
THE FIBONACCI QUARTERLY 
THE OFFICIAL JOURNAL OF 

THE FIBONA CCI ASSOC I A TION 

VOLUME 12 \ \ $P^ J J NUMBEE 1 

C O N T E N T S 

Fibonacci Notes — 1. Zero-One Sequences 
and Fibonacci Numbers of Higher Order L. Carlitz 1 

Linearly Eecursive Sequences of Integers Brother L. Raphael 11 

The Golden Ellipse H. E. Huntley 38 

On a Problem of M. Ward R. R. Laxton 41 

Generalized Hidden Hexagon Squares A. K. Gupta 45 

Letter to the Editor Donald E. Knuth 46 
Diagonal Sums 
of the Trinomial Triangle . . . .• V. E. Hoggatt, Jr., and Marjorie Bicknell 47 

Fibonacci Sequences Modulo m Agnes Andreassian 51 

Phi: Another Hiding Place H. E. Huntley 65 
Some Geometrical Propert ies 
of the Generalized Fibonacci Sequence D. V. Jaiswal 67 
Sets of Binomial Coefficients 
with Equal Products Calvin T. Long and V. E. Hoggatt, Jr. 71 
On Daykin's Algorithm 
for Finding the G. C D V. C. Harris 80 

Stufe of a Finite Field Sahib Singh 81 
Iteration Algorithms 
for Certain Sums of Squares Edgar Karst 83 
Certain Congruence Proper t ies 
(Modulo 100) of Fibonacci Numbers Michael R. Turner 87 

Fibonaccian Pathological Curves Santosh Kumar 92 
Irreducibility of Lucas and 
Generalized Lucas Polynomials. . . . G, E. BER.GUM and V. E. Hoggatt, Jr. 95 

Elementary Problems and Solutions Edited by A. P . Hillman 101 

Advanced Problems and Solutions Edited by R. E. Whitney 107 

FEBBUAEY 1974 



THE FIBONACCI QUARTERLY 
THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION 

DEVOTED TO THE STUDY 
OF INTEGERS WITH SPECIAL PROPERTIES 

CO-EDITORS 
V. E. Hoggatt, J r . Marjorie Bicknell 

EDITORIAL BOARD 
H. L. Alder 
John L. Brown, J r . 
Brother A. Brousseau 
Paul F. Byrd 
L. Carlitz 
H. W. Eves 
H. W. Gould 

A. P. Hillman 
David A. Klarner 
C. T. Long 
M. N S. Swamy 
D. E. Thoro 

WITH THE COOPERATION OF 
Ter ry Brennan 
Maxey Brooke 
Calvin D. Crabill 
T. A. Davis 
John H. Hal ton 
A. F. Horadam 
Dov Jarden 
Stephen Jerbic 
L. H. Lange 

D. A. Lind 
James Maxwell 
Sister M. DeSales McNabb 
Gerald Preston 
D. W. Robinson 
Azriel Rosenfeld 
Lloyd Walker 
Charles H. Wall 

The California Mathematics Council 

All subscription correspondence should be addressed to Brother Alfred Brousseau, St. Mary's 
College, California 94575. All checks ($8.00 per year) should be made out to the Fibonacci 
Association or the Fibonacci Quarterly. Two copies of manuscripts intended for publication 
in the Quarterly should be sent to Verner E. Hoggatt, J r . , Mathematics Department, San 
Jose State University, San Jose , California 95192. All manuscripts should be typed, double-
spaced. Drawings should be made the same size as they will appear in the Quarterly, and 
should be done in India ink on either vellum or bond paper. Authors should keep a copy of 
the manuscript sent to the editors. 

The Quarterly is entered as third-class mail at the St. MaryTs College Post Office, Calif. , 
as an official publication of the Fibonacci Association. 

The Quarterly is published in February, April , October, and December, each year. 



FIBONACCI NOTES 
1. ZERO-ONE SEQUENCES AND FIBONACCI NUMBERS OF HIGHER ORDER 

L. CARL1TZ 
Dyke University, Durham, North Carolina 27706 

1. INTRODUCTION 

It is well known (see, for example [1 , p. 14]) that the number of sequences of zeros and 
ones of length n with two consecutive ones forbidden is equal to F ? . For example for 
n = 3, the allowable sequences are 

(000), (100)9 (010), (001), (101) . 

As a f irst extension of this result , let f(n,k) denote the number of sequences of length 
n. 
(1.1) (als a2, • • - , a n ) (a. = 0 or 1) 
such that 
(1.2) a . a . + 1 • • • a .+ k = 0 (i = 1, 2, • • - , n - k) ; 

that i s , a string of k + 1 consecutive ones is forbidden. Also, let f(n,k,r) denote the num-
ber of such sequences with exactly r ones and let f .(n,k,r) denote the number of such s e -
quences with r ones and beginning with j ones, 0 < j < r . 

It suffices to evaluate f0(n,k,r) . We shall show that 

(1.3) f0(n,k,r) = cfc(Q - r , r) , 

where c . (n , r ) is defined by 

kn 
(1.4) (1 + x + . . . + x k ) n = ^ c k (n , r ) x r . 

r=0 

Also if 

f0(n^k> = S ¥^,1) 

r 

is the number of allowable sequences beginning with at least one zero , we have 

* Supported in part by NSF Grant GP-17031. 
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(1.5) £ f0(n,k)xn = — i m 
~ ; l - x - x - » - . - x 
n=0 

In the next place let r , s be fixed positive integers and let f(m,n; r,s) denote the num-
ber of sequences of length m + n 

(a1s a2, • • • , a , ) (a. = 0 or 1) 
1 L ' m+n l 

with exactly m zeros and n ones, at most r consecutive zeros and at most s consecutive 
ones. Also, let f.(m,n; r , s ) denote the number of such sequences beginning with exactly j 
ze ros , 0 < j < r; let f. (m,n; r , s ) denote the number of such sequences beginning with ex-
actly k ones, 0 < k < s. 

As in the previous problem, it suffices to evaluate f0(m,n; j ,k) and 70(m,n; j , k ) . We 
shall show that 

(1.6) fo(m,n; r , s ) = ] P c
Y ^ k i m " k ) c

s _ i ^ k j n - k) 
k 

+ ^ c r_1(k + 1, m - k - l)cjg_1(k, n - k) , 
k 

(1.7) f0(Hi,n; r , s ) = ^ c
r _ i ( k > m " 1 ) c

S - l ( k ' n " k ) 

k 

+ Y^ cr-l (k ' m " k ) c s - l ( k + ±9 n " k ' X) ' 
k 

(1.8) f(m,n; r , s ) = ] T ( c
r _ l ( k ' m ~ k ) c

s _ l ( k ' n " k ) 

k 

+ c r_1(k + 1, m - k - l )cg_1(k, n - k) 

+ c _,(k, m - k)c n(k + 1, n - k - 1)} . r - 1 s-1 J 

As a further extension one can consider sequences of 0?s, l ' s , and 2 ! s , .say with r e -
strictions on the number of allowable consecutive elements of each kind. However, we leave 
this for another occasion. 
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2. FIRST PROBLEM 

We now consider the first problem as defined above. It is c lear from the definition that 

k 
(2.1) f(n,k,r) = £ ] f (n .k . r ) . 

3=0 
Also 

k 

(2.2) f0(n9k,r) = J^ fj <n - L k> r) = f<n - *> k> r> 
5=0 

and 
(2.3) fjfci.k.r) = f0(n - j , k, r - j) ( 0 < j < k ) . 

Hence f 0 (n ,k , r ) satisfies the mixed recurrence 

k 
(2.4) f 0 (n ,k , r ) = ] P $, (n - j - 1, ks r - j) (n > k + 1) . 

3=0 

Now, for r < k, 

f 0 ( l , k s r ) = 5 0 j r , 

_ \ 1 (r = 0, 1) fo(2,k,r) = j j £ > J; 

I I (r = 0) 

2 (r = 1) 
1 (r = 2) ' 
0 (r > 2) 

Generally, for 1 < m < k + 1, we have 

™ " (0 < r < m) M (2.5) f0(m,k,r) 
( 0 (r > m) 

If we take n = k + l5 r < k in (2.4) we get 

f0(k + 1, k, r) = J^ fo(k " h k, r - j) 
3=0 

By (2.5) this reduces to 
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O J - t f ; ^ 1 ) * «•••*• r - k) 

Since 
k-1 k-1 k-1 

Z^\ r - j / " ^ ^ k - r - l J ' ^ f k - r - l J ' V k - r j ' l r / 
j=0 j=0 ]=0 X f 

it follows that (2.4) holds for n ^. k + 1 > r provided we define 

f0(0,k,t) = 0 (t < 0) . 

Moreover (2.4) holds for r > k, n = k + 1, since both sides vanish. 
Now put 

(2.6) 

Then, by (2.4) and (2.5), 

F(x,y) = ^ fo ( n » k » r ) x I 1 y r 

n ,r=0 

k °° 
F(x,y) = ] P ^ f 0 ( n , k , r ) x n y r + ^ ^ f0 (n ,k , r ) x n y r 

n=0 r=0 n=k+l r=0 

1 + EE^^v 
n=l r=0 

oo °o k 
+ E 1212 fo(n - J - !•fc'r - J)XI1^ 

n=k+l r=0 j=0 

k °° 
= 1 + 

n=l r=0 

OO 00 

+ 2>j +V £ Efo(n - J -1. k>r - j>*n~3~V-j 

j=0 n=k+l r=0 

k °° 
1 + 

n=l r=0 

k 

3=0 

k- j -1 °° 
F(x,y) = J^ ] [ ] f ( n , k , r ) x n y r 

n=0 r=0 
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Since 
k k- j -1 °° k k - j -1 *> 

E*j+V E Ef(n.k,r)xv = E*5+V E Ef11;1)*11 

j=0 n=0 r=0 j=o n=0 r=0 ^ 

k 

r 
y 

= EExVE(v;: 2) 
n=l r J V I 

n=l r 

it follows that 

F(x: ,y) = 

F(x, 

= 1 

.y) 

k 

*E 

1 -

x3 y3 . 

1 

3=0 

• F(x,y) . 

i y j 

Therefore 

(2.7) 

If we define the coefficient c. (n,r) by means of 

kn 
(2.8) (1 + x + . . . + x

k ) n = ^ \(n,k)xT , 
r=0 

it is c lear that 

^ — = 5>S[X>V 
1 - x J x V s=0 \ j=0 

3=0 

00 ks 

X X Z c
k(s>r>xV 

s=0 r=0 

E E c
k<n - r> r>*v 

n=0 r=0 

Therefore by (2.6) and (2.7) we have 
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f0(n,k,r) = c, (n - r , r) 

[Feb. 

and, in view of (2.2), 
(2.10) 

Moreover if we put 

f(n,k,r) = ck(n - r + 1, r) . 

it follows that 

(2.11) 

f0(n,k) = ^2 fo (n,k,r) , 

2J f0(n,k) xn = k+T 
n=0 

5=1 

In part icular , for k = 1, it is c lear from (2.11) that 

(2.12) f0(n,D = F, n+1 

3. SECOND PROBLEM 

We turn now to the second problem defined in the Introduction. It is convenient to define 

(3.1) 
(f 0(0,0; r , 
( ^ (0 ,0 ; r , 

s) = f(0,0; r , s ) = 1 
s) = Tk(0,0; r , s ) = 0 (j > 0, k > 0) . 

The following relations follow from the definition. 

(3.2) 

f0(m,n; r , s ) = ^ fk(m,n; r , s) 
k=l 

f0(m,.n; r , s ) = ^ J f (m,n; r , s) 

3=1 

(3.3) 

s 
f (m,n; r , s ) = 2 ^ fk(ni - j , n; r , s ) (j ^ 0) 

k= l̂ 

r 

fk(m,n; r , s) = J j V**1' n " k ' r , S * ^ ~ °̂  
5=1 
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where it is understood that 

^ ( m , n ; r , s ) = f0(m,n; r , s ) = 0 

if either m or n is negative. 
We have also 

/ f.(m,n; r , j 

( Tk(m3n; r 5 j 

f (m,n; r 9 s ) = f0(m - j , n; r , s) (j > 0) 
(3.4) 

,s) = f0(m9n - k; r , s ) (k > 0) 

(3.5) 

In part icular 

f. (j, n; r , s ) = f0(0, n; r , s) = 1 (0 < n < s) 

1 (m,k; r , s ) = lQ(m90; r , s) = 1 (0 < m < r) 

It follows from (3.2) and (3.4) that 

s 

(3.6) 

and therefore 

(3.7) 

Now put 

f0(mtn; r , s ) = ^ f0(m, n - k; r , s) 
k=l 

r 

70(m,n; r , s ) = ^ fo(m - j , n; r , s) 

3=1 

r s 
f0(m,n; r , s) = ^ ^ f0(m - j , n - k; r , s) 

j=l k=l 

r s 
70(m,n; r s s ) = ^ X ^ ° ( m - h n - k5 r» s ) 

j=l k=l 

F0 = F0(x9y) = ^ f0(msn; r , s ) x m y n 

m,n=0 

00 

¥ 0 = "F0(x9y) = ^ J "f0(msn; r , s ) x m y n 

m,n=0 

Then by (3.5) and (3.7), 
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s °° 
Fo = 2 J y + z2 M m > n ; r , s ) x m y n 

k=Q m,n= l 

s °° r s 
= 2 y + 1C Yl 2 fo(m " J' n ' k ; r> s > x i n y n 

k=0 m,n=l j=l k=l 

s r s °o 
= Z y + Z Z x J y S Mm>n; r,s)xmyn 

k=0 j=l k=l m,n=0 

= z>k+x;i>jyk-Fo. 
k=0 j=l k=l 

so that 

Ey1 

(3.8) F0 = - k ~° 
r s . , 

1 - £ £ x J y k 

Similarly 

(3.9) 

Clearly 

so that 

j=l k=l 

r 
£ y ] 

r s . , 
i - E E x J y k 

3=1 k=l 

f(msn; r , s ) = f0(m,n; r , s ) + 70(m,n; r , s ) (m + n > 0) , 

F(x,y) = 22 f(m,n; r , s ) x m y n = -1 + F0(x,y) + F"0(x,y) 
msn=0 

Hence 

r s . 
£ x3 + £ y 

(3.10) F(x,y) = J = 2 !S=° 
r s . . 

i - E E x J y k 
j=l k=l 

To get explicit formulas we take 
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i - E E ^ ) = Exkyk(1 + --- +xr-1)kd + . . . + y
s - 1 ) k 

j=l k=l / k=0 

OO OO OO 

Then 

Exkyk X vi(k>i)xl X vi(k*j)x3 

k=0 i=0 j=0 
OO 

X ^ ^ X) cr-l(k' m " k)cs-l(ks n ~ k) • 
msn=0 k 

r 
E -crJ OO 

• -, , , , , -, k+1 , k 

i - E E x3yk k=0 

j=l k=l 

E k+1 k/n , , r - lv ^ _, ^ s-lv 
x y (1 + •• • + x ) (1 + ••• + y ) 

k=0 i , j 

OO 

= 2 x m y n ^ c r _ 1 ( k + 1, m - k - D c ^ ^ k , n - k ) , 

m,n=0 k 

s k 

r 1 s . k = E ^ ^ E cr-l(k' m " k )Vl( k + 1 . - - k - 1) • 
1 - E E x^y m3n=0 k 

j=l k=l 

It follows that 

f0(m,n; r , s ) = J ^ ( c
r „ i < k j m " k ) c

s _ i ( k ' n " k ) 

(3.11) I k 

+ c ,(k + 1, m - k - l)c n(k, n - k)} r - 1 s-1 J 

70(m,n; r , s ) = ^ {c
r„i^k § m " k ) c

s _ i ^ k § n ' k^ 

(3.12) ( k 

\ + c r- _x(k, m - k)cg_1(k + 1, n - k + 1)} , 
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f(m,n; r , s ) = ^ ) ( c
r _ 1 ( k , m - k)cg_1(k, n - k) 

k 

( 3 , 1 3 ) + c n(k + 1, m - k - l)c ,(k, n - k) 
r - 1 s-1 

+ cr - : L(k, m - k)cg_1(k + 1, n - k - 1)} . 

When r —• °o the restr ict ions in the definition of f, f. reduce to the single restr ict ion 
that the number of consecutive ones is at most s. The generating functions (3.8), (3.9), 
(3.10) reduce to 

(3.80 

(3.9') 

(3.10T) 

(1 " x) D yk 

k=0 

i - x E yk 

k=0 

1 - x £ yk 

k=0 

£/ 
k=0 

i - x z yk 

k=0 

It can be verified that these resul ts are in agreement with the resul ts of Sec. 2 above. 

REFERENCE 

1. J. Riordan, An Introduction to Combinatorial Analysis, Wiley New York, 1958. 



LINEARLY RECURSIVE SEQUENCES OF INTEGERS 

BROTHER L RAPHAEL, FSC 
St Mary's College,, Moraga, California 94575 

PART 1. INTRODUCTION 

As harmless as it may appear, the Fibonacci sequence has provoked a remarkable 
amount of research. It seems that there is no end to the resul ts that may be derived from 
the basic definition 

F ^ 0 = F _,_., + F and F0 = 0 and F4 = 1, 
n+2 n+1 n u l ' 

which Leonardo of Pisa found lurking in the simple rabbit problem. For example, an exten-
sion of the definition yields the so-called Lucas numbers: 

L 4 0 = L , . + L and Lft = 2 and Li = 1. n+2 n+1 n u 1 

Evidently, any two integers may be used "to s tar t" the sequence. However, it is well known 
that there is an extraordinary relationship between the Fibonacci and Lucas sequences. In 
part icular: 

F n = F L and F _,, + F n = L . 
2n n n n+1 n-1 n 

Precise ly where does this peculiarity a r i se? 
Then, again, many remarkable summation formulae are available. In part icular , the 

n partial sum of the Fibonacci sequence is expressed by F + 2 - 1. The method used gen-
erally for proving such formulae is induction on the index. This involves 

1. a guess provoked by the investigation of individual cases , 
2. an efficient formulation of the guess, and 
3. a proof by finite induction. 

The drawbacks to this method are obvious. F i r s t , it depends very heavily on insight and 
cleverness , which qualities, while being desirable in any mathematician, do not lead to r e -
sults very quickly. Second, this method is entirely inadequate for cases involving bulky for-
mulations, and, of course, many times a result suggested by individual observation does not 
immediately come in convenient form. Finally, such a method is unable, to relate and gener-
alize resul ts . Mathematics is incomplete until the specific, and perhaps surprising, facts 
are brought back to a generalization from which they maybe deduced. Not only does this give 
a foundation to the conclusions themselves, but it enables one to draw further, unsuspected 
conclusions, which are beyond inductive methods. Furthermore, as a result of a generalized 
deduction, the formulation will be more elegant and notationally consistent. 

11 
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What is required then, is a generalization of the Fibonacci sequence, discarding the 
incidental. At points this project will appear to be unnecessarily removed from the simplic-
it ies of the original sequence, but attempts will be made to show the connections between the 
more general case and the more familiar resul ts . 

DEFINITIONS 

The Fibonacci sequence is based on an additive relationship between any term and the 
two preceding te rms. In our generalization, it is necessary to exploit two aspects of this r e -
lationship: we shall make it a linear dependence, and it will involve the preceding p t e rms . 
Here, and throughout, f will note the general additive sequence: 

(1) f . = a-f _,_ - + a„f j . 0 + ••• + a f (n = 0, 1, 2, • • •) . 
n+p 1 n+p-1 2 n+p-2 p n 

It seems essential to the spirit of these sequences that they be integral. To insure this, we 
must demand that the set 

1 

be integers. This set will be called the spectrum. But, returning to (1) and letting n = 0: 

(2) f = Y ^ a. f . , 
k=l 

reveals that we must specify the first p te rms of the sequence in order that the others may 
be obtained. The set of integers 

0 

so specified will be called the initial set , or the initials. 
It might be mentioned here that the Fibonacci sequence is obtained by letting p = 2 and 

taking the spectrum { l , l } and the initials { o , l } . And the Lucas sequence has p = 2, 
spectrum {l , l} and initials {2, l} . 

We wish now to extend the definition (1) so that negative values for the index are allowed. 
Using the Mback-upn approach, we obtain 

f ., = a . f 0 + • • • + a n fn + a f - , p -1 1 p-2 p -1 0 p -1 
or 

p -1 

-1 a 1 f p - l " / „ a k f p - l - k 
k=l 
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Continuing, it can be seen that, for any n = 0, 1, 2, • • • , 

(3) f n = -II f -Va , f . 
-n a 1 p-n x™^ k p-n-k 

P \ k=l 

Clearly, in order to maintain an integral sequence for all values of the index, positive and 
negative, it is necessary to take a = ±1. In any case , we have that a2 = 1. 

UNARY SEQUENCES (p = 1) 

The number p of necessary initial values classifies the sequence as unary, binary, 
ter t iary, and so on. The analysis of the unary sequences is ra ther trivial. The spectrum is 
{aj} and the initial set {f0}. But since p = 1, we must have 2LX = ±1, so that (1) comes 
down to: 

or , immediately: 
f ,- = ±f n+1 n 

f = (±l ) n + 1 f n+1 K } 0 

In addition, it would seem altogether desirable to eliminate those sequences which can be 
"reduced" by dividing each te rm by a constant. That would leave only the primitive sequences 
for which if d divides f. for each value of k, then d = 1. In addition, we eliminate those 
trivial sequences with each term zero. These conditions are met by demanding that neither 
the spectrum nor the initial set be all zero , and that no constant be divisible into all the s p e c -
trum or initial set. With these res t r ic t ions , we see that the unary sequences become: 

f, = 1, for all k, or 

fk = ( -D k . 

This simply ends all discussion of unary sequences. 

ALGEBRAIC GENERATORS 

One of the most common manifestations of additive recursive sequences is the power 
se r ies expansion of certain functions. For example, a short calculation leads one to con-
clude that: 

QO 

1 - x " x2 k=o 

The actual derivation of this resul t s tems directly from the definition of the Fibonacci s e -
quence. In what follows, we will use the same derivation in a generalized form. What we 
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want to discover is an expression for: 
00 

(4) ZX = *(X)' 
k=0 

where, by (1): 
P 

n+p ' J k n+p-k 
k=l 

Now, we multiply (1) by x , and sum over the index n, so that: 

00 

Z-J n+p 
n=0 

P 00 

= V a x k V f xn+p~k 
/ * k / j n+p-k 
k=l n=0 

But, taking into account (4), we may rearrange this expression, and: 

/ p \ p -1 / k 

* W ( X "E V* = fo + E X 1 fk " Z a J f M 
\ k=l / k=l \ j=l 

This singularly awkward expression can be made manageable by making the somewhat 
arbi t rary definition of a0 = - 1 . The introduction of a0 greatly simplifies the formulation of 
the required function: 

P-1 k k 
E x E ai f

k-i 
(5) cD(x) = k = ° J=Q 

k=0 

We need hardly say that this is the required expression, which reduces to the familiar Fib-
onacci power se r ies when p = 2, aA = a2 = 1, and f0 = 0, ix - 1. But, further investi-
gation of (5) leads to considerations which will be of crucial importance later. F i r s t , we r e -
mark that the denominator is a p -degree polynomial: 

-a0 + aAx + a2x2 + • • . + a p xP , (a0 = -1) , 

which will be called the spectral polynomial. 
Then, with regard to the numerator, the following definition will be made: 

(6) h . = - Y ^ a . f ^ . for 0 <, k j£ 
m , k JLJ 3 m+k-j "* 

j=0 
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In other words, h . is a partial sum of te rms . For example: m, K 

n A = - a A f = f 
m, 0 0 m m 

h = 0 cf (1). 
m , p 

h - = a f _, , 
m , p ~ l p m - 1 

and, for convenience: 

( 7 ) h k = h o , k = f k " a i f k - i a k f o • 

The introduction of (7) into (5) yields the remarkably concise: 

P " 1 k 

(5f) *w = XX x k = -——-
k=0 K 

THE Q-SEQUENCE 

In any f-sequence, it is possible to choose the initial set as any set of p consecutive 
t e r m s , so that two "different" sequences may actually differ only in their indices. It seems 
then necessary to consider some sort of fundamental sequence. This fundamental sequence 
has the simplest non-trivial initial set; namely {o, 0, • • • , 0, l } . The Fibonacci sequence 
is a binary case. These sequences exist for all values of p, and they will be called Q-
sequences. Referring to (6), we will rename the partial sums h . : 

(8) 

and, from (7): 

m , k 

k 
= - \ ^ a . Q ^ . for 0 ^ 

3=0 

k 

k 0,k / ^ 3 k-j 
3=0 

but, from the definition of Q-sequences, Q, = 0 for 0 ^ k ^ p - 2, and Q = 1: 

Hk = 0, for 0 < k ^ p - 2, or k = p , 

H - = 1 . p -1 

Using these resul ts in (5T), we have: 
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I. x n 
k IFO k xP" 1 

°° - £ Hf_x 
(9) ^ Q k X

! 

