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1. INTRODUCTION 
In [2] , Webb and Pa rbe r ry study the divisibility properties of the Fibonacci polynomial 

sequence {f (x)} defined by the recursion 

fn+2(x) = xfn + 1(x) + fn(x); f0(x) = 0, ft(x) = 1. 

As one would expect, these polynomials possess many properties of the Fibonacci sequence 
which, of course, is just the integral sequence {f (1)}. However, a most surprising result 
is that f (x) is irreducible over the ring of integers if and only if p is a prime. In contrast, 
for the Fibonacci sequence, the condition that n be a prime is necessary but not sufficient 
for the primality of f (1) = F . For instance, F19 = 4181 = 37-113. 

In the present paper, we obtain a ser ies of resul ts including that of Webb and Parbe r ry 
for the more general but clearly related sequence {u (x,y)} defined by the recursion 

un + 2(x ,y) = xun + 1(x,y) + y u n ( x , y ) ; u0(x,y) = 0, ut(x,y) = 1. 

The first few terms of the sequence are as shown in the following table: 

n 

0 

1 

2 

3 

4 

5 

6 

7 

un(x,y) 

0 

1 

x 

x2 + y 

x3 + 2xy 

x4 + 3x2y + y2 

x5 + 4x3y + Sxy2 

x6 + 5x4y + 6x2y2 + y3 

8 x7 + 6x5y + 10x3y2 + 4XV3 

113 
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The basic fact that we will need is that Z [ x , y ] , the ring of polynomials over the inte-
ge r s , is a unique factorization domain. Thus, the greatest common divisor of two elements 
in Z [ x , y ] is (essentially uniquely) defined. 

Useful Property A: if a,j3, and y a re in Z[x ,y] and y | afi with y i rreducible, 
then y\a or y|/3. 

For simplicity, we will frequently use u in place of u (x,y) and will let 

/ x x + N/ x2 + 4y a = a(x,y) = g * 

and 

o ot \ x - \/x2 + 4y P = j3(x,y) = ~ * 

2. BASIC PROPERTIES OF THE SEQUENCE 

Again, as one would expect., many propert ies of the Fibonacci sequence hold for the 
present sequence. In particular, the following two results are entirely expected and are 
easily proved by induction. 

Theorem 1. For n ^ 0, 

u = — g— 
n a - jS 

Theorem 2. For m ^ 0 and n ^ 0, 

u , ,_. = u 1 1 u J 1 + y u u m+n+1 m+1 n+1 J m n 

The next result that one would expect is that (u , u + - ) = 1 for n ^ 0. To obtain 
this we first prove the following lemma. 

Lemma 3. For n > 0, (y, u ) = 1. 
Proof. The assert ion is clearly true for n = 1 since \xt = 1. Assume that it is true 

for any fixed integer k ^ 1. Then, since 

V i = x u k + y \ - i • 

the assertion is also true for n = k + 1, and hence for all n ^ 1 as claimed. 
We can now prove 
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Theorem 4. For n ^ 0 , (u , u , - ) = 1. N n n + 1 ' 
Proof. Again the result is trivially true for n = 0 and n = 1 since u0 = 0, % = 1, 

and u2 = x. Assume that it is true for n = k - 1 where k is any fixed integer, k ;> 2, and 
let d(x,y) = (u,, u, - ). Since 

V i = x \ + y \ - i • 

this implies that d(x,y) | u. -y. But (d(x,y), y) = 1 by Lemma 3 and so d(x,y) | u, . 
But then d(x,y) | 1 since (u, , u, ) = 1 and the desired result holds for all n ^ 0 as 
claimed. 

Lemma 5. For n ^ 0, 

r(n-l)/2] 
u (x, y) 

n-lJ/2] 
X ^ / n - i - 1 \ n -2 i - l i 

Proof. We define the empty sum to be zero, so the resul t holds for n = 0. For n = 1, 
the sum reduces to the single te rm 

0) xuyu = 1 = ut 

Assume that the claim is true for n = k - 1 and n = k, where k ^ 1 is fixed. Then 

Vi = x \ + yVi 

[ (k - l ) /2 ] v [0^2)/2] 

= v (k -1 - * )xk-2y + 2 (k" i'2 )x k"2 i -v+ 1 

i=0 ^ ' i=0 V ' 

[ ( k - l ) ^ ] , . |V2l 

• E (k-;- l)x
t-2v + | ; ( t - 1 i - 1

i ) , k - v 
[k/2] 
^ * / k - i \ k-2i i 

i=0 x ' 

Thus, the result holds for n = k + 1 and hence also for all n ^ 0 as claimed. 
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3. THE PRINCIPAL THEOREMS 

Theorem 6. For m ^ 2, u u if and only if m n. 
—; ' m ' n J ' Proof. Clearly u u . Now suppose that u u. where k ^ 1 is fixed. Then, — J m ' m ^ m ' km 

using Theorem 2, 

(k+l)m km+m 

= u. u M + yu. - u km m+1 J km-1 m 

But, since u | u, by the induction assumption, this clearly implies that u | u,, ^ . 
Thus, u u if m n. m ' n ' 

Now suppose that m ^ 2 and that u | u . If m/jn, then there exist integers q and 
r with 0 < r < m, such that n = mq + r . Again by Theorem 2, we have that 

u = u 
n mq+r 

= u ,., u + yu u n . mq+1 r J mq r - 1 

Since u u by the first part of the proof, this implies that u u , _. u . But, since m i mq J * F F m ' mq+1 r 
(u , u - ) = 1 by Theorem 4, this implies that u | u and this is impossible, since 

H 4 I 

u is of lower degree than u in x. Therefore, r = 0 and m|n and the proof is complete. 
Theorem 7. For m ^ 0, n ^ 0, (u , u ) = \i/ x. m n (m,n) 
Proof. Let d = d(x,y) = (u , u ). Then it is immediate from Theorem 6 that 

U(m,n) ' 
Now, it is well known that there exist integers r and s with, say, r > 0 and s < 0, 

such that 

(m,n) = r m + sn . 

Thus, by Theorem 2, 

rm (m,n)+(-s)n 

1/ v U , - -r y u / \ -, U 
(m,n) -sn+1 J (m,n) - l -sn 

But then d u and d u by Theorem 6 and so d u, xu ,- . But, (d, u ,-, )= 
1 - sn ' rm J ' (m,n) -sn+1 -sn+1 

1 by Theorem 4, and so d | u, \ by Useful Property A from Section 1. Thus, d = 
u, x as claimed. (m,n) 
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Theorem 8. The polynomial un = u (x,y) is irreducible over the rational field Q if 
and only if n is a prime. 

