1 7 > Theorem. We have, for all n, 

ra(n) - a(n) = b(n) - a(n) 

= rT(n) - r(n) . 

Proof. We need only note that if r(n) = cr(n) - 1, then rr(n) = rcr(n) - 1. 
7.18. Theorem. The function K defined by K(n) = n (b < c(n)) is str ictly monotonic.. 

Fur thermore , we have 
(i) Kb(n) = c(n) - 1 

(ii) Ks(n) = z(n) - 1 
(7.19) 

(iii) Ka2u(n) = cu(n) - 2 

(iv) (K!) = (z) U (cbr) . 

Proof. Since c(n + 1) - c(n) > 3, and of the three consecutive integers c(n), c(n) + 1, 
c(n) + 2 at least one must be in (b), it is evident that K(n + 1) > K(n) + 1, so that K is 
str ict ly monotonic. To see (i), we have 

H (b < cbr(n)) = r| (b < bcr(n)) = cr(n) - 1 

H(b < cbs(n)) = n(b < bcs(n) - 1) = cs(n) - 1 . 
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For (ii), n (b < cs(n)) = n (b < bz(n)) = z(n) - 1. For (iii), we have 

H(b < ca2u(n)) = ca2u(n) - 1 - r|(a < ca2u(n)) . 

By Theorem 3.6, we know ca2u(n) = a(cau(n) - 1), and so 

Ka2u(n) = ca2u(n) - 1 - rj(a < a(cau(n) - 1)) 

= ca2u(n) - 1 - [cau(n) - 2 ] 

= ca2u(n) - cau(n) + 1 

= a3u(n) + 2a2u(n) - bau(n) - au(n) + 1 

= [bau(n) - 1] + 2a2u(n) - au(n) - [bau(n) - l ] 

= a2u(n) + [bu(n) - l ] - au(n) 

= a2u(n) + u(n) - 1 

= bu(n) - 1 + u(n) - 1 

= cu(n) - 2 

Finally to see (iv), first we note that 

Kb(n) = c(n) - 1 $ (z) and Ks(n) = z(n) - 1 <$ (z). 

We show that cu(n) - 2 ^ (z). If u(n) - 1 E (a)s then c(u(n) - 1) + 4 = cu(n). Since 
cu(n) - 2 4 c(j) + 1 for any j s then in this case cu(n) - 2 $ (z). 

Suppose u(n) - 1 = b(j) for some j . Then (since (uf) = (bs + 1)) we must have 
j G( r ) , say j = r(k) for some k, Then c(u(n) - 1) + 3 = cu(n), and cu(n) - 2 = cbr(k) + 1 
and this is not a value of z* 

Now from (i)5 (ii) and (iii) we have9 for all n, 

cb(n) +2 E (c - 1) C (K) 

ca(n) + 3 € (c - 1) C (K) 

cs(n) + 2 = c(s(n) + 1) - 2 €1 (cu - 2) C (K) 

ca2u(n) + 2 = c(bu(n) - 2) E (cu - 2) C (K) 

ca(n) = zt(n) - 1 E (K) 

cbs(n) = zt?(n) - 1 G (K) 

cbr(n) + 1 e (cu - 2) £ (K) 

while cbr(n) E (Kf), ca(n) + 1 E (Kfh and cbs(n) + 1 E (Kf)o Thus (iv) holds. 
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7.20. Theorem. 
(i) K'br(n) = cbr(n) 

(ii) Kfa(n) = ca(n) + 1 

(iii) Kfbs(n) = cbs(n) + l . 

Proof. This is evident from the fact that 

(Kf) = (cbr) U (ca + 1) U (cbs + 1) . 

7.21. Theorem. The following a re equivalent. 

(a) K'(j) = z(n) 

(b) n = j - n(br < j) 

(c) n = c(j) + 1 - x(j) . 

Proof. Since (Kf) = (z) y (cbr), it is evident that (a) and (b) a re equivalent. To see 
that (b) and (c) a re equivalent, we show that, for all j , 

(7.22) j - n(br < j) = c(j) + 1 - X(j) . 

Recall that X(j) = 3j - n(uf < j) (Theorem 7.15). That i s , 

X(j) = 3j - n(bs + 1 <. j) 

= 3j - n(bs < j) 
Now 

H(bs < j) = H(b < j) - n(br < j) 

= j - 1 - H(a < j) - n(br < j) 

= j - 1 - (a(J) - j) - n(br < j) 

= 2] - 1 - a(j) - n(br < j) 
Thus 

X(j) = 3j - [2J - 1 - a(j) - n(br < j)] 

= j + 1 + a(j) + rj(br < j) 

= b(j) + 1 + n(br < j) 

Now c(j) + 1 - A(j) = j - l ( b r < j)s and this completes the proof. 
7.23 Theorem. 

(i) tar(n) = br(n) - n 
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K«(br(n) - 1) « ztartn) 

cbr(n) = zf(b2r(n) + n) . 

Proof. To see (i) we use Theorems 7.20 and 7.21. We have Kfbr(n) = cbr(n) and 

K'(br(n) + 1) = c(br(n) + 1) +. 1 

= c(a2r(n) + 2) + 1 

= ca(ar(n) + 1) + 1 

= zt(ar(n) + 1) 

Then by Theorem 7.20(b) we have 

t(ar(n) + 1) = (br(n) + 1) - n(br < br(n) + 1) 

= br(n) + 1 - n. 

Since t(n) - t(n - 1) = 1 unless n - l E (as), we have t(ar(n)) = br(n) - n. This proves (i). 
To see (ii), we have Kf(br(n) + 1) = zt(ar(n) + 1) and Kf(br(n)) = cbr(n). Thus 

K'(br(n) - 1) E (z) and by (i), Kf(br(n) - 1) = ztar(n). 
Finally, (iii) follows from the fact that 

ztar(n) - 1 = zT(ztar(n) - tar(n)) 

= z?(ca2r(n) + 1 - br(n) + n) 

= zf(cbr(n) - 4 + 1 - br(n) + n) 

= z?(b2r(n) - 3 + n) » 

Now ztar(n) + k £ (zf) for k = 1, 2, 3 and so 

zf(b2r(n) + n) = ztar(n) + 3 = ca2r(n) + 4 = cbr(n) . 

This completes the proof. 
7 - 2 4 - Corollary. Abr(n) = b2r(n) + n . 
Proof. By definition, cbr(n) = z?Abr(n), and the result follows from Theorem 7.23 

(iii). 
7.25. Theorem. pf is separated. 
Proof. We show that p(n + 1) - p(n) = 1 or 2. 
Case 1. n = t(j) and n + 1 = t(j + 1). Then p(n) = pt(j) = 2] - rj(uf < j) by Theorem 

7.2, and p(n + 1) = pt(j + 1) = 2j + 2 - n(u.f S j + 1). Then p(n + 1) •- p(n) = 2 - 5 where 
5 = 1 if j + 1 <E (u?) and 5 = 0 if j + 1 $ (u!). 

1973J 

(ii) 

(iii) 
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Case 2. n = t(j), and n + 1 = tT(k). Then j = as(k) and we have 

p(n) = pt(as(k)) = 2as(k) - r\ (u« < as(k)) 

p(n + 1) = pt'(k) = 2as(k) + 1 - r\ (uf < as(k) + 1) . 

Since as(k) + 1 El (b), it follows that as(k) + 1 ef (u?) and so p(n + 1) - p(n) = 1 in this 
case. 

Case 3. n = t?(j) and n + 1 = t(k). Then k = as(j) + 1 and we have 

p(n) = 2as(j) + 1 - r\ (u1 < as(j) + 1) 

p(n + 1) = 2as(j) + 2 - rj (a! < as(j) + 1) 
and 

p(n + 1) - p(n) = 1. 

This completes the proof. 
7.26. Theorem, a' is separated. 
Proof. We show that a(n + 1) - a(n) < 2. By Theorem 7.2, we have 

a(n) = pt(n) = 2n - n (u? < n). 

Then 

a(n + 1) - a(n) = 2 - 6 

where 6 = 1 if n + 1 ^ (u)! and 6 = 0 if n + l £ f (u!). This completes the proof. 
7.27. Theorem. a(n) = X(n) - n . 
Proof. This is evident from the fact that cr(n) = 2n - rj(u? ^ n), while (by Theorem 

7.15) X(Q) = 3n - n(uf < n). 
7.28. Theorem. (T) = (crT) U (ou?) . 
Proof. If n > 1, we have ou(n) ~ a(u(n) - 1) = 2, as above, and thus for all n, 

au(n) - 1 £ (a'). On the other hand, au'(n) - 1 = a(uT(n) - 1). Since for all n, a(n + 1) -
a(n) < 2, we know (a?) C (a - 1). It follows that ru(n) = au(n) - 1 €. (aT) and further 
(ru) = (a')- Since ruT(n) =au f (n ) , the proof is complete. 

7.29. Theorem, (a) on(n) = u(n) + n 

(b) TU(II) = u(n) + n - 1 

(c) au'(n) = 2uT(n) - n = ru'(n) . 

Proof, (a) We have a(n) = 2n - n(uT < n) for all n. Then ou(n) = 2u(n) -H (uT < 
u(n)). By Theorem 2.1 , we know u(n) = n +r| (uT < u(n)). Thus 

a(u(n)) = 2u(n) - (u(n) - n) = u(n) + n . 
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Statement (b) follows from (a) and the fact that ru(n) = au(n) - 1. To see (c), we have 

auf(n) = 2u?(n) - rj(uf < u?(n)) . 

Then ou!(n) = 2uf(n) - n. 
7.30. Theorem, (a) 7*(n) = au(n) 

(b) af(n) = T'u(n) . 

Proof. F i r s t , (T ) = (on - 1) U (cm1), in particular ru(n) = ou(n) - 1 and ru'(n) = 
au '(n) . Since auT(n) - 1 = a(u?(n) - 1), we have (7*) = (au), and (a) follows. Statement (b) 
is proved similarly. 

7.31. Theorem. For each integer n > 0, put J =rj(euf(j) - j < n). Then 
(a) yf is a separated function 

(b) yf(euV(n) - n ) = 2(euf(n) - 1) - 1 

(c) yf(eu?(n) - n + 1) = yf(euf(n) - n) + 4 

(d) If j is not of the form eu!(n) - n, then yf(j + 1) = y?(j) + 2. 

(e) y'(n) = 2(n + Jn> - 1 . 

(f) yf(n - n(euf < n)) = 2n - 1. 

Proof. By Theorem 7.14, we know yt(n) = 2n and yt'(n) = 2euT(n) - 1. It follows that 

(yf) = (2n - l ) / (2eu ! - 1) 

and it is evident that yf is separated. Clearly if yf(j) = 2euf(n) - 3 for some n, then 
yf(j + 1) = yf(j) + 4 , and otherwise yf(j) = yf(j) + 2. We prove statement (f). Clearly if 
y?(j) = 2n - 1, then since 

(y'(k) : yf(k) < 2n - l} = {2j - 1 : j = 1, 2, • • • , n and j * eu '} 

we must have j = n - rj(2euT - 1 < 2n - 1) = n - H(euf < n). To see (b), it follows from (f) 
that 

y'((eu'(n) - 1) - (n - 1)) = 2(eu?(n) - 1) - 1 = 2euf(n) - 3 . 

Statements (c) and (d) a r e evident from (f) and the fact that numbers of the form 2eur(n) - 1 
a r e the only odd numbers in (y). To see (e), suppose that 

eu'(j) - j < n < eu'(j + 1) - (j + 1) , 

say n = eu! (j) - j + k. Then 
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y?(n) = y'(eu'(j) - j) + 2 + 2k 

= 2eu!(j) - 3 + 2 + 2k 

= 2(eu'(j) + k) - 1 

= 2([eu'(j) - j] + [k + j]) - 1 

= 2n + 2j - 1 

= 2n + 2n(euT(m) - m < n) - 1 

= 2(n + J ) - 1 n 

This completes the proof. 

8. ASYMPTOTIC PROPERTIES 

In this section, we show that the function s is asymptotic to the function c. In pa r -
t icular , s(n) ^ (a + 2)n. Similar asymptotic resul ts follow at once for all the auxiliary func-
tions introduced so far. 

8.1. Theorem, n £ (s) if and only if 

-2- < {an} < 1 . 
\T5 

Proof. Recall that n d (s) if and only if ac(n) = ca(n) + 2 . By definition, we have 

(8.2) ca(n) = [or [an]] + 2[an] 

(8.3) ac(n) = [a([<m] + 2n)] . 
Put 

an = m + ex (0 < et < 1) 

am = k + e2 (0 < e2 < 1) . 

By 2.20, we have €2 = 1 + (1 - a) et. 
Thus we have 

(8.4) ca(n) = [ a m ] + 2m = k + 2m 
and 

(8.5) ac(n) = [a(m + 2n) ] = [am + 2an] 

= [k + €2 + 2m + 2et] 

= k + 2m + [ <E2 + 2et ] . 

Then n 61 (s) if and only if [ e2 + 2et ] = 2. Now 
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£2 + 2 6! = 1 + (1 - a)et + 2et 

= 1 + (3 - a)et 

and so n (tl (s) if and only if 

(8.6) 1 < (3 - (x)€t < 2 , 

that i s , if and only if 

Note that 

< €t < 3 - a - 1 3 - a 

2 > 1 
3 - a 

and et < 1, so this reduces to: 

(8.7) n £ (s) ** ~ ^ < {cm} < 1 

Since a = ^(1 + \ / 5 ) , it is easy to show that 

3 - « ^ ' 

and this completes the proof. 
8.8. Theorem. We have s(n) ^ c(n). 
Proof. We require the fact that the values of {an} a re uniformly distributed in (0,1) 

(see [5, Th. 6.3]). It follows from the previous theorem that 

(8.9) r)(r < n) *> -2- n 
<s/5 

rj (s < n) 

Since s(n) = n + r\ (r < s(n)), we have 

~M° 
s(n) «~ n + s(n) , s(n) ~» 

7 5 1 - -Si-
te. 10) ^ 5 
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On the other hand, c(n) = [ (a + 2)n] , and it follows that s(n) ^ c(n). This completes the 
proof. 

8.11. Corollary, (i) tT(n) - b2(n) 

(ii) uf(n) - bc(n) + 1 . 

Proof. This is evident from the fact that tT(n) = as(u) + n and uf(n) = bs(n) + 1. The 
result follows from Theorem 8.8. 

Clearly, s imilar resul ts could be stated for most of the functions considered previously, 
since these were defined in te rms of a, b , and s. 

Recall (Definition 2.7) if 

llm M 
n ->oo n 

exists and ^ 0 we set 

In view of Theorem 8.8, we have 

, • f (n) c~ = lim - ^ f n ^ o o n 

lim s ( n ) 

n ->eo n 

exists , and is not 0. Then all of the functions introduced so far also satisfy 

lim M 
n -+QO n 

exists , since they a re defined in terms of s, a, b , c, and e. Then we have the following: 
8.12. Theorem. We have 

(i) c a = a, c b = a + 1 

(ii) c c = a + 2, c c , = 3 - a 

(iii) c = a + 2, c = 3 - a 
s r 

tiv) c = £ _ ± J . = SL ., c , = 3a + 1 

(v) c u = ^ 1 , cu , = 4a + 3 

, .v 3 + ^ 5 2a2 

(Vl ) C = , C , = —?r-
v ^ v 3 

(vii) c t = %L±±, c t , = a* 

(viii) c = 5 , c f = 5/4 
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(ix) c = 1+J&. , 0 . _ J + a 
° -s/5 & 2 

(x) c = l i ^ I , c , = ± + « 

9. CONJECTURES 

Many of the results in the preceding sections were first arr ived at empirically, using 
extensive numerical data. We l is t here some conjectures, also arr ived at "by inspection," 
which remain unproved. 

(9.1) ttf(n) = t(n) + tf(n) except for n E (bs) 

(9.2) ts(n) = etf(n) except for n E (bs) 

(9.3) t?b(n) G (a2) except for n E (s) 

(9.4) |xtf(n) - 2tf(n)| < 2 . 

It has been shown that the functions s and c are asymptotic (Theorem 8.8) and also 
that there a re infinitely many values of n for which s(n) = c(n) (Theorem 5.12). It r e -
mains an open question whether the difference |s - c | is bounded. More generally, what is 
the smallest (S)— 0 such that 

|s(n) - c(n)| = 0 ( n ® + €) (e > 0) . 

Numerically, we have for n < 101, |s(n) - c(n)| < 5. 
Of course any such resul t for s and c implies corresponding results for other pairs 

( e .g . , for tf and b2, or for uf and be). 
We could define another function, say g(n), where g(n) is the n integer k such 

that s(k) = c(k). It is evident from Theorem 5.12 that if n e (g), then tf (n) + 1 £ (g). The 
numerical data indicate a possibility that if n E (g), then also tf (n) + 4 C (g), but this r e -
mains unproved. 

Finally, it would be very interesting to have an "infinite union" formula for the function 
tf

5 s imilar to that for s given by Theorem 5.15. 