P k P 
k=o y a. x - y 

The right-hand member of (9) may be treated as a geometric se r ies : 

1" JL akx X^0 k=0 / 

and successive binomial expansions of the polynomial in parenthesis gives: 

( o o P . \ / oo ki v P t 

EZ(v1)' = q E E ^ - w r ( v ) : 
kt=0 k=0 x 7 / \ k i = 0 k2=0 x ' k=2 x ' 

and so on. After p steps, we may collect coefficients of x ^~ in (9) and equate them, 
obtaining: 

s(SCXS)-(V)* <*» < w - Z . U J U J U ; - l IT)&•*&*'••• i r k p % p • 

where the sum is taken over all {k.} such that 

P 

2>. 
P 

m 
I 

i=l 

and m + p - 1 > 0. Looking at the binary case (p = 2), we discover that 

%+± E/ n - i \ n-2i i 
I i ) a i ** 

i=0 \ / 
where 

(M = 0 for 0 < n < k, and n + 1 > 0 
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so that, for SLt = a2 = 1: 

F n+1 §C'-) 
which, of course, is the well-known ' 'r ising diagonal" result for Fibonacci numbers, derived 
from Pasca l ' s triangle. And, for comparison, here is the ternary case: 

(12) Qn+2 = E sf-i-'Xir^ 
Remark. In this section, and throughout the res t , we choose to make the agreement 

that I . J = 0 for all 0 < n < k. This appears a bit arbi t rary , but it is used since it s im-
plifies the summation notation. Notice that the upper index on the summation may be taken 
as infinity, since by our agreement the binomial coefficients vanish for large enough k. It 
might be pointed out that the real upper index, for example, in (11) is | [ n / 2 | , that i s , the 
greatest integer in n/2 . The bulky notation required for (10) in particular in this form war -
rants using our more simplified method. 

THE Q-SEQUENCE AS BASIS 

The fundamental nature of the Q-sequence is clearly shown in the following argument. 
We return to (5f), and rearrange slightly: 

00 
k IV 

P-1 k 

- E \ x 

k=0 R 

p k V a, x 
- Evk"p + 1 

k=0 

/ 
P-1 

xK 

X k E akx k=0 

then, taking into account (9), we have: 

00 p - 1 / 00 

k=0 k=0 \ i=0 

HI—D+l 
Comparing the coefficients of x F in this expression, we find that: 

p -1 
(13) f ^ = Y ^ h. Q . 8 

m-p+1 Z^J k ^ m - k " 
k=0 
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This clearly shows the basic nature of the Q-sequence — it forms a basis set for any other 
sequence having the same spectrum. But a more useful formulation may be derived by con-
sidering (7), and substituting into (13): 

(14) 

and then, using (8): 

we have, from (14): 

(15) 

p -1 k 
f ,- = -V^yVf, .Q . , 
ni-p+1 ' J ' J 3 k-j m-k 

k=0 j=0 

k 

~ Z-^i j m-p+1+k-j m-p+ l ,k ' 
j=0 

P-1 
f m-p+l = Y ^ H m - p + l . k f p - k - l ' 

k=0 

and finally, an obvious adjustment of index leaves us with: 

P-1 
( 1 6 ) fm = S Hm,k fp-l-k w h e r e H m , k i s ^ i v e n * ( 8 ) ' 

k=0 

Remark. For certain values of k, an alternative form of (8) is desirable: 

k p k 
H m , k = Qm+k - 2 - / a j Q m + k - j = Z ^ a j Q m + k - j " / , a i Q m + k - i 

3=1 3=1 3=1 

p-k 
(17) H . = y ^ a . ^.Q 

m , k / J k+j m- j 
3=1 

THE H-SEQUENCE 

What appeared in (8) to be merely notational convenience can now show more positive 
resul ts . For example, a l inear combination of p consecutive H . over the m index (in 
the spir i t of (1)): 
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P P k 

Z ^ a j m- ] , k ~ " ^ ^ a j Z - i a i Q n i - j + k - i 
j=l j=l i=0 

k p 
(18) = -EaiEaJQm+k-H 

i=0 j=l 

X a i Q i m+k-i m , k 
i=0 

shows that H . is itself an f-sequence for any choice of k. In fact, for k = 0, the H-
sequence reduces to the Q-sequence due to: 

0 

H n = - y a . Q . = -aAQ = Q m,Q £mmj j m- j O^m m 
3=0 

But, for any choice of k, we must have in general , that H-sequences satisfy (16), since they 
are f-sequences: 

P-1 
(19) H . = Y ^ H .H n . . 

m , k Z^ m , j p - l - j , k 

3=0 

which is a remarkable formula suggestive of a whole ser ies of important resul ts . 
PART 2. MATRIX REPRESENTATIONS 

A great many of the familiar Lucas and Fibonacci identities have been shown to be r e -
lated to the propert ies of matr ices . The attempt to generalize these results for higher o r -
ders of sequence directly leads to various sor t s of results depending largely on the aspect 
taken for generalization. But our previous work has led up to the following formulae: 

H , = - / a.Q M • for 0 ^ k ^ p m , k x™^ j ^ m + k - j "* ^ ^ (8) 

and 

(19) 

as well as 

(16) 
i n 

k=0 

These three equations are strongly suggestive of matrix multiplication, particularly the last 
(16). In fact, if the following definitions are made, a singularly simple formulation may be 
given: 

j=o 

H m , k : 

f = m 

p-1 
= y^H .H 

Z—/ m , j p-
j=o 

p-1 
> H f / J m , k p -1 

+~h 

-k 

,k 
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(20) 

Then: 

and 
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H 
H1J 

TT 
m + p - 1 , 0 " " ' m + p - l , p - l 

H 

H 
H° =1 

p-1 ,0 

m , 0 

H 

H 

p - l . p - 1 

H 0,0 . . . w 0 , p - l 

m , p - l 

I , the identity, 

H1 = H 

0 .0 

A glance at (19) shows that the matr ix II is really multiplicative; that i s : 

Tm+n H m H n H 

[Feb. 

since (19) is merely a statement of such a multiplication, row by column. Here again, what 
began in (8) as mere convenience, is seen to have something of a fundamental character with 
regard to the recursive sequences. Now, in addition, let us define: 

(21) F —m 

F = H m F n 

Finally, then, it is evident that (16) may be written in the matrix form: 

(22) 

A part icularly useful remark may be inserted here: 

(23) d e t H m = ( d e t H ) m = (a ( - l ) p + 1 ) m . 

This can be seen by considering definitions (20). However, in order to maintain a sequence 
which has integers for all values of the index we need a = ±1, as was seen in (3). Hence, 

m for any value of m, d e t l l = ±1. 
Also, the harmless observation that II H = II , when compared entry for entry 

leads to the remarkable: 

(24) 
k=l 

TT TT _ TT 

m+p-k , j - l n+p- i ,k - l m+n+p-i , j - l 
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which is actually a generalization of (19). 
In part icular , by taking i = p and j = 1 in (24), and recalling that H ft = Q in 

(8), and then rearranging index in (24): 

P - l 
(25) JL«J n,l Q. = Q. 

k=0 

GENERAL REDUCTIONS 

Rather than considering column matr ices of f. , we now extend the treatment to the 
square matr ix, having columns given by (21): 

(26) F —m 

/ m+2p-l m+p-1 \ 
f • • • f 
m+2p-2 m+p-2 

\ f • • • f 
\ m+p-1 m 

Then (22) becomes an expression involving p X p matr ices : 

I m lo -m 
where: 

F = 
f • • • f 
2p- l p - l 

f U . "p- l 0 

Taking determinants, and simplifying, using (23): 

(27) 

or: 

det F = det H det FA —m — —0 
= ( a p ( - l ) p " 1 ) m d e t F 0 

det F —m d e t F 0 for any m . 

Clearly, the number det F0 is an extraordinary constant for any sequence which depends on 

the initial set If. £P~ , and which will be called the character is t ic . « IJo 
The characteris t ic of the Fibonacci sequence is 

1 0 1 , 

while that of the Lucas sequence Is 
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3 1 
1 2 5 , 

as is well known. 
Again, the simple remark that: 

F + = H m + n F n = H m F —m+n — —0 — —n 

plus, a comparison of ent r ies , gives: 

P - l 
(28) f — y H f 

m+n / J m , k n+p-l-k 

k=0 

which is the general reduction. It is a generalization of (16). 
EXAMPLES 

The binary case , of course,, yields the most familiar results: 

H-(? i) 
so that: 

and det IT = -a2 

From (27) in the binary case: 

(30) W m - f L + 1 - <-a2)m(f2fo - f?) 

so that, for the Q-sequence: 
Q 0 Q - Q2 = ( -a 2 ) m ( - l ) 
^ m + 2 ^ m ^m+1 2 / ' 

(3D Q2 - Q W ^ Q W -, = (-*i)m~l 

and the binary reduction becomes, referring to (28): 

(32) Q f ^ + a 0 Q J = f , . 
^ m n+1 2 ^ m - l n m+n 

The correspondence with the usual Fibonacci resul ts may be worked out in detail directly 
from these identities. 

Now, turning our attention to the ternary case (p = 3), we discover several important 
points. F i r s t , the elegant formulations of the binary case do not hold up for p = 3, or for 
higher cases . Also, symmetry of expression begins to fade with the higher sequences. 
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Clearly, most of the interesting propert ies of the Fibonacci sequence stem from its being a 
binary sequence, while a few come from its being a sequence in general. We will here give 
the ternary resul ts : 

(33) 

and 

H111 = 
' Q m + 2 
S m + i 

a 2 Q m + l + a 3 Q m 
2^m 3 ^ m - l 

a0Q ., + a0Q 2 ^ m - l 3^m-2 

/ a i H a 3 \ 
= ( 1 0 0 J 

\ 0 1 0 / 

a 3 Q m + l 
a 3 Q m - l 
a 3 Q m - 2 

so that: det II = a3 hence: 

(34) 
m+4 
m+3 

fm+2 

m+3 
fm+2 
f m+l 

m+2 
m+1 f 

m 

= (a3) 
h 

For Q-sequences in the ternary case: 

(35) 
m+4 
m+3 
m+2 

m+3 
m+2 
m+1 

Q 
Q 

m+2 
m+1 -(a3) 

And the ternary reduction: 

(36) Q f , 0 + (Q _, - - an Q )f ^ + a0 Q n f = f , ^ m n+2 ^m+1 1 rm n+1 3 ^ m - l n m+n 

NEGATIVE INDEX 

Already, we have investigated the nature of the general sequence for negative values of 
the index. A necessary and sufficient condition that a sequence be primitive and integral is 
that a2 = 1. Now, using; more recent resul ts , it is possible to look into the matter a bit p & 
more deeply, and obtain expressions relating terms of negative index with those of positive 

index. 
Were the matr ix equation B[m F0 = F to hold for negative value of the index: 

F = H " m F n 
—-m — —0 

( H m ) _ 1 I 0 

or , in particular: 
(37) H"m = (Hmf 

so that, after the indicated inversion, we may equate the entries in (37): 
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(38) H j . . . n = — minor H _,_ . . n . 
-m+p-1,3-1 d e t H

m m + p - j , i - l 

Then, letting j = 1, and recalling (8): 

H . n = Q . = ——— minor H , - . ., 
-m+p-i ,0 -m+p-i , , „ m m + p - l , i - l 

and, then, letting i = p, we have, after reference to (23): 

(39) Q = (a ( - l ) p + 1 ) ~ m minor H _, 1 
-m p m + p - l , p - l 

Then, for the general case , we need only note that from (16): 

P - l 
(i6?) f = y ^ H . f , . , 

-ni / J - m , k p - l - k 
k=0 

where: 
k 

(8f) H . = \ ^ a . Q ^ . . 

3=0 

As a footnote, we add two identities coming from the equation II If = I , where entries 
are compared, after completing the multiplication on the left member: 

(40) \ ^ H _ , . . . - H J . . I 1
= H . . 1 = s . . 

£_j m+p-k , j - l - m + p - i , k - l p - i , j - l ° i j 
k=l 

for 0 ^ 1 ^ p, 0 < j ^ p and 0 ^ k < p, and where 6... is Kronecker 's delta. 
If i = p and j = 1 in (40): 

P 
U n H p - k , 0 n - m , k - l " " 0 , 0 ' J ^ H ,_ nH ... ,_ , = H, 

k=l-

which may be rewritten: 

P - l 
(41) V Q , , , H . = 0 

JL^S ^m+p-k-1 - m , k 
k=0 
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Applying (39) to the binary case yields the intriguing result: 

(42) Q_ m = - ( _ a 2 r m Q m or that: J Q _ m | = | Q m | , for p = 2, 

while in the ternary case: 

(43) Q_ m = ( a 3 ) - m ( Q ^ + 1 - Q m Q m + 2 ) . for p = 3 . 

Clearly, the beauty of the expression for p = 2 does not car ry over to the situations for 
grea ter values of p. 

MATRIX SEQUENCES 

An obvious, but interesting result of (26) is the matrix expression (using entrywise 
addition): 

<44> 2>k^m-k = I F 
m k=l 

From (1), it is evident that the matr ices | F, i form an f-sequence with spectrum {a, I . 
Fur thermore , (44) m a y b e written, using the definition of F : 

k=l k=l 

however, F0 ^ 0, so that, dividing it out: 

P 

(45) XA-m"k = ° ' 
k=0 

in which case the powers of the matrix H form an f-sequence. In fact, (45) is really a r e -
sult of the Cayley-Hamilton Theorem. 

ROOTS OF THE SPECTRAL POLYNOMIAL 

Returning to the ear l ie r question of explicit determination of f and Q , we recall 
that (10) was obtained, which expressed Q in te rms of a sum of binomial coefficients. A 
different approach now will yield the so-called Binet form, which may then be compared with 
(10) for a ser ies of remarkable relationships. But first we return to (5f): 
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oo 2L, Kx 

V ^ f k k = 0 

> f. X = 
Z j k p k 
k=0 - V a , x 

£b k 

recalling that the spectral polynomial appears in the denominator. Now consider that this 
polynomial has been factored in the complex field: 

P 
(46) - > X x * = n (1 - r .x) , 

k=0 * -1 

where the roots are \ 1/r. y , a set of complex numbers, none of which are zero. Now, let 
us make the very strong assumption that the roots are distinct, so that: 

P - l k 

(47) V u k = k=Q — = Y T - i -
Z ^ k p Z-rf 1 - r . x 
k=0 n (1 - r .x) i=l 

i=l * 

where the right-hand member is a sum of partial fractions. What is needed is an expression 
for each A.. Using a geometric ser ies and (47): 

_00 P 00 

k=0 i=l j=0 

k and, equating coefficients of x * : 

(48) f
k =ZVf 

3=1 

Then, from (5') and (46): 

00 / P \ P - 1 

£ f k x k ( n (1 - r.x) ^ V " 
k=0 N1 1 I k=0 
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and so, cancelling the te rm (1 - r. x), after introducing (47): 

P p -1 

£ A n (l-.x) =J]Vk-
k=i lfK k=o 

Now, we substitute rQ (n = 1, 2, • • • , p) for 1/x, and recal l that the {r. I a re distinct: 

i^-i)Yt: AJ n ( 1 - ^ - 1 ) = >> k ( l /r n ) k 

so that, finally: 

P - 1 i i 
> h. r p 

i S ) k n 

(49) . A = S J L - - — 
n n (r - r . ) . / n l i fn 

which is exactly the expression for the A demanded for (47), and (48). In fact, now we 
may introduce into (48) the value for A. derived from (49): 

p p -1 ^m+p-l-k 

m 
- _ _ ^ r^ 

<--^v^ 
or: 

i=l k=0 n (r. - r . ) 
• - / • 3 • i 

p-1 / p r m+p- l -k 
(50) f EME -̂m . 

k=0 \ j = l n (r. - r . ) 
# i J l 

However, comparing (50) with (13) and rearranging index shows that: 

(51) Q m 

m 
r . 
3 

i=l n r . - r . ) 
-j.- 3 i 

m J 

where, of course, the r. are assumed to be distinct. This expression (51) is the general 
Binet-form for the Q-sequences. 
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Remark. We note that, at the opposite extreme, the assumption might have been made 
that r. = r for all i, so that all the spectral polynomial roots are equal: 

(52) "X)akx k = (1 " rx)P ' 
k=0 

in which case (5T) becomes: 

p-^-1
 k 

Z\ (53) Z V ^ 
k=o (i - r x > P 

and a geometric expansion, and comparison of coefficients of x gives: 

p -1 
(54) C = y ^ ( m + „ P "n1 " M y * " 3 

1 = 0 • 

P - 1 , , 
f = y ( m + p - i - M h . 
m L-d\ p - 1 / ] 

and, again, comparing this expression with (13) gives that: 

(55) CD =1 " M r m - P + 1 

EXAMPLES 

In the binary case , many of the above results produce elegant formulae. Hence, if in 
(51) the roots are 1/r^ f l / r 2 and 1 - a tx - a2x2 = (1 - r tx)( l - r2x), then: 

m m m m 
*i r 2 *i - r 2 

(56) Q = + = 
^ m vt - r2 r2 - rt rt - r2 

where rt + r2 = at and r ^ 2 = -a2. 
In the case that r t = r2 = r , we have 2r = SLt and r2 = -a2 , so that there are two 

cases: 1) r = +1, a1 = 2 and a2 = - 1 , and 2) r = - 1 , SL^ = -2 and a2 = 1. And, in 
either case: 

(m \ m - 1 m - 1 

1Jr = mr 

(57) Q 
^ m 

where: 
Q ^ = 2rQ _L1 - Q ^m+2 ^m+1 ^ m 

Evidently, by factoring and dividing in (56), and then allowing rA to approach r 2 : 
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m - 1 
_ ^ m - l - k k m - 1 .£ 

Qm - 2^ r i r2 = m r l f r i = r2 ' 
k=0 

hence, all three cases may be said to be derived from (56). 
Now, foregoing the tedious calculation, we give the ternary results (p = 3): 

m m m 
r i r2 r3 

Q m ~ {rt - r 2 ) ( r 1 - r 3 ) + (r2 - r 3)(r2 - r t ) + (r3 - r t ) ( r 3 - r 2 ) 
where 

1 - a tx - a2x2 - a3x3 = (1 - rjxMl - r2x)(l - r3x) . 

If two roots are equal, then r2 = r3 say, and: 

m m m - 1 
rt - r2 mr2 

(59) Q = — , 
m / \o 

(r-L - r2r rt - r2 
where 

1 - SLtx - a2x2 - a3x3 = (1 - rjxMl - r2x)2 

m-2 

And, if r 1 = r2 = r3 = r , then: 

(60) Q = - m(m - l ) r 
v ^ m 2 

where 

Q 0 = 3rQ ^ - 3Q ^ + rQ and r = +1 or - 1 . 
^m+3 ^m+2 ^m+1 ^ m 

Once again, although now there are an infinite number of cases depending on the nature of the 
roots, it can foe seen that (59) and (60) can be derived from (58) directly, using in part the 
identity: 

m m m m - 1 

G^ - r 2 ) 2 ^ rt - r2 

In summary, then, we can, with minor adjustments in view of multiple roots of the spectral 
polynomial, consider that the form (51) actually is the expression for Q in terms of the 
roots of the spectral polynomial. On the other hand, (10) expresses Q in te rms of the co-
efficients of the spectral polynomial. That this is a source of a multitude of fascinating prob-
lems is left to the imagination of the reader , as well as to his leisure. 



30 LINEARLY RECURSIVE SEQUENCES OF INTEGERS [Feb. 

PART 3. SYMMETRIC FUNCTIONS 

By attacking the entire problem from another point of view, it will be possible to derive 
a generalization of the Lucas sequence, and thence derive a set of remarkable identities in-
volved with this generalization s imilar to the usual Fibonacci-Luc as result that F L = F~ . 

Consider, f irst , a set of complex numbers | r . 1 , and a defining relation: 

k _ , • t • 
(61) n (x - r . ) = > ( - D ' s . x * - 1 . 

i = 1 J La i 
3 x k=0 

The coefficients S. are clearly the elementary symmetric functions of { r . | . In particular: 

S0 = 1, in any case , 

SA = r t + r2 + r3 + • • • + r R , 

(62) S2 = rt r2 + rt r3 + • • • , 

Sk = r 1 r 2 r 3 • • • rfe, and 

S = 0, for n > k . 
n • 

By substituting r into (61): 

k 
k r m = 2>'-V£;' 

i = l 

n-k or , after multiplying by r : 

i=l 

Suppose that t is any linear combination of the { r . }, so that from (63), it is clear that: 

k 

t =y^(-l)i"1S.t . . n / ^ I n-i t„ 
i=l 

In which case , if we further define a. = (-1)1 S., we have (letting k = p): 
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P 
(64) t = V V t . . 

n ' * i n - 1 

i=l 

Hence, from (1), a sequence of l inear combinations of n powers of r . is actually an f-
sequence. Further , the Q-sequence defined by (51) is a specific case of l inear combination. 

It seems reasonable to investigate the propert ies of the simplest t-sequence, namely, 
the simplest l inear combination of n powers of r . , which will be called a T-sequence: 

(65) Tn=Er" 
5=1 

in which case: 

T0 = P 

Tj = aj 

T2 = 4 + 2a2 , 
and, in general , 
( 6 6 ) • T k = a i T k - l + a 2 T k - 2 + • • • + a k - l T l + k a k for k ^ P • 

Remark. Since a. = (-1) " S,, then, in part icular , ao = - 1 , as was defined ear l ier . 
In addition, it must be remarked that the a. defined just before (64) must be integers, in 
keeping with the definitions made in the first part of this paper guaranteeing that the 
f-sequences be sequences of integers. 

