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ARRAYS OF BINOMIAL COEFFICIENTS WHOSE PRODUCTS ARE SQUARES 

CALVIN T. LONG 
Washington State University, Pullman, Washington and University of British 

Columbia, Vancouver, B. C. 

1. INTRODUCTION 

In [l] , Hoggatt and Hansell show that the product of the six binomial coefficients su r -
rounding any part icular entry in Pasca l ' s triangle is an integral square. In the preceding a r -
ticle in this Journal [2] , Moore generalizes this resul t by showing that the product of the bi-
nomial coefficients forming a regular hexagon with sides on the horizontal rows and main 
diagonals of Pasca l ' s triangle and having j + 1 entries per side is an integral square if j is 
odd. In the present paper, we derive a fundamental lemma which leads to a generalization of 
Moore1 s resul t and enables us to show that a variety of other interesting configurations of b i -
nomial coefficients also yield products which are integral squares. 

It will suit our purpose to represent Pasca l ' s triangle (or, more precisely, a portion 
of it) by a lattice of dots as in Fig. 1. We will have occasion to refer to various polygonal 
figures and when we do, unless expressly stated to the contrary, we shall always mean a 
simple closed polygonal curve whose vert ices are lattice points. Occasionally, it will be 
convenient to represent a small portion of Pasca l ' s triangle by le t ters arranged in the proper 
position. 

Figure 1 

2. THE FUNDAMENTAL LEMMA AND ITS CONSEQUENCES 

Lemma 1. The product of the binomial coefficients at the vert ices of a pair of para l le l -
ograms oriented as in Fig. 2 or Fig. 3 is an integral square. We note that the paral lelograms 
in any pair may overlap and, if they do, the common ver t ices , if any, must be included twice 
in the product or , equivalently, must be excluded entirely. 

449 
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Figure 2 

Figure 3 

Proof. In the first case , for suitable integers m, n, r , s, and t, the binomial co-
efficients in question would be 

/ m \ / m + r \ / m + s \ / m + s + r \ 
\n J ' \ n + r / ' ^ n J' ( n + r J9 

( m + r \ / m \ / m + s + r \ / m + s \ 

n + r + ty ' I n + r + t l ' I n + s + r + t ) ' I n + s + r + 11 ' 

Thus the desired product is 

(m + r)l (m + s)! 
n!(m - n)! " (n + r)!(m - n)! ' nl(m - n + s)! 

(m + s + r)! ^ (m + r)I ml 
(n + r)!(m - n + s)! " (n + r + t)!(m - n - t)! ' (n + r + t)!.(m - n - r - t)! 

(m + s + r)I (m + s)! 
(n + s .+ r + t)!(m - n - t)! ' (n + s + r + t)! (m - n - r - t)! * 

This is clearly the square of a rational number. Since it is also an integer, it is an integral 
square as claimed. The argument for the second case is the same and we omit the details. 

As a first consequence of Lemma 1, we now obtain the theorem of Hoggatt and Hansell. 
Theorem 2. The product of the six binomial coefficients surrounding ( m ] i nPascaPs 

triangle is an integral square. 
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Proof. Let d = ( J and a, b, c, e5 f, and g be the six adjacent binomial coef-
ficients as arranged in the a r ray 

a e 
b d f 

c g 

Since a, b, c, d and e, d, g, f form parallelograms as in Lemma 1, it is immediate that 
both abcd2efg and abcefg are integral squares as claimed. 

By precisely the same argument, we obtain the following generalization of Theorem 2 
which is different from the generalization of Moore mentioned above. 

Theorem 3. Let m > 1 and n > 1 be integers and let H be a convex hexagon whose 
sides lie on the horizontal rows and main diagonals of Pascal1 s triangle. Let the numbers of 
elements on the respective sides of H be m, n, m, n, m, and n in that order , with m 
being the number of elements along the bottom side. Then the product of the binomial coef-
ficients at the ver t ices of H is an integral square. 

Proof. Of course if m = n = 2, this reduces to Theorem 2. In any case, we consider 
two m by n parallelograms with a common vertex and let a, b, c, d, e9 f, and g denote 
the binomial coefficients at the vert ices of the rectangles as indicated in Fig. 4. Clearly, 
a, b , c, g, f, and e lie at the vert ices of a hexagon H of the type described and any such 
H can be obtained in this way. Therefore, it is again immediate from Lemma 1 that abcd2efg 
and abcefg are integral squares. 

a e 

c g 
Figure 4 

Now let us call the hexagon of Hoggatt and Hans ell a fundamental hexagon. Let P be 
any simple closed polygonal figure. We say that P is tiled with fundamental hexagons if P 
is "covered" by a set f of fundamental hexagons in such a way that 

(i) the vert ices of each F in f a re coefficients in P or in the interior of P , 
(ii) each boundary coefficient of P is a vertex of precisely one F in ^ , and 

(iii) each interior coefficient of P is interior to some F in f or is a vertex shared 
by precisely two elements of "f B 
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For example, in Fig. 5, G can be tiled by fundamental hexagons and H cannot. Now 
using the result of Theorem 2 and repeating the essentials of its proof we obtain the following 
quite general result which leads directly to a generalization of the resul t of Moore. 

Figure 5 

Theorem 4. The product of the binomial coefficients in (the boundary of) any polygonal 
figure that can be tiled with fundamental hexagons is an integral square. 

To see that this generalizes the result of Moore, we prove the following theorem. 
Theorem 5. The product of the binomial coefficients in (the boundary of) any convex 

hexagon with sides oriented along the horizontal rows and main diagonals of Pasca l ' s triangle 
is an integral square provided the number of coefficients on each side is even. 

Proof. In view of Theorem 4, it suffices to show that any hexagon of the type described 
can be tiled with fundamental hexagons. Let H be any such hexagon with n coefficients on 
its boundary. Plainly, the least possible value of n is 6 which occurs only in the case of 
a fundamental hexagon. Thus, the result is trivially true in the first possible case. Suppose 
that it is true for all possible n with n < k where k is any possible value of n with k > 
6. Since k > 6, it follows that at leas t one side St of H, must contain at least four coef-
ficients. Without loss of generality, we may presume that St is the lower left-hand side of 
H, as indicated in Fig. 6. We may also number the other sides in a counterclockwise di-
rection around PL. By the induction assumption, it suffices to divide H, into two hexagons 
H. and H. of the type described and with i < k and j < k. We proceed as follows. Let 
c denote the third coefficient up from the lower end of Si and let S be the chord of H, ex-
tending from c and parallel to S2 as in Fig. 6. Let g be the right-hand end point of S. 
We distinguish two cases . 

* * * * 

Figure 6 

Case 1. If g is on S3 as in Fig. 7, then the figure a, b, d, h, f, e is an H. of the 
desired form since the segment dh contains the same number of coefficients as S2 and the 



1973] ARRAYS OF BINOMIAL COEFFICIENTS WHOSE PRODUCTS ARE SQUARES 453 

Sfi ^» ^^S4 

d S' h 

* V * * <> * 
g - S3 

Figure 7 

other four sides contain two coefficients each. Also, if we let s[ denote the upper par t of 
St starting at c, let S[ denote the line segment eg", and let Sj denote the upper par t of 
S3 starting at g, then Sj contains two fewer coefficients than Sl9 S\ contains two more 
coefficients than S2, and S3 contains two fewer coefficients than S3. Thus, the hexagon 
formed by s\, s j , S3, S4, S5, and S6 is an H. of the desired type. Finally, since s\ l ies 
on the interior of H, (except for its endpoints), it is clear that i < k and j < k as desired. 

Case 2. In this case , g l ies on S4 and the appropriate diagram is in Fig. 8. Since 
the remainder of the argument is essentially the same as for Case 2, we omit the details. 
This completes the proof. 

Figure 8 

We observe that the convexity conditions of Theorems 3 and 5 are necessary since 
neither the product of the corner coefficients nor of the boundary coefficients of the hexagon 
in Fig. 9 is an integral square. Also, it is easy to find examples of convex hexagons where 
the resul ts of Theorems 3 and 5 do not hold if the condition on the number of elements per 
side is not met. In fact, we conjecture that the conditions of both theorems are necessary 
as well as sufficient. 

Figure 9 
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3. SOME ADDITIONAL OBSERVATIONS 

In Section 2, we were pr imar i ly concerned with hexagons, but it is c lear from the fun-
damental lemma that anything that can be "covered" with pairs of properly oriented para l le l -
ograms has the property that the product of those coefficients at the vert ices of an odd num-
ber of the paral lelograms in any such covering is an integral square. Also, if Pt and P2 

a re integral squares which are products of integers and P3 is the product of those integers 
common to P 1 and P2 , then P ^ /P3 is also an integral square. With these ideas in 
mind, it is possible to construct an infinite variety of configurations of binomial coefficients 
whose products are integral squares. The first two examples of such configurations are con-
tained in the following theorems. 

Theorem 6. Let K be amy convex octagon with sides oriented along the horizontal and 
vertical rows and main diagonals of Pasca l ' s triangle. Let the number of ver t ices on the v a r -
ious sides be 2r , 2s, t, 2u9 2v, 2u, t, and 2s as indicated in Fig. 10 where r , s, t, u, 
and v a re positive integers. Then the product of the boundary coefficients is an integral 
square. 

2v 
* * * *—-

feiu. f * ^ ^ * * 

/
{ * * * * * 

* * * * * * 

t Y * * * * * * * f t 
1 * * * * * * * * i 

\
* * * * * * * 

* * * * * *— 
2r 

Figure 10 

Proof. The proof of this theorem is essentially the same as for Theorem 5 and will be 
omitted. 

In Theorem 6, the convexity condition is not necessary, but it is not presently clear 
how the theorem should read if this condition is removed. While the octagons of Theorem 6 
can be tiled with fundamental hexagons, the octagon of Fig. 11 cannot. It can, however, be 
tiled with pairs of properly oriented parallelograms (or a combination of parallelograms and 
fundamental hexagons, if you prefer) and it follows from the fundamental lemma that the prod-
uct of the boundary coefficients is an integral square. 

Also note that the products of the corner coefficients in Fig. 10 of Theorem 6 and in 
Fig. 11 need not be squares. However, as the following theorem shows, at least one c lass of 
octagons exists for which the product of the corner coefficients is always an integral square. 

/ 2 s 
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Figure 11 

Theorem 7. Let K be a convex octagon formed as in Fig. 12 by adjoining paral le lo-
grams with r and s and r and t elements on a side to a parallelogram with r elements 
on each side. Then the product of the corner coefficients of the octagon is an integral square. 

Figure 12 

Proof. Let a, b, c, d, e} f, g, and h denote the corner coefficients of the octagon 
as indicated in Fig. 12. Since a, d, e, and h and b, c, f, and g a re the vert ices of 
rectangles oriented as in the fundamental lemma, it is c lear that their product is an integral 
square as claimed. 

Again it is c lear that the convexity condition of Theorem 7 is not necessary. The most 
general statement which we can make at the present time is that the product of the corner co-
efficients of any octagon formed by joining (as in Fig. 13) the ver t ices of pai rs of paral le lo-
grams oriented as in the fundamental lemma is an integral square. It is not c lear that even 
this condition is necessary. See Usiskin [3]. 
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Figure 13 

We now give, without proof, several examples of configurations of binomial coefficients 
whose produces a re integral squares. Each example given is a (sometimes not simple, 
closed, or connected) polygon and it is intended that one consider the product of the boundary 
coefficients only. Note that it is quite possible to find solid and other non-polygonal a r rays 
whose products are integral squares 

*P 'R T* fr * 

\
* * * * 

* * f 

* * * 
* * * 

* * * * \ 

* * * » » * -* *_ 
* * * 

*/7V 
f \ * / r I * \ / * 

/ \ * * * 
* * *-

IV 

* * * *-—* * —* *— 
* * * * \ »—-*——* *• \ 

* * * * * * * * * 
* * * * * * * * * * 

* * * * * * * * * 
* * * * * * * * * * 

* * * * * * * * * 
*. * * * * * * * * * 
\ * * * * — \ * * * VI 

* * 
* 

T T 

* 
T T 

* 
JW * 

VII 
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GENERALIZED FIBONACCI POLYNOMIALS 

V. E. HOGGATT, JR.# and MARJORIE BICKNELL 
San Jose State University, San Jose, California 

The Fibonacci polynomials and their relationship to diagonals of Pasca l ' s triangle are 
generalized in this paper. The generalized Q-matrix investigated by Ivie [1] occurs as a 
special case. 

1. THE FIBONACCI POLYNOMIALS 

The Fibonacci polynomials, defined by 

(1.1) F0(x) = 0, Ft(x) = 1, F2(x) = x, F
n + 2 ( x ) = x F

n + i ^ + F
n ( x ) ' 

a re well known to readers of this journal. That the Fibonacci polynomials a re generated by 
a matr ix Q2, 

(1.2) Q 2 = | t nl- Q ? = ' V l ( X ) Fn(X> 

( ; ! ) • F (x) F Ax) 
n n-1 

can be verified quite easily by mathematical induction. Also, it is apparent that, when x = 1 , 
F (1) = F , the n Fibonacci number, and when x = 2, F (2) = P , the n Pell number. n n n n 

Further , when Pasca l ' s triangle is written in left-justified form, the sums of the e le -
ments along the rising diagonals give r i se to the Fibonacci numbers , and, in fact, those e l e -
ments are the coefficients of the Fibonacci polynomials. That i s , 

[(n-l)/2] 
(1.3) Fn(x) = 5(-;-)^. 
where [x] is the greatest integer contained in x, and 

( " ) is a binomial coefficient 
The first few Fibonacci polynomials are displayed below as well as the a r r ay of their 

coefficients. 

457 
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Fibonacci Polynomials 

Ft(x) = 1 

F2(x) = x 

F3(x) = x2 + 1 

F4(x) = x3 + 2x 

F5(x) = x4 + 3x2 + 1 

F6(x) = x5 X ^ x 3 + 3x 

F7(x) = x6 + 5x^k,6x2 + 1 

~r 
F8(x) = x7 + 6x5 + 10x3 + 4x 

Coefficient Ar ray 

If one observes that, by rule of formation of the Fibonacci polynomials, if one writes 
the polynomials in descending order , to form the coefficient of the k te rm of F (x), one 
adds the coefficients of the k te rm of F n(x) and the (k - 1) term of F Q(x), the 

n—x n—u 
a r r ay of coefficients formed has the same rule of formation as Pascal1 s triangle when it is 
written in left-justified form, except that each column is moved one line lower, so that the 
coefficients formed are those elements that appear along the diagonals formed by beginning 
in the left-most column and preceding up one and right one throughout the left-justified Pascal 
triangle. Throughout this paper, this diagonal will be called the rising diagonal of such an 
ar ray . 

2. THE TRIBONACCI POLYNOMIALS 
Define the Tribonacci polynomials by 

T_i(x) = T0(x) = 0, Tt(x) = 1, T2(x) 

(2.1) W x ) x2Tn + 2(x) + xTn + 1(x) + Tn(x). 

th When x = 1, T (1) = T , the n Tribonacci number 1, 1, 2, 4, 7, 13, 24, 44, 81, 
T „ = T 2 + T - + T . The first few Tribonacci polynomials follow. 

Tribonacci Polynomials 
TjW = 1 

T2(x) = x2 

T3(x) = x4 + x 

T4(x) ^ \ x 6 + 2 ^ + 1 

T5(x) = x8 HN3X5 + 3x2 

T6(x) = x1 0 '+ 4 x N ^ 6 x 4 + 2x 

TT(x) = x12 + 5x8 + 10x6 + 7x3 + 1 

T8(x) = x14 + 6X11 + 15x8 + 16x5 + 6x2 
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Tribonacci Coefficient Ar ray 

1 
1 
1 
1 
1 
1 
1 
1 

459 

Left-Justified Trinomial Coefficient Ar ray 

1 

1 

1 

1 

1 

1 

1 

2 

3 

4 

5 

1 

3 

6 

10 

15 

(1 + X 

2 

7 

16 

30 

+ x2 A 

1 

6 

ft 
45 

3 

16 

51 

n = 0, 

1 

10 4 

45 30 

1, 

1 

15 

The Tribonacci coefficient a r r ay has the same rule of formation as the trinomial coefficient 
a r ray , except that each column is placed one line lower. Thus, the sums of the rows are the 
same as the sums of the rising diagonals of the trinomial coefficient a r ray , both sums yield-
ing the Tribonacci numbers 1, 1, 2, 4, 7, 13, 24, • • • , and the coefficients of the Tribonacci 
polynomials are the trinomial coefficients found on those same rising diagonals. That i s , 

(2.2) 
j=0 X ** 

. 2n-3j-2 

where 

( " ) , 

is the trinomial coefficient in the n row and j column where, as is usual, the left-most 
column is the zero column and the top row the zero row, and 

0), = ° B)>-
The Tribonacci polynomials a re generated by the matr ix Q3, 
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Q3 

so that 

(2.3) Q3 

W x ) Tn(x) T n - 1 « 
xT (x) + T ,(x) xT Ax) + T 0(x) xT 0(x) + T Q(x) n n -1 n-1 n-2 n-2 n-3 

Tn(x) T n - l ( x ) T n - 2 ( x ) 

A proof could be made by mathematical induction. That Q3 has the given form for n = 1 is 
apparent by inspection of Q3, element-by-element. Expansion of the matr ix product Q3 = 
Q3Q3 gives the elements of Q3 in the required form, making use of the recursion (2.1). 

Notice that det Q3 = l n = 1, analogous to the Fibonacci case. In fact, we can write 
an interesting determinant identity. Again using (2.1), we multiply row one of Q3 by x2 and 
add to row 2. Then we exchange rows 1 and 2 to write 

(2.4) (-1) = 

T n + 2 ( x ) 

T n + l W 

Tn(x) 

T n + l ( x ) 

Tn(x) 

Tn-lW 

Tn(x) 

T n - l ( x > 

T n - 2 ( x ) 

which becomes an identity for Tribonacci numbers when x = 1. 

3. THE QUADRANACCI POLYNOMIALS 

The Quadranacci polynomials are defined by T* (x) = T* (x) = T*(x) = 0, T*(x) = 1, 

(3.1) 

The f irst few values are 

T*+4(x) = x3T*+ 3(x) + x2T*+ 2(x) + xT*+ 1(x) + T*(x) . 

Ti(x) = 1 

T2(x) = x3 

T3(x) 

T4(x) = x9 4 ^ x 5 + x 

T5(x) = x12 + S x 8 ^ ^ + 1 

T6(x) = x15 + 4X11 + 6 x 7 > ^ x 3 

T7(x) = x18 + 5x14 + 10x10 + 10x6 + 3x2 
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Notice that the coefficient of the j term of T*(x) is the sum of the coefficients of 
the j t h term of T J . J W , (j - l ) S t term of T* 9(x), (j - 2 ) n d term of T* Q(x), and 

rd * n~* 
(j - 3) term of T ,(x) when the polynomials a re arranged in descending order . Then, 
the a r ray of coefficients, if each row were moved up one line, would have the same rule of 
formation as the left-justified a r r ay of quadranomial coefficients, arising from expansions of 
(1 +.x + x2 + x3)11, n = 0 , 1 , 2 , • • • . Thus, the coefficients of T*(x) are those found on the 
n ^ rising diagonal of the quadranomial triangle. Also, T*(l) = T*, the n Quadranacci 
number 1, 1, 2, 4, 8, 15, 29, 56, 108, • • • , T* + 4 = T* + T* + T* + T*. 

The Quadranacci polynomials are generated by the matrix Q4, 

Q4 

x3 1 0 0 \ 
x2 0 1 0 
x 0 0 1 
1 0 0 0 / 

.th so that Q? = (a..) has its j column given by a ^ = T*+ 2_/x>> a
2 j = x 2 T n + l - j ( x ) + 

x T n - J ( x ) + T n - l - 3 ( x ) ' a 3 j = ^ U - j W + T 5 - j W ' and % = T*+ 1_.(x), j = 1, 2, 3,4.. 
That Q £ has the form claimed above can be established by mathematical induction. That Q4 
has the stated form follows by inspection. Let Q^+ = (b ) and Q4 = (q.^). Then weex-
pand Qf+1 = Q 4 Q £ . The first row of Qf+ has the required form, for 

b l j = q l i a i j + q i 2 a 2 j + q i 3 a 3 j + q i 4 a 4 j 

= [x3T*+ 2_.(x)] + [x2T*+ 1_.(x) + xT*_.(x) + T* - ; U j (x ) ] + 0 + 0 

i(n+l)+2-j 

where we make use of (3.1). Computation of b 9 . , b Q . , and hA. is s imilar , and shows that 
n+1 3 J 3 

Q4 has the required form, which would complete the proof. 
We derive a determinant identity for Quadranacci polynomials from Q4 by forming the 

matr ix Q 4
n as follows. Add x3 times row 1 to row 2, making a' = T* (x). Add x2 

times row 1 and x3 times row 2 to row 3, producing a' = T*+4_.(x). Exchange rows l a n d 
n J J 

3. Then matrix Qf has 

a i j = T n + 4 - j ( x ) ' a 2 j = T n + 3 - j ( x ) ' a 3 j = T n + 2 - j ( x ) • 

and 

a4j = T n + l - j ( x ) ' j = l j 2 ' 3 ' 4> a n d d e t Q4* n = ( - D n + 1 

because there was one row exchange. That i s , for example, when x = 1, 
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(3.2) (-I)' n+1 

IT* n+3 

IT* 
1 n+2 
T* n+1 

T* n 

T * 
n+2 

T * 
n+1 
T* n 

T* , n-1 

n+1 

T* n 

n-1 

n-2 

T* ! n 

T* n 
n-1 

T * 
n-2 

T* n-3 

where T* is the n Quadranacci number. 

4. THE R-BONACCI POLYNOMIALS 

Define the r-bonacci polynomials by 

R - ( r - 2 ) ( x ) = R - ( r - l ) ( x ) = = R_1(x) = RQ(x) = 0, R^x) = 1, R2(x) = x r - 1 

(4.1) R ^_ (x) = x r " 1 R _,_ ,(x) + x r " 2 R ^ Q(x) + . . . + R (x) n+r n+r-1 n+r-2 n 

The r-bonacci polynomials, by their recursive definition will have the coefficients of R (x), 
written in descending order , given by the coefficients on the n rising diagonal of the left-
justified r-nomial coefficient a r ray , the coefficients arising from expansions of 

r l n 

(1 + x + x2 + -. . + x ) , 
That i s , 

(4.2) 

where 

Rn(x) 

(-I 

n = 0, 1, 2, 

( r -D(n- l ) - r j 

is the element in the n row and j column of the left-justified r-nomial tr iangle, and 

0). 0 when j > n 

The r-bonacci polynomials are generated by the r x r matr ix Q , 

Q. 

1 X 

r-2 
1 x 

r-3 
X 

X 

\ 1 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

• • o\ 

0 

0 

1 

•• o) 
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which is an identity matrix of order (r - 1) bordered on the left by a column of descending 
powers of x and followed by a bottom row of zeros . The matrix Q n has R (x) as the 
element in the upper left and R (x) in the lower left, with general element a., given by 

ii l j 

r-1+1 

k=l 

Proof of (4.3) is by mathematical induction. Let Q = (b..). Then b . - = x ~ , i = 1, 2, J ^ r IJ i i ' ' ' 
• • • , r; b. . = 1, j = i + 1, i = 1, 2, • • • , r; and b.. = 0 whenever j f 1 and j f i + 1. 
Let 

~n+l _, _n / v Q = Q Q = ( c ) . 
^ r ^ r r lj 

Then 

3ij =Sb ikakj = bilalk+2b-a' 
k=l k=2 

r 

^ i k - k j 

= x r - 1 R _,, .(x) + a . ^ . + 0 n+l- j 1+1,3 

k=l 

r- i+1 
r+ l -k - i 

^(n+D+1-j-k 
k=l 

/ j x i , x " ' R ^ ^ u i A i ,(x) , 

which is the required form for the general element of Q , completing the proof. 
If we operate upon Q as before, we can again make a determinant identity. Repeat-

r—1 st r—2 nd r~f~l—i 
edly add x times the (i - 1) row, x times the (i - 2) row, • • • , x times 
the first row to the i row, to produce a new i row with R ._- in its first column, for 
i = 2, 3, • • • , r - 1. Then make (r - l ) /2 row exchanges to put the elements in the columns 
in descending order . The matrix R formed has its general element given by 

r. . = R , ,.. . .(x) , 13 n+r+l-i-3v 

and its determinant has value (-1) •• ' *. That i s , when x = 1, the r-bonacci 
numbers 

, 0, 1, 1, 2, • •• , R ̂  = R ^ -, + R ̂  „ + • • • + R , 
' n+r n+r-1 n+r-2 n 

have the determinant identity 
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d e t R = 

n+r-1 n+r-2 

R n+r-2 

R n+1 
R 

n 

n+r-3 

R 

R n-1 

R n+1 
R n 

*n-r+3 

*n-r+2 

n -1 

n-r+2 

n-r+1 

(-1) (r-l)(2n+l)/2 

Notice that Eq. (1.2) gives 
det Q2 = 

for r = 2. Since we recognize 
F n + l W F n - l W " F n ( x ) = ^ det R 

Wx ) Fn-l ( x ) " Fn(x)l = X 

as the characteris t ic value [2] , [3] , [4] of sequences arising from the Fibonacci polynomi-
a l s , we define |det R | = 1 as the characteris t ic value of the sequences arising from the gen-
eralized Fibonacci polynomials, r ^ . 2 . Then, for example, (2.4) gives the characterist ic 
value |(-1)| = 1 for the sequences arising from the Tribonacci polynomials, while (3.2) is 
the a r ray giving the characterist ic value |(-1) | = 1 for the Quadranacci numbers. 

The matr ix R just defined has the interesting property that multiplication by Q p ro -
duces a matr ix of the same form. To clarify, let R = R = (r . . ) be the r x r matrix 

J r , n rj with R (x) appearing in the lower left corner , r. . = R , ,., . .(x). Then n ^ & ij n+r+1-i-j 

(4.4) R n Q = R r , 0 r r , n 

which is proved by mathematical induction as follows. Consider the matrix product R Q 
= (p..) for any n, where we observe that the first column of Q contains the multipliers 

*3 th r 

for the recursion relation for the polynomials R (x). The i row of R multiplied by r , n 
the first column of Q produces 

5u = X) r+ l -k p . . = 7 R . . . . . . (x) x " = R . .., «(x) = R/ ,-v, ,- . ..(x) , 
i l *-^* n+r+1-i-k n+r+l- i (n+l)+r+l- i - l 

k=l 

while, when j f 1, since the only non-zero elements of Q occur when i = j - 1, the i 
row of R times the j column of Q produces r , n J ^ r v 

.th 

p i j R n+r+ l - i - ( j - l ) R (n+ l )+r+ l - i - j ' j 2, 3, • • • , r , 

so that R Q = R ,.,, for any n. Then, we must have that R nQ = R .,, and, if r , n ^ r r , n + l J n , 0 ^ r r , l 

then 

k 1 R n Q = R . _, , 
r , O^r r , k - l 

R A Q k = (R n Q k _ 1 ) Q = R . n Q = R . , r , 0 ^ r r , 0 ^ r ^ r r , k - l ^ r r , k 
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which completes a proof of (4.4) by mathematical induction, 
If 

identity 
If we equate the elements in the upper left corner of R and R ^ Qn we obtain the 

r , n r , 0 ^ r 

V l ( x ) = V l ( x ) V l ( x ) + Rr_2(x)[xr-2Rn(x) +xr-3Rn_l(x) 

+ - + E n W x ) l 
+ R r _ 3 (x)[x r " 3 R n (x) + x r " 4 R n - 1 ( x ) 

(4.5) + . . . + R _ f x ) ] 
n-r+3 

+ R1(x)[xRn(x) + Bn_1(x)] + R0(x)Rn(x) 

Notice that the matr ix Q provides the multipliers for the recursion relation for the 
polynomials R (x) but does not depend upon the original values of the polynomials in the 
proof of (4.4). Let H (x) be any sequence of polynomials with r a rb i t ra ry start ing values 
H0(x), H^x), • • • , Hr_1(x), and with the same recursion relation as the polynomials R (x). 
Form the matrix R* = ( r * ) , r* = H , ,- . .(x). By the arguments used ear l ie r , we r , n rj IJ n+r+1-i-j J & 

can derive R* A Q n = R* and thus obtain r , 0 ^ r r s n 

H n + r - l = H r - l ( x ) R n + l ( x ) + Hr-2(x) ^ " X ^ + ̂ "X-l̂  
+ • • • + VrHJ^ 

+ H Q (x)[x r _ 3 R (x) + x r _ 4 R Ax) r - 3 L n n -1 
( 4 - 6 )

 + . . . + B + , W ] 
n-r+3 J 

+ Hi(x) [xRn(x) + R n - 1 (x) ] + H0(x)Rn(x) 
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PERIODICITY OVER THE RING OF MATRICES 

R. J. DECARLI 
Rosary Hill College, Buffalo, New York 

Let R be the ring of t X t matr ices with integral entr ies and identity I. Consider the 
sequence { M } of elements of R, recursively defined by 

(1) M ^0 = A-M _,, + A„M for m > 0 , 
m+2 1 m+1 0 m 

where M0, Ml9 A0, and At are a rb i t ra ry elements of R. In [1] we established identities 
for such a sequence over an arb i t ra ry ring with unity. In this paper we establish an analogue 
ofRobinsonTs [3] result concerning periodicity modulo k where k is an integer greater than 
1 We need the following definitions. 