10. SUMMARY 

1. cbs(n) = bcs(n) - 1 = a2cs(n) 

2. cbr(n) = bcr(n) 

3. cs(n) = bz(n) 
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4. cas(n) = a(cs(n) - 1) = acs(n) - 2 

5. car(n) = acr(n) - 1 

R- p - ^ _ ja(c(n) - 1) if ca(n) e (a) 
b* c a W " |a(c(n) - 1) + 1 if ca(n) Er (b) 

7. cabr(n) = bacr(n) 

8. cabs(n) = bacs(n) - 2 

9. cab(n) = b(ca(n) + 1) 

10. cb2(n) = bcb(n) 

11. ecb(n) = ac(n) 

12. eca(n) = c(n) - 1 

c'b(n) = c(n) - 1 

c'(b(n) - 1) = c(n) - 2 

cf(b(n) + 1) = c(n) + 1 

c'(b(n) + 2) = c(n) + 2 

14. c(n) + c'(n) = 5n - 1 

15. c?(n) = n + T7(b < n) 

16. c'a(n) = c»(a(n) + 1) - 1 

17. c'ab(n) = ca(n) + 1 

18. ec(n) = cf0(n) 

19. 0a(n) = b(n) 

20. 0br(n) = abr(n) 

21. 0bs(n) = abs(n) + 1 

22. f s(n) = bes(n) = as(n) + 1 

13. 

a2(n) , 
a(a(n) - 1), 

n E- (as + 1) 
n G (as + 1) 23. 0f(n) 

24. ^a(n) + 0'a(n) = # f a ( n ) - 1 

25. t//(n) = e0f(n) 

26. </>fr(n) = br(n) 

27. i|/!s(n) = bs(n) + 1 = uf(n) 

28. 0br(n) - 0»ar(n) = 2 

29. 0'0s(n) = abs(n) 

30. <M's(n) = abs(n) - 1 
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31. $</)fr(n) ~ bar(n) 

32. 0s(n) + c's(n) = 3s(n) 

33. ab(n) = st(n) 

34. stf(n) = a2uf(n) = a2(bs(n) + 1) 

35. z(n) = c?s(n) 

36. es(n) = rp(n) 

37. aes(n) = s(n) = arp(n) 

38. b(n) = rpt(n) 

39. pt(n) = a(n) 

40. b(n) = ra(n) 

41. b(n) = uv(n) 

42. uf(n) = bs(n) + 1 

43. tf(n) = as(n) + n 

44. tas(n) = t!(n) - 1 

45. z(n) = c(z(n) - s(n)) + 1 

46. s(n) = b(z(n) - s(n)) + 1 

47. az(n) - as(n) = a(z(n) - s(n)) + 1 

48. zt(n) = ca(n) + l 

49. zt!(n) = cbs(n) + 1 = b2z(n) 

50., s(n) = c(n)<^>t?(n) = b2(n) 

51., zt(n) - st(n) = a(n) 

52. ztf(n) - st?(n) = bs(n) 

53. bas(n) = rp(tf(n) - 1) 

54. az(n) - as(n) = es(n) 

55. z(n) + es(n) = 2s(n) 

56. uf(n) + z(n) = 4s(n) 

57. tb2(n) = t(n) + b2(n) 

58. t't(n) = t(n) + b2(n) - 1 = tb2(n) - 1 

59. tft(n) = a2b(n) + t(n) 

60. tab(n) = te(n) + ab(n) - 8 

where 6 = 0 if n E (b) and 6 = 1 if n £ (a) 
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61. tstT(n) = ts(n) + bu»(n) - 1 

62. tstf(n) - st'(n) = ts(n) 

63. r(2uf(n) - n) = buf(n) = stf(n) + 1 

64. b(n) = r(2n - >l(uf < n ) ) 

65. c2r(n) = 5br(n) 

66. c2s(n) = 5bs(n) + 1 

67. es(n) = ux(n) 

68. Tu(n) = au(n) - 1 

69. ruf(n) = auf(n) 

70. K(n) = T(b < c(n)) 

71. (ab)?(n) = uw(n) 

72. es(n) = uwy(n) 

73. c(n) = z'A(n) 

74. pt(n) = 2n - n(uf < n) = a(n) = A(n) - n 

75. pt'(n) = 2as(n) + 1 - H(uf < as(n) + 1) 

76. v(n) = b(n) - n(s < n) 

77. xt(n) = v(n) 

78. xtf(n) = auf(n) - n(s < as(n)) 

79. v(n) = w(2n) 

80. v(n) - 1 = w(2n - 1) 

81. w(n) = n + n(2a2u ^ n) 

82. wf(n) = 2a2u(n) + n 

83. b(n) - 1 = uvUvdi) - n) = u(v(n) - 1) 

84. abau(n) = uvT (a2u(n) + n) 

85. yt(n) = 2n 

86. ytT(n) = 2euf(n) - 1 

87. A(n) = 3n - n(uT < n) 

88. rcr(n) - a(n) = b(n) - a(n) = rr(n) - T(II) 

89. Kb(n) = c(n) - 1 
Ks(n) = z(n) - 1 

Ka2u(n) = cu(n) - 2 
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90. Kfbr(n) = cbr(n) 

Kfa(n) = ca(n) + 1 

Kfbs(n) = cbs(n) + 1 

91. K'(J) = z(n) <^> n = j - n ( b r < j) = c(j) + 1 - X(j) 

92. tar(n) = br(n) - n 

93. K!(br(n) - 1) = ztar(n) 

94. cbr(n) = zf(b2r(n) + n) 

95. Xbr(n) = b2r(n) + n 

96. s(n) - c(n) 

tf(n) - b2(n) 

u!(n) ^ bc(n) 

97. Au(n) = 2u(n) + n 

98. Auf(n) = 3uf(n) - n 

99. vs(n) = u?(n) - n 

100. vr(n) = ar(n) + n 

101. (s) = (ab) U (a2u») 

102. (r) = (b) U (bu - 1) = (b) U (a2u) 

103. (es) = (au)f = (auf) U (b) 

104. (u!) = (ab2) U (abau!) 

105. (uf) U (abau) = (ab) 

106. (u) = (a2) U (b) U (abau) = (b) U (b - 1) U (abau) 

107. (u) = (uv) U (uvf) = (b) U (uvf) 

108. (es) = (b) U (auf) = (ux) 

109,, (ux) = (uxt) U (auf) = (uxt) U (uxtT) 

110,, (0) = (b) U (abr) u (abs + 1) = (b) U (abr) U (auf) 

111. (0f) = (abs) U (a2(bes)f) = (abs) U (a2(euf)T) 

112,, (</0 = (e0») = (bs) U (a(eu?)f) 

113., (euf) = (b2) U (bauf) 

114. (euf) U (bau) = (b2) U (ba) = (b) 

115. (euf)! = (a) U (bau) 

116. (*) = (a2) U (abau) U (bs) 
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117. «/') = (u») U (br) 

118. (ei//J) = (eu1) U (ar) 

119. (uf) = ab(az - as) 

120. (a) = { n | aen = n) 

(b) = { n | aen = n - l } 

121. c(n) <E ( a ) < ^ n £ [(a)/(s)] U (bs) = (a2u) U (bs) 

122. a(n) = n + n (a < n) 

123. e(n) = H (a < n) 

124. a(n) = t(n) + n (ar < n) 

125. t(n) = n +n (as < n) 

126. t(n) = H(as < b2(n)) 

127. (n(a < s(n)))) = (a2) U (abs) = (a(z - s)) 

128. z(n) = as(n) - n + 1 + n ( t ! < n) 

129. z(n) + 2n = tf(n) + 1 + H (V < n) 

130. n(t(n) < V < t(n) + b2(n)) = n 

131. A(n) = 3n - H ( b s < n) 

132. A(n) = n + 1 - H ( r < b(n)) 

133. H(r < b(n)) = 2n - 1 - a(u» < n) 

134. 2s(n) = tT(n) + 1 + H(tar < n) 

135. 2ab(n) = t(n) + b2(n) + H(ar < n) 

136. n(t» < t(n)) = H(as < n) 

[Nov. 

137. (s) = U 
k=0 

(a(a2b)kb) 

138. (r) = (b) U 0 (a(a2b)kab) 
k=0 

U 
OO 

U (a(a2b)a3) 
k=0 

139. (u») = U (ab(a2b)kb) 
k=0 

140. (u) = (b) U (b - 1) U U (ab(a2b)kab) 
k=0 

U | J (ab(a2b)ka3) 
k=0 

141. s(fk(n)) = a(a2b)Kb(n) 
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142. s(t')kt(n) = a(a2b)kb(n) 

143. fk(n) = (t')kt(n) (k = 0, 1, 2, •• •) 

144. u?(fk(n)) = ab(a2b)kb(n) 

145. f
k_ i ( b 2 ( n ) - 1) < f kW < fk_x(b2(n)) (k = 1, 2, 3, •••) . 

The following functions are separated: 
b, c, s5 0 \ 4i\ t f , z, uf, 

Kf, v, yf, wf, X, p», a ' , T' . 

Table 1 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

a 1 3 4 6 8 9 11 12 14 16 17 19 21 22 24 25 27 

b 2 5 7 10 13 15 18 20 23 26 28 31 34 36 39 41 44 

c 3 7 10 14 18 21 25 28 32 36 39 43 47 50 54 57 61 

s 3 8 11 16 19 21 24 29 32 37 42 45 50 53 55 58 63 

r 1 2 4 5 6 7 9 10 12 13 14 15 17 18 20 22 23 

z 4 11 15 22 26 29 33 40 44 51 58 62 69 73 76 80 87 

zf 1 2 3 5 6 7 8 9 10 12 13 14 16 17 18 19 20 

tf 5 14 20 29 35 39 45 54 60 69 78 84 93 99 103 109 118 

t 1 2 3 4 6 7 8 9 10 11 12 13 15 16 17 18 19 

uf 8 21 29 42 50 55 63 76 84 97 110 118 131 139 144 152 164 

u 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 

Table 2 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

p 2 4 6 8 9 10 12 14 15 17 19 21 23 24 25 27 29 

pf 1 3 5 7 11 13 16 18 20 22 26 28 30 32 36 38 41 

v 2 5 7 9 12 14 17 19 21 24 26 28 31 33 36 38 40 

v? 1 3 4 6 8 10 11 13 15 16 18 20 22 23 25 27 29 

w 1 2 4 5 6 7 8 9 11 12 13 14 16 17 18 19 20 

w! 3 10 15 22 29 34 41 52 59 64 71 78 83 90 95 102 109 
(continued) 
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Table 2 (continued) 

x 2 5 7 9 11 12 14 17 19 21 24 26 28 30 31 33 36 

xf 1 3 4 6 8 10 13 15 16 18 20 22 23 25 27 29 32 

y 2 4 6 8 9 10 12 14 16 18 20 22 24 25 26 28 30 

y! 1 3 5 7 11 13 15 17 19 21 23 27 29 31 33 37 39 

A 3 6 9 12 15 18 21 23 26 29 32 35 38 41 44 47 50 

AT 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 24 25 

Table 3 
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
e l l 2 3 3 4 4 5 6 6 7 8 8 9 9 10 11 

0 2 3 5 7 8 10 12 13 15 16 18 20 21 23 24 26 28 

0! 1 4 6 9 11 14 17 19 22 25 27 30 32 35 38 40 43 

i// 1 3 4 6 7 9 11 12 14 16 17 19 20 22 24 25 27 

<M 2 5 8 10 13 15 18 21 23 26 29 31 34 36 39 42 44 

a 2 4 6 8 10 12 14 15 17 19 21 23 25 27 29 31 33 

aT 1 3 5 7 9 11 13 16 18 20 22 24 26 28 30 32 34 

T 1 3 5 7 9 11 13 15 16 18 20 22 24 26 28 30 32 

TT 2 4 6 8 10 12 14 17 19 21 23 25 27 29 31 33 35 

K 1 2 3 5 6 8 9 10 12 13 14 16 17 19 20 21 23 

KT 4 7 11 15 18 22 26 29 33 36 40 44 47 51 54 58 62 

Fifty pages of extended data tables are available (for $2.50) from Brother Alfred Bfousseau, St. Mary's College, Maraga, 
California 94575. 
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COMPLETE SEQUENCES OF FIBONACCI POWERS 
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1. INTRODUCTION 

We define the Fibonacci sequence in the usual manner by Ft - F2 = 1 and F, 9 = 
Fk+1 + F k f o r e a c i l k i n t n e s e t N o f P o s i t i v e integers. An integer is said to have a r e p -
resentation with respect to a sequence if it is the sum of some finite subsequence. A sequence 
is complete if every positive integer has a representation with respect to the sequence. 

In [2] , Hoggatt and King showed that the sequence { F , } of Fibonacci numbers is com-
plete, and O'Connell showed in [3] that the sequence 1, 1, 1, 1, 4, 4, 9, 9, 25, 25, ••• of 
two of each of the Fibonacci squares F? is complete. In Theorem 1 of this paper we show 
that the sequence of 2 of each of the Fibonacci n powers F, is complete, and (as is 
obvious) that fewer than 2 " copies of { F , } does not yield a complete sequence. 

Hoggatt and King [2] showed that the Fibonacci sequence with any term deleted is com-
plete, but is no longer complete if any two te rms are omitted. OfConnell [3] showed that the 
twofold sequence of Fibonacci squares mentioned above with anyone of the first six te rms de -
leted is still complete, but that the deletion of any term after the sixth or of any two terms 
will destroy completeness. In treating sequences of Fibonacci n powers, this l e d u s t o d e -
fine a minimal sequence. 

Definition. A minimal sequence is a complete sequence which is no longer complete if 
any element is deleted. 

For each positive integer k, the sequence { F . } with F, removed is a minimal s e -
quence of Fibonacci numbers. Although only two minimal sequences 1, 1, 1, 4 , 4, 9, 9, 
25, 25, ••• and 1, 1, 1, 1, 4 , 9, 9, 255 25, ••• can be obtained by deleting elements from 
the twofold sequence of Fibonacci squares , there a re infinitely many minimal sequences 
comprised of Fibonacci squares. One can simply replace some term F? in a minimal s e -
quence of Fibonacci squares by several t e rms F? whose sum is less than or equal to F^ in 
a way which preserves minimality, as illustrated by the minimal sequences 1, 1, 1, 1, 1, 
1, 1, 1, 9, 9, 25, 25, ••• (replacing 4 by 1, 1, 1, 1) or 1, 1, 1, 4, 4, 4, 9, 25, 25, ••• 
(replacing 9 by 4). For each n la rger than 3, infinitely many minimal sequences can be 
obtained by deleting t e rms from the 2 " -fold sequence of Fibonacci n powers. How-
ever, one can obtain a part icular minimal sequence from the 2 " -fold sequence of Fibon-
acci n powers by deleting as many t e rms F, as possible without destroying completeness 
before deleting any te rms F k + 1 , for k = 2, 3, 4 , ' ' *. We show in Sec. 4 that this yields 
the unique minimal sequence defined below. 

387 
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Definition. A distinguished sequence of Fibonacci n powers is a sequence a which 
maps N onto { F , | k E N / satisfying 

(a) a, < a. - for every k E N , 

k 

(b) a, - < 1 + 2_] a - f ° r every k E N , 
i=l 

k-1 
(c) a , + - f a, implies 1 + ^ a. < a .+ - for every k E N . 

i=l 
In Theorem 4, we show that if 

- 1 — ) 1 
where ' [ • • ' • 1 is the. greatest integer function, and {ak} is the distinguished sequence of 
Fibonacci n^n powers, then from some point on each Ff1 occurs exactly r or r - 1 t imes. 
Theorem 5 sharpens this result to show that for even n each FJj1 appears exactly r t imes 
from some point on. 

2. BASIC IDENTITIES 

The identities 
F. -F . , = F? + ( - l ) k and F . ^ - F , ^ = F. F. _ + ( - l ) k 

k-1 k+1 k k+1 k+2 k k+3 

follow easily by induction on k and show that 

(1) 

for any positive integer k. Thus {F~ , / F
2 k "J i s a n increasing sequence, \ F

2 k + l / F ? k ^ 
is a decreasing sequence, and 

(2) ^ j _ < ^ i 
* 2 j - l 2k 

for all positive integers j and k. Since 

F2k+1 F 2k 1 

F2k ^ F2k+1 

*2k-l r2k 

F2k ^ F2k+2 

2k-1 2k+l 

F2k+1 ^ F2k+3 
F2k F2k+2 

F 2k F 2 k - 1 F 2 k F 2 k - l 

approaches zero as k approaches infinity, the sequences 
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( F 2 k ' F 2 k - l } ' ^ F 2 k + 1 / F 2 k > ' a n d ( F k + l / F k } 

have a common limit a. The identity 

Fk+2 _ Fk+1 + F k _ x +
 F k 

Fk+1 Fk+1 Fk+1 

implies that a = 1 + i/a, and a is clearly positive, so a = (1 + \/5)/2 is the common 
limit. These a re all well known propert ies of the Fibonacci numbers. 

From (1) and (2), it is c lear that 5/3 = F5 / F 4 > F k + 1 / F f e except when k = 2. It 
follows by induction that 

( W < (t J (3) | - 4 £ i J < / i ) < 1 + 21 1-1 (k ^ 2) 

for all positive integers n and k with k £ 2. Now the inequality 

k 

(4) F£+1 < 1 + ^ Y J A (n'k " N) 

i=l 

is true for k = 1 and k = 2, and for k > 2, 

k-1 k 
F ^ + 1 < (1 + 2 n - 1 ) F ^ = F^ + 2 n - 1 F j < 1 + 2 n ~ 1 £ Ff + 2 n " 1

F £ = 1 + 2 n - 1 £ F* 
i=l i=l 

follows by induction on k. 
3. COMPLETE SEQUENCES 

It will frequently be helpful to use the following criterion due to Brown [1] in consider-
ing the completeness of various sequences. 

Completeness Criterion: A non-decreasing sequence {a .} of positive integers is com-
plete if and only if 

k 

<5> ak+l ^ 1+J2 h 
i=l 

for every non-negative integer k. 
Brownfs cri terion and the inequality (4) a re instrumental in proving the next theorem. 
Theorem 1. For any positive integer n, the sequence of 2 of each of the Fibon-

acci n powers is complete, but the sequence of 2 - 1 of each of the Fibonacci n 
powers is not complete. 
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Proof. Let {a .} be the 2n~ -fold sequence of Fibonacci n powers. That i s , 

a. = F n for (m - 1) • 2 n ~ 1 < k < m • 2 n ~ 1 . k m 

If k = 2 • m for some m €E N, then a. , - = F , - and 
k+1 m+1 

k m 

i=l i=l 

so the inequality (5) follows from (4). Otherwise, a. - = a^ and the inequality (5) is clear. 
Hence {a .} is complete by the Completeness Criterion. 2,n~l - 1 copies of \ F . } is ob-
viously not complete, since 

F £ = 2 n > 1 + (a11"1 - 1)(F? + i f ) = 2 n - 1 . 

It is easy to see that the 2 " -fold sequence of Fibonacci n powers is not minimal, 
since in any case, one of the 2 ones can be omitted. For n ^. 4, infinitely many te rms 
can be omitted without destroying completeness, as is shown by the following theorem. 

Theorem 2. Let n be a positive integer and let r2 = 2 - 2 , r. = I ( F . + 1 ^Fk^ ^ 
for each positive integer k fi 2. Then the non-decreasing sequence of Fibonacci n"1 powers 
in which, for each positive integer k, F. occurs exactly r. t imes, is complete. 

Proof. The sequence {a .} defined in this theorem is given by taking a. = F, when 

k-1 k 
V r . < i < V r . . 

j=L 1=1 

The condition (5) is clear if a, - = a, . Otherwise, we have a, = F , a , + 1 = F - , and 

a .^ , = Fn' , < (1 + r ) F n = F n + r F n 
k+1 m+1 m ' m m m m 

m - 1 m 
< 1 + Y r . F n + r F n = 1 + V r . F n . L~d 1 1 m m £~*4 I I 

i=l i=l 

Therefore (5) follows by induction on m. The Completeness Criterion gives the theorem. 
If n > 4 and k > 3, 

r k = | ( F k + 1 / F k ) n ] ] < E(5/3)n] < 2n'1 - 1 

by (3), and so at least one term F^ for each k = 3, 4, 5, • • • can be omitted from the 
2 " -fold sequence of Fibonacci n- powers. There is still no guarantee that the sequence 
given in Theorem 2 is minimal. (It i s , if n = 1 or 2.) However, we will see in the next 
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section that if n is even, then the sequence given in Theorem 2 is almost minimal, in the 
sense that a minimal sequence can be obtained from it by deleting a finite subsequence. 

4. THE DISTINGUISHED SEQUENCES 

We will now specialize our study to a part icular minimal sequence of Fibonacci n 
powers. Let us recall our definition of a distinguished sequence. 

Definition. A distinguished sequence of Fibonacci ifi1 powers is a sequence { a j j which 
maps N onto {F |J | k E N } satisfying 

(a) a, < a, - for every k £ N , 
k 

(b) a , + 1 < 1 + Y ^ a. for every k £ N , 
i=l 

k - l 
(c) a . + 1 f a, implies 1 + \ J a. < a, for every k e N . 