From (7) and (66), it can be seen that h k = -ak(p - k) for k £ p for any T-sequence. 
Immediately, (5f) becomes 

P - l k 
J2 ak(p - k)x 

(67) ZTkx k k=0 

k=0 V a, x 

and, if s(x) denotes the spectral polynomial 

P 
k a. x k 

k=0 

(68) y ^ T k x k = P " x ' s!(x)/s(x) . 
k=0 
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Already9 from (9): 

J ^ Q k x k = x P "Vs(x) 
k=0 

so that clearly, we have: 

(69) ^SI^V^^SV" 
k=0 J k=0 

in the derivation of which, a bit of the tedious rearrangement has been passed over. 
In addition, noting again that h , = h, = -a, (p - k) and substituting into (13): 

p -1 
T _,_-,= - V ^ a . (p - k)Q . m - p + l ' * k m-k 

k=0 

P 
p ) a. Q 1 + 7 a. kQ , F / J k m-k / ^ k in~k 

k=0 k=0 

but the first term on the right is exactly zero by (1); so: 

T ^ = V ^ k a . _ Q . m-p+1 / J k ^ m - k 
k=0 

(70) T = V ^ k a . Q _,_ 1 . 
m / / k^m+p-1-k 

k=l 

Inspecting (70) and looking at various cases leads to the remark that, in fact, (70) is exactly 
the generalizati 
Lucas identity. 
the generalization of L = F , - , + F n = F + 2 F -, which is a familiar Fibonacci-& m m+1 m - 1 m m - 1 

EXAMPLES 

What follows now is a rather long discussion of the binary case for T-sequences. The 
most fascinating results occur when p = 2, so that a presentation of this situation is reward-
ing. F i rs t , in the binary case: 

T = rt + r2 , where r^ - a4 rj - a2 = 0, i = 1, 2 ; 
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or, if rt = r2 = r: 

(71) 

In either case: 

Q T n n 

T = 2r n 

n n 
r l - r2 
Ti~- ~*i 

\{T1 + r2 ) 

so that: 

(72) 

Then, from (70): 

or: 

(73) 

2n 2n 
r i " r2 
_ _ _ 

Q T n n Q 2n 

ajQ + 2a2( 

T = Q j . i + a 2 Q i • n m+1 ^ m-1 

The symmetry of (72) and (73) reveals the underlying charm of the Lucas sequence, which, 

of course, carries over to any binary T-sequence. Continuing, using (73) and (42): 

T = Q _,, + aQQ 
-m -m+1 2 -Hi-1 

or, as in (42): 

(74) 

Applying (73), we have: 

(75) 

, v-m+1^ / v-m-l„ 
-(-a2) Q ^ i - a j t - a j ) Q m + 1 

(-a2) (a, 2^m- l + Q m + r 

( - a 2 ) " m T r 

T , n + aQT n m+1 2 m-1 (aj + 4a2) 

while the characteristic expression (27) is: 

(76) T _,0T - T2 _L1 
v ' m+2 m m+1 

= (-a2)m(a^ + 4a2) . 

But the general reduction (28) provides the most elegant formulae, both for Q- and 

T-sequences: 

(77) 

and, taking (74) into account: 

(78) 

Q T o.i + aoQ J = T ^ 
^m n+1 2^m-l n m+n 

^m^n+1 2 ^ m - l ^ n ^m+n 5 

T = (-a2) (Q T - Q T ^ ) 
m-n Ll v^m+l n ^m n+1 

Q = (-a2) (Q M Q - Q Q , - ) 
^m-n L' ^ m + l ^ n ^m^n+1 
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so that, adding (77) and (78): 
T ^ + (-a 2 ) n T = T T 

m+n L m-n n m 
( 7 9 ) Q ^ + (-a2)nQ = T Q 

^m+n L' ^ m - n n ^ m 
or , subtracting: 

T ^ - ( -a 2 ) n T = Q Q (a? + 4a2) cf. (75) 
m+n L m-n ^n ^ m 1 L 

( 8 0 ) Q ^ - (-a2)nQ = Q T 
^m+n L ^ m - n ^n m 

and rearranging index in (79) and (80): 

< W » n - k - ( T 2 n - ( - a 2 ) n - k T 2 k ) / ( a ? + 4 a 2 ) 

Q n + k T n - k = %n + ^"Sk 

< 8 1 ) Tn+kVk = %n - ^ ^ \ k 

Tn+kT„-k = T2„ + ^ ) n _ k T
2 k 

and, finally: 

(82) Q9 Q,. = Q* - Q* . = T n + k " T n - k 

2 n 2 k n + k n " k (a2
1 + 4a2) 

Remark. The ternary and higher cases yield no such results; that i s , the symmetry 
and conciseness do not ca r ry over for p > 2 . Then, it is clear , the Lucas-Fibonacci re la -
tionship is based almost entirely on the character of the two sequences as binary sequences. 

PART 4. FINITE SUMS 

A number of Fibonacci identities are concerned with the formulation in terms of the 
Fibonacci sequence of the sum of a certain se r ies of te rms of the sequence. For example, 
the simplest case: 

F k = V 2 - 1 • 
k=0 

We now seek to generalize this result . Recalling ear l ie r definitions and theorems: 

(i) f a. = y ^ u x , 
m+p / ^ k m+p-k 

k=l 

(6) h . = - 7 a.f M . 
m , k Z—4 3 m+k-j 

3=0 
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and we define: a0 = -1 and hQ k = h, , so that: 

35 

(5.) ^ ^ k 

p - 1 1 

k=0 K 

P k 
k=0 J2 a.x 

But the initial set {f.} may be chosen arbi t rar i ly , so it is possible to choose for initials 
the set { f m + i } where i = 0, 1, 2, • • • , p = 1. In that case , (5f) becomes: 

p-^-1
 k 

(83) X ) f - " - x k ~ k=° 
E n i x 

m+k p k 
k=0 V* a, x 

and rearranging the left member: 

P - l , 
oo - V1 h , x 

E i r^n m , k 

f k-m _ k=0 
k X P k 

k=m J2 \ x 
or , multiplying by x : 

P " 1 m+k 
h m k x 

(84) E f k x k = k=° P k 
k=m V a. x 

&b k 

Then, by a simple substitution: 

2 > k • 
p - 1 • > * 
— n i X 

k k=0 
oo ~ E n

n k
x 

k=n E akx 

and, subtracting these two expressions: 
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p - 1 . 

(85) £ fk 
n - 1 . k-o 

k x = P k 
_ a i ^ x 

=0 
i > a i x 

k=m Z-u k 

Letting x = 1, and assuming that 2 a, f 0: 

p ^ 1 

n-l J\ (h . - h . ) 
(86) > . f, = 

~f̂  n ,k m , k k=0 
k p 

k=m J2 a, 

Remark. Evidently, the sum in the left member of (86) is finite, so that in the case 
that 2 a, = 0, the numerator on the right must be divisible by the denominator. 

In the event that p = 2, we have the simpler expression: 

£ l i (f - f ) + a2 (f - - f - ) 
<*7\ \ ^ f - n m ' 2 V n - l m - 1 
( 8 7 ) Z*t fk - 1 + a4 + a2 

k=n 
and 

n - l 
(83) ^ Q k -

k=l 

Q + a 0 Q n - 1 ^n 2 ^ n - l 
at + a2 - 1 

which reduces to the Fibonacci expression when a1 = a2 = 1. 

SUMMARY 

At the outset, it was proposed to find a generalization from which all the familiar r e -
sults for Fibonacci-Lucas sequences might be deduced, in addition to which a consistent no-
tation might be developed, and finally, that the sources of the peculiarity of the Fibonacci-
Lucas sequences might be found. It is hoped that such proposals are worked out in the course 
of the paper. All that remains to be said concerns the sources of peculiarity which is the 
bulk of the charm surrounding the Fibonacci-Lucas sequences. Of course, some of these 
propert ies stem from the very nature of a recursive sequence of integers (such as (5) and 
(27)); while other propert ies stem from the Q-sequence in part icular (for example, (10) and 
(51)); while others still come from those formulae which assume different forms when aA = 
a2 = 1. Actually, it is quite extraordinary how many of the propert ies of the Fibonacci-Lucas 
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sequences a re shared by a l a rger c lass of sequences. 
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THE GOLDEN ELLIPSE 

H. E. HUNTLEY 
Nethercombe Cottage, Canada Combe, Hutton, Weston - Super - Mare, England 

The ellipse in which the ratio of the major to the minor axis (a/b) is the golden ratio 
<p— the "divine proportion" of Renaissance mathematicians [ l ]—has interesting propert ies . 
In the figure, let OA = a = cp units, OB = b = 1 unit. Clearly, if a rectangle be c i rcum-
scribed about the ellipse, having its sides parallel to the axes, it will be what has been called 
the golden rectangle, frequently realized in ancient Greek architecture. 

B T 

V 

The Golden Ellipse 
a/b = cp 

The modern symbol for "golden sect ion," as it was called in the nineteenth century, is 
the Greek let ter phi: cp, and cp and cp1 are the solutions of the equation x2 - x - 1 = 0. 

cp = (1 + V5)/2 = -1.6180 

38 
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<P% = (1 - \[b)/2 = -0.6180 

so that cp + cp1 = 1 and cpcf = - 1 . 
Now, the eccentricity e of an ellipse is given by 

b2 = a2(l - e2) 

so that the eccentricity of the golden ellipse is 

(1) e = 1/ \t<p = N^cp* . 

Using the familiar notation of the figure (e. g. , S and S" are the foci), from the known 
propert ies of the ellipse, we may write the following equations: 

(2) OS = ae = \ f? 

(3) BS = ^(b2 + a2e2) = a = cp . 
If L OBS = 6 , 
(4) sec 6 = a /b = <P . 

If ON is perpendicular to the directr ix ND , 

(5) ON = a/e = cpz/2 

(6) SN = ON - OS = a/e - ae = 1/ sfip . 

A property of any ellipse may be stated thus: the minor axis is the geometric mean of 
the major axis and the latus rectum; that i s , if L is the length of the semi-latus rectum, 
aL - b2. Hence, for the golden ellipse, 

(7) L = b2/a = 1/cp = -cp1 . 

Thus 
a : b : c = cp : 1 : - cp1 = cp2 : cp : 1 

From Eqs. (2), (5), and (6), 

ON/OS = 1/e2 = <p and OS/SN = ae / (a /e - ae) = l/cp = -<?f . 

Hence, the focus S divides ON in the Golden Ratio. 
Again, if PPT is the latus rectum, 

(8) OP2 = OS2 + SP2 = a2e2 + b 4 / a 4 = cp + cp'2 = 2 . 
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Using the cosine rule for APOP' , it may be deduced from this that the latus rectum 
subtends at the center O an angle a given by cos a = l/cp , so that, from (4), 

(9) a = 6 . 

Another property of the ellipse has it that a tangent at P passes through N and that 
cot J_ SPN = e. Since cot 6 = b / ae , it follows in the case of the golden ellipse that 

c o t / S P N = l/4<p and cot 6 = l/\lcp9 

so that / S P N = 6. Thus, MPSB is a parallelogram, and 

(10) MP = BS = a = cp . 

Moreover, since MP/PN and OS/SN = <p , 

(11) PN = 1 and MN = <p + 1 = cp2 , 

and P divides MN in the Golden Ratio. 
It is easily shown that OM = <p so that M lies on the auxiliary circle of the ellipse 

and APOM is isosceles. Moreover, if OP produced intersects the directr ix in D, ND = 
b 2 / ae 2 = 1, BDNO is a rectangle, and P divides OP in the Golden Ratio. 

The interested reader may, by searching, discover for himself many other hiding 
places where the Golden Ratio is lurking in this ellipse. For example, superimpose on this 
ellipse a second, s imilar ellipse, with center O but rotated through a right angle. Draw a 
common tangent cutting OY, OX in R, S respectively, to touch the ellipse in Tt and T2. 
Examine the ratios of the several segments of RS. 
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ON A PROBLEM OF M WARD 

R. R. LAXTON 
University of Nottingham, Nottingham, England 

1. INTRODUCTION 

In [3] M. Ward showed that a general non-degenerate integral l inear recurrence of o r -
der two has infinitely many distinct prime divisors. He conjectured that the result was true 
for l inear recurrences of higher order (again excluding certain degenerate ones) and, indeed, 
confirmed this in [4] for the case of cubic recurrences . Here we prove Ward's conjecture; 
the method is straightforward and uses the most elementary form of p-adic analysis. We end 
by discussing the limitations of the method together with the problems it ra ises and posing 
further questions concerning divisors of recurrences (especially in connection with the work 
ofK. Mahler). 

2. STATEMENT OF THE PROBLEM 

2.1. Let the polynomial f(x) = x - a x ~ - • • • - aAx - a0 G Z [x] , m > 1, have 
no root nor ratio of distinct roots a root of unity. Say 

m 
f(x) = IT (x - 9 ) , 

i=l 

where the 6. are algebraic integers. Put K ™ Q(0i, • • • , 6 ); it is a normal extension of 
the rational field Q. 

W = {w0, wl5 • • • , wn> • • • } is a (integral) l inear recurrence with companion poly-
nomial f(x) if given w0, wl5 • • • , w ^ ^ G Z , not all zero, we have 

w , = a -, w ^ + . . . + anw , T + aAwM , 
n+m m - 1 n+m-1 1 n+1 0 n 

for all non-negative integers n. Thus all the t e rms of W are rational integers. 
2.2. We can assume that a0 f 0 since otherwise we would have a l inear recurrence of 

degree less than m. 
All the roots 9V • • • , 0 m are distinct, so we may write 

(2.1) Dw = A ^ f + . . . + A 0 n 

n : l m m 

for all n, where the A, are algebraic integers in K and the rational integer D is the d i s -
criminant of f(x). 

41 
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If at most one of the A. of (2.1) is not zero , then we have a degenerate recurrence 
and this we exclude. Hence we may assume that AjA2 • • * A m f- 0 and m ^ 2 since other-
wise we would use (2.1) but with the zero A.fs deleted. 

I 

To make the exposition clear , we shall assume that f(x) splits in Z [ x ] , i. e. , that 
® v '' ' > ^ m a r e rational integers. The following proof remains valid in general (with prime 
ideals replacing rational p r imes , etc .) apart from one step and this we shall deal with at the 
end of the present proof. 

2.3. An integer n is a divisor of W if n divides some term w oi W. We shall 
be concerned with prime divisors of W. It & prime p divides all the roots Qi9 • • • ,0 then 
p divides all the terms w, of W with t ^ m; these divisors (which are called null-divisors) 
are of no interest to us and we eliminate them. Let u = g. c. d. (01? • • • , 0 m ) and rewrite 
(2.1) as 

(2.2) 

with 6. = 0. / u for all i = 1, • • • , m. It follows that given any prime p, there is at least 
one 8. which is not divisible by p. This fact we will need in the subsequent proof. 

2.4. From now on we will assume that the recurrence W given by (2.1) has only a 
finite number of prime divisors. It follows from (2.2) that there are only a finite number of 
p r imes , say p1? • • • , p .̂, which are prime divisors of the integers U = A18\ + . . . + A ^ S - ^ 
for all n = 0, 1, 2, • • • . Essentially we prove that this assumption implies that the terms 
U assume the same integer value for infinitely many distinct values of n. 

3. THE ANALYSIS 

3.1. Let p = p.. be one of the pr imes p l 5 • • • , pt which divide some U . From the 
construction in 2.3, we know that some 5. is not divisible by p — say 8 j , • • • , 8^ (d = 
d(i) ^ 1) are p-adic units and 6 , - , • • • , 5 are divisible by p. 

For the moment, we will assume that 

(3.1) A$ + ••• + A d 5^ = 0 
for only finitely many n E Z , n ^ 0 . 

Let k = k(i) be such that At6^ + • • • + A 8^ f 0. Say A ^ + • • • + A 5^ = 0 (mod 
s k k s+1 

p ) but A1S1 + - • • + A , 5 , ^ 0 (mod p ) for some integer s = s(i) ^ 0. For each j = 
1, • • • , d, there exists a positive integer b. such that 

b. 
8 . J = 1 (mod p ) . 

Now put b = b(i) = b ^ • • • tyj. Then for each r E Z such that v = k + rb > s, the ration-
al integer 
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v a * mm x 1 d d 
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= A ^ + . . . + A,sJ (mod pS + 1) 
d d 

d5d 

Thus for all v = k + rb > s ) the terms U are exactly divisible by p S . 
3.2. Now repeat the argument of 3.1 for each of the primes p l 5 • • • , p . It is c lear 

that provided the assumption (3.1) holds for each of these p r imes , the value selected for k = 
k(i) can be chosen to be the same for all p1? • • • , p . Assuming then that (3.1) holds for each 
p.., i = 1, • • • , t, we have constructed a subsequence U ,.x of f u , n = 0, 1, • • •} for 

i M v(i) n J
 ( ) 

all r E Z with v(i) = k + rb(i) > s(i), all of whose terms are exactly divisible by p . 
Therefore for all r G Z such that v = k + rb(l)b(2) • • • b(t) > max (s(l) , • • • , s(t)), 

the infinite subsequence ( U v ) of ( u } takes on the form ±N for some fixed integer N 
(since the pr imes p l 5 • • • , p, a re the only prime divisors of te rms of this sequence {u } 

t n 
of rational in tegers) . 

3.3. Now both the derivation in 3.2 and the denial of assumption (3.1) for some prime 
among p l 5 • • , p give r ise to statements of the form: "AjS 1 + ... . •+• Af5f takes the same 
value for infinitely many n E Z, n — 0. n Here A. and 6. are non-zero algebraic inte-
gers (actually we have assumed they are rational; see 2.2) and f — 2 (f = m — 2 for the 
derivation in 3.2 and for (3.1) to be false we must have f = d(i) ^ 2). 

By p-adic methods (see for example K. Mahler 's article [l]) we can conclude from 
this that some ratio 5, / 5 . , i ^ j , is a root of unity and hence 9. /9. = u5. / u 5 . is a root 
of unity. This contradicts our initial hypothesis and so the assumption that the recurrence 
W has only finitely many prime divisors is false. 

4. REMARK ON THE GENERALIZATION OF THE PROOF 

We need consider the case when f(x) does not split in Z[x] and so 6l9 • • • , 9 are 
not rational integers but only algebraic integers. As we remarked in 2.2, we use prime 
ideals p of the normal extension K instead of rational pr imes p and p-adic analysis in-
stead of p-adic analysis. This part of the generalization causes us no trouble but there is a 
slight difficulty in getting rid of the null-divisors of W in 2.3 and forming Eq. (2.2). There 
we put u = g. c.d. (0ls • • • , 0 m ) and subsequently considered the sequence U = A1&1 + 
• • • + A 6 n of rational integers — and the fact that the U are rational integers is impor-m m & n 
tant in Sec. 3.2 where we used the fact that the only units in the rationals are ±1 (and there-
by deducing that we obtained an infinite subsequence {U v } of {U n } taking the values N for 
some fixed N E Z) . To overcome this we let qu • • • , q s be the set (possibly empty) of all 
rational pr imes dividing g. c. d. (a0, • • - , a m _ 1 ) , the coefficients of f(x). In the normal 
extension K = Q(0l 9 • • • , 0 m ) let the ideal (q,) have prime ideal decomposition 

a. 
< V = < J i ( i ) - - - q i ( r ) ) ' • a i e Z ' ai " ° • 

Now each prime ideal _q.,,. contains all 9V • • • , 9m; let jS.,,, > 1 be the highest power of 

-2i(k) div i (*inS a ^ ^1 > ' " ' ' ^m- Since K is normal we have 
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" i d ) = / 3 i ( 2 ) = ••• = V ) = / 3 i ' 

say. We do this for all i = 1, • • • , s. Put a = a^ . . -as and then 

TT(M-«-
i , k \ -3 i (k ) / 

where u is a rational integer. 
Now instead of considering all t e rms w of W we consider only the subsequence 

(w } and (2.2) then becomes L cmJ 

Dw = A<u* + • • • + A 0 = u \Afii + • • • + A 5 ) , an l 1 mm 1 1 m m 

with 5. = 9, / u for all i = 1, • • • , m. Here { AJSJ + • • • + A 5 } is a sequence of r a -
tional integer te rms and for any prime £ at least one 5. is a p-adic integer. The analysis 
can now proceed as previously. 

5. PROBLEMS CONCERNING FURTHER GENERALIZATIONS 

5.1. One would suppose that the result established here can be generalized to arbi t rary 
l inear recur rences , not just those W all of whose t e rms are integers. However, our 
method of proof breaks down in this general situation since in Sec. 3.2, we needed the fact 
that there a re only a finite number of units in Z 

5.2. In [2] , K. Mahler has shown (using the p-adic generalization of Roth's Theorem) 
that in a non-de gene rate linear recurrence of order two (with c. p. x2 - Px + Q, 4p > Q2 and 
Q ^ 2) every infinite subsequence has an infinite number of prime divisors. Again one would 
suppose that this is true for l inear recurrences of higher order . 

5.3. Let f(x) = x2 - Px + Q e Z[x] , Q ^ 0, and W = { • • • , w0, wl5 • • • , wn , • • • } 
w0, wA E 3E be a l inear recurrence satisfying w 9 = Pw - - Qw , for all n E Z (we are 
allowing the recurrence to go in both directions so that now not all t e rms are integers). Then 
one can establish that if every prime is a divisor of W and Q = ±1, then some term of W 
is 0 and so it is essentially the Lucas sequence • • • , 0, 1, P , • • • associated with f(x). 
Is this result true for arb i t rary Q ? 
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GENERALIZED HIDDEN HEXAGON SQUARES 

A. K. GUPTA 
The University of Michigan, Ann Arbor, Michigan 48104 

The triangular a r r ay of binomial coefficients is well known. Recently, Hoggatt and 
Hansel [2] have obtained a very surprising result involving these numbers. Stanton and 
Cowan [3] and Gupta [ l ] have generalized this triangular a r r ay to a tableau. In this paper, 
we generalize the results due to Hoggatt and Hansel. 

Let, for any positive integer m and any integer n, [ J =. 0 if either n > m or 
n < 0. Then we prove the following theorem. 

Theorem. The product of the six binomial coefficients spaced around ( J , viz. , 

(m - r i \ / m - r A / m \ / m + r 2 \ / m + r 2 \ / m \ 
n - r 2 / \ n / \ n " r 2 / \ n + r i / \ n / \ n + r i / 

where rt and r2 are positive integers , is a perfect integer square. 
Proof. The product of the six binomial coefficients is 

(m - r j ) ! (m - rA)! (m)! 
(n - r2)t(m - rt - n + r 2 ) ! (n)!(m - rt - n)\ ' (m - r 2 ) ! (m - n + r2)f. 

i2 r (m - r ^ ' . N K m + r 2 ) ! "j 
L (n - r2)t(m - rt - n + r2)t(n)!(m - ri - n)!(m - n + r2)!(n + r ^ t j 

Now, the product of binomial coefficients is an integer, since each binomial coefficient 
is an integer. And the square of a rational number is an integer if and only if the rational 
number is an integer. Hence the product is an integer square. 

It is interesting to note that 

( m \ / m - r i \ / m + r z \ / m - r i \ / m + r2\/ m \ 

n " r 2 / \ n / \ n + F l / = \ n " r 2 / \ n / \ n + r i / ' 

which is what really happens to make the product of six numbers a perfect square. 

Corollary l . If rt = r2, we get the product of six binomial coefficients which are 
equally spaced around ( m 1 • 

Corollary 2. If rt = r2 = 1, we get the product of six binomial coefficients that s u r -
round I J. This is the result of Hoggatt and Hansel [ 2 ] . Hence their result is a very 
special case of our general theorem. 
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By taking different values for rt and r2, we can obtain several configurations which 
yield products of binomial coefficients which are squares. In fact, one can build up a long 
serpentine configuration, or snowflake curves, as noted by Hoggatt and Hansel. 

Note that the theorem holds for generalized binomial coefficients (and hence for q-
binomials), and in part icular for the Fibonomial coefficients. 
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LETTER TO THE EDITOR 

Dear Editor: 
Here are two related problems for the Fibonacci Quarterly, based on some remarkable 

things discovered last week by Ellen Crawford (a student of mine). 
Problem 1. Prove that if m and n are any positive integers, there exists a solution 

x to the congruence 

F = m (modulo 3 ) . 

