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ARRAYS OF BINOMIAL COEFFICIENTS WHOSE PRODUCTS ARE SQUARES

CALVIN T. LONG
Washington State University, Pullman, Washington and University of British
Columbia, Vancouver, B. C.

1. INTRODUCTION

In [1], Hoggatt and Hansell show that the product of the six binomial coefficients sur-
rounding any particular entry inPascal's triangle is an integral square. In the preceding ar-
ticle in this Journal [2], Moore generalizes this result by showing that the product of the bi-
nomial coefficients forming a regular hexagon with sides on the horizontal rows and main
diagonals of Pascal's triangle and having j + 1 entries per side is an integral square if j is
odd. In the present paper, we derive afundamental lemma whichleads to a generalization of
Moore's result and enables usto show that a variety of other interesting configurations of bi-
nomial coefficients also yield products which are integral squares.

It will suit our purpose to represent Pascal's triangle (or, more precisely, a portion
of it) by a lattice of dots as in Fig. 1. We will have occasion to refer to various polygonal
figures and when we do, unless expressly stated to the contrary, we shall always mean a
simple closed polygonal curve whose vertices are lattice points. Occasionally, it will be
convenient to represent a small portion of Pascal's triangle byletters arranged in the proper

position.

* * *
*

* *

% %
*

% % *
*

Figure 1

2. THE FUNDAMENTAL LEMMA AND ITS CONSEQUENCES

Lemma 1. The product of the binomial coefficients at the vertices of apair of parallel-
ograms oriented as in Fig. 2 or Fig. 3 is an integral square. We note that the parallelograms
in any pair may overlap and, if they do, the common vertices, if any, must be included twice
in the product or, equivalently, must be excluded entirely.

449



450 ARRAYS OF BINOMIAL COEFFICIENTS WHOSE PRODUCTS ARE SQUARES  [Dec.

Figure 3

Proof. In the first case, for suitable integers m, n, r, s, and t, the binomial co-

efficients in question would be

m -+ r m m+ s+ m + s
n+r+tj’ n+r-+tf’ n+s+r+tj’ n+s-+r+t

Thus the desired product is

m! (m + )! ] (m + s)!
nm -0 @+ oim - nim - n + 8t

(m + s + 1)! . (m + 1)! m!
mM+)im-n+s)! Wt+tr+Hm-n-t @Fr+om-n-r-!

(m + s + 1)! (m + s)!
M+s+r+tim-n-¢t! mMFs+r+iim-n-1-1)

This is clearly the square of a rational number. Since it is also an integer, it is an integral

square as claimed. The argument for the second case is the same and we omit the details.
Ag a first consequence of Lemma 1, we now obtain the theorem of Hoggatt and Hansell.
Theorem 2. The product of the six binomial coefficients surrounding ( I::) in Pascal's

triangle is an integral square.
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Proof. Let d = (1;1) and a, b, c, e, f, and g be the six adjacent binomial coef-

ficients as arranged in the array

Since a, b, ¢, d and e, d, g, f form parallelograms as in Lemma 1, it is immediate that
both abcd’efg and abcefg are integral squares as claimed.

By precisely the same argument, we obtain the following generalization of Theorem 2
which is different from the generalization of Moore mentioned above.

Theorem 3. Let m >1 and n >1 be integers and let H be a convex hexagon whose
sides lie on the horizontal rows and main diagonals of Pascal's triangle. Let the numbers of
elements on the respective sides of H be m, n, m, n, m, and n in that order, with m
being the number of elements along the bottom side. Then the product of the binomial coef-
ficients at the vertices of H is an integral square.

M. Of course if m = n = 2, this reduces to Theorem2. In any case, we consider
two m by n parallelograms with a common vertex and let a, b, ¢, d, e, £, and g denote
the binomial coefficients at the vertices of the rectangles as indicated in Fig. 4. Clearly,
a, b, c, g, £, and e lie at the vertices of a hexagon H of the type described and any such
H can be obtained in this way. Therefore, it is again immediate from Lemma 1that abcd’efg

and abcefg are integral squares.

Figure 4

Now let us call the hexagon of Hoggatt and Hansell a fundamental hexagon. Let P be
any simple closed polygonal figure. We say that P is tiled with fundamental hexagons if P

is "covered'" by a set T of fundamental hexagons in such a way that

(i) the vertices of each F in | are coefficients in P or in the interior of P,
(ii) each boundary coefficient of P is a vertex of precisely one F in [, and
(iii) each interior coefficient of P is interior to some F in ¥ or is a vertex shared

by precisely two elements of T .
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For example, in Fig. 5, G can be tiled by fundamental hexagons and H cannot. Now
using the result of Theorem 2 and repeating the essentials of its proof we obtain the following

quite general result which leads directly to a generalization of the result of Moore.

* *
* *
* *

Figure 5

Theorem 4. The product of the binomial coefficients in (the boundary of) any polygonal
figure that can be tiled with fundamental hexagons is an integral square.

To see that this generalizes the result of Moore, we prove the following theorem.

Theorem 5. The product of the binomial coefficients in (the boundary of) any convex
hexagon with sides oriented along the horizontal rows and main diagonals of Pascal's triangle
is an integral square provided the number of coefficients on each side is even.

Proof. In view of Theorem 4, it suffices to show that any hexagon of the type described
can be tiled with fundamental hexagons. Let H be any such hexagon with n coefficients on
its boundary. Plainly, the least possible value of n is 6 which occurs only in the case of
a fundamental hexagon. Thus, the result is trivially true in the first possible case. Suppose
that it is true for all possible n with n < k where k is any possible value of n with k>
6. Since k > 6, it follows that at least one side S; of Hk
ficients. Without loss of generality, we may presume that S; is the lower left-hand side of
Hy

rection around Hk‘ By the induction assumption, it suffices to divide Hk into two hexagons

must contain at least four coef-
as indicated in Fig. 6. We may also number the other sides in a counterclockwise di-

Hi and Hj of the type described and with i < k and j < k. We proceed as follows. Let
¢ denote the third coefficient up from the lower end of S; and let S be the chordof H ex-
tending from c and parallel to S, as in Fig. 6. Let g be the right-hand end point of 8.
We distinguish two cases.

Figure 6

Case 1. If g ison S; asin Fig. 7, then the figure a, b, d, h, f, e isan Hi of the

desired form since the segment dh contains the same number of coefficients as S, and the
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Figure 7

other four sides contain two coefficients each. Also, if we let S; denote the upper part of
S; starting at c, let Sj denote the line segment cg, and let S denote the upper part of
Sy starting at g, then S| contains two fewer coefficients than S;, Sj contains two more
coefficients than S;, and Sj contains two fewer coefficients than S;. Thus, the hexagon
formed by Si, S3s S3, Sg S5, and S is an Hj of the desired type. Finally, since S, lies
on the interior of Hk (except for its endpoints), it is clearthat i < k and j < k as desired.

Case 2. In this case, g lies on S; and the appropriate diagram is in Fig. 8. Since
the remainder of the argument is essentially the same as for Case 2, we omit the details.

This completes the proof.

Figure 8

We observe that the convexity conditions of Theorems 3 and 5 are necessary since
neither the product of the corner coefficients nor of the boundary coefficients of the hexagon
in Fig. 9 is an integral square. Also, it is easy to find examples of convex hexagons where
the resuits of Theorems 3 and 5 do not hold if the condition on the number of elements per
side is not met. In fact, we conjecture that the conditions of both theorems are necessary

as well as sufficient.

Figure 9
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3. SOME ADDITIONAL OBSERVATIONS

In Section 2, we were primarily concerned with hexagons, but it is clear from the fun-
damental lemma that anything that can be "covered' with pairs of properly oriented parallel-
ograms has the property that the product of those coefficients at the vertices of an odd num-
ber of the parallelograms in any such covering is an integral square. Also, if P; and P,
are integral squares which are products of integers and P; is the product of those integers
common to P; and P,, then PP,/ P% is also an integral square. With these ideas in
mind, it is possible to construct an infinite variety of configurations of binomial coefficients
whose products are integral squares. The first two examples of such configurations are con-
tained in the following theorems.

Theorem 6. Let K be any convex octagon with sides oriented along the horizontal and
vertical rows and main diagonals of Pascal's triangle. Let the number of vertices onthe var—
ious sides be 2r, 2s, t, 2u, 2v, 2u, t, and 2s as indicated in Fig. 10 where r, s, t, u,
and v are positive integers. Then the product of the boundary coefficients is an integral

square.

Figure 10

Proof. The proof of this theorem is essentially the same as for Theorem 5 and will be
omitted.

In Theorem 6, the convexity condition is not necessary, but it is not presently clear
how the theorem should read if this condition is removed. While the octagons of Theorem 6
can be tiled with fundamental hexagons, the octagon of Fig, 11 cannot. It can, however, be
tiled with pairs of properly oriented parallelograms (or a combination of parallelograms and
fundamental hexagons, if you prefer) and it follows from the fundamental lemma that the prod-
uct of the boundary coefficients is an integral square.

Also note that the products of the corner coefficients in Fig. 10 of Theorem 6 and in
Fig. 11 need not be squares. However, as the following thecrem shows, at least cne class of

octagons exists for which the product of the corner coefficients is always an integral square.
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Figure 11

Theorem 7, Let K be a convex octagon formed as in Fig. 12 by adjoining parallelo-
grams with r and s and r and t elements on a side to a parallelogram with r elements

on each side. Then theproduct of the corner coefficients of the octagon isan integral square.

Figure 12

Proof. Let a, b, c, d, e, f, g, and h denote the corner coefficients of the octagon
as indicated in Fig. 12. Since a, d, e, and h and b, ¢, £, and g are the vertices of
rectangles oriented as in the fundamental lemma, it is clear that their product is an integral
square as claimed.

Again it is clear that the convexity condition of Theorem 7 is not necessary. The most
general statement which we can make at the present time is that the product of the corner co-
efficients of any octagon formed by joining (as in Fig. 13) the vertices of pairs of parallelo-
grams oriented as in the fundamental lemma is an integral square. It is not clear that even

this condition is necessary. See Usiskin [3].
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Figure 13

We now give, without proof, several examples of configurations of binomial coefficients
whose produces are integral squares. Each example given is a (sometimes not simple,
closed, or connected) polygon and it is intended that one consider the product of the boundary
coefficients only. Note that it is quite possible to find solid and other non-polygonal arrays
whose products are integral squares

* * * e -2 - i
* * *
* * * * * * * * *
* * *
* * % * * * * * * * )
k
* % * * * * * * * .
* * * * * * * * * * |
x*
X
* * * * * * * * * * *
* e S s PR3 * E 3 £ 3 *
\ \ * %
% H———— e 4 - g * * *
vl
A%
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GENERALIZED FIBONACCI POLYNOMIALS

V. E. HOGGATT, JR., and MARJORIE BICKNELL
San Jose State University, San Jose, California

The Fibonacci polynomials and their relationship to diagonals of Pascal's triangle are
generalized in this paper. The generalized Q-matrix investigated by Ivie [1] occurs as a

special case.

1. THE FIBONACCI POLYNOMIALS

The Fibonacci polynomials, defined by

(1.1) Fox) = 0, Fix) = 1, Fo(x) = x, Fn+2(x) = an+1(x) + Fn(x),

are well known to readers of this journal. That the Fibonacci polynomials are generated by

a matrix Q,

F.®  F®
w2 Q(l 3), o - n ),
Fn(x) Fn_l(x)

can be verified quite easily by mathematical induction. Also, it is apparent that, when x =1,
Fn(l) = Fn, the nth Fibonacci number, and when x = 2, Fn(z) = Pn’ the nth Pell number.

Further, when Pascal's triangle is written in left-justified form, the sums of the ele-
ments along the rising diagonals give rise to the Fibonacci numbers, and, in fact, those ele-

ments are the coefficients of the Fibonacci polynomials. That is,

[(n-1)/2]

(1.3) F (1) = Z (n - - 1)Xn—2j-1 ,

=0 !
where [x] is the greatest integer contained in x, and

( n)
. . j
is a binomial coefficient

The first few Fibonacci polynomials are displayed below as well as the array of their
coefficients.

457
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Fibonacci Polynomials Coefficient Array
Filx) = 1 1
Folx) = x 1
Fs(x) = x2 + 1 1 1
Fyx) = x3 + 2x 1 2
Fyx) = xt +3x2 + 1 1 3 1
Fex) = x® Ndx3 + 3x 1 4 3
Fy(x) = x8 + 5x4™ 6x% + 1 1 5 é 1
1T
Fgx) = xT + 6x° + 10x® + 4x 1 6 10 4

If one observes that, by rule of formation of the Fibonacci polynomials, if one writes
the polynomials in descending order, to form the coefficient of the kth term of Fn(x), one
adds the coefficients of the kth term of Fn_l(x) and the (k- 1)St term of Fn_z(x), the
array of coefficients formed has the same rule of formation as Pascal's triangle when it is
written in left-justified form, except that each column is moved one line lower, so that the
coefficients formed are those elements that appear along the diagonals formed by beginning
in the left-most column and preceding up one and right one throughout the left-justified Pascal
triangle. Throughout this paper, this diagonal will be called the rising diagonal of such an

array.
2. THE TRIBONACCI POLYNOMIALS

Define the Tribonacci polynomials by
T_;x) = Tyx) = 0, Tyx =1, Tyx) = %%,

(2.1) T, +3(x) = szn +2(x) +xT +1(x) + Tn(x).

When x = 1, Tn(l) = Tn’ the nth Tribonacci number 1, 1, 2, 4, 7, 13, 24, 44, 81, -+,

Tn+3 = Tn+2 + Tn+1 + Tn' The first few Tribonacci polynomials follow.
Tribonacci Polynomials
T,x) =1
Ty(x) = x?

T3 (x)
T4 (x)
T 5(X)

Te(X)

Tqx) = x2 + 5x8 + 10x8 + 7% + 1

Tgx) = xM + 6x11 + 15x% + 16x5 + 6x?
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Tribonacci Coefficient Array

1

1

1 1

1 2 1

1 3 3

1 4 6 2

1 5 10 7 1
1 6 15 16 6

Left-Justified Trinomial Coefficient Array

1 +x+x2)" n=0,1,2 ‘"
1
101 1
1 2 3 2 1
1 3 [ 6 7 6] 3 1
1 4 10 16 19 16 10 4 1
1 5 15 30 45 51 45 30 15 5 1

The Tribonacci coefficient array has the same rule of formation as the trinomial coefficient
array, except that each column is placed one line lower. Thus, the sums of the rows are the
same as the sums of the rising diagonals of the trinomial coefficient array, both sums yield-
ing the Tribonacci numbers 1, 1, 2, 4, 7, 13, 24, ---, and the coefficients of the Tribonacci

polynomials are the trinomial coefficients found on those same rising diagonals. That is,

_ n-j-1 2n-3j-2
22 CEDY ) ,

i~

where
(n )
i
3

is the trinomial coefficient in the mtJh row and jth column where, as is usual, the left-most

column is the zeroth column and the top row the zeroth row, and

(‘]1) =0 if j >n.
3

The Tribonacci polynomials are generated by the matrix Qs,
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x2 1 0
Qg = X 0 1
1 0 0
so that
Tn+l(x) Tn(X) Tn_l(X)
(2.3) le = xTn(x) + Tn—l(x) xTn_l(x) + Tn_z(x) xTn_z(x) + Tn_3(x) .
Tn(x) Tn—l(x) Tn_Z(X)

A proof could be made by mathematical induction. That Q;,l has the given form for n=1 is
apparent by inspection of Q3, element-by-element. Expansion of the matrix product Q§1+1 =
Qs Q:I,l gives the elements of Q?ﬂ in the required form, making use of the recursion (2.1).
Notice that det Q? = 1% = 1, analogous to the Fibonacci case. In fact, we can write
an interesting determinant identity. Again using (2.1), we multiply row one of Q;l by x* and

add to row 2. Then we exchange rows 1 and 2 to write

T (& T  (x Tn(x)

n+2 n+l
(2.4) (-1 = Tn+1(x) Tn(x) Tn_l(x) s
Tn(X) Tn_l(X) Tn_z(X)

which becomes an identity for Tribonacci numbers when x = 1.

3. THE QUADRANACCI POLYNOMIALS

The Quadranacci polynomials are defined by sz(x) = Tfl(x) = Ta‘(x) =0, TI(X) =1,

(3.1) T* (x) = x3 T;+3(x) + x2 T;+2(X) + XT;+1(X) + Tr"l‘(x) .

*
n+4

The first few values are

Tix) =1
Ty(x)
Tg(x)
Ty(x)

T5(X)

T(;(X)

S
Tqx) = x18 + 5x1 + 10x10 + 10x% + 3x2
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Notice that the coefficient of the jth term of T;(x) is the sum of the coefficients of
the jth term of Ty 1(x), (- 15 term of T;_z(x), G - 2)nd term of T* 3(x), and
G- 3)rd term of T:_ 4:(x) when the polynomials are arranged in descending orl'ld—er. Then,
the array of coefficients, if each row were moved up one line, would have the same rule of
formation as the left-justified array of quadranomial coefficients, arising from expansions of

A+x+x2+3)", n=0,1, 2, --. Thus, the coefficients of T*(x) are those found on the
th

nth rising diagonal of the quadranomial triangle. Also, >"(1) Th *, the n" Quadranacci
number 1, 1, 2, 4, 8, 15, 29, 56, 108, s Ty = T g *Tr o+ T+ T
The Quadranacci polynomials are generated by the matrix Qg,
¥ 1 0 0
x* 0 1 0
Q = o 0 1 :
0 0 0
. .th . _ _ .9
so that Qf = (a..) has its j= column given by alj = n+2 J(x), aZj XTn+1 J(x)+
= * * = T* i =
xT* (x) +T (x), 3] = xTX.,_ J(x) +T (x), and a4J Tn+1 ](x), j 1, 2, 3,4.
That Q4 has the form claimed above can be establlshed by mathematical induction. That Qg
+
has the stated form follows by mspectlon. Let Qil = (bij and Q4 = (qij)' Then we ex--

pand Q‘?H = Qq Qf. The first row of Q4 1 has the required form, for

1j ~ Y1125 T AiaPpy T Gy3gy * G142y

[ % 3T1’:+2 ()] +[x2TI";+1_J.(x) FxTE G0+ TE | (] +0+0

*
T(n+1)+2—j ’

where we make use of (3.1). Computation of sz, ij, and b4j is similar, and shows that

Q?ﬂ has the required form, which would complete the proof.