1=1 

We would like to show that for each positive integer n, a distinguished sequence ex-
ists and is unique. Starting with the complete 2 " -fold sequence of Fibonacci n powers, 
deleting one F2 = 1, and consecutively deleting enough F. so that (b) arid (c) are satisfied 
for j = 3, 4 , 5, • • • , it is c lear that one can construct a sequence satisfying (a), (b), and 
(c). The inequalities F. - + F n ^ (F. 1 + F . ) n = Fn' , (b), and (c) insure that {a. } is onto 
f Y\ I ~i " " J J J 

\ F . I i E N ) . Proper t ies (b) and (c) also guarantee uniqueness. Henceforth, we will.call the 
unique distinguished sequence of Fibonacci n powers the n distinguished sequence. 

The work [2] of Hoggatt and King shows that the f irs t distinguished sequence {a.} is 
the sequence 1, 2, 3, 5, 8, 13, ••• defined by taking a. = F. - , and OfConnellsT work [3] 
shows that the second distinguished sequence {a .} is the sequence 1, 1, 1, 4, 4, 9, 9, 25, 
25, 64, 64, • • • defined by taking a. = F? for j = [[i/2]] + 1. 

1 J th 
Theorems 4 and 5 give information about the n distinguished sequence for any posi-

tive integer n. Before stating these theorems we will introduce some notation and recall 
some well known facts concerning Fibonacci and Lucas numbers. 

Let a = (1 + \l~5)/2 and j3 = (1 - \l~5)/2 be the roots of the equation x2 = x + 1, and 
note that aft = - 1 . Eecall that 

Multiplying x2 = x + 1 by x , we see that 

n+2 n+1 L n 
a = a + a , 

(6) pa+2 = / 3 n + 1 + /3n , 

, n+2 ^ ^n+2. . n+1 , 0 n+L , . n , „nv 
(a + j8 ) = {a + j8 ) + (a + /S ) . 

Defining 
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(7) L = an + f = a n + (-lA*)n 

for n = 0, 1, 2, 3 , * • • , we see that L0 = 2, LA = 1 (since a = 1 + l / a ) , and L - = 
L + L for any positive integer n. The integers L defined in this way are the usual 
Lucas numbers. Now a > 1, so 0 < l/a < 1 for each positive integer n, and it follows 
from (7) that 

(8) lanl = an - ± = L n (n odd) 
a 

and thence 
[a ]] = a + — - 1 = L - 1 (n even) 

a 

(9) lanJ < an < []>nl] + 1 (n E N) . 

Also, a2 = a + l > 2, s o O < 2/or < 1 for any even positive integer n, and 

(10) l/an + [c/1]] < <*n < |[a?n] + 1 (n even) 
follows from (8). 

Lemma 3. For each positive integer n there is a positive integer M such that, for 
k > M , 

I^D < (F k + 1 /F k ) n < lanl + 1 , 
and, if n is even, 

(Fk_i / F k ) n + I E ^ K (Fk+i / F k > n < n > n n + 1 • 

Proof. This lemma is immediate from (9), (10), and the l imits , 

k ^ o c ( F k + l / V n = * n • k 1 ^ ( F k - l / F k ) n = &* • 

We are now ready to prove Theorems 4 and 5. 
Theorem 4. Let {a .} be the n distinguished sequence, and let r = [[a J , where 

a = (1 + N/"5)/2. Then there is a positive integer M such that for each k > M, a. = F, 
for exactly r or r - 1 values of i. 

Proof. Let M be as in Lemma 3. It suffices to show that if k ^ M and 

h = min{i |a. = F£} , 

then 
h-1 h -1 

1 + E h + (' " *K < Fk+1 ^ X + E ai + r F k 
i=l i=l 

We know by property (c) of the distinguished sequence that 
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h-2 h-1 

393 

1 + 

i=l i=l 
and so 

since 

Also, 

h-1 

1 + E a. + (r - 2)F* < F ^ + (r - 1)F» < rF« < F ^ 

( F k , l / F k ) n 

h-1 

i=l 

by property (b) of the distinguished sequence, so 

since 

h-1 

Fk+1 < ^ + < 1 1 + Z a i + r F k ' 
i=l 

i W F k > B K r + 1-
We can sharpen this result for even values of n. 

Theorem 5. Let n be an even positive integer, let {a.} be the n distinguished 

sequence, and let r = [ » n ] for a = (1 + \Z*5)/2. Then there is a positive integer M 

such that for each k ^ M, a. = F. for exactly r values of i. 

Proof. Let M be as in Lemma 3. It suffices to show that if k ^ M and ' 

h = min{i | a. = F^} , 

then 

h-1 h-1 

1 + E h+ (r - 1)Fk < C i * x + E a i + r Fk • 
i=l i=l 

By property (c) of the distinguished sequence {a.} , 

h-2 h-1 

1 + 

i=l i=l 

so 

h-1 
1 + E h+ <r - K < F k - i + r F k < F< n / _n 

k+1 ' 
i=l 
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since 
( F k - i / F k > n + r < < F

k + i / F
k > n • 

By property (b), 
h -1 h-1 

Fk * 1 + X > i > BO Fn
k+1 < (r + 1)F» < 1 + £a. + < , 

i=l i=l 

since 
( JWVn < r + 1 

Now we define a complete sequence to be almost minimal if it can be made minimal by 
deleting a finite subsequence. 

Corollary 6. If n is even, the sequence defined in Theorem 2 is almost minimal. 
Proof. The sequence {a. } defined in Theorem 2 is given by taking 

I 

*V = K F ^ I / F J 1 1 ] Lk " - ^ k + l ' ^ k 7 

for each positive integer k ^ 2, r2 = 2 - 2, and taking a. = F, when 

k-1 k 

Since r, > 1 for every k f- 2, the sequence {a.} is onto the set ( F , | k E N } . Since 
{a .} is a complete sequence of non-decreasing t e rms , it satisfies propert ies (a) and (b) of 
the n distinguished sequence. For M as in Lemma 3, r, = [[# ] = r when k > M. 
Thus, the minimal n distinguished sequence can be obtained from the sequence {a .} by 
deleting finitely many te rms F, with k ^ M. 

When n is even, Corollary 6 provides a fairly efficient means of constructing the n 
distinguished sequence in a finite number of steps. F i r s t M is determined by inspection, 
for example, and then enough of the r, t e rms F, a re deleted to make the sequence sa t i s -
fy property (c) of the distinguished sequence, for k = 3, 4, • • • , M - 1. For example, when 
n = 4, we have M = 5 and r t = 1, r2 = 14, r3 = 5, r4 = 7, r. = 6 (k > 5). So the 
sequence of Theorem 2 has fifteen l ' s , five 16fs, seven 81Ts, and six F*Ts for all k > 
5. Since none of the F? can be deleted for k < 5, this sequence is already the fourth d i s -
tinguished sequence. 

REFERENCES 

1. J. L. Brown, J r . , "Note on Complete Sequences of In tegers ," Amer. Math. Monthly, 
Vol. 68 (1961), pp. 557-560. 

2. V. E. Hoggatt, J r . , andC. King, Problem E1424, Amer. Math. Monthly, Vol. 67(1960), 
p. 593. 

3. Roger O'Connell, "Representations of Integers as Sums of Fibonacci Squares ," Fibon-
acci Quarterly, 10 (1972), pp. 103-111. 



ANALYTICAL VERIFICATION OF AN "AT SIGHT" TRANSFORMATION 
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There has been interest recently [ l ] - [3 ] in finding easy, at sight ways of transforming 

(1) z + a - z " + « » - + aAz + a0 = 0 
to 

(2) s n + b ^ s 1 1 " " 1 + ••• + bjs + b0 = 0 
subject to 
(3) z = (s + l ) / ( s - 1) . 

Power [ l ] , [2] discovered an (n + 1) x (n + 1) X matrix applicable for transforming the afs 
of (1) to the bfs of (2), and Fielder [3] developed a somewhat different Q matrix for the 
same purpose. In each cases the most rewarding feature of the application matrix (X or Q) 
was the apparent presence of an extremely simple combinatorial scheme for constructing the 
application matrix from the barest minimum of information. While many trial values of n 
assured that either application matr ix was safe to use for practical purposes, the analytic 
validity of the combinatorial schemes defied verification, leaving an understandably dis turb-
ing theoretical situation. 

In this note, a very simple proof of the validity of the combinatorial method for con-
structing the Q matrix is presented. The proof is effected through application of generating 
functions.* 

It has been shown [3] that the coefficients of (1) and (2) are related through 

(4) b = i Q a , 

where a is the (n + 1) X 1 column matrix (1, a - , • • • , a 0 ) , b is the (n + 1) X 1 column 
matr ix (1, b , • • • , b0)9 Q is an (n + 1) X (n + 1) application matrix of integers, and A0 

is the sum of the elements of a. It has also been shown [3] that Q is the product of two 
(n + 1) X (n + 1) matr ices of integers PN. Briefly, the elements of P and N are given, 
respectively, by 

(5) pi ( j = ( - D ^ W - 1 ^ I j : J) . (Li = 1. 2, . . . . n + 1) , 

*In private correspondence with Fielder, Power outlines an analytic verification of the com-
binatorial process for constructing his X matrix. The proof presented herein for the Q 
matr ix is an independent development and i s , of course, different from Power ' s . 
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(6) 

[Nov. 

vu] = r 7 I { l) , (i,j = 1, 2, • •, n + 1). 

As a brief digression, Q5 is exemplified to i l lustrate the conjectured combinatorial 
construction method. 

" 1 1 1 1 1 : 

(7) Q5 

5 
10 
10 

5 
1 

3 
2 

-2 
-3 
- 1 

1 
-2 
-2 

1 
1 

- 1 
-2 

2 
1 

- 1 

( - 3 
^ 2 

2 
-3 

1 

-5 
10 

-10 
5 

-1 

The conjectured combinatorial pattern is 

(8) V l , j + 1 + \ i + 1
 + \ j (i . j 1, 2, n) l i+l , j 

and is il lustrated for 10 - 5 - 3 = 2. Once (8) is established, all that is needed to assure a 
valid Q matrix in general is a f irst row of (n + 1) ones and a las t column of alternating sign 
binomial coefficients for the appropriate index n. 

From a consideration of (5) and (6), it i s seen that the general element of Q is given by 

P 

(9) q, 
k=l 

,, - w)"£ M^'^ i r : } )^ ; ! ! ' ) . w - ! . . . - . . • » . 

Since P has all zero elements above the main diagonal with non-zero elements elsewhere, 
and N has al l -zero elements below the secondary diagonal with non-zero elements [3] , it can 
readily be seen that the upper summation index p . . of (9) is the l e s se r of the number of 

1» 3 
non-zero elements of row i of P or column j of N. This value can be established as 

(10) P i , 3 
i ( n + 1 + i - j - |n + 2 - i - j | ) . 

In any event, if p . . is replaced by (n + 1) the laws of matrix multiplication assure that x»3 
q. . so determined is the correc t value for the element of Q. Subsequent work, however, is 

*» J 
based on q. . having the correc t value as the upper summation index approaches infinity. 

!s3 
This extension is covered by Lemma 1. 

Lemma 1. 

a - i ^ , „ , k -

k=l x ' X 
, n + 1) 

Proof. For an upper index of (n + 1), q. . is valid. For k > (n + 1), the upper 
— i , j 

term of the first binomial coefficient of (11) is negative. The value of this binomial coefficient 
is thereby zero. Thus, for any upper index greater than (n + 1) no contribution to q. . is 

i » 3 
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made* Q. E .D. 
Lemma 2. Given the generating functions 

i=l i=l 
Then, 

( 1 3 ) g i+l .J+l + g i . j + l + Si , j - 8 1 + l f j 
iff 

Q = ,1, , Q t 

J+l 1 •+ X J 

Proof. For necessity, assume (13) is true. A relation for the generating functions is 

(15) G..,- + xG.. - + xG. = G. , 
3+1 3+1 3 3 

from which it is seen that (14) follows. For sufficiency, assume (14) true. Form (15) and 
equate coefficients according to (12) to establish (13) in general. 

The following theorem verifies (8). 
Theorem. With matr ices P and N as defined above, Q = PN has elements q. . 

M i > 3 
which satisfy 

(16) q i + 1 > j + 1 + q i ) j + 1 + q i f j = V l , f G.j = 1. 2, • •• . n + 1) . 

Proof. Let W be a lx(n + 1) row matrix 

(17) W = (1, x, x2, . . . , x n ) . 

Then, WP is a row matrix whose j element is the generating function for the j column 
of P , i . e . , the (n + 1) X 1 column vectors of P , the powers of x increasing down the 
column. + 1 . 

(18) WP = (-2)J-XX (- l ) k - 2(^ I I : J ) ^ 1 = {(2x)J"1(l - x)n"J+1} . 
I k=l ' ' 

Because of the associative property of matrix multiplication, (WP)N = W(PN) = WQ. Hence, 
with use of Lemma 1 

(WP)N ' ^ U - i + ^ '—k-1'- - n - k + 1 

( k=l 

- j ( i - ^ J - 1 E ( n k ^ 1 ) ( 2 x ) k ^ 1 ( 1 " x ) D " 
k=l 

»k-j*2 

{(1 - x ) * - 1 ^ ! - x] + 2 x ) n - j + 1 } = {(1 - J-Hl + x ) n - j + 1 } 
WQ = {Q.} , (J = 1. 2, • • ' , n + 1). 

*Note that for either i or j (or both) greater than n + 1, the value q. . is zero regardless 
of the upper index. ' •* 



398 ANALYTICAL VERIFICATION OF AN "AT SIGHT" TRANSFORMATION Nov. 1973 

But WQ is a row matrix whose elements are the generating functions of the column elements 
of Q. From (19), it is seen that 

(20) Q ] + 1 = (1 - x)3(l + x ) n " j = l - £ - | Q. . 

Thus, by Lemma 2, 

(21) q.^n ._,_- + q. . , - + q. . = q . ^ . , (i,j = 1, 2, • • • , n + 1) . Mi+l , j+l Mj,]+1 Hi,y 1+1,2 J 

Q.E.D. 
Corollary to the Theorem. The matrix Q = {q. . } , (i, j = 1, 2, • • • , n + 1) is such 

that 

(22) q = 1 (j = 1, 2, • • • , n + 1) , 
±9 J 

(23) q, „ , - ( - I ) ' " ' / „ " , 1 1 1 - 1 , 2 D . l l . . « - <-»"(.. I"..) « 
Proof. Since Q. = (1 - x r (1 + x) "•' , it follows that the constant te rm of the gen-

erating function is always unity regardless of j . This proves (22). It can be seen from (20) 
that 

(24) Q n + 1 = (1 - x ) n . 

The coefficients of the generating functions are thereby identically those values given by (23). 
The establishment of specific forms for (22) and (23) means that the f irs t row and last 

column can be immediately written down, and the remainder of the elements of Q follow from 
application of the combinatorial rule. 

As a check on the operational calculations, the bottom row of Q starting with the left 
element should consist of 1, - 1 , 1, - 1 , • • • and the leftmost column start ing with the upper 
element should be the coefficients of increasing powers of x in (1 + x) 
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GENERALIZED FIBONACCI POLYNOMIALS AND ZECKENDORFS THEOREM 

VERIER E. HOGGATT, Jr., and MARJORSE BtCKNELL 
San Jose State University, San Jose, California 

1. INTRODUCTION 

The Zeckendorf Theorem states that every positive integer can be uniquely represented 
as the sum of distinct Fibonacci numbers if no two consecutive Fibonacci numbers are used 
in any given sum. In fact, in an ear l ie r paper [ l ] , it was shown that every positive integer 
can be uniquely represented as the sum from k copies of distinct members of the general-
ized Fibonacci sequence formed by evaluating the Fibonacci polynomials at x = k, if no two 
consecutive members of the sequence with coefficient k are used in any given sum. Now, 
this resul t is extended to include sequences formed from generalized Fibonacci polynomials 
evaluated at x = k. 

2. THE GENERALIZED ZECKENDORF THEOREM FOR THE TRIBONACCI POLYNOMIALS 
The Tribonacci polynomials have been defined in [2] as T 1(x) = T0(x) = 0, Tt(x) = 

1, T lo(x) = x2T ,0(x) + xT ^..(x) + T (x). Let us say that the Tribonacci polynomials a re n+d n+z n+i n 
evaluated at x = k. Then the number sequence is U = U0 = 0, UA = 1, U2 = k2, 

U ^ = k2U ^ + kU _,, + U . n+3 n+2 n+1 n 

Theorem 2.1. Let U be the n member of the sequence formed when the Tribonacci 
polynomials are evaluated at x = k. Then every positive integer N has a unique represen-
tation in the form 

N = €1V1 + e2V2 + . . - + y J n 

with the constraints 

and, for i > 2, 

et = 0, 1 , 2, . . . , k2 - 1 , 

e. = 0, 1, 2, •-• , k2 i 
l 

If e2 = k2, then et = 0, 1, • • • , k - 1 ; 
If £ = k2, then £. = 0, 1, 2, • • • , k ; 
If €. f 1 = k2 and e. = k, then e. = 0. l + l l l - l 

We begin with three useful lemmas , which can be proved by mathematical induction or 
by considering how to represent the specific integers given using the constraints of Theorem 
2.1. 

Lemma 1. For k > 2, 
U 3n " * = k 2<U3n-l + U 3n-4 + - + U*> + k ( U 3n -2 + U 3n-5 + - + U*> " 1 

= k 2 ( U 3 n - l + ' • • + U8) + « U 3 n _ 2 + U 3 n _ 5 + • • • + U4) + (k - l)Ut . 

399 
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Lemma 2. For k > 2, 
U0 ,- - 1 = k2(U0 + UQ 0 + . . . + U3) + k(UQ n + Uc . + . . . + U2) . 3n+l 3n 3n-3 6 3n- l 3n-4 L 

Lemma 3. For k ^ 2, 

U3n+2 " 1 = k 2 ( U 3 n + l + U 3n-2 + ' ' ' + U*> + k ( U 3 n + U 3n-3 + ' ' ' + U3> + & " ^ • 

These lemmas are almost self-explanatory. Now for the utility of the three lemmas in the 
proof of Theorem 2.1. 

Assume that every integer s £ U 2 - 1 has a unique admissible representation. By 
using rU„ 2 for r = 1, 2, • • • , k2, one can get a representation for s < (k2 - 1)U + 2 + 
(U - 1) without using k2U . If we now add another U , then k2U„ + is r e p r e -
sentable but now the representation for U„ „ - 1 cannot be used since U~ - has too large 
a coefficient. Let k2Uq + ? — s be representable in admissible form. Now we gradually 
build up to (k - 1)U0 , . , and since k2 = e.,. and e. = k - 1, so that there are no r e s t r i c -

oR+l 1+i 1 
tions on the ear l ie r coefficients because we can still obtain U0 , - - 1 without further conflict. 

3n+l 
Thus s < k2u 3 n + 2 + (k - l ) U 3 n + 1 + U 3 n + 1 - 1 = k2u 3 n + 2 + k U 3 n + 1 - 1 is obtainable. We cannot now add another UQ ,- since e. = k2, e. = k, so that e . n = 0 and we Can-on' x l'± 1 1 — JL 

not now use the representation of Un ,- - 1, but we now achieve, without U0 , the sum as ^ 3n+l 3n 
great as Uq - 1. Now we have a representation up to s £ k2LL + 2 + kUq + 1 + LL - 1 = 
Uq +o - 1» which completes the proof of Theorem 2.1 by mathematical induction. 