Proofo From Lemma 5, if we replace y by y2 we have 

un(x,y*) = ] > ] ( n " J " X) *n-2U1y2i 

which is clearly homogeneous of degree n - 1. Now it is well known (see, for example, [ l , 
p. 376, problem 5]) that a homogeneous polynomial f (x, y) over a field F is irreducible if 
and only if the corresponding polynomial f (x, 1) is irreducible over F. Since u (x, 1) is 
irreducible by Theorem 1 of [2] , it follows that u (x,y2) and hence also u (x,y) is i r redu-
cible over the rational field and thus is irreducible over the integers. 

4. SOME ADDITIONAL THEOREMS 

For the Fibonacci sequence { F } , for any nonzero integer r there always exists a 
positive integer m such that r | F . Also, if m is the least positive integer such that 
r I F , then r | F if and only if m|n. It is natural to seek the analogous results for the 
sequence of Fibonacci polynomials {f (x)} considered by Webb and Parber ry and the gener-
alized sequence {u (x,y)} considered here. In a sense, the first problem is solved by Webb 
and Pa rbe r ry for the sequence of Fibonacci polynomials, since they give explicitly the roots 
of each such polynomial. However, it is still not clear exactly which polynomials r(x) pos-
sess the derived property. On the other hand, it is immediate that the first result mentioned 
above does not hold for all polynomials r(x). For example, if c is positive, no linear fac-
tor x - c can divide any f (x) since this would imply that f (c) = 0, and this is impossible 
since f (x) has only positive coefficients. 

Along these l ines, we offer the following theorems which, among other things, show 
that the second property mentioned above does hold without change for u (x,y) and hence 
also for f (x). We give this result first. 

Theorem 9. Let r = r(x, y) be any polynomial in x and y. If there exists a least 
positive integer m such that r | u , then r | u if and only if m | n. 

Proof. By Theorem 6, if mjn , then u | u . Therefore, if r | u we have by 
transitivity that r | u . Now suppose that r | u and yet m |n . Then there exist integers 
q and s with 0 < s < m such that n = mq + s. Therefore, by Theorem 2, 

u = u n mq+s 
= u ,., u + • yu u _. . mq+1 s J mq s-1 

Since r u and r u , it follows that r u ,., u . But (u , u ,_,) = ! and this 1 mq i n ' ! mq+1 s mq mq+1 
implies that r | u . But this violates the minimality condition on m and so the proof is 
complete. 
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Theorem 10. For n ^ 2, 

n'1 / kir \ 
un(x,y) = n i x - 2 W y c o s — J 

Proof. From the proof of Theorem 8, it follows that 

Vx.y2) = y n - \ f f. A = yn"lf
nm 

where f (x) is the n Fibonacci polynomial mentioned above. Thus, 

un(x,y) = y ( n _ 1 ) / 2 f n ( x / ^ 7 ) 

and it follows from [2, page 462] that 

f (x/ -Jy) = " n (-5_ - 2i cos î L ) 
k=i v ^ n J 

This, with the preceding equation, immediately yields the desired result. 
Corollary 10. For n ^ 2, n even, 

and, for n odd, 

(n-2)/2 / k \ 
u (x,y) = x II I x2 + 4y cos2 — I 

k=i \ n / 

( n " l ) / 2 / kTT \ 
u (x,y) = n ( x2 + 4ycos 2 — J 

n k=l \ n / 

Proof. This is an immediate consequence of Theorem 10, since, for 1 ^ k < n / 2 , 

kn (n - k)77 
cos — = - cos - — 

n n 
It is clear from the preceding theorems that there is a precise correspondence between 

the polynomial factors of u (x,y) and those of u (x, 1) = f (x). Thus, it suffices to consider 
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only those of f (x). Also, it is clear that, except for the factor x, the only polynomial fac-
tors of f (x) with integral coefficients contain only even powers of x. While we are not able 
to say in every case which even polynomials are factors of some f (x) we offer the following 
partial resul ts . 

Theorem 11. 

(i) x J f (x) if and only if n is even. 

(ii) (x2 + 1) | f (x) if and only if 3 | n . 

(iii) (x2 + 2) | f (x) if and only if 4 | n. 

(iv) (x2 + 3) |f (x) if and only if 6 |n. 

(v) (x2 + c)|f (x) if c / 1, 2, or 3 and c is an integer. 

Proof. Since, except for x only, all polynomials with integral coefficients dividing 
any f (x) must be even, the results (i) through (iv) all follow from Theorem 9 with y = 1. 
One has only to observe that f2(x) is the first Fibonacci polynomial divisible by x, that 
f3(x) is the first Fibonacci polynomial divisible by x2 + 1, and so on. Pa r t (v) follows from 
the fact that 1 < 4 cos2 a < 4 for an a in the interval (0, TT/2). 

Theorem 12. Let m be a positive integer and let N(m) denote the number of even 
polynomials of degree 2m and with integral coefficients which divide at least one (and hence 
infinitely many) members of the sequence {f (x)}. Then 

N(m) < n I r 1 4k 

m 
Proof. Let f(x) be any polynomial counted by N(m). It follows from Corollary 10 with 

y = 1 that 

n/ x 2m , 2m-2 , , 2 . 
f(x) = x + a

m _ i x " ' a i x ao 

m 
= n (x2 + a.) 

3=1 J 

where a. = 4 cos2 j3. with 0 < |3. < TT/2 for each j . Therefore, 0 < a < 4 for each j . 

Since a k is the k elementary symmetric function of the tf.rs, it follows that 

0 < a < 
m-k (m

ty 
and hence that 
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N(m) < n f r 1 4k £(") 
as claimed. 

Of course, the estimate in Theorem 12 is exceedingly crude and can certainly be im-
proved. It is probably too much to expect that we will ever know the exact value of N(m) 
for every m. 

Our final theorem shows that with but one added condition the generalization to u (a,b) 
of the first result mentioned in this section is valid. 

Theorem 13. Let r be a positive integer with (r,b) = 1. Then there exists m such 
that r u (a,b). 1 m 

Proof. Consider the sequence u (a,b) modulo r. Since there exist precisely r2 

distinct ordered pairs (c,d) modulo r , it is clear that the set of ordered pairs 

{(u0(a,b), u^a .b)) , (u^a.b) , u2(a,b)), • • • , (u 2<a,b), u r 2 + 1(a ,b))} 

must contain at least two identical pairs modulo r. That i s , there exist s and t with 
0 < s < t ^ r2 such that 

and 

But 

and 

and this implies that 

u (a,b) = u,(a,b) (mod r) s z 

u (a,b) = u t + 1 (a ,b) (mod r) 

bus_3(a,b) = u g + 1 (a ,b) - aug(a,b) 

bu, 1(a,b) = u, - (a,b) - au,(a,b) 

bu (a,b) = bu, ..(a,b) (mod r) 

Since (r,b) = 1, this yields 
u 1(a ,b) = ut_x(a,b) (mod r) . 