Solution. Let m be fixed: we shall show that it is possible to solve the simultaneous 

congruences 

F = m (modulo 3 ) 

(*) , 
F + F , - f 0 (modulo 3) . 

x x+1 ' 

This is clearly true for n = 1. It is also easy to prove by induction, using 

Y = F F + F F 
m+n m - 1 n m n+1 

(Continued on page 79.) 



DIAGONAL SUMS OF THE TRINOMIAL TRIANGLE 

V. E. HOGGATT, JR., and MARJORIE BICKNELL 
San Jose State University, San Jose, California 95192 

In an ear l ie r paper [ l ] , a method was given for finding the sum of t e rms along any 
rising diagonals in any polynomial coefficient a r ray , given by 

(1 + x + x2 + • - • + x1""1)11, n = 0, 1, 2, • • • , r > 2 , 

which sums generalized the numbers u(n; p,q) of Harr is and Styles [2] , [ 3 ] . In this paper, 
an explicit solution of the general case for the trinomial triangle is derived. 

If we write only the coefficients appearing in the expansions of the trinomial (1 + x + 
x2) , we have 

1 
1 1 1 
1 2 3 2 1 
1 3 6 7 6 3 1 
1 4 10 16 19 16 10 4 1 
1 5 15 30 45 51 45 30 15 5 1 

Call the top row the zero row and the left-most column the zero column. Then, the col-
umn generating functions are 

G0 = 1 _ x , Gt = — — — , G2 = : , 
(1 - x)2 (1 - x)3 

(1) G n + 2 = j - ^ (G n + 1 + Gn>. n > 0 

We desire to find the sums u(n; p,q) which are the sums of those elements found by 
ning in the zero column and the n row and takin 

right throughout the left-justified trinomial triangle. Let 
beginning in the zero column and the n row and taking steps p units up and q units 

(2) G = ^ x n p G n q = ^ u ( n , p,q)xn . 
n=0 n=0 
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Our first problem is to find a recurrence for every q column generator. We need 
two sequences, 

n nn 
& - B ~ , v _ n , 0n (3) P n ( x ) = ^ _ ^ _ , Q n ( x ) = « + / 5 

Both P (x) and Q (x) obey 

V 2 ( X ) = l~I(Vl(x) + U n ( x ) 1 

So let 

then 

P ,0(x) = A(P ,n(x) + P (x)) 
n+2 n+1 n 

Q ,0(x) = A(Q Ax) + Q (x)) 
^n+2 ^n+1 ^n ( 4 ) a n + 2 = A(an+l

 + c n ) 
^n+2 = A ( j Jn+l + i 3n) 

Next, we list the first few members of P (x) and Q (x). 
n TLV 

n 

0 

1 

2 

3 

4 

5 

6 

P (x) , n 

0 

1 

A 

A2 + A 

A3 + 2A2 

A4 + 3A3 + A2 

A5 + 4A4 + 3A3 

Q (x) ^n 
2 

A 
A2 + 2A 
A3 + 3A2 

A4 + 4A3 + 2A2 

A5 + 5A4 + 5A3 

A6 + 6A5 + 9A4 + 2A3 

Note that the coefficients of Q (x) are simply the terms appearing on rising diagonals 
of the Lucas triangle [ 4 ] . The coefficients of P (x) and Q (x) are the same as those of the 
Fibonacci and Lucas polynomials, and P (1) = F , Q (1) = L , the n Fibonacci and 
Lucas number, respectively. 

By mathematical induction, it is easy to show that 

(5) Qn(x) = Pn + 1(x) + APn_1(x) . 

Then, the general recurrence for the k te rms is 
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(6) u k ( n + 2 ) (x) = Qk(x)uk ( n + 1 ) (x) + ( - l ) k + 1 A k
V ( x ) . 

Then, a recurrence relation for every q column generator is 

(7) G , MOAx) = Q (x)G t M,Ax) + ( - l ) q + 1 A q G (x) . 
q(n+2) q q(n+l) qn 

In summing elements to find u(n; p,q) from the column generators , we need to mult i-
ply the column generators by powers of x so that the coefficients summed lie along the 
chosen diagonals of the trinomial array. Then 

(8) G*(n+2)(x) = xPQ q(x)G*( n + 1 ) (x) + x 2 P( - l ) q + 1 A q G* n (x) , 

G*(x) = _ L _ , G*(x) = xPGq(x) 

Let 

n 

and 

G = > G* 
n £mmd iq 

i=0 

lim G = G , n —»oo n 

the generating function for the numbers u(n; p,q). We next sum Eq. (8), 

XX XX XX 

Z G W X ) =ExPQq(X)GqU+l)(x)+Ex2P(-1)q+lAqGQi(X) ' 
i=0 i=0 i=0 

which becomes, upon expansion, 

Gn - G*(x) - G*(x) + G*n+1)q(x) + G*n+2)q(x) 

= xPQq(x)G*n+1)q(x) + xPQ q(x)Gn - xPQq(x)G*(x)„ 

+ x 2 p ( - l ) q + 1 A ( 3G n . 

Collecting t e rms , our sum simplifies to 

G (1 - x P Q (x) - x 2 p ( - l ) q + 1 A q ) = G*(x)(l - x P Q (x)) + G*(x) + R , n ^q 0 q q n 

where R involves only t e rms involving G^ ^ (x) and G^ ?\ (x). It can be shown that 

lim G*(x) = 0 n —• oo n 
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for Ixl < 1/r, r > 2, so that lim R = 0 . Then, taking the limit as n —» oo of our sum 
and simplifying, 

G*(x)(l - x P Q (x)) + G*(x) 
G = -JJ -2 2 , 

1 - xPQq(x) + x^ P ( -A) q 

which becomes Eq. (9) from the identity given in Eq. (8): 

G„(x)(l - x p Q ( x ) ) + xPGn(x) " 
(9) G = - 2 2 J L _ = V u(n; p,q)xn , 

1 - x P Q (x) + x 2 p ( -A) q j ^ 

where G (x) is defined by Eq. (1), A = •= , and 

[(k+l)_/2]r 

(10) 
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FIBONACCI SEQUENCES MODULO M 

AGNES ANDREASSSAN 
American University of Bierufr, Bserut-, Lebanon 

Most of the questions concerning the length of the period of the recurr ing sequence ob-
tained by reducing a general Fibonacci sequence by a modulus m have been answered by D. 
D. Wall [ l ] . The problem discussed in this paper is to determine the number of ordered 
pai rs (a,b) with 0 ^ a < m and 0 ^ b < m that produce these various possible lengths. 

The resul ts that have been used in this study are summarized below. The proofs of 
these theorems are omitted here except for ' 'Theorem 12" whose proof in [1] is incorrect . 
The outline of a correc t proof of "Theorem 12n was proposed by D. D. Wall in answer to a 
let ter sent to him asking for clarification. 

SUMMARY OF KNOWN RESULTS 

Using the notation in [l] , let f denote the n term of the Fibonacci sequence where 
f0 = a, ij = b, and f - = f + f ... Let h = h(a,b,m) denote the length of the period of 
this sequence when it is reduced modulo m, taking least non-negative residues. When h 
does not depend on a and b we may write h = h(m) instead. The special Fibonacci s e -
quence which s ta r t s with the pair (0,1) will be denoted by {u } and its period when reduced 
modulo m by k(m). The sequence which s tar t s with (2,1) will be denoted by (v }. The 
let ter p will be used to denote a prime and e a positive integer. In studying the possible 
values of h(a ,b ,m) w e m a y a s s u m e , without any loss of generality, that (a,b,m) = 1. 

1. If 
e. / e. \ 

lip.1 and hfa, b, p . 1 J = h. 

then h(a ,b ,m) = LCM[h.] [ l , Theorem 2 ] . 
2. If t is the largest integer such that k(p ) = k(p) then k(pe) = p e ~ \ (p ) for e ^ t 

[ 1 , Theorem 5] . 
Remark. The proof of this theorem as given in [l] is ra ther incomplete. It is possible 

to give a complete proof by using induction on e as suggested, but a much neater proof for 
the case when p is an odd prime is given by Robinson [2] , by the use of matrix algebra. 

6+1 e e 
For p = 2, Robinson1 s proof that k(p ) is either k(p ) or pk(p ) still holds, and 

the proof that shows that if k (p e + 1 ) = pk(pe) , then k (p e + 2 ) = pk(p6 + ) is Still applicable 
for e > 1. The case p = 2 and e = 1 is verified by direct computations since we have 
k(2) = 3, k(22) = 6 , and k(23) = 12. 

In part icular , if k(p2) f k(p), we obtain k(p ) = p k(p). In [3] Mamangakis has 
shown that (1) if c and p are relatively prime and cp occurs in {u }, then k(p2) f k(p), 
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and (2) if c and p are relatively pr ime, e £ d, and u. = cp is the f irst multiple of p 
to occur in (u }, then k(p ) = k(p) if and only if u. ^ has the same order mod p and 
mod p e . For all p up to 10,000 it has been shown that k(p2) f k(p). However, it has not 
yet been proved that k(p2) = k(p) is impossible. 

3. If m > 2, then k(m) is even [ l , Theorem 4 ] . 
4. If (b2 - ab - a2, p e ) = 1, then h(pe) = k(pe) [ l , Corollary to Theorem 8] . 
5. If p E ±3 (mod 10), then h(pe) = k(pe) [ l , Theorem 8] . 
6. h(2e) = k(2e) [1, Theorem 9] . 
7. If b2 - ab - a2 ^ 0 (mod 5), then h(5e) = k(5e) ; and if b2 - ab - a2 = 0 (mod 5), 

then h(5e) = ( l /5)k(5e) [1, Theorem 9 ] . 
e e 

8. If m = p , p > 2, and if there is a pair (a,b) which gives h(a ,b ,p ) = 2t + 1, 
then k(pe) = 4t + 2 [ l , Theorem 10]. 

9. If m = p , p > 2, and if k(p ) = 4t + 2 then h(a ,b ,p ) = 2t + 1 for some pair 
(a,b) [1, Theorem 11]. 

10. If m = p , p > 2, p f- 5, and h is even, then h(p ) = k(p ) [ l , Theorem 12]. 
Proof. Since f, = u, . a + u .b , we have h h-1 h 

(1) fh - a = buh + a(uh_1 - 1) = 0 (mod p e ) ; 

(2) fh+1 - b = b (u h + 1 - 1) + auh = 0 (mod p e ) . 

Since we are assuming that (a ,b ,p ) = 1, considering a and b as the unknowns, the de-
terminant must be zero. Hence u2 - (u, , . - l)(u, _, - 1) = 0 (mod p ). But it is known 

, h h+1 h -1 , ^ 
that u2 - u , + 1 u , = (-1) " , and so u, . + u, = 1 + (-1) (mod p ). Since h is even 
and u, - = u, + u, - , this gives 2u, _1 + u, = 2 (mod p ) , or u, = 2(1 - u, ..) (mod 
p ). It has been shown that if b2 - ab - a2 ^ 0 (mod p) we obtain the unique solution u, = 0 
and u, = 1 (mod p ), and so h(p ) = k(p ). Next consider the cases for which 
b2 - ab - a2 = 0 (mod p). Since u, = 2(1 - u, _1) (mod p ), substituting in (1) we obtain 

2b(l - uh ) + a(uh - 1) = 0 (mod p e ) , or (2b - a)(l - i ^ ) = 0 (mod p e ) . 

We will show that (2b - a, p ) = 1. The condition b2 - ab - a2 = 0 (mod p) can be written 
in the equivalent form (2b - a)2 = 5a2 (mod p). Now if p|(2b - a), then p|5a2; but p ^ 5, 
hence p|a. Therefore p|2b, and since p > 2, p|b. Thus (a ,b ,p ) ^ 1 contrary to a s -
sumption. Hence p/f (2b - a), and so we may cancel 2b - a from the above congruence ob-
taining 1 - u, = 0 (mod p e ) , or u, = 1 (mod p e ) . Since u, = 2(1 - u, ) (mod pe),: 

this implies that u, = 0 (mod p ), and so again h(p ) = k(p ) . 
11. If h(a,b,p) = k(p), then h ( a , b , p e ) = k(pe) [ l , Corollary 2 to Theorem 12]. 
12. Let f(m) denote the smallest positive integer, n, for which u = 0 (mod m), 

and let p be an odd prime. If 2/f(p), then k(pe) = 4f(pe) [ 4 ] . 
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THE PROBLEM 

For any given modulus m, there are m2 possible ordered pairs in sequence. Of 
these m2 ordered pai rs we would like to determine the number of pairs corresponding to 
each of the various possible lengths for that modulus. For example, if m = 7 we obtain 

0, 0, • • • length 1 (1 pair) 

0, 1, 1, 2, 3, 55 1, 6, 0S 69 6, 5, 4 , 2 , 6, 1, 0, • • • length 16 (16 pairs) 

0, 2, 2, 4, 6, 3, 2, 59 0, 5, 5-, 3, 1, 4, 5, 2, 0, • • - length 16 (16 pairs) 

0, 3, 3, 6, 2, 1, 3, 45 0, 4 , 4, 1, 5, 6, 4 , 3, 0, • • • length 16 (16 pairs) 

Hence 1 pair produces a sequence of length 1 and 48 pairs produce sequences of length 16. 
Viewing these as infinite sequences extending to the right as well as to the left, some of 
these sequences become indistinguishable. Thus instead of number of pa i rs it is convenient 
to talk about number of distinct sequences of a given length. In the above example, there is 
1 distinct sequence of length 1 and there are 3 distinct sequences of length 16. 

Let n(h,m) denote the number of distinct sequences of length h when the sequence is 
reduced mod m. This will be abbreviated to n(h) when it is clear what modulus is used. 
Thus the problem is to determine the values of n(h) corresponding to the various possible 
values of h for any given modulus m. 

e Since the resul ts summarized from [1] hold when (a ,b ,p ) = 1, we must consider 
what happens when (a ,b ,p ) f 1. When m = p, there is only one pair , namely (0,0), 
with (a,b,p) f 1 and it produces a sequence of length 1. When m = p2, then sequences for 
which (a ,b ,p ) = 1 are all the sequences for mod p multiplied throughout by p. When 
m = p3, the sequences for which (a ,b ,p3) f 1 are all the sequences for mod p2 multiplied 
throughout by p. Thus, in general when m = p we can t race back all the sequences except 

e e—1 e—2 the one arising from (0,0) to pairs for mod p , p " , p " , - - - , p where the condition of 
being relatively prime holds. The pair (0,0) will always have length 1 no matter what the 
modulus is . 

We shall henceforth abbreviate k(p) as k. 
Theorem 1. Let m = p e where p = 2 or p = ±3 (mod 10). If k(p2) ^ k(p) then 

n(l) = 1 and 

. i. v p (p2 - 1) n(p k) = F , 

for i = 0, 1, • • • , e - 1. 
Proof. By 5 and 6, if p = 2 or p = ±3 (mod 10) and if ( a ,b ,p 6 ) = 1, then h(a ,b ,p G ) 

= k(p ). If (a ,b ,p ) f 1, then we still have h(a ,b ,p ) |k(p ). Since k(p ) = p " k, the 
possible values of h (a ,b ,p ) are 1, k, pk, p2k, • • • , p e " k. We know that there is always 
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one sequence of length 1, namely when a = 0 and b = 0. Thus n(l) = 1. We will show that 
e—1 e 

all of the n(p k) sequences come from cases where (a ,b ,p ) = 1. We know that the s e -
e e—1 

quences for which (a9b,p ) f 1 a re the same sequences as for mod p " multiplied 
throughout by p, and these sequences have the same lengths as the corresponding sequences 
for mod p "~ . Since none of the sequences for mod p " has a length greater than k(p ~ ) 

e—2 e e—1 
= p k, no sequence for which (a, b , p ) ^ 1 can have a length of p k. Moreover, all 
the sequences for which (a, b, p ') = 1 have lengths of p " k and so a re included in 
n t p 6 " 1 ^ . 

Since 2n(h.)-h. = m2 where h. are the different possible lengths, we must have 

e-1 

i + J2 n ( p i k ) • pi k = p2 e 

i=0 

and 

e-2 
i • XT* / ii \ ii 2e-2 
1 + 2_j nvP k) • p k = p 

i=0 

Subtracting we obtain 

and so 

n(p " k) • p " k = p (p2 - 1) 

n(pe-lk) = P ^ V - D . 

e—2 e—3 o 
Now since n(p " k), n(p k), ••• , n(p k) represent the numbers of the sequences 

for which (a, b , p ) ^ 1, they correspond to the sequences for mod p " . But for mod 
e—1 e—2 e~1 

p , the sequences that have lengths of p " k are those for which (a1, b ' , p ) = 1 e-2 where a = paf and b = pb!. The number of these sequences gives n(p k). Hence we may 
use the formula derived above and obtain 

t e-2. , p e - 2 ( p 2 - 1) 
n(p k) = £ £ '-

Thus in general for mod p we have 
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n(pik) = P V - D 

for i = 0, 1, • • • , e - 1. 
Since k(2) = 3 and k(22) f k(2) we have: 
Corollary. For mod 2 e , n(l) = 1 and n(3-21) = 21 for i = 0, 1, • • • , e - 1. 
Theorem 1?. Let m = p where p = ±3 (mod 10). If t is the largest integer such 

that k(pfc) = k(p) with t > 1, then (1) for e < t, n(l) = 1 and 

2e 
n(k) = P z - i , 

and (2) for e > t, n(l) = 1, 

n(k) = B ^ r = - i - , and n f p 1 " ^ = P 1 + t ~ V - D 

for i = t, • • • , e - 1. 
Proof. 
(1) For e < t, k(p ) = k(p) and so all the sequences except the (0,0) sequence 

have length k. Since 2h.n(h.) = p this means 

2e 

e-t 
(2) For e > t, the possible lengths are 1, k, pk, • • • , p k. Since all the lengths 

of the sequences for mod p can be identified as the lengths for mod p , p " , • • • , p , p° 
where (a, b , m) = 1, we have: 

For mod p°, n(l) = 1. 
For mod p , n(l) = 1 and n(k) = (p2 - l ) /k . 

t 2t 
For mod p , n(l) = 1 and n(k) = (p - l ) /k . 
For mod p t + 1 , n(l) = 1, n(k) = (p2 t - l ) /k , and n(pk) = ( p 2 t + 2 - p 2 t ) / p k = 

( p 2 t - 1 ( p 2 - l ) ) / k . 
For mod p t + 2 , n(l) = 1, n(k) = (p2 t - l ) /k , 

n(pk) 
2 t - l , 2 t\ 2t+4 2t+2 2 t / 9 ,v 

~ ( E L L J > a n d n ( p 2 k ) = £ ^ P . , P fc - 1) 
k p2k k 

P 

e 2t 
Therefore, for mod p , n(l) = 1, n(k) = (p - l ) /k , and 
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. , ( 1 i + t - 1 / 2 -.\ 
, l - t + 1 . v P (P^ - 1) , . , -

n(p k) = -— ' F —- for l = t, • • • , e - 1 . 

Theorem 2. If m = 5 e
5 then n(l) = 1, n(4) = 1, n(4-51) = 6-51"1 for i = 1, • • • , 

e - 1, and n(4°5 ) = 5 " . 
Proof, We always have n(l) = X* With the assumption that (a, b, 5 ) = 1 we know 

by 7 that if (b2 - ab - a2
5 5) = 1 then h(5e) = k (5 e ) , and if (b2 - ab - a2, 5) f 5 then 

h(5e) = ( l /5 )k(5 e ) . 
e 

It can be shown that the assumption (a, b , 5 ) = 1 is superfluous in the first case be-
cause if (a, b, 5 ) f X, then 5|a and 5|b; hence 5|(b2 - ab - a2) contradicting (b2 - ab -
a2, 5) = 1. Thus, if (b2 - ab - a2, 5) = 1, then (a, b, 5e) = 1. 

In generalj we know that there are p - p pai rs (a,b) with (a ,b ,p ) = 1. We 
2e 2e—2 wish to determine how many of these 5 - 5 pairs give (b2 - ab - a2, 5) = 5. This is 

equivalent to b2 - ab - a2 = 0 (mod 5), or (2a + b)2 = 5b2 (mod 5), or (2a + b) = 0 (mod 5).. 
e Hence b = -2a (mod 5), or b = 3a (mod 5). Thus If (a, b , 5 ) = 1 and 

(b2 - ab - a2, 5) = 5, 

e e—X e—X 
a can take 5 - 5 different values and corresponding to each value of a, b can have 5 
values. Therefore, there will be 5 " (5 - 5 " ) = 4.5 " such pairs (a,b). Since the 
total number of pairs (a,b) for which (a ,b ,5 ) = 1 is 5 - 5 ~ and all the cases for 
which (b2 - ab - a2, 5) = X ar ise from these, the number of pai rs (a,b) such that (b2 - ab -
a2, 5) = X is given by 5 - 5 ™ - 4=5 " = 4-5 e~~ . This is the number of pairs that 
produce sequences of length k(5 '). Since k = k(5) = 20, k(5e) = 5 e ~ k = 4-5e and so 

u _e* 4 . 5 2 6 " 1
 Re-X n(4-5 ) = ———- = 5 

4-5e 

We have 4*5 e~ pairs with (a, b, 5 ) = X producing sequences of length -|k(5 ) = 4-5 " . 
There are also the cases for which (a, b, 5 ) f X. But there a re the sequences for mod 

e—X e—X e—X 
5 multiplied throughout by 5. Since k(5 ) = 4-5 the number of pa i rs that produce 

e-X 2e-2 2(e-X)-X 
sequences of length 4-5 Is given by 4-5 +4-5 and so 

,A C e - L 4»5 + 4*5 n _e-2 
n(4-5 ) = — — — 1 — = 6-5 

4»5e*"1 

We have -|k(51+1) = k(5X) = 4-51 for i = X, 2, • • • , e - X and so 

5 

4 . 5 2 ( i + l ) -2 + 4 . 5 2 ( i + l ) -3 
n(4°5 ) = • — • — — — r — — — = 6 - 5 

4-51 
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for i = 1, 2, • • • , e - 1. In addition to these there are the pairs that produce sequences of 

I1 length ik(5) = 4. The number of such pai rs is 4-5 , where e = 1. Hence, 

n(4) = (4.5°)/4 = 1 . 

Theorem 3. Let m = p e where p = ±1 (mod 10). If k(p2) f k(p) then 
(1) If 4Ik, n(l) = 1 and 

for i = 0, 1, • • • , e - 1 and 
(2) if 4 |k5 n(l) = l , 

n(pik) = P, V Z J> 

n ( pik / 2) = 2fc>zJ> 

and 

n(pik) = (P - I H P ^ 1 + p1 - 1) 

for i = 0, 1, • • • , e - 1. 
Proof. By 3, k(p ) is even, and so it is either of the form 4t or of the form 4t + 2. 

e e e 
(1) If k(p ) = 4t, by 8, h(p ) cannot be odd; and if h is even then by 10, h(p ) = 

e i-* t* iP f—1 
k(p ). Thus on condition (a, b, p ) = 1, h(p ) = k(p ) = p k, and so the proof of 
Theorem 1 is applicable here. We also note that the condition 4|k(p ) is equivalent to that 

e . __ e-1 . , 0I^ e-1 of 4 |k since k(p ) = p " k and 2|p' 
(2) If k(pe) = 4t + 2, by 9 h(pe) = 2t + 1 for some (a,b). By 4 if (b2 - ab - a 2 ,p e ) 

= 1, then h(p ) = k(p ). Now consider (b2 - ab - a2, p ) ^ 1; if h(a, b , p ) is even, by 
10 h(a, b , p ) = k(p ); and if h(a, b, p ) is odd, by 8, h(a, b , p ) = 4k(p ). 