Definition 1. Let A = [a. .] be an element of R. We reduce A modulo k by reduc-
ing each entry modulo k. If B = [b..] E R, then A = B (mod k) if and only if a... s b . . 
(mod k) for all i, j . 

Definition 2. We say that the sequence defined by (1) is periodic modulo k if there ex-
is ts an integer L > 2 such that M. = MT . (mod k) for i = 0, 1, 2, •**. By the nature 
of the sequence we see that this is equivalent to the existence of an L > 2 such that M0 = MT 

(mod k) and Mt = M L + 1 (mod k). 
We assume for all matr ices in the following Theorem that reduction modulo k has a l -

ready taken place and we employ the usual notation for relative pr imeness . For A C R we 
let det A stand for the determinant of A. 

Theorem 1. If (det A, k) = 1, then the { M } sequence defined by (1) is periodic 
modulo k. 

Proof. Let 

(2) Wt 

where the entr ies are matr ices from R. If we set 

r° i i 
[ A0 At J ' 

S m hi 
L M m + 1 J for n > 0, then a simple induction argument yields 

(3) S m = W f S0 . 

If we can find an L such that Wj E I (mod k), then ST = W1 S0 = TS0 = S0 (mod k) and 
we will have 

466 
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M L 
L M L+l . 

M0 

(mod k) , 

which gives us periodicity. To show that such an L exists consider the sequence of matr ices 

(4) I , Wj , W\, 

We first show that each matrix in (4) has an inverse modulo k. Laplace's method for eval-
uating determinants immediately gives de 
since (detA0, k) = 1. Also, (detA0, k) 
uating determinants immediately gives det wf = (detW^)1* = ((-1) d e t A 0 ) r £ 0 (mod k), 

1 implies (((- l) t det A0 ) r ,k) 1 and thus 

(5) (det wf, k) 1 . 

For r = 0, W? = I which is its own inverse. For r > 0 we let w.. denote the entries of 
1 IJ 

Wi and A., the cofactor of w.. in det W^ We observe that A... is always integral. Using 
matrix methods we have 

(6) (wf) 13 
det w: 

where T stands for the transpose. An entry in the right-hand side of (6) is of the form 

det w: 

where c is an integer. The equation (det W1 )x = c (mod k) has a unique solution since 
from (5) we have (det wf, k) = 1. Thus each entry in the right side of (6) is an integer and 
Wi has an inverse mod k for all r > 0. Because we only have k distinct integers mod k 

(2t)2 
and (2t)2 places to put them, we have at most k different matr ices in (4). Since the s e -
quence is infinite we must have 

(7) L~i~r r 
Wt = Wt (mod k) for some L 

Multiplying both sides of (7) by (W1 ) yields 

(8) Wi = I (mod k) 

Since Wt £ I we see that L > 2. Thus we have ST = WA S0 = IS0 = S0 (mod k) which 
implies MT = M0 and M. L+l Mj and establishes periodicity. 



468 PERIODICITY OVER THE RING OF MATRICES Dec. 1973 

The central role played by A0 is more clearly illustrated if we consider a higher or-
der recurrence defined for a fixed d >. 2 by: 

m+d d-1 m+d-1 d-2 m+d-2 + A^M , m > 0 , 0 m 

where the A. and the M., 0 < i < d - 1, are a rb i t ra ry elements from R. Even though 
there are 2d arbi t rary elements that determine this sequence, the question of periodicity 
still depends on the nature of A0. If det (A0, k) = 1, then we again have periodicity. This 
is proved using 

r o 
0 

V 

A, A d-1 

in place of Wj and 

S = m 

M 
m 

M m+1 

M m+d-1 

It is easy to show that S = V S0 and that det V depends on det A0. The r e s t of the proof 
follows as in the proof of Theorem 1. A close look at the position of A0 in V clearly indi-
cates why it is so important in determining periodicity. 

REFERENCES 

1. R. J. DeCarli , TtA Generalized Fibonacci Sequence Over an Arbi t rary Ring," Fibonacci 
Quarterly, Vol. 8, No. 2 (1970), pp. 182-184. 

2. I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, Wiley, New 
York, 1960. 

3. D. W. Robinson, "The Fibonacci Matrix Modulo m , n Fibonacci Quarterly, Vol. 1, No. 
2 (1963), pp. 29-36. 



SPECIAL DETERMINANTS FOUND WITHIN GENERALIZED PASCAL TRIANGLES 

MARJORIE BICKNELL and V. E. HOGGATT, JR., 
San Jose State University, San Jose, California 

That Pasca l ' s triangle and two classes of generalized Pascal tr iangles, the multinomial 
coefficient a r rays and the convolution a r rays formed from sequences of sums of rising diag-
onals within the multinomial a r r a y s , share sequences of k X k unit determinants was shown 
in [ l ] . Here, sequences of k X k determinants whose values are binomial coefficients in the 

co 
l a r numbers are explored. 
k column of Pasca l ' s triangle o r numbers raised to a power given by the (k- 1) triangu-

1. INTRODUCTION 

Fi rs t , we imbed Pasca l ' s triangle in rectangular form in the n X n matr ix P 
where V-

( i + j - 2 \ 
1 - 1 ) ' 

(1.1) 

1 

1 

1 

1 

1 

1 

2 

3 

4 

5 

1 

3 

6 

10 

15 

1 

4 

10 

20 

35 

1 

5 

15 

35 

70 

n x n 

Pasca l ' s triangle in left-justified form can be imbedded in the nX n matr ix A = (a . . ) , 

where 

- - (I- ) 
1 

1 

1 

1 

1 

0 

1 

2 

3 

4 

0 

0 

1 

3 

6 

0 

0 

0 

1 

4 

0 

0 

0 

0 

1 

(1.2) 

n Xn 

To avoid confusion, note that when Pasca l ' s triangle is imbedded in matr ices throughout this 
paper, we will number the rows and columns in the usual matr ix notation, with the leftmost 
column the first column. If we refer to Pasca l ' s triangle itself, however, then the leftmost 

469 
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column is the zero column, and the top row is the zero row. While we are dealing with 
infinite matr ices he re , the multiplication of n X n matr ices provides an easily understood 
presentation. As in [ l ] , compositions of generating functions actually lie at the heart of the 
proofs. 

Let us define an arithmetic progression of the r order , denoted by (AP) , as a 
sequence of numbers whose r row of differences is a row of constants, but whose ( r - 1) 
row is not. A row of repeated constants is an (AP)0. The constant in the r row of differ-
ences of an (AP) will be called the constant of the progression. That the i row of P a s -
cal ' s triangle in rectangular form is an (AP). with constant 1 was proved in [ l ] . We will 
have need of the following theorem from [ l ] , [2]. 

Theorem 1.1 (Eves' Theorem). Consider a determinant of order n whose i row 
(i = 1, 2, • • • , n) is composed of any n successive te rms of an (AP) with constant a.. 
Then the value of the determinant is the product a^ 2 • • • a . 

2. BINOMIAL COEFFICIENT DETERMINANT VALUES FROM PASCAL'S TRIANGLE 

Return again to matrix P of (1.1). Suppose that we remove the top row and left col-
umn, and then evaluate the k x k determinants containing the upper left corner. Then 

2| = 2, 3 , 
2 3 4 
3 6 10 
4 10 20 

= 4 

and the k x k determinant has value (k + l ) . 
Proof is by mathematical induction. Assume that the (k - l ) x (k - 1) determinant has 

value k. In the k x k determinant, subtract the preceding column from each column suc-
cessively for j = k, k - 1, k - 2, • • • , 2. Then subtract the preceding row from each row 
successively for i = k, k - 1, k - 2, • • • , 2, leaving 

1 1 1 
2 3 4 
3 6 10 
4 10 20 

1 1 1 
2 3 4 
3 6 10 
4 10 20 

1 

0 

0 

0 

1 

2 

3 

4 

1 

3 

6 

10 

1 
4 . . . 

10 • • • 

20 • • • 

= 1 + k . 
Returning to matrix P , take 2 x 2 determinants along the 2nd and 3rd rows: 

= 1, = 3, 
4 

10 1 = 6, 
4 

10 
5 

15 10, 

giving the values found in the second column of Pasca l ' s left-justified tr iangle, for 
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(0 0 i l ) 
('J1) ( J ; 2 ) 

- C i 1 ) 
by simple algebra. Of course, 1 X I determinants along the second row of P yield the suc-
cessive values found in the first column of Pasca l ' s triangle. Taking 3 x 3 determinants 
yields 

1 

1 

1 

2 

3 

4 

3 

6 

10 
= 1, 

2 

3 

4 

3 

6 

10 

4 

10 

20 

i 

= 4, j 
3 4 5 
6 10 15 

10 20 35 
= 10 , 

the successive entr ies in the third column of Pasca l ' s triangle. In fact, taking successive 
st 

k x k determinants along the 2nd, 3rd, • • • , and (k + 1) rows yields the successive en-
t r ies of the k column of Pasca l ' s triangle. 

To formalize our statement, 
Theorem 2.1. The determinant of the k x k matr ix R(k, j) taken with its f irst column 

the j column of P , the rectangular form of Pasca l ' s triangle imbedded in a matr ix , and 
its f irst row the second row of P , is the binomial coefficient 

(>-rk) 
To i l lustrate , 

detR(4,3) = 

3 

6 

10 

15 

4 

10 

20 

35 

5 

15 

35 

70 

6 

21 

56 

126 

= 

= 

3 

6 

10 

15 

3 

3 

4 

5 

1 

0 

0 

0 

= 

1 1 1 

4 5 6 

10 15 21 

20 35 56 

1 1 1 

3 4 5 

6 10 15 

10 20 35 

1 1 1 

3 4 5 

6 10 15 

10 20 35 

+ 

3 4 5 

6 10 15 

10 20 35 

+ 

2 

3 

4 

5 

2 

3 

4 

5 

1 

3 

6 

10 

3 

6 

10 

15 

1 

4 

10 

20 

4 

10 

20 

35 

1 

5 

15 

35 

5 

15 

35 

70 

det R(3,3) + d e t R(4,2) 
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F i r s t , the preceding column was subtracted from each column successively, j = k, k - 1, 
• • • , 2, and then the preceding row was subtracted from each row successively for i = k, 
k - 1, • • • , 2. Then the determinant was made the sum of two determinants, one bordering 
R(3,3) and the other equal to R(4,2) by adding the j column to the (j + 1) , j = 1, 2, 
• •. , k - 1. 

By following the above procedure, we can make 

detR(k, j ) = detR(k - 1, j) + det R(k, j - 1) . 

We have already proved that 

det R(k, 1) = 1 = ( k * ° j , det R(k,2) = k + l = | k * 1 j for all k, 

d e t R ( l , j ) = j = | j + ° J , de tR(2 , j ) = ( j + M for all j . 

If 

de tR(k - l , j ) = (j £ * " 2 J and det R(k, j - 1) = P + k ' 2 j , 

then 

det R(k .i» = ( )
k

+^2)*( j +r2) = ( j + r i ) 
for all k and all j by mathematical induction. 

Since P is its own transpose, Theorem 2.1 is also true if the words "column" and 
"row" a re everywhere exchanged. 

T 
Consider Pasca l ' s triangle in the configuration of A , which is j u s tPascaPs rectangu-

la r a r r ay P with the i row moved (i - 1) spaces right, i = 1, 2, 3, • • • . Form k x k 
T matr ices Rf(k, j) such that the f irs t row of Rf (k, j) is the second row of A beginning with 

th T 
the j column of A . Then AR'(k, j - 1) = R(k,j) as can be shown by considering their 
column generating functions, and since det A = 1, de tR f (k , j - 1) = de tR(k , j ) , leading us 
to the following theorems. 

T Theorem 2.2. Let A be the n x n matrix containing Pasca l ' s triangle on and above 
its main diagonal so that the rows of Pasca l ' s triangle are placed vertically. Any k x k sub-

T T 
matrix of A selected with its first row along the second row of A and its first column 

th T 
the j column of A , has determinant value 

( t +
i , - 2 ) 

T Since A is the transpose of A , wording Theorem 2.2 in te rms of the usual Pascal 
triangle provides the following. 
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Theorem 2.3. If Pascal1 s triangle is written in left-justified form, any k x k matrix 
selected within the a r ray with its f irst column the first column of Pasca l ' s triangle and its 
f irst row the i row has determinant value given by the binomial coefficient 

(k + i - 1 ] 
k / 

Returning to the rectangular Pascal matr ix P , in Theorem 2.1 , the first row of P 
was omitted to form the k x k matr ix considered. Now we omit any one row. 

Theorem 2.4. Let R.(k,j) be the k x k matrix formed from the rectangular Pascal 
matr ix P so that its first k rows are the first (k + 1) rows of P with the i row omit-
ted, and its first column is the j column of P. Then detR.(k, j ) is given by the binomial 
coefficient 

(i-.i:i) 
Proof. Notice that R ^ k J ) = R(k,j) of Theorem 2.1. If the f irst row is not the row 

th st 
omitted, by successively subtracting the p column of R (k, j) from the (p + 1) column, s 
p = k - 1, k - 2, *' * , 1, the new a r ray is R _1(k - 1, j + 1) bordered by a first row with 
f irst element one and all others zero , so that 

d e t R (k,j) = d e t R n(k - 1, j + 1) . 
S S —X 

If the theorem holds when i = s - 1, then 

« B ^ k -1. j • i) - ( j :» - . y . ' v / i ) - (i: i:;) • «».*.». 

completing a proof by mathematical induction. 

3. OTHER DETERMINANTS WITH SPECIAL VALUES 

Suppose we form a matrix using the zero , second, fourth, • • • , (2r) , • • • , rows of 
Pasca l ' s triangle written in rectangular form. Then the columns contain even subscripted 
elements only. Since the i column is still an i order arithmetic progression, Eves ' 
Theorem should apply. The constant for the j column will be 2̂ ~" , ra ther than 1, and 
the determinant of such a k x k matrix will be 2°-21-22 • • • -2 or 2^ " ' J. To c l a r -
ify this, we present such a 5 x 5 matr ix below, which has determinant 2°'21'22-23-24 = 210. 
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1 

1 

1 

1 

1 

* 

1 

3 

5 

7 

9 

"1 

0 

0 

0 

0 

1 

6 

15 

28 

45 

1 

2 

0 

0 

0 

1 

10 

35 

84 

165 

1 

5 

4 

4 

4 

1 

9 

16 

24 

32 

1" 

15 

70 

210 

495 

* 

1] 
14 

41 

85 

145 J 

r i 
0 

0 

0 

L°  

* 

* 

1 

2 

2 

2 

2 

"1 

0 

0 

0 

0 

"1 

0 

0 

0 

0 

1 

2 

0 

0 

0 

1 

2 

0 

0 

0 

1 

5 

9 

13 

17 

1 

5 

4 

0 

0 

1 

5 

4 

0 

0 

1 

9 

25 

49 

81 

1 

9 

7 

8 

8 

1 

9 

7 

8 

0 

1 

14 

55 

140 

285 

1 

14 

17 

44 

60 

1 

14 

17 

44 

16 

In this section, we will prove the following: 
Theorem 3.1. Form an n x n matrix in the upper left corner of Pascal1 s triangle in 

rectangular form (or in left-justified form) using the rows which are multiples of r so that 
(lr) row 

[n(n- l ) /2] 
the (i + 1) row in the matr ix is the f irs t n entr ies of the (ir) row of the Pascal a r ray 

th 
i = 0, 1, 2, • • • , n - 1 . The determinant of the matr ix is rL 

To prove this theorem, we require more information about r1*1 order arithmetic 
progressions. 

Lemma 3.1. Let j c . i , j = 0 , 1, 2, • • • , be a sequence of consecutive elements of an 
3* th 

(AP). with constants a.. Then the k difference sequence has elements given by 

2>p(p)«*- ^ 2>'(i)°j-* - •» 
p=0 X ' p=0 X ' 

Proof. We l is t successive differences: 

1st: 

2nd: 

c. - c. n 3 3-1 

(c. - c. n ) - (c. - c. 0 ) = c. - 2c. n + c. n 3 J - l J - l 3-2 3 j - 1 j - 2 

3 rd : <CJ " ^ j - l + °J-2> " ( CJ-1 " 2°J-2 + °j-3> 

c. = 3c. . + 3c. n - c. 0 3 3-1 3-2 3-3 

If the (k - 1) difference has the form of Lemma 3.1, then the k difference i s given by 
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k-1 , . k-1 

E'-Wvkp-E'-WVWp 
p=0 \ / p=o \ / 

• v l > p ( k P % + I> p ( k ; % *<-»V 
p=l \ / p = l \ / 

= E<-»t)«,-p • 
p=0 \ / 

which establishes the form given in the Lemma. When k = i, then the i difference is the 
constant of the sequence. 

Now form an n x n matrix P* with its (i + I)01' row the first n entr ies of the (ri) 
)f P 

given by 

* with its (i + 1) row the first n entri c iU~ '—'x 

s t row of Pasca l ' s triangle in rectangular form. Then the elements in its (k + 1) column are 

/ ( r - i ) k \ I k ) 
The k difference sequence for these elements is 

E<-»p(p)vP=E<-»p(p)(<r-/k) k = r 

st applying Lemma 3.1 and a formula given by Knuth [3]. The (k - 1) difference is not a 
constant, however, so that the sequence is an (AP), . By Eves ' Theorem, the determinant, 
,, .„ , o i 2 n ~ l n(n- l ) /2 
then, will be r ^ r 1 - ^ • • • -r = r . 

If an n x n matrix A* is formed using only the (ri) rows of Pasca l ' s left-justified 
T T 

triangle, and A is the transpose of A defined in (1.2), then A*A = P*, since the row 
r( i - l ) T 

generators of A* are (1 + x) , and of A , 

(-x-r T making the row generators of A*A 

(^.(.•^.(^r ( i - « + i 

which we recognize as the row generators of P*, making d e t A * = det P * = r ~ ' . 
(Here, we apply the method of proof using generating functions as in [ l ] . ) 
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For example, when n = 4 and r = 2, A*AT becomes 

[Dec. 

1 0 0 0 
1 2 1 0 
1 4 6 4 
1 6 15 20 

1 1 1 1 
0 1 2 3 
0 0 1 3 
0 0 0 1 

r i 1 1 1" 
1 3 6 10 
1 5 15 35 
1 7 28 84 

In fact, we have the same resul ts if the row numbers taken to form P * or A* form 
an arithmetic progression. 

st Theorem 3.2. Form an n X n matrix which has i ts (i + 1) row the f irst n entries 
of the (ri + s) th row of Pascal1 s triangle in rectangular form, s ^. 0, i 

n(n- l ) /2 
0, 1, 

The determinant of the matr ix is r 
Proof. Subtract the (k - 1) column from the k column for k = n, n - 1 , • • • , 2, 

Repeating this process s times gives the matr ix P*. 
Reapplying Eves ' Theorem, Theorem 3.1 can be extended to the following. 

st Theorem 3.3. Form an n Xn matrix such that its (i + 1) row consists of any n 
successive entries whose subscripts differ by r from the i row of Pasca l ' s triangle 
written in rectangular form, i = 0, 1, • • • , n - 1. The determinant of the matr ix is rn^n~ ' . 

The theorems of this section are special cases of the more general theorem which 
follows. 

st Theorem 3.4. Form an n X n matr ix which has i ts (i + 1) row the subsequence 
{c. } , s a rb i t rary , of an (AP). {c^} with constant a., i = 0, 1, • • • , n - 1. Then the 
determinant is r a0a1a2 • n -1 

The proof, which is omitted, hinges upon showing that ( c . } is an (AP). with con-
lr+s I 

stant r a. and applying Eves1 Theorem. 
The theorems of this section can also be stated for columns. Next, the resul ts can be 

extended to convolution a r rays and to multinomial coefficient a r rays by considering certain 
matr ix products. 

4. MULTINOMIAL COEFFICIENT ARRAYS 
HK Let the a r r ay of multinomial coefficients arising from expansions of (1 + x + « • • +x ) , 

m > 1, n > 0, be called the m-multinomial coefficient a r ray . Let the left-justified m -
multinomial coefficient a r r ay be imbedded in an n X n matrix A . Let the n X n matrix 
F contain the rows of A as the columns of F written on and below the main diagonal. 

m m m ° 
Let A be the transpose of the n Xn matrix A of (1.2). Then the matr ix equation 

F , A J 
m - 1 m 2, 3, 

was proved in [ l ] . Since any k x k submatrix of A m having its first row along the second 
row of A and its f irst column the j column of A^ is the product of a submatrix of m J m v 
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determinant will be given by 
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F 1 with a unit determinant and a k x k submatrix of A satisfying Theorem 2.2, its 

( k + ^ - 2 ) -

Since the transpose of A is A ^ m m 
coefficient a r ray . 

Theorem 4.1 . 

we restate these resul ts in te rms of the m-multinomial 

The determinant of the k x k matr ix formed with its f irst column the 
f i rs t column of any multinomial coefficient a r r a y in left-justified form (the column of succes-
sive whole numbers) and its f i rs t row the i row of that multinomial coefficient a r r ay , has 
value given by the binomial coefficient 

( ' • ! - ) 

T st 
Now let (A*)' be the transpose of the n x n matr ix A* formed with its (i + 1) row 

, n - 1. the first n entr ies of the (ri) row of Pascal1 s left-justified triangle, i = 0 , 1 , 
T T Then the matr ix product F -.(A*) = (A* ) , where A* is the n x n matr ix formed u s -,V m - l v ' v m ' m 

ing only the (ri) rows of the m-multinomial coefficient a r ray , i = 0, 1, • • • , n - l , as 
can be proved by examining the column generating functions. For , the column generators of 
F ^ are G.(x) = [ x ( l + x + - - . +X 1 1 1 " 1 ) ] 3 " 1 and of (A*)T, H.(x) = (1+x) r ( ; i ""1 ) , j = 1, 

m-± 3 rn J 
2, • • • , n, making the column generators of F 1(A*) be H.(G.(x)) = (1 + x + x2 + • •« 

m r ( i - l ) n i - i j j ^ 
+ x ) u , which we recognize as the column generators for the matr ix (A* ) claimed 
above. Again, considering the very special products of submatrices involved, we are led to 
the following result . 

Theorem 4.2. If any multinomial coefficient a r r ay is written in left-justified form,, the 
determinant of the k x k matr ix formed with its (i + 1) 

,th 
st row the f irst n entr ies of the 

k(k- l ) /2 
(ri) row of the multinomial a r ray , i = 0, 1, 2, • • • , k - 1, is given by r 

As an example, for n = 5 and r = 2, F-^A*) = (A}) becomes 

1 

0 

0 

0 

0 

0 

1 

1 

0 

0 

A * \ T 

0 

0 

1 

2 

1 

0 

0 

0 

1 

3 

0 

0 

0 

0 

1_ 

• 

1 1 1 1 1 
0 2 4 6 8 
0 1 6 15 28 
0 0 4 20 56 
0 0 1 15 70 

1 1 1 1 1 
0 2 4 6 8 
0 3 10 21 36 
0 2 16 50 112 
0 1 19 90 266 

where (A|) has alternate rows of the trinomial coefficient a r r ay appearing as i ts columns, 
and the determinant equals 210. 

** T ** 
Further examination of a matr ix product, F ., (A ) , where the n x n matr ix A t m - l v m ' ' , m 

is formed with its (i + 1) row the first n entr ies of the (ri + s) row of the m-multinomial 
coefficient a r ray , s > 0 , i = 0, 1, 2, 
to the multinomial coefficients. 

1, shows that Theorem 3.2 can be extended 



478 SPECIAL DETERMINANTS FOUND WITHIN [Dec. 

Theorem 4.3. Consider any left-justified multinomial coefficient ar ray . Form a k x k 
iltinomial 
k(k- l ) /2 

matr ix with its (i + 1) row the first n entries of the (ri + s) row of the multinomial 

a r ray , i = 0, 1, k - 1, s > 0. The determinant of that matrix is given by r 

5. THE FIBONACCI CONVOLUTION ARRAY AND RELATED ARRAYS 

The Fibonacci sequence, when convolved with itself j - 1 t imes, forms the sequence 
in the j column of the matr ix C below (see [l] and [4]) 

1 

1 

2 

3 

5 

8 

1 

2 

5 

10 

20 

38 

1 

3 

9 

22 

51 

111 

1 

4 

14 

40 

105 

256 

1 

5 

20 

65 

190 

511 

1 

6 

27 

98 

315 

924 

n x n 

where the original sequence is in the leftmost column and the column generators a re given by 
[ 1/(1 - x - x2)] , j = 1, 2, • • • , n. If F 1 is the n x n matr ix formed as in Section 3 with 
the rows of Pasca l ' s triangle in vertical position on and below the main diagonal, and P is 
Pasca l ' s rectangular a r r ay (1.1), then FjP = C as proved in [1]. Now, since here sub-
matr ices of C taken along the second row of C are the product of submatrices of FA with 
unit determinants and similarly placed submatrices of P whose determinants are given in 
Theorem 2.1 , these submatrices of C have determinant values given by the same binomial 
coefficients found for P. 

The generalization to convolution triangles for sequences which are found as sums of 
rising diagonals of m-multinomial coefficient a r r ays written in left-justified form is not dif-
ficult, since the matr ix product F P yields just those a r rays as shown in [1]. We thus 
write the following theorem. 

Theorem 5.1. Let the convolution triangle for the sequences of sums found along the 
rising diagonals of the left-justified m-multinomial coefficient a r r ay be written in rectangular 
form and imbedded in an n x n matrix C*. Then the determinant of any k x k submatrix of 

fin 

C* selected with its first row along the second row of C* and its first column the j col-
umn of C* has determinant value given by the binomial coefficient 

( k + ^ ) 

st Now, let P* be the n x n matrix with its (i + 1) row the first n entr ies of the 
1, s > 0. Paralleling (ri + s) row of Pasca l ' s rectangular a r ray P , i = 0, 1, • • • , 

the development given for Theorem 5.1 but considering the matr ix product F P* which is 
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the n x n matr ix containing the (ri + s) rows of the convolution a r r ay for the rising diag-
onals of the given m-multinomial coefficient a r ray , we find that Theorem 3.2 extends to the 
following. 

s t Theorem 5.2. If a ,k x k matr ix is formed with its (i + 1) row the first n entries 
of the (ri + s) row of the rectangular convolution a r ray for the rising diagonals of any 
left-justified multinomial coefficient a r ray , i = 0, 1, • • • , k - 1, s > 0, then its deter-
minant has value r . 

Lastly, consider the sequence of sums of elements u (n; p, 1) found on the rising di-
agonals formed by beginning at the leftmost column of a left-justified m-multinomial coef-
ficient a r r ay and going up p and to the right one throughout the ar ray . (For the Pascal t r i -
angle, these numbers are the generalized Fibonacci numbers u(n; p, 1) of Harr i s and Styles 
[ 5 ] . ) Form the matr ix D (p, l) so that the sequence of elements having u (n; p, 1) as its 
sum lies (in reverse order) on its rows. D (p,l) will have a one for each element on its 
main diagonal and each column will contain the corresponding row of the m-multinomial a r -
ray but with (p - 1) zeros between entr ies , so that the generating functions for its columns 
are [x(l + x p + x 2 p -f • • . + x ( m " 1 ) p ) ] 3 , j = 1, 2, • • • , n. It was shown in [l] that D (p, 1)P 
gives the convolution triangle in rectangular form for the sequence u (n; p, 1). By examin-
ing the column generators , we also have that D (p , l )P* gives the a r ray containing the 
(ir + s) rows of the convolution triangle for the sequence u (n, p , 1). Putting all of this 
together, we write the following theorem. 