Applying this argument repeatedly, we finally obtain 

0 = u (a,b) = u, (a,b) (mod r) 
s -s t - s 

so that r uf (a,b) and the proof is complete. 
' C—S 
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This paper is modelled after an article by Hansen [l] dealing with identities for Fib-
onacci and Lucas t r iples . Free use has been made of the methods of that ar t icle , and this 
paper follows its format closely. It is hoped that seeing Fibonacci methods used in a slightly 
different context will lead the reader to a deeper understanding of those methods, in addition 
to the production of some new Pell identities. 

The Pell sequence is closely akin to the Fibonacci sequence; i t is defined by P0 = 0,, 
PA = 1, P n + 2 = P + 2 P n + r This gives us the sequence 0, 1, 2, 5, 12, 29, 70, 169, 408, 
985, • • ' . We may also define a Pell analogue of the Lucas sequence: R0 = 2, B1 = 2, 
R l 0 = K + 2R ,.,. It is simple to show that, with these definitions, P ,- + P n = R . n+2 n n+1 F n+1 n-1 n 
Another useful result , easily proved by the usual Fibonacci methods, gives the Pell sequence 
and its Lucas analogue as functions of their subscripts: 

= a^_-j£ = an + n 
n a - p n 

where 

a = 1 + N/2* and j3 = 1 - si2 . 

Note that a and j8 are roots of the equation x2 - 2x - 1 = 0, and hence aj3 = -1 and a + 

(3=2. 

Using the generating functions of 

{P x }°° and {H + I00 

we shall obtain identities for the triples P P P , P P R , P R R , and R R R , where 
p p q r p q r p q r p q r 

p , q, and r are fixed integers. 
To derive the desired generating functions we note that, using the Binet form of the 

Pell numbers , 
121 
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11=0 n=0 

n+m nn+m a - B n 
£ x 

a - |3 
(1) x n=0 n=0 

E n n Dm \ ""̂  1 I m X"™^ n n oHi X on n 
• a N a x - jS > ]3 x 

1 / m 1 fim 1 \ 
a - p \ a 1 - ax ~ P 1 - j S x ) 

n / z m 0niv 0 / m-1 0 m - h \ 
1 / (a - P ) - ofifc - p )x \ 

or - ]8 I (1 - ax)(l - j3x) I 

P - P nx m m - 1 
1 - 2x - x2 

In a s imilar fashion we find 

R + R , x 
<2> > • W n - m m-' 1 - 2x - x^ 

n=0 

We now evaluate formulas (1) and (2) for -2 ^ m ^ 4 , letting 1 - 2x - x2 = D. 

* n P - 2 + P - 3 X _ -2 + 5x \ ^ p n E - 2 + R - 3 X 6 - 14x 
n - 2 X D ~ ™ D ' / ^ n - 2 X ~ D D 

n=0 n=0 

E P x * - P - l + P - 2 X _ 1 - 2x . Y ^ R x n _ R - l + R - 2 X _ -2 + 6x 

V l X D "~D ' 2^ n-lX D D -

n=0 n=0 

P v11 - ° - 1 - ° + X • > P v11 - ° - 1 - 2 - 2 X 

n=0 n=0 
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oo 

p ^ . i ^ . i , V « . , / - " 1 , v - J -n+1 D D ' / j n+1 D D 
n=0 n=0 

p n = _J 1_ = 2 + x . X n J 2 1_ 6 + 2x 
n+2X D D ' / _^ i n+2X ~ D 

n=0 n=0 

n _ P 3 + P 2 X _ 5 + 2x . \ ^ ,, n _ R 3 + R 2 X 14 + 6x E". n+3 D D ' / j n+3 D D 
n=0 n=0 

T> n P 4 + P 3 X
 = 12 + 5x V ^ n R 4 + R 3 X

 = 34 + 14x 
n+4X D D ' / J n+4 D D 

n=0 n=0 

Using the fact that two se r i e s are equal if and only if the corresponding coefficients are 
equal, we now find several elementary identities. 

Since 

2 - 2x _1_ 1 - 2x 
D D D 

it follows that 

n=0 n=0 n=0 

£ 
n=0 

(P ^ + P n ) x n 
n+1 n-1 

and hence 

(3) R = P , - + P _. ; n a whole number . 
n n+1 n-1 

n+1 Using the Binet forms, it is not difficult to show that P = (-1) P and R & -n n -n 
(-1) R for any positive integer n. 
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We now observe that 

P ( -n)+l + P ( - n ) - l = P - ( n - l ) + P-n(n+l) 

= ( - l ) ( n - 1 ) + 1 P , + ( - l ) ( n + 1 ) + 1 P + 1 n -1 n+1 
= ( - l ) n (P , + P _ ,J ' n -1 n+1 
= ( - l ) n R 

' n 
= R 

-n 
Hence Eq. (3) holds for all integers n. 

We now proceed with some theorems necessary to the development of Pell tr iples. 
Theorem 1. P R + P , R 1 = R _ L 1 . 

n m n-1 m - 1 m+n-1 
Proof. Let m be any fixed integer. Then 

( P R + P n R , )xn = R , n m n-1 m - 1 m / J n 
n=0 n=0 n=0 

EP xn
 + R , Y i p nxn 

n m - 1 immaKd n -1 
n= 

R ^ + R m D m 
R x + R _, - 2R , x R , + R Q x 

m m - 1 m - 1 _ m - 1 m-2 
D D 

OO 

R E n+m-1 n 
- I T - x 

n=0 
and, equating summands, 

P R + P , R - = R n 
n m n-1 m - 1 n+m-1 Theorem 2. P P + P , P n = P j . -, . 

n m n-1 m - 1 n+m-1 
Proof. 