Let us first consider the case for mod p. To determine the number of pairs (a,b) 
for which (b2 - ab - a2, p) ^ 1, consider b2 - ab - a2 = 0 (mod p), or (2b - a)2 = 5a2 

(mod p). Since 5 is a quadratic residue of pr imes of this form, x2 = 5 (mod p) has two 
solutions ±c. Thus the above condition is equivalent to 2b - a = ±ca (mod p), or 

M a (mod p) 

or bt = r a and b2 = sa (mod p), where r = (1 + c)/2 and s = (1 - c)/2 (mod p). Note 
that r £ s (mod p) for this would imply c = 0 and hence c2 = 0 (mod p). 

To have (a, b, p) = 1, we must have (a, p) = 1 because if (a,p) ^ 1, then pja; 
but 

-M a (mod p) 

and so b s 0 (mod p) and p|b; hence (a9 b, p) ^ 1. Therefore for mod p there are p -
1 possible values of a that will give (a, b, p) = 1 and (b2 - ab - a2, p) f 1; and 
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corresponding to each value of a, there are two values of b. Hence, there a re 2(p - 1) 
pa i r s (a,b) with (a,b,p) = 1 and (b2 - ab - a2, p) ^ 1, We obtain: 

If a = 1, b-L = r and b2 = s (mod p) ; 
If a = 2, ht = 2r and b2 = 2s (mod p); 

If a = p - 1, b t = (p - l ) r and b2 = (p - l )s (mod p). 
It is c lear that no matter what a i s , for mod p, the pairs (a, ar) will all produce sequences 
of the same length as the pair ( l , r ) , and similarly the pai rs (a, as) will all produce s e -
quences of the same length as the pair (1, s). 

Now, we know that since k(p) = 4t + 2 there exist (a,b) such that h(a,b,p) = -^k(p) = 
2t + 1. But if there is one pair (a,b) satisfying this , there a re at leas t p - 1 pai rs (a,b) 
with h(a,b,p) = 2t + 1. We will show that there are only p - 1 such pa i rs . 

Without any loss of generality we may assume a to be 1. We will show that either 
( l , r ) or ( l , s) but not both, will produce a sequence of length 2t + 1 when reduced mod p. 
Now suppose that both ( l , r ) and ( l , s ) produce sequences of length 2t + 1. We have 

1, r , 1 + r , 1 + 2r , 2 + 3r , • • • , u .. + u r , • • • (mod p) ; 
n-1 n ^ 

1, s , 1 + s, 1 + 2s , 2 + 3s, ••• , u + u s , • • • (mod p) . 
n - 1 n v f/ 

Therefore, we must have u , + u , r = 1 and u ? , + u ? , - s = 1 (modp). Hence u , ( r - s ) 
= 0 (mod p). By 12, f(p) must be even for if f(p) is odd, then 4|k(p ). This gives 
uof+i ^ ° (mod p) for otherwise f (p) j(2t + 1) which is impossible. Hence we have r = s 
(mod p), and we have shown that this is impossible. Thus, the pai rs ( l , r ) and ( l , s ) can-
not both produce sequences of length 2t + 1. 

An alternative proof is the following. Since b2 - ab - a2 = 0 (mod p) we must have 
r2 - r - 1 = 0 (mod p), or 1 + r = r2 (mod p). Using the recurrence relation f = f _ + 
f 0 we may obtain r + r2 = r ( l + r) = r3 (mod p), r2 + r3 = r ( r + r2) = r4 (mod p), etc. n—A 
Thus the sequence 

1, r , 1 + r , 1 + 2r, 2 + 3r, •• • (mod p) 

may be written as 1, r , r2, r3 , r4, • • • (mod p). Similarly, the sequence 1, s, 1 + s, 1 + 
2s, 2 + 3 s , ••• (modp) may be written as 1, s, s2, s3, s4, ••• (modp). 

Therefore, the assumption that these two sequences have periods of length 2t + 1 when 
2t+l 2t+l 

reduced mod p , implies that r = 1 and s = 1 (modp). Multiplying these two 2t+l congruences we obtain (rs) = 1 (mod p). But 

r s = —" — = _i (mod p) 

9 f_j-l 
because c2 = 5 (mod p), and so (-1) = 1 (modp) which is impossible. Hence ( l , r ) 
and ( l , s ) cannot both produce sequences of length ^k(p) = 2t + 1. 
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Therefore of the 2(p - 1) pairs (a,b) for which (b2 - ab - a2, p) ^ 1 and (a,b,p) = 1, 
p - 1 pairs produce sequences of length |-k and the other p - 1 pairs produce sequences of 
length k. 

Since the total number of pairs (a,b) with (a,b,p) = 1 is given by p2 - 1, we can 
now find the number of pai rs (a,b) for which (a9b,p) = 1 and (b2 - ab - a2, p) = 1. We 
obtain (p2 - 1) - 2(p - 1) = (p - l )2 . All of these produce sequences of length k. Therefore 
for mod p we have 

•0) n(l) = 1, n ( ^ ) = 2 ( p _ ^ ) 

and 

n(k) = (P - » I <P - 1>2 = P(Pk- » 

We shall next consider the case for mod p . The condition (b2 - ab - a2, p ) ^ 1 is 
equivalent to (b2 - ab - a2, p) f 1. Therefore we must again have 

b - W a (mod p) 

e e e e—X 
We know that (a, b, p ) = 1 if and only if (a, p ) = 1. Hence there a re p - p possible e-1 values of a, and corresponding to each value of a there are 2p values of b. Thus 
there are 2p " (p - p " ) pairs (a,b) with (a ,b ,p ) = 1 and (b2 - ab - a2, p ) ^ 1„ 

e e—1 
If a = 1, hi = r + jp and b2 = s + jp (mod p ) where j = 0, 1, 2, • • • , p - 1. If 
a = 2, bt = 2r + jp and b2 = 2s + jp (mod p ), where j = 0, 1, 2, • • • , p " - 1. These 
are equivalent to bt = 2(r + jp) and b2 = 2(s + jp) (mod p ), where j = 0, 1, 2, •••,. 

e -1 -p - 1. 
Since for any a, the sequences (a, a(r + jp)) and (a, a(s + jp)) will all have the 

e-1 same length as (1, r + jp) and (1, s + jp), respectively, for j = 0, 1, • • • , p - 1, it 
e-1 is sufficient to consider the sequences (1, r + jp) and (1, s + jp) for j = 0, 1, • • • , p - 1. 

Since k(pe) = 4 t + 2, we know that for at least one value of j , at least one of (1, r + 
jp) and (1, s + jp) produces a sequence of length 2t + 1. Suppose for some value of j , 
h = h ( l , r + jp, p e ) = 2t + 1. We will show that then for any i where i is one of 0, 1, 2, 
. . . , p e ~ _ i , h ( l , s + ip3 p 6 ) ^ 2t + 1. Suppose for some i? 

h = h ( l , r + jp, p e ) = h ( l , s + ip, p e ) = J k = 2t + 1. 

We have 

1, r + jp, • • • , u n _ x + un(r + jp), • • • (mod p 6 ) ; 

1, s + ip, • • • , u n _ 1 + un(s + ip), • • • (mod p e ) ; 
and so 
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Uh-1 + U h ^ r + ^ ™ 1 ~ U h - 1 + Uh^S + ip^ ^ m ° d p 6 ^ ' 

o r u, ( r + jp) s u, (s + ip) (mod p ). Since by 12 u, ^ 0 (modp), we may cancel u, 
and obtain r + jp = s + ip (mod p ), or r = s (mod p) which is impossible. 

Hence if for some value of j s h( l + r + jp, p ) = 2t + 1 then for no value of i can 
h( l , s + ip, p ) be equal to 2t + 1. Similarly, if for some value of j , 

h ( l , s + jp, p e ) = 2t + 1, 

then for no value of i can h( l , r + ip, p ) be equal to 2t + 1. 
Next, we will show that only one value of j gives a length of 2t + 1. Suppose both 

11, r + jp) and (1, r + ip) produce sequences of length h = 2t + 1, where i and j a re two 
e-1 different numbers from 0, 1, • • • , p - 1. Therefore 

Uh-1 + U h ^ r + 3P) = ! = \_i + u
h ( r + *P) ( m o d PG)> 

or 
uh(r + jp) = u^(r + ip) (mod p e ) . 

Since by 12, u, ^ 0 (modp), we have r + jp = r + ip (modp ), or jp = ip (modp ), 
e-1 e-1 

o r j = i (mod p ) which is impossible. Therefore of the 2p values corresponding 
to each value of a, only one can produce a sequence of length 2t + 1. But there a re p -
p " possible values of a. Hence there are p - p or p " (p - 1) pairs (a,b) that 

. Q e—1 e e—1 e e—1 
produce sequences of length | k ( p ). The remaining 2p (p - p ) - (p - p ) or 
p " (p - l)(2p - 1) pairs (a,b) that have (a, b, p ) = 1 and (b2 - ab - a2, p ) f 1 

e 2e 2e—2 
produce sequences of length k(p ). Also since there are p - p pai rs (a,b) for which 
(a, b, p ) = 1, we have 

, 2e 2e-2x 0 e -1 / e e-lv (p - p ) - 2p (p - p ) 

or p (p - l)2 pairs with (b2 - ab - a2, p ) = 1. All of these produce sequences of length 
k(p ). In addition to these, there are the sequences for which (a, b , p ) ^ 1. Thus for 
mod p we have n(l) = 1, 

n ( p i k / 2 ) = P > - 1) = 2 ( P ^ 1 ) 
p ' k / 2 k 

and 

n(pik) = P'<P - W - » + p 2 1 ( P - » ' - <P - ^ + ^ - ^ (i = 0 , l , . . . , e - l ) . 
P k 

Theorem 3T. Let m = p where p = ±1 (mod 10) and let t be the largest integer 
such that k(p ) = k(p) with t > 1. 
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(1) if 41 k9 then (a) for e < t, n(l) = 1 and 

2e 
nfc) = P - ^ 

and (b) for e > t, n(l) = 1, 

2t -
m(k) = S^ZJ, , 

and 

n ( p i 4 + 1 k ) = p l + t - 1 [ P 2 - 1} for i = t, . . . . e - 1. 

and 

(2) if 4 |k , then (a) for e £ t, n(l) = 1, 

= 2(P6 - D 

/. v p (p - 1) n(k) = N F » — — i 

and (b) for e > t, n(l) = 1, 

•(f) ^ i) 

n(k) = p ( \ - 1} 

n ^ W V s = 2pt"XLP - 1} 

and 

n ( p i - t + i k ) = P U 1 ( P - 1HP1+1 + P1 - i) 

for i = t, • • • , m - 1. 
Proof. (1) Same as the proof for Theorem l f . 

e e 
(2) We have shown in Theorem 3 that if (a, b, p ) = 1, for mod p , 

e—1 A 6 
p (p - 1) pairs (a,b) produce sequences of length |-k(p ) and 

e - 1 , l W o e-1 lX , 2e-2, i x 2 p (p - l)(2p - 1) + p (p - i r 
or 

e - 1 / l W e , e-1 1X p (p - l)(p + p - 1) 
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pa i rs (a,b) produce sequences of length k(p ). Thus we have: 
For mod p°, n(l) = 1. 
For mod p, n(l) = 1, 

and 

k 
, 2 / 

(k) 

_ 2(p - 1) 
k 

_ P(P - 1) 
k 

For mod p2, n(l) = 1, 

• ( * ) - * ! 
H + 2p(p - 1) = 2(p2 - 1) 

k k k 

and 

n(k) - p ( p - 1} + P(P - D(P2 + P - 1) _ P2(p2 - 1) 

For mod p , n(l) = 1, 

*(t)-±£ 
t - 1 ' t 

(p - 1) _ 2(pI - 1) 
~ E k 

i=0 
and 

n(k) = v pi(p -l)(pi+1 + pi -1] = pt(pt - *> 
i=0 

For mod p , n(l) = 1;, 

-(0- 2(pt - 1) 
k 

P (p - 1) 
k 

2pt"1(p -

J 

i) 

n(k) 

n(pk/2) = ^ 

and 

t - 1 , 1X t+1 , t 
n(pk) = P " (P - DP + P - 1) 
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t+2 For mod p , n(l) = 15 

• ( 1 ) = * ^ . *>.&f±. . - 2 P (P - 1) (pk/2) k 

n ( p k ) = P " < P - D(Pk
t+1 + P* - 1) , n ( p V 2 ) = 2p"(p - 1) § 

and 
t - 1 , 1W t+2 , t+1 

Thus for e ̂  t, we have n(l) = 1, 

e-1 
(p - 1) = 2(pe - 1) » ( l ) = E ^ k 

i=0 

and 

e-1 

i=0 

n(k) = Y P1^ - D(P +P1 - 1) = Pe(p6 - 1) 

and for e > t we have n(l) = 1, 

n ( | ) = V _ ^ ^ n ( k ) = P ! ( P ^ ) n(pi-t+lk/2) = 2p^(p - 1) 

and 

n(p i- t + 1k) = P t - 1 (P - 1HP1+1 + P1 - 1) f o r i = t , • • • , e - 1 . 

Theorem 4. Let N(h,m) = h-n(h5m). If 

n e. 
m = n p.* , 

i=l 
then 

n e. 
n N(h., p . 1 ) 

n ( h > m > = S i z i — h — • 
LCM[h.]=h 

e. 
where h. = h(a5 b, p. ) . 
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n 

Proof. Consider the equivalent problem for which the modulus is of the form II m. 

where the m. are pairwise relatively pr ime. Suppose first that m = m^m^ and (m1,m2) ~ 
1. By 1, if h (a ,b ,mi ) = ht and h(a ,b ,m 2 ) = h2 then h(a, b, m ^ ) is the least com-
mon multiple of hj and h2. Also, by the Chinese Remainder Theorem, we know that each 
pair (a,b) (mod m ^ and each pair (c,d) (mod m2) gives r i se to a unique pair (e,f), 
(mod m ^ ) such that e = a, f = b (mod n ^ ) , and e = c, f = d (mod m 2 ) . B y l , 
h(e, f, m1m2) is the least common multiple of h(e, f, mA) and h(e, f, m 2 ) . But e = a and 
f = b (mod m.1) imply that h(e, f, m ^ = h(a, b , mA) = h l s and similarly h(e, f, m2) = h2;, 
and so h(e, f, niim2) is the least common multiple of hA and h2. 

Let [hi , h2 ] denote the least common multiple of hA and h2. We have seen that each 
pair of pai rs (a,b) (mod m t ) and (c,d) (mod m2) gives a unique pair (esf) (mod m1m2), 
of length h = [hl 3 h 2 ] . Therefore there are N(h1? mi)-N(h2, m2) such pairs (e,f) with 
length hi (mod m^) and length h2 (mod m2) . Now any pair (e,f) (mod Hiim2) with 
length h when reduced mod mi produces a sequence of length hi and when reduced mod 
m2 produces a sequence of length h2 such that [hi , h2] = h. Hence 

^ N(h1,m1).N(h2,m2) 
N(h,m1m2) = 2-* N(hi,mi)-N(h2,m2), and so n (h ,m 1 m 2 )= JL/ — K ' 

[hl5h2]=h [hi,h2]=h 

n 
By induction, this resul t is now easily extended to the case m = n m., where n > 2 , 

and all the m. are pairwise relatively pr ime. Thus we obtain 1 n 
„ n NOt^m.) 

n(h,m) = 2 ^ ^ L _ • 
LCM[h.]=h 

e. 
In part icular , if m. = p. for i = 1, • • • , n, we have 

n(h,m) = 2 ^ 

n e. 
n N(h., p.1) 

i=l 
h 

LCM[h.]=h 

These four theorems cover all possible values of m. Thus if k(p ) is known, the 
values of h(a, b, m) as well as n(h9m) can be determined. 

I would like to acknowledge the assistance Prof. D. Singmaster gave me with his c r i t -
ic isms and suggestions in putting this paper in its final form. 
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PHI: ANOTHER HIDING PLACE 

H. E. HUNTLEY 
Nethercombe Cottage, Canada Combe, Hutron, Weston - Super - Mare, England 

From an area A of any outline, regular o r i r regular , there is cut an area B, having 
the same outline as that of A under the following conditions: (i) The peripheries of A and 
B have one point O in common; (ii) B is oriented so that O and the centroids C and 

a 
C, of A and B are colinear. It follows that C, the centroid of the remnant (A - B) also 
l ies in the straight line OC C, produced. 

Fig. 1 

Let the ratio of the l inear dimensions of A and B be a:b, their respective areas 
being Aa2, Ab2; OC /OC, = a/b. a D 

Taking moments about O, 
Ab2.OCb + A(a2 - b2)-OC = Aa2-OCa , 

whence, multiplying by l/Ab2-OC, , 

Since (a/b) - 1 / 0 , 

OC 
OC b b3 

/ a \ _OC_ = a* a 
V b y > ' o c b ~ b 2 b 

+ 1 . 

Phi, the Golden Section, is now uncovered by writing OC/OC, = 2, giving 

^ - - ^ - 1 = 0 
b2 b 

65 
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whence a/b = (j) o r a/b = 1/0. 
The result i s , of course, applicable to regular plane figures. In the case of the circle 

the centroid C of the remnant lune falls on the endpoint of the diameter of B through O. 

Fig. 2 

Any chord of circle A through O is cut by the circumference of B in the Golden 
Section: PO/QO = 0 = (1 + \fE)/2. 
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SOME GEOMETRICAL PROPERTIES OF THE GENERALIZED FIBONACCI SEQUENCE 

D. V. JAISWAL 
Holkar Science College, in do re, India 

1. INTRODUCTION 

In this paper, some geometrical properties of the generalized Fibonacci sequence { T } 
have been discussed. The sequence {T } being defined by 

n+1 T + T n n n-1 

a, b . 

On taking a = b = 1, the Fibonacci sequence {F } is obtained. 
We shall make use of the following identities [1] 

(1.1) 

(1.2) 

(1.3) 

F F , n n+m 

m+n 
- F 

T F J_1 + T , F . m n+1 m - 1 n 

n - s n+m+s 
T T - T T 

m n+k m+k n 

= (-l)n""S F F M s s+m 
( - l ) m F , F D k n-m 

where D is the character is t ic number of the sequence and is given by 

T2 - T n T _L1 = ( - l ) n D ; 2a < b . n n-1 n+1 

2. THEOREM 1 

Area of the triangle having vert ices at the points designated by the rectangular cartesian 
coordinates (T , T _,_ ), (T , , T _,_ ^ ), (T _,_ , T L ^ ) is independent of n. n n+r n+p n+p+r n+q n+q+r p 

Proof. Twice the a rea of the specified triangle is equal to the absolute value of the 
determinant 

n n+r 

n+p n+p+r 
T , T 
"n+q n+q+r 

Using (1.1) for the second column the determinant can be written as 

"r+1 "n+p 

n+q 

n+p 

n+q 

+ F n+p 
r , 
n+q 

n -1 

n+p-1 

n+q-1 
67 
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The first determinant is obviously zero; in the second on alternately subtracting the 
second and first column from each other, the suffixes can be reduced and finally we get 

±F 

according as n is odd or even. 
On expanding the determinant along the third column, we obtain 

+F F(T T - T T ) - (T T - T T ) 
" rLV p + l q + 2 p+2 q + r u l q + 2 2 q + r 

+ (T T - T T )1 
u l p+2 2 p + l ; j 

T l 

T | p+1 

IT 
q + l 

T 
2 

T p+2 

T q+2 

1 

1 

1 

which on using (1.3) reduces to 
±F [ F - F - (-1)PF ]D . rL q p q-p 

Thus the area of the specified triangle is independent of n. 
Par t icular Case. On taking r = h, p = 2h, q = 4h, a = b = 1, we find that the 

area of the triangle whose vertices are (F , F ,, ), (F , n, , F , OI ), (F , ., , F , _. ) is to n n+h n+2h n+3h n+4h n+5h 
equal to the value of 
(2.1) 4 F h ( F 4 h - 2 F 2 h > 

Duncan [2] has proved that the area of this triangle is 

which on using (1.2) simplifies to the value given in (2.1). 

3. THEOREM 2 
Lines drawn through the origin with the direction ratios T , T , , T , , & & n n+p n+q 

and q are arb i t rary constants are airways coplanar for every value of n. 
Proof. Direction ratios of any three such lines are T., T. , , T., ; T., T. , , T. , ; 

J i i+p i+q J 3+P J+q 
T . , T . + , T. + . These will be coplanar if 

where p 

(3.1) 

T. 
i 

T . 
3 

T k 

l+p 

T - 4 -
3+P 

T 
k+p 

T -a. 
i+q 

3+q 
T 
x k + q 

= 0 . 

On using the relation (1.1), the left-hand side of (3.1) can be written as the sum of four 
determinants, each of which is zero. Hence proved. 

4. THEOREM 3 

Set of points designated by the cartesian coordinates (T , T , T ) where p and 
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q are arb i t rary constants and n = 1, 2, 3, • • • , are always coplanar. This plane passes 
through the origin, and its equation is independent of n. 

Proof. Equation to the plane passing through any three points of the set is 

(4.1) 
T. i 
T. 

J 

i + p 
T - ^ i+q 

j + p j+q 
T, , T, 

= o , 

k k+p k+q 

where i, j and k are part icular values of n. Here the coefficient of x is 

[(TV T. ^ - T.̂ _ T. _, ) - (TV T. _, - T.,_ T. _,_ ) L j+p k+q j+q k+p i+p k+q i+q k+p 
+ (TV TV - T.^ T._, ) 1 i+p j+q i+q j+p J 

•1)PF { ( - l ^ F , . - ( - D ' F , . + ( - D ' F . .}D q - p u k - j k - i j - i J 

The coefficient of y is obtained on putting p = 0 in the coefficient of x; the coeffi-
cient of z is obtained from the coefficient of y on replacing q by p; the constant term is 
zero as is already proved in (3.1). 

Thus the equation to the plane simplifies to 

(4.2) ( - D P F 
q -p 

F y + F z = 0 . qJ p 

This equation is independent of n. Also it does not depend on the initial values a and 
b. Q.E .D. 

Par t icular Case. On taking a = 1, b = 3 we obtain the Lucas sequence {L } . The 
points (F., F . + 2 , F . + 5 ) , i = 1, 25 3, 
T k + 5 ) , k = 1 , 2 , 3, • 

The set of planes 

(L., L j + 2 , L . + 5 ) , j - 1, 2, 3,- - •; ( T ^ T R + 2 , 
all lie on the plane 2x - 5y + z = 0. 

5. THEOREM 4 

T x + T y + T 4 _ z + T , = 0 n n+pJ n+q n+r 

where p, q, r are a rb i t ra ry constants, and n = 1, 2, 3, 
whose equation is independent of n. 

Proof. Let two such planes be 

all intersect in a given line 

(5.1) 
T .x + TV y + TV z + TV = 0 i i+p J i+q i+r 
T .x + TV y + T., z + TV = 0 J j+p J j+q j+r 

The equation to the line of intersection of the parallel planes through the origin is 

T T - T T i+p j+q i+q j+p T.TV - T._^ T. l j+q i+q j T.TV - TV T. l j+p i+p j 
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On using (1.3) and proceeding as in (4.2) this simplifies to 

-y _ z 
(-1) F q p 

q-p M F 

Similarly the line of intersection of the planes given by (5.1) meets the plane z = 0, at 
the point given by 

x _ -y_ _ _J_ 
( -1) P F " F r " F p ' 

r -p * 

Thus the equation to the line of intersection of the planes given by (5.1) becomes 

(-1)PF x - F F y + F 

q-p q p 
Hence proved. 