Theorem 5.3. Write the convolution triangle in rectangular form imbedded in an n x n 
matr ix C* for the sequence of sums found on the rising diagonals formed by beginning at 
the leftmost column and moving up p and right one throughout any left-justified multinomial 
coefficient ar ray . The k x k submatrix formed with its first row the second row of C* and 
its f irst column the j column of C* has determinant given by the binomial coefficient 

( ' • j - 1 ) 
The n x n matr ix formed with its (i + 1) row the first n entries of the (ri + s) row of 
the convolution triangle, i = 0, 1, • • • , n - 1, s > 0, has determinant equal tor" 
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NOTE ON A COMBINATORIAL ALGEBRAIC IDENTITY AND ITS APPLICATION 

L. C. HSU* 
Department of Mathematics, Jilin University, Changchun, People's Republic of China 

The identity 

JH!X"-'H^ a) >:(-Di(")[ °^L) = < / > [£ * g 

is well-known (cf. Schwatt [4, p. 104] and Gould [3, Formula (3.150)] ) and has been utilized 
by Gould [1], [2] in proving some elegant combinatorial identities, e. g. , 

(2) 

and 

(3) 

n 

k=0 

/ 
f a + b(n - k) 
I n - k 

n n 

T.T.i-t 

K b k + c 1 c = I a + c + b n \ k / b k + c I n J 

S^OWM-k=0 j 

In what follows, we shall establish a combinatorial algebraic identity which involves a 
wider generalization of (1). We offer the following 

Theorem. Let F(X) be a polynomial of degree m < n in X having the leading term 
P0X . Then for a rb i t ra ry quantities P l 5 • • • , P n and Q we have 

(4) F(Q) + ] T ( - l ) r J^ F ( P k + ••• + p k + Q> 
r= l H k ^ - • •< k r <n 

Dn extends over ali where the inner summation extends over all the r-combinations (klf • • • , k r ) of the integers 
1, 2, • • • , n, and ( j is 0 or 1 according as m < n or m = n. 

As a consequence of (4) we have a pair of generalized Euler identities (with m < n) as 
follows: 

* Communication concerning this paper should be directed to H. W. Gould, Mathematics De-
partment, West Virginia University, Morgantown, West Virginia 26506. 
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(5) 

and 

(6) 

X ' r= l l < k i < - - - < k < n ^ / 

= ( - ) ( - « n P 1 

r" 
p 2 • • • p . 

Qm + i;<-i>r s (p
kl

 + --- + p k r + Q)r 

r=l l S k ^ ' - ^ k <n 
l r -
( - ) < - D V .! P1P9 • • • P n •1^2 

Clearly (1) is a special case of (5) with I>t = • • - =~P = s. For Pj = • • • = P n = 1, 
f h 

Q = 0, and m = n we find that (6) implies the familiar Euler theorem about the n dif-
ference of x at x = 0, viz. 

A n A n \ - ^ , ^ n - r / n A n . 0 = Ẑ r (~1} I r ) r = n! 

r=0 > / 

Gould [3, Formula (Z.8)] has remarked about the use of this to determine certain combina-
torial identities easily. 

With other choices of the I V s and Q these identities (5) and (6) may give somewhat 
n s t range" but elementary identities such as 

(7) E < - D n - r E (k2l + "n + k ' r ) = (n!)2 

r=l l ^ k ^ - ' ^ k < n \ ' 
and 

n 

(8) £ (~1)n"r E fef+ • • -+ k?)n = (n!)m+1 • 
r= l l S k ^ - • -<k <n 

1 r 

Since every polynomial F(x) of degree m can be expressed as a linear combination of 

( • ) • ( - ) • • - ( - ) 

it is easily observed that (4), (5) and (6) are implied by each other. In other words, (4), (5), 
and (6) a re logically equivalent. 

For the proof of (4) it suffices to verify (6). Actually (6) can be verified by means of 
the principle of inclusion and exclusion in combinatorial analysis. Let us expand 
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(P. + • • • • + . P. + Q ) m 

in accordance with the multinomial theorem and consider a typical term of the form with ex-
ponents aA > 1, • • • , a > 1, b > 0: 

C P ? - ' - ^ « b ' ( C = at! • " ' a . ' . b ! • a i + --" + a r + b = m ) , 

where (il5 • • • , i r ) is an r -subset of (1, 2, • • • , n). F i r s t consider the case r < n. In 
this case the difference set ( j l 5 • • • , j n _ r ) = (1, 2, • • • , n) - (il9 • • • , i r ) is non-empty, so 
that the typical te rm occurs in the inner sum 

( - D r I > k + ••• + P + Q ) m 
1 r 

and also in all those inner sums of (6) following this one. Consequently, the total number of 
occurrences of the term is given by 

">'!(" ;*)-("; ')* Ov) -»"(:: Of-"• 
This ineans that every term with r < n vanishes always by cancellation, and this is gener-
ally true for m < n. For the case m = n, the only exceptional te rm is 

( - l ) n n !P 1 P 2 • - . PnQ° 

which cannot be cancelled out anyway. Finally, the number of occurrences of the part icular 
te rm Q is seen to be 

Thus (6) is completely verified. 
Similarly, a direct verification of (5) can be accomplished by using VandermondeTs 

multiple convolution formula (instead of the multinomial theorem) for expansion of the 
summands. 

APPLICATION 

For m = n and Q = 0 the identities (5) and (6) imply that every integer N = P ^ • • * 
P with n relatively prime factors P l 5 P2, • • • , P n can always be represented as an alge-
braic sum of 

and that N = n! P ^ • • • P as an algebraic sum of the n powers. 
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It is known that there are infinitely many solutions of the equation A3 + B3 + C3 = D3 in 
positive integers (see Shanks [5, p. 157]). Here as a simple application of (6) we shall con-
struct certain sets of non-trivial positive integral solutions of the 2-sided 3-cube equation 

(9) X? + xf + X3 = Y\ + Y2 + Y3 . 

Making use of (6) with m = n = 3 and Q = 0 we have 

( 1 0 ) P31 + P2 + P3 + <P1 + P2 + P 3 ) 3 = (P l + P 2 ) 3 + (P2
 + P 3 ) 3 

+ (P3 + P i ) 3 + 6 P 1 P 2 P 3 . 

Let P3 = 6P1P2P3 so that ~p\ = 6P2P3, and we may put P2 = 2a2c, P3 = 3b2c, or P2 = 
a2c, P3 = 6b2c (a, b, c being arb i t ra ry positive integers) in order to make 6P2P3 a pe r -
fect square. By substitution we find Pj_ = 6abc5 and then dropping the common factor c we 
get two identities as follows: 

(11) 

and 

(12) 

3 3 3 
(2a2) + (3b2) + (2a2 + 3b2 + 6ab) 

3 
= (2a2 + 3b2) + (2a2 + 6ab)3 + (3b2 + 6ab)3 , 

(a2)3 + (6b2) + (a2 + 6b2 + 6ab)3 = (a2 + 6b2) + (a2 + 6ab)3 

+ (6b2 + 6ab)3 . 

These two identities provide (9) with two sets of positive integral solutions involving two a r -
bi t rary integer parameters a and b. Similarly we can make use of (6) with m .= n = 4 and 
Q = 0 to obtain infinitely many integral solutions of the equation 

E*i-2>i 
i=l i=l 

In classical number theory 

{")• 
N(N - l ) /2 

is usually called a "triangular number. " It is obvious that not every such number can be ex-
pressed as a sum of two triangular numbers. Simple examples N = 5, 6, 8 explain this 
point. These integers are of the form N = 0, 15 3 (mod 5). Now as an immediate applica-
tion of (5) we easily show the small 

Theorem. Every triangular number I 9 J with N = 2, 4 (mod 5) can always be ex-
pressed as a sum of two triangular numbers. 
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These numbers may be listed as a sequence: 

(i)-(0-(0-(")-ff-(")(")-W-(">P0(9--
In fact, we have explicit relations for N = 5P + 2 and N = 5P - 1: 

( 5 V 2 )=( 3 P ; 1 )^ ( 4 P
2

+ 2 ) . ( " V 1 ) - ( ? ) • ( " . - ' ) • 
These are easily obtained from (5) by taking m = n = 2 and letting Q = 2PA + 1 or Q = 2Pj 
in order to delete the two equal t e rms 

(?) PiP 2 • 

These relations may be compared with the formulas 

( 3 V l ) * (4k
2
+ 2) - ( 5 k ; 2 ) . ( v 5 ) * ( 1 2 k ; 1 0 ) - ( a s v u ) 

(8k + 5\ , (15k + 10 \ / 17k + 11 \ . n . „ 

2 ) + { 2 ) = [ 2 ) ' k = 0, 1, 2. ••• , 
of M. N. Khatri, cited by Sierpinski [6, pp. 84-86]. Sierpinski proves that there exist in-
finitely many pairs of natural numbers x , y satisfying the system of equations 

( x ^ ) + ( 2 y
2

+ i ) = ( 3 y
2

+ i ) . ( % + i ) - ( 2 y
2

+ i ) - ( y ) -

Each of these equations is equivalent to the Diophantine equation x2 + x = 5y2 + y. 
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A SOLUTION TO THE CLASSICAL PROBLEM OF FINDING SYSTEMS 
OF THREE MUTUALLY ORTHOGONAL NUMBERS IN A CUBE 

FORMED BY THREE SUPERIMPOSED 10 X 10 X 10 CUBES 

JOSEPH ARKIN 
Spring Valley, New York 

INTRODUCTION 

In 1779, Euler conjectured that no pair of orthogonal squares exist for n = 2 (mod 4). 
Then in 1959, the Euler conjecture was shown to be incorrect by Bose, Shrikande and Parke r 
[ 1] . Recently (in 1972), Hoggatt and this author extended Bose, Shrikande and Parker1 s work 
by finding a way to make the 10 x 10 square pairwise orthogonal as well as magic (for a 
square to be magic, each of the two diagonals must have the same sum as in every row and 
in every column) [ 2 ] . The work done on this difficult problem was then extended by this 
author, who found a solution to the classical Eulerian magic cube problem of order ten [3]. 
Then this author was fortunate enough to receive some le t ters from the great mathematician, 
Professor Erdos. Professor Erdos introduced me to one of the most difficult and unsolved 
problems of our time: namely, the 200-year-old question of whether it is possible to find sys -
tems of three mutually orthogonal numbers in a cube of three superimposed 10 x 10 x 10 Latin 
cubes. 

ABSTRACT 

In this paper, we have succeeded in constructing for the f irst time certain systems of 
three mutually orthogonal numbers in a cube of three superimposed 10 x 10 x 10 Latin cubes 
(the le t te rs used are A, B, C, ' • • , J ) . 

In our construction (Tables 1 through 10), we find ten separate groups (where each group 
consists of 100 cells and each cell contains three letters) such that each and every cell in a 
single group (we consider one group at a time) is in a different file, different column, and 
different row; and also (this is the major requirement) in any one group when we compare 
each and every one of the 100 cells to one another, the three le t ters in each and every cell in 
the group are mutually (three pairwise) orthogonal. In the construction of our cubes in Tables 
1-10, we find in each cell three capital le t ters of the alphabet followed by a comma and then 
a digit (the digits range through 0, 1, 2, • • • , 9). The digits on the right denote the group to 
which the three le t ters in the cell belong. For example: the three le t ters in each of the 100 
cells throughout the cube that end in , 0 denote a single group (say) G(, 0) and in this group 
G(, 0) when we compare each and every one of the 100 cells to one another, the three le t ters 
in each and every cell in the group G(,0) are mutually (three pairwise) orthogonal. In the 
exact way we found the orthogonal properties of group G(,0) we find the identical orthogonal 
propert ies in the remaining nine groups G( , l ) , G(,2), • •• , G(,9). 
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In our construction, it is also possible to find three pairwise orthogonal le t ters in a 
system of files where each file is in a different row, and different column (we use our top 
10 x 10 square (square number 0, Table 1) as a reference for the coordinates of our rows 
and columns). An example of a single file (all files a re considered to begin on square num-
ber 0, abbreviated SNO) is the ten cells in f(HGD,0) = (HGD,0) on square number 0 + 
(IHC,1) on SN1 + (FJA}2) on SN2 + . . . + (BFI,9) on SN9. Then we define a group of files 
(say F(, 0)) ending in , 0 as the 100 cells in F(, 0) = f(HGD, 0) + f(HCI, 0) + •. • + f(HJH, 0). 
Now in F(,0) when we compare each and every one of the cells (100 cells) to one another, 
the three le t ters in each and every cell in F(,0) are mutually (three pairwise) orthogonal. 
In the exact way we found the orthogonal propert ies of F( ,0) , we find the identical orthogonal 
propert ies in the remaining F ( , l ) , F( ,2) , • • • , F(,9). 

Remark. Using the exact methods that were used to construct the cubes in Tables 1-10, 
this author has extended the remarkable resul ts on singly-even orthogonal squares by Bose, 
Shrikande and Parke r [ l ] , since we have generalized the construction technique and are able 
to find systems (exactly like the systems in this paper) of three pairwise orthogonal numbers 
in all (except 2s and 63) cubes formed by three superimposed Latin cub&s- It Is also possible 
to show: if a construction for a square (2P)2 is known we are then always able to construct 
a cube (2P(2m + l))3 with the exact three pairwise orthogonal propert ies we have shown in 
this paper (P > 3 is an odd prime and m = 0, 1, • • •)• However, since this author has not 
resolved (to his satisfaction) the question: n Is it possible to superimpose three mutually o r -
thogonal 10 x 10 Latin squa re s? , M we shall discuss our methods in a future paper. 

Table 1 
Square Number 0 

HGD,0 

AHJ,6 

GJH,1 

JEA,8 

CDC, 3 

FCI,7 

DFE,5 

IBF,9 

EIG,4 

BAB, 2 

GIG,1 

CGD,3 

FEA,7 

IFE,9 

ACI,6 

EJH,4 

BDC,2 

HHJ,0 

DAB, 5 

J B F , 8 

DEA,5 

BJH,2 

IGD,9 

CAB, 3 

HFE,0 

JDC,8 

AIG,6 

GCI,1 

F B F , 7 

EHJ,4 

CHJ,3 

E F E , 4 

AAB,6 

BGD,2 

GBF,1 

HEA,0 

JCI,8 

DDC, 5 

IJH,9 

FIG, 7 

BBF,2 

GDC,1 

DHJ,5 

ECI,4 

JGD,8 

IIG,9 

HAB,0 

FJH,7 

AFE,6 

CEA,3 

ICI,9 

FAB, 7 

EDC,4 

HBF,0 

BIG, 2 

DGD,5 

CJH,3 

AEA,6 

JH J , 8 

GFE,1 

EAB,4 

HCI,0 

J F E , 8 

GHJ,1 

DJH,5 

ABF,6 

FGD,7 

CIG,3 

BE A, 2 

IDC, 9 

F F E , 7 

JIG, 8 

CBF,3 

A JH, 6 

IAB,9 

BHJ,2 

GEA,1 

EGD,4 

HDC,0 

DCI,5 

ADC, 6 

IEA,9 

BCI,2 

DIG, 5 

FHJ ,7 

C F E , 3 

EBF,4 

JAB, 8 

GGD,1 

HJH,0 

J JH,8 

DBF, 5 

HIG,0 

FDC,7 

EEA,4 

GAB,1 

IHJ,9 

BFE,2 

CCI,3 

AGD,6 
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Table 2 
Square Number 1 

IHC,1 
BIF,4 
FAA,6 
CGE,5 
J F J , 0 
ABGS8 
GCB,9 
DJD,2 
HDI,3 
EEH,7 

FDI,6 
JHC,0 
AGE ,8 
DCB,2 
BBG,4 
HAA,3 
E F J , 7 
I IF ,1 
GEH,9 
CJD,5 

GGE,9 
EAA,7 
DHC,2 
JEH,0 
ICB,1 
C F J , 5 
EDI, 4 
FBG,6 
AJD,8 
HIF,3 

J IF ,0 
HCB,3 
BEH,4 
EHC,7 
FJD,6 
IGE,1 
CBG,5 
GFJ,9 
DAA,2 
ADI,8 

EJD,7 
F F J , 6 
GIF,9 
HBG,3 
CHC,5 
DDI,2 
I E H . l 
AAA, 8 
BCB,4 
JGE,0 

DBG, 2 
AEH,8 
HFJ ,3 
I JD,1 
EDI, 7 
GHC,9 
JAA,0 
BGE,4 
GIF,5 
FCB,6 

HEH,3 
IBG,1 
CCB,5 
FIF.6 
GAA,9 
BJD,4 
AHC,8 
JDI,0 
EGE,7 
DFJ ,2 

ACB,8 
GDI, 5 
J JD,0 
BAA, 4 
DEH,2 
EIF ,7 
FGE,6 
HHC,3 
I F J , 1 
GBG,9 

BFJ ,4 
DGE,2 
EBG,7 
GDI, 9 
AIF,8 
JCB,0 
HJD,3 
CEH,5 
FHC,6 
IAA,1 

CAA,5 
GJD,9 
IDI,1 
A F J , 8 
HGE,3 
FEH,6 
DIF,2 
ECB,7 
JBG,0 
BHC,4 

Table 3 
Square Number 2 

FJA,2 
GBD,3 
DFC,4 
HHB,7 
AEG,9 
CGF,1 
BDH,8 
EAI,0 
ICE, 5 
J I J , 6 

DCE,4 
AJA,9 
CHB,1 
EDH,0 
GGF,3 
IFC,5 
JEG,6 
FBD,2 
BIJ ,8 
HAI,7 

BHB,8 
J F C , 6 
EJA,0 
AIJ,9 
FDH,2 
HEG,7 
GCE,3 
DGF,4 
CAI,1 
IBD,5 

ABD,9 
IDH,5 
GIJ,3 
JJA,6 
DAI, 4 
FHB,2 
HGF,7 
BEG, 8 
EFC,0 
CCE,1 

JAI,6 
DEG,4 
BBD,8 
IGF, 5 
HJA,7 
ECE,0 
FIJ ,2 
C F C , 1 
GDH,3 
AHB,9 

EGF,0 
CIJ ,1 
IEG,5 
FAI,2 
JCE,6 
BJA,8 
AFC, 9 
GHB,3 
HBD,7 
DDH,4 

I IJ ,5 
FGF,2 
HDH,7 
DBD,4 
BFC,8 
GAI,3 
CJA,1 
ACE, 9 
JHB,6 
EEG,0 

CDH,1 
HCE,7 
AAI,9 
GFC,3 
EIJ ,0 
JBD,6 
DHB,4 
IJA,5 
FEG,2 
BGF,8 

GEG,3 
EHB,0 
JGF,6 
BCE,8 
CBD,1 
ADH,9 
IAI,5 
HIJ,7 
DJA,4 
FFC,2 

HFC, 7 
BAI,8 
FCE,2 
CEG,1 
IHB,5 
DIJ,4 
EBD,0 
JDH,6 
AGF,9 
GJA,3 

Table 4 
Square Number 3 

JIHS3 
DDB,1 
EGG, 9 
ICD,4 
GBI,7 
BAG ,5 
HHF,2 
CEJ ,6 
FFA,8 
AJE,0 

EFA,9 
GIH,7 
BCD, 5 
CHF,6 
DAC,1 
FGG,8 
ABI,0 
JDB,3 
HJE,2 
IE J , 4 

HCD,2 
AGG,0 
CIH,6 
GJE,7 
JHF 9 3 
IBI,4 
DFA,1 
EAC,9 
BE J , 5 
FDB,8 

GDB,7 
FHF,8 
DJE ,1 
AIH,0 
E E J , 9 
JCD,3 
IAC,4 
HBI,2 
CGG,6 
BFA,5 

AEJ ,0 
EBIS9 
HDB,2 
FAC,8 
IIH,4 
CFA,6 
J J E , 3 
BGG,5 
DHF,1 
GCD57 

CAC,6 
BJE,5 
FBI, 8 
J E J , 3 
AFA,0 
HIH,2 
GGG,7 
DCD,1 
IDB,4 
EHF,9 

F J E , 8 
JAC,3 
IHF,4 
EDB,9 
HGG,2 
DEJ ,1 
BIH,5 
GFA,7 
ACD,0 
CBI,6 

BHF,5 
IFA,4 
GEJ,7 
DGG,1 
CJE,6 
ADB,0 
ECD,9 
FIH,8 
JBI ,3 
HAC,2 

DBI,1 
CCD,6 
AAC,0 
HFA,2 
BDB,5 
GHF,7 
F E J , 8 
I JE ,4 
EIH,9 

JGG,3 

IGG,4 
HE J , 2 
J F A , 3 
BBI,5 
FCD,8 

EJE ,9 
CDB,6 
AHF,0 
GAC,7 

DIH,1 
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Table 5 
Square Number 4 

AAG,4 CEB,7 E F F , 1 ICH,8 GDE,5 F J J , 3 
JCH,2 IAG,8 GHI,5 DGC,9 CID,7 HBA,6 
CHI,7 HFF,6 FAG,3 JBA,2 ECH,1 DID,9 
BFF ,0 FGC,3 IBA,8 GAG, 5 DJJ ,9 ADE,4 
IID,8 J J J , 2 AGC,4 CDE,7 BAG,0 GEB,5 
HJJ ,6 DHI,9 BID,0 AFF ,4 FEB, 3 EAG, 1 
EGC,1 GID,5 JEB,2 BJJ ,0 ABA,4 IHI,8 
FDE,3 ACH,4 C J J , 7 EID,1 HHI,6 J F F , 2 
DEB,9 EBA,1 HDE,6 FHI,3 JGC,2 BCH,0 
GBA,5 BDE,0 DCH,9 HEB,6 I F F , 8 CGC,7 

DBA, 9 
A J J , 4 
BGC,0 
CCH,7 
EHI,1 
JDE,2 
HAG, 6 
IEB,8 
GFF,5 
FID, 3 

HGC,6 
BEB,0 
IDE, 8 
JHI,2 
FBA,3 
GCH,5 
C F F , 7 
DAG, 9 
AID, 4 
E J J , 1 

JID,2 
F F F , 3 
GJJ ,5 
EEB,1 
HCH,6 
IGC,8 
DDE, 9 
BBA,0 
CAG,7 
AHI,4 

BHI,0 
EDE,1 
AEB,4 
HID, 6 
DFF,9 
CBA,7 
FCH,3 
GGC,5 
I J J , 8 
JAG, 2 

E C F , 5 
IEC,7 
BBE,3 
AII ,1 
DJB,6 
JDA,9 
FAD,0 
GFH,8 
CGJ,2 
HHG,4 

BGJ,3 
DCF,6 
JH, 9 
GAD, 8 
IDA, 7 
CBE,2 
HJB,4 
EEC,5 
FHG,0 
AFH,1 

FII,0 
HBE,4 
GCF,8 
DHG,6 
EAD,5 
AJB,1 
IGJ,7 
BDA,3 
JFH,9 
CEC,2 

DEC, 6 
CAD, 2 
IHG, 7 
HCF,4 
BFH,3 
EII ,5 
ADA,1 
FJB,0 
GBE,8 
JGJ ,9 

Table 6 
Square Number 5 

HFH,4 
BJB,3 
FEC,0 
CDA,2 
A C F , 1 
EGJ,8 
EHG,5 
JBE,9 
IAD, 7 
DII,6 

GDA,8 
JHG,9 
CJB,2 
EFH,5 
HGJ,4 
FCF,0 
DBE,6 
111,7 
AEC,1 
BAD, 3 

CHG,2 
EDA, 5 
AAD,1 
BEC,3 
FBE,0 
IFH,7 
J C F , 9 
DGJ,6 
HII,4 
GJB,8 

JAD,9 
AGJ,1 
DFH,6 
IBE,7 
GHG,8 
HEC,4 
BII,3 
CCF,2 
EJB ,5 
FDA,0 

I JB,7 
Gil, 8 
HDA,4 
FGJ,0 
JEC,9 
DAD, 6 
CFH,2 
AHG,1 
BCF,3 
EBE,5 

ABE,1 
FFH,0 
EGJ ,5 
J J B , 9 
CII,2 
BHG,3 
GEC,8 
HAD, 4 
DDA,6 
ICF,7 

GEE, 6 
EJI ,8 
ACJ,2 
FDG,9 
HAF,5 
DHH,0 
CIA,4 
BGB,7 
J B C , 1 
IFD,3 

ABC, 2 
HEE,5 
DDG,0 
BIA,7 
EHH,8 
J C J , 1 
IAF,3 
GJI,6 
CFD,4 
FGB,9 

CDG,4 
ICJ ,3 
BEE, 7 
HFD,5 
GIA,6 
FAF,9 
EBC,8 
AHH,2 
DGB,0 
J J I , 1 

HJI,5 
J IA,1 
EFD,8 
IEE,3 
AGB,2 
GDG, 6 
FHH,9 
CAF,4 
BCJ,7 
DBC,0 

Table 7 
Square Number 6 

IGB,3 
AAF,2 
CJI ,4 
JHH,1 
FEE, 9 
BBC, 7 
GFD,6 
DCJ,0 
EIA,8 
HDG,5 

BHH,7 
DFD,0 
J A F , 1 
GGB,6 
IBC,3 
CEE,4 
HCJ,5 
EDG,8 
FJI ,9 
AIA,2 

J F D , 1 
GHH,6 
FIA,9 
AJI,2 
CCJ,4 
EGB,8 
DEE,0 
HBC,5 
IDG, 3 
BAF,7 

DIA,0 
FBC,9 
HGB,5 
ECJ ,8 
BFD,7 
I J I ,3 
ADG,2 
J E E , 1 
GAF,6 
CHH,4 

EAF,8 
BDG,7 
IHH,3 
CBC,4 
DJI,0 
HIA,5 
JGB,1 
FFD,9 
AEE,2 
GCJ,6 

FCJ ,9 
CGB,4 
GBC,6 
DAF,0 
JDG,1 
AFD,2 
BJI ,7 
IIA,3 
HHH,5 
EEE,8 
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DDJ,7 
FAE, 5 
HEF,8 
EBH,6 
BCA,1 
IFB,2 
AJG,3 
JIC,4 
GHD,0 
CGI, 9 

HHD,8 
BDJ,1 
IBH.2 
JJG,4 
FFB,5 
GEF,0 
CCA,9 
DAE, 7 
AGI,3 
EIC,6 

FORMED BY THREE SUPERIMPOSED 10 X 
Table 8 

Square Number 7 

ABH,3 BAE,1 CIC,9 JFB ,4 GGI,0 
CEF ,9 GJG50 HCA,8 IGI,2 DFB, 7 
JDJ ,4 FGI,5 AAE,3 GCA,0 EJG,6 
BGI,1 CDJ,9 GFB,0 DIG, 7 HAE,8 
DJG,7 HIC,8 EDJ,6 CHD,9 A E F , 3 
EGA, 6 DBH,7 JHD,4 
FHD,5 EFB,6 DGI,7 
HFB,8 ACA,3 IEF ,2 
IIC, 2 J E F , 4 
GAE,0 IHD,2 

10 X10 CUBES 

ADJ,3 FIC,5 
B E F , 1 IDJ,2 
FBH,5 BHD,1 

FJG,5 EAE,6 CBH99 
BBH,1 HJG,8 JCA,4 

IJG,2 
EHD,6 
BIC,1 
F E F , 5 
JGI,4 
CAE,9 
HBH,8 
GDJ,0 
DC A, 7 
AFB,3 

FCA,5 
JBH,4 
CFB,9 
AHD,3 
IAE,2 
BJG,1 
GIC,0 
EGI,6 
HDJ,8 
D E F , 7 

E E F , 6 
AIC,3 
DHD,7 
ICA,2 
GBH,0 
HGI,8 
JAE,4 
CJG,9 
BFB,1 
FDJ ,5 

CBB,8 
HFG,9 
IDD,0 
DAJ,3 
EGH,2 
GIE,4 
JEI ,7 
AHA, 5 
BJF ,6 
FCC,1 

BFI,9 
CGA,0 
JIB, 5 
GJC,2 
FHE,4 
EED,3 
IBJ,6 
HCG,1 
AAH,7 
DDF, 8 

ontinued 

I JF ,0 
EBB, 2 
GAJ,4 
AEI,5 
HIE, 9 
BDD,6 
FGH,1 
CFG, 8 
JCC,7 
DHA,3 

JAH,5 
FFI ,4 
E J C , 3 
HBJ,1 
CED,0 
AIB,7 
DHE,8 
BGA,9 
IDF, 6 
GCG52 

on page < 

J A J , 7 
FDD,1 
ABB, 5 
ECC,2 
CEI,8 
DGH,3 
HJF,9 
IIE,0 
GHA,4 
BFG,6 

IJC,6 
DIB, 8 
HFI ,1 
FDF,4 
BBJ,9 
GHE52 
CAH,0 
JED, 5 
ECG,3 
AGA,7 
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EFG,2 
BEI,6 
HCC,9 
FBB,1 
IHA,0 
CAJ,8 
DIE, 3 
JGH,7 
ADD, 5 
GJF,4 

FGA,4 
ABJ,7 
CDF,0 
DFI,8 
JCG,5 
BJC,9 
GED,2 
IHE,6 
HIB,1 
EAH,3 

Table 9 
Square Number 8 

FHA,1 
IGH,0 
J F G , 7 
BIE,6 
DBB,3 
A J F , 5 
CCC,8 
GDD,4 
HEI,9 
EAJ,2 

AIE,5 
GCC,4 
BGH56 
CHA,8 
F J F , 1 
JBB,7 
EDD,2 
HAJ,9 
DFG,3 
IEI,0 

Table 10 
Square Number 9 

DCG,8 
JHE,5 
IGA,6 
AED57 
GFI,2 
HAH91 
BDF,9 
EIB,3 
CBJ,0 
FJC,4 

HED,1 
EDF,3 
AHE,7 
BCG,9 
DAH,8 
IFI ,6 
FIB, 4 
CJC,0 
GGA,2 
J B J , 5 

BCC,6 
CIE,8 
DEI, 3 
IFG,0 
JDD,7 
HHA,9 
GBB,4 
E J F , 2 
FAJ ,1 
AGH,5 

ADF,7 
BED, 9 
GBJ,2 
JGA,5 
IIB,6 
CCG50 
EFI ,3 
FAH,4 
DJC,8 
HHE91 

GEI,4 
D J F , 3 
EHA,2 
HDD, 9 
ACC,5 
FFG,1 
IAJ,0 
BBB,6 
CGH,8 
J IE ,7 

E B J , 3 
GAH92 
FCG,4 
CIB,0 
HDF,1 
DGA,8 
J J C , 5 
AFI ,7 
BHE,9 
IED,6 

HGH,9 
AAJ,5 
F IE ,1 
J J F , 7 
GFG,4 
EEI,2 
BHA96 
DCC,3 
IBB,0 
CDD,8 

CHE,0 
HJC,1 
DED,8 
IAH,6 
EGA, 3 
FBJ ,4 
ACG,7 
GDF,2 
J F I , 5 
BIB, 9 

DDD,3 
JHA,7 
C J F , 8 
GGH,4 
BAJ,6 
ICC,0 
AFG,5 
FEI ,1 
EIE,2 
HBB,9 

GIB ,2 
ICG,6 
BAH, 9 
EHE,3 
AJC,7 

J D F , 5 
HGA,1 
DBJ,8 
FED, 4 
CFI ,0 



A FURTHER ANALYSIS OF BENFORD'S LAW 

W. A. SENTANCE 
The City University, London, England 

In a recent paper [ l ] J. Wlodarski noted the interesting fact that Benford's "Law of 
anomalous numbers" was obeyed very closely by the first 100 Fibonacci numbers and the f irst 
100 Lucas numbers. The same paper ended with the suggestion, taken up by the present 
author, that many more than the first 100 Fibonacci and Lucas numbers should be used for 
the purpose of analyzing Benford's Law more closely. 