(P P + P , P _, )xn = P , n m n-1 m - 1 m / J n n m - 1 / A n -1 

n=0 n=0 n=0 

P £. + P 1 - 2x 
m D m - 1 D 

P x + P n - 2P nx P 0x + P _, 
m m - 1 m - 1 m-2 m - 1 

£ 
D D 

n+m-1 n 
D 

n=0 
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and, equating summands, 

P P + P P = P 
n m n-1 m - 1 n+m-1 

Theorem 3. R R + R , R n = R , + R , 0 = 8 P n m n-1 m - 1 n+m n+m-2 n+m-1 
Proof. Let m be any fixed integer. Then 

OO 

and hence, 

Now, 

(R R + R n R n )xn 
n m n-1 m - 1 7 

n=0 

= R m EE x n
+ R V . B l X

n 

n m - 1 / J n-1 
n=0 n=0 

m D m - 1 D 

2R -
m 

2(R m 

R + m 

R + 
m 

R + m 

- 2R x - 2R . + 6R n x m m - 1 m - 1 
D 

- R J + 2(3R -, - R )x m - 1 m - 1 m 
D 

R 0 + (2R , - 2R 0 ) x m-2 m - 1 m-2 
D 

R 0 + (R n + R 0 )x m-2 m - 1 m-3 
D 

R , x + R o + R o x 
m - 1 m-2 m-3 

D 

n=0 n=0 

R + 9 x n 
n+m-2 

(R a. + R -, o)*11 

n+m n+m-2 
n=0 

R R + R , R , = R ^ + R , n m n-1 m - 1 n+m n+m-2 
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R n + R n = ( P _ L O + P ) + (P + P 0 ) n - 1 n - 1 n+2 n n n - 2 

= 2 P , - + 3 P + P 0 n+1 n n - 2 

= 4 P + 3 P + 2 P - + P 0 n n n - 1 n - 2 

= 8P n 

We now u s e a p a r t i a l f r ac t ions technique to find the final n e c e s s a r y r e s u l t : 

(p + qx) (r + tx) _ p r + (pt + q r ) x + qtx2 

D D 

- # • 

P + P - x R + R , x 
m m - 1 s s - 1 

D " D 
(4) 

but also, by Eq. (4), 
P + P _,x R + R ,x - P , R , m m - 1 t s s -1 _ m - 1 s-1 

D2 

(pr + qt) + (pt + qr - 2qt)x 
D2 

OO o o 

= V P + x n . V E xn 

fx / n+m / A n+s 
n=0 n=0 

00 n 

k+m n-k+s 
n=0 k=0 

D D D 

(P R + P , R - ) + (P R n + P -R - 2 P -.R J x 
m s m - 1 s - 1 m s - 1 m - 1 s m - 1 s - 1 

D2 

- P , R 1 R ^ , + (P , R + P QR J x 
m - 1 s - 1 m + s - 1 m - 1 s m - 2 s - 1 

D D 2 

- R ^ - + (P -R + P 0 R J x 
z -, -D v 1 , m + s - 1 m - 1 s m - 2 s - 1 

m - 1 S-1 D i)2 

" 1 s _ 1 ' J n + 1 f J n + m + s - 1 / A 

n=0 n=0 n=0 

oo n 

.^^ZE ( -P X 1 P nR n ) x l l + > > P l a , R . j . ^ n x n 
n+1 m - 1 s - 1 / J / A k+1 n - k + m + s - 1 

n=0 n=0 k=0 

E(p ^ p ,R - +y^ n+1 m - 1 s - 1 / A 

n=0 k=0 

P k + l R n - k + m + s - l ) x 
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Hence, 

k+m n-k+s -P P R + 1 P R 
n+1 m - 1 s-1 / i *k+l n-k+m+s-1 

k=0 k=0 

and 

i - l R s - l - j / l f P n + l P m - l R s - l / J ( P k + l R n - k + m + s - l ' P k + m R n - k + s ) 8 

k=0 

Letting p = m - 1, q = n + 1, and r = s - 1, we obtain 
Theorem 4. 

q-1 

P "P "D = ^ , / p 13 _|_ J} T> \ 
P 9 r jLszJ ^+1 p+q+r-k p+k+1 q+r-k 

k=0 
Now we convolute 

P + P ,x P, + P, . x 
m m - 1 .,, t t -1 

with D D 

and, using the previous procedures, we find 
Theorem 5. 

r - 1 

P P P = l ( P P - P P ) 
P 3 r f\ J P+q+^-k k+l p+k-1 q+r-k 

k=0 

Similarly, we convolute 

R + R n x R, + R, n x 
m m - 1 ... t t -1 

with D D 
to obtain 

Theorem 6. 
P - l 

PP V r = Yl (8Pq+r+k+lPp-k " Rq+k+lRp+r-k) 

k=0 
Now, 

R R R = (P _,, + P - ) R R p q r p+1 p - l q r 

= P _ L 1 R R + P , R R p+1 q r p - l q r 
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P 

April 1974 

R R R p q r ( 8 Pq+r+k+l P p - k + l Rq+k+l R p+r-k+l * 
k=0 

p-2 

X j ( 8 P q + r + k + l P p - k - l ' Rq+k+l R p + r - k - l * 
k=0 

P- l 

k=0 

8 Pq+r+k+l ( P p -k + Pp-k-l) 

A 
p-2 

R q+k+l ( R p+r -k+l + Rp+r-k-

+ ( 8 P 2 P q + r + p - R q + p R r + 2 ) ' 
+ (8Pn P ^ ^ _,_.. - R ± ± 1 R ± 1 ) 1 p+q+r+1 q+p+1 r+1 

8 ( Pq+r+k+l R p - k Rq+k+l P p + r - k ) 

k=0 

+ 8(2P ^ ^ + P _^^ _ ) p+q+r p+q+r+1 

p-2 
p+q r+2 p+q+1 r+1 

=8 ^2(p——-^ R~ ̂  - R—̂p— ̂  "q+r+k+l p-k q+k+1 p+r-k 
k=0 

+ 8P ^ l j 0 - ( 2 R ^ R , n + R ^ R + R J ^ R J p+q+r+2 p+q r+1 p+q r p+q+1 r - 1 
and, by Theorem 3, we obtain 

Theorem 70 

R R R = 
p q r 

' p -2 

2> T? "P T? ^ 
p+q+r+k+1 p-k " p+r-k q+k+1 

k=0 

p+q+r-1 
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A FIBONACCI ANALOGUE OF GAUSSIAN BINOMIAL COEFFICIENTS 

G. L. ALEXANDERSON and L. F. KLOSSNSK1 
University of Santa Clara, Santa Clara, California 95053 

Gauss, in his work on quadratic reciprocity, defined in [1] an analogue to the binomial 
coefficients: 

n r i (x 1 1 - D C x " - 1 - ! ) • • • ( x n - k + 1 - l ) 
LkJ (xk - l ) (xk-X - ! ) • • • (x - 1) ' 

n and k positive integers. In order to make the analogy to the binomial coefficients more 
complete, it is customary to let 

[ ! ]• ' • 
for n = 0, 1, 2, • • • , and 

H - • 
for n < k. We shall call these rational functions in x, Gaussian binomial coefficients. It 
is shown in [7] that these functions satisfy the recursion formula: 

f n l k l~n - l~l j . (~n - l l 

and if we note that as x —• 1, 

H-CO-
where 

(0 
is the usual binomial coefficient, then the above recursion formula becomes 

(i)-(vH'--O-
the recursion formula for the binomial coefficients. 