3. HIERARCHY OF RESULTS: ZECKENDORF'S THEOREM 
FOR THE GENERALIZED FIBONACCI POLYNOMIAL SEQUENCES 

Define the generalized Fibonacci polynomials as in [2] by 

P_( r_2 )(x) = P_( r_3 )(x) = . . . = P_1(x) = P0(x) = 0, P^x) = 1, P2(x) = x1*"1, 

P M (x) = Kr'1-P ^ Ax) + x r " 2 P _, 0(x) + ••• + P (x) . n+r n+r-1 n+r-2 n 

Let U = P (k), the n member of the sequence formed by evaluating the generalized Fib-
onacci polynomials at x = k. We state the Zeckendorf Theorem for selected values of r. 

Theorem 3.1. The Binary Case, r = 1. Let P (x) = x11"1, or , P0(x) = 0, Pt(x) = 
1, P2(x) = x, P +1(x) = xP (x). Now, if U = P (k) = kn~ , then any positive integer N 
has a unique representation in the form 

N = eAJi + €2U2 + • • • + € U 1 1 t t n n 

if and only if e. = 0, 1, 2, • • • , k - 1. 
Theorem 3.1 provides, for example, the representation of a number in decimal nota-

tion. Theorem 3.2 is the generalized Zeckendorf Theorem proved in [2] , and Theorem 3.3 
is Theorem 2.1 restated. 

Theorem 3.2. The Fibonacci Case, r = 2. Let P (x) = xP +1(x) + P (x), P0(x) = 
0, Pj(x) = 1. Let U = P (k). Then every positive integer N has a unique representation 
in the form N = e ^ + £2U2 + • - • + e U if and only if et = 0, 1, 2, • • • , k - 1, and for 
i > 2 

' e. = 0, 1, 2, . . - , k ; 
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If e. = k, then e. 1 = 0 . 
l l - l 

Theorem 3.3. The Tribonacci Case, r = 3. Let P Ax) = P0(x) = 0, Pj(x) = 1, and 
P n + 3 ^ = x 2 p n+2^ x ) + x P n + l ^ + Pn^5 a n d l e t U n = P n ^ ' T h e n e v e r y positive integer 
N has a unique representation in the form N = q l ^ + e2U2 + • • • + e u if and only if 

et = 0, 1, 2, - . . , k2 - 1 
and for i > 2, 

€. = 09 1, 2, • • • , k 2 ; 
If e2 = k2

r then et = 0, 1, • • • , k - 1; 
If € = k2

s then e. = 0, 1, 2, ••• , k; 
If e.,^ = k2 and e. = k, then e. . = 0. i + l l l - l 

Theorem 3.4. The Quadranacci Case, r = 4. Let P (x) = P (x) = P0(x) = 09 

Pt(x) = 1, P2(x) = x3, Pn + 4(x) = x3Pn + 3(x) +x 2 P n + 2 (x) +xP n + 1 (x ) + Pn(x). Let Un = Pn(k), 
k > 1. Then any positive integer N has a unique representation in the form 

N = CiUi + e2U2 + . . - + e U 
1 1 L £ n n 

if 
et = 0, 1, 2, • • • , k3 - 1 , 

and, for i ^. 2, 
e. = 0, 1, 2, ••• , k3 ; 

If e2 = k3, then et = 0, 1, 2, - • - , k2 - 1 ; 

If e2 = k3 and e2 = k2> ^en €j = 0, 1, 2, • • • , k - 1 ; 
If ei+2 = k3, then €. + 1 = 0, 1, 2, • • • , k2 ; 
If ei+2 = k3 and €. + 1 = k2, then e. = 0, 1, 2, • • • , k; 
If e .+ 2 = k3, e . + 1 = k2, and e. = k, then e._1 = 0. 

Theorem 3.5. The Pentanacci Case, r = 5. Let P Q(x) = P Q(x) = P ^x) = P0(x) = 

0, Pt(x) = 1, P2(x) = x4, and 
-3V ' -2N ' - l v 

P n + 5 ( x ) = * * n 4 4 W + x 3 W x ) + x 2 l W x ) + X W x ) + Pn<x)> 
and then let U = P (k). Then every positive integer N can be represented uniquely in the 

form 

N = ejUi + e2U2 + • • • + €nUn 

if 

£ l = 0, 1, 2, • . . , k4 - 1 
and, for i > 2, e. = 09 1, 2, • • • , k4 

where 
If e2 = k4 , then et = 0, 1, 2, • • • , k3 - 1; 
If e3 = k4 and e2 = k3 , then e4 = 0, 1, • • • , k2 - 1 ; 
If e4 = k4 and ez = k3 and e2 = k2, then et = 0, 1, 2, • • 8 , k - 1; 
If e . + 3 = k4 , then e.+ 2 = 0, 1, • • • , k3 ; 
If e . + 3 = k4 and e.+ 2 = k3, then e . + 1 = 0, 1, 2, • • • , k2 ; 
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If e . + 3 = k4, e .+ 2 = k3, and e R ] = k2, then e. = 0, 1, • • • , k ; 
I f £i+3 = k 4 j £i+2 = k 3 j e i+l = k 2 ' a n d €i = k ' t h e n €i - l = ° ' 

A proof by mathematical induction of Theorem 3.5 requires five lemmas given below. 
Lemma 1. 

U_ - 1 = k4U' , + k3U,_ 0 + k2U- 0 + kUc A 5n 5n- l 5n-2 5n-3 5n-4 
+ k4U' a + k3U,- _ +' k2Uc Q + ku n 5n-6 5n-7 5n-8 5n-9 
+ • « • + . . . + . . . + 

+ k*U4 + k3U3 + k2U2 + (k - l)Ui . 

Lemma 2. 
U. _,_- - 1 = k4Ur + k3Uc n + k2LL 0 + kUc . 5n+l bn 5n- l 5n-2 5n-3 

+ k*U- . + k3U, a + k2Vn Q + kU_ Q bn-5 5n-6 5n-8 5n-9 
+ . . . + . . . + . . . + 

+ k4U5 + k3U4 + k2U3 + kU2 + 0(Ui - 1) . 

Lemma 3. 
U , _ - 1 = k4Ur A1 + k3U + k2Uc , + kU- 0 

5n+2 bn+1 5n 5n- l 5n-2 
+ k4Ur , + k3!^ - + k2UK a + kUr „ bn-4 5n-5 5n-6 5n-7 
+ • • • + • • • + • • • + 

+ k4U6 + k3U5 + k2U4 + kU3 + (k4 - l)Vt . 

Lemma 4. 
Uc ^Q - 1 = k4LL ^ + k3Uc _ + k2Uc + kU_ n 5n+3 5n+2 5n+l 5n 5n- l 

+ k4!^ 0 + k3Uc , + k2UR . + kUc a 5n-3 5n-4 5n-5 5n-6 

+ . . . + . . . + . . . + . . . 

+ k4!^ + k3U6 + k2U5 + kU4 

+ k4U2 + (k3 - DUj 

Lemma 5. 
U_ ,. - 1 = k4!^ , 0 + k3!^ , 0 + k2UK ,- + kU_ 5n+4 5n+3 5n+2 5n+l 5n 

+ k*UK - + k*V- . + k2UK Q + kU^ A 5n-l 5n-2 5n-3 5n-4 
+ . . . + . . . + . . . + 

+ J^Ug + k3U7 + k2U6 + kU5 

+ k4!^ + k3U2 + (k2 - l)Ut 

Theorem 3.6. Let P_(r_2)W = P_(r_g\(x) = ••• = P_x(x) = po(x) = °» pi(x> = !» 
P2(x) = xT~l, and P _, (x) = x r - l p _,_ Ax) + x r " 2 P _,_ Ax) + •- • + P (x). and then let 4 n+r n+r-1 n+r-2 n 
U = P (k). Then every positive integer N has a unique representation in the form 
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if 

and., for i > 2, 

where 

N = eiUi + e2U2 + • • • + e U 1 1 L L n n 

et = 0, 1 , 2 , • • - , k r _ 1 - 1 

e. = 0, 1, 2, ' • - , k r _ 1 

If e2 = k1""1
 s then et = 08 1, 2, • • • , k r " 2 - 1; 

If e3 = k1""1 and e2 = k r ~ 2 , then et = 0, 1, 2, • • • , k r ~ 3 - 1; 

If e r _ 1 = k "" , er_2 = k " , • • • , and e2 = k2, then q = 0, 1, 2, • • • , k - 1; 
I f V r - 2 = ^ " . t h e n V r - 3 = 0. 1. • • • f k^2; 

If Vr_2 = k a n d e
i+r-3 = k » t h e n e i+r-4 = °' l s ' ' ' • k ; 

If ei-fr_2 = k r " ' €i+ r -3 = ^ ' ° " ' €i+l = k 2 ' t h e n e i = °' ±9 " ' ' k ; 

If e., 0 = kr" , e., 0 = kr" , • • • , €._ = k2, e. = k, then e. . = 0 . i+r-2 i+r-3 i+l l i=l 

The number of conditions increases, of course, as r increases. For r = 2, the 
Fibonacci case needs 3 constraints; for r = 3, 5 constraints; for r = 4, 7 constraints; 

th for r = 5, 9 constraints, and for the r case, 2r - 1 constraints are needed and r 
identities must be used in the inductive proof. 

4. THE ZECKENDORF THEOREM FOR SIMULTANEOUS REPRESENTATIONS 
Klarner has proved the following theorem in [3]: 
KlarnerTs Theorem. Given non-negative integers A and B, there exists a unique 

set of integers {kt, k2, k3, • • • , kr} such that 

A = F. + F. + • • • + Fk , kj k2
 K r 

B = F. _,_-+ F. , - + • • • + Fi, ... , kj+1 k2+l Kr+1 

for |k. - k . | > 2, i ^ j , where each F. is an element of the sequence {Fn} , the 
double-ended Fibonacci sequence, F0 = 0, Fj_ = 1, F n + 2 = F n + i + F n . 

This is a new Zeckendorf theorem for simultaneous representation. Actually, integers 
A and B are so representable if and only if 

aB + A > 0, 1 < a < 2, a2 = a + 1, a = (1 + <s/"5)/2 , 

with equality if and only if A = B = 0, the vacuous representation of (0,0) using no rep -
resenting Fibonacci numbers. 

From the fact that aB + A > 0 is a condition for representability, it follows that every 
integer can be either an A or a B and can have a proper representation. For instance, 

-100 = F. + F. + • • • + F, k l k2 kr 



404 GENERALIZED FIBONACCI POLYNOMIALS AND ZECKENDORF'S THEOREM [Nov. 

for some {kt, k2, • • • , k r } , |k. - k. | > 2, i ^ j . The line x = -100 cuts the line ax + y = 
0, say, in (-100, y0) . Then let yt > y0 be an integer, and -100a + yt > 0, and so -100 
has a representation, and indeed has an infinite number of such representations as all inte-
gers y. > y- give r ise to admissible representations. 

Now, given positive integers A and B, B > A, how does one find the simultaneous 
representation of Klarner fs Theorem? To begin, write the Zeckendorf minimal representa-
tion for A + B, 

A + B = F + F + • • • + F r " ] % ' * m2 " m -

where |m. - m. | > 2, i ^ j , mt > m2 > m3 > • • • > m . Then B = F m _-, + R R and 
A = F m 2 + ^ A • T n e n e x t Fibonacci numbers in the representations of B and A are 
F m -1 a n d F m -2 i f R-R — RA ~ ° ' n o t k ° t n R"R anc* RA = °* W n e n m 2 i s °dd and 
•̂ "R < **A o r **A < °' t n e n t^ie n e x t F i D O n a c c i numbers in the representations of B and A 
are F _ m i and F _ m 2« The process continues, so that the sums of successive te rms in 
the representations of A and of B give the successive te rms in A + B, except that the last 
t e rms may have a zero sum, and the subscripts in the representations of A and B may not 
be ordered. 

We give a constructive proof of Klarner* s Theorem using mathematical induction. F i r s t , 
A = 0 and B = 1 is given uniquely by A = F0 and B = Ft, while A = 1 and B = 0 is 
given uniquely by A = F_1 and B = F0. Here, of course, we seek minimal representations 
in the form 

A = F k j + F k 2 + . . . + F k r , 

B = F, _ + F. . . + • • • + F t + 1 , kj+1 k2+l Kr
+1 

for F. £ { F } with |k. - k . | > 2, i ^ j (the conditions for the original Zeckendorf 
Theorem), and, of course, we assume that 

kj < k2 < k3 < ••• < k r . 

If we make the inductive assumption that all integers A > 0, B > 0, 0 £ A + B < n can be 
so represented, then we must secure compatible pairs A + 1,B and A, B + 1 each in ad-
missible form from those of the pair A ,B . We do this as follows. Let 

A + 1 ?. + ••• + F k + F , kt
 K r - 1 

B = V + '" + V1 + F ° : 

then we must put A + 1 and B into admissible form. We will show how to put these into 
admissible form in general by putting 

F. + F. + • • • + Fi, + F kt k2
 k

r m 

into admissible form. Now, if F is detached, there i s no problem. If F and Fu-. a re 
m v m Kj 

adjacent, then simply use the formula F - = F + F _.. to work upward in the subscripts 
until the s t r e s s is relieved. Since we have only a finite number r , there is no problem. 
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Now, if F m = F k j , then 2 F m = F m + F ^ + F m _ 2 = F m + 1 + F ^ . This may cause 
2Fw i and also the condition F , 0 + F _ . If the la t ter , use F , ., = F + F ., to move m-z m+2 m+1 v+1 v v-1 
upward in the subscripts to relieve the s t r e s s . We notice now that the 2F 0 has a smal ler 

m—A 
subscript than before. Repeat the process . This ultimately terminates or forms two con-
secutive Fibonacci numbers , where we can use F = F + F to relieve the s t r e s s , 
and we are done. 

Notice that this same procedure on B leaves the relation between A + 1 and B intact. 
You can also consider F = F _, or F = 0 , etc. m -1 m 

Next, form the sequence G0 = A, Gt = B, G + 2 = G - + G , and assume that A 
(and hence B) has two distinct admissible forms. Then let n become so large that all Fib-
onacci subscripts are positive, and we will violate the original Zeckendorf Theorem, for G 
would have two distinct representations. Then, A and B must have unique representations 
in tile admissible form. 

But, all of this is extendable. The double-ended Lucas sequence, ( L / ^ L0 = 2* 
L t - 1, L ? = L .. + L , also enjoys the representation property of A and B, for 
aB + A ^. 0, except that, additionally, A and B are chosen such that 5 |(A2 + B2, A2 + 2AB), 
so that not every integer pair qualifies. 

We can generalize Klarner fs Theorem to apply to the sequences formed when the F i b -
onacci polynomials are evaluated at x = k as follows. 

Theorem 4.1 . Given non-negative integers A and B, there exists a unique set of in-
tegers , {els e2, £3, • • • , e r , j } such that 

A = e i U . + 1 + e 2 U . + 2 + - - . + e r U . + r > 

B = e i U . + 2 + e 2 U . + 3 + . . - + e r U j + r + 1 , 

where each U. is an element of the sequence (U / , the double-ended sequence formed 
from the Fibonacci polynomials, F0(x) = 0, Ft(x) = 1, Fn + 2(x) = xFn + 1(x) + Fn(x), when 
x = k, so that U = F (k), and the e. satisfy the constraints e. = 0, 1, 2, • • • , k, and 
if e. = k, then e. n = 0, -«> < i < +°°. 

1 l - l 

Proof. When k = 1, we have Klarner fs Theorem. We take k > 2. F i r s t , we can 
represent uniquely A = 0 = U0 and B = 1 = V1 or A = 1 = U_1 and B = 0 = U0. If we 
make the inductive assumption that all integers A > 0, B > 0, 0 < A + B ^ n can be so 
represented, then we must secure compatible pai rs A + 1, B and A, B + 1 each in admis-
sible form from the ppir A ,B . Let 

A + l = e i U j + 1 + £ 2 U . + 2 + - - . + e r XJ . + r + U _ 1 ( 

B = €1U.+ 2 + e 2 U. + 3 + . . . + £ r U j + r + ; L + U 0 . 

We show how to put these into admissible form by working with 

1 3+1 L j+2 r j+r m 



Now 
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Case 1. U is away from any other U. . or no e. = k. We are done; there is no 
interference unless we create e. + 1 = k, in which case we may have to use U. , - = kU. + 

i 3+1 3 

V-
Case 2. e. = k and U = U. . . -; then replace kU. + U. _, by U. , - and work the I m j+i-1 ' F J 3-1 ^ 3+1 

subscripts upward to relieve the s t r e s s . Notice that this process always terminates , thus 
minimizing the number of t e rms . Suppose that U = U.+. with e. = k ; then 

(k + 1)U . = (U.^ .^ - U.^. J + k l T . , + Ur 0 3+1 3+1+1 3+1-l 3+1-l 3+i-2 

j+i+1 3+1-1 3+1-2 

e. ,n ^ k (since e. = k), so, if e . l 0 = k, then kU, + U, n = U . f 1 can be used and 
the subscripts can be worked upwards to relieve the s t r e s s . If the coefficient of U.+. „ is 
now (k + 1), we note that we can repeat the process and ultimately work it out downward 
while using kU, + U. - = U, - to relieve the s t r e s s upward. In any case , this algorithm 
will reduce A + 1 to an admissible form. Thus, we can represent Af and B! for 0 ^ A' 
+ BT < n + 1, finishing a proof that pairs of integers are so representable. 

Next, to show uniqueness, form the sequence V0 = A, Vj = B, V ? = kV - + V , 
and assume that A, and hence B, has two distinct admissible forms. Then, V has two 
distinct representations from those of, say A. Then, if n is large enough, V must have 
terms €.U. which all have positive subscripts , and V has two distinct representations, 
which violates the generalized Zeckendorf Theorem for the Fibonacci polynomials evaluated 
at x = k given in [1] , which guarantees a unique representation. 

The condition for representability for the Fibonacci polynomials evaluated at x = k is 

B(k + Vk2 + 4 ) / 2 + A > 0 

with equality only if A = B = 0 is vacuously represented. 

Now, if we use the Tribonacci numbers , 1, 1, 2, • • • , T „ = T + 2
+ T +l + T ' t h e n 

we can represent any three non-negative integers A, B, and C as in Klarner ! s Theorem. 
For the Tribonacci numbers , 

CX2 + B(X + 1) + A > 0, 1 < X < 2, A3 = X2 + A + 1 , 

is the condition for the ordered triple A, B, C to be a lattice point in the representation 
half-space, and 

xA2 + y(A + 1) + z = 0 

is the separator plane containing ( 0 , 0 , 0 ) to be represented vacuously using no Tribonacci 
numbers. We now generalize KlarnerTs Theorem to Tribonacci numbers. 