In a l is t of random numbers, one would normally expect to find that the distribution of 
the initial digit would have an approximately equal spread over the nine integers 1 to 9. How-
ever, it is an observed fact that in many tabulations the digit 1 occurs almost three t imes 
more often than any of the other eight digits. It was this that led Frank Benford in 1938 to 
enunciate his nlaw of anomalous numbers" that the probability of a random decimal number 
beginning with digit p is log (p + 1) - log (p) where the logarithms are expressed to the 
base 10. [2] 

Using a computer, it has been possible to extend the study to cover the first 1000 Fib-
onacci and the first 1000 Lucas numbers. Such a study would be perhaps unfeasible and c e r -
tainly very tedious without the aid of a computer since F100 has 209 digits. Normally, num-
bers are held within the computer to an accuracy of so many digits, usually within the range 
of 10 to 20, and any arithmetic performed on such numbers will only be correct to this a c -
curacy. However, by assigning one computer word for each digit of any part icular number, 
we are able to store exactly large integer numbers. It is a relatively easy matter to simulate 
the operation of addition between any two such numbers. Addition is the only operation we 
need since the two sequences in which we are interested are defined by the additive recurrence 
formula 

A ,n = A + A , n+1 n n -1 

different initial conditions giving r ise to the Fibonacci and Lucas sequences. To give some 
idea of the time involved, the additions which were needed to produce F1000, took approxi-
mately 18 seconds. Such a method has other distinct advantages besides its great speed and 
ease as is shown later in this paper. 

Table 1 

Dig i t 

, N F 

' NT, 
N B 

1 

30 

31 

30 .1 

2 

18 

16 

17.6 

3 

13 

14 

12.5 

4 

9 

10 

9.7 

5 

8 

8 

7.9 

6 

6 

5 

6.7 

7 

5 

8 

5.8 

8 

7 

4 

5.1 

9 

4 1 
4 

4.6 1 

490 
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G F = 0.657 x 10-4 

GL = 1.673 X 10-4 

N F : Number of t imes the digit occured as initial digit in the Fibonacci sequence. 
N. 

491 

L ' Same as N but for the Lucas sequence. 
N B : Expected value, given by Benford's Law, of the digit to be the initial digit. 

Table 1 reproduces the figures from [l] for the distribution of the initial digits of the 
first 100 Fibonacci numbers and the first 100 Lucas numbers , together with the expected 
value given by Benford's Law. In order to effect a comparison with later resul ts , we have 
calculated "goodness of fit1' constants G^ and GT where 

r L 

GT *-* I 100 100 J / y 

i=l • 

Z-4 \ ioo ioo J 

Table 2 is exactly the same as Table 1 except that it gives the resul ts pertaining to the 
f irst 1000 Fibonacci numbers and the first 1000 Lucas numbers, again with "goodness of fit" 
constants. It is readily seen that the behaviour exhibited by the small set of numbers has been 
propagated by the large set of numbers. The goodness of fit constant is in both cases con-
siderably reduced indicating that the distribution of initial digits is approximating more c lose-
ly to that predicted by Benford's Law as more numbers in the respective sequence are taken 
into account. 

Table 2 

Digit 

N F 
N L 
N B 

1 

301 

301 

301.0 

2 

177 

174 

176.1 

3 

125 

127 

124.9 

4 

96 

97 

96.9 

5 

80 

79 

79.1 

6 

67 

66 

66.9 

7 

56 

59 

58.0 

8 

53 

51 

51.2 

9 

45 

46 

45.8 

Note: N^ correct only to ID. Accurate values used in calculating G^ and GT 

9 
GT 

9 / N N V / 
E i l 4 - iMoj / 9 = 0.0114x10-* 

9 = 0.0118 X 10"4 



492 A FURTHER ANALYSIS OF BENFORDfS LAW [Dec. 

The point could be made at this stage that the reduction in the values of G^ and GT 

is purely fortuitous and that the author was fortunate in finding that G^ and GT for the 
first 1000 numbers of each sequence were considerably smal ler than for the first 100 num-
bers . To counteract this argument we give in Table 3, the values of G-̂  and GT for the 
first i of the Fibonacci numbers and for the first i of the Lucas numbers where i takes 
the values 100 to 1000 in steps of 100. Although there are fluctuations in these values they 
do exhibit in general a downward trend. 

Table 3 

i 

\ 100 

1 200 

300 

400 

500 

600 

700 

800 

900 

1000 

G F X 104 

0.656 

0.260 

0.139 

0.037 

0.026 

0.025 

0.036 

0.021 

0.012 

0.011 

G L X 104 

1.673 1 

.261 

.104 

.031 

.035 

.013 

.028 

.007 

.008 

.012 

Again one may try to explain this strange distribution by the hypothesis that for these 
two sequences of numbers, the frequency of occurrence of each of the digits 1 to 9 throughout 
the numbers follows this pattern. However, Table 4 shows this not to be the case. 

Table 4 

F 

L 

0 

10474 

10393 

1 

10696 

10690 

2 

10495 

10783 

3 

10476 

10519 

4 

10431 

10699 

5 

10516 

10278 

6 

10433 

10507 

7 

10576 

10524 

8 

10350 

10285 

9 

10369 

10420 

For the Fibonacci sequence the total number of digits in the first 1000 numbers is 104818. 
Assuming that each digit is distributed randomly then we expect each digit to occur with the 
same frequency. In this case the expectation for each digit is 10481.8. It is seen that the 
actual occurrence for each digit is very close to this expected value. Similar remarks apply 
to the Lucas sequence, too. The digit 1 therefore does not have an overall distribution dif-
ferent to any of the other digits. 

This paper ends with a proposal to extend Benford's Law so that it now reads: 
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"The probability that a random number expressed in the number base b begins with 
digit p is log (p + l) _ log p, where the logarithms are to the base b. " 

Benford's Law is a part icular case of this with b equal to 10. The idea behind such a 
proposal is that if it is true then it means that the distribution of initial digits seems to be 
some function inherent within the number system itself. 

The method we have used to implement the addition of large integers is capable of being 
adapted to give results expressed with respect to any number base. Table 5 reproduces the 

Table 5 

N ^ 501 430 389 356 336 314 
F 

1 N T 502 430 385 355 336 318 
L 

N^ 500 430.1 386.9 356.2 333.3 315.5 

2 

3 

4 

5 

6 

7 

291 

292 

292.5 

208 

206 

207.5 

253 

251 

251.9 

178 

180 

178.7 

139 

139 

138.6 

227 

226 

226.3 

160 

162 

160.6 

123 

125 

124.5 

101 

102 

101.8 

211 

207 

208.4 

146 

151 

147.8 

114 

113 

114.7 

93 

94 

93.7 

80 

80 

79.2 

193 

193 

195.0 

140 

139 

138.3 

105 

106 

107.3 

90 

89 

87.7 

73 

73 

74.1 

63 

64 

64.2 

187 

181 

184.5 

132 

134 

130.9 

99 

108 

101.6 

83 

82 

83.0 

69 

70 

70.2 

62 

60 

60.8 

54 

8 52 

53.6 

Gof F .0114 .0057 .0157 .0198 .0390 .0220 

Fit X 104 L .0218 .0075 .0116 .0280 .0233 .0432 
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computer resul ts for the first 1000 Fibonacci and Lucas numbers using bases 4 to 9 inclusive 
together with the theoretical expectation based on the extension to Benford's Law. Again we 
include a goodness-of-fit constant. 

It can be seen that the distribution of initial digits in the other number bases closely 
resembles that predicted by this extension of Benford's Law. 

In conclusion then, as far as the sequences of Fibonacci and Lucas numbers are con-
cerned, the frequency of occurrence of the digits 1-9 as initial digits is an excellent i l l u s t r a -
tion of Benford's Law. The distribution would seem to approach that given by Benford as 
more and more numbers are taken into account. If we choose to express them in any other 
base, then there is a very strong indication that the initial digits occur in a distribution given 
by the extension to Benford's Law proposed ear l i e r in this paper. 
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A FIBONACCI-RELATED SERIES IN AN ASPECT OF INFORMATION RETRIEVAL 

MICHAEL F. LYNCH 
University of Sheffield, Western Bank, Sheffield, England S10 2TN 

A continuing objective of research in the field of information science is abe t te r under-
standing of the structure of subject indexes, and of methods of preparing and using them. 
Most of us depend on these tools for access to the steadily increasing flow of publications in 
science and technology, yet for the most part their preparation is still an ar t ra ther than a 
science. It was not a little surprising, therefore, to discover that a familiar linguistic de -
vice that is widely used in indexes, catalogs, and directories could be formalized, and that 
this formalization had connotations which included a Fibonacci-related se r ies . The linguistic 
device is that of inversion of prepositional phrases , such as "England, Kings of," which is 
encountered in such diverse sources as back-of-the-book indexes and the Library of Congress 
catalog. 

The process of inversion of phrases reaches its peak in complex subject indexes such 
as those to Nuclear Science Abstracts and Chemical Abstracts , the lat ter currently includ-
ing about 300,000 scientific papers , books and patents each year. The magnitude of the task 
of publishing and searching such amounts of l i terature has called for the increasing applica-
tion of computer technology during the past decade, and it was in the context of one such in-
vestigation that the process of inversion came to be more clearly scrutinized [ l ] . In these in-
dexes, entr ies are made under a ser ies of subject headings, which serve as the pr imary en-
try points for the user. The entr ies themselves consist of prepositional phrases , highly 
convoluted, but organized in such a way as to enable the reader to scan them rapidly and to 
extract the essential content during a rapid scan of the entry. The following example, taken 
from a recent index to Chemical Abstracts , i l lustrates the point (the numerical reference is 
the abstract number): 

Coal 
flotation of, hydrocarbon agent activity in, oxygen compd. formation 

in relation to, 89893W. 

It is c lear that, without part icular training, the reader can reconstitute the sense of 
the original phrase as it was first conceived by the indexer. This is an intuitive process , 
not immediately formalizable. With computer techniques in view, however, it was necessary 
to define the procedure in symbol-manipulative te rms . It was noted that the entries consist-
ed, in the main, of sequences of phrases either beginning or ending with prepositions, and it 
was this which provided the necessary clue. In the case of an entry such as "England, Kings 
of, M it is clear that the natural order would read "Kings of England," while if the entry read 

495 
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"Kings, of England," no alteration in sequence would be required. So too with highly complex 
index entr ies , provided that the constituent phrases can be suitably identified. Fortunately, 
this delimitation is provided by the sequence of commas within the entry, which usually serve 
to separate the component phrases from one another. Thus, extending the rule which gives 
us "Kings of England," we can say that if we take the component phrases of an entry in s e -
quence, then, according as the phrase begins with a preposition (or connective such as "and"), 
or ends with one, it is to be placed so as either to precede the subject heading or to follow it, 
as the case may be. Applying this to each component in turn, and adding successive phrases 
at one end or the other of that part of the sequence built up always produces the intended r e -
sult, i. e. , the normal form of the description as originally derived by the indexer. In p r ac -
tice, the rule cannot be applied to all ent r ies , since commas may also occur in the normal 
form of the expression; however, for those entr ies in which each component phrase either be -
gins or ends with a preposition or other function word, the rule is absolutely consistent, and 
is illustrated by its application to the example noted above: 

"oxygen compd. formation in relation to hydrocarbon activity 
in flotation of coal. " 

While interesting, this formalization has not yet been widely utilized in computer studies 
of index structure. Its usefulness seemed to us to lie ra ther in the fact that its obverse 
offered the possibility of taking natural language title-like phrases , and automatically p r o -
ducing an index of high quality from them. This reverse transformation, from natural language 
phrase to index entry, presented part icular problems, since it became apparent that it p ro-
duced not a single result , but ra ther a variety of possible forms of ent r ies , that i s , that while 
the transformation from entry to the normal form of the description is single-valued, the 
transformation from normal format to entry is many-valued. This became clear while the 
selection rule for entry production was being elaborated — a process which the indexer c a r -
r ies out intuitively, and which has now been termed articulation. 

It is useful at this point to consider a simple model for these transformations. The 
model necessari ly ignores certain complexities which are encountered in pract ice, notably 
those due to the proportion "of," as illustrated below. It consists of a formalized descriptive 
phrase composed of a sequence of nouns or noun phrases separated by function words: 

_ , 0 0 o o 

An entry consists of an articulated form of these, in the following fashion: 

o —— , o , o , o 

in which the pairs of function words/nouns form the components of the entry. The selection 
rule is as follows. A noun or noun phrase is selected to act as a subject heading from any 
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position in the sequence. As a result , equal numbers of nouns/noun phrases and function 
words remain. The entry may then be formed by successive selection of components from 
positions adjacent to the subject heading, either to the right or to the left of it, a kind of de-
cision tree resulting from the multiplicity of choices that a re open. The following example 
i l lustrates the point: 

rains on plains in Spain 
Heading: Plains 
1st Component: 

Plains 
rains on, 

2nd Component: 
Plains 

rains on, 

Heading: Spain 
1st Component: 

Spain 
plains in 

2nd Component: 
Spain 

plains in, 

in Spain 

rains on 

Plains 
in Spain 

Plains, 
in Spain, rains on 

Spain 
rains on 

Spain 
rains on plains in 

The complication caused by the preposition MofM can be illustrated by the following 
example: 

"production of indexes by computer;M 

when "indexes1' is selected as the subject heading, two entries are provided by the simple 
model: 

Indexes Indexes 
by computer, production of, production of, by computer 

Of these, only the second is acceptable, the first seeming ill-formed, due to separation of 
the phrase "production of" from the noun which it qualifies directly. In pract ice, this can be 
accommodated by simple additional rules. 

Again, in practical t e rms , economic factors, both of production and of size of the r e -
sulting index for use r s , do not permit the inclusion in a printed index of all of the variant 
forms of entry which the model permits . Further character is t ics of printed subject indexes, 
including the use of indentation to enhance the ease of scanning of the printed display, have 
enabled us to adduce further rules which are now incorporated within a useful program suite 
for the automatic production of printed subject indexes [2 , 3] . The advantages of this tech-
nique are that the indexer need concern himself solely with providing an accurate and consistent 
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record of the content of the subject mat ter of the document being indexed, and can economize 
on the time needed to make an entry under each heading in articulated form, which is r e -
quired in the traditional index-production method. 

It is nonetheless interesting to pursue the implications of the simple model somewhat 
further, particularly in terms of the great variety of variant entr ies which can be formed 
from a single title-like phrase describing the subject content of an art icle o r book. It is 
c lear that if the first noun or noun phrase of a longer description is chosen as the subject 
heading, only a single form of entry is possible. Taking the ear l ie r example: 

"rains on plains in Spain" 

when " ra ins" is selected as the heading, only a single form of entry is possible, i. e. , 

Rains 
on plains in Spain . 

This is termed an invariant phrase. When the last noun, Spain, is chosen, either of the nouns 
preceding it may form the first component of the entry, while if a noun occurring at an inter-
mediate position is selected, the first component can be formed from any of the nouns p r e -
ceding it or from the one following it. Using a different symbolism, in which the components 
are denoted by alphabetical symbols, a sequence of three nouns can, in theory, give r i se to 
the following entr ies: 

A • B • C 
A B C 

BC AC AB 
CA BA 

A sequence of four noun phrases* A. B. C. D can produce a greater variety: 

A B C D 

BCD ACD ABD ABC 

CAD BAD BCA 

CDA BDA CAB 

DAB CBA 

DBA 

Tabulating these graphically for phrases of lengths 1 to 4 provides the following 
possibilit ies: 
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No. of headings 

1 

2 

3 

4 

Phrase 

A 

A.B . 

A . B . C . 

A . B . C . D . 

A 

A B 
ABC 

ABCD 

Possible Entr ies 

BA 

B CA 
BACD 

CAD 
CDA 

CBA 
CABD 

BAD 
BDA 
DAB 
DBA 

DABC 
BCA 
CAB 
CBA 

Replacing now the part icular articulated arrangements by the numbers of variant entr ies 
possible under each heading in turn, we obtain the following table: 

n No. of entr ies under n heading Total 

1 2 3 4 5 6 7 

1 1 1 

2 1 1 2 

3 1 2 2 5 

4 1 3 5 4 13 

5 1 4 , 9 12 8 34 

6 1 5 14 25 28 16 89 

7 1 6 20 44 66 64 32 233 

This se r ies proves to be of more than casual interest . Not only a re the row sums the 
alternate t e rms of the Fibonacci s e r i e s , the internal structure of the table also provides an 
algorithmic extension, other than by an exhaustive examination of all the possibilities p r o -
vided by the selection rule. Thus any entry in the table may be computed by taking the entry 
above it, and adding to it the entry immediately to the left of it and all those on the left-hand 
diagonal of the lat ter . 

Finally, a general expression for computing the row sums for each value of n takes 
the following form: 

1 a = — 
n ^ 5 

• ^ ~ _ ^)~] = F 2n - l 
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LETTER TO THE EDITOR 

Dear Editor: 
Professor Dr. Tibor Salat of Bratislava has pointed out two corrigenda to my article 

on arithmetic progression, April , 1973, Fibonacci Quarterly, pp. 145-152. 
In the proof of Lemma 2.2, one may not assume that ad and c/(a ,c) are relatively 

pr ime. After the second display in the proof, proceed as follows: 

(i - iT)ad = (j' - j)bc (mod c) 

(i - i')ad = 0 (mod c) . 

Since (c,d) = 1, we get (i - if)a = 0 (mod c). Division by (a,c) yields 

(i - i ' ) (a / (a ,c)) = 0 (mod c / (a ,c ) ) , 

hence 

i - if = 0 (mod c / (a ,c ) ) . 

On page 151, inser t a "1 - " before II in the second, third, and fourth displays. 
How far can Theorem 4.1 be generalized to other polynomials? 

Sherman K. Stein 
University of California, 
Davis, Calif. 95616 



ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
RAYMOND j=. WHITNEY 

Lock Haven State College Lock Haven# Pennsylvania 

Send all communications concerning Advanced Problems and Solutions to Raymond E. 
Whitney, Mathematics Department, Lock Haven State College, Lock Haven, Pennsylvania 
17745. This department especially welcomes problems believed to be new or extending old 
resul ts . Proposers should submit solutions or other information that will ass is t the editor. 
To facilitate their consideration, solutions should be submitted on separate signed sheets 
within two months after publication of the problems. 

H-227 Proporsedby L Carlitz, Duke University, Durham, North Carolina. 

Show that 

m n 
E E (-Dm+n-j-k h)(i) <aj + ck)m(bj + dk)n 

j=0 k=0 \ / \ / 

min(m,n) 
n! £ (^(jja^^eK.)1 

= mini 
r=0 

In part icular , show that the Legendre polynomial P (x) satisfies 

n 

(nt)2Pn(x) = J2 ( -1 )3"*(^)(k)(a j + Ck)R(bi + dk)R 

j ,k=0 

where 

ad = ^-(x + 1), be = - ( x - 1) . 

H-228 Proposed by R. £ Whitney, Lock Haven State College, Lock Haven, Pennsylvania. 

F 
Define the sequence ( u n ) n as follows; u ~ (F ) (n > 1), where F denotes ,, M L nJ n = i n n n 

the n Fibonacci number. 
501 
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(1). Find a recurrence relation for \ u n j . and 
(2). Find a generating function for the sequence, \ u n / _- . 

H-229 Proposed by L Carliiz, Duke University, Durham, North Carolina. 

A triangular a r r ay 
A(n,k) ( 0 < k < n ) 

is defined by means of 

( A(n + 1, 2k) = A(n, 2k - 1) + aA(n, 2k) 
(*) < 

I A(n + 1, 2k + 1) = A(n, 2k) + bA(n, 2k + 1) 

together with 

A(0,0) ~ 1, A(0,k) = 0 (k + 0) . 

Find A(n,k) and show that 

] £ A<n> 2k)(ab)k = a(a + b ) n ~ \ ^ A(n, 2k + l)(ab)k = (a + b) 
k k 

SOLUTIONS 

ARRAY OF HOPE 

H-195 Proposed by Verner £ Hoggatt, Jr„, San Jose State University, San Jose, California 

Consider the a r r ay indicated below: 

n-1 

1 

1 

3 
5 

13 

34 

89 

1 

2 

4 

9 

22 

56 

145 

1 

3 

7 

16 

38 

1 

4 

11 

27 

65 

1 

5 

16 

1 

6 

22 1 1 

(i) Show that the row sums are F 0 , n > 2. 
2n (ii) Show that the rising diagonal sums are the convolution of 

^ n - l C o a n d (uCo; 2 , 2 ) } ^ , 
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the generalized numbers of Harr i s and Styles. 

Solution by L Carlitz, Duke University, Durham, North Carolina. 

Let A(n,k) denote the element in the n row and k column. Then (presumably) 

and 

Put 

Then 

Next 

so that 

A ( n ' X ) = F 2 n - 3 ( n > 1} 

[A(n, 2k) = A(n, 2k - 1) + A(n - 1, 2k) 
(k > 1) 

[A(n, 2k + 1) = A(n - 1, 2k + 1) + A(n - 2, 2k) 

F(x,y) = X ^ A ( n , 2k>xtV 
n=l k 

n 2k 

n 2k+l G<x>y> = 2 ] C A ( n > 2 k + 1)xRy 
n=l k 

OO 

A(x) = ^ A ( n , l ) x n . 
n=l 

A(x) = x + £ F 2 n . 3 x n = x + x ^ F ^ ^ x 1 1 

n=2 n=l 

x - x2 x - 2x2 
= X + X 

1 - 3x + x^ 1 - 3x + x^ 

n 2k F(x,y) = ]jT ^ (A(n, 2k - 1) + A(n - 1, 2 k ) ) x n y 
n k 

= xF(x,y) + yG(x,y) , 

(1) (1 - x)F(x,y) = yG(x,y) . 

Also4 
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G(x,y) = y ^ A ( n , l ) x n + ^ ] £ (A(n - 1, 2k + 1) + A(n - 2, 2k)) x 
1 n=2k>0 

= yA(x) + x J2J2 A(n' 2k + 1)xIlyk + x2yJ2J2 A(n' 2k^ny2k 

n = l k > 0 n = l k > 0 

= y(l - x)A(x) + xG(x,y) + x2yF(x,y) , 
so that 

(2) (1 - x)G(x5y) = x2yF(x,y) + x ( 1 " x ) ( 1 " 2 x ) y . 
1 - 3x + x2 

It follows from (1) and (2) that 

((1 - x)» - x V ) F ( x , y ) = x ( 1 - x ) ( 1 - 2 x ) y 2 

1 - 3x + x2 

(3) 
((1 - x)2 - x2y2)G(x,y) 

1 - 3x + x; 

n 2k+l 

2 v2„2\nfv ,A = x( l - x)2(l - 2x)y 

Hence 

(4) ((1 - x)* - x V ) T T A(n ,k)x n y k = x ? ( 1 ~ x ) ( 1 ~ 2 x ) ( 1 " x + ^ 
^"r1 i - 3x + x2 

n k 

For y = 1 this reduces to 

£xn£A<n,k) 
n k 

x(l -
1 -

X + -

x)(2 - x) 
3x + x2 

X 

1 - 3x + xz 

x + 2>2n x n ' 
1 

so that 

2 A(n,k) = F2n (n > 1) . 

If we take y = x, Eq. (4) reduces to 
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OO 

Vxny>(n-k5k) = x2(1 - ̂  - 2 x > 
(1 - x - x2)( l - x + x 2 ) ( l - 3x + x2) n=2 k 

S F2n-lx t l x ( l - 2x) 
(1 - X - X 2 ) ( l - X + X 2 ) 

This expresses the rising diagonal sums 

n-1 
2 A(n - k, k) 
k=l 

as convolutions as stated. 
Remark. It follows from (3) that 

2k-1 2k w \ 1 - 2x \~^ x y 
F(x'y) =

 1 , + 2 ̂  ^ fci 
1 - 3x + x? . 1 (1 - x) 

^ 2k- l 2k-1 ~/ v 1 - 2x \ ^ x y 
G ( x , y ) = ^ _ ^ - ^ 2 

1 - 3x + x^ . 1 (1 - x) 

so that 

(5) 

E A(n.2k)*> = ( 1 " 2 x ) x 2 k " ' 2k i 
T \ (1 - 3x + x 2 ) ( l - x ) 2 ^ 1 

n=2k-l 

£ A(n, 2k - l)xn = (1 " 2 X ) x 2 k - 1
 2 k 2 

t T i (1 - 3x + x2)(l - x)2k-2 

n=2k-l 

By means of (5) we can obtain explicit formulas for A(n,k). Since 

OO 

2 ^ F 2 r -1 : 1 - 2x _ V T, x
r 

1 - 3x + x2
 r = Q 

it follows that 

oo oo oo 

s 
X 

n=2k-l r=0 s=0 
Therefore, 
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n-2k+l 

r=0 V ' 

Similarly 

n-2k+l 

A(n,2k-1) = £ (Vk- ' s 'K r - l (k > " • 
r=0 ' 

/ t o solved by the Proposer. 