Par t icular Case. The set of planes whose equations are 

F .x + F i + 1 y + F . + 3 z + F . + 4 = 0, i = 1, 2, 3 , - - - ; 

L .x + L . + 1 y + L . + 3 z + L . + 4 = 0, ] = 1, 2. 3, • • • ; 

T k X + T k + i y + T k + 3 Z + T k + 4 = ° ' k = l , 2 , 3 , • • • ; 

all intersect along the line 

x + 2 = y + 3 = _z 
1 2 - 1 

I am grateful to Dr. V. M. Bhise, G. S. Tech. Institute, Indore, for his help and guid-
ance in the preparation of this paper. 
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1. INTRODUCTION 

In [2] , Hoggatt and Hansell show that the product of the six binomial coefficients s u r -
rounding any part icular entry in Pasca l ' s triangle is an integral square. They also observe 
that the two products of the alternate tr iads of these six numbers are equal. Quite r emark -
ably, Gould conjectured and Hillman and Hoggatt [ l] have now proved that the two greatest 
common divisors of the numbers in the above-mentioned tr iads are also equal though their 
leas t common multiples a r e , in general , not equal. Hillman and Hoggatt also generalize the 
greatest common divisor property to more general a r rays . 

The integral square property was further investigated by Moore [4] , who showed that 
the result is true for any regular hexagon of binomial coefficients if the number of entr ies 
per side is even, and by the present author [3] , who generalized the ear l ie r resul ts to non-
regular hexagons, octagons, and other a r rays of binomial coefficients whose products are 
squares. 

In the present paper, we generalize the equal product property of Hoggatt and Hansell 
along the lines of [3] and also make some observations and conjectures regarding a general-
ized greatest common divisor property. 

It will suit our purpose to represent Pasca l ' s triangle (or, more precisely, a portion of 
it) by a lattice of dots as in Fig. 1. We will have occasion to refer to various polygonal fig-
ures and when we do, unless expressly stated to the contrary, we shall always mean a simple 
closed polygonal curve whose vertices are lattice points. Occasionally, it will be convenient 
to represent a small portion of Pasca l ' s triangle by le t ter arranged in the proper position. 

Fig. 1 Fig. 2 

71 
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2. SETS OF BINOMIAL COEFFICIENTS WITH EQUAL PRODUCTS 

As in [3] , we begin by deriving a fundamental lemma which is basic to all of the other 
results of this section. 

Lemma 1. Consider two parallelograms of binomial coefficients oriented as in Fig. 2 
and with corner coefficients a, b, c, d and e, f, g, h as indicated. Then the products 
acfh and bdeg are equal. 

Proof. For suitable integers m, n, r , s, and t, the binomial coefficients in question 
may be represented in the form 

* - ( \ + B ) ' b = ( n ) ' c = (n+\r)> * = ( m n \ \ + r ) ' 

_ / m + r \ f = ( m \ = ( m + s \ , = / m + s + r \ 
c I n + r + t J ' y n + r + t y ' g ^ n + s + r + t y ' \n + a + r + t J ' 

Thus, the desired products are 

a c fh = <m + s)'- . (m + r)t 
n! (m - n + sjl (n + r)! (m - n)! 

ml _ (m + s + r)l 
(n + r + t)! (m - n - r - t)l ' (n + s + r + t)! (m - n - t)! 

and 
, , _ m! (m + s + r)! 
D Q e g n! (m - n)! " W+ r)(m - n + s)! 

(m + r) (m + s)t 
(n + r + t)! (m - n - t)t ' (n + r + s + t)! (m - n - r - t)! 

and these are clearly equal as claimed. 
As a first consequence of Lemma 1, we obtain the equal product result of Hoggatt and 

Hansell. 
Theorem 2. Let a, b, c, d, e, f, and g denote binomial coefficients as in the a r ray 

a b 
f g c . 

e d 

Then aec = fbd. 
Proof. The parallelograms a, f, e, g and b, g, d, c are oriented as in Lemma 1. 

Therefore, fgbd = aegc and this implies the desired result. 
By essentially the same argument, we obtain the following more general statement about 

products of coefficients at the vert ices of hexagons in Pasca l ' s triangle. 
Theorem 3. Let m > 1 and n > 1 be integers and let H be a convex hexagon whose 

sides lie on the horizontal rows and main diagonals of Pasca l ' s triangle. Let the number of 
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coefficients on the respective sides of H be m, n, m, n, m, and n in that order , and let 
a, b, c, d, e, and f be the coefficients in cyclic order at the vert ices of H. Then ace = 
bdf. 

Proof. Without loss in generality, we may take m to be the number of coefficients 
along the bottom side of H. If we consider two m-by-n parallelograms with a common ve r -
tex and with corner coefficients a, b, c, d, e, f, and g as in Fig. 3, then, again by Lemma 
1, fgbd = aegc and this implies the equality claimed. 

Fig. 3 

Now, as in [3] , let us call the hexagons of Hoggatt and Hansell fundamental hexagons 
and say that a polygonal figure P on Pasca l ' s triangle is tiled with fundamental hexagons if 
P is "covered" by a set F of fundamental hexagons F in such a way that 

i. The vertices of each F in F a re coefficients in P or in the interior of P. 
ii. Each boundary coefficient of P is a vertex of precisely one F in F, and 

iii. Each interior coefficient of P Is interior to some F in F o r is a vertex shaped 
by precisely two elements of F. 

We can then prove the following result. 
Theorem 4. Let P be a polygonal figure on Pasca l ' s triangle with boundary coef-

ficients a1? a2, • • • , an in order around P . If P can be tiled by fundamental hexagons, 
then n = 2s for some s ^- 3 and 

s s 
" E 2 i -1 = " a 2 i • 

1=1 1=1 

Proof. Suppose that P can be tiled with r fundamental hexagons. The proof p ro -
ceeds by induction on r. Clearly the least value of r is 1 which occurs only in the Case Of 
the fundamental hexagon itself. In this case , n = 6 and the resul t is true by Theorem 2. 
Now suppose that the result is true for any polygon that can be tiled with fewer than k funda-
mental hexagons where k > 1 is fixed and let P be a polygon that can be tiled with k fun-
damental hexagons. Let H be one of the hexagons which tiles P and contains at least one 
boundary point of P . We distinguish five cases. 
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Case 1. H contains just one boundary point of P . Without loss in generality, we 
may let a be the boundary point of P which is in H. Let af , a' ,.., aT

 1 0 , a' ini and 
J n J F n n n+1 n+2 n+3 

a' . denote the other five boundary points of H in order around H. Let P be the poly-
gon obtained from P by deleting H. Then the boundary points of P are a1} a2, • • • , 
a .,, af , a' , aT

 l 0 , a' o5 and a' , ,. Thus, m = n + 4. Also, since P can be n-1 n n+1 n+2 n+3 n+4 m 
tiled by k - 1 fundamental hexagons, n + 4 = m = 2t for some t and 

a.. a3 • • • a - a? ,., a' 0 = a2 a4 • • • a 0 a? af , 0 af , , . 1 6 n -1 n+1 n+3 z 4 n-2 n n+2 n+4 

But, since H is a fundamental hexagon, it follows that 

a n a n + l a n + 3 " a n a n+2 a n+4 

and this clearly implies that 

s s 
. " a 2 i - i = " a 2 i 
1=1 1=1 

since n = 2t - 4 = 2s. This completes the proof for Case 1. 
Cases 2-4. In these cases , respectively, H contains 2, 3, 4, or 5 boundary points of 

P . We omit the proofs of these cases since they essentially duplicate the proof of Case 1, 
This completes the proof. 

With Theorem 4 and Lemma 1 as our principal tools we are now able to give several 
quick resul ts . 

Theorem 5. Let H be a convex hexagon with an even number of coefficients per side, 
with sides oriented along the horizontal rows and main diagonals of Pasca l ' s tr iangle, and with 
boundary coefficients al5 a2, • • • , a n in order around H . Then n = 2s for some s -̂ 3 
and 

s s 
n

n
 a 2 i - i = n a 2 i • 

1=1 1=1 

Proof. This is an immediate consequence of Theorem 4 since H can be tiled by fun-
damental hexagons as shown in Theorem 5 of [3]. 

Theorem 6. Let K be any convex octagon with sides oriented along the horizontal and 
vertical rows and main diagonals of Pasca l ' s triangle and with boundary coefficients al9 a2, 
• • • , a„ in order around K . Let the number of coefficients on the various sides of K be n n n 
2r , 2s, t, 2u, 2v, t, and 2s as indicated in Fig. 4. Then n = 2h for some h > 4 and 

s s 
" a 2 i - l = " a 2 i 

1 = 1 1=1 
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2v 

75 

2s 2s 
2r 

Fig. 4 Fig. 5 

Proof. The proof is the same as for Theorem 5 and will be omitted. 
We observe that the convexity conditions in both Theorems 3 and 5 are necessary since 

neither result is true for the hexagon of Fig. 5. Also, it is easy to find examples of convex 
hexagons where the resul ts of Theorems 3 and 5 do not hold if the conditions on the number of 
elements per side are not met. In fact, we conjecture that the conditions in these theorems 
are both necessary and sufficient. On the other hand, the convexity condition of Theorem 6 
is not necessary since the result holds for the octagon of Fig. 6 which is clearly not convex. 
We make no conjecture regarding necessary and sufficient conditions for the. result of Theo-
rem 6 to hold for octagons in general, or indeed, for hexagons whose sides may not lie along 
the horizontal rows and main diagonals of Pasca l ' s triangle. We note that the octagon of Fig. 
6 cannot be tiled by fundamental hexagons but can be tiled by pairs of properly oriented "fun-
damental paral lelograms" as indicated by the shading in the figure. Thus, the most general 
theorem for these and other polygons will most likely have to be couched in te rms of tilings 
by sets of pairs of fundamental paral lelograms. 

<$/ <>/ \</ \ / 
,\ / ' \ A-\ /Z \ / \> /. >\ 
/ W ^? T5:/ N . / \ 

'vh A\ i'\ 

Fig. 6 Fig. 7 
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3. ADDITIONAL COMMENTS ON EQUAL PRODUCTS 

Theorem 3 gives an equal product resul t for the corner coefficients of hexagons and it 
is natural to seek s imilar resul ts for octagons. It is easy to find octagons like those in Figs. 
4 and 6 for which the equal product property on vert ices does not hold. Nevertheless, it is 
possible to find classes of octagons for which the equal product property does hold for the 
products of alternate corner coefficients. 

Theorem 7. Let K be a convex octagon formed as in Fig. 7 by adjoining paral lelo-
grams with r and s and r and t elements on a side to a parallelogram with r elements 
on each side. If the corner coefficients are al5 a2, • • • , a8 as shown, then 

a 1 a 3 a 5 a 7 = a 2 a 4 a 6 a 8 . 

Proof. We have only to observe that a1? a4, a5, a8 and a2, a3, a6, a7 are vert ices of 
pai rs of parallelograms oriented as in Lemma 1. The resul t is then immediate. 

Again it is clear that the convexity condition of Theorem 7 is not necessary. The proof, 
after all , res ts on the presence of the properly oriented pai rs of paral lelograms. In p r e -
cisely the same way we show that a1 a3 a5 a7 = a2 a4 a6 a8 for each of the three octagons of 
Fig. 8. Note that for K2 the two products are not products of alternate vert ices around the 
octagon. 

Clearly the preceding methods can be used to obtain a wide variety of configurations 
of binomial coefficients which divide into sets with equal products. As illustrations we give 
several examples of polygons (sometimes not closed, simple, or connected) with this property. 

a7 a4 a7 a6
 a7 a6 

Fig. 8 

4. THE GREATEST COMMON DIVISOR PROPERTY 

As mentioned in Section 1, if the a r ray 

a b 
c d e 

f g 

represents coefficients from Pasca l ' s triangle, then afe = cbg and Hillman and Hoggatt 
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" a 2 i - l = * a 2 i 1=1 1=1 

12 12 

" a 2 i - l = " a 2 i 
1=1 1=1 

II 

ai a2 

* * * * 

A7 
a5 

* * * 3ft 

a10 a9 

" a 2 i - l = . " a 2 i 
1=1 1=1 

III 

at a2 a3 a4 
* * * * 

a17 a18* 
* * * * 

a24 / \ l 9 
* 

* 
a23 

* * 
4 * ia2 0 I a7 

a22 a21 
* * * r as 

12 a n a io a9 

12 12 

. n ^ i - l = .V2i 1=1 1=1 

IV 

a4 a5 
a 

i 
3 

* 
a l 6 

s : 

a n 

* 
a20 

a l 
* 

i 

' 1 
T 

« 1 

1 a 

a12 an 
11 
n a0 

11 
= n a0 . 1 2 i - l . " 2i i = l i= l 

10 
n a0 

10 

. - * 2 i - l ~ " a 2 i i = l i = l 
VI 

F ig . 9 
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have shown that (a, f, e) = (c, b, g) where we use parentheses to indicate greatest com-
mon divisors. In view of the preceding results on equal products, one wonders if the great -
est divisor property also holds in more general settings. 

Unfortunately, it is easy to find examples of regular hexagons with sides oriented along 
the main diagonals and horizontal rows of Pasca l ' s triangle where the two alternate tr iads of 
corner coefficients have different greatest common divisors in spite of the fact that theyhave 
equal products by Theorem 3. We have such examples for hexagons with 3 , 4 , 5 and 6 co-
efficients per side and conjecture that the property only holds in general for the fundamental 
hexagons of Hoggatt and Hansell. Also, we observe that, for the parallelograms of Fig. 2, 
the products acfh and bdeg are equal but that (a, c, f, h) is not necessari ly equal to 
(b, d, e, g). At the same time, we have been unable to find examples of hexagons of the type 
of Theorem 5 where the greatest common divisor of the two sets of alternate boundary coef-
ficients are not equal. Of course, these greatest common divisors are usually equal to one, 
but the three regular hexagons with four elements per side whose upper left-hand coefficients 
a r e , respectively,; 

\S)' Ce)' and (") 
have pai rs of greatest common divisors equal to 13, 13, and 34, respectively. We con-
jecture that the greatest common divisors of the two sets of alternate boundary coefficients 
for the hexagons of Theorem 5 are equal. 

This is not t rue , however, of the octagons of Theorem 6, since, in part icular , 

((:)• (••)• (0- (:))->• 
( ( ! ) • ( : ) • ( : ) • ( : ) ) -

and these are alternate boundary coefficients of such an octagon. Of course , this makes it 
c lear that not all polygons that can be tiled with fundamental hexagons have the equal greatest 
common divisor property. At the same t ime, some figures that cannot be tiled with funda-
mental hexagons appear to have the equal greatest common divisor property. For example, 
this appears to be true of the octagon of Fig. 11 in [3] though we have no proof of this fact. 
This leaves the question of the characterization of figures having the equal greatest common 
divisor property quite open. 

5. GENERALIZATIONS AND EXTENSIONS 

There are an infinitude of other Pascal- l ike a r rays in which the Hexagon Squares prop-
er ty holds. For example, the Fibonomial triangle and the generalized Fibonomial triangle. 
If, indeed we replace F by f (x), the property holds and thus for each x integral yields 
an infinitude of such a r rays . For example, if x = 2, we get the Pell numbers, or every 
k Pell Number Sequence works. 
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(Continued from page 

that 

Therefore 

46. 

F 
8-

) 

3n-

F 
8-

-i+x 

F 
8 

3n-

s 

. 3 n - i 

-1-! 

F H 
X 

3 n (modulo 3 n + 1 ) 

1 + 3 n (modulo 3 n + 1 ) . 

s F + 3 n ( F + F _,,) (modulo 3 n + 1 ) . 
X X + l 

If x satisfies (*), then either x or 8-3 + x or 16°3 ~ + x will be congruent to m 
modulo 3 . Therefore (*) has solutions for arbi t rar i ly large n. 

Problem 2. The number N is said to have complete Fibonacci residues if there ex-
is ts a solution to the congruence 

F = m (modulo N) 

for all integers m. A computer search shows that the only values of N ^ 500 having com-
plete Fibonacci residues are the divisors of 

35, 22.53, 2-3-53, 5-34, or 7-53 . 

Determine all N which have complete Fibonacci residues. 
Problem 3 is submitted by the undersigned and Leonard Carli tz, Duke University, Dur-

ham, North Carolina. 
Problem 3. Show that if = em'n9 then 

(Continued on page 82.) 



ON DAYKIN'S ALGORITHM FOR FINDING THE G.C.D. 

V. C. HARRIS 
San Diego State College, San Diego, California 92115 

In a recent issue of the Fibonacci Quarterly, Daykin [l] has given an algorithm for 
finding the greatest common divisor of two positive integers. The process can be obtained 
by changing the signs in EuclidTs algorithm (using subtraction in Euclid's algorithm instead 
of addition, as possibly Euclid may have done [2]) and taking numbers modulo 10 , where 
k is the number of digits in the la rger of the two numbers whose g. c. d. is being obtained. 
It appears , then, that the number of additions required is the sum of the quotients inEuclidfs 
method; also, that any modulus (larger than the numbers whose g. c. d. is being obtained) may 
be used in place of 10 . 

To illustrate this, we have Daykin's example and, on the right, the modification of 
Euclid's as suggested above. To find (2847,1168): 

2847 

1679 

511 

8832 

9343 

9854 

511 

365 

219 

73 

9854 

9927 

0 

(+8832) 

(+8832) 

(+511) 

(+511) 

(+9854) 

(+9854) 

(+9854) 

(+73) 

(+73) 

-2847 

-1679 

-511 

-1168 

-657 

-146 

-511 

-365 

-219 

-73 

-146 

-73 

0 

(+1168) 

(+1168) 

(+511) 

(+511) 

(+146) 

(+146) 

(+146) 

(+73) 

(+73) 

Hence (2847, 1168) = 73. 
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STUFE OF A FINITE FIELD 

SAHIB SINGH 
Clarion State College, Clarion, Pennsylvania 16214 

INTRODUCTION 

Stufe of a field is connected with the property of integer - 1 in that field. It is defined 
to be the leas t integer s such that - 1 = a\ + a2 + • • • + a^, where each a, belongs to the 
field. In [2] Chowla and Chowla have determined the stufe of a cyclotomic field. Pfister 
has shown in [3] that the stufe of a finite field is ^ 2 . Our aim is to elaborate this resul t 
further. We do this in the following theorem. 

Theorem. Stufe of GF(p ), where p is prime and n ^ 1, is always one except for 
the case when n is odd and p = 3 (mod 4), in which case its value is two. 

Proof. We know that the non-zero elements of GF(p ), denoted by GF*(p ), form a 
cyclic multiplicative group. Also, it is well known that if G is a cyclic group of order k 
and m divides k, then there exists a unique subgroup of order m in G. Since (p - 1) 
divides (p - 1) for all n, therefore it follows that the members of GF*(p) constitute the 
unique subgroup of order (p - 1) in GF*(p ). Now we develop the proof by considering dif-
ferent cases . 

Case 1. Let p = 2. If A is a generator of GF*(2 ), then X - 1, which means 
that A2 = A implying that A is a square which enables us to conclude that each element of 
GF*(2 ) is a square and thus -1 is a square. In the subsequent cases , p is understood to 
be an odd prime. 

Case 2. Let n be even. From the above analysis it is c lear that if A is a generator 
of GF*(pn) , then 

is a primitive root mod p. In view of the values of p and n we conclude that 

( ^ ) 

is even, which again means that this primitive root mod p is a square implying that -1 is 
a square. 

Case 3. Let n be odd. In this case, 

P - 1 

81 
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is odd. Thus half the members of GF* (p) which are quadratic residues mod p would be 
squares and the remaining half a re not. If p = 1 (mod 4), it is well known that (-1) is 
a quadratic residue mod p and hence is a square. If p = 3 (mod 4), then (-1) is a quad-
ratic non-residue mod p and therefore is not a square. In this case -1 is the sum of two 
squares , which easily follows from (3) or (4). 
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ITERATION ALGORITHMS FOR CERTAIN SUMS OF SQUARES 

EDGAR KARST 
University of Arizona, Tuscon# Arizona 85721 

The following three-step iteration algorithm to generate x simultaneously in 2x + 1 = 
a2 and 3x + 1 = b2 was mentioned, but not proved, in [4, p. 211]: 

1-10 - 1 = 9 92 = 81 (81 - l ) /2 = 40 = xt 

9 1 0 - 1 = 89 892 = 7921 (7921 - l ) /2 = 3960 = x2 

8 9 - 1 0 - 9 = 881 8812 = 776161 (776161 - l ) /2 = 388080 = x3 

881-10-89 = 8721 87212 = 76055841 (76055841 - l ) /2 = 38027920 = x4 

8721-10-881 = 86329 863292 = 7452696241 (7452696241 - l ) /2 = 3726348120 = x5 . 

Proof. From 2x + 1 = a2 and 3x + 1 = b2 comes 3a2 - 2b2 = 1. If a , b is any 
n n J 

solution of this generalized Pell equation, then a . n = 5a + 4b , b , = 6a + 5b is the & M n+1 n n n+1 n n 
next l a rge r one. From these, we obtain immediately a , - + a n = 10a , b , - + b - = & J n+1 n-1 n n+1 n-1 
10b , which is equivalent to the algorithm. 

For the n t e rm formula we use the usual approach by l inear substitutions (for exam-
ple, [1 , p. 181]) and obtain 

x = [(\/6 + 2)(5 + 2-s/6)n + (N/"6 - 2)(5 - 2 \ / 6 ) n ] /48 - 1/2 . 

This formula has three shortcomings: (1) it uses fractions, (2) it employs roots , and (3) it 
has n in the exponent. The algorithm above has none of them. 

Similar arguments are valid for a four-step iteration algorithm [3] to generate x in 
x2 + (x + l)2 = y2 . 

Sometimes, the n term formula may be simple, as for a2 + b2 + (ab)2 = c2, a and 
b consecutive positive integers [2]. Here we have 

(n - l)2 + n2 + [ (n - l )n] 2 = (n2 - n + l)2 , 

and hence we need no algorithm. But for a = 1 an algorithm would be helpful. Let us first 
find some clues to such an algorithm. We have by hand and by a table of squares: 

l 2 

l 2 

l 2 

l 2 

+ 

+ 

+ 

+ 

o2 

22 

122 

702 

+ 

+ 

+ 

+ 

O2 

22 

122 

702 

= 
= 
= 
= 

l 2 

32 

172 

992 

= 
= 
= 
= 

(02 

(22 

(42 

(102 

+ 

-
+ 

_ 

D2 

D2 

D2 

D2 
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T h e a l t e r n a t i n g +1 and - 1 in the l a s t co lumn , which shows a cons t an t p a t t e r n , s u g g e s t s the 

p o s s i b i l i t y of an a l g o r i t h m . If we can find a l l b , s a y , f r o m b3 = 12 on , we wi l l a l s o have 

a l l c. Af t e r s o m e t r i a l s and e r r o r s , we obta in 

I t e r a t i o n A l g o r i t h m 1 

6-2 - 0 = 12 

6 - 1 2 - 2 = 70 

6-70 - 12 = 408 

6-408 - 70 = 2378 

6-2378 - 408 = 13860 

6-13860 - 2378 = 80782 

which y i e lds e a s i l y the next four r e s u l t s : 

l 2 + 408 2 +* 4082 = 5772 = (242 + l ) 2 

l 2 + 23782 + 23782 = 33632 = (582 - l ) 2 

I 2 + 138602 + 138602 = 196012 = (1402 + l ) 2 

l 2 + 807822 + 807822 = 1142432 = (3382 - l ) 2 . 