Just as the binomial coefficients are always integers, although they appear to be ratios 
of integers, the Gaussian binomial coefficients are in fact polynomials rather than rational 

129 
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functions. This is easily seen from the recursion formula and mathematical induction. (See 
[7] . ) The Gaussian binomial coefficients and their multinomial analogues have some interest -
ing geometric interpretations and combinatorial applications in counting inversions and spec-
ial partitions of the integers. Some of these appear in [1] and [6]. 

There is another well known analogue to the binomial coefficients, the so-called "F ib -
onomial coefficients:" 

n I _ n n -1 n-k+1 
k j F

 = FkFk-r-- Fi 

n,k positive integers, and 

= 1 Vh = \VF 

for n = 0, 1, 2, • • • . It is well known that this is always an integer [5]. 
Let us now examine the Gaussian analogue of the "Fibonomial coefficient: 

a 
/ F n iw F n - 1 i \ / F n - k + l ... 
(x n - l)(x - 1) • • • (x - 1) 

(x k - l)(x k " ! - 1) . . . (x*l - 1) 

n ,k positive integers and 
n l _ I n 

° J F " Ln = i 
JF LnJr 

for n = 0, 1, 2, • • •. Again it is clear that as x - » l , 

Since 

a 

ea - ( 4 • 
F = F F + F F 

n k+1 n-k *k n -k -1 ' 

( x
F k + l F n - k + F k F n - k - l _ i ) ( x

F n - l _ -Q . . . ( x
F n-k+l _ ^ 

F, Fi -, Fn 
(x k - l)(x k ~ 1 - 1) . . . (x X - 1) 

F F + F F F F F F 
t k+1 n-k " V n - k - l l n - k - 1 _, r k n - k - l ^ (x - x + x - 1) 

(1) = — ~ 
(x k - 1) 

F F F F F F 
/ k V k - l ( x

F k + l F n - k _ 1} + ( x
F k F a - k - l _ x ) 

(x k - 1) 

P Z IJF 

fn - I"! 
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•>(!><F-',r-)[v]F 
F k F n - k - / ^ < F , ^ - D F . 

X 
"FT 

' F 
n-k-1 , 

+ i > x V k - 1 _ 

1=1 

so that we have a recursion formula for the "Gaussian Fibonomial coefficients" and this, with 
mathematical induction, implies the rather remarkable property of these functions: they are 
polynomials rather than rational functions as they appear to be. Furthermore if we let x—• 
1 in the recursion formula (1) we obtain 

(kjF
 = Fk+l^n k j F

 + Fn-k-l^k - i j j 

the recursion formula for the Fibonomial coefficients. This is the recursion formula used in 
[3 ] to prove that the Fibonomial coefficients are integers. 

The more general sequence gn where g0 = 0, gt = 1, gf l+2 = P-g n + 1 + q-gn> n > 0, 

p > 0, q > 0 , satisfies gQ = g k + 1 ' g n _ k
 + Q'%k'%n-.k-l ^S e e t 3 l ) a n d i f w e d e f i n e 

[ » ] as follows: [ » ] = ^ 
l W

 Bn-1 nX , s n -k+ l nX - 1) (x - 1) • • • (x - 1) 

(x " - l)(x K l - 1) . . . (x - 1) 

n ,k positive integers, and 

eL-H.- 1 

for n = 0, 1, 2, • • • , then it follows, mutatis mutandis, that 

( k+1 
y ^ x<Sk+1-i)'gn_k J fn - 11 

+ ! Y ^ x
(q"gn-k+l-l)-gk 

i=l 

j - n - 1 -
| _ k - 1. 

Again, 
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are polynomials. Furthermore the functions are again polynomials where g = f (t), the 
Fibonacci polynomials, at least for positive integral t, where f0(t) = 0, fA(t) = 1, 

fn+2(t) = '•W'* + fn(t )> n * ° • 

Since the Pell sequence can be generated as a special case of the Fibonacci polynomials 
(where t = 2), the above "coefficients" are polynomials also when defined in te rms of the 
Pell sequence. 

Fur thermore , because of the direct analogy between the definitions of the Gaussian b i -
nomial coefficients and the related Fibonacci analogues defined above and the expression for 
the binomial coefficients as ratios of factorials, the polynomials when arranged in a triangu-
lar a r ray like Pasca l ' s Triangle will have the beautiful hexagon property described byHoggatt 
and Hansell in [4] , that the product of the elements "surrounding" an element in the a r r ay is 
a perfect square and the set of six elements can be broken down into two sets of three, the 
products of the elements in each set being equal. In fact all the perfect square patterns of 
Usiskin in [8] will appear in these new ar rays ; the proofs ca r ry over directly. 
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A SOLUTION OF ORTHOGONAL TRIPLES 
IN FOUR SUPERIMPOSED 10 x 10 x 10 LATIN CUBES 

JOSEPH ARKIN 
Spring Valley, New York 10977 

Recently at the 78 Summer Meeting of the American Mathematical Society, Missoula, 
Montana (August 20-24, 1973), Professor P. Erdbs and Professor E. G. Straus proposed the 
following classical problem to this author: Consider four digits where each digit can have a 
value of 0, 1, 2, • • • , 9. Divide the four digits into four sets where each set contains three 
digits in the following way: Set A = 1st, 2nd, 3rd digits; set B = 1st, 2nd, 4th digits; 
set C = 1st, 3rd, 4th digits; and set D = 2nd, 3rd, 4th digits. For example: if a cell con-
tains the four digits 3742 then 374 would belong in set A, 372 belongs in set B, 342 be-
longs in set C, and 742 belongs in set D. 

Then, using only the digits 0, 1, 2, • • • , 9, is it possible to superimpose four 10X10 
X10 Latin Cubes such that (we consider one set at a time) set A, set B, set C, and set D will 
each contain in some way every one of the following 1000 three-digit numbers 000, 001, 
002, • • • , 999, without repetition? (It i s , of course, evident there will be four digits in each 
and every cell of the 1000 cells.) This author has solved the above problem and we are able 
to construct for the first time orthogonal triples in four 10 X 10 X 10 superimposed Latin 
Cubes. 

Note. With the method of construction shown in this paper, we are also able to con-
struct for the first time orthogonal tr iples in four (4m + 2) X (4m + 2) X (4m + 2) superim-
posed Latin Cubes, where 3 j< m = 3, 4, • • •. 

In Tables 1-10, we have systematically constructed orthogonal t r iples in four 10 X 10 
X 10 superimposed Latin Cubes. 