PARTITION 

H-196 Proposed by J. B. Roberts, Reed Collage, Portland, Oregon. 

(a) Let A0 be the set of integral par ts of the positive integral multiples of T, where 

T = 1 + ^ 
2 ' 

and let A +1» m = 0, 1, 2, • • • , be the set of integral par ts of the numbers nT2 

for n c~ A . Prove that the collection of Z of all positive integers is the disjoint 
union of the A.. 

J 
(b) Generalize the proposition in (a). 

Solution by L Carlltz, Duke University, Durham, North Carolina. 

1. Put 

a(n) = [nT] , b(n) = [nT2 ] = [n(T + 1)] = a(n) + n . 

Also for brevity put 

(a) = (a(n)|n = 1, 2, 3, • • • } , 

(b) = {b(n)|n = 1, 2, 3, • • • } . 

It is well known that* 

(*) Z + = (a) U (b) . 

Put 

(bka) = {bka(n)|n = 1, 2, 3, • • •} , 
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where juxtaposition denotes composition. Then it follows at once from (*) that 

Z + = (a) U (ba) U (b2) 
= (a) U (ba) u (b2a) U (b3) , 

and so on. Clearly this implies 
oo oo 

Z + = U (b a) = U A, . 
k=0 k=0 K 

2. Let a,fi be positive irrational numbers such that 

(1/a) + (l/j3) = 1 
and put 

a(n) = [an] , b(n) = [j3n] . 
Then it is well known that 

Z + = (a) U (b) , 
where, as above, 

(a) = {a(n)|n = 1, 2, 3, • • •} , b(n) = {b(n)|n = 1, 2, 3, • • • } . 
Hence 

Z + = (a) U (ba) U (b2) 
= (a) U (ba) U (b2a) U (b3) , 

and so on. Thus 

Z + = U (bka) . 
k=0 

Remark. The functions a(n), b(n) in 1 a re studied in considerable detail in the paper 
by L. Carl i tz , V. E. Hoggatt,, J r . , and Richard Scoville: "Fibonacci Representa t ions / ' F ib-
onacci Quarterly, Vol. 10, No. 1, pp. 1-28. 

Also solved by the Proposer. 

Editorial Note: See Beatty's Theorem (American Math. Monthly, 33 (1926), 159, and34 (1927) 
159.) 

The editor wishes to acknowledge solutions to H-194 by L. Frohman, P . Bruckman, and J . 

Ivie. 

Editorial Note: The following l is t represents previous problem proposals (less than or equal 
to H-100) which, to date, have not been solved: 22, 23, 40, 43, 46, 60, 61, 73, 76, 77, 84, 
87, 90, 91, 94, and 100. Starting in the next section, we shall r e - run some of these proposals. 

ERRATA 

On Problem H-218, April , 1973, 
please change the matrix to read: 

J nxn 



ON THE NUMBER OF DIVISIONS NEEDED IN FINDING THE GREATEST COMMON DIVISOR 

DALE D. SHEA 
Student, San Diego State College, San Diego, California 

Let n(a,b) and N(a,b) be the number of divisions needed in finding the greatest com-
mon divisor of positive integers a ,b using the Euclidean algorithm and the least absolute 
value algorithm, respectively. In addition to showing some properties of periodicity of 
n(a, b) and N(a,b), the paper gives a proof of the following theorems: 

Theorem 1. If n(a,b) = k > 1, then a + b > f. „ and the pair (a,b) with the smal l -
est sum such that n(a,b) = k is the pair (f, - , fk+9)» where 

fi = 1, f 2 = 1 and f ^Q = f , - + f , n = 1, 2 , 3 , • • • . 
1 l n+2 n+1 n 

Theorem 2. If N(a,b) = k > 1, then a + b > x. -. and the pair (a,b) with smallest 
sum such that N(a,b) = k is the pair (x. , x , + x . ), where x1 = 1, x2 = 2, and x, = 
2x, 1 + x, , k = 3, 4, ' • • . These resul ts may be compared with other results found in 
[ 1 ] " [ 2 ] . " 

Since n(a,b) = n(b,a) we can assume a S b . To prove the first theorem, let n(a,b) = 
k and assume the k steps in finding (a,b) are 

b = qAa + rt 

a = q 2 r ! + r2 

r k - 3 = q k r l r k - 2 + r k - l 
r k - 2 = q k r k - l 

If k = 1, then rt = 0 so b = qja and the smallest pair (a,b) is (1,1) so 

a = fA , b = f2 , a + b = f3 = 2. 

Note this case is not included in the theorem. In case k > 1 it is evident the smallest val-
ues of a ,b will be obtained for r. . = 1 and all the qTs = 1 except q, , which cannot be 
1 but is 2. Thus the pairs (*".-,, r. 2 ) , • • • , (a,b) are (1,2), • • • , (fk+-,, f ^ o ) - Since 
a + b = f. - + f.+2 = fk+o> t n e theorem is proved. 

We have 
Corollary 1. If a + b < ffe+3, then n(a,b) < k for k > 1. 
For b = a + i, i a fixed positive integer so that b < 2a, the quantities satisfy 

508 
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(1) n(a + mi , a + [m + l ] i) = n(a, a + i), m = 0, 1 , 2 , • • • . 

This follows from the remark that if n(a,b) = k, then n(a + b, 2a + b) = k + 1, k = 1, 2, 
3, • • • . This is evident since the first division would be (2a + b) = l(a + b) + a and 

n(a, a + b) = n(a, b) = k . 

Equation (1) is a consequence since each n is one more than n(i, a + mi) = n(i ,a) . The 
periodicity is evident in the table of values of n(a,b) for a ^ b < 2a. (See Fig. 1.) 

a = 1 1 
2 12 
3 1 2 3 
4 1 2 2 3 
5 1 2 3 4 3 
6 1 2 2 2 3 3 
7 1 2 3 3 4 4 3 
8 1 2 2 4 2 5 3 3 
9 1 2 3 2 3 4 3 4 3 
10 1 2 2 3 3 2 4 4 3 3 
11 1 2 3 4 4 3 4 5 5 4 3 
12 1 2 2 2 2 4 2 5 3 3 3 3 
13 1 2 3 3 3 5 3 4 6 4 4 4 3 
14 1 2 2 4 3 4 3 2 4 5 4 5 3 3 
15 1 2 3 2 4 2 3 3 4 4 3 5 3 4 3 

Figure 1 
n(a,b) for b = a, a + 1, • • • , 2a - 1 . 

To prove Theorem 2, assume the steps in finding (a,b) with N(a,b) = k are 

b = qta ± rt 

a = q2ri ± r2 

r k - 3 = qk-lrk-2 ± r k - l 

where 

r k - 2 = q k r k - l 

0, < r i < | a , 0 < r2 < I r i > • • • , 0 < V l < | r k _ 2 . 

Because of the restr ict ion on the remainders , we must have q2, q3, ••• , q^ equal to or 
greater than 2. But since 2r. + r . + 1 < 3r. - r . + 1 , i = 1, • • • , k - 1, in each case we ob-
tain the smallest sum a + b with q2 = • • • = q. = 2 and with qt = 1. For k = 1, we 
have 1 = 1-1 so a = b = 1. Set x, = r. ,. For k > 1, a = x, = 2 x

k _ i + \ 2
 anc^ 

b = x. ., = x. + x, ... Then a + b = 2x, + x, _- = x. -. This completes the proof of the 
theorem. 

Corollary 2. If a + b < \+1> then N(a,b) < k for k > 1. 
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Figure 2 exhibits the periodicity for i fixed;: 

(2) N(a, a + i) = N(a + m i , a + [m + l ] i ) , 1 < i < a/2 
and the symmetry: 
(3) N(a, a + i) = N(a, 2a - i) , 1 < i < a - 1 . 

a = 1 1 
2 2 
3 2 2 
4 2 2 2 
5 2 3 3 2 
6 2 2 2 2 2 
7 2 3 3 3 3 2 
8 2 2 3 2 3 2 2 
9 2 3 2 3 3 2 3 2 
10 2 2 3 3 2 3 3 2 2 

11 2 3 3 3 3 3 3 3 3 2 

12 2 2 2 2 4 2 4 2 2 2 2 

13 2 3 3 3 4 3 3 4 3 3 3 2 

14 2 2 3 3 3 3 2 3 3 3 3 2 2 

15 2 3 2 3 2 3 3 3 3 2 3 2 3 2 

16 2 2 3 2 3 2 4 2 4 2 3 2 3 2 2 

17 2 3 3 3 4 3 4 3 3 4 3 4 3 3 2 2 

18 2 2 2 3 4 2 4 2 2 2 4 2 4 3 2 2 2 

19 2 3 3 3 3 3 4 4 3 3 4 4 3 3 3 3 3 2 

20 2 2 3 2 2 3 3 3 4 2 4 3 3 3 2 2 3 2 2 

21 2 3 2 3 3 3 2 4 3 3 3 3 4 2 3 3 3 2 3 2 

22 2 2 3 3 4 2 3 3 4 3 2 3 4 3 3 2 4 3 3 2 2 

23 2 3 3 3 4 3 4 3 4 4 3 3 4 4 3 4 3 4 3 3 3 2 

Figure 2 

N(a,b) for b = a + 1, •• • , 2a - 1 

I wish to acknowledge the assistance of Professor V. C. Harr i s in shorteningthe proofs. 
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A PRIMER FOR THE FIBONACCI NUMBERS: PART XIII 

MARJORIE BICKNELL 
A. C. Wilcox High School, Santa Clara California 

THE FIBONACCI CONVOLUTION TRIANGLE, PASCAL'S TRIANGLE, 
AND SOME INTERESTING DETERMINANTS 

The simplest and most well-known convolution triangle is Pasca l ' s triangle, which is 
formed by convolving the sequence {l , 1, 1, • • •} with itself repeatedly. The Fibonacci 
convolution triangle [l] is formed by repeated convolutions of the sequence { l , I , 2, 3, 
5, 8, 13, • • •} with itself. We now show three different ways to obtain the Fibonacci convo-
lution triangle, as well as some interesting sequences of determinant values found in Pasca l ' s 
triangle, the Fibonacci convolution triangle, and the trinomial coefficient triangle. 

1. CONVOLUTION OF SEQUENCES 

If {a } and {b } a re two sequences, then the convolution of the two sequences is 
another sequence {c } which is calculated as shown: 

ct = ajbi 

c2 = a ^ + a2bt 

c3 = a ^ + a2b2 + a3bj 

c = a .b + a0b ., + a0b 0 +- • • + a b . = 7 ] a. b . J 1 . n I n 2 n -1 3 n-2 n 1 A—* k n-k+1 
k=l 

If we convolve the Fibonacci sequence with itself, we obtain the F i rs t Fibonacci Convolution 
Sequence { l , 2, 5, 10, 20, 38, 71, • • • } , as follows: 

Fp* = FtFi = M = 1 

F2
( 1 ) = FAF2 + F 2 F i = ' 1 - 1 + 1-1 = 2 

F31* = FjFg + F 2 F 2 + F 3 F X = 1-2 + 1-1 + 2-1 = 5 

F4
(:L) = F ^ + F 2 F 3 + F 3 F 2 + F 4 F i = 1-3 + 1-2 + 2-1 + 3-1 = 10 

Next we can obtain the Second Fibonacci Convolution Sequence { l , 3, 9, 22, 51, 111,-**} 
as indicated below. 

511 
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,(2) = 

F ( 2 ) 
*2 

42) 

,(4) 

,(D 

F J F J + FjF2 

F 3 F l
( 1 )

 + F2F2
(1)

 + F l F 3
( l ) 

F4Fp> + F,Fp> + F2F3
(1)

 + ?A1} 

= 

= 

= 

= 

1-1 = 1 

1-1 + 1-2 = 3 

2-1 + 1-2 + 1-5 = 9 

3-1 + 2-2 + 1-5 + 1-10 = 22 

by writing the convolution of the first Fibonacci convolution sequence with the Fibonacci s e -
quence. To obtain the succeeding Fibonacci convolution sequences, we continue writing the 
convolution of a Fibonacci convolution sequence with the Fibonacci sequence. A second method 
follows. 

The Fibonacci sequence is obtained from the generating function 

= Ft + F2x + F3x2 + F ^ x 1 1 + n+1 

which provides Fibonacci numbers as coefficients of successive powers of x as far as one 
pleases to ca r ry out a long division. The k convolution of the Fibonacci numbers appears 
as the coefficients of successive powers of x in the generating function 

(1 .2xk+l = F,(k)
 + F<k)x + F<k)x2

 + • 
x2) 

+ F ( k > x n
 + n+1 

k = 0, 1, 2, ••*. For k = 0, we get just the Fibonacci numbers. In the next section, we 
shall see yet another way to find the convolved Fibonacci sequences. 

3. THE FIBONACCI CONVOLUTION TRIANGLE 

Suppose someone writes a column of zeroes . To the right and one space down place a 
one. To generate the elements below the one we add the one element directly above and the 
one element diagonally left of the element to be written. Such a rule generates a convolution 
triangle. This rule, of course, generates Pasca l ' s triangle in left-justified form: 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

2 

3 

4 

1 

3 
4-4-
6 

1 

4 

0 1 5 10 10 5 1 
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The columns of Pasca l ' s triangle give convolution sequences for the sequence { l 5 1, 
1, • • •} . Notice that the row sums give powers of two, and the sums of r ising diagonals 
formed by beginning in the column of ones and going up one and to the right one throughout the 
a r ray give the Fibonacci numbers 1, 1, 2, 3, 5, • • • , F , • • • , where F = F + F , 

n n n—x n—^ 
n = 3, 4, 5, • • • . 

Next suppose we change the rule of formation. Begin as before, but to generate e le -
ments below the one, add the two elements directly above and the element diagonally left of 
the element to be generated. Now we have the Fibonacci convolution triangle in left-justified 
form, 

0 

0 

0 

0 

0 

0 

1 

1 

2 

3 

5 

1 

2 

5 
++ 
10 

1 

3 1 

9 4 

0 8 20 22 14 

The columns give the convolution sequences for the Fibonacci sequence. The row sums are 
the Pell numbers 1, 2, 5, 12, 29, 70, • • • , p , • • , where p = 2p + p 9 . The rising 

n n n—x n—u 
diagonal sums are 1, 1, 3, 5, 11, 21, • • • , r , • • • , where r = r + 2r . The di-

n n n—x n—^ 
agonal sums found by beginning in the column of Fibonacci numbers and going up two and right • > T „ T , + T 0 + T _, n-1 n-2 n-3 one throughout the a r r ay are 1, 1, 2, 4, 7, 13, 24, • • • , T 
the Tribonacci numbers. 

If one changes the rule of formation yet again, so that the elements below the initial one 
are found by adding the one element directly above and the two elements diagonally left of the 
element to be generated, the a r r ay obtained is the trinomial coefficient triangle. The coef-
ficients in successive rows are the same as those found in expansions of the trinomial (1 + x 
+ x2) , n = 0, 1, 2, . The columns do not form convolution sequences as before, but the 
row sums are now the powers of three, and the sums of elements appearing on the rising d i -
agonals are 1, 1, 2, 4, 7, 13, • • • , the Tribonacci numbers just defined. To i l lustrate , the 
trinomial triangle is formed as follows: 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

2 

3 

4 

1 

3 

6 

10 

2 

** 7 

16 

1 

6 

19 

3 

16 10 
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3. SOME SPECIAL MATRICES 

If one looks again at how convoluted sequences are formed, the arithmetic is much like 
matr ix multiplication. Suppose that we define three matr ices . Let P be the n X n matrix 
formed by using as elements the f irst n rows of Pasca l ' s triangle in rectangular form. Let 
F be the n X n matrix formed by writing the f irst n rows of Pasca l ' s triangle in vertical 
position on and below the main diagonal, which makes the row sums of F be Fibonacci num-
bers . Let C be the n X n matr ix whose elements a re the first n rows of the Fibonacci con-
volution triangle written in rectangular form. Then it can be proved that FP = C (see [ l ] , 
[ 2 ] . ) To i l lustrate, for n = 6, 

FP = 

(3.1) 

1 
0 
0 
0 
0 
0 

1 
1 
2 
3 
5 
8 

0 
1 
1 
0 
0 
0 

1 
2 
5 
10 
20 
38 

0 0 
0 0 
1 0 
2 1 
1 3 
0 3 

1 
3 
9 
22 
51 
111 

0 
0 
0 
0 
1 
4 

1 
4 
14 
40 
105 
256 

0" 
0 
0 
0 
0 
1 

~1 1 
1 2 
1 3 
1 4 
1 5 
1 6 

1 1" 
5 6 
20 27 
65 98 
190 315 
511 924 

1 
3 
6 
10 
15 
21 

= C 

1 
4 
10 
20 
35 
56 

1 
5 
15 
35 
70 
126 

1 
6 
21 
56 
126 
252 

Suppose that, instead of multiplying matrix F by the rectangular Pascal a r r ay P , we 
use an n X n matr ix A whose elements are given by the first n rows of Pasca l ' s triangle 
in left-justified form on and below its main diagonal, and zero elsewhere. Let F be the 
transpose of F. Then the matrix product AF = T, where T is the n X n matr ix whose 
elements are found in the left-justified trinomial coefficient triangle given in Section 2. We 
il lustrate for n = 6: 

AF = 

(3.2) 

"1 
1 
1 
1 
1 

_1 

"1 
1 
1 
1 
1 
1 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
0 
1 
3 
6 
10 

0 
1 
3 
6 
10 
15 

0 
0 
0 
1 
4 
10 

0 
0 
2 
7 
16 
30 

0 
0 
0 
0 
1 
5 

0 
0 
1 
6 
19 
45 

0" 
0 
0 
0 
0 
1 

01 
0 1 
0 
3 

16 

51 

r i 
.0 
0 
0 
0 

1 °  

= T 

0 
1 
0 
0 
0 
0 

0 
1 
1 
0 
0 
0 

0 
0 
2 
1 
0 
0 

0 
0 
1 
3 
1 
0 

0 
0 
0 
3 
4 
1 

4. SPECIAL DETERMINANTS IN PASCAL'S TRIANGLE 

A multitude of unit determinants can be found in Pasca l ' s triangle. The following theo-
rems are proved in [2] . 
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Theorem 4.1 . The determinant of any k X k a r ray taken with i ts first column along 
the.column of ones and its first row the i row of Pascal1 s triangle written in left-justified 
form, has value one. 

Theorem 4.2. The determinant of any k X k a r r ay taken with its first row along the 
row of ones or with its first column along the column of ones in Pasca l ' s triangle written in 
rectangular form, is one. 

For 

= 

example, 
1 2 1 

1 3 3 

1 4 6 

1 5 10 

0 

1 

4 

10 

= 

1 

1 

1 

1 

2 

3 

1 

3 

6 
~ 

1 

4 

10 

1 

5 

15 

1 

6 

21 

= 

1 

1 

1 

1 

3 

4 

5 

6 

6 

10 

15 

21 

10 

20 

35 

56 

Pasca l ' s triangle also has sequences of determinants which have binomial coefficients 
for their values. Here we have to number the rows and columns of Pasca l ' s triangle; the row 
of ones is the zero row; the column of ones the zero column. To illustrate some of the 
sequences of determinants considered here , we look back at the matrix P of (3.1) which con-
tains the f irst n rows and columns of Pasca l ' s triangle written in rectangular form. When 
2 X 2 determinants are taken across the f irst and second rows of Pasca l ' s rectangular a r ray , 

1, = 3, 4 
10 

4 
10 

5 | 
15 1 = 10, 

giving values found in the second column of Pasca l ' s triangle. Of course, the 1 X 1 deter -
minants along the first row give the values found in the first column of Pasca l ' s triangle. 
Taking 3 X 3 determinants yields 

1 2 3 

1 3 6 

1 4 10 
1, 

2 3 4 

3 6 10 

4 10 20 

3 4 5 

6 10 15 

10 20 35 

10, 

successive entries in the third column of Pasca l ' s triangle. In fact, taking successive k X k 
determinants along the first , second, • • • , and k rows yields the successive entr ies of the 
k column of Pasca l ' s triangle. 

The following theorems are proved in [3]. 
Theorem 4.3. If Pasca l ' s triangle is written in left-justified form, any kX k matrix 

selected within the a r ray with its first column the first column of Pasca l ' s triangle and its 
th first row the i row has determinant value given by the binomial coefficient 

( ' * * • ' ) th Theorem 4.4. The determinant of the kX k matrix taken with its first column the j 
column of Pasca l ' s triangle written in rectangular form, and its first row the first row of the 
rectangular Pascal a r ray , has values given by the binomial coefficient 
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hi 
5. SPECIAL DETERMINANTS IN THE FIBONACCI CONVOLUTION TRIANGLE 

AND IN THE TRINOMIAL TRIANGLE ARRAYS 

Now we are ready to prove that the unit determinants and binomial coefficient de ter -
minants of Section 4 are also found in the Fibonacci convolution triangle and in the trinomial 
coefficient triangle. Returning to (3.1), the first n entr ies of the first n rows of the Fib-
onacci convolution triangle are given by the matrix product FP = C. But, notice that k X k 
submatrices of C taken along either the first o r secondmatrix row are the product of a kX k 
submatrix of F with a unit determinant and a similarly placed k x k submatrix of P which 
has been evaluated in Theorem 4.2 or Theorem 4.4. Let us also number the Fibonacci con-
volution triangle as Pasca l ' s triangle, with the top row the zero row. Thus, we have 

Theorem 5.1. Let a k X k matrix M be selected from the Fibonacci convolution t r i -
angle in rectangular form. If M includes the row of ones, then det M = 1. If M has its 
first column the j column and its first row along the first row of the Fibonacci a r r ay , then 

det M -("i-1) 
Reasoning in a s imilar fashion from (3.2), the matrix product AF and Theorems 4.1 

and 4.3 yield the following, where the trinomial coefficient triangle is numbered as Pasca l ' s 
triangle, with the left-most column the zero column. 

Theorem 5.2. Let a k X k matr ix N be selected from the trinomial triangle written 
in left-justified form. If N includes the column of ones, then det N = 1. If N has i ts first 
row the i row and its first column along the first column of the trinomial triangle, then 

det N = 
( ' • * - * ) • 

These results are generalized in [2] and [3]. Other c lasses of determinants a re also 
developed there. The reader should verify the results given here numerically. 
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A FIBONACCI PROBABILITY FUNCTION 

HAROLD D. SHANE 
Baruch College of CUNY, New York, New York 

1. THE FIBONACCI DISTRIBUTION 

Consider the following Markov Process . To begin, a marker is placed in slot number 
zero. At each minute thereafter, a coin is flipped. If it comes up heads, the marker is 
moved up one slot. If it comes up tai ls , the marker is moved back to position zero. Let X 
be the number of flips needed to advance the marker to position n. We would like to investi-
gate the distribution of the random variable, Xn. For the case n = 1, the random variable 
is simply geometric ( i .e . , XA = number of t r ia ls until the first success occurs). Let us 
therefore, s ta r t with the case n = 2 and probability of a head, p = 1/2. 

Let P(X2 = k) = p2(k), k = 2, 3, 4, • • • , Now, 
p2(2) = P(HH) = 1/22, p2(3) = P(THH) = l / 2 3 

and 
(1) p2(k + 3) = P(k t r ia ls with no run of two heads) • P(THH) 

= ( A 2 s k / 2 k ) . (1/2*) = A 2 s k / 2 k + 3 , k = l , 2 , 3 , - " , 

where A . = number of arrangements of k heads and tails with no two consecutive heads. 
In order to evaluate A , , we note that we may classify the allowable arrangements accord-

th st-
ing to whether the last tail is in the k or (k - 1) position. Letting a . . = number of 
arrangements of k heads and tails having no two consecutive heads and having a tail in the 
i t h position, i = k , k - l , gives A 2 f k = a 2 i k i k + a 2 f k i k _ r But, a ^ ^ = A ^ ^ and 

a 2 , k , k - l = A 2 , k - 2 ' ^Qldi^ 
( 2 ) A 2 , k " A 2 , k ~ l + A 2 , k - 2 ° 

For k = 1, the possible arrangements are simply H and T. Thus, A 2 = 2. For k = 
2, the possible arrangements are HT, TH, TT. Thus, A

2 2
 = 3e C o n i b m i n § (D» (2) and 

the preceding, we have 
(3) p2(k) = F k __ 2 /2 k k = 2, 3, 4, • • - , 

where F, = k Fibonacci number (with F0 = F* = 1). Certainly, a good name for this i s 
the Fibonacci Probability Distribution. 

The cumulative distribution function of X2 is given by 

[x] 
(4) G2(x) = P(X2 < x) = ^ F k _ 2 ^ 2 k f o r x 2 2, and zero otherwise, 

k=2 
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518 A FIBONACCI PROBABILITY FUNCTION [Dec. 

where [ x J = largest integer less than or equal to x. In order to close this sum, we s im-
ply note the following 

Lemma. 
n 

y ; 2n-jF. = 2
n+2 - F + , . 

JLJ J n+3 
j=0 

Proof. By induction, if n = 0, the left-hand side is simply F0 = 1 and the right-hand 
side is 22 - F3 = 4 - 3 = 1. Now assuming the result for n, consider 

n+1 n 
V 2 n + 1 " J F . = F + . + 2 Y ^ F . = F + 1 + 2 (2 n + 2 - F + „ ) A—i ] n+1 i-a ] n+1 n+3 
j=0 ]=0 

= F n+1 + 2 n + 3 " 2 F n+3 = 2 n + 3 " <Fn+3 + Fn+3 " W 

= 2n+3 _ V 4 = 2(n+l)+2 _ V i ) + 3 ^ 

Applying this Lemma, we see that G2(x) is simply 

[x] [x ] -2 

(5) G2(x) = J2 F k - 2 / 2 k = 2"[X] E 2f^"2-kFk = 2-W(2« - F[x]+1). 
k=2 k=0 

So, 

(6) G2(x) = 1 - F f x l + i / 2 i f x > 0 and 0 otherwise. 

The factorial moment generating function M2(t) = Et 2, is easily obtained, 

OO OO OO 

M2(t) = £ tkp2(k) = ] P tkFk_2 / 2 k = (t/2)2 J ] Fk(t/2)k = it2g(2U) , 
k=2 k=2 k=0 

where 
OO 

g(x) = E Fkxk • 
k=0 

the generating function for the Fibonacci numbers, that i s , g(x) = (1 - x - x2)~ . Therefore, 

(7) M2(t) = t2/(4 - 2t - t2) 
and 

,m 

ib*M2(t) 
dt 

t = 1 = EX2 (X2 - 1) • • • (X2 - m + 1) = f2m , 
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the m factorial moment. The usual moment generating function i s , of course, M2(e ). 
Making the substitution, u = t - 1, we produce m2(u) = M2(u + 1), for which m 2 ' m ' (0) = 
f . A partial fraction decomposition of the preceding yields 

where a = 2 + \/5 and j3 = 2 - N/5. Expanding both fractions as power se r i e s , elementary 

computations yield 

(8) m2(u) = -1 + £ [ 3 ( J + ^ ) +
5

( J + 1 + ^ J + 1 ) 1 u J . 

Since the coefficient of \r is m J (0)/j! , comparing te rms in (8), we have 

(9) f = m! [3(j3j + J) + (/3j+1 + a j + 1 ) ] / 5 . 