S i m i l a r l y , we a p p r o a c h the c a s e a = 2 , We have by hand and a t ab le of s q u a r e s : 

22 + l 2 + 22 = 

22 + 32 + 62 = 

32 = ( l 2 + 2)2 

72 = ( 3 2 _ 2 ) 2 

22 + 82 + 162 = 182 = (42 + 2)2 

22 + 2 1 2 + 422 = 472 = (72 - 2)2 . 

The a l t e r n a t i n g +2 and -2 in the l a s t co lumn , which shows a cons t an t p a t t e r n , s u g g e s t s the 

p o s s i b i l i t y of an a l g o r i t h m . If we c a n find a l l b , s a y , f r o m b 3 = 8 on , we wi l l a l s o have 

a l l c. A f t e r s o m e t r i a l s and e r r o r s we ob ta in : 

I t e r a t i o n A l g o r i t h m 2 

3 - 3 - 1 = 8 

3-8 - 3 = 21 

3-21 - 8 = 55 

3 55 - 21 = 144 

3-144 - 55 = 377 

3-377 - 144 = 987 

which y ie lds e a s i l y the nex t four r e s u l t s : 
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22 + 552 + 1102 = 1232 = ( l l 2 + 2)2 

22 + 1442 + 2882 = 3222 = (182 - 2)2 

22 + 3772 + 7542 = 8432 = (292 + 2)2 

22 + 9872 + 19742 = 22072 = (472 - 2)2 . 

85 

Sl ight ly d i f fe ren t b e h a v e s the c a s e a = 3. We have by hand and a t ab le of s q u a r e s : 

32 + 02 + 

32 + 22 + 

32 + 42 + 

32 + 182 + 

32 + 802 + 

3 2 + 1542 + 

3 2 + 6842 + 

02 = 

62 = 

122 = 

542 = 

2402 = 

4622 = 

20522 = 

3 2 = 

? 2 = 

132 = 

572 

2532 = 

4872 = 

21632 

(02 + 3)2 

(22 + 3)2 

(42 - 3)2 

(162 - 3)2 

(222 + 3)2 

H e r e the doubly a l t e r n a t i n g +3 and - 3 in the l a s t co lumn would show a c o n s t a n t p a t t e r n , if 

the excep t iona l v a l u e s 572 and 2163 2 could be e l i m i n a t e d . T h i s s u g g e s t s the p o s s i b i l i t y of 

two a l g o r i t h m s . To obta in f u r t h e r r e s u l t s , we w r i t e an I n t e g e r - F O R T R A N p r o g r a m for the 

IBM 1130 which y ie lds 

32 + 30382 + 

32 + 58482 + 

32 + 259742 + 

32 + 1153642 + 

32 + 2220702 + 

32 + 9863282 + 

32 + 43807942 + 

91142 = 

175442 = 

779222 = 

3460922 = 

6662102 = 

29589842 = 

131423822 = 

96072 = 

184932 = 

821372 

3648132 = 

7022472 = 

31190432 

138532872 = 

(982 + 3)2 

(1362 - 3)2 

(6042 - 3)2 

(8382 + 3)2 

(37222 + 3)2 

Now we wan t to find an a l g o r i t h m which should g e n e r a t e the s equence 80, 154, 3038, 5848, 

115364, 222070, 4380794, • • • . L e t the t e r m s bt = 0, b2 = 2 , and b3 = 4 be given; then 

b 0 = - 4 i s the left n e i g h b o r of bt = 0, s i nce 32 + (-4)2 + (-12)2 = 132 = (42 - 3)2 i s the 

l og i ca l ex t ens ion to the left . With t h i s t r i c k and s o m e t r i a l s and e r r o r s , we obta in 

I t e r a t i o n A l g o r i t h m 3 

38-2 - (-4) = 80 

2 - 8 0 - 2 - 4 + 2 = 154 

38-80 - 2 = 3038 

2-3038 - 2-154 + 80 = 5848 

38-3038 - 80 = 115364 

2-115364 - 2-5848 + 3038 = 222070 

38-115364 - 3038 = 4380794 
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Now there remains only to find an algorithm which should generate 25974, 986328, • • •. Here 
we have not far to go, since such an algorithm is already contained in the former one, and 
we obtain easily 

Iteration Algorithm 4 

38-684 - 18 = 25974 

38-25974 - 684 = 986328 . 

Finally, one could ask: Does there exist a general formula for solving x2 + y2 + z2 = w2? 
The answer is yes. Let x = p2 + q2 - r2, y = 2pr, z = 2qr, and w = p2 + q2 + r 2 ; then 
x2 + y2 + z2 = w2 becomes 0 = 0. But this formula has two shortcomings: (1) it uses f rac-
tions, and (2) it employs roots , since, for example, the solution of 32 + 22 + 62 = 72 requires 
p = N / 2 / 2 , q = 3N/2"/2, and r = \/2 . 
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CERTAIN CONGRUENCE PROPERTIES (MODULO 100) OF FIBONACCI NUMBERS 

MICHAEL R. TURNER 
Regis College, Denver, Colorado 80221 

Remark. It was originally observed by the author that if p is a prime ^ 5 , then 
F 2 = P2 (mod 100). Further study led to this theorem which character izes those Fibonacci 
numbers which terminate in the same last two digits as their indices. The original observa-
tion is proved as a corollary to the theorem. 

Theorem. F = n (mod 100) if and only if 

n E 1, 5, 25, 29, 41 , or 49 (mod 60) or n = 0 (mod 300) . 

Proof. From [l] , we have the well known formula 

m - 1 

where m = n if n is odd, and m = n - 1 if n is even. 
Lemma 1. F 6 Q k E 20k (mod 100). 
Proof. Observe that (1) implies 

(2) 2 n - 1 F n = n + 5 n ( n - f" - 2 ) (mod 25) . 

From [l] , we have for n, m > 2, (n,m) = d implies that (F , F ) = F d - Now (2) 
implies 2 6 ° k " l F

6 0 k = 60k + 50k (60k - 1) (60k - 2) (mod 25), which reduces to 2 6 ° k ~ l F
6 0 k 

E 10k (mod 25). Since 220 = 1 (mod 25), we get F 6 Q k = 20k (mod 25). Since 6 divides 
60k, it follows that F6 divides F 6 Q k . Now F6 = 8, so F g ( ) k = 0 (mod 4). Combining 
this with F 6 Q k = 20k (mod 25), we get F 6 Q k = 20k (mod 100), which proves Lemma 1. 

We now prove one of the congruences in the theorem. 

(3) n = 1 (mod 60) implies F = n (mod 100) . 

Proof. Clearly n = 1 implies F = n (mod 100). Assume that for all k < N , n = 
60k + 1 implies F = n (mod 100). Now if n = 60N + 1 for even N, then n = 120k + 1 
for k = N/2 < N. 

From [ 2 ] , we have the following identity, which will prove extremely useful in what 
follows. 
(4) F = F F + F F 

n+m+1 n m n+1 m+1 
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In part icular , 
-p = Y2 + F2 

120k+l 60k 60k+l 

Using Lemma 1 and induction hypotheses, we get 

F = F L i j . i + F L « = ( 6 0 k + I ) 2 + ( 2 0 k ) 2 = l 2 0 k + 1 = n (mod 100) . n 60k+l 60k 

If n = 60N + 1 for odd N5 then n = 120 k + 60 + 1 for k = (N - l ) / 2 . Then 

n F120kF60 + F120k+1F61* F^ = F 1 o n l r F ^ n + F19nLr_l_1Ffi1. Inspection of any large table such as [3] verifies that F61 

61 (mod 100). Thus, by Lemma 1 and induction hypothesis, we have 

F = 40k-20 + (120k + 1).61 s 120k + 60 + 1 s n (mod 100) . 

This proves the congruence. 
Lemma 2. F«AI _,_ = 20k-F n + (60k + 1)-F (mod 100) . 60k+n n-1 v n 
Proof. Lemma 2 follows from (3) and Lemma 1. The remainder of the proof is divided 

into five cases . 
Case 1. n = 1 (mod 5). 
Assume F = n (mod 100). Then F = n (mod 4) and F = n (mod 25). Now (2) 

implies 2 ~ F = n (mod 25), since 

5 n ( n - gfr - 2 ) = 0 (mod 25) . 

Also, (5,n) = 1 and F = n (mod 100), so we may cancel the n and F to get 2 ~ = 1 

(mod 25). Since 2 belongs to the exponent 20 (mod 25), it follows that n = 1 (mod 20). 
Thus n = 1 (mod 4). But F = n = 1 (mod 4), so F must be odd. But F is even if 

n n n 
and only if n = 0 (mod 3), so n = 1 or 2 (mod 3). Combining resul t s , 

n = 1 (mod 3) 
n = 1 (mod 20) 

) n = 2 (mod 3) ) 
J n 5 1 (mod 60) or n s ± ( m o d 2 0 ) | n s 41 (mod 60) . 

Now suppose that n = 41 (mod 60). Let n = 60k + 4 1 . By Lemma 2, 

F = 20k»F40 + (60k + 1)F41 (mod 100) . 

By inspection of tables, we have F40 = 55 (mod 100) and F41 = 41 (mod 100). Therefore, 
we have 

F = (60k + 41) + 20k-55 = 60k + 41 = n (mod 100) . 

This result , along with (3), completes the proof of Case 1. 
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Case 2. n = 2 (mod 5). 
This case is impossible, for as in Case 1, it follows that n = 1 (mod 20), a 

contradiction. 
Case 3. n = 3 (mod 5). 
Let n = 3 + 5k. Then from (2), 

, , 2 + 5 ^ _,_ 5(2 + 5k) (1 + 5k) . , ^c. 2 F = n + n • —i— -p —'- (mod 25) . 

Assuming F = n (mod 100), we may cancel the F and n f s , since (n,25) = 1, obtain-
Q-j-^k n Rk+fi n 

ing 3-2° = 6 + 5-2-1 (mod 25). Thus 2 = 1 (mod 25). But this congruence implies 
5k + 6 = 0 (mod 20), or 5k = 14 (mod 20). This congruence is not possible, so case 3 is 
impossible. 

Case 4. n = 4 (mod 5). 4+^k Assume F = n (mod 100). Let n = 4 + 5k. Then 3-2 = 6 + 5-3-2 (mod 25), so 
5k- 5 n 

2 = 1 (mod 25), and 5k = 5 (mod 20). Thus n = 5k + 4 = 9 (mod 20). F and n 
a re therefore odd, so n = 1 or 2 (mod 3). Combining resul ts , 

n = 1 (mod 3) 
n = 9 (mod 20) 

) n = 2 (mod 3) ) 
>n = 49 (mod 60) or n _ g ( m o d 2 0 ) ?n = 29 (mod 60) 

Now suppose that n = 29 (mod 60). Let n = 29 + 60k. By Lemma 2, 

F n S F 60k F 28 + F 60k + 1 F 29 ( m o d 1 0 0 ) ' 

By inspection of tables, F28 = 11 (mod 100), and F29 = 29 (mod 100). Thus by Lemma 1, 
we have 

F = 20k-11 + (60k + l)-29 = 60k + 29 = n (mod 100) . 

Suppose n = 49 (mod 60). Let n = 49 + 60k. By s imilar reasoning, 

F = 20k-F48 + (60k + 1)F49 = 20k-76 + (60k + l)-49 = 60k + 49 = n (mod 100) . 

This resul t completes the proof of Case 4* 
Case 5. n = 0 (mod 5). 
Let n = 5s-k, where s ^ i, and (5,k) = l. We shall consider in order the possi-

bilities n = 0, 1, 2, and 3 (mod 4). Assume F = n (mod 100). If n = 0 (mod 4), and 
s = 1, then n = 5k5 where (5,k) = 1. Thus we get 2 F = n (mod 25) from (2). Now 
F = n = 5k (mod 25) implies 2 ~ .5 = 5 (mod 25), so n = 1 (mod 4). But in this case , 
the las t result is impossible, so it follows that s ^ 2. Also, since F must be even, we 
have n = 0 (mod 3). Finally, n = 0 (mod 5S) implies n = 0 (mod 25). Combining, we 
have 
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n = 0 (mod 3) J 
n = 0 (mod 4) ) n = 0 (mod 300) . 
n = 0 (mod 25) J 

Let us suppose that n = 0 (mod 4); we have F odd, so there are two combinations: 

n = 1 (mod 3) J n = 2 (mod 3) 
n s 1 (mod 4) > n = 25 (mod 60) or n = 1 (mod 4) } n = 5 (mod 60) 
n = 0 (mod 5) 1 n = 0 (mod 5) 

If n = 2 (mod 4), we have 

n = 0 (mod 3) 
n s 2 (mod 4) } n = 30 (mod 60) . 
n = 0 (mod 5) 

Let n = 30 + 60k. By Lemmas 1 and 2, 

F n = F60k+30 S 2 0 k F 2 9 + ( 6 0 k + 1 ) F 3 0 ( m o d 1 0 0 ) " 

But this reduces to F s 20k + 40 (mod 100). Now F = n = 30 + 60k (mod 100) implies 
2 0 k + 4 0 = 60k + 30 (mod 100), or 40k = 10 (mod 100), which is impossible. If n = 3 
(mod 4), we get two combinations: 

n = 1 (mod 3) J n = 2 (mod 3) 
n s 3 (mod 4) In = 55 (mod 60) or n = 3 (mod 4) }n = 35 (mod 60) 
n = 0 (mod 5) 1 n = 0 (mod 5) 

The f irst congruence results in 

F n = F55+60k = 4 0 k + 4 5 ( m 0 d 1 0 0 ) • 

and F = n = 55 + 60k implies 20k = 90 (mod 100), which is impossible. The second 
congruence resul ts in 

F n = F35+60k s 4 0 k + 6 5 ( m o d 1 0 0 ) ' 

and F = n = 35 + 60k implies 20k = 30 (mod 100), which is also impossible. 
Suppose n = 5 (mod 60). Let n = 5 + 60k. Then F = F - fift. , so 

F = 20k-F4 + (60k + 1)-F5 = 60k + 5 = n (mod 100) . 
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Suppose n = 25 (mod 60). Let n = 25 + 60k. Then 

F n = F25 + 60k, 
so 

F n = 20k-F24 + (60k + 1).F25 s 60k + 25 = n (mod 100) . 

Finally, if n = 0 (mod 300), then 300 divides n, so F300 divides F . By Lemma 1, 
F300 = 0 (mod 100), and thus F = 0 = n (mod 100). 

This result completes the proof of the theorem. 
Corollary. If p is a prime ^ 5 , then F 2 = p2 (mod 100). 
Proof. By the theorem, F5 = 5 (mod 100). If p is a prime > 5 , then 

p = 1, 3, 7, 9, 11, 13, 17, or 19 (mod 20) . 

Thus p2 = 1 or 9 (mod 20). Since p2 = 1 (mod 3), it follows that p2 = 1 or 49 (mod 
60). 
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FIBONACCI AN PATHOLOGICAL CURVES 

SANTOSH KUMAR 
Armament Research and Development Establishment, Poona, India 

There are many curves which possess peculiar properties not possessed by ordinary 
curves. These are the so-called "pathological curves1' of mathematics. In the present note 
a few curves which are not normal and healthy and which possess idiosyncrasies have been 
generated and analyzed. It may be pointed out that these curves cannot be analyzed with the 
help of ordinary calculus. 

We generate Fibonaccian pathological curves as follows. Start with a square with side 
of length H , where H is the generalized Fibonacci number obtained by the recurrence 
relation 

H = H , + H 0 n n -1 n-2 n > 2 , 

where H1 and H2 are any positive integers. Divide each side of the square into three par t s , 
two of length H Q and one p a r t of length H Q, a s shown in F ig . 1. n—A n—u 

H 

H 

n-2 

f 
n - 3 
Y 

T 
n-2 

Fig. 1 

On each section with length H „ erect a square outwards. Erase the basic side of this new 

figure and call this curve Sv In Sls shown in Fig. 2, we will have the sides of length Hn_2 

and H n~3* 
92 
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T 
fn-2 

n - 3 

\n-d 

Fig. 2 

Again, each side is divided into three par ts . The sides of Si will be divided as follows: 

H 0 = H / 1 + H I , + H / I , n-2 n-4 n-5 n-4 
H Q = H _ + H « + H K . n-3 n-5 n-6 n-5 

Again we will form a square on the middle par t , forming curve S2 as shown in Fig. 3. 
We continue dividing each side into lengths equal to two lower Fibonacci numbers and 

constructing squares on the middle par ts until finally we get sides of length H2 and H1? and 
have formed the curve S. We called the curve S the Fibonaccian Pathological Curve. 

In such a construction, it is of interest to find the total length L and the rate of in-
crease of area A A of the curve S at the r successive subdivision. It can be seen 

r r 
that, for n > 3r, 

L r
= 4< 

It is of interest to note that Et and H2 can be chosen as arbi t rar i ly small positive 
numbers, and the curve after allowing all successive subdivisions will be a continuous curve 
which is not different ia te anywhere. It may be noted that an inwards curve can also be 



94 FIBONACCIAN PATHOLOGICAL CURVES Feb. 1974 

generated on similar lines, but, due to lack of symmetry, the expression for obtaining the 
total area after r successive subdivisions is difficult to obtain. 



IRREDUCIBILITY OF LUCAS AND GENERALIZED LUCAS POLYNOMIALS 

GERALD E. BERGUM 
South Dakota State University, Brookings, South Dakota 57006 

and 
VERNER E. HOGGATT, JR. 

San Jose State University, San Jose, California 95192 

1. INTRODUCTION 

In [5] , Webb and Pa rbe r ry discuss several divisibility propert ies for the sequence 
\ F (x)} of Fibonacci polynomials defined recursively by 

(1) F0(x) = 0, Fife) = 1, Fn + 2(x) = xFn + 1(x) + Fn(x), n ^ 0 . 

In part icular , Webb and Pa rbe r ry prove that F (x) is irreducible over the integral domain of 
the integers if and only if p is a prime. 

In [l] , Bergum and Kranzler develop many relationships which exist between the s e -
quence \ F (x) } of Fibonacci polynomials and the sequence \L (x)} of Lucas polynomials de -
fined recursively by 

(2) L0(x) = 2, Ljfe) = x5
 L

n + 2
( x ) = x L n + l ( x ) + L n ( x ) ' n ~ ° ' 

Specifically, Bergum and Kranzler show that 

(3) L (x) I L (x) iff m = (2k - l)n, k ^ 1. 

With n = 1, we see that X | L (X) for all odd integers m so that the result of Webb 
and Pa rbe r ry does not hold for the sequence (L (x)}. 

In [4] , Hoggatt and Long show that the result of Webb and Pa rbe r ry does hold for the 
sequence {u (x,y)} of generalized Fibonacci polynomials defined by the recursion 

(4) U0(x5y) = 0, Ui(x,y) = 1, u
n + 2 ( x ' y ) = x U n + l ( x ' y ) + y U

n
( x ' y ) ' n - ° -

The purpose of this paper is to obtain necessary and sufficient conditions for the i r -
reducibility of the elements of the sequence {L (x)} as well as the elements of the sequence 
{v fe,y)} of generalized Lucas polynomials defined by the recursion 

(5) V0fe,y) = 2, Vi(x,y) = x, Vn + 2fe ,y) = xVn + 1fe,y) + yVn(x5y), n > 0 . 

The first few terms of the sequence { V fe,y)} are 
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n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

V (x,y) n J 

X 

x2 + 2y 
x3 + 3xy 

x4 + 4x2y + 2y2 
x5 + 5x3y + 5xy2 

x6 + 6x4y + 9 x V + 2V3 

x7 + 7x5y + 14x3y2 + 7XV3 

x8 + 8x6y + 20x4y2 + 16x2^ + 2V4 

x9 + 9x7y + 27x5y2 + SOxV + 9XV4 

Observe that L (x) = V (x,l) so that with y = 1, we also have the first nine te rms n n J 

of the sequence { L (X)} . 

2. IRREDUCIBILITY OF L (x) 
nN 

The basic fact that we shall use is found in [2, p. 77] and is 
Theorem 2.1. (Eisenstein's irreducibility cr i ter ion.) For a given prime p, let 

F(x) = a x + a .. x ~ + • • • + a<x + a0 n n -1 2 u 

be any polynomial with integral coefficients such that 

a = a 9 = • • • = a0 = 0 (mod p) , a i 0 (mod p ) , a0 £ 0 (mod p 2 ) n—x \\—u n 

then F(x) is irreducible over the field of rationals. 
To establish our first irreducibility theorem, we use the following. 
Lemma 2.1. Every coefficient of L (x), except for the leading coefficient, is divisible 

2 n 

by 2 and 4 does not divide the constant term. 
Proof. If n = 1 then L2(x) = x2 + 2 and the lemma is obviously true. Assume the 

lemma is true for n. 
In [1] , we find 

(6) L2k(x) = L2
k(x) - 2 ( - l ) k . 

Hence, 
(7) L2n+1(x) = Ljn(x) - 2 . 

By the induction hypothesis, it is obvious that L ,-,(x) is monic and every coefficient 
of L .. (x) is divisible by 2. Fur thermore , since L (x) has constant te rm +2 we see 

2 n+ l 2^ 
that L2 (x) has constant te rm +4, thus L ^(x) has constant term +2. Therefore, the 

2nv 2 n + 1 

constant term of L .. (x) is divisible by 2 but not by 4 and the lemma is proved. 
An immediate result of Lemma 2.1 with the aid of Theorem 2.1 is 
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Theorem 2.2. The Lucas polynomial L . (x) is irreducible over the rat ionalsfor k ^ 1. 
2K 

Although L (x) is not irreducible if p is a pr ime, we can show that L (x)/x is i r -
reducible for every odd prime p. 

F i r s t we note, as is pointed out in [l] , that 

(8) Ln(x) = an + /3n , 

where a = (x + ^x2 + 4)/2 and |3 = (x - N/X2 + 4 ) /2 . Hence, if n = 2m + 1 we have 

Ln(x) = (x + N;x2 + 4 ) n / 2 n + (x - N / x r + T ) n / 2 n 

n * * n 

k x n - k ( x 2 + 4 ) k / 2 
= 2 I > . i r i r v + 4 r - + > 11 K-D^X a(X2 + 4) 

(9) 

= 2 

\k=o x ' k=o \ / 

k=0 \ / 

ti:(i)(^ 
k=0 s=0 x f x f 

Therefore, 

m k / \ / \ 

k=0 S=0 X / V / 

m k 

= 2-(n-1>WL?WkUn-2s22s . 

2 2 s , n = 2m + 1 

For each s, 0 < s < m, we see that the coefficient of x is 

(11) 2 - ( n - 2 s - l ) > , - 1 1 - 1 n = 2m + l . §W0) k=s 

When s = 0, we have the leading coefficient of L (x) which is 1 so that 

When s = m in (11), we have the constant term of L (x) which is n. If we now let n be an 
odd prime p and recall that p divides 

U) 
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if p is a pr ime, then p is a factor of (11) for each value of s, 

S ~ 2 

Hence, by Eisenstein 's cri terion, the following is true. 
Theorem 2.3. The polynomials L (x)/x are irreducible over the rationals if p is an 

odd prime. 
By (11) and the fact that the coefficients of L (x) are integers, we have 
Corollary 2.1. If n = 2m + 1 then 2 divides 

UW) 
for any s such that 0 ^ s ^ m. 

Using (3) together with Theorems 2.2 and 2.3, we have 
Theorem 2.4. (a) The Lucas polynomials L (x), n ^ 1, are irredicuble over the ^ n 

rationals if and only if n = 2 for some integer k — 1. 
(b) The polynomials L (x)/x, n odd, are irreducible over the rationals 

if and only if n is a pr ime. 