Table 1 
Square Number 0 

7630 

0796 

6971 

9408 

2323 

5287 

3545 

8159 

4864 

1012 

6861 

2633 

5407 

8549 

0286 

4974 

1322 

7790 

3015 

9158 

3405 

1972 

8639 

2013 

7540 

9328 

0866 

6281 

5157 

4794 

2793 

4544 

0016 

1632 

6151 

7400 

9288 

3325 

8979 

5867 

1152 

6321 

3795 

4284 

9638 

8869 

7010 

5977 

0546 

2403 

8289 

5017 

4324 

7150 

1862 

3635 

2973 

0406 

9798 

6541 

4014 

7280 

9548 

6791 

3975 

0156 
5637 

2863 

1402 

8329 

5547 

9868 

2153 

0976 

8019 

1792 
6401 

4634 

7320 

3285 

0326 

8409 

1282 

3865 

5797 

2543 
4154 

9018 

6631 

7970 

9978 

3155 

7860 

5327 

4404 

6011 
8799 

1542 

2283 

0636 

133 
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Table 2 
Square Number 1 

8721 

1854 

5006 

2645 

9590 

0168 

6219 

3932 

7383 

4477 

5386 

9720 

0648 

3212 

1164 

7003 

4597 

8851 

6479 

2935 

6649 

4007 

3722 

9470 

8211 

2595 

1384 

5166 

0938 

7853 

9850 

7213 

1474 

4727 

5936 

8641 

2165 

6599 

3002 

0388 

4937 

5596 

6859 

7163 

2725 

3382 

8471 

0008 

1214 

9640 

3162 

0478 

7593 

8931 

4387 

6729 

9000 

1644 

2855 

5216 

7473 

8161 

2215 

5856 

6009 

1934 

0728 

9380 

4647 

3592 

0218 

2385 

9930 

1004 

3472 

4857 

5646 

7723 

8591 

6169 

1594 

3642 

4167 

6389 

0858 

9210 

7933 

2475 

5726 

8001 

2005 

6939 

8381 

0598 

7643 

5476 

3852 

4217 

9160 

1724 

Table 3 
Square Number 2 

5902 

6133 

3524 

7717 

0469 

2651 

1378 

4080 

8245 

9896 

3244 

0909 

2711 

4370 

6653 

8525 

9466 

5132 

1898 

7087 

1718 

9526 

4900 

0899 

5372 

7467 

6243 

3654 

2081 

8135 

0139 

8375 

6893 

9906 

3084 

5712 

7657 

1468 

4520 

2241 

9086 

3464 

1138 

8655 

7907 

4240 

5892 

2521 

6373 

0719 

4650 

2891 

8464 

5082 

9246 

1908 

0529 

6713 

7137 

3374 

8895 

5652 

7377 

3134 

1528 

6083 

2901 

0249 

9716 

4460 

2371 

7247 

0089 

6523 

4890 

9136 

3714 

8905 

5462 

1658 

6463 

4710 

9656 

1248 

2131 

0379 

8085 

7897 

3904 

5522 

7527 

1088 

5242 

2461 

8715 

3894 

4130 

9376 

0659 

6903 

Table 4 
Square Number 3 

9873 

3311 

4669 

8234 

6187 

1025 

7752 

2496 

5508 

0940 

4509 

6877 

1235 

2756 

3021 

5668 

0180 

9313 

7942 

8494 

7232 

0660 

2876 

6947 

9753 

8184 

3501 

4029 

1495 

5318 

6317 

5758 

3941 

0870 

4499 

9233 

8024 

7182 

2666 

1505 

0490 

4189 

7312 

5028 

8874 

2506 

9943 

1665 

3751 

6237 

2026 

1945 

5188 

9493 

0500 

7872 

6667 

3231 

8314 

4759 

5948 

9023 

8754 

4319 

7662 

3491 

1875 

6507 

0230 

2186 

1755 

8504 

6497 

3661 

2946 

0310 

4239 

5878 

9183 

7022 

3181 

2236 

0020 

7502 

1315 

6757 

5498 

8944 

4879 

9663 

8664 

7492 

9503 

1185 

5238 

4949 

2316 

0750 

6027 

3871 
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T a b l e 5 

Square N u m b e r 4 

0064 

9272 

2787 

1550 

8838 

7996 

4621 

5343 

3419 

6105 

2417 

8068 

7556 

5623 

9992 

3789 

6835 

0274 

4101 

1340 

4551 

6785 

5063 

8108 

0624 

1830 

9412 

2997 

7346 

3279 

8278 

3629 

9102 

6065 

2347 

0554 

1990 

4831 

5783 

7416 

6345 

2837 

4271 

3999 

1060 

5413 

0104 

7786 

9622 

8558 

5993 

7106 

3839 

0344 

6415 

4061 

8788 

9552 

1270 

2627 

3109 

0994 

1620 

2277 

4781 

9342 

7066 

8418 

6555 

5833 

7626 

1410 

8348 

9782 

5103 

6275 

2557 

3069 

0834 

4991 

9832 

5553 

6995 

4411 

7276 

8628 

3349 

1100 

2067 

0784 

1780 

4341 

0414 

7836 

3559 

2107 

5273 

6625 

8998 

9062 

T a b l e 6 

Square N u m b e r 5 

4255 

8427 

1143 

0881 

3916 

9309 

5030 

6578 

2692 

7764 

1693 

3256 

9889 

6038 

8307 

2142 

7914 

4425 

5760 

0571 

5880 

7144 

6258 

3766 

4035 

0911 

8697 

1303 

9579 

2422 

3426 

2032 

8767 

7254 

1573 

4885 

0301 

5910 

6148 

9699 

7574 

1913 

5420 

2302 

0251 

6698 

4765 

9149 

8037 

3886 

6308 

9769 

2912 

4575 

7694 

5250 

3146 

8887 

0421 

1033 

2762 

4305 

0031 

1423 

5140 

8577 

9259 

3696 

7884 

6918 

9039 

0691 

3576 

8147 

6768 

7424 

1883 

2252 

4915 

5300 

8917 

6888 

7304 

5690 

9429 

3036 

2572 

7761 

1253 

4145 

0141 

5570 

4695 

9919 

2882 

1763 

6428 

7034 

3306 

8257 

Tab le 7 

Square N u m b e r 6 

6446 

4988 

0292 

5369 

7055 

3770 

2804 

1617 

9121 

8533 

0122 

7445 

3360 

1807 

4778 

9291 

8053 

6986 

2534 

5619 

2364 

8293 

1447 

7535 

6806 

5059 

4128 

0772 

3610 

9981 

7985 

9801 

4538 

8443 

0612 

6366 

5779 

2054 

1297 

3120 

8613 

0052 

2984 

9771 

5449 

1127 

6536 

3290 

4808 

7365 

1777 

3530 

9051 

6616 

8123 

2444 

7295 

4368 

5989 

0802 

9531 

6776 

5809 

0982 

2294 

4618 

3440 

7125 

8363 

1057 

3800 

5129 

7615 

4298 

1537 

8983 

0362 

9441 

6056 

2774 

4058 5299 
1367 2614 

8773 6126 

2124 3050 

3980 9361 

7805 0532 

9611 1987 

5539 8803 

0442 7775 

6296 4448 
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Table 8 
Square Number 7 