We derive a determinant identity for Quadranacci polynomials from Qﬁl by forming the

matrix an as follows. Add x*® times row 1 to row 2, making aZ] = Tr):+3 J(x). Add x?
times row 1 and x® times row 2 to row 3, producing aéj =T +4_](X) Exchange rows 1and

3. Then matrix an has

* = * = X = Tk
alj n+4 J(x), azj n+3 J(X), .'113J T o J(X) )

and

¥ = s = K _ n+1
a}; T*,, . J(x), j=1,2,3,4, and det Q] (-1)

because there was one row exchange. That is, for example, when x = 1,
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* * * *
Tn+3 Tn+2 Tn+1 rI‘n
T* T * T * T*
5.2 ( 1)n+1 _ n+2 n+1 n n-1
. - = * * * * ’
Tn+1 T n Tn— 1 Tn—2
* * * *
Tn Tn—1 Tn—Z Tn—3

where T; is the nth Quadranacci number.

4. THE R-BONACCI POLYNOMIALS

Define the r-bonacci polynomials by

_ _ _ _ _ _ _ . r-1
R_(r_z)(x) = R—(r-l)(x) = ... = R_l(x) = RO(x) = 0, Rl(x) =1, Rz(x) = X ,

_ Jr-1 r-2
(4.1) R, (x) = x Rn+r—1(x) + X Rn+r—2(x) + 00 + Rn(x)
The r-bonacci polynomials, by their recursive definition will have the coefficients of Rn(x),
written in descending order, given by the coefficients on the nth rising diagonal of the left-

justified r-nomial coefficient array, the coefficients arising from expansions of

n
(1+x+x2+...+xr'1), n=20,1,2, -
That is,
4.2) Rn(x) - N (n - § - 1) X(1"—1)(n-1)-r3 ,
j=0 \ r
where

n
e
is the element in the nth row and jth column of the left-justified r-nomial triangle, and

n =0 when j >n .
e

The r-bonacci polynomials are generated by the r X r matrix Qr’

%

o
<)
—
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which is an identity matrix of order (r - 1) bordered on the left by a column of descending

0 +1(x) as the
element in the upper left and Rn(x) in the lower left, with general element aij given by

powers of x and followed by a bottom row of zeros. The matrix Q;l has R

r-1+1
_ r+l1-k-i
(4.3) aij E X Rn+1-j-k(x)
k=1
Proof of (4.3) is by mathematical induction. Let Qr = (bij)' Then bil = xr_i, i=1, 2,
©, T bij =1, j=i+1, i=1,2, -, r; and bij = 0 whenever j # 1 and j # i+ 1.
Let
n+l _ n _
Qr = QrQr = (cij)
Then
r T
35 2 :bikakj = bt § :bikakj
k=1 k=2
o r-i
X Rn+1_j(x) + ai+1,j + 0
r-i
_or-i r-k-i
= X Rn+1—j(x) + E X Rn+1-j-k(x)
k=1
r-i+l
_ r+l1-k-i
- ‘_J; X R(n+1)+1—j—k(x) s
k=1

which is the required form for the general element of Q?ﬂ, completing the proof.

If we operate upon erl as before, we can again make a determinant identity. Repeat-

edly add 1 times the (- 1)St TOW, %2 times the - 2)nd TOW, *++, T imes
the first row to the ith row, to produce a new ith row with Rn+i-1 in its first column, for
i=2,3, -+, r-1 Then make (r - 1)/2 row exchanges toput the elements in the columns

in descending order. The matrix R formed has its general element given by

T = Brareoig®

)(r—l)n+[(r—l)/2]_

and its determinant has value (-1 That is, when x = 1, the r-bonacci

numbers

«++,0,1,1,2, -+, R = R

+ R
n+r n+r-1

+ ... + R
n+r-2 n’

have the determinant identity
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Rn+x'—1 RD+I‘—2 e Rn+1 Rn
R R v R R
n+r-2 n+r-3 n n-1
detR = = (.1)(11"]‘)(2”'"]‘)/2
Rn+1 Rn o Rn—r+3 Rn-—r+2
R, R e Rprt2  Bprn

Notice that Eq. (1.2) gives
n _ 2 _ n _
detQ, = F ®F & - F/() = (-1)7 = detR
for r = 2. Since we recognize
2 =
|F L WF 0 - P = 1

as the characteristic value [2], [3], [4] of sequences arising from the Fibonaccipolynomi-
als, we define ldet Rl = 1 as the characteristic value of the sequences arising from the gen-
eralized Fibonacci polynomials, r > 2. Then, for example, (2.4) gives the characteristic
value \(—1)1 = 1 for the sequences arising from the Tribonacci polynomials, while (3.2) is

the array giving the characteristic value l(-—l)m'l‘ = 1 for the Quadranacci numbers.
The matrix R just defined has the interesting property that multiplication by QI; pro-

duces a matrix of the same form. To clarify, let R = Rr n = (rij) be the r x r matrix

with Rn(x) appearing in the lower left corner, 1‘ij = Rn+r+1—i-j (x). Then
no_
(4.4) Rr,OQr = Rr,n

which is proved by mathematical induction as follows. Consider the matrix product Rr nQr
>

= (pij) for any n, where we observe that the first column of Qr contains the multipliers
for the recursion relation for the polynomials Rn(x). The ith row of Rr n multiplied by
3

the first column of Qr produces

r

_ r+l1-k _ _
Pj; = ERn+r+1—i—k(x) x = Rort1-i® = By o
k=1

while, when j # 1, since the only non-zero elements of Qr occur when i = j -1, the ith

row of Rr n times the jth column of Qr produces

pij = Rn+r+1—i—(j-—1) = R(n+1)+r+l_i_js ] = 2, 3, crr, Iy

so that Rr Q. =R

, for any n. Then, we must have that R
,h T r,n+l n

,OQr = Rr,l’ and, if

k-1
Rr,OQr - Rr,k-l ’

then

k k-1 _ _
Rr,OQr - (Rr,OQr )Qr - Rr,k—lQr Rr,k ’
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which completes a proof of (4.4) by mathematical induction.

If we equate the elements in the upper left corner of Rr and Rr OQ? we obtain the

3n 9’
identity
R, 0 =R @R G+ Rr_z(x)[xr'ZRn(x) + xr_3Rn_1(x)
+ ... + Rn-r+2(x)]
+ Rr_3(x)[xr'3nn(x) + x4 R ()
(4.5) 4o 4+ Rn—r+3(x)]

Foeee

+ Ri(x)[an(x) + Rn_l(x)] + Ry R (x)

Notice that the matrix Qr provides the multipliers for the recursion relation for the
polynomials Rn(x) but does not depend upon the original values. of the polynomials in the
proof of (4.4). Let Hn(x) be any sequence of polynomials with r arbitrary starting values
Hy(x), Hy(x), -++, Hp_{(x), and with the same recursion relation as the polynomials Rn(x) .

. E3 — k * .
Form the matrix RT (rij)’ rij Hn i +1—i-—j(x)' By the arguments used earlier, we

can derive R* QT = R*  and thus obtain
r,0 'r r,n
H = H R X +H [Xr—ZR ® +x" PR (»)
n+r-1 r-1 n+l” r-2 n n-1
doeee Rn-r+2(x)]
r-3 r-4
+ Hr_3(x) [x Rn(x) + x Rn_l(x)
(4.6)
£+ RG]

F o

+ Hy(x) [an(X) + Rn_l(x)] + Hyx)R (x)
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PERIODICITY OVER THE RING OF MATRICES

R. J. DECARLI
Rosary Hill College, Buffalo, New York

Let R be the ring of t Xt matrices with integral entries and identity I. Consider the

sequence {Mm} of elements of R, recursively defined by

(1) Mm+2 = Ale+1 + AOMm for m2 0,
where My, M;, Ay, and A; are arbitrary elements of R. In [1] we established identities
for such a sequence over an arbitrary ring with unity. In this paper we establish an analogue
of Robinson's [3] result concerning periodicity modulo k where k is an integer greater than
1 We need the following definitions.

Definition 1. Let A = [aij] be an element of R. We reduce A modulo k by reduc-
ing each entry modulo k. If B = [bij] € R, then A = B (mod k) if and only if 2 = b
(mod k) for all i, j.

Definition 2. We say that the sequence defined by (1) is periodic modulo k if there ex-

ij

ists an integer L 2 2 such that Mi = ML+i (mod k) for i =0, 1, 2, -*-. By the nature
of the sequence we see that this is equivalent to the existence of an L 2 2 suchthat M, = M
(mod k) and My = My (mod k).

We assume for all matrices in the following Theorem that reduction modulo k has al-

L

ready taken place and we employ the usual notation for relative primeness. For A € R we
let det A stand for the determinant of A.

Theorem 1. If (det A, k) = 1, then the {Mm} sequence defined by (1) is periodic
modulo k.

Proof. Let

(Z) W] = [go All] ’

where the entries are matrices from R. If we set

S = Mm

m
‘ Mm+1

for n 2 0, then a simple induction argument yields
(3) Sm = W1 So

If we can find an L such that W{" =1 (mod k), then S, = WILSO =I5y = § (mod k) and

we will have

466
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ML ~ M,
My Ly oM (mod k) ,

which gives us periodicity. To show thatsuch an L exists consider the sequence of matrices
(4) I ’ W1 H Wz s
We first show that each matrix in (4) has an inverse modulo k. Laplace's method for eval-

¥ = (Db det AT £ 0 (mod K),
)¥,k) = 1 and thus

uating determinants immediately gives det Wf = (det W,
since (det Ay, k) = 1. Also, (detAy, k) = 1 implies (((—1)t det A,

(5) (det Wy, k) = 1.

For r = 0, W(i’ = I which is its own inverse. For r > 0 we let Wi denote the entries of
Wir and Aij the cofactor of Wij in det W]f. We observe that Aij is always integral. Using

matrix methods we have

r 1 Ai'
(6) I
det W1

where T stands for the transpose. An entry in the right-hand side of (6) is of the form

—_
det Wf

?

where c is an integer. The equation (det Wf)x = ¢ (mod k) has a unique solution since
from (5) we have (det Wf, k) = 1. Thus each entry in the right side of (6) is an integer and
Wf has an inverse mod k for all r 2 0. Because we only have k distinct integers mod k
and (2t)% places to put them, we have at most k(Zt)Z different matrices in (4). Sincethe se-
quence is infinite we must have

(7) W}'ﬂ = Wf (mod k) for some L

-1
Multiplying both sides of (7) by (Wf) yields

(8) WiL =1 (mod k)

Since Wy #Z I we see that L > 2. Thus we have SL = WiL S = I8y = 8 (mod k) which
implies ML = M, and ML 41 = M; and establishes periodicity.
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The central role played by A; is more clearly illustrated if we consider a higher or-

der recurrence defined for a fixed d > 2 by:

M M +A M , mz 0,
0" m

mid - 2de1Mmedacr T AacaMmeae T

where the Ai and the M;, 0 <ix<d-1, are arbitrary elements from R. Even though
there are 2d arbitrary elements that determine this sequence, the question of periodicity
still depends on the nature of A;. If det (A, k) = 1, then we again have periodicity. This

is proved using

o I 0 0
0 0 1 0
V =
0 0 0 I
Ay AL A Ad-l
in place of W; and
- M -
m
m+1
S =
m
_Mm+d—1_

It is easy to show that Sm = v S, and that det V depends on det A;,. The rest of the proof
follows as in the proof of Theorem 1. A close look at the position of Ay in V clearly indi-

cates why it is so important in determining periodicity.
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SPECIAL DETERMINANTS FOUND WITHIN GENERALIZED PASCAL TRIANGLES

MARJORIE BICKNELL and V. E. HOGGATT, JR,,

San Jose State University, San Jose, California

That Pascal's triangle and two classes ofgeneralized Pascal triangles, the multinomial
coefficient arrays and the convolution arrays formed from sequences of sums of rising diag-
onals within the multinomial arrays, share sequences of k Xk unit determinants was shown
in [1] Here, sequences of kX k determinants whose values are binomial coefficients in the
kth column of Pascal's triangle or numbers raised to a power given by the (k- 1)St triangu-
lar numbers are explored.

1. INTRODUCTION

First, we imbed Pascal's triangle in rectangular form in the nXn matrix P = (pij )s

where
_[i+i-2
Py ( i-1 ) ’
11 -
1 2 4
1 3 10 15
.1 P=l1 4 10 20 35
1 5 15 35 70

nXxn

Pascal's triangle in left-justified form can be imbedded in the nX n matrix A = (ai]. )

where
a., =(1 - 1),
ij ji-1
1 0 0 0 0 7
1 1 0 0 0
1 2 1 0 0
(1.2) A=l 3 3 1 o0
1 4 6 4 1

“nXn

To avoid confusion, note that when Pascal's triangle is imbedded in matrices throughout this
paper, we will number the rows and columns in the usual matrix notation, with the leftmost

column the first column. If we refer to Pascal's triangle itself, however, then the leftmost

469
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column is the zeroth column, and the top row is the zeroth row. While we are dealing with
infinite matrices here, the multiplication of n xn matrices provides an easily understood
presentation. As in [1], compositions of generating functions actually lie at the heart of the
proofs.

Let us define an arithmetic progression of the rth order, denoted by (AP)r, as a

sequence of numbers whose rth row of differences is a row of constants, but whose (r - 1)St
row is not. A row of repeated constants is an (AP),. The constant in the rh row of differ-

ences of an (AP)r will be called the constant of the progression. That the ith row of Pas-

cal's triangle in rectangular form is an (AP); with constant 1 was proved in [1]. We will
have need of the following theorem from [1], [2].

Theorem 1.1 (Eves' Theorem). Consider a determinant of order n whose ith TOW

i=1,2, - -, n) is composed of any n successive terms of an (AP)i_1 with constant a,.

Then the value of the determinant is the product a;a; --- a .

2. BINOMIAL COEFFICIENT DETERMINANT VALUES FROM PASCAL'S TRIANGLE

Return again to matrix P of (1.1). Suppose that we remove the top row and left col-

umn, and then evaluate the kx k determinants containing the upper left corner. Then

2 3 4
1
l2| =2, |2 3 =3, |3 10| =4,
10 20

and the k x k determinant has value (k + 1).
Proof is by mathematical induction. Assume that the (k - 1) X (k - 1) determinant has

value k. In the k xk determinant, subtract the preceding column from each column suc-

cessively for j =k, k-1, k-2, --+, 2. Then subtract the preceding row from each row
succegsively for i = k, k-1, k-2, -+-, 2, leaving

2 1 1 1 101 1 L I U

i 2 3 4 1 2 4 e 0 2 4

1 3 6 10 =11 3 10 !+ 0 3 6 10

1 4 10 20 1 4 10 20 -+ |0 4 10 20

o |
=1+ k.

Returning to mairix P, take 2 x 2 determinants along the 2nd and 3rd rows:

= 10, ~-°-,

10 15§

giving the values found in the second column of Pascal's left-justified triangle, for
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() ()

i 1 i <j . 1)

i+l i+ 2 z
2 2

by simple algebra. Of course, 1 x1 determinants along the second row of P yield the suc-

cessive values found in the first column of Pascal's triangle. Taking 3 x 3 determinants

yields
1 2 2 3 4 3 4 5
3 =1, 10 = 4, 6 10 15| = 10,
4 4 10 20 10 20 35

the successive entries in the third column of Pascal's triangle. In fact, taking successive
k x k determinants along the 2nd, 3rd, ---, and (k + l)St rows yields the successive en-
tries of the kth column of Pascal's triangle.

To formalize our statement,

Theorem 2.1. The determinant of the k x k matrix R(k,j) taken with its first column
the jth

its first row the second row of P, is the binomial coefficient

(59

column of P, the rectangular form of Pascal's triangle imbedded in a matrix, and

To illustrate,

3 4 5 6 3 1 1
6 10 15 21 6 4 5 6
det R(4,3) = |1 90 35 56| |10 10 15 21
15 35 70 126 15 20 35 56
3
3 4
T4 10 15
5 10 20 35
1 1 2 11
_lo 4 NE 4 5
0 10 15| |4 10 15
0 10 20 35 |5 10 =20 35
2 4 5
3 40 3 10 15
= 6 10 15 1+l 40 20 35
102035 5 15 35 70

det R(3,3) + det R(4, 2)

() () ()
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First, the preceding column was subtracted from each column successively, j =k, k-1,
-, 2, and then the preceding row was subtracted from each row successively for i =k,
k-1, --+, 2. Then the determinant was made the sum of two determinants, one bordering
R(3,3) and the other equal to R(4,2) by adding the jth column to the (j + 1)St, j=1, 2,
o, k-1,
By following the above procedure, we can make

det R(k,j) = detR(k - 1, j) + det R(k, j - 1) .

k+1
( K )forall k,

1) for all j.