2. THE POLY-NACCI DISTRIBUTION 

Let us now proceed along the lines of section one, to develop the situation for the case 
of n greater than or equal to two. Let P(X = k) = p (k) k = n, n + 1, • • • . Here we have 
p (n) = P (n heads in a row) = (1/2) , p (n + 1) = P (one tail followed by n consecutive 
heads) = ( l / 2 ) n + 1 and 

p (k + n + 1) = P(k tr ials with no run of n heads) • p (n + 1) 

= ( A n ) k / 2 k ) . . ( ^ ) n + 1 = A n j k / 2 n + k + 1 k = 1, 2, 3, - . . , 

where A . = number of arrangements of heads and tails with no run of n heads. Again, n, K 
we may evaluate A . by letting a . . = number of arrangements of k heads and tails 

n , K n , K , 1 j , 

having no run of n heads and the last tail in the i position, i = k, k - 1, • • • , k - n + 1. 
Thus, 

n-1 

] £ an,k,k-j ' 
]=0 

but 
a , . . = A . /.,-v i = 0, 1, • • • , n - 1 . 

n , k , k - j n,k-(j+l) 
So, analogously to (2), 

n-1 
(10) A n , k = 2 > n f k - ( j + l ) W h e r e A n , i = ^ 1 = 0, 1, 2, • • • , n - 1 . 

At this point, it is convenient to define the k poly-nacci number of order n, F . , by the 
n, K 

recurrence 
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(11) F . = F , + F . 0 + ••• + F , k = 1, 2, 3, ••• , 
n ,k n , k - l n ,k -2 n ,k -n 

where F A = 1 and F = 0 . 
n,0 n , - r 

Using this notation, we may write 

(12) p (k) = F . / 2 k k = n, n + 1, n + 2, • • • . ^n n ,k -n 

The cumulative distribution function 

[x] 

(13) Gn(x) = P(Xn < x) = ^ F
n k-n ^^ f o r X - n ' 

k=n 

As in Section One, we state 
Lemma. 

N 
N-JlT = 9 N + n V 2 N - i F . = 

Z-# n , j 
2X1 " - F , j " xn ,N+n+l ' 

j=0 

Proof. By induction on N, when N = 0, the left-hand side is simply F n = 1. The 
n ' right-hand side is 2 - F ,.,, but & n ,n+l 

n n-1 
y F = y 2k = 2n - 1 , 
£~d n,k L~t 

-p _ x * TT̂  _ x ^ r,k _ 0n 
n ,n+l 

k=l k=0 

establishing the result for N = 0. Assuming the result for N, let us consider 

N+l N 
V 2N + 1"J F . = F N + 1 + 2 V2 N "J F . = F N + 1 + 2 N + n + 1 
^ n , j ii, N+l / - / n , j n ,N+l 
J=0 j=0 

" n,N+n+l 
= ?n+CN+D (v , v _v x 

v n,N+n+l n,N+n+l n , N + l ; ' 
Since 

n-1 n-1 

Fn,N+n+l = 2-f F n ,N+l+ j ' Fn,N+n+l " F n , N + l = 2 - J Fn,N+l+j ' 
j=0 j=i 

and 
N+l / n -1 

E N+l-j = n+(N+l) _[v + V F 

n , j * I n,N+l+n ^ n,N+l+j 
j=0 \ j=i 

= 2 " Fn,N+l+n+l = 2 " Fn,n+(N+1)+1 ' q * e , d -
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Applying the Lemma, 

[x] [x] 
Gn(*> = 7 ? , / 2 k = 2 ~ [ x ] Y 2 [ x ] " k F , n l^d n , k - n ' Z-* n ,k-n 

k=n k=n 

[x]-n 
= 2 " [ x ] V 2 W - n " r F = 2 " [ X ] ( 2 [ X ] - F r , ) . 

JLJ n , r n , [ x j + l 

r=̂ 0 

Thus, Eq. (13) reduces to a form almost identical to (6), namely, 

(14) Gn(x) = 1 - 2"'-xJ F n r - , + 1 if x > n and 0 otherwise. 
Finally, the factorial moment generating function 

OO CO CO 

Mn(t) - EtX" = E t k p n , k , = E t k F n j k . n / 2 k - ( i t ) ^ ^ ) k ( | t ) k 

k=n k=n k=0 

= Ut) n g n (4t) , 
where 

g (x) = y F . xk 
5 n ' £-d n ,k k=0 

the generating function for the n order poly-nacci numbers. Since g (x) is easily seen 
to be g (x) = (1 - x - x2 - • • • - x ) = (1 - x ) / ( l - 2x + x ), we obtain 

(15) M (t) = t n / ( 2 n - 2 n ~ 1 t - . . . - t n ) = tn(2 - t ) / (2 n + 1 ( l - t) + t n + 1 ) . 

Unfortunately, a closed form expression for the f the m factorial moment of X , is 
not readily available. 

3. THE GENERALIZED POLY-NACCI DISTRIBUTION 

Let us briefly apply the methods of Section 2 to the case where the probability of ahead 
is p , 0 < p < 1, and not necessar i ly 1/2. Let q = 1 - p and as before let X = number 
of t r ia ls needed to reach position n. Letting p (k) = P(X = k), p (n) = p , p (n+ 1) = 
qp , p (n + j + 1) = qp p . j = 1, 2, 3, • • • , where p . = P (j t r ia ls with no run of n n n, j n, j 
heads). Now, p . = 1 for j = 0, 1, 2, 3, • • • , n - l and breaking down the probability 
according to the number of the las t tail , we obtain 

n 

P n , j = S ^ ^ P ^ j - r ' j = n, n + 1, n + 2, ••• . 
r=l 

Thus, if we define 
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n 
Fp(n;j) = q ^ P r * F p (n; j - r) j = 0, 1, 2, . . . 

r= l 

with F (n;0) = 1 and F (n;-k) = 0, we may write p (k) = p F (n ;k-n) , k = n, n + 1, • • • . 
The F (n;j) being the nPoly-nacci Polynomials of order n in p. M For example, the first 
few Fibonacci Polynomials F (2;j) a re given by: 1, 1 - x, 1 - x, ( l - x ) 2 ( l + x ) , ( l - x ) 3 ( l + x ) 
+ (1 - x)2x, • • • . The cumulative distribution function of X is 

n 
[ x ] [ x ] 

G n ( x ) = S pn(k) = Z) p n Fp{ n ; k - n) for x - n * 
k=n k=n 

That i s , 

[x ] -n 
Gn(x) = p n £ F (n; i) . 

i=0 

It is easy to show by induction that 

M 
^ F (n;i) = (q - F (n, M + n + 1) ) /qp n 

i=0 
so that 
(16) G (x) = 1 - q F (n; [x] + 1) if x > n and 0 otherwise. 

The generating function for the F (n;i), 

gnfcp) = 5 ^ F fajOx1 = 
i=0 

n-1 

1 - qx ^2 (PX)J 

3=0 

n n+1, = (1 - px)/( l - x + qp x ) 

Thus, the factorial moment generating function for X is 

OO oo 

(17) Mn(t;p) = X ) t k p n ( k ) = P ^ £ Fp(n;i) t* = P * ^ 1 " P t ) / { 1 "" t + ^ P ^ 1 ) -
k=n i=0 

So, for instance, 

4Mn( t4 x = EXn= (l-pn)/qpn , 

which for p = 1/2 yields E ^ X = 2 - 2. Of course, resul ts concerning the mean are 
easily obtained by developing the recurrence for EX in te rms of EX but the same is 
not true for the higher moments. Lastly, the analysis of the probabilistic situations such as 
the preceding may well reveal insights into the Fibonacci numbers and their extensions. 



SOME GENERAL FIBONACCI SHIFT FORMULAE 

FRANK J. D. TRUMPER 
Seismograph Services, Ltd., Holwood, Kesron, Kent, England 

The reader is probably aware of such formulae as: [l] 

( a ) F n = F k + l F n - k + F k F n - k - l 

( b ) F „ = ( - 1 ) k " 1 ( F k F n + k + l " W n + k > • 

The object of this paper is to prove more general shift formulae. For this purpose, 
the following notation will be used: 

Let 

then ap = - 1 . Now, 

So 

F F = (n:m), F = (n:l) = (l:n), etc. n m n 

1 + ^ 5 , 0 1 - N/5 a = _ _ — and p = ^ 

n nn 
F = (n:l) = °L_zi_ 

n ^ 5 

, v 1 . n+m , 0n+m n0m ni^n, (n:m) = — (a + p - a p - a p ) . 

Replace n by x, and m by n + m - x . Then, 

t x 1 / n+m , 0n+m x0n+m-x n+m-xfix^ 
(x:n + m - x) = -r (a + j8 - a |3 -a P ) 

/ x / , x 1 / x^n+m-x , n+m-x^x n^m m 0 n , 
(n:m) - (x:n + m - x) = •=• (a j3 + a p - a p - a p ) 

/ v (a/3) , x-mf ln-x , n-x^x-m n-m 0 n - m , 
(c) = v y (a B + a B -a - p ) 

o 
(_ l ) m n-m , 0n-m. x -m 0 n-x n-x0x-m^ 

= J—L- (a + p -a p - a p ) 

= (-1) (x - m:n - x) 

If x is replaced by -x , we get 
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M) (n:m) = (-x:n + m + x) + ( - l ) m + 1 ( - x - m:n + x) . 

Equations (c) and (d) may be combined into the one formula: 

(1) (n:m) = (±x:n + m # x) + ( - l ) m + 1 (±x - m:n * x) . 

By the same method, the following formulae may be proved: 

(2) (n:m) = (±x + m:n * x) + (- l )m + 1(±x:n - m * x) 

(3) (n ± x:m) = (±x:n + m) + ( - l ) m + 1 (±x - m:n) 

(4) (n ± x:m) = (±x + m:n) + (- l )m + 1(±x:n - m) 

(5) (n[x ± l ] :m) = (±n:nx + m) + ( - l ) m + 1 (±n - m:nx) 

(6) (n[x ± l ] :m) = (±n + m:nx) + (- l )m + 1(±n:nx - m) 

(7) (n:m) = (-l)X + 1[(x:n + m + x) - (m + x:n + x)] 

Clearly, Equations (a) and (b) are special cases of Equations (2) and (7), respectively. 

REFERENCE 

1. Brother Alfred Brousseau, An Introduction to Fibonacci Discovery, P. 46, page 11, and 
P. 48, page 12. 

ERRATA 

Please make the following corrections on "A Generalized Fibonacci Numeration,1' by 
E. Zeckendorf, appearing on pp. 365-372 of the October, 1972 Fibonacci Quarterly: 

p. 366, line 15: Please change the third word from: sequencex to sequences. 
p. 368, line 13: Read: t 6 j 3 j _u _4>_6 = F 5 + F2 + F„2 + F_5 + F_f . 

line 8 from bottom: Underscore: symmetric pairs . 
line 6 from bottom: Read: metric pairs may join up into one symmetric group 

(e-g- » ^ , 0 , - 6 ' ^ , 4 , - 4 , - 8 ) • 
line 4 from bottom: Underscore: saturated symmetric groups . 



MORE HIDDEN HEXAGON SQUARES 

CARL F. MOORE 
Tacoma, Washington 

In [ l ] , Hoggatt and Hansell prove the following remarkable result. 
Theorem 1. Let I 1 be such that 0 < n < m and 2 < m. Then the product of the 

six binomial coefficients surrounding f I is a perfect integral square. 
In this paper, we show that this theorem is a special case of a more general result . In 

part icular , we prove the following theorem. 
Theorem 2. Let H., for j odd, be a hexagon of entries from Pasca l ' s triangle with 

j + 1 entr ies per side and with the sides lying along main diagonal and horizontal rows of the 
triangle. Then the product of the entr ies forming H. is an integral square. 

Proof. Let j be a positive odd integer and let n and r be integers with 1 < n - j , 
i < r ^ n , and 0 < r £ n - j . If H. is centered at f ^ j , then it can be displayed in the 
following way where we label the sides I, • • • , VI. 

( : > 

( r - ] / ( r - j J- l ) ' * ' ( r - i ) ^ r ] ) 

/n - j + l \ I /n - j + l \ 
\ r - j ) \ r + 1 / 

VI II 

\ r - j j ( r + i - V 

( r - j ) ( r + j ) 

/ n + 1 \ / n + l \ 
. \ r - j + iy \ r + : i / 

• . V I I I 

("til1) ("li]1) 
(n + j \ / n + j \ . / n + j V n + j \ 
\ n J \ T + 1 / \ r + j - l / \ r + 3 / 

Of course, each coefficient is of the form T— where a, b, and c are the appropriate fac-
torials . We prove that the desired product is a square by proving that the product of the a fs 
is a square and similarly for the bfs and c fs . The products of the a ' s in sides I and IV, 
respectively, a re clearly [(n - j)!] J and [(n + j)!] J and both are squares since j is 
odd. Also, the product of the a?s in II, III, V, and VI and not in I or IV is clearly 
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[(n - j + l)!(n - j + 2)! ••• (n + ] - l ) ! ] 2 . 

Similarly, the products of the b 's in III and VI, respectively, a re [(r + j)!] j + 1 and 
[ (r - j)!] , and the product of the b 's in I, II, IV and V and not in III and VI is 

[(r - j + l)!(r - j + 2)! ••• (r + j - l ) ! ] 2 . 

Finally, the products of the c !s in II and V, respectively, are [{n - r - j)l] and 
i+1 [ (n - r + j)!] J and the product of the cTs in I,III, IV and VI and not in II and V is 

[(n - j - r + l)!(n - j - r + 2)! • • • (n + j - r - l ) ! ] 2 . 

Therefore, the product of the coefficients in question is a rational square and, since the 
product is a product of integers, it is also an integral square as claimed. 

REFERENCE 

1. V. E. Hoggatt, J r . , and Walter Hansell, "The Hidden Hexagon Squares ," Fibonacci 
Quarterly, Vol. 9 (1971), pp. 120, 133. 

THE BALMER SERIES AND THE FIBONACCI NUMBERS 

J. WLODARSKI 
Proz-Westhoven, Federal Republic of Germany 

In 1885, J. J. Balmer discovered that the wave lengths (A) of four lines in the hydrogen 
spectrum (now known as n Balmer Series' ') can be expressed by the multiplication of a numer-
ical com 
follows: 

-9 ical constant k = 364.5 nm (1 nm = 1 nanometre = 10 m) by the simple fractions as 

(1) 656 = | X 364.5 

(2) 486 = | X 364.5 = i | X 364.5 

(3) 434 = | Y X 364.5 

(4) 410 = | X 364.5 = | | X 364.5 . 

By extending both fractions, 4 /3 and 9/8, be recognized the successive numerators 
as the squares 32, 42, 52 and 62, and the denominators as the square-differences 32 - 22, 
42 - 22, 52 - 22, 62 - 22. 

From this he developed his fstmous formula: 
[Continued on page 540. ] 



A POLYNOMIAL WITH GENERALIZED FIBONACCI COEFFICIENTS 

BRUCE W. KING 
Adirondack Community College, Glens Falls, New York 

In Elementary Problem B-135 (this Quarterly, Vol. 6, No. 1, p. 90), L. Carlitz asks 
readers to show that 

k=0 
and that 

n-1 

0> E Lk2 n"k _ 1 = ^ - Ln+2 ' 
k=0 

The problem invites generalization in at least two ways. It is natural to investigate 

n -1 

k=0 

where T, is the generalized Fibonacci sequence with Tj = a and T2 = b. It is not diffi-
cult to show by induction that 

n~l 

<3> 2 Tk2n"k-1 = T2(2n) - Tn+2 . 
k=o 

The relations given in (1) and (2) a r e , thus, a consequence of (3). 
A second generalization maybe obtained by trying to determine whether anything worth-

while can be said about the polynomial 

n -1 
n-k-1 ^ E T k x 

k=0 

This seems to be a more difficult problem than that posed by the first generalization, and the 
res t of this note is devoted to i t 

To begin with, evaluating (4) for several values of n suggests that 
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(5) 

A POLYNOMIAL WITH GENERALIZED FIBONACCI COEFFICIENTS [Dec. 

n-1 
n -k -1 

n-1 n -1 
n-k-1 

k=0 k=0 

n-k-1 , x + b Z Fk-i 
k=0 

This can be proved by induction. For n = 1, both members of (5) reduce to b - a = T0. 
(We use x° = 1 here . ) If we now suppose (5) true for some integer n > 1, then 

n-1 

IXx^x^T^-1^ 
k=0 k=0 

n-1 n -1 
\ ^ _ n-k-1 , , V^ -̂  n -k-1 

a 2 - , F k - 2 x + b 2 L F k - i x 
k=0 k=0 

+ T 

and, since T = a F 0 + b F _,, n n-2 n-1 

n n -1 

E ,_ n-k \ ^ _ n-k , _ 
T k X = a Z ^ F k - 2 X + a F 

k=0 k==0 

n-2 

n - 1 
+ b V F. 1 x n + b F -£~i k -1 n -1 

k=0 

= a 

n-1 
^ F._ 0 x" " + F. 
k=0 

n-k 
k - 2 ~ " An-2 + b V F. , x n " k + F n £—* k-1 n-1 

k=0 

n n 
\ r^ „ n-k , , V ^ _ n-k 

= a L F k - 2 X + b L F k - l X ' 
k==0 k=0 

This completes the proof of (5). The problem has , thus, been reduced slightly to the problem 
of evaluating an expression such as 

k=l 

n-k 

in closed form, for such a result would lend some significance to the right member of (5). 
Let us define 
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k=l 

Now, it is known [ l , p. 43] that the power se r ies 

k=l k=l x 

00 

L F.. t̂ -1 

k=l 

converges to 

1 - t - t2 

The radius of convergence is 

lim _ L _ = I , 

where 

4, = 1 + ^ 

is the Golden Ratio. Thus, for a fixed value of t in the interval of convergence 

^5- 1 < t < ̂ L i 
2 " ^ 2 

it follows that 

oo n 

1 - t - t k=l k=l 

where R —• 0 as n—»oo. Thus, n 

n 
.k-1 1 V F ^ " 1 - 1 - R 

JLJ k 2 n 
k=l i c t 

or , what is the same, 
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k = l 

- t R 
1 - t - t ' 

If we now l e t t = l / x then , for x < -(/> o r x > ( / > , 

n I 
k _ x 

z^ HE n l I 
, - x i 
k = l x 9 

x^ 

I R = * 
x n 2 X - X - 1 

1 B 
x n 

and 

k = l 

n + l n - 1 „ x R 
X X - X - 1 

We h a v e , t h e r e f o r e , 

(6) 
n + l 

f (x) = £ x 1 1 " 1 R . 
n 2 -. n 

x4 - x - 1 

T h e p r o b l e m i s thus e s s e n t i a l l y r e d u c e d to finding the r e m a i n d e r R in s o m e su i t ab l e 

f o r m . Inves t iga t ing (6) for the f i r s t few v a l u e s of n s u g g e s t s tha t 

R = 
E . n x + F n + l n__ 

x (x^ - x - 1) 

T h i s , in t u r n , s u g g e s t s t ha t 

n + l 
c / v x n - 1 
f (x) = - — . x 
n 2 i 

x* ~ x - 1 

F ± 1 x + F n + l n 

X (x^ - X - 1) 

T h a t i s , 

(7) £ F k* n - k x n + 1 - F , , x - F n + l n £ , 1 + J 5 for x f — = V L -

k = l x^ - x - 1 

We wil l p r o v e (7) by induct ion. F o r n = 1, both m e m b e r s r e d u c e to 1. If (7) i s t r u e for 

s o m e i n t e g e r n > 1, then 
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n+1 n 
n-k+1 x ^ -r. n-k+1 x = > F, x + F 

n+1 
k=l k=l 

531 

k=l 

x n + 1 - F + 1 x - F 
x £11 n + F 

2 -, n + l 
X6 - X - 1 

n+2 F ± 1 r - F x + F , n x^ - F _,, x - F _,_., n+1 n n+1 n+1 n+1 

x - x - 1 

n+2 x - (F + F ^ )x - F _ v n n+1 n+1 
x2 - x - 1 

x n + 2 _ F + , - F + 1 n+2 n+1 
x2 - x - 1 

This completes the proof of (7). 
Now, returning to the summations in (5), 

n -1 n-1 

E Fk-2X' 
n-k-1 n-1 n-2 , „ n-3 F nx + F , x + F^x + E' t 

. n -k -1 
.x 

k=0 k=3 

n-1 
n -1 ^ n-2 1 

-x + x + — 

n - 1 J n-2 
= -x + x 

E F k - 2 * 
k=3 

n-k+2 

n+2 
V F , 9 x n " k + 2 - F ' x 2 - F , x - F 
Z^J k-2 n-2 n-1 n 
k=3 

Using the change of variable j = k - 2 in the summation on the right, we have 

n -1 
n -k-1 n-1 , n-2 , 1 Z ,-, n-K-l n -1 , n-2 , 1 \ - ^ _ n-i 

F k _ 2 x = -x + x + _ ^ F j x J 
k=0 j=l 

F 0 x 2 + F , x + F n-2 n-1 n 
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After substituting from (7), combining fractions and simplifying, the result is that 

^ n k 1 xI1(2 - x) - F x - F 
(8) J ) Fk_2 xn = _ n"2 n"3 

k=0 

In a s imilar manner, we can use (7) to show that 

^_^ I 1 x ( x - l ) - F - x - F 0 
( 9 ) E x n - k - ! = ^ ^ n .2 

k=0 x2 - x - 1 

Now substitute (8) and (9) into (5), combine fractions and arrange the numerator in powers of 
x. The result is 

n-1 
£ TkXn-k-l = 1 ^ x n [ ( b _ a ) x + (2a _ b ) ] 
k=0 x* - x - 1 

" C a F n - 2 + b F n - l ] x " [ a F n - 3 + b F n - 2 ] } -

Consequently, we have the following generalization from Carlitz1 problem: 

^} , 1 (Tn + T n )xn - T x - T , 
(10) £ Tkxn-k~X = - 2 =1 S ±1 

k=0 

It is not difficult to see that (10) reduces to (3) when x = 2. Other resul ts of interest can be 
obtained by letting x = ±1 in (10). 
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ANOTHER PROOF FOR A CONTINUED FRACTION IDENTITY 

FURIO ALBERTI 
University of Illinois, Chicago, Illinois 

Denote the convergents of the continued fraction (Pringsheim's notation [ 2 ] ) , 

fO; a /b 1 

by P n / Q n 5 n = 0, 1, 2 
off" continued fraction 

5 5 where P0 /Q0 = 0 /1 . Denote the convergents of the "cut 

[> an /bn] 
L Jn= 

:m+l 

by P , /Q . , where P /Q = 0, P , /Q = a , , / b ,.,, etc. Now, 
J n i j k ' ^ n i j k m j O ' ^ n i j O m , l m , l m+1 m+1 ' 

"m+k 

0 - 1 0 

SLt bt -1 

0 a2 b2 

a b 
m m 
0 a ,n f b ,- - 1 

m+1 m+1 

m+k m+k (m+k+1) 

LaPlace 's expansion applied to the last k columns gives 

m+k m m , k 

or 

0 -1 
a* bt - 1 

a . b - - 1 m - 1 m - 1 

m+1 

a ,0 b i n - 1 m+2 m+2 

m+k-1 m+k-1 
m+k m+ll (k) 
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0 - 1 0 ••• 0 

~m+k m m , k m+1 m - 1 

* 

m+2 m+2 

m+k 

[Dec. 

(k+1) 

where the places denoted by the as ter isks may be filled in by any quantities desired. Hence, 
a .. is introduced in this las t determinant by choosing the second row to be 

and get 

Similarly, 

a , - , b . - , - 1 , 0, 0, m+1 m+1 ' ' ' 

P J _ . = Q . P + P . P -m+k ^ m , k m m , k m - 1 

m+k m , k m m , k m - 1 

These results may be derived without the use of determinants [1, p. 40] but the pro-
cedure is ra ther lengthy. 
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ON THE PERIODICITY OF THE TERMINAL DIGITS IN THE FIBONACCI SEQUENCE 

DANIEL LANCE HERRICK 
Harrington College, Harrington, Rhode Island 

In the Fibonacci Quarterly, Vol. 1, No. 2, page 84, Stephen P. Geller reported on a 
computation (using an IBM 1620) in which he established the period of the Fibonacci numbers 
modulo 10 for n = 1, 2, 3, 4, 5, 6. For example, the last digit of the decimal numeral 
for F. is periodic with period 60, and the last six digits a re periodic with period 1,500,000. 
Mr. Geller closed his report by saying, "There does not yet seem to be any way of guessing 
the next period," and expresses a hope that a clever computer program could be designed for 
skipping part of the sequence. And Mr. Geller and R. B. Wallace proposed the finding of an 
expression for these periods as Problem B15. 

In the Quarterly, Vol. 1, No. 4, page 21, Dov Jarden, with all of the scorn of the theo-
retician for the empiricist , brings out the big guns and bat ters the problem to pieces, show-
ing that F, is periodic modulo 10 with period 15-10 if n > 3, for n = 1, 2 the 
periods are 60 and 300. 

And in the Quarterly, Vol. 2, No. 3, page 211, Richard L. Heimer reported on a ca l -
culation examining the same problem in numerals of radix 2, 3, 4, 5, • • • , 16. (Inhis a r t i -
cle he does not mention a machine and probably did the calculation by hand.) He wri tes that 
his interest was aroused by the eccentricity of the first two periods for decimal numerals. 

At the same time as I recently read these ar t ic les , I stumbled on the big guns neces -
sary to almost completely reduce the problem, "What is the period of the last j digits of the 
numeral of radix n of F, , the k term in the Fibonacci Sequence?," to a routine compu-
tation. (I say almost completely because, for example, n = 241 would require extended 
calculations withlarge numbers or the use of tables thatl don't have available.) The problem 
is equivalent to: 

What is the period of the Fibonacci sequence modulo i r ? 

Definition 1. The period of the Fibonacci sequence modulo m, which we write P(m), 
is the smallest natural number k such that F . = F (mod m) for every natural number 
n. 

We s tar t the subscripts of the Fibonacci sequence in the usual place; that i s , Fj = 1,, 
F2 = 1, and F = F n + F 0 for n > 2. L n n -1 n-2 

All of the theorems necessary to solve this problem have been proven already. We 
will quote them here as we develop the need for them and close the paper by commenting on 
where proofs can be found. 

Theorem 1. F, is periodic modulo m for every natural number m > 1. 
Hence, there is a solution. 
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To solve the problem for all natural numbers n, it will suffice to solve it for prime 
numbers , for 

Theorem 2. If m = p]1 • pi2 • • • • • p.1 where the pfs are distinct p r imes , then 

P(m) = LCM(P(pJ
1

1), • •• , Pfc]1)) 

and we can find the period modulo m if we know the periods of the powers of the prime fact-
tors of m. We need one more technical te rm to talk easily about the problem: 

Definition 2. If p is a prime number, the rank of apparition of p, R(p), is the s u b -
script of the first Fibonacci number divisible by p. That i s , R(l) is the least natural num-
ber k such that p/F, . 

There is a reasonably nice relationship between R(p) and P(p): 
Theorem 3. If p > 2 is pr ime, 

_ , v ( l if R(p) = 2 (mod 4) 
£}Ei = 2 if R(p) = 0 (mod 4) 
m p ; [ 4 if R(p) = ±1 (mod 4) 

Thus, if we can find the rank of p, we have the period. For many pr imes , we can find 
this ratio without knowing the rank of p. 

Theorem 4. 
' = 1 if p = 11 or 19 (mod 20) 

P(p) J = 2 if p = 3 or 7 (mod 20) 
RlpT j = 4 if p E 13 or 17 (mod 20) ' 

/ 2 if p E 21 or 29 (mod 40) 

There is a limit to the amount of work involved in finding R(p). 
Theorem 5. 

R(p)|(p - 1) if p = ±1 (mod 10) 

R(p)|(p + 1) if p = ±3 (mod 10) 

so that checking somewhat fewer than p/2 Fibonacci numbers is guaranteed to find the first 
Fibonacci number divisible by p. 

Theorem 6. If P(p2) f P(p) then P(p^) = p: i"1P(p). 
Thus, subject to a rather odd condition, if we know P(p) we know P(pJ) . So far as I 

know, neither has P(p2) f P(p) been proved nor has a counter-example been found. J u s t i n 
case , there a re theorems to take care of odd situations that might a r i se : 

Theorem 7. 