Theorem 4.2. Given three non-negative integers A, B, and C, there exists a unique 
set of integers {k1? k2, • • • , k r } such that 

A = T, + T. + • • • + Ti, , ki k2 % 



Ti = li T , 0 = T _,_„ + T _,_- + T . 
1 s n+3 n+2 n+1 n :_2> B = 0 = T , C = 0 = T0; and A 

?_1 + T0; and A = 0 = T , B = 0 = T0s 

= 0 = T_3 + T-2> 
C = 1 = Tx are 
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B = T k 1 + i + Vi+ • • • + T k r + i • 

where kt < k2 < k3 < • • • < k^ and no three k., k , k are consecutive integers , and 
where the T. are members of the sequence { T }+0°, the double-ended sequence of Tribon-

1 n — <%> 

acci numbers, T - = T0 = 0, 
Proof. F i rs t , A = 1 = 

B = 1 = T + T , C = 0 = 
given uniquely. We make the inductive assumption that all integers A ^ 0, B > 0, C > 0, 
0 < A + B + C I n can be represented uniquely in the form of the theorem. We must show 
that we can secure the compatible tr iples A + 1, B, C; A, B + l , C; and A, B, C + 1 in 
admissible form from the triple A, B, C to get the representations for (A + 1) + B + C < 
n + 1, A + (B + 1 ) + C < n + 1, A + B + ( C + l ) < n + l . To get A + 1, B, C, we add T 
to A, T 1 to B, and T0 to C, and then work upwards in the subscripts if necessary. 
To get A, B + l , C from A, B, and C, we add T „ + T ? to the representation for A, 
T + T to B, and T + T0 to C. To get A, B, C + 1 from the representations for 
A, B, and C, we add respectively T - , T0, Tj . Thus, given the representations for A, 
B, C, 0 1 A + B + C < n, we can always make the representation for one member of the 
triple to be increased by 1, so that we can represent all numbers whose sum is less than or 
equal to n + 1. 

Uniqueness follows from Theorem 3.3 with k = 1. 
Theorem 4.2 can be generalized to the general Tribonacci numbers obtained when the 

Tribonacci polynomials are evaluated at x = k. In that proof, one would obtain A + 1, B, 
C from A, B, C by adding T_2 , T , and T0 to A, B, and C, respectively; A, B + l , 
C by adding T 3 + kT 2 to A, T_2 + kT_x to B, and T_± + kT0 to C; and A, B, C + 1 
by adding T - , T0, TA to A, B, and C, respectively. Theorem 4.3 contains the general-
ization, as 

Theorem 4.3. Given three non-negative integers A, B, and C, there exists a unique 
set of integers {els e2, ' e' , e r , j } such that 

A = £ l U . + 1 + £ 2 U . + 2 + . . . + £ r U . + r > 

B = e i U . + 2 + £ 2 U . + 3 + . . . + £ r U j + r + 1 > 

C = c 1 U. + 3 + e 2 U . + 4 + --- + e r U . + r + 2 , 

where each U. is an element of the sequence ( u } ^ the double-ended sequence given by 
Un = Tn(k), T_x(x) = T0(x) = 0, TjCs) = 1, Tn + 3(x) =x2Tn + 2(x) + xTn + 1(x) + T n ( x ) , where 
the e. satisfy the constraints e. = 0, 1, 2, • • • , k2, and if e. = k2, then e._1 = 0, 1, 
• • • , k2 - 1, and if e. = k2 and e. - = k, then e. 0 = 0. l l - l s 1-2 

Finally, we can generalize Klarner ' s Theorem to apply to the sequences which ar i se 
when the generalized Fibonacci polynomials are evaluated at x = k. 

Theorem 4.4. Given r non-negative integers Nl9 N2, * " • , N , there exists a unique 
set of integers {kl9 k2, • •a , k s } such that 
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1 ki+i-1 k2+i-l k + i - l ' 
s 

where kA < k2 < k3 < • • • < k suid no r k., k. , • • • , k. a re consecutive integers, 
where the U. are members of the sequence {u } + , the double-ended sequence of r -nacci 
numbers, U = - 1 , 1 = U _ , U _,_0 = U = . . . = u = U0 = 0, U4 = 1, U _,_ = 

- r - r+1 -r+2 -r+3 - 1 u 1 n+r 
n+r-1 n+r-2 n+1 n 

Clearly, an inductive proof of Theorem 4.3, or of the theorem when generalized to the 
generalized Fibonacci polynomials evaluated at x = k, hinges upon being able to add one to 
one number represented and to again have all r numbers in admissible form. We examine 
the additions necessary for the inductive step for the generalized Fibonacci polynomials P (x) 
for some small values of r. The induction has been done for r = 2 and r = 3. For r = 4 , 
the Quadranacci polynomials evaluated at x = k, where admissible forms are known for A, 
B, C and D, the additions before adjustment of subscripts a re as follows: 

A + 1 = A + U_3 , 

B = B + U_2 , 

C = C + U" , 

D = D + UQ ; 

A = A + U_4 + kU_3 , 

B + 1 = B + U_3 + kU_2 , 

C = C + U_2 + kU_x , 

D = D + U ^ + kUQ ; 

A = A + U K + kU , + k2U Q , - o - 4 -3 

B = B + U_4 + kU_3 + k2U_2 , 

C + 1 = C + U 3 + kU_2 + k2U_1 , 

D = D + U + kU_x + k2UQ ; 

A = A + U_2 , 

B = B + U_x , 

C = C + UQ , 

D + 1 = D + Uj . 
Note that the Quadranacci polynomials extend to negative subscripts as Ut = 1, UQ = U - = 
U_2 = 0, U = 1, U_4 = -k, U g = U 6 = 0, • • • when evaluated at x = k. 

For r = 5, the Pentanacci polynomials evaluated at x = k a re Vt = 1, U0 = U - = 

U_2 = U - 3 = ° ' U - 4 = lj U - 5 = _ k ' U - 6 = U - 7 = ° ' U - 8 = ° U S i n g t n e r e l a t i o n U
n
 = 
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-kU - - k 2 U n + 2 - k 3 u
n + 3 " ^ ^ n + 4 + Un+5 to m o v e to values for the negative subscripts. The 

inductive one step pieces for the Pentanacci case , where representations for A, B, C, D and 
E are given, a re 

A + 1 = A + U . A = A + U c + k U / 1 
- 4 - o - 4 

B = B + U_3 B + 1 = B + U_4 + kU_3 

C = C + U_2 C = C + U + kU_2 

D = D + U 1 D = D + U_2 + kU 

E = E + U Q E = E + U_x + kUQ 

A = A + U a + kU - + k2U , , - 6 - 5 -4 
B = B + U _ + kU , + k2U Q , - o - 4 -6 

C + 1 = C + U__4 + kU_3 + k2U__2 , 

D = D + U 3 + k U 2 + k 2 U 1 } 

E = E + U + kU + k2UQ ; 

A = A + U _ + kU a + k2U _ + k3U A , - ( -b - o - 4 

B = B + U_6 + kU_5 + k2U_4 + k3U_3 , 

C = C + U + kU_4 + k2U_3 + k3U_2 , 

D + 1 = D + U 4 + kU_3 + k2U_2 + k3U_x , 

E = E + U_3 + kU 2 + k2U^x + k3UQ ; 

A = A + U 

-2 

J - 3 ' 
B = B + U 

c = c + u__1, 
D = D + UQ , 

E + 1 = E + U 1 . 

Thus the pattern from the first cases is c lear . The recurrence relation backward for 

U for general r is n & 

U = -kU J.n - k2U ^ - k3U ^0 - • •. - k r _ 1 U j_ n + U ^ , n n+1 n+2 n+3 n+r-1 n+r ' 

which leads to the lemma for general r and k > 2; 
Lemma. U / 0 oX = . . . = U , ,-v = 0 (r - 2 zeroes) , U = -k, -(2r-2) -(r+1) - r 

U__r+1 = 1, U - ( r _ 2 ) = . . . = UQ = 0 (r - 1 zeroes) , 1 ^ = 1 . 
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Using the lemma and the pattern made clear by the ear l ie r c a s e s , one could prove the final 
generalized theorem given below. 

Theorem 4.5. Let 

P - ( r - 2 ) ( x ) = P - ( r - 3 ) ( x ) = """ = P - l W = P 0 ( x ) = °» P * ( x ) = l j P 2 ( x ) = x r ~ 1 ' 
and 

P _, (x) = xr"1-p ,_ Ax) + x r " 2 P _, 0(x) + . . . + P (x) , n+r n+r - l v n+r-2v nv ' ' 
and let = p ( k ) 

n n 

Then, given r non-negative integers Nl9 N2, • • * , N , there exists a unique set of integers 
{ei9 e2, • • • , e s , j } such that 

N. = e-U. , .^- + e 0 U . , . , 0 + • - • + e U . , . , l 1 j+i+1 2 j+i+2 s j+i+s 

for i = 1, 2, • • • , r , where 

». - w~ 
r - 1 and e. satisfies the constraints e. = 0, 1, 2, • • • , k , -°° < i < +°°; where if e., n = - I i 9 i+r-2 

k r ±
> then e i + r _ 3 = 0, 1, . . . , k r~2; if e.+r__2 = k 1 " 1 and €. + r _ 3 = k r Z , . . • , and 

€.,-.= k2, e. = k, then e. ., = 0., l+l ' I l - l 

5. CONDITIONS FOR REPRESENTABILITY 

In Section 4, a necessary and sufficient condition for representability of an integer pair 
A, B by Klarner ' s Theorem was given as 

aiB + A > 0, a = (1 + \T5)/2 , 

where a is the positive root of X2 - A - 1 = 0. Here a proof i s provided, as well as s ta te-
ment and proof in the general case. 

F i r s t , the Fibonacci polynomials have the recursion relation 

F ,0(x) = xF ^n(x) + F (x) n+2 n+1 n 

and hence the associated polynomial 
X2 - xX - 1 = 0 

with roots Xt and X2, Xt > X2, Xt = ( x + ^ x 2 + 4 ) / 2 . If FA(x) is written as a l inear com-
bination of the roots , Fi(x) = At\t + A2X2, then F (x) = At\f + A2xf. We consider the l im-
iting ratio of successive Fibonacci polynomials, which becomes 

Fn + 1(x) A,A? + 1 + A,A? + 1
 + ^^~7-

n ^ o o - r i r = nM5>* A n + A ,n = ^ = 2 
n AtXi + A2X2 
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upon dividing through by XJj1, since |X2 /X^ < 1 . 
Now let H0 = A and E1 = B, l inear combinations of elements of the sequence of Fib-

onacci polynomials evaluated at x = k as defined in Theorem 4 .1 , and let H = kH ., + 
n n -1 

H „ be the recursion relation for (H ) . Then, as the special case of identity (4.6) proved 
in [2] where r = 2, 

Hn+1 = H lW k ) + H 0 F n ( k ) 

H ^ l H l F n ^ l ( k )
 + H 

F l k T F (k) + H0 ' 
nv nN ' 

For sufficiently large n, we have H + 1 / F (k) > 0. Thus, taking the limit of the expres -
sion above as n tends to infinity, 

(5.1) 0 < XiHt + H0 = B(k + ^k2 + 4 ) /2 + A , 

the condition for representability of an integer pair A9 B by Theorem 4 .1 , with equality 
only if A = B = 0 is vacuously represented. The conditions for Klarner ' s Theorem follow 
when k = 1. 

In the Tribonacci case , we let H0 = A, HA = B, H2 = C, l inear combinations of the 
elements of the sequence of Tribonacci polynomials evaluated at x = k as defined in Theo-
rem 4.3 , and let H = k2H - + kH n + H 0 be the recursion relation for the sequence 

n n -1 n-2 n-3 
{H } , the same recursion as for the Tribonacci polynomials evaluated at x = k, the s e -
quence ( T ( k ) } . Both {T(k)} and { H j have, then, the associated polynomial 

X3 - k2X2 - kX - 1 = 0 

with roots \ u X2, A3, where Xt > |x 2 | > |x3 | , k2 < \ t < k3 for k > 2, and 1 < \ t < 2 
for k = 1; and Xt is the root greatest in absolute value. Analogous to the Fibonacci case , 
we can prove that 

T ^ (k) ,. n+m . m 
n 

Again applying the identity (4.6) from [2] , where r = 3, we write 

H _,_„ = H0T ^,(k) + H- [kT (k) + T , (k)1 + HnT (k) . n+2 2 n+lv 1L nv n - l v J 0 nv 

Upon division by T ..(k), for n sufficiently large, H 0 / T ^(k) > 0, Then we evaluate 
n— JL H'rZi n— 1. 

the limit as n approaches infinity to obtain 
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(5.2) 0 < A[H2 + H jkAi + 1] + B0Xt = A?C + B[kAt + l ] + XtA , 

with equality only if A = B = C = 0 , the vacuous representation. Thus, we have the con-
ditions for representability of an integer triple A, B, C in te rms of Tribonacci polynomials 
evaluated at x = k as in Theorem 4.3. The conditions for Theorem 4.2 for representation 
using Tribonacci numbers follow when k = 1. 

Now, for representability in the general case , we consider a sequence { H } having 
the same recursion as the generalized Fibonacci polynomials { P (k)} , 

H ^ = k r " 1 H _, n + kr""2H ^ 0 + • • • + H , n+r n+r-1 n+r-2 n 

and take as its initial values H0 = Nl9 Hj = N2, • • • , H - = N , the r integers r e p r e -
sented in Theorem 4.5. Now, the generalized Fibonacci polynomials evaluated at x = k 
have the associated polynomial 

(5.3) Xr = (kA)27"1 + (kA)r~2 + ••• + kA + 1 

I I I I I I r—1 r—1 

A 2 |> |A3| > ••• > |AJ, where k < \ t < k + l /k , k > 2, and where 
Xt is the root of greatest modulus. (If k = 1, then 1 < \ t < 2.) 

We next prove that there is a root of greatest modulus for (5.3), that the roots are d i s -
tinct, and that the root of greatest modulus is positive and lies in the interval described. 

Lemma 1. Let 

f(A) = Ar - (kA)r _ 1 - (kA)r~2 kA - 1 . 

Then, for r > 2 and k > 2, f (k r _ 1 ) < 0 and f (k r _ 1 + l /k) > 0. 
Proof. Let A* = kA, so that 

Then, 

h(A*) = krf(A) = A*r - k^A* 2 ^ 1 + A*1""2 + ••• + 1) 

h(k r ) = k r 2 - k V ? 2 - r + k r 2 - 2 r
 + . . . + 1 ) 

= k r 2 - k r 2 - k r 2 " r - . . . - k r < o , 

r - 1 and this implies that f(k ) < 0„ 
Now, let \ t > l / k be a zero of g(A), where 

g(A) = (Ak - l)f(A) = (Ak - 1) I A / \ r (kA)r - 1 \ 

by summing the geometric ser ies formed by all but the f irst term of f(A). Then, 



1973] GENERALIZED FIBONACCI POLYNOMIALS AND ZECKENDORF'S THEOREM 413 

-g(^i) = ^f(k r + l - k A 1 ) - l = 0 

so that 

Thus 

Xf(kr + 1 - kAt) = 1 

k r + 1 - kX1 > 0 , 

x / , r-1 , 1 
h < k + E . 

We note that k r _ 1 < A* < k1""1 + l / k for k > 2S r > 2, agrees with 1 < \ t < 2 for 
the case k = 1, r > 2. 

Lemma 2. Take f(A) as defined in Lemma 1, and let 

g(A) = (Ak - l)f(A) = Ar+1k - Ar - Arkr + 1 . 

Then, g(A) and g'(A) have no common zeros . 
Proof. Since 

gf(A) = A r _ 1 [Ak(r + 1) - r ( l + k r ) ] , 

A = 0 is an (r - l)-fold zero of g!(A), and the other root is 

A = HFH (1 + kr) • 

We observe that A = 0 is not a zero of g(A), and 

Ag?(A) = rg(A) + Ar + 1k - r 

Let A0 be a common root of gf (A) = 0 and g(A) = 0 so that 

. r + 1 . A . r+1 r 
AQ k - r = 0, or \$ = ^ 

r+1 We note in passing that if kAo = r and g(A0) = 0, then 

g(Ao) = ^o r + l k " >or(l + k r ) + 1 = 0 

so that 

g(Ao) = r - Ajf(l + k r ) + 1 = 0, or A0
r = ~ + X 

l + k r 
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We now solve for X0 : 

x „ r + 1 -A Q 

Ao 

(Ao)(r 

1 + 

_ r ( l 

+ 1) 

k r 

+ k r ) 
~TJF" (a) 

r+1 We now show that kX0 = r is inconsistent with (a), by demonstrating that 

\ r + 1 

/ r ( k r + 1 ) \ . 
I (r + l)k J 

For k > 2, r > 3, k r " V r > 4 and 

v k r + l 
< 4 

so that 

while 

The fact that 

r+1 
4 > I ± _ ^ . | > e ( - ) 

is equivalent to the stated inequality. Thus we conclude that there a re no common zeros be-
tween the functions g(A) and gf(A)? for if there would be at least one repeated root AQ, then 

r+1 the two expressions for AQ would be equal, which has been shown to be impossible. 
Comments. For all integers r > 2 and k > 1, the 
Theorem. The roots of 

Ar = A r - 1 + Ar"2 + • • • + A + 1 

a re distinct. The root Al9 of greatest modulus, l ies in the interval 1 < \ t < 2, and the 
remaining r - 1 roots A2, A^ • • • , A satisfy |A. | < 1 for j = 2 , 3, • • • , r . 
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was proved by E. P. Miles, J r . , in [4] . The case k ^ 2 and r = 2 is very easy to prove, 
involving only a quadratic. The general case for k > 2 and r > 3 now follows. 

Theorem 5.1. For r > 3, k > 2, the roots A1? A2, • • . , A of the polynomial 

f(A) = Ar - (kA)r _ 1 - (kA)r_2 - . . . - k A - 1 

are distinct, and Xl9 the root of greatest modulus, satisfies 

k1'1 < At < k1-1 + | . 

Proof. Let 

g(A) = (Ak - l)f(A) = Ar + 1k - Ar - A r k r + 1 . 

Clearly, g(A) has the same zeros as f(A) except that g(A) = 0 also when A = l /k . By 
Lemma 2, the polynomial g(A) has no repeated zeros and thus for k > 2, r ^. 3, the poly-
nomial f(A) has no repeated zeros . 

We now show that the root Xt of Lemma 1, 

k < Ai < k + £ , 

is the zero of greatest modulus for the polynomial f(A). We make use of the theorem appear-

ing in Marden [5]: 
Theorem (32, 1) (Montel): At least p zeros of the polynomial 

f(z) = a0 + ajz + a2z2 + • • • + a z 

lie in the circular disk 

1 
,n-

JJ z < 1 + max 
a . , n " P + 1 

j = 0, 1, 2, • • • , p 

As applied to our f(A), 

f(A) = Ar - (kA)1""1 - (kA)r"2 - • • - - kA - 1 , 

a = 1 and a. = k\ j = 0, 1, • • • , r - 1. Thus (r - 1) of the zeros of f(A) lie inside the 

disk 



416 GENERALIZED FIBONACCI POLYNOMIALS AND ZECKENDORF'S THEOREM [Nov. 

|X| < l + k ( r " 1 ) / 2 . 