We have already proved that

det Rk,1) =1

Il
1]

(k 1’{0) ,  detR(k,2) =k + 1
j+ o0 8 -]
( 1 ), det R(2,j) —( 2

detn(k_l,j)=(j;f‘fiz) and detR(k,j—1)=(j+E'2),

o [j k-2 j+k-2Y _[j+k-1
detR(k,J)—(k_l)+( K )—( K )

for all k and all j by mathematical induction.

+

det R(1,j) =

|
—
i

If

then

Since P is its own transpose, Theorem 2.1 is also true if the words '"column'" and
"row' are everywhere exchanged.

Consider Pascal's triangle inthe configuration of AT, which is just Pascal's rectangu-
lar array P with the ith row moved (i - 1) spaces vight, i =1, 2, 3, ---. Form kxk
matrices R'(k,j) such that the first row of R'(k,j) is the second row of AT beginning with
the jth column of AT. Then AR'(k, j - 1) = R(k,j) as can be shown by considering their
column generating functions, and since detA = 1, det R'(k, j - 1) = det R(k,j), leadingus
to the following theorems.

Theorem 2.2. Let AT be the n X n matrix containing Pascal's triangle on and above
its main diagonal so that the rows of Pascal's triangle are placed vertically. Any k x k sub-
matrix of AT selected with its first row along the second row of AT and its first column

the jth column of AT, has determinant value

(e)

Since A is the transpose of AT, wording Theorem 2.2 in terms of the usual Pascal

triangle provides the following.
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Theorem 2.3. If Pascal's triangle is written in left-justified form, any kx k matrix
selected within the array with its first column the first column of Pascal's triangle and its

. .t
first row the i h row has determinant value given by the binomial coefficient

(1)

Returning to the rectangular Pascal matrix P, in Theorem 2.1, the first row of P
was omitted to form the k x k matrix considered. Now we omit any one row.

Theorem 2.4. Let Ri(k,j) be the k x k matrix formed from the rectangular Pascal
matrix P so that its first k rows are the first (k + 1) rows of P with the ith row omit-

ted, and its first column is the jth column of P. Then det Ri(k,j) is given by the binomial

j-1+k
k-1i+1/J)°

Proof. Notice that Ry(k,j) = R(k,j) of Theorem 2.1. If the first row is not the row

coefficient

omitted, by successively subtracting the pth column of Rs(k,j) from the (p + 1)St column,
p=k-1,k-2, ", 1, the new array is Rs_l(k -1, j+ 1) bordered by a first row with

first element one and all others zero, so that
det Rs(k,j) = det Rs-l(k -1,j+1

If the theorem holds when i = s -~ 1, then

; fG+1D-1+&-DY_f[i-1+kY) _ .
detRS_l(k— 1, j+1) _((k— - (s - 1) +1) —(k_ s +1) = detRs(k,J),

completing a proof by mathematical induction.

3. OTHER DETERMINANTS WITH SPECIAL VALUES

Suppose we form a matrix using the zeroth, second, fourth, - -, (Zr)th, <<+, rows of
Pascal's triangle written in rectangular form. Then the columns contain even subscripted
elements only. Since the ith column is still an ith order arithmetic progression, Eves'
Theorem should apply. The constant for the jth column will be Zj—l, rather than 1, and
the determinant of such a k x k matrix will be 20.21.22 ... 251 op 2Lk(k—1)/2]. To clar-

ify this, we present such a 5 x 5 matrix below, which has determinant 20.21.22.23.24 = 210,
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1 1 17

5 9 14

9 25 55
13 49 140
17 81 285

ju—t
-t

1

6 10 15
8 35 70| =
28 84 210

45 165 495

o e e
© 3 o W
=
o o o O =
NN NN

14
17
44
60

16 41
24 85
32 145

R
[ B e N = =
R N
24
o O O O =
o OO N
o e [ | -
Qo oo -3 © B

14
17
44
16

n
o o ©o o =
o o o N =
© o B oo =
© o 9 © =

In this section, we will prove the following:

Theorem 3.1. Form an n xn matrix in the upper left corner of Pascal's triangle in
rectangular form (or in left-justified form) using the rows which are multiples of r so that
the (i+ 1)St row in the matrix is the first n entries of the (ir)th row of the Pascal array,

i=0,1, 2, -, n-1. The determinant of the matrix is r[n(n-l)/z]‘

To prove this theorem, we require more information about rth order arithmetic
progressions.

Lemma 3.1. Let {cj}, j=0,1, 2, ---, be a sequence of consecutive elements of an

(AP)i with constants a Then the kth difference sequence has elements given by

k i
2&: pfk E : pf1i -
(-1) (p) cj_p, and (-1) < p) cj—p a, .
p=0 p=0

Proof. We list successive differences:

1st: c. - C.

® : i~ -1

2nd: c. - C, - (c -c, = ¢, - 2¢C +c
(J J—l) (J-l 3—2) i j-1 j=2

3rd: (cj - 2cj_1 + Cj-z) - (cj_1 - ch_z + cj_g)

if the (k - 1)St difference has the form of Lemma 3.1, then the kth difference is given by
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k-1 k-1
P k-1 _ pfk-1
Z;u)( : )cj_p 2;(1)( : )cj_p
p= p=
k-1 k-1
— pfk -1 pfk -1 k
"~ +Z(‘D ( P )Cj—p +Z -v ( P )Cj—p rEDTe
p=1 p=1

k

pf k
Z('D (p)cj-p ’
p=0

i, then the ith difference is the

1

which establishes the form given in the Lemma. When k
constant of the sequence.
Now form an n xn matrix P* with its (i + 1)St row the first n entries of the (ri)th

row of Pascal's triangle in rectangular form. Then the elements in its (k + 1)St column are

(r - i)k
K .
th

The k™ difference sequence for these elements is

k k

pf k _ pfk r-pk\_ Kk
E (-1) (p)cr—p = E (-1) (p)( K )— T
p=0 p=0

applying Lemma 3.1 and a formula given by Knuth [3]. The (k - 1)St difference is not a

given by

constant, however, so that the sequence is an (AP)k' By Eves' Theorem, the determinant,
then, will be rd.rtr? ... .r% 1 = rn(n—l)/z.

Ifan n Xn matrix A* is formed using only the (ri)th rows of Pascal's left-justified
triangle, and AT is the transpose of A defined in (1.2), then AT = P*, since the row

rd-1  andof AT,

() (=

T

generators of A* are (1 +x)

making the row generators of A*A

1 < r(i-1) 1 r(i-1)+1
(1_x)'(1+1-x) \T-x)

which we recognize as the row generators of P*, making det A* = det P* =

rn(n-l)/z.

(Here, we apply the method of proof using generating functions as in [1].)



476 SPECIAL DETERMINANTS FOUND WITHIN [Dec.

For example, when n = 4 and r = 2, A*AT becomes

1 0 0 0 1 1 1 1 1 1 17
i 2 0 0 1 2 3|_]|1 3 6 10
1 4 4 0 0 1 3 1 5 15 35
1 6 15 20 0 0 0 1] 1 7 28 84

In fact, we have the same results if the row numbers taken to form P* or A* form
an arithmetic progression.

Theorem 3.2. Form an n Xn matrix which has its (i + 1)St row the first n entries

. th . .
of the (ri + s) row of Pascal's triangle in rectangular form, s 20, i =0, 1, ---,n - 1.
The determinant of the matrix is rn(n—l)/ 2,
Proof. Subtract the (k- 1)St column from the kth column for Kk =n,n-1, -+, 2.

Repeating this process s times gives the matrix P*,

Reapplying Eves' Theorem, Theorem 3.1 can be extended to the following.

Theorem 3.3. Form an n Xn matrix such that its (i + l)st row consists of any n
successive entries whose subscripts differ by r from the ith row of Pascal's triangle
written in rectangular form, i =0,1, -+, n~-1. The determinant of the matrix is rn(n—l)/z'

The theorems of this section are special cases of the more general theorem which
follows.

Theorem 3.4. Form an nXn matrix which has its (i + 1)St row the subsequence
{Cir+s}’ ] arbitxr'la(fls_f,l)C}fzan (AP), {ci} with constant a,, i =0,1, -+, n- 1. Then: the

determinant is r 2p24ap ** Ay q.

The proof, which is omitted, hinges upon showing that {c.

1r+s} is an (AP)i with con-

stant I‘lai and applying Eves' Theorem.
The theorems of this section can also be stated for columns. Next, the results can be
extended to convolution arrays and to multinomial coefficient arrays by considering certain

matrix products.

4. MULTINOMIAL COEFFICIENT ARRAYS

n
Let the array of multinomial coefficients arising from expansions of (1 +x+... +xm) s

m 21, n2>0, be called the m-multinomial coefficient array. Let the left-justified m-

multinomial coefficient array be imbedded in an n Xn matrix Am. Let the nXn matrix
Fm contain the rows of Am as the columns of Fm written on and below the main diagonal.
Let AT be the transpose of the n Xn matrix A of (1.2). Then the matrix equation

was proved in [1]. Since any k x k submatrix of A%l having its first row along the second

row of A;l;l and its first column the jth column of AEI is the product of a submatrix of
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F with a unit determinant and a k x k submatrix of AT satisfying Theorem 2.2, its

m-1
k+j-2
i .

determinant will be given by
Since the transpose of A;l;l is Am , we restate these results in terms of the m-multinomial
coefficient array.

Theorem 4.1. The determinant of the k x k matrix formed with its first column the
first column of any multinomial coefficient array inleft-justified form (the column of succes-

sive whole numbers) and its first row the ith row of that multinomial coefficient array, has

()

Now let (A*)'_T be the transpose of the n x n matrix A* formed with its (i + 1)St Tow

value given by the binomial coefficient

the first n entries of the (ri)th row of Pascal's left-justified triangle, i = 0,1,+++,n - 1.
Then the matrix product Fm_l(A"‘)T = (AI";l)T, where A;“n is the n xn matrix formed us-
ing only the (ri)lCh rows of the m-multinomial coefficient array, i =0, 1, -+, n-1, as

can be proved by examining the column generating functions. For, the column generators of

Frnoq are Gj(X) =[x@Q+x+-.. +x™ 1)1 and of anT, Hj(x) =1 +x)r(3'1), i=1
2, +++, n, making the column generators of Fm_l(A"‘)T be Hj(Gj(X)) S(1+x+XE+ nn
+ Xm)r(J—l) , which we recognize as the column generators for the matrix (A;“n)T claimed

above. Again, considering the very special products of submatrices involved, we are led to
the following result.

Theorem 4.2. If any multinomial coefficient array is written inleft-justified form, the
determinant of the k x k matrix formed with its (i + 1)St row the first n entries of the
(I'i)th row of the multinomial array, i =0, 1, 2, +-+, k- 1, is given by rk(k'l)/z.

As an example, for n = 5 and r = 2, Fi(A*)T = (AQ“)T becomes

1 0 0 0 0 1 1 1 1 1 1 1 1 1

0 1 0 0 0 0 2 4 6 8 0 2 4 6 8

0 1 1 0 0 0 1 6 15 28| =10 3 10 21 36

0 0 2 1 0 0 0 4 20 56 0 2 16 50 112

0o 0 1 3 1)/ |0 o0 1 15 70j |0 1 19 90 266 |
where (A"z‘)T has alternate rows of the trinomial coefficient array appearing as its columns,

and the determinant equals 219,

Further examination of a matrix product, Fm- 1(AE)T, where the n x n matrix A:
is formed with its G+ 1)St row the first n entries of the (ri + s)tl[1 row of the m-multinomial
coefficient array, s 20, i =0, 1,2, -+, n- 1, shows that Theorem 3.2 canbe extended

to the multinomial coefficients.
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Theorem 4.3. Consider any left-justified multinomial coefficient array. Form a k x k
matrix with its (i + l)St row the first n entries of the (ri + s)th row of the multinomial

array, i =0, 1, -+, k-1, s 20. The determinant of that matrix is given by rk(kcl)/z.

5. THE FIBONACCI CONVOLUTION ARRAY AND RELATED ARRAYS

The Fibonacci sequence, when convolved with itself j - 1 times, forms the sequence

in the jth column of the matrix C below (see [1] and [4])

1 1 1 1
2 3 4 5 6
5 14 20 27

10 22 40 65 98 v s
20 51 105 190 315
38 111 256 511 924

Q
il
W U W N e

where the original sequence is in the leftmost column and the column generators are givenby
[1/(1-x- xz)]j , §=1,2, -+, n If Fy is the n xn matrix formed as in Section 3 with
the rows of Pascal's triangle in vertical position on and below the main diagonal, and P is
Pascal's rectangular array (1.1), then F;P = C as proved in [1]. Now, since here sub-
matrices of C taken along the second row of C are the product of submatrices of F; with
unit determinants and similarly placed submatrices of P whose determinants are given in
Theorem 2.1, these submatrices of C have determinant values given by the same binomial
coefficients found for P.

The generalization to convolution triangles for sequences which are found as sums of
rising diagonals of m-multinomial coefficient arrays written in left-justified form is not dif-
ficult, since the matrix product FmP yields just those arrays as shown in [1]. We thus
write the following theorem.

Theorem 5.1. Let the convolution triangle for the sequences of sums found along the
rising diagonals of theleft-justified m-multinomial coefficient arraybe written in rectangular
form and imbedded in an n Xxn matrix C*. Then the determinant of any k x k submatrix of
C* gselected with its first row along the second row of C* and its first column the jth col-

umn of C* has determinant value given by the binomial coefficient

()

Now, let P* be the n x n matrix with its @ + 1)St row the first n entries of the
(ri + s)th row of Pascal's rectangular array P, i =0, 1, -, n-1, s 2 0. Paralleling

the development given for Theorem 5.1 but considering the matrix product FmP* which is
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the n x n matrix containing the (ri + s)th rows of the convolution array for the rising diag-
onals of the given m-multinomial coefficient array, we find that Theorem 3.2 extends to the
following.

Theorem 5.2. If a .k x k matrix is formed with its (i + 1)St row the first n entries
of the (ri + s)t row of the rectangular convolution array for the rising diagonals of any
left-justified multinomial coefficient array, i =0, 1, ---, k-1, s 2 0, then its deter-
minant has value rk(k_l) / 2

Lastly, consider the sequence of sums of elements um(n; p, 1) foundon the rising di-
agonals formed by beginning at the leftmost column of a left-justified m-multinomial coef-
ficient array and going up p and to the right one throughout the array. (For the Pascal tri-
angle, these numbers are the generalized Fibonacci numbers u(n; p, 1) of Harris and Styles
[5].) Form the matrix Dm(p, 1) so that the sequence of elements having um(n; p, 1) as its
sum lies (in reverse order) on its rows. Dm(p,l) will have a one for each element on its
main diagonal and each column will contain the corresponding row of the m-multinomial ar-
ray but with (p - 1) zeros between entries, so that the generating functions for its columns
are [x(1 + <P + XZp e+ X(m—l)p)]j, j=1,2, -+, n. It was shownin [1] that Dm(p, )P
gives the convolution triangle in rectangular form for the sequence um(n; p, 1). By examin-
ing the column generators, we also have that Dm(p,l)P* gives the array containing the
(ir + s)th rows of the convolution triangle for the sequence um(n, p, 1). Putting all of this
together, we write the following theorem.

Theorem 5.3. Write the convolution triangle in rectangular form imbedded in an n X n
matrix C;n for the sequence of sums found on the rising diagonals formed by beginning at
the leftmost column and moving up p and right one throughout any left-justified multinomial
coefficient array. The k x k submatrix formed with its first row the second row of C;‘n and
its first column the jth column of C;x has determinant given by the binomial coefficient

( k+j - 1)
\ k
The n X n matrix formed with its (i + 1)St row the first n entries of the (ri+ s)th row of

. -1)/2
the convolution triangle, i =0, 1, -+, n-1, s 2 0, has determinant equal to rn(n v/ .
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NOTE ON A COMBINATORIAL ALGEBRAIC IDENTITY AND ITS APPLICATION
L. C. HSU*
Department of Mathematics, Jilin University, Changchun, People’s Republic of China
The identity

n
r{n\[fsr+t) _ 0 (m <n)
(1) Z (—1) (I‘)( m ) - {(—S)n (m - n) E)
r=0

is well-known (cf. Schwatt [4, p. 104] and Gould [3, Formula (3.150)] ) and hasbeen utilized

by Gould [1], [2] in proving some elegant combinatorial identities, e.g.,

n
a + b - k) bk + ¢ c _fa+c+bn
@) Z( n -k )( k )bk+c—( n ) :
k=0

and

n n
(3 >3 (-1)“*3({;)(‘;)(“3'; t) = nt
k=0 j=0

In what follows, we shall establish a combinatorial algebraic identity which involves a

wider generalization of (1). We offer the following
Theorem. Let F(X) be a polynomial of degree m < n in X having the leading term

POXm. Then for arbitrary quantities Py, ---, P, and Q we have
n
@ FQ + ) (-DF F(P, + - + P +Q)
Q 2 K, k, *Q
r=1 1<k<---<k <n
T
= m n 1 “ee
(n)(—l) n'! PP, P
where the inner summation extends over all the r-combinations (k;, ---, ki) of the integers
1, 2, -+, n, and I{? is 0 or 1 accordingas m <n or m = n.