P(p k ) = P(p) 

for prime p > 2. 
Rtp^j " ^ 

Theorem 8. If t is the largest integer such that P(p ) = P(p) then 

P(pk) = p k - t P ( p ) for k > t . 
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Table 

t(m) denotes P(m)/R(m); in the last three columns, n > 2 
m 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

t(m) 

1 

2 

4 

2 

1 

4 

4 

1 

2 

R(m) 

3 

4 

6 

5 

12 

8 

6 

12 

15 

10 

12 

7 

24 

20 

12 

9 

12 

18 

30 

8 

30 

24 

12 

25 

21 

36 

24 

14 

P(m) 

3 

8 

6 

20 

24 

16 

12 

24 

60 

10 

24 

28 

48 

40 

24 

36 

24 

18 

60 

16 

30 

48 

24 

100 

84 

72 

48 

14 

t (m 2 ) 

1 

2 

4 

2 

1 

4 

4 

1 

2 

1 

R ( m 2 ) 

6 

12 

12 

25 

12 

56 

48 

108 

I5Q 

110 

12 

91 

168 

300 

192 

153 

108 

342 

300 

168 

330 

552 

48 

625 

546 

972 

84 

406 

P ( m 2 ) 

6 

24 

24 

100 

24 

112 

96 

216 

300 

110 

24 

364 

336 

600 

384 

612 

216 

342 

600 

336 

330 

1104 

96 

2500 

1092 

1944 

168 

406 

t (m ) 

2 

2 

4 

2 

1 

4 

4 

1 

2 

1 

E ( m n ) 

3 - 2 n " 2 

4 - 3 1 1 - 1 

3 . 2 2 n - 2 

5 n 

3 . 6 n - 2 

8 .7 1 1 - 1 

3 . 2 3 n - 2 

4 - 3 2 1 1 - 1 

7 5 . 1 0 n - 2 

l o - n 1 1 - 1 

1 2 n - l 

7 - 1 3 n - 1 

2 1 - 1 4 n - 2 

2 0 - 1 5 1 1 - 1 

3 . 2 4 n - 2 

9 .17 1 1 - 1 

27-18 1 1 " 2 

18-19 1 1 " 1 

1 5 - 2 0 n _ 1 

8 . 2 1 1 1 - 1 

165-22 1 1 ' 2 

2 4 - 2 3 1 1 - 1 

2 -24 1 1 - 1 

5 2 n 

273-2611""2 

4 - 3 3 1 1 - 1 

3 . 28 1 1 - 1 

14-29 1 1 - 1 

P ( m n ) 

3-2 1 1 - 1 

8 . 3 1 1 - 1 

3 - 2 2 1 1 - 1 

4 - 5 n 

o * 

l e - y 1 1 - 1 

Z-2^'1 

8 - 3 2 1 1 - 1 

15-lO11"1 

io-n11-1 

2 1 2 n - 1 

28-IS1 1"1 

s-u11-1 

4 0 - I S 1 1 " 1 

3 . 2 4 n - l 

36- lln-X 

3-18 1 1 - 1 

18-19 1 1 - 1 

so^o11"1 

1 6 - 2 i n _ 1 

15-22 1 1 - 1 

48 -23 1 1 - 1 

4 -24 1 1 - 1 

4 - 5 2 n 

21-26 1 1 - 1 

8 - 3 3 1 1 - 1 

6-281 1-1 

14-29 1 1 - 1 

*holdsfor n > 3; for n > 2, R(6n) = s"'1 LCM(2n"2,4) and P(6n) = 2R(6n) 

**holds for n > 4; for n > 2, E(14n) = 3-711"1 LCM(8,2 n " 2 ) 5 and P(14n) = 2E(14n) 

fholds for n > 3; for n > 2, R(18n) = 3211""1 LCM(4,2 n " 2 ) , and P(18n) = 2R(18n) 

JR holds for n > 2; P holds only for n > 3, for n > 2 

P(26n) = 21 • IS1 1"1 LCM(4, 211"1) 
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IN THE FIBONACCI SEQUENCE 

The original problem can, in principle, be solved for any natural number m by, first , 
using the fundamental theorem of arithmetic to write m as a product of powers of distinct 
p r imes , 

ni = Pi1 • P22 p?1 ; 

second, finding R(p, ), 1 < k £ i, using Theorem 5 to save labor; third, checking whether 
R(p?) = R(PjJ and using Theorem 3 or 4, Theorem 7 and Theorem 6 or 8 to find 

jk P(Pk
k) ; 

and, finally, using Theorem 2 to find P(m). The same algorithm works for m = n, n2, n3, 

After learning these strange things, I constructed a table, starting with m - 2 because 
2 was the natural place to s tar t and going to 28 because my paper had 27 lines and then add-
ing 29 because it seemed a shame to stop when the next entry would be pr ime. 

We can now shed light on the question that aroused Mr. Heimer — why are the first few 
periods for decimal numerals i r regula r? The answer appears when we construct 

L C M ( P ( 2 k ) , P (5 k ) ) = LCM ( 3 - 2 k - \ 4.5k~1) 

in which the exponent of 2 does not s tar t to grow until the 22 in P(5 ) is used up. The 
same thing happens when m = 18, for example. See the notes for the table. 

I suspect that there is not much more to say about the periodicity of the terminal digits 
of F, . The mat ter of the periodicity of F, modulo p is an interesting one for labor-saving 
purposes when one is seeking the prime factorizations of large Fibonacci numbers. In order 
that this article contain all of the elementary machinery for working on this problem, I quote 
one more theorem. 

Theorem 9. If a is a divisor of F, then a is a divisor of F . for every natural 
number n. 

In part icular F , / F . and p /F , where k is a multiple of R(p). 
Theorems 1 and 2 are theorems 1 and 2, respectively, in Wall. Theorems 3, 4, and 5 

are Theorem 2, Theorem 4, and Lemma 3, respectively, in Vinson; Theorems 6 and 8 are 
Theorem 5 in Wall; Theorem 7 is a Corollary of Vinson1 s Theorem 2, and Theorem 9 is a 
Corollary of Theorem 3 in Wall. 
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GEOMETRIC PROOF OF A RESULT OF LEHMER'S 

CHARLES W. TRIGG 
San Diego, California 

The rectangle in the figure is composed of unit squares: NP = F 2 , NQ = F , 
NR = F 0 ^0 and MN = 1. It follows that MP = (F2

0 + l ) 1 / 2 , PQ = F 0 - - F 0 , and 2n+2 2n 2n+l 2n 
PE = F - F 

*2n+2 2n 

M 

R Q P 

/ 

N 
Starting with the well-known identity 

we have 
F2n+lF2n+2 F2nF2n+3 ±9 

F2n+lF2n+2 F (F + F ) + F2 

2nv 2n+l 2n+2; 2n 
F2 + 1 2n 

(F - F )(F - F ) 
v 2n+l 2nM 2n+2 2n ; 

F2 + 1 2n 
(F, 2n+l F2a> : <4n + 1)1/2 (F2 + l ) 1 / 2 • (F - F ) 

v r 2n ; ' VJ?2n+2 2n ; 

arccot F n ,- + arccot Frt 
2n+l 2n+2 

Therefore, triangles QPM and MPR are s imilar , since the sides including their 
common angle are proportional. Therefore /̂JVERP = ^_QMP. It follows that / MPN = 
/̂_QMP +/_MQP = /_MRP +/JVEQP. That i s , arccot F 2 

Thus we write: 
arccot 1 = arccot 2 + arccot 3 

= arccot 2 + arccot 5 + arccot 8 
= arccot 2 + arccot 5 + arccot 13 + arccot 21 

i=l 

00 

i=l 

arccot F 0 . , - + arccot F n J O 2 l+l 2n+2 

arccot F, 2i+l 

This resul t was announced by D. H. Lehmer [l] in 1936, and proved in different ways 
by M. A. Heaslet [2] and V. E. Hoggatt, J r . [3 ,4 ] . The first value of arccot 1 above applies 
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to G a r d n e r s three-square problem [5] which has been proven synthetically in 54 ways [6]. 
Proof of the second value of arccot 1 is asked for in [7]. 
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[Continued from page 526. ] 

X = k — - (n = 3, 4, 5, 6) 
n2 - 22 

or in the better known form: 

\ 22 n2 / 

where V is the frequency and R the nRydbergfs constant. M 

It may be of interest to note that all denominators of the simple fractions used by 
Balmer for deriving his formula, i. e. , 3 , 5 , 8 and 21, are Fibonacci numbers. 



FIBONACCI AND APOLLONIUS 

WALTER W. HORNER 
Pittsburghj Pennsylvania 

Apollonius proposed the problem: Given three fixed c i rc les , to find a circle which 
touches all of them. In general , there a re eight solutions. Obviously, if the given circ les 
are mutually tangent, the number of solutions is reduced to two. This case is a favorite with 
problemists for creating puzzlers and formulas have been found for their solution. In this 
note, we shall consider only the case where the given circles are mutually tangent and have 
their centers on the vert ices of a Pythagorean triangle. The purpose of this note is to point 
out a relation between these five circles and any four consecutive Fibonacci numbers. Let 
ri» r2> r3 denote the given radii; R and r denote the required radii; and F , F - , F 2 , 
F „ any four consecutive Fibonacci numbers. Assume rt < r2 < r3 and R > r. 

For convenience in computation, we shall denote our Fibonacci numbers by a, b, c, d. 
Then using b, c as generators , we get the Pythagorean triplets: 

c2 - b2 ; 2 b c ; c2 + b2 . 

Then by the condition of our problem, we get 

rt + r2 = c2 - b2 

rt + r3 = 2 b c 

r2 + r3 = c2 + b2 . 
Solving we get 

rt = b(c - b) = a b 

r2 = c(c - b) = a c 

r3 = b(c + b) = b d 

rA + rt + r3 = c(b + c) = c d . 
Then 

rA r2 r3 = a2 b2 c d 

rt r2 = a2 b c 

rt r3 = a b2 d 

r2 r3 = a b c d . 

The formula below is due to Col. Beard and applies to all cases where the given c i rc les are 
mutually tangent. 
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R or r = ——• ZZZZZIZZZZZZZZZZI 
r ^ + r1r3 + r2r3 + 2 N/r1r2r3(r1 + r2 + r 3 ) 

The negative sign gives R (absolute value) and positive sign gives r. 
Substituting the values already found for r l 9 r2, r3 we get 

a2b2cd 
R or r = — 

Hence in Fibonacci numbers 

x\ — 

r = 

we have 
r i = 

r2 = 

*3 = 

R = 

a c + bd - c d 

a b e d 
4 cd - ab 

F F n n+1 
F F n n+2 
Fn+1 Fn+3 

Fn+2 Fn+3 

a2bc + ab2d + abed + 2 \/a2b2cd • cd 

a b e d , 
= - c d 

F F F F n n+1 n+2 n+3 
r 4F F - F F 

n+2 n+3 n n+1 
All this holds for Lucas numbers, also. 
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A METHOD FOR CONSTRUCTING SINGLY EVEN MAGIC SQUARES 

JEROME ROTHSTE1N 
The Ohio State University, Columbus, Ohio 

In a recent note* we described a method for constructing magic squares of order n = 2 
(2m + 1) based on systematic alteration of 2 X 2 blocks of integers substituted for the inte-
gers of any odd square of order 2m + 1. The present note derives a convenient alternative 
rule starting from a block of four odd squares of order 2m + 1. Its derivation shows the ex-
istence of a very large number of s imilar rules* 

Divide the square of order n = 2 (2m + 1), with sum 

S = n(n2 + l ) /2 = 2Sn ^ + 3(2m + 1)3 n ' 2m+l 

into four squares of o rder 2m + 1. Label them I, II, III, IV as shown in Fig. 1, filling the 
cells of I with integers of any magic square of order 2m + 1, filling II with any square of 
the same order whose integers have each been augmented by (2m + l) 2 , likewise III and IV, 

I 

IV 

III 1 

II I 

Figure 1 

where the augmentations are respectively by 2(2m + l)2 and 3(2m + l ) 2 , and the unaugmented 
squares of IV and I are identical, likewise those of n and III. Clearly the column sums each 
add up to S , and this property is not destroyed by interchanges within a column. 

The upper (2m + 1) rows sum to 2S? .. + 2(2m + l ) 3 , while the lower (2m + 1) rows 
sum to 2S9 .. + 4(2m + l)3 . Exchanges within columns which reduce the lower rows by 
(2m + l)3 and increase the upper rows by the same amount will thus bring the row sum to S . 
If p interchanges are made between l a n d IV and q between II and III, all of them in the 
same row, then the upper row increases by (3p - q) (2m + l ) 2 , the lower row decreasing by 
the same amount. Any p and q less than 2m + 1 satisfying 3p - q = 2m + 1 will bring 
the row sum to S . For k an integer, positive, zero or negative, and satisfying -2m + 1 <. 
3k < m + 2 we have p = m + k, q = m + 3 k - l a s the possible cases . The case p = m, 
q = m - 1 is the simplest. 

The two diagonal sums differ by 4(2m + l ) 3 , or twice the row difference. As the row 
sum adjustments are independent of which cells in a row are selected for the p + q in ter-

*J . Rothstein, American Math. Monthly, Vol. 67, No. 6, pp. 583-585 (June-July, 1960). 
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changes, we select them to bring the diagonal sums to S . If m diagonal cells of I inter-
change with the corresponding (non-diagonal) cells of IV, likewise m diagonal cells of IV 
with the corresponding (non-diagonal) cells of I, and the center cells of I and IV are also in-
terchanged, then the I-II diagonal increases by (2m + l)2(2m + l)2 and the III-IV diagonal 
decreases by the same amount, thus bringing them to S . This diagonal correction, which 
uses only I-IVinterchanges, applies only if p > m. Other rules , involvingII-III interchanges 
also, can easily be worked out. 

Figure 2 gives a pictorial representation of a simple rule for p = m, with I-IV diagon-
al correction, illustrated for the case m = 2. The numbers assigned to the empty cells of 
the squares of order 2m + 1 are left undisturbed. Those assigned to cells with + or - a re 
interchanged with the numbers in the corresponding cel ls , i. e. , the number in cell (i, j) of I 
exchanges with that in cell (i, j) of IV, likewise II and III. A - label can be moved anywhere 
in its row (in its square of order 2m + 1) except to a cell on a diagonal. A + label, except 
for those in the center cel ls , which are fixed, can be displaced to the other diagonal position 
in its row as long as the same number of mobile + labels are on the diagonal of the square of 
order n as off it (these are still on the diagonals of I and IV, of course). It is understood 
that when a label moves, the corresponding label moves correspondingly. In Fig. 2, it can 
be seen that a simple rule can be expressed as follows. After I, II, III, IV have been written 
down, interchange the center elements and the m columns on the left, with the exception of 
the center cell of one column, between I and IV. Perform the same interchanges between II 
and III except that diagonal cells are not interchanged. 

+ - i -
— 1 ~ T 1 — 
_ + I -

- + I -

- + I ~ 
+ - 1 -
+ - 1 -

- + I -

- + I -

- + I -
+ - I -
— 1 I . 1 1 1 1 — 

Figure 2 



THE Z TRANSFORM AND THE FIBONACCI SEQUENCE 

WILLIAM L. MATHJS 
Texas Tech University, Lubbock, Texas 

Definition. The z transform of f(n) is the function 

00 

am] = F(Z) = J2Un)z~n> lzl > } 
n=0 

where z is a complex variable and p is the radius of convergence of the se r ies . 
Applying the z transform to the recursion relation 

n+2 n+1 n 

we obtain 

afn + 2 i =Ufn+1 + g -«w+«y • 

Using the shifting theorem for z t ransforms, 

£[f(n + m)] = z m [F(z ) - Fm(z)] , 

where 

m - 1 

Fm(z) = Y, ^*-k . 
k=0 

which yields 

z2[F(z) - F2(z)] = z[F(z) - Fi(z)] + F(z) 

and 

(z2 _, z _ I ) F ( Z ) = z2F2(z) - zF^z) . 

Hence 
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z2[f(0) - fCDz"1] - z[f(0)] 

Dec. 1973 

F(z) = 
z - z - 1 

where 

z2 - z - 1 f 0 

Since f0 = 0 and fA = 1, we have 

F(z) 
z ' - z - 1 

n -1 F(z) is a Laurent se r ies . Therefore, we can multiply F(z) by z " and integrate it 
around a circle for which | z | > R. This gives 

/F (z )z n " 1 dz = 2irif(n) 

or 

Hence 

Therefore 

where 

and 

f(n) = J j r J" F(z)zI1"1dz = S Residues of F(z)zn 1 . 
r 

f(n) = 2 Residues 

l im __ 
1+^5 

[(»- ̂ #)(* -l ^ 5 

1 - N/5 
+ l im _ 

1-N/5 

n-1 

1 + N/5 

• (H^r/^ - ( ^ ° 7 N/5 

f(n) = (aa - /3n)/N/5 , 

which is Binet's formula. 



ON GENERALIZED FIBONACCI QUARTERNIONS 

M. N. S. SWAMY 
Nova Scotia Technical College, Halifax, Canada 

Horadam [l] defined and studied in detail the generalized Fibonacci sequence defined 

by 

(1) Hn = H n _ 1 + Hn_2 (n > 3), with Et = p, H2 = p + q , 

p and q being arb i t ra ry integers. In a la ter article [2] , he defined Fibonacci and general-
ized Fibonacci quaternions as follows, and established a few relations for these quaternions: 

(2) P = H + iH ± 1 + ]H ± 0 + kH ± 0 7 n n n+1 J n+2 n+3 

(3) Q = F + i F _,, + j F , 0 + k F , Q , 
n n n+1 J n+2 n+3 

where 

(4) i2 = j 2 = k2 = - 1 , ij = -ji = k, jk = -kj = i, ki = -ik = j , 

and F is the n Fibonacci number. He also defined the conjugate quaternion as 

(5) P = H - iH x 1 - jH ± 0 - kH ^ v ' n n n+1 J n+2 n+3 

and <3 in a s imilar way. 
We shall now establish a few interesting relations for these quaternions. Let R be 

the quaternion for the generalized sequence M defined by 

(6) M = M n + M 0 (n > 3), with M< = r , M2 = r + s . 
YI n - i n-z 

Then from (2) and (5), 

(7) P" = 2H - P . 
n n n 

Also, 
(8) R = 2M - R . 

n n n 
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Hence 

(9) P B - ]? R = 2(M P - H R ) . 
n n n n n n n n 

Similarly, the following results may be obtained: 

P R + P R = 2(2M P + 2H R - P R ) n n n n n n n n n n 

P R - " P R " = 2 ( H R - 2 H M + M P ) n n n n n n n n n n 

P R + P R " = R P + "P R n n n n n n n n 

P R " - : P R = 1? P - R "P = 2(M P - H R ) 
n n n n n n n n n n n n 
P R - R" P = P" R - R P" = R P - P R . 

n n n n n n n n n n n n 

It may also be seen that P R f R P unless P = R , whereas, J n n n n n n 

(10) P P" = P̂ P = 2 H P - P 2 . 
n n n n n n n 

Some of these resul ts have been obtained ear l ie r [3] for P and Q , which may be de-
duced by assuming r = 1, s = 0 in which case M = F and R = Q . Now consider 

J & > n n n ^n 

F ± 1 P ± 1 + F P m+1 n+l m n 

= (F . H _,, + F H ) + i(F ^ - H _,_„ + F H _,, ) m+1 n+l m n m+1 n+2 m n+l 

+ j(F ± 1 H _ + F H _ ) + k(F ^ H ^ + F H _ ) . J m+1 n+3 m n+2 m+1 n+4 m n+3 

It is also known [l] that 

(11) H _,__,_., = F J _ 1 H _ L 1 + F H = F J , H _ L 1 + F H 
m+n+1 m+1 n+l m n n+l m+1 n m 

Hence we have 

F m + l P n + l + F m P n ~ Hm+n+l + iHm+n+2 + jHm+n+3 + kHm+n+4 

P m+n+l ' 
Thus, 

(12) P ^ J . i = F _ J _ n P _ L l + F P = F , - P ,n + F P . 
m+n+1 m+1 n+l m n n+l m+1 n m 

Also 

<13> P 2 n + 1 = F n + l V l + F n P n 
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and 
(14) P = F P + F P = F P + F P 
1 ' 2n n + l n n n-1 % n+1 n-1 n ' 
It may also be verified that 

( 1 5 ) P n P n = P n P n = 3 ( 2 ? " <»H2n+3 " & " « " ^ > F 2 n + 3 • 

where use has been made of the relation [1] 

( 1 6 ) H n + 1 = ^ F n + e F n + l • 

Hence from (15) and (16) 

(17) 
P n P n = P n P n = 3{2™ " <32)F2n+2 + (P2 + ^ ) F 2 n + 3 

= 3<P2 F2n+3 + 2 M F 2 n - K J + , » 2 F 2 n + l ) ' 
Hence 

(18) P P + P - ^ = 3(p2L0 ^ 0 + 2pqL 0 _ + q2 L0 ) . 
n n n -1 n-1 ^ 2n+2 ^M 2n+l M 2n 

Also from (12) we have 
p2 + P2 = 2 ( H P + H - P n ) - (P P" + P J 1 ) . n n -1 n n n-1 n-1 n n n-1 n-1 

Using (13) and (21) we get 

(19) P2 + P2 = 2 P 0 - 3(p2L0 ^ 0 + 2pqL0 _ + q2 LQ ) . 
n n-1 2n- l ^ 2n+2 ^ 2n+l ^ 2n 

If p = 1, q = 0 then we have the Fibonacci sequence F and the corresponding quar-
ternion Q for which we may write the following resul ts : 

(20) Q Q" = Q" Q = 3 F 0 x o 
^ n ^ n ^ n ^ n 2n+3 

(21) Q Q" + Q ' Q" n = 3 L 0 ± 0 
^ n ^ n ^ n - l ^ n - 1 2n+2 

(22) Q2 + Q2 = 2Q_ _, - 3 L 0 ^Q . 
^n ^ n - 1 ^2n-1 2n+2 

Similar resul ts may be obtained for the Lucas numbers and its quarternion by letting 
p = 1 and q = 2 in the various resul ts derived in this ar t icle . Also, many other in teres t -
ing results for these quarternions P and M may be obtained. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAN 

University of New Mexico, Albuquerque, New Mexico 

Send all communications regarding Elementary Problems and Solutions to Professor 
A. P. Hillman, Dept. of Mathematics and Statistics, University of New Mexico, Albuquerque, 
New Mexico 87131. Each problem or solution should be submitted in legible form, prefer-
ably typed in double spacing, on a separate sheet or sheets , in the format used below. Solu-
tions should be received within four months of the publication date. 

Definitions. The Fibonacci numbers F and the Lucas numbers L satisfy F lrt = 
n n J n+2 

F ,n + F , F0 = 0, Fi = 1, and L ^0 = L _,, + L , L0 = 2, L, = 1. n+1 n u l n+2 n+1 n °  1 

PROBLEMS PROPOSED IN THIS ISSUE 

B-268 Proposed by Warren Cheves, Littleton, North Carolina. 

Define a sequence of complex numbers {c }, n = 1, 2, • • • , where C = F + iF ... 
Let the conjugate of C be C = F - iF , -. Prove J _̂ n n n n+1 

(a) C C = F 0 ^ 
n _ n 2n+l 

(b) C C _ = F 0 ^ + (- l ) n i . 
n n+1 2n+2 

B-269 Proposed by Warren Cheves, Littleton, North Carolina. 

Let Q be the matrix 

(i o-
The eigenvalues of Q are a and j3, where a = (1 + N/"5)/2 and j3 = (1 - \Z"5)/2. Since 
the eigenvalues of Q are distinct, we know that Q is s imilar to a diagonal matr ix A. Show 
that A is either 

0 fi) °r [o a) 

B-270 Proposed by Herta L Freitag, Roanoke, Virginia. 

Establish or refute the following: If k is odd, 

L k I [F(n+2)k "" F n k ] ' 

B-271 Proposed by Herta T. Freitag, Jkmnnke^ Virginia. 

Establish or refutue the following: If k is even, Lk - 2 is an exact divisor of 
(n+2)k k nk 
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( b ) F(n+2)k " 2 F ( n + l ) k + F nk ; ^ 
(C) 2 [ F ( n + 2 ) k - F (n + l )k + F k ] • 

B-272 Proposed by Gary G. Ford, Vancouver, British Columbia, Canada. 

Find at least some of the sequences { y } satisfying 

yn+3 y n " y n+2 y n+l ' 

B-273 Proposed by Marjorie Bicknell, A. C. Wilcox High School, Santa Clara, California. 

Construct any triangle A ABC with vertex angle A = 54° and median AM to the side 
opposite A such that AM = 1. Now, inscribe AxYM in AABC SO that M is the midpoint 
of BC, and X and Y lie between A and B and between A and C, respectively. Find 
the minimum per imeter possible for the inscribed triangle, AXYM. 

SOLUTIONS 
POLYNOMIALS IN THE Q MATEIX 

B-244 Proposed by J. L Hunsucker, University of Georgia, Athens, Georgia. 

Let Q be the 2 x 2 m a t r i x 

and let 

M 

0 0 
be the sum of a finite number of matr ices chosen from the sequence Q, Q2, Q3, • • . . Prove 
that b = c and a = b + d. 

Solution by Graham Lord, Temple University, Philadelphia, Pennsylvania. 

It will be sufficient to show for n = 1, 2, 3, • • • that if 

*"-{l S) 
then b = c and a = b + d. For if each Q has this property then the sum of a finite num-
ber of t e rms from the sequence Q, Q2, Q3, • • • will retain the same property. 

However, if 

Q 

then it is easily shown by induction that 

0 0 
F ,„ F n 

F -, n n -1 

for n > 1, and clearly this la t ter matrix has the required property. 

Also solved by Richard Blazej, Wray G. Brady, Paul S. Bruckman, Warren Cheves, C. B. A. Peck, Richard W. Sielaff, Tony Wa-
ters, Gregory Wulczyn, David Zeitlin, and the Proposer. 
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SUMS AND DIFFERENCES OF FIBONACCI SQUARES 

B-245 Proposed by Richard M. Grass/, University of New Mexico, Albuquerque, New Mexico. 

Show that each te rm F with n > 0 in the sequence F0 , F l 9 F2 , ••• is expressible 
as x2 + y2 or x2 - y2 with x and y terms of the sequence with distinct subscripts. 

Solution by David Zeitlin, Minneapolis, Minnesota. 

The resul t follows by noting that F 0 = F2 - F2 - and F 0 , = F2 + F2 . . J & 2n n+1 n-1 2n- l n n-1 

Also solved by Richard Blaze/, W. G. Brady, Paul S. Bruckman, Warren Cheves, Herta T. Freitag, Graham Lord, C. B. APeck, 
Gregory Wulczyn, and the Proposer. 

A T MOST ONE IS RATIONAL 

B-246 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that at least one of the following sums is irrat ional. 

00 (-Dn 

Frt„, „ ' J2 L ^ 2n+ l ^ 2n+ l 
n==0 n=0 

Solution by C. B. A. Peck, State College, Pennsylvania. 

Since (FQ, Vol. 5, pp. 469-471) sum I is \l~5 t imes sum II, sum l i s irrational if sum 
II is rational, completing the proof. 

Also solved by Paul S. Bruckman and the Proposer. 

LUCAS MULTIPLES OF FIBONACCI NUMBERS 

B-247 Proposed by Larry Lang, Student, San Jose State University, San Jose, California. 

Given that m and n are integers with 0 < n < m and F |L , prove that n is 1, 
2, 3, o r 4. 

Solution by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let m = qn + r with m, n, and q positive integers and 0 < r < n. Since 

g c d ( F , F ± 1 ) = 1 and L = L F ^ + L , F , 
& n n+1 m m-n n+1 n -n -1 n 

F L implies F L . Continuing this way, one shows that F L implies F L , 
n1 m * n1 m-n & J9 n1 m ^ n1 m-qn i. e. , F L . Then F < L , r < n, and n > 4 imply r = n - 1 since it is easily shown ' n1 r n r F J J 

by induction that F > L for n > 4 and r < n - 1. Since L - = F + F o J F |L _, J n r n -1 n n-2 n1 n -1 
implies F [F ? . This is impossible for n > 2, completing the proof. 
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SOME CASES OF n |F 1 n 

B-248 Proposed by V. E. Hoggatt, Jr. t San Jose State University, San Jose, California. 

k 1 
Let k be a positive integer and let h = 5 . Prove that h | F , . 