3397 

5045 

7458 

4176 

1201 

8512 

0963 

9824 

6730 

2689 

7738 

1391 

8172 

9964 

5515 

6450 

2209 

3047 

0683 

4826 

0173 

2459 

9394 

1681 

3967 

4206 

5735 

7518 

8822 

6040 

1041 

6960 

5685 

2399 

7828 

3177 

4516 

0203 

9454 

8732 

2829 

7208 

0043 

6510 

4396 

9734 

3687 

8452 

5965 

1171 

9514 

8682 

6200 

3827 

2739 

0393 

1451 

5175 

4046 

7968 

6680 

3517 

4966 

7048 

0453 

5825 

8392 

1731 

2179 

9204 

8962 

4736 

1821 

5455 

9684 

2049 

7178 

6390 

3207 

0513 

5205 

9174 

2519 

0733 

8042 

1961 

6820 

4686 

7398 

3457 

4456 

0823 

3737 

8202 

6170 

7688 

9044 

2969 

1511 

5395 

Table 9 
Square Number 8 

2118 

7569 

8330 

3093 

4672 

6844 

9487 

0705 

1956 

5221 

8950 

4112 

6094 

0485 

7849 

1336 

5671 

2568 

9227 

3703 

9097 

5331 

0115 

4222 

2488 

3673 

7959 

8840 

6704 

1566 

4562 

1486 

7229 

5111 

8700 

2098 

3843 

9677 

0335 

6954 

5701 

8670 

9567 

1846 

3113 

0955 

2228 

6334 

7489 

4092 

0845 

6224 

1676 

2708 

5951 

9117 

4332 

7099 

3563 

8480 

1226 

2848 

3483 

8560 

9337 

7709 

6114 

4952 

5091 

0675 

6484 

3953 

4702 

7339 

0225 

5561 

8090 

1116 

2678 

9847 

7679 

0095 

5841 

9957 

6564 

4482 

1706 

3223 

8110 

2338 

3333 

9707 

2958 

6674 

1096 

8220 

0565 

5481 

4842 

7119 

Table 10 
Square Number 9 

1589 

2600 

9815 

6922 

5744 

4433 

8196 

7261 

0077 

3358 

9075 

5584 

4923 

7191 

2430 

0817 

3748 

1609 

8356 

6262 

8926 

3818 

7581 

5354 

1199 

6742 

2070 

9435 

4263 

0607 

5604 

0197 

2350 

3588 

9265 

1929 

6432 

8746 

7811 

4073 

3268 

9745 

8606 

0437 

6582 

7071 

1359 

4813 

2190 

5924 

7431 

4353 

0747 

1269 

3078 

8586 

2814 

2920 

6602 

9195 

0357 

1439 

6192 

9605 

8816 

2260 

4583 

5074 

3928 

7741 

4193 

6072 

5264 

2810 

7351 

3608 

9925 

0587 

1749 

8436 

2740 

7921 

3438 

8076 

4603 

5194 

0267 

6352 

9585 

1819 

6812 

8266 

1079 

4743 

0927 

9355 

7601 

3198 

5434 

2580 
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Proof that Construction is Correct. Before going on with the proof, we will set down a 
few definitions to facilitate our explanation of the proof. It will be noted that the squares in 
Tables 1-10 are labeled Square 0 through 9. Then suppose we wish to find a certain number 
of a certain cell — we shall write S (row number, column number, square number) = num-
ber in cell. To find a row on a certain square, we write S (row number, * , square number), 
and S (* , c, s) = column number on a certain square. 

The ten columns in each square are considered to be numbered 0, 1, • • • , 9 from left 
to right; the ten rows on each square a re considered to be numbered 0, 1, • • • , 9 from top 
to bottom. For example: The number 7630 on Square Number 0 = S(0,0,0); or the row on 
which 7630 is found may be written as S(0, *, 0); and the column we find 7630 in is 
S(* , 0, 0). Finally if we refer to a specific square, say square 0, we write S(* , *, 0); if 
we refer to each and every one of the ten squares we write S(*, *, A); to refer to each and 
every top row (say) in each and every one of the two squares we write S(0, * , A). 

(1) We now consider the 2nd and 3rd digits in each cell of the S(0, * , A), and keeping 
the cells in the same positions, we place S(0, * , 0), on top of S(0, * , 1), • e • , on top of 
S(0, * , 9) it is easily verified that we have constructed the following 10 X 10 square which 
was formed by superimposing two Latin Squares in such a way that the 100 two-digit num-
bers are mutually orthogonal. 

63 86 40 • .- 97 
72 38 64 •-- 00 

(la) _ _ _ 

58 07 92 •-- 81 

(lb) It should also be noticed that the 2nd and 3rd digits in each cell of the 8(0, * , A) 
is repeated ten times in its own respective square. For example: The ten cells of 2nd and 
3rd digits in S(0, * , 0) are 63 86 40 • • • 97, and it is seen that in the Square 0, the number 
63 is repeated (as a 2nd and 3rd digit) ten times in a different row and a different column, 
the number 86 is repeated (as a 2nd and 3rd digit) ten times in a different row and a differ-
ent column, • • • , the number 97 is repeated (as a 2nd and 3rd digit) ten times in a different 
row and a different column. 

(lc) Now it is easily verified; each and every one of the ten Squares is constructed in 
the exact way we constructed the Square Number 0 in (lb). 

(2) We now look at the first digit in each cell, where it is easily verified that the first 
digit in each cell of the S(0, * , A) is repeated ten times in a different row and different col-
umn on its own respective square. 

(2a) For example: the first digit 0 on Square 0 will be found in ten different cells 
where each cell is in a different row and different column, and this exact arrangement of the 
first digit 0 is constructed into each and every square 0 through and including Square 9. 
It is also easily verified that each first digit 0 is on a different file. 
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(2b) Now, each and every first digit (0, 1, ••• , 9) in every cell is arranged in the 
exact way we placed the 0f s in our example (2a). 

Therefore, there are no two identical first digits in the same row, the same column, 
or the same file throughout the cube. 

(Let the 100 numbers 000, 001, 002, • . . , 099 = OQ ; 
the 100 numbers 100, 101, 102, • • • , 199 = a.t ; 

the 100 numbers 900, 901, 902, • • • , 999 = a9.) 
Now, combining (1, a, b, c) with (2, a, b) leads to 
(3) The first three digits in each cell in the cube that belongs to a, will have each 

of its three-digit numbers in a different column, different row, and in a different file, 
where we replace the subscript k (in a, ) one at a time with the number 0, then 1, • • • , 
then 9. 