As a consequence’ of (4) we have a pair of generalized Euler identities (with m < n) as

follows:

* Communication concerning this paper should be directed to H. W. Gould, Mathematics De-
partment, West Virginia University, Morgantown, West Virginia 26506.
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n
(5 (1?1)+ )t Z (Pk1+"'n':Pkr+Q)
r=1

1<k <+ - <k _<n
r

Dec. 1973

and

n

m r m

(6) Q™+ Y 1 > B+ + P, + Q)

r=1 15ky<---<k_<n

r
= (’;‘) (-1)nt PPy - - P
Clearly (1) is a special case of (5) with P; = ... = P =s. For P;=-.-- =Py=1,

th

Q = 0, and m = n we find that (6) implies the familiar Euler theorem about the n dif-

n .
ference of x at x = 0, viz.

n
Al - Z (_Dn-r(r;)rn = o
r=0

Gould [3, Formula (Z.8)] has remarked about the use of this to determine certain combina-
torial identities easily.
With other choices of the Pk

"strange'' but elementary identities such as

's and Q these identities (5) and (6) may give somewhat

n
) PRGNS (k% LT kzr) = @)
r=1

<k, <...<k <
l_k1 kr_n

and

n
n
®) 3 o™ 3 W ™) = @)™
r=1

1<k<-+-<k <n
r

Since every polynomial F(x) of degree m can be expressed as alinear combination of

() () (3):

it is easily observed that (4), (5) and (6) are implied by each other. In other words, (4), (5),
and (6) are logically equivalent.
For the proof of (4) it suffices to verify (6). Actually (6) can be verified by means of

the principle of inclusion and exclusion in combinatorial analysis. Let us expand
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@, 4+ +P, + Q™
11 1
r

in accordance with the multinomial theorem and consider a typical term of the form with ex-

ponents alzl,---,arZI, b 2 0:
a4 ar b — m! _
CPy e P @ (C A o agh Mt +ar+b‘m> ’
where (i, -+, ip) is an r-subsetof (1, 2, -+, n). First consider the case r <n. In

this case the difference set (j;, - - =(1, 2, -+,n) - (@, -+, iy) is non-empty, so

» Jpr)
that the typical term occurs in the inner sum

r
(-1) Z(Pk1+"' +P +Q

and also in all those inner sums of (6) following this one. Consequently, the total number of

occurrences of the term is given by
ryfn-r n-r n-rvr n-rfn-r _
arf(5r)- (i) (i) e G

This means that every term with r < n vanishes always by cancellation, and this is gener-

ally true for m < n. For the case m = n, the only exceptional term is
(-1)"n! PPy -+ P Q

which cannot be cancelled out anyway. Finally, the number of occurrences of the particular

(1) ()

Thus (6) is completely verified.

term Qm is seen to be

Similarly, a direct verification of (5) can be accomplished by using Vandermonde's
multiple convolution formula (instead of the multinomial theorem) for expansion of the

summands.

APPLICATION

For m = n and Q = 0 the identities (5) and (6) implythat every integer N = PPy - - -

n can alwaysbe representedas an alge-

&)

and that N = n!' PPy - - - Pn as an algebraic sum of the nth powers.

Prl with n relatively prime factors Py, Py, -+, P

braic sum of
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It is known that there are infinitely many solutions of the equation A3 + B3 + C3 =D3 in
positive integers (see Shanks [5, p. 157]). Here as a simple application of (6) we shall con-

struct certain sets of non-trivial positive integral solutions of the 2-sided 3-cube equation
9) Xaexd+x = +vd+
Making use of (6) with m = n = 3 and Q = 0 we have

(10) P + P} + P} + (P, + Py + Py)® = (P + Py)} + (P, + Py)?

+ (Pg + Py)® + 6P, PPy .

Let P:i = 6P,P,P3 so that P% = 6P,P;, and we may put P, = 2a’c, P; = 3b%c, or P, =
a’c, P3 = 6b% (a, b, ¢ being arbitrary positive integers) in order to make 6P,P; a per-
fect square. By substitution we find P; = 6abc, and then dropping the common factor ¢ we

get two identities as follows:

3 3 3
(2a%) + (3b?) + (2a% + 3b? + 6ab)

(11) 3
= (2a% + 3b%) + (2a’ + 6ab)® + (3b? + 6ab)® ,
and . . .
(@%) + (6b%) + (a® + 6b% + 6ab)® = (a% + 6b%) + (a? + 6ab)?
(12)

+ (6b% + 6ab)d

These two identities provide (9) with two sets of positive integral solutions involving two ar-
bitrary integer parameters a and b. Similarly we can make use of (6) with m = n = 4 and

Q = 0 to obtain infinitely many integral solutions of the equation

7

7
x-Tw
i=1

i=1

In classical number theory

(1;\ = NN - 1)/2
/

is usually called a "triangular number.' It is obvious that not every such number can be ex-
pressed as a sum of two triangular numbers. Simple examples N = 5, 6, 8 explain this
point. These integers are of the form N = 0, 1, 3 (mod 5). Now as an immediate applica-
tion of (5) we easily show the small

Theorem. Every triangular number 1;) with N = 2, 4 (mod 5) can always be ex-

pressed as a sum of two triangular numbers.
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These numbers may be listed as a sequence:

(-0.0:0) (46) 6-0)-() ())

In fact, we have explicit relations for N = 5P +2 and N = 5P - 1:

()-(r )05 ()09

These are easily obtained from (5) by taking m = n = 2 and letting Q = 2P; +1 or Q = 2P,

in order to delete the two equal terms

(-

These relations may be compared with the formulas
3k + 1), 4k +2Y) _ 5k +2 5k +5Y) ., (12k + 10 _ 13k + 11
2 2 2 ’ 2 2 2 ?
8k + 5 15k + 10 ) _ [ 17k + 11 _
( 2 ) + < 2 ) - ( 2 ) ’ k 09 1’ 29 B

of M. N. Khatri, cited by S.ierpfnski [6, pp. 84-86]. Sierpi}lski proves that there exist in-

finitely many pairs of natural numbers x,y satisfying the system of equations

() () ()¢5 ()

Each of these equations is equivalent to the Diophantine equation x% + x = 5y% + y.
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A SOLUTION TO THE CLASSICAL PROBLEM OF FINDING SYSTEMS
OF THREE MUTUALLY ORTHOGONAL NUMBERS IN A CUBE
FORMED BY THREE SUPERIMPOSED 10 X 10 X 10 CUBES

JOSEPH ARKIN
Spring Valley, New York

INTRODUCTION

In 1779, Euler conjectured that no pair of orthogonal squares exist for n = 2 (mod 4).
Then in 1959, the Euler conjecture was shown to be incorrect by Bose, Shrikande and Parker
[1]. Recently (in 1972), Hoggatt and this author extended Bose, Shrikande and Parker's work
by finding a way to make the 10 X 10 square pairwise orthogonal as well as magic (for a
square to be magic, each of the two diagonals must have the same sum as in every row and
in every column) [2]. The work done on this difficult problem was then extended by this
author, who found a solution to the classical Eulerian magic cube problem of order ten [3].
Then this author was fortunate enough to receive some letters from the great mathematician,
Professor Erdos. Professor Erdds introduced me to one of the most difficult and unsolved
problems of our time: namely, the 200-year-old question of whether it is possible to find sys-
tems of three mutuallyorthogonal numbers in a cube of three superimposed 10 X 10 X 10 Latin
cubes.

ABSTRACT

In this paper, we have succeeded in constructing for the first time certain systems of
three mutually orthogonal numbers in a cube of three superimposed 10 X 10 X 10 Latin cubes
(the letters used are A, B, C, ***, J).

In our construction (Tables 1 through 10), we find ten separate groups (where each group
consists of 100 cells and each cell contains three letters) such that each and every cell in a
single group (we consider one group at a time) is in a different file, different column, and
different row; and also (this is the major requirement) in any one group when we compare
each and every one of the 100 cells to one another, the three letters in each and every cell in
the group are mutually (three pairwise) orthogonal. Inthe construction of our cubes inTables
1-10, we find in each cell three capital letters of the alphabet followed by a comma and then
a digit (the digits range through 0, 1, 2, ---, 9). The digits on the right denote the group to
which the three letters in the cell belong. For example: the three letters in each of the 100
cells throughout the cube that end in ,0 denote a single group (say) G(,0) and in this group
G(,0) when we compare each and every one of the 100 cells to one another, the three letters
in each and every cell in the group G(,0) are mutually (three pairwise) orthogonal. In the
exact way we found the orthogonal properties of group G(,0) we find the identical orthogonal

properties in the remaining nine groups G(,1), G(,2), -+, G(,9).

485
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In our construction, it is also possible to find three pairwise orthogonal letters in a
system of files where each file is in a different row, and different column (we use our top
10 X 10 square (square number 0, Table 1) as a reference for the coordinates of our rows
and columns). An example of a single file (all files are considered to begin on square num-
ber 0, abbreviated SNO) is the ten cells in f(HGD,0) = (HGD,0) on square number 0 +
(IHC,1) on SN1 + (FJA,2) on SN2 + ... + (BFI,9) on SN9. Then we define a group of files
(say F(,0)) ending in ,0 as the 100 cells in F(,0) = f(HGD, 0) + f(HCI,0) + ... + f(HJH, 0).
Now in F(,0) when we compare each and every one of the cells (100 cells) to one another,
the three letters in each and every cell in F(,0) are mutually (three pairwise) orthogonal.
In the exact way we found the orthogonal properties of F(,0), we find the identical orthogonal
properties in the remaining F(,1), F(,2), ---, F(9).

Remark. Using the exact methods that were used to construct the cubes in Tables 1-10,
this author has extended the remarkable results on singly-even orthogonal squares by Bose,
Shrikande and Parker [1], since we have generalized the construction technique and are able
to find systems (exactly like the systems in this paper) of three pairwise orthogonal numbers
in all (except 2% and 6%) cubes formed by three superimposed Latincubes. Itis also possible
to show: if a construction for a square (2P)? is known we are then always able to construct
a cube (2P(2m + 1)) with the exact three pairwise orthogonal properties we have shown in
this paper (P >3 is an odd prime and m = 0, 1, ---). However, since this author has not
resolved (to his satisfaction) the question: 'Is it possible to superimpose three mutually or-

thogonal 10 X 10 Latin squares?," we shall discuss our methods in a future paper.

Table 1

Square Number 0

HGD,0 GIG,1 DEA,5 CHJ,3 BBF,2 ICI,9 EAB,4 FFE,7 ADC,6 JJH,8
AHJ,6 CGD,3 BJH,2 EFE,4 GDC,1 FAB,7 HCI,0 JIG,8 IEA,9 DBF,5
GJH,1 FEA,7 1GD,9 AAB,6 DHJ,5 EDC,4 JFE,8 CBF,3 BCI,2 HIG,0
JEA,8 IFE,9 CAB,3 BGD,2 ECI,4 HBF,0 GHJ,1 AJH,6 DIG,5 FDC,7
CDhC,3 ACI,6 HFE,0 GBF,1 JGD,8 BIG,2 DJH,5 IAB,9 FHJ,7 EEA,4
FCI1,7 EJH,4 JDC,8 HEA,0 IIG,9 DGD,5 ABF,6 BHJ,2 CFE,3 GAB,1
DFE,5 BDC,2 AIG,6 JCI,8 HAB,0 CJH,3 FGD,7 GEA,1 EBF,4 IHJ,9

IBF,9 HHJ,0 GCI,1 DDC,5 FJH,7 AEA,6 CIG,3 EGD,4 JAB,8 BFE,2
EIG,4 DAB,5 FBF,7 1JH,9 AFE,6 JHJ,8 BEA,2 HDC,0 GGD,1 CCI,3

BAB,2 JBF,8 EHJ,4 FIG,7 CEA,3 GFE,1 IDC,9 DCI,5 HJH,0 AGD,6
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Table 2

Square Number 1

IHc,1 FDI,6 GGE,9 JIF,0 EJD,7 DBG,2 HEH,3 ACB,8 BFJ,4 CAA,5
BIF,4 JHC,0 EAA,7 HCB,3 FFJ,6 AEH,8 IBG,1 CDI,5 DGE,2 GJD,9
FAA,6 AGE,8 DHC,2 BEH,4 GIF,9 HFJ,3 CCB,5 JJD,0 EBG,7 IDI,1

CGE,5 DCB,2 JEH,0 EHC,7 HBG,3 I1JD,1 FIF,6 BAA,4 GDI,9 AFJ,8
JFJ,0 BBG,4 ICB,1 FJD,6 CHC,5 EDI,7 GAA,9 DEH,2 AIF,8 HGE,3
ABG,8 HAA,3 CFJ,5 IGE,1 DDI,2 GHC,9 BJD,4 EIF,7 JCB,0 FEH,6
GCB,9 EFJ,7 BDI,4 CBG,5 IEH,1 JAA,0 AHC,8 FGE,6 HJD,3 DIF,2
DJD,2 1IIF,1 FBG,6 GFJ,9 AAA,8 BGE,4 JDI,0 HHC,3 CEH,5 ECB,7
HDI,3 GEH,9 AJD,8 DAA,2 BCB,4 CIF,5 EGE,7 IFJ,1 FHC,6 JBG,0
EEH,7 CJD,5 HIF,3 ADI,8 JGE,0 FCB,6 DFJ,2 GBG,9 IAA,1 BHC,4

Table 3

Square Number 2

FJA,2 DCE,4 BHB,8 ABD,9 JAI,6 EGF,0 IIJ,5 CDH,1 GEG,3 HFC,7
GBD,3 AJA,9 JFC,6 IDH,5 DEG,4 ClJ,1 FGF,2 HCE,7 EHB,0 BAI,S
DrC,4 CHB,1 EJA,0 GIJ,3 BBD,8 IEG,5 HDH,7 AAI,9 JGF,6 FCE,2
HHB,7 EDH,0 AlJ,9 JJA,6 IGF,5 FAI,2 DBD,4 GFC,3 BCE,8 CEG,1
AEG,9 GGF,3 FDH,2 DAI,4 HJA,7 JCE,6 BFC,8 EIJ,0 CBD,1 IHB,5
CGF,1 IFC,5 HEG,7 FHB,2 ECE,0 BJA,8 GAI,3 JBD,6 ADH,9 DIJ,4

BDH,8 JEG,6 GCE,3 HGF,7 FiJ,2 AFC,9 CJA,1 DHB,4 IAILS EBD,0
EAI,0 FBD,2 DGF,4 BEG,8 CFC,1 GHB,3 ACE,9 I1JA,5 HIJ,7 JDH,6
ICE,5 BIJ,8 CAI,1 EFC,0 GDH,3 HBD,7 JHB,6 FEG,2 DJA,4 AGF,9
J1J, 6 HAI,7 1IBD,5 CCE,1 AHB,9 DDH,4 EEG,0 BGF,8 FFC,2 GJA,3

Table 4
Square Number 3

JIH,3 EFA,9 HCD,2 GDB,7 AEJ,0 CAC,6 FJE,8 BHF,5 DBI,1 IGG,4
DDB,1 GIH,7 AGG,0 FHF,8 EBI,9 BJE,5 JAC,3 IFA,4 CCD,6 HEJ,2
EGG,9 BCD,5 CIH,6 DJE,1 HDB,2 FBI,8 IHF,4 GEJ,7 AAC,0 JFA,3
ICD,4 CHF,6 GJE,7 AIH,0 FAC,8 JEJ,3 EDB,9 DGG,1 HFA,2 BBIL5
GBI,7 DAC,1 JHF,3 EEJ,9 IIH,4 AFA,0 HGG,2 CJE,6 BDB,5 FCD,8
BAC,5 FGG,8 IBI,4 JCD,3 CFA,6 HIH,2 DEJ,1 ADB,0 GHF,7 EJE,9
HHF,2 ABI,0 DFA,1 IAC,4 JJE,3 GGG,7 BIH,5 ECD,9 FEJ,8 CDB,6
CEJ,6 JDB,3 EAC,9 HBI,2 BGG,5 DCD,1 GFA,7 FIH,8 IJE,4 AHF,0
FFA,8 HJE,2 BEJ,5 CGG,6 DHF,1 IDB,4 ACD,0 JBI,3 EIH,9 GAC,7
AJE,0 IEJ,4 FDB,8 BFA,5 GCD,7 EHF,9 CBI,6 HAC,2 JGG,3 DIH,1
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AAG,4
JCH,2
CHI, 7
BFF,0
IID, 8