Solution by Graham Lord, Temple University, Philadelphia, Pennsylvania* 

Proof by induction; 
Let hlF, for k = n, and note that for n = 1, h = 5 Fc = 5. The factorization x5 -

h h 
y5 = (x - y)(x4 + x3y + x2y2 + xy3 + y4) with x = a and y = j3 yields 

F 5h = F h ( L4h " L 2h + 1] ' 

But L 4 h - L 2 h + 1 = (5 F | h + 2) - (5 F^ - 2) + 1 = 0 (mod 5). (I16, I17, p. 59 of Hoggatt's 
book). Hence F^, is divisible by 5h if F, is divisible by h, which completes the induction. 

Also solved by W. G. Brady, Paul S. Bruckman, Warren Cheves, Herta T. Freitag, Gregory Wulczyn, and the Proposer. 

EXAMPLES OF n L 1 n 
B-249 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

k 1 
Let k be a positive integer and let g = 2-3 . Prove that g|L . 

Solution by Graham Lord, Temple University, Philadelphia, Pennsylvania. 

It will be shown that if k is a positive integer and g = 2-3 then (3g) |L but (9g)/fL , 
which implies the property asked in B-249. 

Proof by induction. 
Let the induction hypothesis be for k = n, (3g) |L but (9g)|L . For n = 1 the hy-

pothesis is true since 3g = 18 = L6. From the induction hypothesis L = 3gt, where 3 
and t a re coprime. Then 

L 0 = L (L0 - 1) [from x3 + y3 = (x + y)(x2 + xy + y2)] 
3g g 2g 

= 3gt(L2 - 3) (I15, p. 59, of Hoggatt1 s book) 

= 9gt(3g2t2 - 1) , 

which shows that [3(3g)] |L but [9(3g)]|L 3g " ^ L V"& ,J / | 3g* 

Also solved by Paul S. Bruckman, Warren Cheves, Herta T. Freitag, Gregory Wulczyn, David Zeit/in, and the Proposer. 
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p. 502. Problems Solved: H-86, Vol. 11, No. 1, p. 76; B-239, VoL 11, No. 3, p. 
335; B-240, Vol. 11, No. 3, p. 335; B-246, VoL 11, No. 5, p. 552; H-195, Vol. 11, 
No. 5, p. 503; H-196, VoL 11, No. 5, p. 506. 

CARROLL, A. Problem Solved: B-227, VoL 11, No. 1, p. 108 

CARROLL, T. Problem Solved: H-193, VoL 11, No. 2, p. 188. 

CARROLL, TIMOTHY B. Problem Proposed: B-263, VoL 11, No. 3, p. 333. 

CHAKERIAN, G. D. (DON). "The Golden Ratio and a Greek C r i s i s , " Vol. 11, No. 2, pp. 
195-200. 

CHANDRA, ASHOKK. Problems Solved: B-232, VoL 11, No. 2, p. 221; B-233, Vol. 11, 
No. 2, p. 222; B-234, Vol. 11, No. 2, p. 222; B-235, VoL 11, No. 2, p. 222; B-236, 
VoL 11, No. 2, p. 224; B-237, Vol. 11, No. 2, p. 224. 

CHEVES, WARREN. Problems Proposed: B-268, Vol. 11, No. 5, p. 550; B-269, VoL 11, 
No. 5, p. 550. Problems Solved: B-234, Vol. 11, No. 2, p. 222; B-238, VoL 11, 
No. 3, p. 334; B-240, Vol. 11, No. 3, p. 335; B-244, VoL 11, No. 5, p. 551; B-245, 
Vol. 11, No. 5, p. 552; B-248, VoL 11, No. 5, p. 553; B-249, VoL 11, No. 5, p. 553. 

CHURCH, C. A. "Exponential Generating Functions for Fibonacci Ident i t ies ," Vol. 11, No. 
3, pp. 275-281 (co-author, Marjorie Bicknell). 

COX, NANNETTE. "A P r i m e r for the Fibonacci Numbers: Pa r t XII," VoL 11, No. 3, pp. 
317-331 (co-authors, V. E. Hoggatt, J r . , and Marjorie Bicknell). 
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DE CARLI, R. J. "Periodicity Over the Ring of Mat r i ces , " Vol. 11, No. 5, pp. 466-468. 

ERCOLANO, JOSEPH L. "A Geometric Treatment of Some of the Algebraic Proper t ies of 
the Golden Section," Vol. 11, No. 2, pp. 204-208. 

ERDOS, P. Problem Proposed: H-208, Vol. 11, No. 1, p. 73. 

FECKE, RALPH. Problem Proposed: H-215, Vol. 11, No. 2, p. 184. Problem Solved: 
B-226, Vol. 11, No. 1, p. 106. 

FERGUSON, HELAMAN ROLFE PRATT. "Bernoulli Numbers and Non-Standard Differen-
tiable Structures on (4k - 1)-Spheres ," Vol. 11, No. 1, pp. 1-14. 

FIELDER, DANIEL C. "Analytical Verification of an TAt Sight1 Transformation," Vol. 11, 
No. 4, pp. 395-398 (co-author, V. E. Hoggatt, J r . ) . "A Discussion of Subscript Sets 
with Some Fibonacci Counting Help, " Vol. 11, No. 4, pp. 420-428. "Counting of C e r -
tain Parti t ions of Numbers, " Vol. 11, No. 4, pp. 441-442. 

FINKEL, D. Problem Solved: H-188, Vol. 11, No. 2, p. 188. 

FISHMAN, R. S. "A Reliability P rob lem," Vol. 11, No. 2, pp. 169-173 (co-author, Murray 
S. Klamkin). 

FORD, GARY G. Problem Proposed: B-272, Vol. 11, No. 5, p. 551. 

FREITAG, HERTA T. "On Summations and Expansions of Fibonacci Numbers , " Vol. 11, 
No. 1, pp. 63-71. Problems Proposed: B-256, B-257, Vol. 11, No. 2, p. 220; B-262, 
Vol. 11, No. 3, p. 333; B-270, Vol. 11, No. 4, p. 550; B-271, Vol. 11, No. 5, p. 550. 
Problems Solved: B-227, Vol. 11, No. 1, p. 108; B-228, Vol. 11, No. 1, p. 109; 
B-229, Vol. 11, No. 1, p. 109; B-230, Vol. 11, No. 1, p. 110; B-232, Vol. 11, No. 2, 
p. 222; B-234, Vol. 11, No. 2, p. 222; B-237, Vol. 11, No. 2, p. 224; B-238, Vol. 11, 
No. 3, p. 334; B-240, Vol. 11, No. 3, p. 335; B-245, Vol. 11, No. 5, p. 552; B-248, 
Vol. 11, No. 5, p. 553; B-249, Vol. 11, No. 5, p. 553. 

FROHMAN, L. Problem Solved: H-194, Vol. 11, No. 5, p. 507. 

GARFIELD, RALPH. Problems Solved: B-227, Vol. 11, No. 1, p. 108; B-228, Vol. 11, 
No. 1, p. 109; B-229, Vol. 11, No. 1, p. 109; B-230, Vol. 11, No. 1, p. 110; B-231, 
Vol. 11, No. 1, p. 112; B-232, Vol. 11, No. 2, p. 221; B-233, Vol. 11, No. 2, p. 
222; B-234, Vol. 11, No. 2, p. 222; B-236, Vol. 11, No. 2, p. 224. 

GOULD, H. W. "A Triangle with Integral Sides and A r e a , " Vol. 11, No. 1, pp. 27-39. 
Problem Solved: B-239, Vol. 11, No. 3, p. 335. 

GRASSL, R. M. Problems Proposed: B-226, Vol. 11, No. 1, p. 106; B-264, Vol. 11, No. 
3, p. 333; B-245, Vol. 11, No. 5, p. 552. Problems Solved: B-226, Vol. 11, No. 1, 
p. 106; B-245, Vol. 11, No. 5, p. 552. 

GRIDGEMAN, N. T. "A New Look at Fibonacci Generalizations," Vol. 11, No. 1, pp. 40-
55. 

GRIMM, RICHARD E. "The Autobiography of Leonardo P i sano , " Vol. 11, No. 1, pp. 99-
104. 

GUILLOTTE, GUY A. R. Problems Proposed: B-250, Vol. 11, No. 1, p. 105; H-216, Vol. 
11, No. 2, p. 184; B-232, Vol. 11, No. 2, p. 221; H-225, Vol. 11, No. 3 , p. 313; 
B-238, Vol. 11, No. 3, p. 334; B-241, Vol. 11, No. 3, p. 335. Problems Solved: 
B-232, Vol. 11, No. 2, p. 221; B-238, Vol. 11, No. 3, p. 334; B-241, Vol. 11, No. 
3, p. 336. 

HERRICK, DANIEL LANCE. "On the Periodicity of the Terminal Digits in the Fibonacci 
Sequence," Vol. 11, No. 5, pp. 535-538. 
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HICKERSON, DEAN R. "Recursion-Type Formulae for Parti t ions into Distinct P a r t s , " 
Vol. 11, No. 3, pp. 307-311. 

HILLMAN, A. P. Editor of Elementary Problems and Solutions; Vol. 119 No. 1, pp. 105-
112; Vol. 11, No. 2, pp. 220-224; Vol. 11, No. 3, pp. 333-336; Vol. 11, No. 5, pp. 
550-553. 

HOGGATT, VERNER E. , JR. "A P r i m e r for the Fibonacci Numbers: Pa r t XI , " Vol. 11, 
No. 1, pp. 85-90 (co-author, Janet Crump Anaya). MUnit Determinants in Generalized 
Pascal Tr iangles , " Vol. 11, No. 2, pp. 131-144 (co-author, MarjorieBicknell). "Roots 
of Fibonacci Polynomials ," Vol. 11, No. 3, pp. 271-274 (co-author, MarjorieBicknell). 
"Polynomials Arising from Reflections across Multiple P l a t e s , " Vol. 11, No. 3, pp. 
285-291 (co-author, Bjarne Junge). "A P r i m e r for the Fibonacci Numbers, P a r t XII," 
Vol. 11, No. 3, pp. 317-331 (co-authors, Nanette Cox and Marjorie Bicknell). "Ana-
lytical Verification of an !At Sight' Transformation," Vol. 11, No. 4, pp. 395-398 (co-
author, D. C. Fielder). "Generalized Fibonacci Polynomials and Zeckendorf's Theo-
r e m , " Vol. 11, No. 4, pp. 399-419 (co-author, Marjorie Bicknell). "Generalized Fib-
onacci Polynomials ," Vol. 11, No. 5, pp. 457-465 (co-author, Marjorie Bicknell). 
^Special Determinants Found Within Generalized Pascal Tr iang les , " Vol. 11, No. 5, 
pp. 469-479 (co-author, Marjorie Bicknell). Problems Proposed: H-212, Vol. 11, No. 
1, p. 73; H-213, Vol. 11, No. 1, p. 74; H-86, Vol. 11, No. 1, p. 76; B-230, Vol. 
11, No. 1, p. 109; B-231, Vol. 11, No. 1, p. 110; H-218, Vol. 11, No. 2, p. 185; 
B-237, Vol. 11, No. 2, p. 224; B-248, Vol. 11, No. 5, p. 553; B-249, Vol. 11, No. 
5, p. 553; H-195, Vol. 11, No. 5, p. 502. Problems Solved: B-230, Vol. 11, No. 1, 
p. 110; B-231, Vol. 11, No. 1, p, 112; B-237, Vol. 11, No. 2, p. 224; H-224, Vol. 
11, No. 3, p. 313; B-248, Vol. 11, No. 5, p. 553; B-249, Vol. 11, No. 5, p. 553; 
H-195, Vol. 11, No. 5, p. 506. 

HORNER, WALTER W. "Fibonacci and Apollonius," Vol. 11, No. 5, pp. 541-542. 

HOSOYA, HARUO. "Topological Index and Fibonacci Numbers with Relation to Chemistry, " 
Vol. 11, No. 3, pp. 255-265. 

HSU, L. C. "Note on a Combinatorial Algebraic Identity and its Application," Vol. 11, No. 
5, pp. 480-484. 

HUNSUCKER, JOHN L. "Complete Sequences of Fibonacci Power s , " Vol. 11, No. 4, pp. 
387-394 (co-author, W. P. Wardlaw). Problems Proposed: B-260, Vol. 11, No. 2, 
p. 221 (with Jack Nebb); B-244, Vol. 11, No. 5, p. 551. Problem Solved: B-244, 
Vol. 11, No. 5, p. 551. 

HUNTER, J. A. H. Problems Solved: B-226, Vol. 11, No. 1, p. 106; B-232, Vol. 11, No. 
2, p. 221; B-233, Vol. 11, No. 2, p. 222; B-234, Vol. 11, No. 2, p. 222; B-238, 
Vol. 11, No. 3, p. 334; B-240, Vol. 11, No. 3, p. 335. 

HUNTLEY, H. E. Problem Proposed: H-108, Vol, 11, No.. 1, p. 76. Problem Solved; 
H-108, Vol. 11, No, 1, p. 76. 

IVIE, J. Problem Solved: H-194, Vol. 11, No. 5, p. 507. 

JUNGE, BJARNE. "Polynomials Arising from Reflections across Multiple P l a t e s , " Vol. 
11, No. 3, pp. 285-291 (co-author, V. E. Hoggatt, J r . ) . 

KAPLAR, ROBERT, JR. Problem Solved: B-238, Vol. 11, No. 3, p. 334. 

KARST, EDGAR. Problems Proposed: H-214, Vol. 11, No. 1, p. 74; H-193, Vol. 11, No. 
2, p. 188. Problems Solved: B-233, Vol. 11, No. 2, p. 222; B-234, Vol. 11, No. 2, 
p. 222; B-238, Vol. 11, No. 3, p. 334; B-240, Vol. 11, No. 3, p. 335; B-241, Vol. 11, 
No. 3, p. 336. 

KING, BRUCE W. "A Polynomial with Generalized Fibonacci Coefficients," Vol. 11, No. 
5, pp. 527-532, 
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KLAMKIN, MURRAY S. nOn Solving Non-Homogeneous Linear Difference Equations," Vol. 
11, No. 2, pp. 166-168. "A Reliability P rob lem," Vol. 11, No. 2, pp. 169-173 (co-
author, R. S. Fishman). 

KLARNER, DAVID A. "The Number of SDR's in Certain Regular Systems," Vol. 11, No. 3, 
pp. 267-270. 

KRISHMAN, S. Problem Proposed: H-211, Vol. 11, No. 1, p. 73. 

KRISHNA, H. V. Problems Proposed: B-227, Vol. 11, No. 1, p. 107; H-217, Vol. 11, No. 
2, p. 184; H-182, Vol. 11, No. 2, p. 187. Problem Solved: B-227, Vol. 11, No. 1, 
p. 108. 

KUIPERS, L. "Remark on a Paper by Duncan and Brown on the Sequence of Logarithms of 
Certain Recursive Sequences," Vol. 11, No. 3, pp. 292-294 (co-author, Jau-shyong 
Shiue). 

LANG, LARRY. Problem Proposed: B-247, Vol. 11, No. 5, p. 552. 

LEDIN, GEORGE, JR. Problem Proposed: H-118, Vol. 11, No. 1, p. 74. 

LIGHT, F. W. , JR. "A Procedure for the Enumeration of 4 x n Latin Rectangles ," Vol. 
11, No. 3, pp. 241-246. 

LINDSTROM, PETER A. Problems Solved: B-226, Vol. 11, No. 1, p. 106; B-230, Vol. 11, 
No. 1, p. 110; B-233, Vol. 11, No. 2, p. 222; B-234, Vol. 11, No. 2, p. 222; B-236, 
Vol. 11, No. 2, p. 224. 

LONG, CALVIN T. "Arrays of Binomial Coefficients whose Products are Squares ," Vol. 
11, No. 5, pp. 449-456. 

LORD, GRAHAM, "Counting Omitted Values ," Vol. 11,. No. 4, pp. .443-448. Problems 
Solved: B-233, Vol. 11, No. 2, p. 222; B-234, Vol. 11, No. 2, p. 222; B-236, Vol. 
11, No. 2, p. 224; B-237, Vol. 11, No. 2, p. 224; B-239, Vol. 11, No. 3, p. 335; 
B-240, Vol. 11, No. 3, p. 335; B-244, Vol. 11, No. 5, p. 551; B-245, Vol. 11, No. 
5, p. 552; B-248, Vol. 11, No. 5, p. 553; B-249, Vol. 11, No. 5, p. 553, 

LUCAS, DIANNE SMITH. "Numbers Common to Two Polygonal Sequences," Vol. 11, No. 1, 
pp. 78-84. 

LYNCH, MICHAEL F. "A Fibonacci-Related Series in an Aspect of Information Retrieval," 
Vol. 11, No. 5, pp. 495-500. 

MALRAISON, PIERRE J. , JR. Problem Solved: B-227, Vol. 11, No. 1, p. 108. 

MANA, PHIL. Problems Proposed: B-261, Vol. 11, No. 2, p. 221; B-235, Vol. 11, No. 2, 
p. 222. Problems Solved: B-235, Vol. 11, No. 2, p. 223; B-240, Vol. 11, No. 3, p. 
335; B-247, Vol. 11, No. 5, p. 552. 

MATHIS, WILLIAM L. "The Z Transform and the Fibonacci Sequence," Vol. 11, No. 5, 
pp. 545-546. 

MERKES, E. P. "On the Length of the Euclidean Algorithm," Vol. 11, No. 1, pp. 56-62 
(co-author, David Meyers). 

MEYERS, DAVID. "On the Length of the Euclidean Algorithm," Vol. 11, No. 1, pp. 56-62 
(co-author, E. P. Merkes). 

MILSOM, JOHN W. Problems Solved: B-227, Vol. 11, No. 1, p. 107; B-230, Vol. 11, No. 
I , p. 110; B-232, Vol. 11, No. 2, p. 221; B-233, Vol. 11, No. 2, p. 222; B-234,Vol. 
I I , No. 2, p. 222; B-238, Vol. 11, No. 3, p. 334. 
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MOORE, GAEL F. "More Hidden Hexagon Squares, M Vol. 11, No. 5, pp. 525-526. 

MOSER, LEO. "Multiple Reflections," Vol. 11, No. 3, pp. 302-306 (co-author, Max 
Wyman). 

NEBB, JACK. Problem Proposed: B-260, Vol. 11, No. 2, p. 221 (with J. L. Hunsucker). 
PARKER, F. D. Problem Solved: B-240, Vol. 11, No. 3, p. 335. 
PECK, C. B. A. Problems Solved: B-226, Vol. 11, No. 1, p. 106; B-227, Vol. 11, No. 1, 

p. 108; B-228, Vol. 11, No. 1, p. 109; B-229, Vol. 11, No. 1, p. 109; B-230, Vol. 11, 
No. 1, p. 110; B-244, Vol. 11, No. 5, p. 551; B-245, Vol. 11, No. 5, p. 552; B-246, 
Vol. 11, No. 5, p. 552. 

POVSE, JEROME. "A Curious Property of Unit Fractions of the Form l /d Where (d,10) 
= 1 , " Vol. l l j No. 1, pp. 91-98 (co-authors, Brother Alfred Brousseau and Harold 
Andersen). 

PRIELIPP, BOB. Problem Solved: B-236, Vol. 11, No. 2, p. 224. 
RABINOWITZ, STANLEY. Problems Proposed: H-125, Vol. 11, No. 1, p . 77; H-125,Vol. 

11, No. 2, p. 186. 
RAYPORT, STEPHEN. Problem Solved: B-226, Vol. 11, No. 1, p. 106. 
ROBERTS, J. B. Problem Proposed: H-196, Vol. 11, No. 5, p. 506. Problem Solved: 

H-196, Vol. 11, No. 5, p. 507. 
ROTHSTEIN, JEROME. "A Method for Constructing Singly Even Magic Squares," Vol. 11, 

No. 5, pp. 543-544. 
SALOMAA, PAUL. Problems Solved: B-233, Vol. 11, No. 2, p. 222; B - 2 3 4 , V J O L 11, No. 

2, p. 222; B-235, Vol. 11, No. 2, p. 223; B-236, Vol. 11, No. 2, p. 224; B-237, Vol. 
11, No. 2, p. 224. 

SCOVILLE, RICHARD. "Functions Related to Fibonacci Numbers , " Vol. 11, No. 4, pp. 
337-386 (co-authors, L. Carlitz and Theresa Vaughan). Problems Proposed: B-255, 
Vol. 11, No. 1, p. 106 (with L. Carlitz); H-223, Vol. 11, No. 3, p. 312; H-226, Vol. 
11, No. 3, p. 313 (with L. Carlitz). 

SENTANCE, W. A. "A Further Analysis of Benford's Law," Vol. 11, No. 5, pp. 490-494. 
SHANE, HAROLD D. "A Fibonacci Probability Function," Vol. 11, No. 5, pp. 517-522. 
SHANKS, DANIEL. "An Observation on Fibonacci Primitive Roots ," Vol. 11, No. 2, pp. 

159-160 (co-author, La r ry Taylor). 
SHEA, DALE D. "On the Number of Divisions Needed in Finding the Greatest Common Di-

visor, "Vol . 11, No. 5, pp. 508-510. 
SHIUE, JAU-SHYONG. "Remark on a Paper by Duncan and Brown on the Sequence of L o g -

ari thms of Certain Recursive Sequences," Vol. 11, No. 3, pp. 292-294 (co-author, L. 
Kuipers). 

SIELAFF, RICHARD W. Problems Solved: B-230, Vol. 11, No. 1, p. 110; B-236, Vol. 11, 
No. 2, p. 224; B-238, Vol. 11, No. 3, p. 334; B-244, Vol. 11, No. 5, p. 551. 

SINGMASTER, DAVID. "Some Corrections to Carlson1 s 'Determination of Heronian T r i -
ang les , " Vol. 11, No. 2, pp. 157-158. "Notes on Binomial Coefficients: IV — Proof 
of a Conjecture of Gould on the GCDf s of Two Triples of Binomial Coefficients, " Vol. 
11, No. 3, pp. 282-283. Problem Proposed: H-179, Vol. 11, No. 3, p. 314. 

SIVASUBRAMANIAN, A. Problems Solved: B-227, Vol. 11, No. 1, p. 108; B-230f Vol. 11, 
No. 1, p. 110. 

SLOANE, N. H. A. "Some Doubly Exponential Sequences," Vol. 11, No. 4, pp. 429-437 
(co-author, A. V. Aho). 

STEIN, S. K. "The Density of the Product of Arithmetic P rogress ion , " Vol. 11, No. 2, 
pp. 145-152. Letter to the Editor, Vol. 11, No. 5, p. 500. 
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STERN, FREDERICK. ' Intersect ions of Lines Connecting Two Parallel L ines , " Vol. 11, 
No. 2, pp. 201-203. 

STRAUS, E. G. "On the Greatest Common Divisor of Some Binomial Coefficients," Vol. 
11, No. 1, pp. 25-26. 

SWAMY, M. N. S. "On Generalized Fibonacci Quaternions," Vol. 11, No. 5, pp. 547-549. 
SUN, HUGO S. "A Group Theoretical Proof of a Theorem in Elementary Number Theory ," 

Vol. 11, No. 2, pp. 161-162. 
TAUBER, SELMO. "n-Fibonacci P roduc t s , " Vol. 11, No. 2, pp. 153-156. "On K-Num-

b e r s , " V o l . 11, No. 2, pp. 179-183. 
TAYLOR, LARRY. "An Observation on Fibonacci Primitive Roots ," Vol. 11, No. 2, pp. 

169-160 (co-author, Daniel Shanks). 
TRIGG, CHARLES W. "Geometric Proof of a Result of L e h m e r f s , " Vol. 11, No. 5, pp. 

539-540. Problems Solved: B-232, Vol. 11, No. 2, p. 221; B-235, Vol. 11, No. 2, 
p. 223. 

TRUMPER, FRANK J. D. "Some General Fibonacci Shift Formulae ," Vol. 11, No. 5, pp. 
523-524. 

UMANSKY, HARLAN L. Problem Proposed: B-233, Vol. 11, No. 2, p. 221. Problem 
Solved: B-233, Vol. 11, No. 2, p. 222. 

USISKIN, ZALMAN. Problems Proposed: B-265, Vol. 11, No. 3 , p. 333; B-266, Vol. 11, 
No. 3, p. 334. 

VAUGHAN, THERESA. "Some Arithmetic Functions Related to Fibonacci Numbers , " Vol. 
11, No. 4 , pp. 337-386 (co-authors, L. Carlitz and Richard Scoville). 

WARDLAW, W. P. "Complete Sequences of Fibonacci P o w e r s , " Vol. 11, No. 4, pp. 387-
394 (co-author, J. L. Hunsucker). 

WATERS, TONY. Problem Solved: B-244, Vol. 11, No. 5, p. 551. 
WEINTRAUB, SOL. "On Storing and Analyzing Large Strings of P r imes , " Vol. 11, No. 4, 

pp. 438-440. 
WHITNEY, RAYMOND E. Editor of Advanced Problems and Solutions: Vol. 11, No. 1, pp. 

72-77; Vol. 11, No. 2, pp. 184-188; Vol. 11, No. 3, pp. 312-314; Bol. 11, No. 5, pp. 
501-507. Problems Proposed: H-222, Vol. 11, No. 3, p. 312; H-228, Vol. 11, No. 
5, p. 501. Problems Solved: H-118, Vol. 11, No. 1, p. 76; H-125, Vol. 11, No. 2, 
p. 186; H-174, Vol. 11, No. 2, p. 187; H-182, Vol. 11, No. 2, p. 188. 

WLODARSKI, J. "The Balmer Series and the Fibonacci Numbers , " Vol. 11, No. 5, p. 526. 
Problems Proposed: B-242, Vol. 11, No. 3, p. 336; B-243, Vol. 11, No. 3, p. 336. 
Problems Solved: B-242, Vol. 11, No. 3, p. 336; B-243, Vol. 11, No. 3, p. 336. 

WULCZYN, GREGORY. Problem Proposed: H-210, Vol. 11, No. 1, p. 73. Problems 
Solved: B-244, Vol. 11, No. 5, p. 551; B-245, Vol. 11, No. 5, p. 552; B-248, Vol. 
11, No. 5, p. 553. 

WYMAN, MAX. "Multiple Reflections," Vol. 11, No. 3, pp. 302-306 (co-author, Leo 
Moser). 

YALAVIGI, C. C. "Periodicity of Second- and Third-Order Recurring Sequences," Vol. 
11, No. 2, pp. 163-165. 

ZEITLIN, DAVID. Problems Solved: B-227, Vol. 11, No. 1, p. 108; B-228, Vol. 11, No. 
I , p. 109; B-229, Vol. 11, No. 1, p. 109; B-230, Vol. 11, No. 1, p. 110; H-193, Vol. 
I I , No. 2, p. 188; B-232, Vol. 11, No. 2, p. 221; B-233, Vol. 11, No. 2, p. 222; 
B-234, Vol. 11, No. 2, p. 222; B-238, Vol. 11, No. 3, p. 334; B-240, Vol. 11, No. 
3, p. 335; B-241, Vol. 11, No. 3, p. 336; B-244, Vol. 11, No. 5, p. 551; B-245, Vol. 
11, No. 5, p. 552. 
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BINDERS NOW AVAI LABLE 
The F ibonacc i Associat ion is making available a binder which 

can be used to take c a r e of one volume of the publ ica t ion at a t i m e . 
This binder is desc r ibed as follows by the company producing it: 

11. . . . The binder is made of heavy weight v i rg in vinyl, 
e lec t ronica l ly sealed over r ig id board equipped with 
a c l ea r label holder extending 2 - 3 / 4 " high from the 
bottom of the backbone, round c o r n e r e d , fitted wi th 
a 1 1/2 " mult iple m e c h a n i s m and 4 heavy w i r e s . " 

The n a m e , FIBONACCI QUARTERLY, is pr in ted in gold on the 
front of the binder and the sp ine . The color of the binder is da rk 
g reen . There is a sma l l pocket on the spine for holding a tab 
giving year and volume. These la t te r w i l l be supplied with each 
o rder if the volume or volumes to be bound a r e indicated. 

The p r i ce per binder is $3.50 which includes postage ( rang ing 
from 50£ to 80£ for one b inder ) . The tabs wil l be sent w i th the 
rece ip t or invoice. 

All o r d e r s should, be sent to: Brother Alfred Brousseau , 
Managing Edi tor , St. Mary1 s College, Calif. 94575 