To show that Xt
 > |X|, we simply compare the two. From Lemma 1, 

k37"1 < Xt < k1""1 + i / k , 

| x | < i + k ( r - 1 ) / 2 . 

The quadratic x2 - x - 1 > 0 if x >• (1 + N/"5)/2; thus, k ^ " 1 ^ 2 = x > (1 + N/*5)/2 if k > 
2 and r > 3. Therefore, the (r - 1) zeros of f(X) distinct from X1 have modulus less 
than that of Xt. We conclude that f (X) does indeed have a positive root and this root is the 
one of greatest modulus. 

Corollary 5.1.1. For all real numbers k > 2 and all positive integers r > 2, the 
polynomial f(A) of Theorem 5.1 has distinct zeroes and Xlf the zero of greatest modulus, 

r—1 r—i 
i s positive and satisfies k"" < Xj < k ~~ + l /k . 

Corollary 5.1.2. The only positive root Xt of the polynomial f(X) of Theorem 5.1 l ies 
in the interval 

k r - l + 1 _ _ J _ < x < k r - l + 1 . 
k , r 2 - r + l k 

k 

Proof. We have only to show that 

h > k
r - l + 1 _ _ 2 _ = a . 

k , r^-r+l k 

Calculating f(a) from the following form, 

m v _ Ar (kX)r - 1 _ kX r + 1 - (kr + l)Xr + l 
i u ) - x - ^ _ 1 — kx - i 

it is not difficult to show that f(a) < 0. But f(X) > 0 whenever X > A*, and XA is the only 
positive root. Also, it is not difficult to show that a > 0. Therefore, we must have Xt > a. 

Corollary 5.1.2 still yields 1 < Xt < 2 for k = 1, r > 2. For k = 10 and r = 10, 
the root can vary only in an interval A = 1/1091; if k = 10 and r = 100, then A = l/lO9 9 0 1 

making an extremely accurate approximation for large values of r. 
The following improved proof of Theorem 5.1 was given by A. P. Hillman [7]. F i r s t , 

*m - * r fcX)r - 1 _ kX r + 1 - (kr + l)Xr + 1 _ kXr(X - k37"1) - (Xr - 1) 
fW - x - kx _ ± - - kx - i KxTT 

r 1 k r ( r - 1 } 1 
f (k r _ 1 ) = - ^ - — — — < 0 

k - 1 
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and 

f ( k r - l + ( l / k ) ) = klk17-1 + ( l / k ) ) r . (1/k) - [ ( k ^ 1 + ( l / k ) ) r - 1] = _L > o. 
k r k r 

r 1 It now follows from the Intermediate Value Theorem that f(X4) = 0 for some \ t with k 
r - 1 < XA

 < k + l /k . But Descartes1 Rule of Signs tells us that f(X) = 0 has only one positive 
r root. Hence, X4 is the only positive root. Since the coefficient of the highest power, X , 

is positive in f(X), we know that f(X) > 0 for X very large. But f(X) does not change 
sign for X > Xi . Hence f(X) > 0 for X > X^ 

Now let | x | = p with p > \ t . Then p r - (kp ) r _ 1 - (kp)r~2 - • • • - kp - 1 > 0, or p r 

> (kp)1""1 + (kp)r~2 + • • • + kp + 1, and 

| x r | = p r > (kp)1""1 + ••• + kp + 1 = IlkX)1"""1! + . . . + |kx| + 1 

> [(kX)1""1 + . - • + kA + l | . 

Hence, X1" t (kX)1""1 + (kX)1""2 + • • • + kX + 1 and so f(X) ^ 0 for X> \ t . 
Next let | x |= XA with X ^ X^ Since 

K | + h | + ••• + | z n | > | Z l + z2 + ••• + z n | 

if the z. are not all on the same ray from the origin, 

|x r | = Xf = (kXi)1""1 + . . . + kXi + 1 

= IlkX)1""1) + • • • + |kX | + 1 > IlkX)1""1 + • . . + kX + l | . 

Thus, for | x | = Xls X f Xu we have Xr ? (kX)37"*1 + - •« + kX + 1, or f(X) f 0. 
All that remains is to show that \x is not a multiple root of f(X) = 0 , i. e. , not a root 

of ff(X) = 0. Since f (Xi) = 0, we have 

(kr + l)xf = kxf+1 * 1 
Then 

(r + l)kxf - r (k r + D x f ' 1 (r + l)kxf+ 1 - r ( k r + l)xf 
f i ( A l ) = TxT^l = _ Xi(kXi - 1) 

(2rk + k + r)xf+ 1 

Xi(kXi - 1) 

Hence, f!(Xi) f- 0 and the proof is finished. 
Corollary. Theorem 5.1 holds for any k > 0. 
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Proof. Examine the Hillman proof of the theorem and see the fact that k > 2 was not 
explicitly used as in the ear l ie r proof. This extends Theorem 5.1 to include E. P . MilesT 

theorem. 
Theorem 5.1 states that the zeros of f(A) are distinct. Something of this kind is needed 

since if a root, say A2, is repeated (r - 1) t imes , then 

Qn = AAA? + x £ ( B 2 n r - 2 + B 3 n r _ 3 + . . . + B r ) 

and the existence of 
. n+1 /T. r -2 , -, r - 3 , , T> \ 
A2 (B2n + B3n + ••• + B r ) 

l i m »—• : 
n -*oo . n 

may be in doubt or at least it ra i ses some questions. 
Now, for the generalized Fibonacci polynomials { P (k)}, since we can write 

Pn(k) = AjA? + A2xf + • • • + A r X^ , 

a l inear combination of the roots of the associated polynomial (5.3), 

P + (k) A 4 x f m + A2X*+m + • • • + A X n + m 
n+m _ * l z L r r 
P ( k ) A ^ _L A ^ ^ . A ^ n 

nv AJXJ + A2A2 + . . . + A r A r 

Upon division by \ , since |X. A i | < 1, i = 2, 3, • •* , r , 

P n+m ( k ) . m l i m —-^ ;, i = Ai n -»oo P (k) x 

so that the ratio of a pair of successive generalized Fibonacci polynomials evaluated as x = k 
approaches the greatest positive root of its associated polynomial as n approaches infinity. 

Now, the following was proved as identity (4.6) in [2]: 

(5.4) Hatt_1 = H r _ l P n + 1 ( k ) + H r _ 2 [ k r - 2 P n ( k ) + k r - 3 P n _ l ( k ) 

+ H r - 3 [ k r " 3 p n ( k ) + k r " 4 p n - l ( k ) 

+ " - + P n - r + 3 ( k ) ] 

+ Hj[ xPn(k) + P ^ j W ] + H0Pn(k) 
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Upon division by P n _ r + 2 ^ 5 i f H n + r - l ^ P n - r + 2 ^ > ° f o r allsufficientiylarge values of n, 
(5.4) becomes 

0 < H ^ J - 1 + ET_2[<toi)T~2 + (kXi)3""3 + . . . + kXi + 1] 

+ A!H r - 3 [(kXt) r"3 + tAj)1"-4 + • - - + kXt + 1] 

+ A?Hr_4 [(kXi)1""4 + (kXi) r"5 + . . . + kXt + 1] 

+ • - . + xf"3Hi(kXi + 1) + xf""2H0 . 

Thus, the representability condition for Theorem 4.5, for the generalized Fibonacci poly-
nomials evaluated at x = k, becomes 

0 < N ^ " 1 + N ^ J l k A i ) 3 7 " 2 + (kXi)1*"3 + . . . + kXt + 1] 

+ A1Nr_2[(kA1) r" 3 + (kXi)r"4 + . . . + k ^ + 1] 

+ XiNr__3[(kXi)r""4 + (kXi)1""5 + •-- + kXi + 1] 

+ • • - + xf~3N2(kX1 + 1) + xf" 2 N t , 

where X* is the positive root of greatest absolute value of the associated polynomial (5.3), 
with equality only if Nj = N2 = • • • = N = 0 , the vacuous representation. 

When k = 1, we have the representation conditions for r integers N1? N2, • ' ' , N 
in t e rms of the r-bonacci numbers as in Theorem 4.4. 
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A DISCUSSION OF SUBSCRIPT SETS WITH SOME FIBONACCI COUNTING HELP 

DANIEL C. FIELDER 
Georgia Institute of Technology, Atlanta, Georgia 

INTRODUCTION 

If the elements of continued fraction-oriented physical and mathematical systems are 
systematically arranged with respect to subscripts attached to the elements, the choice of 
order and parity for the subscripts often leads to easily implemented algorithms for the com-
binatorial determination of the subscripts. All the essential information of the problem can 
be carr ied by the subscripts since integer manipulation of the subscripts can substitute for 
algebraic manipulation of the elements of the system. Specific and general sets of subscripts 
a re discussed, together with the application of Fibonacci methods for the counting of members 
of subscript sets . 

2. "BASIC" SUBSCRIPT SETS AND THEIR GENERATION 

The Euler-Minding formulas are introduced early in PerronTs classic nDie Lehre von 
den Kettenbriichen" [l] and figure prominently in much of the subsequent continued fraction 
discussions. If Perron1 s notation is altered slightly to eliminate (for convenience) the zero 
subscript, the Euler-Minding formulas appear as 

Sn = a i a 2 

(1) 

/ ^ c ^ c. 
1 *—* a . a . . . *—' a.a. ,_ a. ...a. ,„ 
\ i J J+l j < k 3 J+l k+1 k+2 

l , n - 3 
c k ot + S ^ j<k<i ^ + 1 a k + i a k + 2 ai+2'ai+3 

(2) 

l , n - 3 c. c. 
l k 

j J J ^ j<k 

l , n - 4 

ajaj+i * r a j V i V 1 V 2 

E C. C. C , 
_ J k —L 

-<k<$ a j a J + 1 a k + i a k + 2 ^ + 2 a i + 3 j<k<i 

There are -^ summations plus the one in the parentheses of (1) and —^— summations 
plus the one in the parentheses of (2).* 

* The brackets specify the largest integer less than or equal to the number bracketed. 

420 
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By letting the cfs of (1) and (2) assume particular values, the ratio S / T can be 
used to describe various rational fraction forms of continued fractions some of which are 
directly related to physical s t ructures . For example, if the cfs are all equal to one, the 
ratio S^ / T is the rational fraction equivalent of the continued fraction [l] 

(3) 
a2 + a3 + a n -1 

More concretely, for n equal five, 

(4) 

* i a2 + a3 + a5 

a5a4a3a2a1 + (a5a4a3 + a5a4a1 + aba2a^ + a3a2a1) + (a5 + a3 + at) 

Salzer [2] in an interpolation problem sets all cfs equal to (x - Xj) in the ratio S / T
n _ 1 

and uses the continued fraction process to retr ieve al3 a2, a • •. As a further example, by 
letting the c 's equal the complex frequency variable s = a + jo>, the impedance or admit-
tance of two-element kind electrical ladder networks can be described by S / T -. For in-
stance, the resistance-capacitance network 

-te 
— farads a2 

H(-
a4 

farads 

Y RC ( S ) ohms - - ohms 
a 3 

ohms 

has the Sn / T 1 ratio [3] 

(5) Y R C (s) = 
(a5 + a3 + a t ) s 4 + (a5a4a3 + a5a4aA + a5a2ax + a3a2ax)s2 + a5a4a3a2a! 

s4 + (a5a4 + a5a2 + a3a2)s2 + a5a4a3a2 

It is seen that the ascending subscript arrangement in the continued fraction of (4) and 
in the physical network above both lead to rational fractions having numerators and denomin-
ators with sums of products of n or less coefficients with the sums of products of no coef-
ficients being interpreted as the numeric one. Features immediately apparent with each 
sum of h coefficients are the lexicographical order of subscripts , the absence of repeats , 

• a, and the presence of a leading a a a - , and a final a, a, a i o r VA 2 " 
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It is seen that equationwise all the information needed for the construction of the rational 
fraction is contained in the subscripts alone. 

The subscripts of the coefficients of a sum of products of h coefficients thus constitute 
a subscript set« The numerator and denominator of the rational fraction can thereby be r ep -
resented as a collection of subscript se ts . Because of the basic nature of (3) and because of 
the basic role played by the subscripts exemplified by (4) in specifying propert ies of more 
general subscript se ts , the subscripts of a sum of products of h coefficients determined 
from a continued fraction as in (3) are called basic subscript sets and are given the symbol 
\ N } where n is the larges t subscript of the set, h is the number coefficients in each n 0 

product, and the 0 subscript on th£ braces idantifies the set as "basic. M A typical basic 
subscript set from (4) is ( 5 , 4, 3; 5, 4, 1; 5, 2, 1; 3, 2, l } . 

What are the precise propert ies of basic subscript se ts? How can they be generated 
easily, and what is the power of a basic subscript set? A discussion follows. 

Consider a sequence of h non-zero, non-repeating integers , called subscripts. The 
subscripts in the sequence are arranged in alternating parity and descending size with the 
la rges t subscript (on the left) assigned a specific parity. A basic subscript set has as mem-
bers all possible such sequences with the larges t subscript in any sequence not exceeding n. 
The subscript sets are represented as 

n /2 
(6) {NJJ} = |T] (n - 2f), {Nj"J f _ 1 } , n even, 

f»0 

(n- l ) /2 
(7) {N^}o= 0 (n-2f) , {NfcJ^} 

f=0 
n odd 

\ N 0 } stands for no subscripts and is associated with the numeric one or a single term with 
n o — r ki 

no coefficients. (See, for example, the denominators of (4) and (5).) \N } for k > n is 
,—, n o 

the null set with no value. The boxed semicolon |; | i s a symbol for collecting the sequences 
of a subscript set. 

If n is odd (even), the largest subscript of any sequence has odd (even) parity. The 
smallest subscript of any sequence has odd (even) parity if n - h + 1 is odd (even). 

From (6) and (7), it can be determined that the starting* sequence-last sequence pair 
of ( N } assume either (8) and (9) or (10) and (11). 

(8) n, n - 1, n - 2, • • • , n - h + 1 

(9) h, h - 1, h - 2, ••• , 1 
n - h + 1 odd 

*No other sequence with the prescribed propert ies can be found which has a la rger subscript 
in a given position than the subscript in that position in the starting sequence. If ' l e s s thann 

is substituted for " larger than,1' the las t sequence is described. 
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(10) n, n - 1, n - 2, ° ° • , n - h + 1] 

(11) h + 1, h, h - 1, ••• , 2 
I , n - h + 1 even 

Note that the difference between given position subscripts in the starting and las t sequences 
is a constant q, where q = (n - h) for (n - h) + 1 odd and q = (n - h - 1) for (n - h) + 1 
even. In either case , q is even. This is a property which is valid for the more general 
subscript sets discussed la ter . 

An algorithm to generate basic subscript sets can be deduced from an inspection of (1) 
and (2) once the starting and las t sequence have been established. Assume that the f mem-

st ber of a subscript set is known. To find the (f + 1) member , s tar t at the right side of the 
f member and scan the subscripts toward the left until the f irst subscript is found which 
has a value of at least two greater than the corresponding position subscript of the last s e -

s t quence. Subtract two from this subscript to obtain the subscript for the (f + 1) member 
s t 

and complete the (f + 1) member by filling all positions to the right with the la rges t pos-
sible subscripts consistent with s ize-order and position parity. Note that subtraction of 
twofs is necessary to retain position parity. 

The implementation of the algorithm is even simpler than the description as is i l lus-
trated in the "by hand" generation of { N 8 } in (12). 

(12) 

8, 7, 4, 3' 3, 5, 4, 3 , 3, 2, 1 6, 5, 2, 1 

What is the power of a basic subscript se t? It can be shown by comparison with a physi-
cal model that the power of the collection of either numerator subscript sets or denominator 
subscript sets is Fibonaccian and this , in turn, provides a clue to the answer. 

It is well established [4] - [6] that the resistance o r conductance of electrical ladder 
networks has as the ratio of numerator t e rms to denominator t e rms a ratio of Fibonacci num-
bers . For example, if a ladder network is composed of n unit conductances with a shunt 
conductance at the input end and either a shunt conductance (n odd) or a short circuit (n even) 
at the output end, the conductance measured at the input terminals is given by* 

* Several other forms in t e rms of resistance or conductance a r e , of course, possible,. For 
example, Basin [6] states the input resistance of the dual of the above network with n even 
a s F2n+1 /F2n* However, Basinfs n is half the n of this paper because of a choice in size 
of his unit network. 
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F 
(13) Gn = - | i i mhos , 

n 

where F l 9 F2 , F3 , F 4 , ••• = 1, 1, 2, 3, ••• a re the well-known Fibonacci numbers. More-
over, if the shunt a rms of the ladder network are replaced and described by odd subscripted 
admittances (yfs) and the ser ies a r m s are replaced and described by even subscripted im-
pedances (z's) with the numbering increasing away from the input terminals , (4) exemplifies 
the continued fraction and rational fraction form of the input admittance. To complete the 
identification, odd subscripted a ' s of (4) are interpreted as yTs, and even subscripted a !s 
are interpreted as zTs. It can be seen that the power of a collection of basic subscript sets 
is given by 

UN11"1} + {Nn-3} + •. • + {N0} I = UN11-1} I + |{Nn-3} I + • • • + |{N0} I 11 n J
0
 l n J

0
 l n J

0 ' | l n J
0 > l l n J

0 ' | l n J
0 ' 

(14) = | { N
n - l } + { N n - 3 } + . . . + { N 0

n } I 

(15) = \{Nn-]} +{Nn"3} + - . . +IN 1 J I 
I"- n - l J

0
 l n - l J

0
 l n - l J

0 ' 

= K N n " i } I + K N n i } I + ••• + KN 1 J I = F . n e v e n . |L n - l J
0
 ! |l- n - l J

0 I |l- n - l J
0
 ! n 

That \N } might be equal to a Fibonacci-related binomial coefficient is suggested in a n 0 

paper by Raab [9] in this Journal. Eaab shows that by selecting the entr ies of a certain d i -
agonal of the Pascal triangle a r ray , the Fibonacci numbers are given by 

'.- s (n-i-*> (16) 
5=0 

However, Per ron [l] l is ts t e rm-by- te rm the identical binomial coefficients obtained in the 
expansions of (1) and (2). This verif ies, as was suspected, that 

(17) | { < } o 
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3. GENERAL SUBSCRIPT SETS 

It is apparent that the basic subscript sets belong to a more general class of subscript 
se ts . Consider a set of all possible sequences of h, non-zero, non-repeating, positive inte-
gers called subscripts , having the propert ies that no subscript exceeds M o r i s l ess than 
m and that each sequence within a set has the same pari ty order . Let it be further specified 
that each sequence be arranged in descending size order from left to right. Thus, there is a 
unique starting sequence and a unique las t sequence. The leftmost position of the starting 
sequence is occupied by a subscript <M (depending on mutual pari t ies) , and the remaining 
(h - 1) positions a re filled with the largest subscripts possible consistent with s ize-order and 
parity. Similarly, the rightmost position of the last sequence is occupied by a subscript 
^ m (depending on mutual pari t ies) , and the remaining (h - 1) positions are occupied by the 
smallest consistent subscripts. For example, if h = 6, M = 20, m = 3 and position pa r -
ity i s even, odd, even, even, even, even, the starting sequence must be 20, 19, 18, 16, 14, 
12, and the last sequence must be 12, 11, 10, 8, 6, 4. Because the position parity must 
be the same for the starting and las t sequence and because of the compacting of subscripts to 
the left in the starting sequence and to the right in the last sequence, the difference between 
the same position subscripts within the starting and last sequences is the same. From this 
fact, it can be seen that there is a constant difference q between corresponding position 
subscripts in the starting and las t sequences, and moreover , q must be even as the resul t 
of position parity. Once a starting and las t sequence are determined, the generation of sub-
scr ipt sets in general follows the algorithm given for basic subscript sets . Of course , parity 
must be str ict ly observed. 