HJJ,6
EGC,1
FDE, 3
DEB,9
GBA,5

ECF,5
IEC,7
BBE, 3
AIlL, 1

DJB,6
JDA,9
FAD,0
GFH, 8
CGJ,2
HHG, 4

GEE, 6
EJI, 8
ACJ,2
FDG,9
HAF,5
DHH, 0
CIA .4
BGB, 7
JBC,1
IFD, 3

FINDING SYSTEMS OF THREE MUTUALLY ORTHOGONAL NUMBERS

CEB,7
IAG, 8
HFF,6
FGC,3
JJJ, 2

DHI, 9

GID, 5

ACH,4
EBA,1
BDE, 0

BGJ,3
DCF,6
JIIL, 9

GAD, 8
IDA,7
CBE, 2
HJIB,4
EEC,5
FHG, 0
AFH,1

ABC,2
HEE, 5
DDG, 0
BIA,7
EHH, 8
JCJ,1

IAF,3

GJI, 6

CFD,4
FGB,9

EFF,1
GHI, 5
FAG,3
IBA, 8
AGC,4
BID, 0
JEB,2
CJdJ,7
HDE, 6
DCH, 9

FII, 0

HBE, 4
GCF,8
DHG, 6
EAD,5
AJB,1
I1GJ, 7

BDA, 3
JFH,9
CEC,2

CDG,4
1CJ,3

BEE, 7
HFD,5
GIA, 6
FAF,9
EBC,S8
AHH, 2
DGB, 0
JJI, 1

ICH, 8
DGC,9
JBA,2
GAG,5
CDE, 7
AFF,4
BJJ,0
EID,1
FHI, 3
HEB,6

DEC,6
CAD, 2
IHG, 7
HCF,4
BFH, 3
EII, 5

ADA,1
FJB,0
GBE, 8
JGJ,9

HJI, 5

JIA,1

EFD,S8
IEE, 3
AGB,2
GDG, 6
FHH, 9
CAF,4
BCJ,7
DBC,0

Table 5

Square Number 4

GDE, 5
CID, 7
ECH,1
DJJ,9
BAG,0
FEB,3
ABA,4
HHI, 6
JGC,2
IFF,8

FJJ,3
HBA, 6
DID, 9
ADE,4
GEB, 5
EAG,1
IHI, 8

JFF,2
BCH, 0
CGC,7

Table 6

Square Number 5

HFH,4
BJB,3
FEC,0
CDA,2
ACF,1
EGJ,8
EHG, 5
JBE,9
IAD, 7
DII, 6

GDA, 8
JHG,9
CJB,2
EFH,5
HGJ,4
FCF,0
DBE,6
I, 7

AEC,1
BAD, 3

Table 7

Square Number 6

1GB, 3
AAF,2
CJI, 4

JHH, 1
FEE,9
BBC, 7
GFD, 6
DCJ,0
EIA, S8

HDG, 5

BHH, 7
DFD, 0
JAF,1
GGB, 6
IBC,3
CEE,4
HCJ,5
EDG, 8
FJI,9

AIA, 2

DBA,9
AJJ,4
BGC, 0
CCH, 7
EHI,1
JDE, 2
HAG,6
IEB, 8
GFF,5
FID, 3

CHG, 2
EDA,5
AAD, 1
BEC, 3
FBE, 0
IFH,7
JCF,9
DGJ,6
HII, 4

GJB,8

JFD,1
GHH, 6
FIA,9
AJIL, 2

CCJ,4
EGB,8
DEE, 0
HBC,5
IDG, 3
BAF,7

HGC, 6
BEB,0
IDE, 8
JHI, 2
FBA,3
GCH, 5
CFF,7
DAG,9
AID, 4
EJJ, 1

JAD,9
AGJ,1
DFH,6
IBE,7
GHG, 8
HEC,4
BII, 3

CCF,2
EJB,5
FDA,0

DIA, 0
FBC,9
HGB, 5
ECJ,8
BFD,7
1JI,3

ADG, 2
JEE,1
GAF,6
CHH, 4

JiD, 2

FFF,3
GJJ,5
EEB,1
HCH, 6
IGC, 8
DDE, 9
BBA,0
CAG,7
AHI, 4

1JB,7

GII, 8

HDA, 4
FGJ,0
JEC,9
DAD, 6
CFH,2
AHG,1
BCF,3
EBE, 5

EAF, 8
BDG, 7
IHH, 3
CBC,4
DJI, 0
HIA,5
JGB,1
FFD,9
AEE,2
GCJ,6

[Dec.

BHI, 0
EDE,1
AEB,4
HID, 6
DFF,9
CBA,7
FCH,3
GGC, 5
13J,8

JAG,2

ABE,1
FFH,0
EGJ,5
JJB,9
CII, 2

BHG, 3
GEC, 8
HAD, 4
DDA, 6
ICF,7

FCJ,9
CGB,4
GBC, 6
DAF,0
JDG, 1
AFD, 2
BJI, 7

1A, 3

HHH, 5
EEE, 8
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Table 8
Square Number 7

DDJ,7 HHD,8 ABH,3 BAE,1 CIC,9 JFB,4 GGI,0 1JG,2 FCA,5 EEF,6
FAE,5 BDJ,1 CEF,9 GJG,0 HCA,8 1IGI,2 DFB,7 EHD,6 JBH,4 AIC,3
HEF,8 IBH,2 JDJ,4 FGI,5 AAE,3 GCA,0 EJG,6 BIC,1 CFB,9 DHD,7
EBH,6 JJG,4 BGI,1 CDJ,9 GFB,0 DIC,7 HAE,8 FEF,5 AHD,3 ICA,2
BCA,1 FFB,5 DJG,7 HIC,8 EDJ,6 CHD,9 AEF,3 JGI,4 IAE,2 GBH,O0
IFB,2 GEF,0 ECA,6 DBH,7 JHD,4 ADJ,3 FIC,5 CAE,9 BJG,1 HGI,S
AJG,3 CCA,9 FHD,5 EFB,6 DGI,7 BEF,1 IDJ,2 HBH,8 GIC,0 JAE,4
JIC,4 DAE,7 HFB,8 ACA,3 IEF,2 FBH,5 BHD,1 GDJ,0 EGI,6 CJG,9
GHD,0 AGI,3 1I1C,2 JEF,4 FJG,5 EAE,6 CBH,9 DCA,7 HDJ,8 BFB,1
CGI,9 EIC,6 GAE,0 IHD,2 BBH,1 HJG,8 JCA,4 AFB,3 DEF,7 FDJ,5

Table 9

Square Number 8

CBB,8 1JF,0 JAJ,7 EFG,2 FHA,1 AIE,5 BCC,6 GEI,4 HGH,9 DDD,3
HFG,9 EBB,2 FDD,1 BEI,6 IGH,0 GCC,4 CIE,8 DJF,3 AAJ,5 JHA,7
IDD,0 GAJ,4 ABB,5 HCC,9 JFG,7 BGH,6 DEI,3 EHA,2 FIE,1 CJF,8
DAJ,3 AEI,5 ECC,2 FBB,1 BIE,6 CHA,8 IFG,0 HDD,9 JJF,7 GGH,4
EGH,2 HIE,9 CEI,8 IHA,0 DBB,3 FJF,1 JDD,7 ACC,5 GFG,4 BAJ,6
GIE,4 BDD,6 DGH,3 CAJ,8 AJF,5 JBB,7 HHA,9 FFG,1 EEI,2 1ICC,0
JEI,7 FGH,1 HJF,9 DIE,3 CCC,8 EDD,2 GBB,4 IAJ,0 BHA,6 AFG,5
AHA,5 CFG,8 1IIE,0 JGH,7 GDD,4 HAJ,9 EJF,2 BBB,6 DCC,3 FEIL1
BJF,6 JCC,7 GHA,4 ADD,5 HEI,9 DFG,3 FAJ,1 CGH,8 IBB,0 EIE,2
FCC,1 DHA,3 BFG,6 GJF,4 EAJ,2 IEI,0 AGH,5 JIE,7 CDD,8 HBB,9

Table 10

Square Number 9

BF1,9 JAH,5 1JC,6 FGA,4 DCG,8 HED,1 ADF,7 EBJ,3 CHE,0 GIB,2
CGA,0 FFI1,4 DIB,8 ABJ,7 JHE,5 EDF,3 BED,9 GAH,2 HJIC,1 ICG,6
JIB, 5 EJC,3 HFI,1 CDF,0 IGA,6 AHE,7 GBJ,2 FCG,4 DED,8 BAH,9
GJC,2 HBJ,1 FDF,4 DFI,8 AED,7 BCG,9 JGA,5 CIB,0 IAH,6 EHE,3
FHE,4 CED,0 BBJ,9 JCG,5 GFI,2 DAH,8 IIB,6 HDF,1 EGA,3 AJC,7
EED,3 AIB,7 GHE,2 BJC,9 HAH,1 IFI,6 CCG,0 DGA,8 FBJ,4 JDF,5
IBJ,6 DHE,8 CAH,0 GED,2 BDF,9 FIB,4 EFI,3 JJC,5 ACG,7 HGA,1
HCG,1 BGA,9 JED,5 IHE,6 EIB,3 CJC,0 FAH,4 AFI,7 GDF,2 DBJ,8
AAH,7 IDF,6 ECG,3 HIB,1 CBJ,0 GGA,2 DJC,8 BHE,9 JFI,5 FED, 4
DDF¥,8 GCG,2 AGA,7 EAH,3 FJC,4 JBJ,5 HHE,1 IED,6 BIB,9 CFIL0
[Continued on page 494. ]



A FURTHER ANALYSIS OF BENFORD'S LAW

W. A. SENTANCE
The City University, London, England

In a recent paper [1] J. Wlodarski noted the interesting fact that Benford's "Law of
anomalous numbers' was obeyed very closely by the first 100 Fibonacci numbers and the first
100 Lucas numbers. The same paper ended with the suggestion, taken up by the present
author, that many more than the first 100 Fibonacci and Lucas numbers should be used for
the purpose of analyzing Benford's Law more closely. »

In a list of random numbers, one would normally expect to find that the distribution of
the initial digit would have an approximately equal spread over the nine integers1 to9. How-
ever, it is an observed fact that in many tabulations the digit 1 occurs almost three times
more often than any of the other eight digits. It was this that led Frank Benford in 1938 to
enunciate his "law of anomalous numbers' that the probability of a random decimal number
beginning with digit p is log (p + 1) - log (p) where the logarithms are expressed to the
base 10. [2]

Using a computer, it has been possible to extend the study to cover the first 1000 ¥ib-
onacci and the first 1000 Lucas numbers. Such a study would be perhaps unfeasible and cer-
tainly very tedious without the aid of a computer since F,3 has 209 digits. Normally, num-
bers are held within the computer to an accuracy of so many digits, usually within the range
of 10 to 20, and any arithmetic performed on such numbers will only be correct to this ac-
curacy. However, by assigning one computer word for each digit of any particular number,
we are able to store exactlylarge integer numbers. It is a relatively easy matter to simulate
the operation of addition between any two such numbers. Addition is the only operation we
need since the two sequences in which we are interested are defined bythe additive recurrence
formula

A = An + An

n+1 -1

different initial conditions giving rise to the Fibonacci and Lucas sequences. To give some
idea of the time involved, the additions which were needed to produce Fygy, took approxi-
mately 18 seconds. Such a method has other distinct advantages besides its great speed and

ease as is shown later in this paper.

Table 1
Digit 1 2 3 4 5 6 7 8 9
NF 30 18 13 9 8 6 5
NL 31 16 14 10 8 5 8 4
NB 30.1 17.6 12.5 9.7 7.9 6.7 5.8 5.1 4.6

490
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= -4
GF 0.657 x 10

It

G 1.673 x 10~

L
NF : Number of times the digit occured as initial digit in the Fibonacei sequence.
NL : Same as NF but for the Lucas sequence.
NB : Expected value, given by Benford's Law, of the digit to be the initial digit.

Table 1 reproduces the figures from [1] for the distribution of the initial digits of the
first 100 Fibonacci numbers and the first 100 Lucas numbers, together with the expected
value given by Benford's Law. In order to effect a comparison with later results, we have

calculated '"goodness of fit" constants G_, and GL where

F

Table 2 is exactly the same as Table 1 except that it gives the results pertaining to the
first 1000 Fibonacci numbers and the first 1000 Lucas numbers, again with ""goodness of fit'
constants. It is readily seenthat the behaviour exhibited by the small set of numbers has been
propagated by the large set of numbers. The goodness of fit constant is in both cases con-
siderably reduced indicating that the distribution of initial digits is approximatingmore close-
ly to that predicted by Benford's Law as more numbers in the respective sequence are taken

into account.

Table 2
Digit 1 2 3 4 5 6 7 8 9
NF 301 177 125 96 80 67 56 53 45
NL 301 174 127 97 79 66 59 51 46
NB 301.0 176.1 124.9 96.9 79.1 66.9 58.0 51.2 45.8

Note: N, correctonly to 1D. Accurate values used in calculating GF and GL

B
2
G = E _I:I_F_ - _IEIB— 9
F 1000 1000

i=1

2
G. = .lﬁ‘_ _11]2. 9
L 1000 ~ 1000

i=

0.0114 x 107*

il

0.0118 x 10-4

-
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The point could be made at this stage that the reduction in the values of GF and GL
is purely fortuitous and that the author was fortunate in finding that GF and GL for the
first 1000 numbers of each sequence were considerably smaller than for the first 100 num-
bers. To counteract this argument we give in Table 3, the values of GF and GL for the
first i of the Fibonacci numbers and for the first i of the Lucas numbers where i takes
the values 100 to 1000 in steps of 100. Although there are fluctuations in these values they

do exhibit in general a downward trend.

Table 3
i Gp X 104 Gy, X 104
100 0.655 1.673
200 0.260 .261
300 0.139 .104
400 0.037 .031
500 0.026 .085
600 0.025 .013
700 0.036 .028
800 0.021 .007
900 0.012 .008
1000 0.011 012

Again one may try to explain this strange distribution by the hypothesis that for these
two sequences of numbers, the frequency of occurrence of each of the digits 1 to 9 throughout

the numbers follows this pattern. However, Table 4 shows this not to be the case.

Table 4

0 1 2 3 4 5 6 7 8 9

F | 10474 | 10696 | 10495 | 10476 { 10431 | 10516 | 10433 | 10576 | 10350 | 10369

L ] 10393 | 10690 | 10783 | 10519 | 10699 | 10278 | 10507 | 10524 | 10285 | 10420

For the Fibonacci sequence the total number of digits in the first 1000 numbers is 104818.
Assuming that each digit is distributed randomly then we expect each digit to occur with the
same frequency. In this case the expectation for each digit is 10481.8. It is seen that the
actual occurrence for each digit is very close to this expected value. Similar remarks apply
to the Lucas sequence, too. The digit 1 therefore does not have an overall distribution dif-
ferent to any of the other digits.

This paper ends with a proposal to extend Benford's Law so that it now reads:
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""The probability that a random number expressed in the number base b begins with
digit p is log (p + 1) - log p, where the logarithms are to the base b."

Benford's Law is a particular case of this with b equal to 10. The idea behind sucha
proposal is that if it is true then it means that the distribution of initial digits seems to be
some function inherent within the number system itself.

The method we have used to implement the addition oflarge integers is capable of being

adapted to give results expressed with respect to any number base. Table 5 reproduces the

Table 5
Base

Digit 4 5 6 7 8 9

NF 501 430 389 356 336 314

1 NL 502 430 385 355 336 318
NB 500 430.1 386.9 356.2 333.3 315.5

291 2563 227 211 193 187

2 292 251 226 207 193 181
292.5 251.9 226.3 208.4 195.0 184.5

208 178 160 146 140 132

3 206 180 162 151 139 134
207.5 178.7 160.6 147.8 138.3 130.9

139 123 114 105 99

4 139 125 113 106 108
138.6 124.5 114.7 107.3 101.6

101 93 90 83

5 102 94 89 82
101.8 93.7 87.7 83.0

80 73 69

6 80 73 70
79.2 74.1 70.2

63 62

7 64 60
64.2 60.8

54

8 52
53.6

G of F .0114 .0057 .0157 .0198 .0390 .0220
Fit x 10* L, .0218 .0075 .0116 .0280 .0233 .0432
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computer results for the first 1000 Fibonacci and Lucas numbers using bases 4 to 9inclusive
together with the theoretical expectation based on the extension to Benford's Law. Again we
include a goodness-of-fit constant.

It can be seen that the distribution of initial digits in the other number bases closely
resembles that predicted by this extension of Benford's Law.

In conclusion then, as far as the sequences of Fibonacci and Lucas numbers are con—
cerned, the frequency of occurrence of the digits 1-9as initial digits is an excellent illustra—
tion of Benford's Law. The distribution would seem to approach that given by Benford as
more and more numbers are taken into account.  If we choose to express them in any other
base, then there is a very strong indication that the initial digits occur in adistribution given

by the extension to Benford's Law proposed earlier in this paper.
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A FIBONACCI-RELATED SERIES IN AN ASPECT OF INFORMATION RETRIEVAL

MICHAEL F. LYNCH
University of Sheffield, Western Bank, Sheffield, England S10 ZTN

A continuing objective of research in the field of information science is abetter under-
standing of the structure of subject indexes, and of methods of preparing and using them.
Most of us depend on these tools for access to the steadily increasing flow of publications in
science and technology, yet for the most part their preparation is still an art rather than a
science. It was not a little surprising, therefore, to discover that a familiar linguistic de-
vice that is widely used in indexes, catalogs, and directories could be formalized, and that
this formalization had connotations which included a Fibonacci-related series. The linguistic
device is that of inversion of prepositional phrases, such as "England, Kings of," which is
encountered in such diverse sources as back-of-the-book indexesand the Libraryof.Congress
catalog.

The process of inversion of phrases reaches its peak in complex subject indexes such

as those to Nuclear Science Abstracts and Chemical Abstracts, the latter currently includ-

ing about 300,000 scientific papers, books and patents each year. The magnitude of the task
of publishing and searching such amounts of literature has called for the increasing applica-
tion of computer technology during the past decade, and it was in the context of one such in-
vestigation that the process of inversion came to be more clearly scrutinized [1].In these in-
dexes, entries are made under a series of subject headings, which serve as the primary en-
try points for the user. The entries themselves consist of prepositional phrases, highly
convoluted, but organized in such a way as to enable the reader to scan them rapidly and to
extract the essential content during a rapid scan of the entry. The following example, taken

from a recent index to Chemical Abstracts, illustrates the point (the numerical reference is

the abstract number):

Coal

flotation of, hydrocarbon agent activity in, oxygen compd. formation
in relation to, 89893W.