3. IRREDUCIBILITY OF V (x,y) 

It is a well known fact that 
n 0n 
a. -

and 
(14) Vn(x,y) = an + /3n , n ^ 0 , 

(13) U (x,y) = „ " P , n s> 0 

where a = (x + \/x2 + 4y) /2 and j3 = (x - ^x2 + 4y) /2 . 
In [4] , we find 
Lemma 3.1. (a) For n ^ 0, 

[(n-l)/2] 
TT . v \ ^ / n - k - 11 n -2k - l k 
Un( x'y ) = L J I k ) X y • 

k=0 X ' 

(b) For n > 0, m > 0, 

(U (x,y), U (x,y)) = U, , (x,y) . m J n ,J (m,n) J 

Using (13) and (14), a straightforward argument yields 
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Lemma 3.2. (a) V^x .y) = y U ^ x . y ) + U n + 1 (x ,y) , n a 1 ; 

(b) U2 n(x,y) = Un(x,y)Vn(x,y), n 2= 0 ; 

(C) U 2n ( x ' ^ V (2k + l )n + l ( x >y> + ^ k - D n ^ 

= V ( 2 k + l ) n ( x ' y ) U 2 a + l ( x ' y ) -

Using (a) of Lemma 3.1 and 3.2, we have, for n — 1, that 

[(n-2)/2] . . [n/2] , v 
, , , v X P n - k - 2 ) n-2k-2 k+1 ^ V""* / n - k \ n-2k k 

V^ = 2 ^ \ k ) x y + XJ I k ) x y 

k=0 * ' k=0 X ' 

[n/2] [n/2] 

k=l x / k=0 x ' 

[n/2] 

(15) 

E / n - k - l \ n n-2k k , n 
1 k - i k x y + x • 

k=l \ ; 

Hence, 
Lemma 3.3. (a) For n ^ 1, V (XjV2) is homogeneous of degree n. 

(b) If n is odd then x is a factor of V (x,y2) and V (x,y2) /x is ho-
mogeneous of degree n - 1. 

By (b) of Lemma 3.1, (U (x,y), U (x,y)) = 1. Using this fact together with (b) of 
Lemma 3.2 and induction on k in (c) of Lemma 3.2, one obtains 

Lemma 3.4. If k > 1 then Vn(x,y) | v ( 2 k - i ) n ( x ' y ) ' 
In [3, p. 376, Problem 5 ] , we find 
Lemma 3.5. A homogeneous polynomial f(x,y) over a field F is irreducible over F 

if and only if the corresponding polynomial f(x, 1) is irreducible over F. 

Using Lemmas 3.3 and 3.5 with Theorem 2.4, we have 

Theorem 3.1. (a) The polynomials V (xjV2) are irreducible over the rationals if and - n 
only if n = 2 for some integer k ^ 1. 

(b) The polynomials V (x,y2)/x, n odd are irreducible over the r a -
tionals if and only if n is an odd prime. 

Since f(x,y) is irreducible if f(x,y2) is irreducible and x is a factor of V (x,y) for 
n odd by (15), we apply Lemma 3.4 and Theorem 3.1 to obtain 

Theorem 3.2. (a) The polynomials V (x,y) are irreducible over the rationals if and 
only if n = 2 for some integer k greater than or equal to one. 
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(b) The polynomials V (x,y)/x, n odd, are irreducible over the r a -
tio nals if and only if n is an odd prime. 

Letting y = 1 and n = 2m + 1 in (15), we see that 

/..^ T / v / \ " " s n - k - 1 1 n n -2k- l , n -1 
(16) L n ( x ) / x = 2 J k - 1 k X + X ' 

k=l X ' 

Comparing the coefficients of x ~ ~ in (16), 1 ^ s ^ m, with the result obtained 
in (11), we have 

Corollary 3.1. If n = 2m + 1 and 1 ^ s ^ m then 

,-w-»2(iX:) - (n;: il) f • 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAN 

University of New Mexico, Albuquerque, New Mexico 87131 

Send all communications regarding Elementary Problems and Solutions to Professor 
A. P. Hillman, Dept. of Mathematics and Statistics, University of New Mexico, Albuquerque, 
New Mexico 87131. Each problem or solution should be submitted in legible form, prefer -
ably typed in double spacing, on a separate sheet or sheets, in the format used below. Solu-
tions should be received within four months of the publication date, 

DEFINITIONS 

The Fibonacci numbers F and the Lucas numbers L satisfy 
n n J 

F ô = F ^ + F , F0 = 0, Fi = 1 and L ^0 = L x1 + L , L0 = 2, L, = 1. n+2 n+1 n' u * n+2 n+1 n °  l 

PROBLEMS PROPOSED IN THIS ISSUE 

B-274 Proposed by C. B. A. Peck, State College, Pennsylvania. 

Approximate ( \IE - l ) /2 to within 0.002 using at most three distinct familiar symbols. 
(Each symbol may represent a number or an operation and may be repeated in the expression.) 

B-275 Proposed by Warren Cheves, Littleton, North Carolina. 

Show that 
F = L F , -v + ( - l ) m XF , Qv . mn m m(n-l) m(n-2) 

B-276 Proposed by Graham Lord, Temple University, Philadelphia, Pennsylvania. 
Find all the tr iples of positive integers m, n, and x such that 

F, = x m where h = 2 and m > 1 . 
h 

B-277 Proposed by Paul S. Bruckman, University of Illinois, Chicago Circle, III. 

Prove that L 2 n ( 2 k + 1 ) = L 2 n (mod F 2 n ) . 

B-278 Proposedby Paul S. Bruckman, University of Illinois, Chicago Circle, III. 

Prove that ^(2n+1}(4k+1) - ^2n+1 (mod F 2 n + 1 ) . 

B-279 Proposed by Richard M. Grassl, University of New Mexico, Albuquerque, New 
Mexico. 

Find a closed form for the coefficient of x in the Maclaurin ser ies expansion of 

0 2 
(x + 2x)/(l - x - x2) . 
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SOLUTIONS 
SEVEN DO'S FOR TWO SUSY'S 

B-250 Proposed by Guy A.R. Guillotte, Montreal, Quebec, Canada. 

DO 
YOU 

LIKE 
SUSY 

In this alphametic, each let ter stands for a part icular but different digit, nine digits 
being shown here . What do you make of the perfect square sum SUSY ? 

Solution by Raymond E. Whitney, Lock Haven State College, Lock Haven, Pa. 

There are four possible SUSYTs. They are 2025, 3136, 6561, 8281. SUSY = 2025 
leads to the six solutions shown below: 

76 86 49 89 98 48 
560 560 590 590 580 580 
1389 1379 1386 1346 1347 1397 
2025 2025 2025 2025 2025 2025 

SUSY = 3136 leads to one solution: 

57 
671 
2408 
3136 

The other two 4-digit numbers lead to no solutions. Thus the likelihood is that SUSY = 
2025 and she is definitely 2025 or 3136. 

Also solved by Richard Blazej, Donald Braffitt, Paul S. Bruckman, Juliana D. Chan, 
Warren Cheves, Herta T. Freitag, Ralph Garfield, Myron Hlynka, J. A. H. Hunter, 
John W. Milsom, C. B. A. Peck, Jim Pope, Richard W. Sielaff Charles W. Trigg, 
Lawrence Williams, David Zeitlin, and the Proposer. 

FAIR GAME 

B-251 Proposed by Paul S. Bruckman, San Rafael, California. 

A and B play a match consisting of a sequence of games in which there are no t ies . 
The odds in favor of A winning any one game is m. The match is won by A if the number 
of games won by A minus the number won by B equals 2n before it equals -n. Find m 
in te rms of n given that the match is a fair one, i. e. , the probability is 1/2 that A will 
win the match. 
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Solution by Dennis Staples, The American School in Japan, Tokyo, Japan, 
The game specifies that A wins whenever A's wins - Bfs wins reaches 2n before it 

reaches -n. Said another way, A wins whenever Afs wins - Bfs wins + n reaches 3n be-
fore it reaches 0. 

Recalling the notion of Markov chains, let u(i) be the probability that A reaches 3n 
(in other words, wins), given that i = Afs wins - B's wins + n. Using techniques designed 
for solution of Markov chain problems, it can be found that 

( l - m V _ (l - m \ 
u(i) = V m / ; \ mj 

•-NO 3n 

Since A and B begin competition when i = n, and since A's chances of winning are 
to be 1/2, 

3n 

3n 

1 - m I 1 - m 
J = \ m / " \ m / 

(i^r-»(Hr),-»(iirJ 
3n 

/ 1 _ TVI V 

+ 1 = 0 . 

This is a ra ther familiar equation, and it can be easily shown that the roots , (1 - m) /m, 
are equal to the following when n = 1 : 

- 1 + N/5 - 1 - N/5 
_ 1 , _ _ , or 2 • 

Of these values, only (-1 + \[E)/2 = 0.618- • • is acceptable in the case we are considering. 

Thus, when n = 1, 

1 ~ m = 0.618 ••• m 

1 - m = (0.618 • • • ) m 

m = 1 . 6 1 8 - . . = ° - 6 1 8 - " ' 

For the general case , 
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,1/n 
I 1.618 •• • ) = (0.618 • •• ) l / n 

Also solved by Ralph Garfield and the Proposer. 

SOMEWHAT ALTERNATING SUM OF TRINOMIALS 
B-252 Proposed by Wray G. Brady, Slippery Rock State College, Slippery Rock, 

Pennsylvania. 

Prove that 

V (-Dk _ i 
A--^ i! j ! k! n! 

i+j+k=n 

Solution by Harvey J. Hindin, Dix Hills, New York. 

The multinomial theorem (G. Chrystal , Textbook of Algebra, Pa r t 2, Dover Reprint, 
New York, 1961, page 12), may be stated as: 

(1) (x + y + z ) n = X ) T r f W x V z k 

i+j+k=n 

If we let x = y = 1, and z = - 1 , we have: 

(1 + 1 - If - 1 = nt 2 $ £ (2) 
i+j+k=n 

o r 

(3) X ) F J r ^ - 3 - Q-E-D-
i+j+k=n 

Problem 34> page 20 of Chrystal is similar . 

Also solved by Paul S. Bruckman, Michael Capobianco, Timothy B. Carroll, Herta 
T. Freitag, Ralph Garfield, Lawrence D. Gould, Myron Hlynka, Graham Lord, 
C. B. A. Peck, Raymond E. Whitney, David Zeitlin, and the Proposer. 

TRINOMIAL EXPANSION WITH F'S AND LfS 

B-253 Proposed by Wray G. Brady, Slippery Rock State College, Slippery Rock, 
Pennsylvania. 

Prove that 
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( - l ) k L ^ ^ ( - l ) k F 
Y ^ • 3+ 2 k V 
Z-J i! j ! k! ° Z^J it j» k! 

i+j+k=n i+j+k=n 
Solution by C. B. A. Peck, State College, Pennsylvania. 

In the trinomial expansion 

(x + y + z) 

j+2k 

i+j+k=n 
where 

2 ^"(u.k) 
-4 4-1;- —:r» * ' 

( i .J.k) = «'"*'•* 

with i + j + k = n, let x = 1, y = a(fi), z = -a2 (-j82). From the Binet formulas, the two 
expressions are proportional to (1 + a - a2) ± (1 + /3 - /32) = 0 ± 0n = 0 . 

Comment. A number of solvers pointed out that the FTs or L's could be replaced by 
generalized Fibonacci numbers. 

Also solved by Paul S. Bruckman, Timothy B. Carroll, Herta T. Freitag, Ralph 
Garfield, Harvey J. Hindin, Graham Lord, David Zeitlin, and the Proposer. 

MORE OR LESS LUCAS 

B-254 Proposed by Clyde A, Bridger, Springfield, Illinois. 

Let A = a + b + c and B = d + e + i' , where a, b, and c are the roots of 
x3 - 2x - 1 and d, e, and f are the roots of x3 - 2x2 + 1. Find recursion formulas for the 
A and for the B . Also express B in terms of A . n n ^ n n 

Solution by Graham Lord, Temple University, Philadelphia, Pennsylvania. 

The roots of x3 - 2x - 1 are - 1 , a, (3 and of x3 - 2x2 + 1 are 1, a, /3 where a,p 
th have their usual (Fibonacci) meaning. Hence if L is the n Lucas number, then 

A = ( - l ) n + L and B = 1 + L . 
n n n n 

Consequently from the properties of L for n ^ 0 : 

A l 0 = 2A ,.. + A , n+3 n+1 n 

B -LO = 2B ^0 - B , 
n+3 n+2 n 

and 
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n even 4 A 
3 =< n 

n J A + 
B * A ' 2 n odd 

B n = AQ + 1 - ( - l ) n Q.E .D. 

Also solved by Richard Blazej, Paul S. Bruckman, Timothy B. Carroll, Herta T. 
Freitag, Ralph Garfield, Robert McGee and Juliana D. Chan, Raymond E. Whitney, 
Gregory Wulczyn, David Zeitlin, and the Proposer. 

FIBONACCI CONVOLUTION REVISITED 

B-255 Proposed by L. Carlitz and Richard Scoville, Duke University, Durham, 
North Carolina. 

Show that 

n 
E k ( n k k ) = E F k V k = [tn - DFn+1 + (n + DF^l/5 . 
2k<n 7 k=0 

Solution by C. B. A. Peck, State College, Pennsylvania. 

The l .h. result is proved by Carlitz in the Fibonacci Quarterly, Vol. VII, No. 3, pp. 285-
286 (proposed by Hoggatt as H-131 in Vol. VI, No. 2, p. 142), so we confine ourselves to the 
r . h . result (stated by Wall in Vol. I, No. 4, p. 28). The result for n = 0 is just F 0 F 0 i 0 = 
0-0 = 0 = [-1-1 + 1-1]/5 = [(0 - 1)F0+1 + (0 + l ) F 0 . i ] / 5 . and for n = 1 is F 0 F 1 - 0 + F J F ^ J = 
0-1 + 1-0 = 0 = [0-2 + 2-0]/5 = [(1 - 1)F1+1 + (1 + D F ^ i l / 5 . Suppose the result true for all 
n up to some m > 1. Then 

E F, F _ , , . = > F. F . + \ ^ F. F - . + F x 1 F ^ . ^ + F F -k m+l -k Z—d k m-k / J k m - l - k m+1 m+l-(m+l) m m - l - m 
k=0 k=0 k=0 

= [(m - 1)F _,_-, + (m + 1)F -, + (m - 2)F + mF „ + F 5 ] / 5 L m+1 m - 1 m m-2 m J 

= [ m F J 0 + (m + 2)F 1 / 5 , L m+2 mJ ' 

so that by the Second Principle of Finite Induction, the right-hand result is true. 

Also solved by Paul S. Bruckman, Timothy B. Carroll, Herta T. Freitag, Ralph 
Garfield, Phil Tracy, and the Proposer. 
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Send all communications concerning Advanced Problems and Solutions to Raymond E. 
Whitney, Mathematics Department, Lock Haven State College, Lock Haven, Pennsylvania 
17745. This department especially welcomes problems believed to be new or extending old 
resul ts . Proposers should submit solutions o r other information that will ass is t the editor. 
To facilitate their consideration, solutions should be submitted on separate signed sheets 
within two months after publication of the problems. 

H-230 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, Pa. 

(a) If 5 is a quadratic nonresidue of a prime p (p f- 5), then P | F . / -v, k a posi-
tive integer. 

(b) If 5 is a quadratic residue of a prime p, then P | F , , -v, k a positive integer. 

H-231 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

1. Let A0 = 0, At = 1, 
A2k+1 = A 2k + A 2 k - 1 

Find A . n 

A = A _ A 
A2k+2 2k+l 2k 

B2k+1 " B2k + B 2 k - 1 

B2k+2 = B2k+1 " B2k 
Find B . 

H-232 Proposed by R. Garfield, the College of Insurance, New York, New York. 

Define a sequence of polynomials, { G , (x)}, Q as follows: 

= £Gk(x)tk 

1 - (x2 + l)t2 - xt3
 k = Q 

1. Find a recursion formula for G, (x). 
2. Find G, (1) in te rms of the Fibonacci numbers. 

3. Show that when x = 1, the sum of any 4 consecutive G numbers is a Lucas number. 
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H-233 Proposed by A. G. Shannon, NSW Institute of Technology, Broadway, and 
The University of New England, Armidale, Australia. 

The notation of Carlitz* suggests the following generalization of Fibonacci numbers. 
Define 

»(r) t nk+k , nk+k w . k , k x V = (a - b )/(a - b ) , 

where k = r - 1, and a,b are the zeros of x2 - x - 1, the auxiliary polynomial of the o r -
(2) dinary Fibonacci numbers , f 

Show that 
oo 

(a) 2 fn)xR = 1 / ( 1 ~ ^ + b k ) x + ^ ^ ^ • 
n=0 

Let f, = (a - b )/(a - b), and prove that 

«•> ^- E (?)(n;m)CiC2Bf 

(Note that when r = 2 (and so k = 1), f. = f, - = 1, f, 2 = 0, and (b) reduces to the 
well known 

<r - s (n -j°) • 

SOLUTIONS 
SUCCESS! 

Editorial Note. We previously listed H-61, H-73, and H-77 as unsolved. However, 
this is incorrect. H-61 is solved in Vol. 5, No. 1, pp. 72-73. H-73 is solved in Vol. 5, 
No. 3, pp. 255-256. H-77 is solved in Vol. 5, No. 3, pp. 256-258. 

ANOTHER OLDIE 

H-62 Proposed by H. W. Gould, West Virginia University, Morgantown, W. Va. 

Find all polynomials f(x) and g(x), of the form 

f(x + 1) = 2^ a - x J ' a. an integer, 

j=0 

*L. Carl i tz , "The Characterist ic Polynomial of a Certain Matrix of Binomial Coefficients," 
Fibonacci Quarterly, Vol. 3 (1965), pp. 81-89. 
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s 
g(x) = ^ b . x J , b. an integer, 

j=0 
such that 

2 Jx 2 f% + 1) - (x + D V W } + 3{x2f2(x + 1) - (x + l)2g2(x)} 

+ 2(x + l ) |xf (x + 1) - (x + l)g(x)j- = 0 . 

H-87 Proposed by Monte Boisen, Jr., San Jose State University, San Jose, Calif. 

Show that, if 

and 
u0 = u2 = u3 = • • • = u n _ 1 = 1 

Uk = Uk-1 + Uk-2 + ' ' • + Vn k " n • 

Eukxk 

then 

1 - x2 - 2x3 - • • • - (n - 2)x11"1 

i 2 n 

l - X - X ^ - ' - ' - X . -

k=0 

Solution by Clyde A. Bridger, Springfield, Illinois. 
Write 

g(x) = c0 + Cjx + c2x2 + . . . + cn_1xI1~ , 

f (x) = a0 + ajx + a2x2 + • • • + a x 
and -. 

g/f = q(x) = A0 + Al X + A2x2 + • • • + A n x + A ^ x + • • • , 

where a0 and a are not zero, at least one c, is not zero , and f(x) = 0 has no multiple 
roots. 

Then g/f generates a recurrence of length n, as is at once apparent by either long 
division or by equating coefficients of like powers of x in g(x) = f(x)-q(x). The first n Afs 
depend entirely on the c ' s , as the following set of equations shows. 

c0 = a0A0 

Ci = a0A1 + a ^ o 

c2 = a0A2 + Q,1A1 + a2A0 

c 1 = , a 0 A n + a-. A n + • • • + a nA0 n-1 ^ n -1 * n-2 n-1 u 

0 = a 0 A n + a 1 A n _ 1 + . . . + anA0 

0 = a0Ak + a 1 A k _ 1 + • . • + a k A 0 (k ^ n) 
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s t Beginning with the (n + 1) equation, A can be expressed directly in t e rms of the n - 1 

preceding A's . The general t e rm A, for any k ^ n provides the formula or difference 
equation that the fraction g/f generates. 

To solve the given problem, one sets c0 = 1 and c, = -(n - 1) for i = 1 to i = n -
1, an = 1, a. = - 1 for i = 1 to n, and A. = u. . ^ i i i 

FIT TO A "T" 
H-197 Proposed by Lawrence Somer, University of Illinois, Urbana, Illinois. 

Let 

• }„.i 

be the t-Fibonacci sequences with positive entr ies satisfying the recursion relationship: 

t 
,(t) -t V * u w = > u . . n A—* n-i 

i=l 
Find 

t
lim 5 • 

n-*oo 

Solution by the Proposer. 

By analyzing the convergents of continued fractions, one can easily see that for any 
fixed t, and any initial ent r ies , u} , u2 , • • • , u, , 

(t) 
*. n+l lim —rrr n -* oo (t) u n 

will be a constant. Let 

For this choice we have 

Let 

At) _ At) . . . (t) _ t 

(t) „t+l - , (t) 0t+2 
Vi = 2 --1 and V2 = 2 " 3 • 

(t) 
* = lim J*£ 

n —• oo (t) u n 

If one examines the convergents of the continued fractions, he finds 
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u( t ) u ( t ) 

ut V i 
for large enough n. Thus 

2 - 1 < *!/ < 2 - 3 

2f c 2 t + 1 - 1 

2 _ J - < «/> < 2 

and 
2 l 2 t + 1 - l 

J i m «f» = 2 . 
I —» oo 

It thus follows that the desired limit is 2. 

Also solved by P. Tracy and one unsigned solver. 

PELL-MELL 

H-198 Proposed by E. M, Cohn, National Aeronautics and Space Administration, 
Washington, D.C. 

There is an infinite sequence of square values for triangular numbers * 

k2 = m(m + l ) /2 . 

Find simple expressions for k and m in te rms of Pell numbers, P ( p
n + 2 = 2 P

n + l + P n ' 
where P0 = 0 and Vt = 1). 

Solution by the Proposer, 

Since (m, m + 1) = 1, the odd factor must be a square, say (2s + l)2 . Then the even 
factor is (2s2 + 2s) or (2s2 + 2s + 1). (After division by 2.) 

Let k2/(2s + l)2 = q2, so that either 

2s2 + 2s - q2 = 0 

o r 
2s2 + 2s + 1 - q2 = 0 . 

Solving for s and re-arranging, 
(2s + l)2 = 2q2 ± 1 

k = q^2q2 ±" l 

*A. W. Sylvester, Amer. Math. Monthly, 69 (1962), p. 168. 
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It has been shown* that q = P for Diophantine solutions of such discriminants, and that the 
discriminant itself equals P J l - P . Fur thermore, P (P , - - P ) = i -P n . Thus 

n n+1 n n n+1 n 2 2n 

n 2 2n 

For even n, 

m = 2 P 2 , n n 

and for odd n, 

m = 2 P 2 ± 1 . n n 

Since even Pell numbers a re alternately congruent to 0 (mod 4) and 2 (mod 4), pairs of 
values of k are of different parity. 

Also solved by P. Bruckman, who also solved H-192, H-193, and H-194. 

*E. M. Cohn, submitted to the Fibonacci Quarterly. 

HERE AT LAST!! - FIBONACCI NOTE SERVICE 

The Fibonacci Quarterly is offering a service in which it will be possible for its readers 
to secure background notes for ar t ic les . This will apply to the following: 

(1) Short abstracts of extensive resul t s , derivations, and numerical data,, 
(2) Brief ar t icles summarizing a large amount of research. 
(3) Articles of standard size for which additional background material maybe obtained. 
Art icles in the Quarterly for which this note service is available will indicate the fact, 

together with the number of pages in question. Requests for these notes should be made to 

Brother Alfred Brousseau 
St. Mary 's College 
Moraga, California 94574 

The notes will be Xeroxed. 
The price for this service is four cents a page (including postage, mater ials and labor). 
This service will begin with the April , 1974 issue, coming soon. 