While (17) applies in part icular to basic subscript sets and is useful for counting them 
without f irs t determining the starting and las t sequences, i t is possible to use (17) to obtain a 
new form suitable for counting all subscript se ts . 

Consider | { N } I. If n and h are both odd or both even (i. e. , n + h is even), n o' 

(18) [^il] = - h . 

Since the las t member of the starting sequence is (n - h + 1), it must be odd. This makes q 

(19) q = (n - h + 1) - 1 = (n - h) . 

If n is odd and h even or vice versa (i. e. , n + h is odd), 

(20) [ift] - BJJ^I 

In this case , the value of q is 

(21) q = (n - h + 1) - 2 = (n - h - 1) . 
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Elimination of n between either (18) and (19) or between (19) and (20) resul ts in the single 
equation 

™ <"n>„ - (h V f ) 
which is independent of n and the parity of (n + h). 

Next, consider the sequences of differences between any sequence and the las t sequence 
of \ N } . This set of differences s ta r t s with a sequence of h q f s , (q, q, q, • • • , a) and 

n 0 — -* 
ends with the sequence of h zeros (0, 0, 0, • •• , 0). The same algorithm applied to the 
sequence of differences produces members of the difference set in one-to-one correspondence 
with the members of the basic subscript set, and thereby (22) is applicable for counting them. 
However, a little reflection reveals that the same (q, q, q, • • • , q) to (0, 0, 0, ••• , 0) 
sequences apply to any subscript set having the given q and h. Thus, (22) can be recas t 
more generally as 

**„ - (h u 2 ) • 
4. SOME USEFUL NON-BASIC SUBSCRIPT SETS 

It was noted ear l ie r that \N } provided subscripts for a sum of products of coefficients 
n o 

such as a a a • • • (see (4)). If the even subscripted a fs represent one kind of item (as in 
(5)) and the odd subscripted aTs represent another, the sequences of the basic subscript set 
represent sums of products of kinds of things in a fixed alternation pattern. For example, in 
another of the physical systems described ear l ie r , the odd subscripted aTs were shunt a rm 
admittances (yTs) and the even subscripted a fs were se r ies a rm impedances (zTs). In the 
case of a lumped element ladder network, a product has a specific • • • zyz- • • order . In the 
study of certain cascaded distributed element transmission systems, a mathematical inter-
action takes place which, in effect, keeps the • • • zyz* • • order the same but introduces addi-
tional sums of products in which even subscript positions replace some or all of the former-
ly odd subscript positions of the basic subscript set [10], [ l l ] . 

Let \ N } be a subscript set whose subscripts describe the same element product o r -
der as is described by the basic subscript set but whose sequences each have i of the odd 
subscript positions of {N } replaced by i even subscript.positions. If g is the number 
of odd parity positions in a sequence of \N } , there are I J J distinct types of parity a r -
rangement for the sequences of { N } . To obtain { N }, it is feasible to form f^ j sub-
sets each having its own starting sequence and las t sequence. The subsets are designated 
{ N / , {N } , etc. , and are generated and or counted just like any subscript set. Let 
the position of the rightmost odd subscript of { N } be designated odd position 1, next on the 
left odd position 2, etc. , up to and including g. Determine the names of the 1 j J combina-
tions of the odd position numbers 1, 2, • • • , g taken i at a t ime. For each combination of 
odd position numbers , the sequences of the subsets have the parity arrangement of \N } 

n o 
except for i former odd subscript positions replaced by i even subscript positions. The 
subscripts of the starting sequence should be as large as consistently possible and those of 
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the last sequence as small as consistently possible. While the power of the individual sub-
sets can be found from (23), the power of { N } is given by 

(24) {Nh} 

5. DERIVATION OF ^MAX 

For the physical systems which utilize \N } , the value of i for each h is of 
n £ max 

great use in determining the number of coefficients, and hence size, of governing equations. 
Certainly i cannot exceed g and there are many possible situations in which ^ m a x 

cannot even equal g. It is shown below, in fact, that I is equal to the l e s se r of q/2 or 
i max 

g of {N^} Q . 
The starting and last sequences, respectively, of { N / o take on either of the two forms 

given by (8), (9) or (10), (11). Since corresponding position subscripts are of the same parity, 
n and h in (8) and (9) can be either both even or both odd. In (10) and (11), if n is even, h 
is odd, and if n is odd, h is even. 

(a) n ,h both even (Eqs. (8) and (9)). There are h/2 even and h/2 = g odd subscripts 
in any sequence. If n ^ 2h, there are exactly (equals sign) o r more than h even subscripts 
available between n and 1 (including n). Thus, if n - h = q is divided by two, and there-
by q/2 > h /2 , a sequence with all even subscripts can be found. Thus i is not limited 
by q/2 since h/2 odd positions have been filled with even subscripts. If n < 2h, there 
are less than h even subscripts available between n and 1 (including n). This is reflected 
by q/2 < h /2 . The value for ^ m a x must be q/2. 

(b) n,h both odd (Eqs. (8) and (9)). There are (h - l ) /2 even and (h + l ) /2 = g odd 
subscripts in any sequence. If n > 2h + 1, there are exactly (equals sign) or more than h 
odd subscripts between n and 1 (exclusive of 1). Thus, if q/2 > (h + l ) / 2 , there are at 
leas t h odd subscripts between n and 1 (exclusive of 1) which can be reduced by one to 
give at least h even subscripts. Such a sequence would have (h + l ) /2 former odd positions 
filled by even subscripts. Therefore, ^ m a x is not limited by q/2 since (h + l ) /2 odd 
positions have been filled by even subscripts. If q/2 < (h + l ) / 2 , the value for i m a x must 
be q/2. 

(c) n even, h odd (Eqs. (10) and (11)). There a re (h + l ) /2 even and (h - l ) /2 = g 
odd subscripts in any sequence. If n > 2h, there are h distinct even subscripts between n 
and 2 (including n and 2). The condition can be arranged as n - 1 > 2h - 1 or n - 1 - h 
> h - 1 or (n - 1 - h)/2 > (h - l ) / 2 , where (n - 1 - h) = q. Since fulfillment of this con-
dition fills (h - l ) /2 odd positions with even subscripts, i m a x is not limited by q/2. If 
q/2 < (h - l ) / 2 , the value for i m a x must be q/2. 

(d) n odd, h even (Eqs. (10) and (11)). There a re h/2 even and h/2 = g odd sub-
scripts in any sequence of the basic set. If n > 2h + 1 there a re exactly (equals sign) or 
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more than h odd subscripts between n and 2 (including n) which can be reduced by one 
to give at least h even subscripts. Therefore, n - h - 1 > h, (n - h - l ) /2 ^ h /2 , and 
i m a x is not limited by q/2. If q/2 < h / 2 , the value for ^ m a x must be q/2. 

From (a), (b), (c), and (d), it is seen that in all cases q/2 is the value for i , if 
q/2 is l ess than or equal to g, the number of odd positions in a sequence, and g is the 
value for i m a x if q/2 is grea ter than or equal to g. A sufficient condition for q/2 to be 
the greatest - ^ m a x for a given n and any h occurs when q/2 = g. 

8765 
8763 
8761 
8743 
8741 

w, 
8721 
8543 
8541 
8521 
8321 

6. EXAMPLE OF {N h } 1 n J i 

6543 
6521 
6521 
6321 
4321 

(N4
8} !{NJ} 
8 1,1 1 ° 1,2 

8764 i 8643 
8762 | 8641 
8742 I 8621 
8542 | 8421 
6542 | 6421 

{ N , . > , 
8642 

5. 
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SOME DOUBLY EXPONENTIAL SEQUENCES 

A. V.AHOancIW.J.A.SLOAWE 
Bell Laboratories, IVlurrey Hill, New Jersey 

1. INTRODUCTION 
Let x0, xl9 x2, • • • be a sequence of natural numbers satisfying a nonlinear r ecu r -

rence of the form x n + 1 = x^ + g^, where |g | < -Jx for n > n0. Numerous examples 
of such sequences are given, arising from Boolean functions, graph theory, language theory, 
automata theory, and number theory. By an elementary method it is shown that the solution 
is x n = neares t integer to k2n, for n > n0, where k is a constant. That i s , these are 
doubly exponential sequences. In some cases k is a "known" constant (such as 4(1 + N/5"))I 
but in general the formula for k involves x0, x1$ x2, • • •! 

2. EXAMPLES OF DOUBLY EXPONENTIAL SEQUENCES 
2.1 BOOLEAN FUNCTIONS 
The simplest example is defined by 

(1) x n + 1 = x£, n > 0; x0 = 2 

so that the sequence is 2, 4, 16, 256, 65536, 4294967296, ••• and x = 22 . This is the = 22 n. 
number of Boolean functions of n variables ([12] , p. 47) or equivalently the number of 
ways of coloring the vert ices of an n-dimensional cube with two colors. 

2.2 ENUMERATING PLANAR TREES BY HEIGHT 

The recurrence 
(2) x _ = x2 + 1, n > 0; x0 = 1 

n+1 n u 

generates the sequence 1, 2, 5, 26, 677, 458330, 210066388901, • • • . This a r i s e s , for ex-
ample, in the enumeration of planar binary t rees . 

We assume the reader knows what a rooted tree ([10]) i s . (The drawings below are of 
rooted t rees . ) A binary rooted tree is a rooted tree in which the root node has degree 2 and 
all other nodes have degree 1 or 3 (or else is the trivial tree consisting of the root node 
alone). A planar binary rooted tree is a part icular embedding of a binary rooted tree in the 
plane. 

The height of a rooted tree is the maximum length of a path from any node to the root. 
For example here are the planar binary rooted t rees of heights 0, 1 and 2. (Here the 

root is drawn at the bottom.) 

s v \ V v y 
429 
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Let x be the number of planar binary rooted t rees of height at most n, so that x0 = 
1, x4 = 2, x2 • = 5. Deleting the root node either leaves the empty t ree or two t rees of height 
at most n - . 1 , from which it follows that x satisfies (2). 

n 
Planar binary rooted t rees ar ise in a variety of splitting processes . We give three 

il lustrations. 
a. In parsing certain context-free languages [1] , [13], [18]. For example, consider 
a context-free grammar G with two productions N—>NN and N—*>t where N is a 
nonterminal and t a terminal symbol. Derivation t rees for the sentences t and tt 
a re shown below.* Deleting the terminal symbols 

N N 

N 
t | j 

t t 

and their adjacent edges converts a derivation t ree into a planar binary rooted t ree . 
Thus x represents the number of derivation t rees for G of height at most n + 1. 
b. Using the natural correspondence ([4] , Vol. 1, p. 65) between planar binary rooted 
t rees and the parenthesizing of a sentence, x is the number of ways of parenthesizing 
a string of symbols of any length so that the parentheses are nested to depth at most n. 
c. If, in a planar binary rooted t ree , we write a 0 when the path branches to the left 
and a 1 when the path branches to the right, the set of all paths from the root to the 
nodes of degree 1 forms a variable length binary code ([7]). Thus x is the number 
of variable length binary codes of maximum length at most n. 

3.3 THE RECURRENCE 

(3) x ,- = x2 - 1, n > 0; x0 = 2 
n+1 n ' u 

generates the sequence 2, 3, 8, 63, 3968, 15745023, 247905749270528, •••. 

2.4 THE RECURRENCE 
(4) y n + 1 = £ - y n + 1, n > 1; Y l = 2 

generates the sequence 2, 3, 7, 43 , 1807, 3263443, 10650056950807, • • • . This sequence 
occurs (a) in Lucas1 test for the primality of Mersenne numbers ( [ l l ] , p. 233) and (b) in 
approximating numbers by sums of reciprocals . Any positive real number y < 1 admits a 
unique expansion of the form 

1 -L. ! J. 1 a. 
y = — + — + — + • • • , 

Yl Yl Y3 

In language theory, it is customary to draw t rees with the root at the top. 
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where the y. are integers so chosen that after i t e rms , when the sum s. has been ob-
tained, y.+- is the least integer such that s. + l /y . does not exceed y ([16]). It follows 
that y = y | - y + € , e ^ 1. The most slowly converging such ser ies is 

2 3 7 43 

when e. - l for i ^ 1; this converges to 1, and the denominators satisfy (4). Recurrence 
(4) is a special case of the next example. 

2.5 GOLOMB'S NONLINEAR RECURRENCES 

For r = 1, 2, • • • , Golomb [9] has defined a sequence [y ] by 

(5) y g , - y ^ - y ^ T . n > 0; y<r> = 1 . 

Equivalent definitions are 
y0

(r) = 1, Yl
( r ) = r + 1 

( ^ ) 2 
(6) y S l - ^ Y - r y ^ + r , n > l 
and 

y0
(r) - 1, yj r ) = r + 1 

(7) y S = (y!;r) - PY + (2P - P
2 ) , n > l , 'n+1 - (tf - >)' 

where p = ^ . 

From (6) [y ] is the sequence of example 2.4. The Fermat numbers a re y . The 
(2) n (5) n 

sequences [yn ] - [y^ ] begin: 

1, 3, 5, 17, 257, 65537, 4294967297, ••• 

1, 4, 7, 31, 871, 756031, 571580604871, ••• 

1, 5, 9, 49, 2209, 4870849, 23725150497409, ••• 

1, 6, 11, 71, 4691, 21982031, 483209576974811, ••• . 

(3) (Note that the value of yg given in [9j is incorrect . ) 
(r) The substitution x

n
 = Yn - P > n > 1, converts (7) to 

A 
(8) x n + 1 = K2

R + p ( l - p), n > 0; x0 = (1 + p2) 

2.6 THE RECURRENCE 
y0 = 1, yt = 2 , 

(9) y n + 1 = 2yn(yn - 1), n > 1 
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generates the sequence 1, 2, 4, 24, 1104, 2435424, 11862575248704, • • • , which also a r i ses 
in approximating ni 
1, converts (9) to 
in approximating numbers by sums of reciprocals [16]. The substitution x = 2y - 1, n > 

x0 = \ /5 , 

(10) xn + 1 = - 4 - 2 . n ^ ° • 

Sequences generated by (10) with different initial values a re also used in primality testing. 
With the initial value x0 = 3 we obtain the sequence 3, 7, 47, 2207, 4870847, 23725150497407, 
• • • ( [17] , p. 280), and with x0 = 4 the sequence 4, 14, 194, 37634, 1416317954, • • • ([19]). 

2.7 THE RECURRENCE 

y0 = 1, yt = 2 

<n> yn +i = £ - £-i. n > i 

generates the sequence 1, 2, 3, 5, 16, 231, 53105, 2820087664, • • • . In [3] it was given as 
a puzzle to guess the recurrence satisfied by this sequence. 

The substitution x = y - -k n > 0, converts (11) to n .n * — v 

x0 ~ Y' x i = ^ "Z » x 2 = 2 -?p 

(12) x ,n = x2 - x2
 0 - x 0 - 1, n > 2 . 

n+1 n n-2 n-2 

3. SOLVING THE RECURRENCES 

Recurrences (l)-(3), (8), (10) and (12) all have the form 

(13) x ^ = x2 + g , n > 0 v n+1 n &n 

with boundary conditions, and are such that 
(i) x > 0 

n 
(ii) g < 4- x and 1 < x for n > n0 and 
v | & n i 4 n — n — u 

(iii) g satisfies condition (16) below. 
Let 

yn = l 0^V an = l 0 g ( 1 + ^ J 

Then by taking logarithms of (13) we obtain 

(14) y J 1 = 2y + a , n > 0 . 
Jn+1 J n n' 

For any sequence {a }9 the solution of (14) is (see for example [15], p. 26) 
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y = 2 I y0 + TT + — + •. • + - = - ^ 1 
\ 2 2^ 2 n / 

= Y - r n n 
where 

CO 

Yn = 2 y° + 2-r 2 "i 
i=0 

(15) 
CO 

S0 n - l - i 2 a. 
i 

Assuming that the g a re such that 

(16) I a y ^ |ofn+1| for n > n0 , 

it follows from (15) that |r | ^ |ar | . Then 

y Y - r - r 
/..rr\ n n n v ^ n 
(17) x n = e = e = Xne 
where Y 
(18) Xn = e n = k^n , 

(19) k = x 0 e x p l ^ 2 - 1 _ 1 a . 

Also 
r \a 

X = x e n i x e' n ' n n n 

< X [ l + — ) 
x n # 

using (ii), and the fact that (1 - u)""1 < 1 + 2u for 0 < u < j 9 

for n > n0 

n 

n x n 

and 

|gnn X > x e > x 1 I = x — 
n n n 1 o I n x 

V 4 / 
From assumption (ii), this means that 
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k - XJ < ± for n - n° • 
If x is an integer, as in recurrences (l)-(3), (8) for r even, and (10), then the solution to 
the recurrence (13) is 
(20) x = neares t integer to k2 , for n ^. n0 

while if x is half an odd integer, as in (8) for r odd and (12), the solution is 

(21) x = (nearest integer to k2*1 + y ) - \ > f o r n — no » 

where k is given by (19). 
Note that if g is always positive, then a > 0, r > 0 , X > x , and (20) may be 

replaced by 
(22) x = [k2 n] for n ^ n0 , 

where [a] denotes the integer par t of a. Similarly if g is always negative then X < x 
and 
(23) x n = [k2 n] for n > n0 , 

where [a] denotes the smallest integer >ja. 
In some cases (see below) k turns out to be a "known" constant (such as y ( l + N/IT)). 

But in general Eqs. (20)-(23) are not legitimate solutions to the recurrence (13), since the 
only way we have to calculate k involves knowing the terms of the sequence. Nevertheless, 
they accurately describe the asymptotic behavior of the sequence. 

We now apply this result to the preceding examples. For all except 2.7 the proofs of 
propert ies (ii) and (iii) are by an easy induction, and are omitted. 

Example 2.1. 
Here g = 0 , k = 2 and (20) correct ly gives the solution x = 22 . 
Example 2.2. 
Condition (ii) holds for n0 = 2, and (iii) requires x ^ x - , which is immediate. 

From (20) x = [k2 ] for n > 1, where 

exp ( w w s • > • * » • *•*«»••••) 

>mpari 

n 

X 
n 

son of 

0 

1 

= l.i 

k 2n 
502837 • • 

with x n 
1 

2 

is as follows: 

2 

5 

3 

26 

4 

677 

5 

458330 

^ n 1.50284 2.25852 5.10091 26.01924 677.00074 458330.00000 
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Example 2.3 is s imilar , and x = [k2 n] where k = 1.678459 • • • . 
Example 2.5. 