It is clear that, without particular training, the reader can reconstitute the sense of
the original phrase as it was first conceived by the indexer. This is an intuitive process,
not immediately formalizable. With computer techniques in view, however, it was necessary
to define the procedure in symbol-manipulative terms. It was noted that the entries consist-
ed, in the main, of sequences of phrases either beginning or ending with prepositions, and it
was this which provided the necessary clue. In the case of an entry such as ""England, Kings
of," it is clear that the natural order would read "Kings of England," while if the entry read

495
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"Kings, of England," no alteration in sequence would be required. Sotoo with highly complex
index entries, provided that the constituent phrases can be suitably identified. Fortunately,
this delimitation is provided by the sequence of commas within the entry, which usually serve
to separate the component phrases from one another. Thus, extending the rule which gives
us "Kings of England, ' we can say that if we take the component phrases of an entry in se-
quence, then, according as the phrase begins with a preposition (or connective such as "and"),
or ends with one, it is to be placed so as either to precede the subject heading or to follow it,
as the case may be. Applying this to each component in turn, and adding successive phrases
at one end or the other of that part of the sequence built up always produces the intended re-
sult, i.e., the normal form of the description as originally derived by the indexer. In prac-
tice, the rule cannot be applied to all entries, since commas may also occur in the normal
form of the expression; however, forthose entries in which each component phrase either be-
gins or ends with a preposition or other function word, the rule is absolutely consistent, and
is illustrated by its application to the example noted above:
"oxygen compd. formation in relation to hydrocarbon activity
in flotation of coal."

While interesting, this formalization has not yet beenwidely utilized in computer studies
of index structure. Its usefulness seemed to us to lie rather in the fact that its obverse
offered the possibility of taking natural language title-like phrases, and automatically pro-
ducing an index of high quality from them. This reverse transformation, from natural language
phrase to index entry, presented particular problems, since it became apparent that it pro-
duced not a single result, but rather a variety of possible forms of entries, that is, that while
the transformation from entry to the normal form of the description is single-valued, the
transformation from normal format to entry is many-valued. This became clear while the
selection rule for entry production was being elaborated — a process which the indexer car-
ries out intuitively, and which has now been termed articulation.

It is useful at this point to consider a simple model for these transformations. The
model necessarily ignores certain complexities which are encountered in practice, notably
those due to the proportion "of," as illustrated below. It consists of aformalized descriptive

phrase composed of a sequence of nouns or noun phrases separated by function words:

in which the pairs of function words/nouns form the components of the entry. The selection

rule is as follows. A noun or noun phrase is selected to act as a subject heading from any
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position in the sequence. As a result, equal numbers of nouns/noun phrases and function
words remain. The entry may then be formed by successive selection of components from
positions adjacent to the subject heading, either to the right or to the left of it, a kind of de-
cision tree resulting from the multiplicity of choices that are open. The following example
illustrates the point:
rains on plains in Spain
Heading: Plains
1st Component:
Plains Plains
rains on, in Spain
2nd Component:
Plains Plains,

rains on, in Spain in Spain, rains on

Heading: Spain
1st Component:
Spain Spain
plains in rains on
2nd Component:
Spain Spain

plains in, rains on rains on plains in

The complication caused by the preposition "of'' can be illustrated by the following

example:

"production of indexes by computer;"

when "indexes" is selected as the subject heading, two entries are provided by the simple
model:
Indexes Indexes

by computer, production of, production of, by computer

Of these, only the second is acceptable, the first seeming ill-formed, due to separation of
the phrase '"production of"" from the noun which it qualifies directly. In practice, this can be
accommodated by simple additional rules.

Again, in practical terms, economic factors, both of production and of size of the re-
sulting index for users, do not permit the inclusion in a printed index of all of the variant
forms of entry which the model permits. Further characteristics of printed subject indexes,
including the use of indentation to enhance the ease of scanning of the printed display, have
enabled us to adduce further rules which are now incorporated within a useful program suite
for the automatic production of printed subject indexes [2, 3]. The advantages of this tech-

nique are that the indexer need concern himself solelywith providingan accurate and consistent
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record of the content of the subject matter of the document being indexed, and can economize
on the time needed to make an entry under each heading in articulated form, which is re-
quired in the traditional index-production method.

It is nonetheless interesting to pursue the implications of the simple model somewhat
further, particularly in terms of the great variety of variant entries which can be formed
from a single title-like phrase describing the subject content of an article or book. It is
clear that if the first noun or noun phrase of a longer description is chosen as the subject

heading, only a single form of entry is possible. Taking the earlier example:
"rains on plains in Spain"
when ""rains" is selected as the heading, only a single form of entry is possible, i.e.,

Rains

on plains in Spain .

This is termed an invariant phrase. When the last noun, Spain, is chosen, either of the nouns
preceding it may form the first component of the entry, while if a noun occurringat an inter-
mediate position is selected, the first component can be formed from any of the nouns pre-
ceding it or from the one following it. Using a different symbolism, in which the components
are denoted by alphabetical symbols, a sequence of three nouns can, in theory, give rise to

the following entries:

A.B-C
A B C
BC AC AB
CA BA

A sequence of four noun phrases, A.B.C.D can produce a greater variety:

A B C D
BCD ACD ABD ABC
CAD BAD BCA
CDA BDA CAB
DAB CBA
DBA

Tabulating these graphically for phrases of lengths 1 to 4 provides the following
possibilities:
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No. of headings
1
2
3

Phrase
A
A.B.
A.B.C.

A.B.C.D.

Lo - - <

BCD

BC

Possible Entries

By
Bea
Bach

CAD
CDA

C

C

BA

ABD PaBC
BAD  BCA
BDA CAB
DAB CBA
DBA
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Replacing now the particular articulated arrangements by the numbers of variantentries

possible under each heading in turn, we obtain the following table:

n No. of entries under n
1 2 3 4 5

1 1

2 1 1

3 1 2 2

4 1 3 4

5 1 4, 12 8

6 1 5 14 25 28

7 1 6 20 44 66

th

heading
6 7
16
64 32

This series proves to be of more than casual interest.

Total

13
34
89
233

Not only are the row sums the

alternate terms of the Fibonacci series, the internal structure of the table also provides an

algorithmic extension, other than by an exhaustive examination of all the possibilities pro-

vided by the selection rule. Thus any entry in the table may be computed by taking the entry
above it, and adding to it the entry immediately to the left of it and all those on the left-hand

diagonal of the latter.

Finally, a general expression for computing the row sums for each value of n takes

the following form:

1
a

(=

1 - A5

(s
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LETTER TO THE EDITOR

Dear Editor:
Professor Dr. Tibor Salat of Bratislava has pointed out two corrigenda to my article

on arithmetic progression, April, 1973, Fibonacci Quarterly, pp. 145-152.

In the proof of Lemma 2.2, one may not assume that ad and c/(a,c) are relatively

prime. After the second display in the proof, proceed as follows:

(G -iYad = (' - jbc  (mod c)
(i-1i%d =0 (mod c) .
Since (c,d) = 1, we get (i-i)a = 0 (mod c). Division by (a,c) yields
G - i@/(@,c)) = 0 (mod c/(a,c)) ,
hence
i-i'=0 (mod c/(a,c)) .

On page 151, inserta "1 -" before Il in the second, third, and fourth displays.

How far can Theorem 4.1 be generalized to other polynomials?

Sherman K. Stein
University of California,
Davis, Calif. 95616



ADVANCED PROBLEMS AND SOLUTIONS

Edited by
RAYMOND E. WHITNEY
Lock Haven State Collega, Lock Haven, Pennsylvania

Send all communications concerning Advanced Problems and Solutions to Raymond E.
Whitney, Mathematics Department, Lock Haven State College, Lock Haven, Pennsylvania
17745. This department especially welcomes problems believed to be new or extending old
results. Proposers should submit solutions or other information that will assist the editor.
To facilitate their consideration, solutions should be submitted on separate signed sheets

within two months after publication of the problems.

H-227  Proporsed by L. Carlitz, Duke University, Durham, North Carolina.

Show that

M3

n
> ymn-ick (“J“) (E) (aj + ck)™(bj + di)”

=0 k=0
min(m,n) \
_ m\/n\ _m-r n-r T
= m!n! Z (r)(r)a d (bc)™ .
r=0

In particular, show that the Legendre polynomial Pn(x) satisfies

n
@2P () = D (-1)5'+k('§)(r§> @j + ck)®(bf + di)"
i, k=0

where

_ 1 1
ad = E(X + 1), bc = g(x - 1)
H-228 Proposed by R. E. Whitney, Lock Haven State College, Lock Haven, Pennsylvania.

F
Define the sequence {un};f:l as follows: u = (F) % (@ 2 1), where F, denotes
th _.. :
the n™ Fibonacci number.
501
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(1). Find a recurrence relation for {un }:::1 and
(2). Find a generating function for the sequence, {un }mzl .

H-229  Proposed by L. Carlitz, Duke University, Durham, North Carolina.

A triangular array
An,k) (0 <k =n)

is defined by means of

i {A(n +1, 2k) = A, 2k - 1) + aA(n, 2k)
(*

together with
A(0,00 = 1, A(,k) =0 (k # 0 .

Find A(n,k) and show that

3 A, 2k)@b) = a@ + b1, > A, 2k + D@Es = @+ p L.
k

k

SOLUTIONS
ARRAY OF HOPE
H-195. Propased hy Verner E. Hoggatt, J'ru, San Jose State University, San Joss, California

Consider the array indicated below:

[5, I SRS
© B N =

13 22 7 11
34 56 16 27
89 145 38 65 16 22 1 1

(i) Show that the row sums are an, n 2= 2.

(ii) Show that the rising diagonal sums are the convolution of

{an_l}:_o and  {u(n; 2,2)}::0 ,

A(n + 1, 2k + 1) = A(n, 2k) + bA(n, 2k + 1)

[Dec.
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the generalized numbers of Harris and Styles.

Solution by L. Carlitz, Duke University, Durham, North Carolina.

th

Let A(n,k) denote the element in the nth row and k™ column. Then (presumably)

An,1) = FZn-3 (n>1)
and
A, 2k) = A, 2k - 1) + A(n - 1, 2k)
k =1)
An, 2k +1) = A(n - 1,2k +1) + A(n - 2, 2k
Put
00
Fi,y) = 3, 2 A, 2k) < 52K
n=1 k
o0
G,y = D 9 A, 2k + )&yt
n=1 k
0
AR = ) AG DX .
n=1
Then
0 0
- n _ n
Ax) = x + Z F2n—3x = x + XZ F2n_1x
n=2 n=1
2 2
= x + x X - X _ X - 2X
1-3x+x2 1-3x+x%
Next
n_ 2k
Fe,y) = 3 9, (A, 2k - 1) + Al - 1, 2k)x"y
n k
= xF(x,y) + yG&x,y) ,
so that
1 1 - xFkx,y) = yGx,y) .

Also,
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R )
Gloy) =y 2L A@D" + DD (Al -1, 2k + 1) + A - 2, 20) Py
X n=2 k>0

0 00
VAR +x D3 Al 2k + DY+ 2y 30 T A, 20" P
n=1k>0 n=1 k>0

1]

y(1 - xA®X) + xG(x,y) + x2yF(x,y) ,
so that
x(1 - x)(1 - 2x)y

1 - 3x + x?

(2) (1 - xGk&,y) = XyF(x,y) +

It follows from (1) and (2) that

x(1 - x)(1 - 2x)y?

1-3x + x%

(1 - x? - x*y*)F(x,y)

(3)
x(1 - x)2(1 - 2x)y

1 - 3x + x?

(1 - x? - 2y))Gx,y) =

Hence

@ (@ - 202 - x2y2) 353 A x"yS = O =00 - 200 - x 9
Zn: zk: 1 - 3x + x

For y = 1 this reduces to

1 - 3x + x2

anz Aln,k) = x(1 - x)(2 - x)
n k

so that

ZA(n,k) = an mn > 1.
k

If we take y = x, Eq. (4) reduces to
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Z an Al - k, k)
n=2 k

x%(1 - x)(1 - 2x)

1-x-x2)(1 -x+ x2)(1 - 3x + x%)

el

_ 2 an_1Xn x(1 - 2x)
1 1 -x-x2)1 - x + x2)

This expresses the rising diagonal sums

n-1
Z Al - k, k)
k=1

as convolutions as stated.

Remark. It follows from (3) that

F(x,y)

1l
[y
1
no
"
0 e
]
[
7
=

k=1
®  2k-1 2k-1 ’
Glr,y) = ——=2= 2
1-38x +x k=1(1—x)
so that
° 2k-1
Z A(n,zk)xn = @ - 20x Pl
n=gk_1 @ -38x+x)Q - x)
(5) o ok
-1
> Awm 2k - D = U-20x
n=2k_1 (1 -3x + x%)(1 - x)

By means of (5) we can obtain explicit formulas for A(n,k). Since

_1-2x EFZI‘_X ,

1-3x + x%

it follows that

o0 0 o0

n _  2k-1 r 2k + 5 - 2 s

E A(n,2k)x" = x Z F2r-1 X E ( S ) X
n=2k-1 r=0 s=0

Therefore,
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n-2k+1

_ n-r-1
A2 = D7 (Zk—z )FZr—l

r=0
Similarly
n-2k+1
AW, 2k -1 = Y “2;1:‘32) F, o 1
r=0

Also solved by the Proposer.

PARTITION
H-196 Proposed by J. B. Roberts, Reed College, Portland, Oregon.

k > 1).

(@) Let A, be the set of integral parts of the positive integral multiples of T, where

1+ N5

T= 2=,

and let A
m

4 M= 0, 1, 2, -+, be the set of integral parts of the numbers n72

for n & Am. Prove that the collection of Z~ of all positive integers is the disjoint

union of the Aj'
(b) Generalize the proposition in (a).
Solution by L. Carlitz, Duke University, Durham, North Carolina.
1. Put

a(n) = [nT] , b(n) = [n7%]

Also for brevity put

(a) = {a(ﬂ)ln = 1: Zs 3, "'} ’
® = {b@p = 1,2,3, " }.
It is well known that*
* z" = (@ U b .

Put

b2 = {b5am = 1, 2, 3, -

[n(r + 1)]

= am) +n .
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where juxtaposition denotes composition. Then it follows at once from (*) that

Z+

(@) U (ba) U (b?)
(@ U (ba) U (ba) U (®),

and so on. Clearly this implies
0 ©0
z¥ = U ®%) = U A
k=0 k=0

2. Let «o,B be positive irrational numbers such that

K

(1/a) + (1/B) =1

and put
a(n) = [om], b(m) = [Bn]

Then it is well known that

z" =@ U b,
where, as above,

@ = {a@p =1, 2,3, -}, bm = {b@n = 1, 2,3, ---}

Hence

Z+

(@) U (ba) U (b?)
(@) U (ba) U (b%a) U (%) ,

and so on. Thus
[~}
7zt = U o5
k=0

Remark. The functions a(n), b(n) in 1 are studied in considerable detail in the paper
by L. Carlitz, V. E. Hoggatt, Jr., and Richard Scoville: ""Fibonacci Representations,' Fib-
onacci Quarterly, Vol. 10, No. 1, pp. 1-28.

Also solved by the Proposer.

Editorial Note: See Beatty's Theorem (American Math. Monthly, 33 (1926), 159, and 34 (1927)
159.)

The editor wishes to acknowledge solutions to H-194 by L. Frohman, P. Bruckman, and J.

Ivie.

Editorial Note: The following list represents previous problem proposals (less than or equal

to H-100) which, to date, have not been solved: 22, 23, 40, 43, 46, 60, 61, 73, 76, 77, 84,

87, 90, 91, 94, and 100. Startinginthe next section, we shall re-run some of these proposals.
ERRATA

On Problem H-218, April, 1973,

please change the matrix to read:

oo

O MO

Ne=O O
o

nxn



ON THE NUMBER OF DIVISIONS NEEDED IN FINDING THE GREATEST COMMON DIVISOR

DALE D. SHEA
Student, San Diego State College, San Diego, California

Let n(a,b) and N(a,b) be the number of divisions needed in finding the greatest com-
mon divisor of positive integers a,b using the Euclidean algorithm and the least absolute
value algorithm, respectively. In addition to showing some properties of periodicity of
n(a,b) and Nf(a,b), the paper gives a proof of the following theorems:

Theorem 1. If nfa,b) = k > 1, then a+b 2 fk+3

est sum such that n(a,b) = k is the pair (fk+1’ fk+2)’ where

and the pair (a,b) withthe small-

Theorem 2. If N(a,b) =k > 1, then a+b = X1

sum such that N(a,b) = k is the pair (Xk’ xk+xk_1), where xy =1, x; =2, and X =

X 1 X g
[1], [2].

Since nf{a,b) = n(b,a) we can assume a <bh. To prove the first theorem, let n(a,b) =

and the pair (a,b) with smallest

k = 3, 4, **°. These results may be compared with other results found in

k and assume the k steps in finding (a,b) are

b = qa + 1y

a = q2r1+r2

Tees T e 1%ke2 T Tken

ez = 9 Tkg

If k=1, then r; = 0 so b = qya and the smallest pair (a,b) is (1,1) so

a=f1, b=f2, a+b=f3=2.

Note this case is not included in the theorem. In case k > 1 itis evident the smallest val-
ues of a,b will be obtained for 1T 1 and all the g's = 1 except s which cannot be
1 butis 2. Thus the pairs (rk—l’ rk_z), <o+, (a,b) are (1,2), ---, (fk+1’ fk+2)' Since
a+b = Gy T here T fege
We have

Corollary 1. If a+b < fk+3’ then n(a,b) < k for k > 1.

the theorem is proved.

For b = a+1i, i a fixed positive integer so that b < 2a, the quantities satisfy

508
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(1) n(a + mi, a + [m + 1]i) = n(a, a + i), m=20,1,2, -

This follows from the remark that if n(a,b) = k, then n(a+b, 2a+b) =k+1, k=1, 2,

3, - --. This is evident since the first division would be (2a +b) = 1(a +b) +a and
n(@, a +b) = nf@, b) = k .

Equation (1) is a consequence since each n is one more than n(i, a + mi) = n(i,a). The

periodicity is evident in the table of values of n(a,b) for a < b <2a. (See Fig. 1.)

a = 1 1
2 12
3 123
4 1223
5 12343
6 122233
7 1233443
8 12242533
9 123234343
10 1223324433
11 12344345543
12 122224253333
13 1233353464443

14 12243432454533
15 123242334435343

Figure 1

n(@,b) for b=a,a+1, -+, 2a - 1.
To prove Theorem 2, assume the steps in finding (a,b) with N(a,b) = k are

b = qga 1

a = Qary * Iy

T3 = Qe 1%k-2 T Tko1

T2 T YTk ’
where

0<r1§;—a, O<r25_-;—r1,"~, 0 <r

Because of the restriction on the remainders, we must have g, g3, -+, g equal to or

greater than 2. But since Zri +r,, . < 3r,-r, i=1, -+, k-1, in each case we ob-

i+l i i+1’
tain the smallest sum a +b with gy = --+ = q = 2 and with g; = 1. For k=1, we

Zxk_l + X o and

This completes the proof of the

have 1 =11 so a =b = 1. Set X, =T . For k > 1, a=x =
+ X +x

i
b=xk+l=xk o1 Then a +b = 2x
theorem.

k© k-1 T Tk
Corollary 2. If a+b <

>
X1 then N(a,b) < k for k > 1.
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Figure 2 exhibits the periodicity for i fixed):

(2) N(a, a + i) = N(a + mi, a + [m + 1]i), 12i=2a/2
and the symmetry:
(3) N(a, a + i) = N(a, 2a - i), 1=ila-1.
a= 1 1
2 2
3 2 2
4 222
5 2332
6 22222
7 233332
8 2232322
9 23233232
10 223323322
11 2333333332
12 22224242222
13 233343343332
14 2233332333322
15 23232333323232
16 223232424232322
17 2333434334343322
18 22234242224243222
19 233333443344333332
20 2232233342433322322
21 23233324333342333232

22 223342334323433243322
23 23334343443344343433332

Figure 2

N(a,b) for b = a+ 1, -+, 2a - 1

Dec. 1973

Iwish to acknowledge the assistance of Professor V. C. Harris in shorteningthe proofs.
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A PRIMER FOR THE FIBONACCI NUMBERS: PART Xill

MARJORIE BICKNELL
A. C. Wilcox High School, Santa Clara California

THE FIBONACCI CONVOLUTION TRIANGLE, PASCAL'S TRIANGLE,
AND SOME INTERESTING DETERMINANTS

The simplest and most well-known convolution triangle is Pascal's triangle, which is
formed by convolving the sequence {1, 1, 1, --} with itself repeatedly. The Fibonacci
convolution triangle [1] is formed by repeated convolutions of the sequence {1, 1, 2, 3,
5, 8, 13, °* } with itself. We now show three different ways to obtain the Fibonacci convo-
lution triangle, as well as some interesting sequences of determinant values found in Pascal's

triangle, the Fibonacci convolution triangle, and the trinomial coefficient triangle.

1. CONVOLUTION OF SEQUENCES

If {an} and {bn} are two sequences, then the convolution of the two sequences is
another sequence {cn} which is calculated as shown:

Ccy = a1b1
Cy = a1b2 + a2b1

cg = ajby + asby + aghy

n
Cp = 2;by +agh g tagh, ote--+ab = > by k1
k=1

If we convolve the Fibonacci sequence with itself, we obtain the First Fibonacci Convolution
Sequence {1, 2, 5, 10, 20, 38, 71, }, as follows:

FY = mF, =11 =1
F(l)‘FF + FyF = 11+ 1.1 = 2
2 - 1+2 241 :

F3(1) = F1F3 + F2F2 -+ F3F1 = 1.2 + 11 + 2-1 = 5
Fil) = F1F4 + F2F3 + F3Fz + F4F1 = 1.3 + 1.2 + 2.1 + 31 = 10

. . . . . ° . ° . ° . . ° . ° o . . . . . °

Next we can obtain the Second Fibonacci Convolution Sequence {1, 3,9, 22, 51, 111,-++}

as indicated below.

511
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Fy FyFy =11 =1
Féz) = FzFi(l) + Fin(l) = 11+ 12 = 3
R S e = 21+12+15 = 9
= BED 4 B ¢ BE® + B p® = 31422 4 15 + 120 = 22

by writing the convolution of the first Fibonacci convolution sequence with the Fibonacci se-
quence. To obtain the succeeding Fibonacci convolution sequences, we continue writing the
convolution of a Fibonacci convolution sequence withthe Fibonacci sequence. A second method
follows.

The Fibonacci sequence is obtained from the generating function

1 n
= F, + Fpx + Fgx2 + .. + F_ X + -0 ,
1-x-x2 ' ’ ? n+l

which provides Fibonacci numbers as coefficients of successive powers of x as far as one

th

pleases to carry out a long division. The k™ convolution of the Fibonacci numbers appears

as the coefficients of successive powers of x in the generating function

——-———1—-@—1 A S LI ng)lx“ +oee
1 -x - x%)
k=0,1,2, -. For k =0, we get just the Fibonacci numbers. In the next section, we

shall see yet another way to find the convolved Fibonacci sequences.

3. THE FIBONACCI CONVOLUTION TRIANGLE

Suppose someone writes a column of zeroes. To the right and one space down place a
one. To generate the elements below the one we add the one element directly above and the
one element diagonally left of the element to be written. Such a rule generates a convolution

triangle. This rule, of course, generates Pascal's triangle in left-justified form:

0
0 1
0 1 1
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The columns of Pascal's triangle give convolution sequences for the sequence {1, 1,
1, } Notice that the row sums give powers of two, and the sums of rising diagonals
formed by beginning in the column of ones and going up one and to the right one throughout the
array give the Fibonacci numbers 1, 1, 2, 3, 5, -+, Fn, +++, where Fn = Fn_1 + Fn-
n=3,4,5, "".

Next suppose we change the rule of formation. Begin as before, but to generate ele-

2:

ments below the one, add the two elements directly above and the element diagonally left of
the element to be generated. Now we have the Fibonacci convolution triangle inleft-justified

form,
0
0 1
0 1 1

The columns give the convolution sequences for the Fibonacci sequence. The row sums are

the Pell numbers 1, 2, 5, 12, 29, 70, -, Py s where P, = an—l + P, o The rising
diagonal sums are 1, 1, 3, 5, 11, 21, ---, rn, -++, where rn = rn-l + 2rn_2. The di-
agonal sums found by beginning in the column of Fibonacci numbers and going up two and right
one throughout the array are 1, 1, 2, 4, 7, 13, 24, ---, Tn’ M P Tn = Tn—l + Tn_2 + Tn—3’

the Tribonacci numbers.

If one changes the rule of formation yet again, so that the elements below the initial one
are found by adding the one element directly above and the two elements diagonallyleft of the
element to be generated, the array obtained is the trinomial coefficient triangle. The coef-
ficients in successive rows are the same as those found in expansions of the trinomial (1 + x
+ x2 )n, n=20,1, 2, --. The columns do not form convolution sequences as before, but the
row sums are now the powers of three, and the sums of elements appearing on the rising di-
agonals are 1, 1, 2, 4, 7, 13, ***, the Tribonacci numbers just defined. To illustrate, the
trinomial triangle is formed as follows:

0

0 1
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3. SOME SPECIAL MATRICES

If one looks again at how convoluted sequences are formed, the arithmetic is much like
matrix multiplication. Suppose that we define three matrices. Let P be the nXn matrix
formed by using as elements the first n rows of Pascal's triangle in rectangular form. Let
F be the n X n matrix formed by writing the first n rows of Pascal's triangle in vertical
position on and below the main diagonal, which makes the row sums of F be Fibonacci num-
bers. Let C bethe nXn matrix whose elements are the first n rows of the Fibonacci con-
volution triangle written in rectangular form. Then it can be proved that FP = C (see [1],
[2].) To illustrate, for n = 6,

-

1 0 0 0 0 0 1 1 1 1 1 1
0O 1 0 0 0 o 1 2 3 4 5 6
gp =0 1 1 0 0 0 1 3 6 10 15 21
0 0 2 1 0 0 1 4 10 20 35 56
0o 0 1 3 1 o0 1 5 15 35 70 126
(0 0 o 3 4 1] |1 6 21 56 126 252
(3.1) M1 1 1 1 1 171
1 2 3 4 5 6
_ |2 5 9 14 20 27| - ¢
3 10 22 40 65 98
5 20 51 105 190 315
8 38 111 256 511 924

Suppose that, instead of multiplying matrix ¥ by the rectangular Pascal array P, we
use an n Xn matrix A whose elements are given by the first n rows of Pascal's triangle
in left-justified form on and below its main diagonal, and zero elsewhere. Let F' be the
transpose of F. Then the matrix product AFt =T, where T is the nXn matrix whose
elements are found in the left-justified trinomial coefficient triangle given in Section 2. We

illustrate for n = 6:

"1 0 0 0 o0 01 [1 0 0 0 o0 0
1 1 0 0 0 ollo 1 1 0o o o
agb o1 2 1 0 o offo o 1 2 1 o0
1 3 3 1 0 ofllo o o 1 3 3
1 4 6 4 1 ofllo o o o 1 4
1 5 10 10 5 1] o o o o o 1]
(3.2) 1 0 o0 o0 o0 01
1 1 1 0o 0 o0
o2 s 2 1 oo
1 3 6 7 6 3
1 4 10 16 19 16
1 5 15 30 45 51

4. SPECIAL DETERMINANTS IN PASCAL'S TRIANGLE

A multitude of unit determinants can be found in Pascal's triangle. The following theo-

rems are proved in [2].
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Theorem 4.1. The determinant of any kX k array taken with its first column along
the column of ones and its first row the ith row of Pascal's triangle written in left-justified
form, has value one.

Theorem 4.2. The determinant of any k Xk array taken with its first row along the
row of ones or with its first column along the column of ones in Pascal's triangle written in
rectangular form, is one.

For example,

(1 2 1 0 1 3 6 10
1 3 3 S oY le 4 10 20
P=11 4 6 47| 2 3|74 5 6=, 5 15 35
1 5 10 10 3 6 1015 20y 6 21 56

Pascal's triangle also has sequences of determinants which have binomial coefficients
for their values. Here we have to number the rows and columns of Pascal's triangle; the row
of ones is the zeroth row; the column of ones the zeroth column. To illustrate some of the
sequences of determinants considered here, we look back at the matrix P of (3.1) which con-
tains the first n rows and columns of Pascal's triangle written in rectangular form. When

2 X 2 determinants are taken across the first and second rows of Pascal's rectangular array,

1 2| _ 2 3] _ 3 4] _ 4 5| -
‘ “1’ l l”g’ le 10! 8 I 5= o ’
giving values found in the second column of Pascal's triangle. Of course, the 1X1 deter-
minants along the first row give the values found in the first column of Pascal's triangle.

Taking 3 X3 determinants yields

1 2 3 2 3 4 3 4 5
1 3 6] =1, 3 6 10 = 4, 6 10 15 = 10, ey,
1 4 10 4 10 20 10 20 35

successive entries in the third column of Pascal's triangle. In fact, taking successive k Xk
determinants along the first, second, - -+, and kth rows yieldsthe successive entries of the
kth column of Pascal's triangle.

The following theorems are proved in [3].

Theorem 4.3. If Pascal's triangle is written in left-justified form, any kX k matrix
selected within the array with its first column the first column of Pascal's triangle and its
first row the ith row has determinant value given by the binomial coefficient

(")
k

Theorem 4.4. The determinant of the kX k matrix taken with its first column the jth

column of Pascal's triangle written in rectangular form, and its first row the first row of the

rectangular Pascal array, has values given by the binomial coefficient
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()

5. SPECIAL DETERMINANTS IN THE FIBONACCI CONVOLUTION TRIANGLE
AND IN THE TRINOMIAL TRIANGLE ARRAYS

Now we are ready to prove that the unit determinants and binomial coefficient deter-
minants of Section 4 are also found in the Fibonacci convolution triangle and in the trinomial
coefficient triangle. Returning to (3.1), the first n entries of the first n rows of the Fib-
onacci convolution triangle are given by the matrix product FP = C. But, notice that kX k
submatrices of C taken along eitherthe first or second matrix row are the product of a kX k
submatrix of F with a unit determinant and a similarly placed kX k submatrix of P which
has been evaluated in Theorem 4.2 or Theorem 4.4. Let us also number the Fibonacci con-
volution triangle as Pascal's triangle, with the top row the zeroth row. Thus, we have

Theorem 5.1. Leta kX k matrix M be selected from the Fibonacci convolution tri-
angle in rectangular form. If M includes the row of ones, then det M = 1. If M has its

first column the jth column and its first row along the first row of the Fibonacci array, then

fi+k-1
det M ( K )

Reasoning in a similar fashion from (3.2), the matrix product AFt

and Theorems 4.1
and 4.3 yield the following, where the trinomial coefficient triangle is numbered as Pascal's
triangle, with the left-most column the zeroth column.

Theorem 5.2. Leta kXk matrix N be selected from the trinomial triangle written
in left-justified form. If N includes the column of ones, then det N = 1. If N has itsfirst

row the ith row and its first column along the first column of the trinomial triangle, then

det N = (”E‘l).

These results are generalized in [2] and [3]. Other classes of determinants are also

developed there. The reader should verify the results given here numerically.
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A FIBONACCI PROBABILITY FUNCTION

HAROLD D. SHANE
Baruch College of CUNY, New York, New York

1. THE FIBONACCI DISTRIBUTION

Consider the following Markov Process. To begin, a marker is placed in slot number
zero. At each minute thereafter, a coin is flipped. If it comes up heads, the marker is
moved up one slot. If it comes up tails, the marker is moved back to position zero. Let Xn
be the number of flips needed to advance the marker to position n. We would like to investi-
gate the distribution of the random variable, X,. For the case n = 1, the random variable
is simply geometric (i.e., X; = number of trials until the first success occurs). Let us
therefore, start with the case n = 2 and probability of a head, p = 1/2.

Let P(Xy; = k) = py(k), k =2, 3, 4, +-+, Now,

py(2) = P(HH) = 1/2%, py(3) = P(THH) = 1/23
and
(1) pak + 3) P(k trials with no run of two heads) - P(THH)

oKtk o1,2,3,

N Ky /e = a

2,k /2 ok’

where A = number of arrangements of k heads and tails with no two consecutive heads.

2.k
’

In order to evaluate A 2.k’ we note that we may clas51fy the allowable arrangementsaccord-
ing to whether the last tall is in the k th or (k- 1) position. Letting 2 ki~ number of
arrangements of k heads and tails having no two consecutive heads and having a tail inthe

.th ‘s . : - =
i position, i =k, k-1, gives Az,k az,k,k+a2,k,k—1' But, az,k,k Az,k-l and

29 k,k-1 - Ao, ko2’

@) Aok T Aa ko1 TAg k2

yielding

For k = 1, the possible arrangements are simply H and T. Thus, A2,1 =2, For k =
2, the possible arrangements are HT, TH, TT. Thus, Az,2 = 3. Combining (1), (2)and
the preceding, we have

3 pl) = F, /2K k =2, 3,4, ",

where F = Kt Fibonacci number (with Fy = F; = 1). Certainly, a good name for this is
the Fibonacci Probability Distribution.

The cumulative distribution function of X, is given by

(4) Gyx) = P(X; € x) = E Fk—2 /Zk for x> 2, and zero otherwise,

517
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where [ x| = largest integer less than or equal to x. In order to clpse this sum, we sim-

ply note the following
Lemma.

n

n-j _ o012
D2 F,o= 20 F L
=0

Proof. By induction, if n = 0, theleft-hand side is simply F, = 1 and the right-hand
sideis 22 - F3 = 4 -3 = 1. Now assuming the result for n, consider

n+1

n
n+l-j _ n-j _ n+2
Z 2 Fj = Fpy t 222 Fpo= Fy t 2@ - FpLg)
=0 j=0

- n+3 _ oh*3
= Fpq * 2 - 2F 3 2 - (Fn+3 *Fyg - Fn+1)

n+3 = glotl)+2

n+4 - F

(+1)+3 & e.d.