It is found that (ii) is valid for n0 = 1 if r = 1 and for n0 = 3 if r > 3. The solu-
tion of (5) for r = 1 (and of example 2.4) is 

y ^ = [ k*n + * ] , n a 0 , 
and for r — 3 is 

yj* = [ k^ + J ]. n S 3 > 

where k is given by (19). The first few values of k are as follows. 

r 1 3 4 5 
k 1.264085 1.526526 1.618034 1.696094 

For r = 4, the value of k is seen to be very close to the "golden rat io" 

<P = y ( l + V"5) = 1.6180339887 ••• 

In fact we may take k = <# for 

y}4 ) = 5 . 

is solved exactly by 

and so 
y, <4> = ^ n

+ ^ + 2f n M , 

yn 
( 4 ) = [<p2R + 2] , n ^ 1 

(This was pointed out to us by D. E. Knuth.) So far, none of the other values of k have been 
identified. Golomb [9] has studied the solution of (5) by a different method. 

Example 2.6. 
The solution to (9) is 

y n = [ { ( 1 + k 2 n ) ] for n * 1 , 

where k = 1.618034 • • • , and again, as pointed out by D. E. Knuth, we may take 

k = <p = { ( 1 + <s/5) , 
since 

x^ = <^n + cp-2n
} n > o 

solves (10) exactly. A s imilar exact solution can be given for (10) for any initial value x0. 
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Example 2.7. 
This is the only example for which (ii) and (iii) are not immediate. Bounds on x and 

y a re first established by induction: 

2 2n-2.1 < x < < 22n-2 f o r n > 4 . 
n J n 

then 

and 
^n = - ( X n - 2 + - 2 ) 2 " I = " y n -2 " ! 

2 2n-3.1 < g < 22n-3 f n ^ 7 . 
&n 

It is now easy to show that (ii) and (iii) hold for n ^ n0 = 5. The solution is 

where k = 1.185305 
y n = [ k 2 n

+ | ] , n * 1 

EXERCISES 

The technique may sometimes be applied to recurrences not having the form of (13). 
We invite the reader to tackle the following. 

(1) y n + 1 = y»n - 3 V n > 0; y0 = 3 , 

which generates the sequence 3, 18, 5778, 192900153618, • • • used in a rapid method of ex-

tracting a square root ([5]). 

(2) y0 = l, yi = 3 

Vl = Vn-l + l j n - 1 

which generates the sequence 1, 3, 4, 13, 53, 690, 36571, 25233991, 922832284862, • • • ([2]). 

(3) y0 = i 

yn+l = y°  + y ° y i + ' * ' + yoYl ' "" V n - °  

which generates the sequence 1, 1, 2, 4, 12, 108, 10476, 108625644, 11798392680793836, 

(4) y0 = 1 

y _•_-,= y2 + y + i> n ^ o 
Jn+1 ^n J n 

which generates the sequence 1, 3, 13, 183, 33673, 1133904603, • • • , the coefficients of the 
leas t rapidly converging continued cotangent ([14]). 
(5) y0 = 1 

y -t.1 = (y + i)2* n > o 
Jn+1 J n 
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which generates the sequence 1, 4, 25, 6769 458329, 210066388900, ••• ([8]). 

(6) y0 = Yi = 1 

yn+l = ^n + 2 y n
( y ° + y l + *' ' + y n - l } ' n ~ X ' 

which generates the sequence 1, 1, 3, 21, 651, 457653, 210065930571, • • • , arising in the 
enumeration of shapes ([6]). 
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ON STORING AND ANALYZING LARGE STRINGS OF PRIMES 
SOL WEINTRAUB* 

Queens College, CUNY, Flushing, New York 

By the prime number theorem, the number of pr imes less than x is asymptotic to 
x/log x. A short table of actual counts follows. 

0 -

1 0 * -

ioi° 

1012 

1014 

1016 

RANGE 

- 2.5 X 1 0 6 

- 108 + 2.5 X 1 0 6 

— 1010 + 2.5 X 1 0 6 

— 1012 + 2.5 X 1 0 6 

— 1014 + 2.5 X 1 0 6 

— 1016 + 2.5 X 1 0 6 

NO. O F 
P R I M E S 

183 ,072 

1 3 5 , 7 7 5 

1 0 8 ,5 27 

90 ,509 

77 ,254 

6 8 , 0 8 1 

Computer runs for finding the l a rger numbers a re very time-consuming and it is often 
desirable to store the pr imes on magnetic tape o r punched cards for use in certain statistical 
routines. Many users also store the lower pr imes for computing the higher ones, applying 
some variation of the sieve of Eratosthenes. 

Assume we want to store the 68,081 primes in the interval from 1016 to 1016 + 2.5 X 106 

on punched cards . How many cards are required? The first prime is 10 000 000 000 000 061 
(17 digits) and if all digits are used, we would require 68,081 X 17/80 (a card can hold 80 
alphanumeric characters) or 14,468 cards. 

Obviously, we donTtneed to record the value of 1016 for every pr ime. We can store 
only the last seven digits (since we have an interval of 2,500,000) and keep in mind that every 
number is to be augmented by 1016. Using only the las t 7 digits requires 68,081 X 7/80 or 
5958 cards . 

Now, we donft have to store the actual pr imes . If we record the f irst one we need s im-
ply store the difference to the next one. For example, the second prime in this interval is 
10 000 000 000 000 069 and so we just record the number 8. The next one is 1016 + 79 and 
we record the number 10. Allowing for a 3-digit maximum difference (the actual maximum 

* Research supported in par t by AEC Grant AT(30-1)37 64. 
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difference is 432, L e. , 431 consecutive composites) we now need 68,080 X 3/80 or 2553 
cards . 

It is desirable to cut this number down stil further. There are 68,081 primes in this 
interval of 2,500,000 numbers. Thus the average difference is about 36. Indeed, a computer 
count reveals that 52,273 of the 68,081 pr imes have gaps (differences) less than or equal 
to 52. Moreover, since all pr imes are odd (except for the number 2) all differences are 
even; and we need to store only half the difference (keeping in mind that when reconstructing 
the pr imes from the differences, we will double the gap). Thus for most of the gaps we could 
use a number from 1 to 26 or a single let ter from A to Z. 

What about a gap of 54? This would be stored as 1A. The numeric 1 signifying 52 
and A a difference of 2. A gap of 104 would appear as 1Z and 106 would be 2A. This 
method allows for a difference up to 572 using the ten numeric digits and 26 alphabetics. 
(It could be extended in an obvious fashion by having two numerics precede the alphabetic, 
e tc . ) A numeric digit is present only if it precedes an alphabetic, never by itself. 

As an example, consider the first three cards for the pr imes after 1016. The first 
prime (1016 + 61) is recorded elsewhere and the f irst le t ter (D) gives the increment to the 
next p r ime, and so on. 

DEJ6UN2FHMQ1PTMURFKEDQS1JN2C1AIE1BW1A1JAH1SA1DBDFBLIVT1G1KRB01A1G1G 

F1MU1JCSOK1EF 

1RSTGNMOLIB1PF1A2FLML1LVCTAFNLJTRDC1DIRHYXILI1IU1BTL1G2RE1EHMHG1GEL 

LUFJHA2JLJEY1 

DHYBF1E1VUKACLT1QFXUTRJ1ILC1TB2FNMN1SCRDCCRI1LC2Q1GIA1DH1PC01AL2COE 

M1SC1D1AE1NQA 

These three cards* translate to the 190 pr imes: 

(61), 69, 79, 453, • • - , 7357, 7359. 

The last A on the third card indicating the twin prime (a gap of 2). With this system the 
number of cards needed to store the pr imes between 1016 and 1016 + 2.5 million reduces to 
1048. (About half of a box.) Of course, cards are only an illustration. The same economy 
is effected using magnetic tape, terminal display s or any other device, 

Based on the above ru les , a computer program could easily construct and reconstruct 
the pr imes in any given interval. (It is desirable to store the last pr ime, as well as the first , 
for a check.) 

* Comment. Two lines represent one card. Our margins required putting each card in two 
lines. 
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For many applications, however, it is not necessary to reconstruct the pr imes . For 
example, if one wishes to find the number of twin pr imes in an interval one simply looks for 
isolated A's (A's not preceded by a numeric character) . Or one could have the program 
search for the combination ABA signifying a quadruple of pr imes within a span of eight in-
tegers; this occurs for example at 1016 + 2,470,321, 323, 327, 329; as indicated in the 
following line: 

ONM1V1FAXQA1ATR1SY1CABA2GOABJRICOLQILDU1VI1V2EWJIFQFSHRAFONAQMHPRH 

M1F2TVOK1AFJOE 

Similarly, one can search for any permissible combination of le t te rs . Certain sequences 
a re obviously forbidden; such as AA which would mean that p , p + 2, p + 4 a re all pr imes 
and evidently one of these is divisible by 3. FIBONACCI, for example, is also forbidden. 
An interesting problem is : what is the probability that a random sequence of N le t ters is 
permiss ible? Is Shakespeare?s Macbeth, word for permissible word, somewhere amongst 
the p r imes? After all , as x goes to infinity, so does x/log x. 

Finally, is there a way of storing pr imes (or any s imilar string of numbers) using few-
e r charac te rs? How close can one come to using only one binary bit (0 or 1) for each 
pr ime? 
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COUNTING OF CERTAIN PARTITIONS OF NUMBERS 

DANIEL C. FIELDER 
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It can be shown from a recent discussion of subscript sets [l] that the counting of c e r -
tain res t r ic ted, but useful, partitions can be made by means of binomial coefficients. In [ l ] , 
these binomial coefficients were those which sum to a Fibonacci number. 

A brief description of a subscript set is repeated here for continuity. A subscript set 
is defined as the set of all sequences of h, non-zero, non-repeating positive integers called 
subscripts , having the propert ies that no subscript exceeds M, no subscript is less than m, 
and that for all sequences one fixed parity order applies. Let it further be specified that each 
sequence be arranged in descending size order from the left. Under these conditions, there 
are unique starting and last sequences. The leftmost position of the starting sequence is 
occupied by a subscript k < M (depending on parity) with the other (h - 1) positions filled 
with the largest permissible subscripts. Correspondingly, the rightmost position of the last 
sequence is occupied by a subscript p > m with all other (h - 1) positions filled with the 
smallest subscripts possible. 

A practical method for generating the sequences from the starting sequence is described 
in the reference [1] and, briefly, consists of progressive and exhaustive reduction of sub-
scr ipts by two. The number of sequences in a subscript set is [1] 

R h „ = ( h ^ 2 ) • 

where q is the necessari ly even difference between the rightmost subscripts of the starting 
and las t sequences. If collections of subscript sets described as basic [1] a re enumerated, 
the R, for each set is one of a sum of binomial coefficients which sum to a Fibonacci h ,q 
number. 

Suppose a new set of sequences called the q-set is formed whose sequences a re formed 
by positionwise subtraction of the las t sequence of a subscript set from all the others (includ-
ing the last). The q-set sequences s tar t with h q f s , (q, q, • • • , q) and end with h zeros , 
(0, 0, • • • , 0) and are in one-to-one correspondence with the sequences of the subscript set. 
All the sequences of a q-set contain even numbers only. 

Next, divide all integers of a q-set by two. It is seen that the set of sequences so p ro -
duced are the h and less part partitions of (h q/2) with no integer exceeding q/2 , plus the 
null partition (0, 0, ••••, 0) which can be conveniently discarded. Accordingly, in ChrystaTs 
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notation* for partition countings 

(2) P(=s hq/2[^h|^q/2) = [ u J" ,?" j - 1 , p ( S h q / 2 | ^ h ^ q / 2 ) = ( h
q

+
/ 2

q / 2 ) 

where the subtracted one accounts for the discarded null partition. A slightly different ve r -
sion of (2) states 

(3) P(=£ ab - b 2 k a - b l ^ b ) = ( M - 1 . •(0 
To each integer of the partitions counted by (2) or (3) including the null partition add 

one. The result is the h-part partitions of h( l + q/2) with no member exceeding (1 + q/2). 
Accordingly, 

(4) 

and 

P(h + h q / 2 ^ h | ^ l + q/2) = ( h ^ / 2 \ 

(5) P(a + ab - b - b 2 U a - b k b + 
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they occur naturally. Inequalities — affixed to some or all of the quantities specifies not 
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COUNTING OMITTED VALUES 
GRAHAM LORD 
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INTRODUCTION 

H. L. Alder in [l] has extended J. L. Brown, J r . Ts result on complete sequences [2] 
by showing that if {Pj} . 1 9 is a non-decreasing sequence and { k i } . _ is a s e -
quence of positive integers , then with PA = 1 every natural number can be represented as 

Ear. P. , 
• l i 

i=l 

where 0 £ a. < k. if and only if 

P . . . . < 1 + 
i=l 

k+1 y\. p. 

for n = 1, 2, ' " . He also proves for a given sequence {k^} ._ 1 9 there is only one 
non-decreasing sequence of positive integers \ P j / - _ - | 9 for which the representation is 
unique for every natural numbers namely the set { p . } = {^i} •_-, 9 . . . where $ t = 1, 02

 = 

1 + lq, 03 = ( l + k j M l + ka), • • • , 0. = (l + k ^ d + kg) ••• ( l + k . ^ ) , • • • . 
This paper investigates those natural numbers not represented by the form 

i=l 

for 0 < a. ^ k. where {k.} is as above and { P 1 } . _ 1 is a necessar i ly increasing 
1 1 1 A 1—X, A 5 " 

sequence of positive integers satisfying 

n 
(1) Pn+1^ 1 + Z k i P I n = 1, 2, 

i=l 
443 
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When specialized to k. = 1 for all i the resul ts obtained include those in HoggattTs and 
Peterson1 s paper [3 ] . 

2. UNIQUENESS OF REPRESENTATION 

Theorem 1. For P. satisfying (1), the representation of the natural number N as 

2> i p i • 
i=l 

where 0 < a. < k. is unique. 
Proof. Let N be the smallest integer with possibly two representations 

N B E a B P B = l > t P t ' 
S=l t=l 

where a f 0 f jS n m 
If m / n assume m > 11. Then by (1) 

S a P < Y^k P < P ^ - 1 < P - 1 < V V p . - 1 < V V P , . s s / J s s n+1 m / ^ t t jL-d t t 
s=l s=l t=l t=l 

Thus, m = n. Either a > |3 or a < B . Suppose without loss of generality a ^. B . 
n n n n ^ & J n *n 

The natural number 

n -1 n-1 

E P f p * = y^a p + & - p ) p 
t t x ^ s s n r n ' n 

t=l s=l 

and since it is less than N it has only one representation. Hence a = j3 for s = 1, 2, 
• • • , n, i . e . , N has a unique representation. 

3. OMITTED VALUES 

Definition. For x > 0 let M(x) be the number of natural numbers less than or equal 
to x which are not represented by 
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2 > i p i 
i=l 

Theorem 2. If 

n 
N 

i=l 
/ JI i i n ' * 

is the largest representable integer not exceeding the positive number x then 

n 

M(x) = [x] - ^ V i ' 
i=l 

where [ ] is the greatest integer function. 
Proof. By Theorem 1, it is sufficient to show the number, R(x), of representable 

integers not exceeding x, equals 

XX^i 
i=l 

But R(x) = R(N) from the definition of N. Now all integers of the form 

X>ip i 
i=l 

with the only restrict ion that 0 < j3 < a a re less than N since: 
J n n 

n n -1 

E /3.P. < y ^ k . P. + |3 P 

i=l i=l 
< ( l + j8 } p - 1 1 nJ n 

n-1 
< a. P + > OL.V. = N 

n n JL-JI i i 
i=l 
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Again by the uniqueness of representation to form 

E^pi- 0 < B < a *n n 
i=l 

there are a choices for j3 , ( l + k A choices for j3 ^, ( l + k n\ choices for j3 _, n .n l n - l J .n-1 L n-2J *n-2 
• • • , and {l + k j choices for jŜ  ; in all there a re # </> numbers. 

It remains to count numbers of the form 

n-1 
i P + \ " * p. P . n n / ^ * i i 

i=l 

which do not exceed 

n-1 
N 

n n 
i=l 

= a P + > a. P. n n x ^ i i 

That is the number of integers 

n-1 n-1 

i=l i=l 

Hence 

R ( S a i P i ) = Vn + R(Zla iP i 

and because R I ^ P J } = at = af1^)1 then 

< n \ n n 

\ i = l / i=l 

[The representable positive integers less than or equal to a1P1 are P l 9 2P l s *•*, ^ P ^ ] 
This completes the proof. 

As P. is representable, the theorem give M(P.) = P. - $.. and the following result is 

immediate. 
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Corollary. 

( ' n \ n n 

E a i p i ) = S " i M ( p i ) = Z M ( "i p i ) • 
ki=l / i=l i=l 

Note that if k. = 1 for all i = 1, 2, ' "8 , Theorems 3 and 4 in [3] are special cases 
of the above theorem and corollary. 

4. SOME APPLICATIONS 

The two sequences P = F 0 and P = F 0 .,, n = 1, 2, ••• mentioned in f3l sat-n 2n n 2n- l L J 

isfy Theorems 1 and 2 for k. = 1 i = 1, 2, • • •. However, 

1 + 2(Fo + F y j + * - - + F ) = F + F - 1 > F 
v 2 4 2n ' r2n+2 r 2 n - l x ~ r2n+2 

with equality only when n = 1, and 

1 + 2(FH + • • • + F ) = F + F + 1 > F 
v x 2 n - l ; 2n+l 2n-2 2n+l 

Consequently, by Alder 's result , 
Theorem 3. Every natural number can be expressed as 

2 > i F2i 
i=l 

and as 

Z ^ i F 2 i - l • 
i=l 

where a. and j3. are 0 , 1 , or 2. 
To return to the general case, let {k .} be a fixed sequence of positive integers; then 

any sequence { P ^ satisfying (1) also satisfies P ^ 0 for all n. This MlOWS from 
PA > 1 = 0i and induction: 

n-1 n-1 
P > 1 + ;• k. P. > 1 + T ^ k. (h. = (h 

i=l i=l 
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Hence by the corollary 

n 

M l ' 
\ i= l / i=l 
X"i p i ) = Z"i^i-^ } * 

with equality iff P, =</).. Fur thermore , since k. ^ -1 then {</>.} is an increasing sequence 
and so for every natural number N there exist a, such that 

N < ^ a i ^ i 
i=l 

Therefore 

M(N) < Miy^a. 0. 1 = 0 , 
, i=l 

i. e. , N has a representation in the form 

2>*i 
i=l 

Theorem 4. If {k.} is any sequence of positive integers , then every natural number 
These facts, together with Theorem 1, give 

Theorem 4. If {k.} is 
has a unique representation as 

oo 

i=l 

where 0 < a. < k. and fa = 1, fa = (1 + k t ) , • • • , </>. = (1 + kj) • • • (1 + k.__1) . 
Corollary. If r is a fixed integer la rger than 1 then every natural number has a 

unique representation in base r. 
Proof. In Theorem 4, take 1 + k. = r for all i. 

i 
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