Applying this Lemma, we see that Gy(x) is simply

- L L2k [x] ,lx]
_ _ o-x x]-2- _ o-LX] o[ x
(B) G = ) F , /20 =27y 2 R e
k=2 k=0
So,
(6) Ge) = 1 - Fp g, /2 [x] it x>0 and 0 otherwise.
The factorial moment generating function M,(t) = EtXZ, is easily obtained,
0 0 0
k k k k
M) = 3 tpl) = 9 £F,, /2 = (/)2 D) F /2" = gt
k=2 k=2 k=0
where

0
gk = > F X,
k=0

the generating function for the Fibonacci numbers, thatis, g(x) = (1 - x - xz)'l. Therefore,

(7) My(t) = t2/(4 - 2t - t2)

dm
'—InMZ(t)tzleXZ(Xz'l)"'(XZ‘m"‘l) = f )

at 2,m
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th .
the m™ factorial moment. The usual moment generating function is, of course, Mz(et).
Making the substitution, u =t - 1, we produce my(u) = My(u + 1), for which mz(m)(O) =

f2 m A partial fraction decomposition of the preceding yields

_ 2u - 2 N 5 + 3N5 1 5 - 375 1
mi = et - (BB () (253 ()

where o = 2+ ~5 and B = 2 - N5. Expanding both fractions as power series, elementary

computations yield

o

j i j+1 j+1 )
(8) mz(u) = -1 + Z [3(0( + ) +5(0('] + )]u‘]
§=0

J

Since the coefficient of u’ is m(J)(O)/j! , comparing terms in (8), we have

9) f, = m! 3 + od) + @1+ ™

)]1/5 .

2. THE POLY-NACCI DISTRIBUTION

Let us now proceed along the lines of section one, to develop the situation for the case

of n greater than or equal to two. Let P(Xn = k) = pn(k) k =n,n+1, ---. Here wehave
pn(n) = P (n heads in a row) = (1/2)", pn(n+ 1) = P (one tail followed by n consecutive
n+1

heads) = (1/2) and

pn(k + n + 1) = P(k trials with no run of n heads) - pn(n + 1)

_ k NE n+1 _ n+k+1 _
- (An,k/Z )('2) An,k/z k 1: 2: 3: ’

where An K= number of arrangements of heads and tails with no run of n heads. Again,
we may evaluate An Kk by letting 2 ki T number of arrangements of k heads and tails
having no run of n heads and the last tail in the ith position, i=k, k-1, ***, k-n+1.
Thus,
n-1
Z Ak, k-j
i=0
but
an,k,k_j = An,k—(‘]_‘l“l) ] = 0, 1, ,h -1
So, analogously to (2),
n-1
P = i = —
(10) Ay = ZAn,k-(j+1) where A, =2'1=0,1,2 " ,n-1
i=0

At this point, it is convenient to define the kth poly-nacci number of order n, Fn K’ by the
’

recurrence
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(11) Fn,k = Fn,k—l + I'n,k—z e Fn,k-n k=1,2,3 -,

n,0 =1 and Fn,-r = 0.

Using this notation, we may write

where F

_ k -
(12) pn(k) = Fn,k‘-n /2 k=nn+1,n+2, ...

The cumulative distribution function
[x] .
= < = >
(13) Gn(X) P(Xn < x) Z Fn,k—n /2 for x > n.
k=n

As in Section One, we state
Lemma.
N

N-j _ N+
22 Fn,j =2 - Fn,N+n+1 )

=0

Proof. By induction on N, when N = 0, theleft-hand side is simply Fn 0= 1. The
— s

right-hand side is 2" - Fn,n+1’ but

n n-1
_ _ k _ .n
Fn,n+1 _'ZFn,k _22 =2 -1,
k=1 k=0

establishing the result for N = 0. Assuming the result for N, let us consider

N+1 N
Rl = N-j - Nen+l
Z 2 "o, T Fo,ner ¥ 2 Z 2 T P 2
=0 =0
- 2F Nen+l
o onHN+1)
B ) (FH’N‘fn‘fl O N+l ” Fn,N+1) :
Since
n-1 n-1
Fn,N+n+1 - Z Fn,N‘J-1+j’ Fn,N+n+1 - Fn,N+1 B Z Fn,N+1+j )
=0 i=1
and
N+1 o1
N+1-j _  nH(N+1)
Z 2 Fn,j 2 - Fn,N+1+n + Z Fn,N+1+j
j=0 Py
= QTN _ n+(N+1)
= 2 - Fn,N+1+n+1 2 - Fn,n+(N+1)+1’ g.e.d.
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Applying the Lemma,

[x] [x]
Gn(x) = Z Fn,k—n /Zk = 2—[X] Z Z[X] _an k-n
k=n k=n '
[x]-n
= 2_[X] Z 2[X]'n"an r = 2—[X](2[X] _ Fn [X]+1) .
r=0

Thus, Eq. (13) reduces to a form almost identical to (6), namely,

(14) Gn(X) =1 - 2—[x] F if x 2 n and 0 otherwise.

n,[x]+1

Finally, the factorial moment generating function

X 0 el L=

_ n _ k k k _ 4.1 10K

M = Bt T = D0 t%p 00 = DIEF, /25 = (40" 35 E, (o)
k=n k=0

k=n

($6)7g (40) ,
where

o0
k
g 0 = ) Fo X
k=0

the generating function for the nth order poly-nacci numbers. Since gn(x) is easily seen

2 n n+l1 )

to be gn(x) =(1-x-x-+.. -x") = 1-x)/(1-2x+x we obtain

n-1 n+l

(15) M () = /@ - 2" e oY) = e - 0/eMa - g+ L)

Unfortunately, a closed form expression for the fn m the mth factorial moment of Xn’ is

not readily available.

3. THE GENERALIZED POLY-NACCI DISTRIBUTION

Let us briefly apply the methods of Section 2 to the case where the probability of ahead
is p, 0 <p <1, andnotnecessarily 1/2. Let q = 1 - p and as before let Xn = number
of trials needed to reach position n. Letting pn(k) = P(Xn = k), pn(n) = pn, pn(n+ 1) =
qpn, pn(n+j +1) = qpnp . j=1,2,3, -+, where pn,j = P(j trials with no run of n

n,j

heads). Now, p § =1 for j=0,1,2,3, -, n-1 and breaking down the probability

n,
according to the number of the last tail, we obtain

n
_ r-1 . ..
pn,j - Eqp Pn’j_r; J = n, [1+]_, n+2:
r=1

Thus, if we define
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n
W -1l o
Fp(n’,]) q Zp Fp(n, ] - r) ] 0, 19 2’
r=1

with Fp(n;O) =1 and Fp(n;—k) = 0, we may write pn(k) = pan(n;k—n), k=n, n+1,---.
The Fp(n;j) being the '"Poly-nacci Polynomials of order n in p.'" For example, the first
few Fibonacci Polynomials FX(Z;j) are given by: 1, 1 -x, 1-x, (1-x)2(1+x), (1-%)3(1+x)

+(1 - x)?%x, *+-. The cumulative distribution function of Xn is
[x] [x]
n
= = -k - >
Gn(x) Z pn(k) p Fp (; k -n) for x 2n
k=n k=n
That is,
[x]-n
—_— n . 1
Gn(X) = p Z Fp(n, i)
i=0
It is easy to show by induction that
M
2o F i) = (a - F @, M +n+1)/gp"
i=0
so that
(16) G (® = 1- q“le (;[x] +1) if x >n and 0 otherwise.
The generating function for the Fp(n;i),
L] n-1 1
i il n_n+l
gylip) = ZFp(n”)x =l1-a& ) 0! =@-p/0-x+ax ).
i=0 =0
Thus, the factorial moment generating function for X is
o] 0
. _ k _ n.n a4 _ nmn n, n+1
1m M (o) = ) tp (k) = p't ZFp(n,l)t = o2 - pt)/(Q - t + gp ™).
k=n i=0
So, for instance,
v ol =EX = @-p"/a"
dt " n*” _ n ’
t=1
which for p = 1/2 yields E1/2Xn = 2n+1 - 2. Of course, results concerning the mean are

easily obtained by developing the recurrence for EXn+ in terms of EXn but the same is

1
not true for the higher moments. Lastly, the analysis of the probabilistic situations such as

the preceding may well reveal insights into the Fibonacci numbers and their extensions.
L o avo o



SOME GENERAL FIBONACCI SHIFT FORMULAE

FRANK J. D. TRUMPER
Seismograph Services, Ltd., Holwood, Keston, Kent, England

The reader is probably aware of such formulae as: [1]

(a) Fn = Fk+1Fn—k * Fan-k—l

_ k-1
(b) F o= (D7 (FF F o) -

n+k+1 ~ F1«:+1 n+k

The object of this paper is to prove more general shift formulae. For this purpose,

the following notation will be used:

FnFm = (n:m), F_ = (n:1) = (1:n), etc.

n
Let
1+ NF _1-+5
o = —— and g = —
then o = -1. Now,
n n
F, = (1) = < _—_B
N

So

+ +

(u:m) = %(an m Bn m anﬁm _ amﬁn)
Replace n by x, and m by n+m - x. Then,
(xn +m - %) = %(anﬂn + Bn+m _ axﬁn-km-x _ an+m—xﬁx)
1 x,n+m-x n+m-x,x n,m m,_n
(n:m)—(x:n+m-x)=-5(043 + o B -adp -ad B)

(aﬁ)m X-m ,N-X n-x ,X-m n-m n-m

(c) = 5 (] B +a 7B -«a - B )
m+1l
- (—1)5 @ 4 ﬁn-m _ ax—mBn-x _ an—xBx—m)
m+1

= (-1

(x - m:n - x)

If x is replaced by -x, we get

523
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(d) (mm) = (-xm +m + x) + (<)Y

-X - m:n + Xx) .
Equations (c) and (d) may be combined into the one formula:

(1) (nm) = (&x:n + m F x) + (—1)m+1(irx - m:n *# x)

By the same method, the following formulae may be proved:

2 @m) = @x + mm * x) + )™ xn - m 7 %)
(3) @+ xm) = (@xn +m) + )™ @Ex - mm)
(4)  + xm) = (x + mm) + D™ axn - m)
(5) ([x £ 1]:m) = Gnmx + m) + D™ @n - momnx)
(6) mx + 1]:m) = @0 + mmx) + D™ nmx - m)
(7 mm) = D [xn +m + % - m + xn + 9]

Clearly, Equations (a) and (b) are special cases of Equations (2) and (7), respectively.

REFERENCE
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P. 48, page 12.
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ERRATA

Please make the following corrections on "A Generalized Fibonacci Numeration," by
E. Zeckendorf, appearing on pp. 365-372 of the October, 1972 Fibonacci Quarterly:

p. 366, line 15: Please change the third word from: sequencex to sequences.

p. 368, line 13: Read: tgg 5, 4,¢ = Fsg+Fa+ F o+ F g+ F_y .

line 8 from bottom: Underscore: symmetric pairs .

line 6 from bottom: Read: metric pairs may join up into one symmetric group
(e.g-, tg,0,-8> ts,4,-4,-8)-
line 4 from bottom: Underscore: saturated symmetric groups .
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MORE HIDDEN HEXAGON SQUARES

CARL F. MOORE
Tacoma, Washington

In [1], Hoggatt and Hansell prove the following remarkable result.

Theorem 1. Let Irrll be such that 0 < n <m and 2 < m. Then the product of the
six binomial coefficients surrounding rrrll is a perfect integral square.

In this paper, we show that this theorem is a special case of a more general result. In
particular, we prove the following theorem.

Theorem 2. Let Hj’ for j odd, be a hexagon of entries from Pascal's triangle with
j +1 entries per side and with the sides lying along main diagonal and horizontal rows of the
triangle. Then the product of the entries forming Hj is an integral square.

Proof. Let j be a positive odd integer and let n and r be integers with 1< n -j,
1Sr=n, and 0 Xr=n-j If Hj is centered at (2), then it can be displayed in the

following way where we label the sides I, *--, VI.
n-j\( n-i Y. (no-i)(n-i
r-j/ r-j+1 r -1 r
n-j+1 I n-j+1
r-j r+1

VI II

(2-1) (:23%))

v I
n+j-1 n+j-1
r -1 T+
n+jy\fn+j n+j n+j
n r+1 r+j-1 r+j
Of course, each coefficient is of the form E% where a, b, and c are the appropriate fac-
torials. We prove that the desired product is a square by proving that the product of the a's
is a square and similarly for the b's and c's. The products of the a's in sides I and IV,
respectively, are clearly [(n - j)!] i+ and [(n + j)!] *1 and both are squares since j is

odd. Also, the product of the a's in II, III, V, and VI and not in I or IV is clearly
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[ -j+D-j+2)--- a+j- 112 .
Similarly, the products of the b's in II and VI, respectively, are [(r + j)!]-j+1 and
[ (- j)!]j+1, and the product of the b's inI, II, IV and V and not inIIIand VI is

[e - j+ D -G +2)0- (r+j - 1)>
Finally, the products of the c¢'s in II and V, respectively, are [(n - r-j)!]j_‘-1 and

[@-r+)!] *1 and the product of the c¢'s in I,III, IV and VI and not in II and V is
[-j-r+D-j-r+2--(+j-1r-D%.

Therefore, the product of the coefficients in question is a rational square and, since the

product is a product of integers, it is also an integral square as claimed.

REFERENCE

1. V. E. Hoggatt, Jr., and Walter Hansell, "The Hidden Hexagon Squares,' Fibonacci
Quarterly, Vol. 9 (1971), pp. 120, 133.

L ate e d

THE BALMER SERIES AND THE FIBONACCI NUMBERS

J. WLODARSKI
Proz-Westhoven, Federal Republic of Germany

In 1885, J. J. Balmer discovered that the wave lengths (N of four linesinthe hydrogen
spectrum (now known as "Balmer Series') can be expressed by the multiplication of a numer-

ical constant k = 364.5nm (1 nm = 1 nanometre = 10'9 m) by the simple fractions as

follows:

(1) 656 = -g- X 364.5

2) 486 = % X 364.5 = %g X 364.5
_ 25

(3) 434 = 5= X 364.5

4) 410 = % X 364.5 = %g X 364.5

By extending both fractions, 4/3 and 9/8, be recognized the successive numerators
as the squares 32, 42, 5% and 62, and the denominators as the square-differences 3% - 22,
42 _ 22, 52 _ 22 g2 ._ 22

From this he developed his famous formula:
[Continued on page 540. ]



A POLYNOMIAL WITH GENERALIZED FIBONACCI COEFFICIENTS

BRUCE W. KING
Adirondack Community College, Glens Falls, New York

In Elementary Problem B-135 (this Quarterly, Vol. 6, No. 1, p. 90), L. Carlitz asks
readers to show that

n-1
Q) ‘Z: Fk 2n-k—l - 2n _ Fn+2 ,
k=0
and that
n-1
@) > Lkzn'k‘1 = 32" - L,
k=0

The problem invites generalization in at least two ways. It is natural to investigate

where Tk is the generalized Fibonacci sequence with Ty = a and T, = b. It is not diffi-

cult to show by induction that

n=1

n-k-1 _ n
(3) Z T, 2 = Ty(27) - To+2
k=0

The relations given in (1) and (2) are, thus, a consequence of (3).
A second generalization may be obtained by trying to determine whether anything worth-

while can be said about the polynomial

@)

-1
Z Tk xn_k—l .

n
k=0

This seems to be a more difficult problem than that posed by the first generalization, and the
rest of this note is devoted to it.

To begin with, evaluating (4) for several values of n suggests that
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n-1 n-1 n-1
n-k-1 _ n-k-1 n-k-1
) 2 Ty =a) Fpx thY T ,x
k=0 k=0 k=0

This can be proved by induction. For n = 1, both members of (5) reduce to b -a = T,.

(We use x? = 1 here.) If we now suppose (5) true for some integer n > 1, then

n n-1
n-k _ n-k-1
Z Tk X = X Z Tk X + Tn
k=0 k=0
n-1 n-1
_ n-k-1 n-k-1
= x|a)  Fy ,x + DY F X Ty
k=0 k=0
and, since T = aF + bF ,
n n-2 n-1

n n-1

n-k _ n-k
ZTkX = aZFk_zx +aan_2
k=0 =0

This completes the proof of (5). The problem has, thus, been reduced slightly to the problem
of evaluating an expression such as

in closed form, for such a result would lend some significance to the right member of (5).
Let us define
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n n ¥

N o= n-k _ n k
G- Dr 0y
k=1 k=1 *

Now, it is known [1, p. 43] that the power series

0
k-1
2 Fit
k=1
converges to
-1
1 -t -t
The radius of convergence is
Fi

where

6o 1t 5

is the Golden Ratio. Thus, for a fixed value of t in the interval of convergence

N -1 NG -1
STz <t o
it follows that
00 h
1 _ k-1 _ k-1
m-ZFkt =2 Rt Ry
-t 1 k=1
where Rn—+0 as n—w. Thus,
n
E F tk_l B : - Ry
2
o 1-t-t¢

or, what is the same,

529
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n
ZFktk=———t———tRn.
2
= 1-t-t

If we now let t = 1/x then, for x< -¢ or x>¢,

[Dec.

n
> Tk _ x lp - __x 1g
Xk 1 1 " x 'n 9 “x “n’
k=1X 1—'}2——2 X4 - x -1
X
and
n
F n+i
1 Z _lf_{_ _ X B Xn-l Rn
— X - x-1
k=1
We have, therefore,
xn+1 n-1
(6) fn(x) = -x Rrl
%2 -x -1
The problem is thus essentially reduced to finding the remainder Rn in some suitable
form. Investigating (6) for the first few values of n suggests that
R - Fn+1 X + Fn
n n-1,
(x x - 1)
This, in turn, suggests that
_ xn+1 n-1 Fn+1 Xt Fn
) = — - X n-1
X - x -1 X (x*-x-1)
That is,
n n+1
X - F x - F -
n-k _ n+1l n 1+ 5
(7) Z Fkx = - for x # —
k=1 X4 -x -1
For n = 1, both members reduce to 1. If (7) is true for

We will prove (7) by induction.

some integer n >1, then
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