(3a) In (3), we have then satisfied the requirement that set A (set A = the 1st, 2nd, 
and 3rd digit in each and every cell throughout the cube) will contain (in some way) every one 
of the 1000 three-digit numbers 000, • • • , 999, without repetition. 

(3b) We now combine in each cell throughout the cube—the second and third digits with 
the fourth digit — and in the exact way we found (3a) — we find that we have satisfied the r e -
quirement that set D (set D = the 2nd, 3rd, and 4th digit in each and every cell throughout 
the cube) will contain (in some way) every one of the 1000 three-digit numbers 000, • • • , 
999, without repetition. 

(4) Now, it will be noticed that every identical first digit is paired with an identical 
fourth digit — we inspect one square at a time. For example: In Square 0, every one of the 
ten cells that have a first digit 0 also have as a fourth digit the number 6; every one of the 
ten cells that have a first digit 1 also have as a fourth digit the number 2; • • •; every one of 
the ten cells that have a first digit 9 also have as a fourth digit the number 8. It should 
also be noticed that the ten first digits (say 1st digit = A) paired with ten fourth digits (say) 
B to get the numbers A—B in ten cells on a part icular square — shall never again have 
this particular first and fourth digit combination repeated (that i s , the combination A—B) on 
any one of the nine remaining squares. For example: on Square 0 the first digit 7 is 
paired with the fourth digit 0, on Square 1 the first digit 7 is paired with the fourth digit 
3 , •'m , on Square 9, the first digit 7 is paired with the fourth digit 1. This arrangement 
for first and fourth digits is ridgidly enforced throughout the construction. 

(5) Now, the first and second digits in each square (we consider one square at a time) 
are mutually (pairwise) orthogonal. For example: The first and second digits in Square 0 
are mutually orthogonal and are constructed by superimposing two 10 X 10 Latin Squares. 

(5a) The exact orthogonal propert ies of digits 1 and 2 in each of the ten squares (we 
consider one square at a time) that we find to hold true in (5) also are easily verified to hold 
true for the first and third digits, That i s , the first and third digits in each and every one of 
the ten squares (we consider one square at a time) are mutually (pairwise) orthogonal. 
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(6) Now, we combine (4) and (5), which leads us to the fact that set B (set B = 1st, 
2nd, and 4th digits in each and every cell throughout the cube) will contain (in some way) 
every one of the 1000 three-digit numbers 000, • • • , 999, without repetition. 

(6a) Finally, we combine (4) and (5a), which leads us to the fact that set C (set C = 
1st, 3rd, and 4th digit in each and every cell throughout the cube) will contain (in some way) 
every one of the 1000 three-digit numbers 000, • • • , 999, without repetition. 

Remark. We used The Arkin-Hoggatt method (1] to get the 100 mutually orthogonal 
numbers in (1). 

Note. For singly-even cubes greater than 10 X 10 X 10 we can combine the above 
methods with Bose, Shrikande and P a r k e r ' s work on mutually (pairwise) orthogonal numbers 
[ 2 ] and after the proper extensions of their magnificent theorems —it is easily shown that we 
can obtain a solution of orthogonal triples in four (4m + 2) X (4m + 2) X (4m + 2) super im-
posed Latin Cubes (where 2 < m = 3, 4, • • • ) . 

In conclusion, we discuss (our discussion rel ies entirely on the construction in this 
paper) orthogonal tr iples in Five 10 X 10 X 10 superimposed Latin Cubes. 

(7) In our discussion, the ten numbers 7630, 7860, 7400, 7790, 7150, 7280, 7010, 
7540, 7320, 7970, that are found in Square Number 0 will be used as an illustrative example. 

It is evident that in each of the ten numbers above, the first and faurth digits form the 
two-digit number 70, and also the second and third digits in the above ten numbers are 
mutually (pairwise) orthogonal. 

(7a) Now, let us add a fifth digit to each of the ten four-digit numbers written above. 
It is evident that it would be impossible to form orthogonal tr iples if any two of the ten fifth 
digits we placed a re identical. For example: Say we placed a 0 after (in the fifth position) 
two of the ten numbers in (7) — say the two numbers a re 7630 and 7280. We then have 
76300 and 72900 and it is evident that the 700 in 76300 and the 700 in 72800 a re not in 
a set of orthogonal tr iples. Therefore, every one of the ten fifth digits we add to the ten 
numbers in (7) above must be different and thus the fifth digit in (7) must include each number 
in 0, 1, • • • , 9. However, since the second and third digits in each of the ten numbers in (7) 
are mutually (pairwise) orthogonal, it follows that the second, third, and fifth digits in the 
above ten numbers in (7) are mutually (pairwise) orthogonal. 

Then, using the exact method of our example in (7a) we extend our reasoning (step-by-
step) to include the entire Square 0, and then Square 1, • • • , and Square 9. In this way, 
we are easily led to the following. 

(7b) IN ORDER TO FIND A SOLUTION OF ORTHOGONAL TRIPLES IN FIVE 10 X 10 X 
10 SUPERIMPOSED LATIN CUBES, WE MUST FIRST BE ABLE TO CONSTRUCT A SYSTEM 
OF THREE MUTUALLY ORTHOGONAL NUMBERS (three pairwise orthogonal) IN A SQUARE 
MADE OF THREE SUPERIMPOSED 10 X 10 X 10 LATIN SQUARES. 

(8) It is easily verified that by combining the NOTE above with (7b), we extend (7b) to 
read: IN ORDER TO FIND A SOLUTION OF ORTHOGONAL TRIPLES IN FIVE (4m + 2) X 
(4m + 2) X (4m + 2) SUPERIMPOSED CUBES, WE MUST FIRST BE ABLE TO CONSTRUCT A 
SYSTEM OF THREE MUTUALLY ORTHOGONAL NUMBERS (three pairwise orthogonal) IN A 
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SQUARE MADE OF THREE SUPERIMPOSED (4nH-2) X (4m + 2) X (4m + 2) LATIN SQUARES, 
where 2 < m = 3, 4, • • • . 

Remark. It should be noted that the methods of construction of the cube in the above 
paper are the same methods that were used to construct the cubes in the following two pa-
pers (we mention the following two papers , since each paper stated that a method of con-
struction was forthcoming). See [ 3 ] and [ 4 ] , 
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COMBINATORIAL ANALYSIS AND FIBONACCI NUMBERS 

GEORGE E. ANDREWS 
The Pennsylvania State University, University Park, Pa. 16802 

1. INTEODUCTION 

The object of this paper is to present a new combinatorial interpretation of the Fibon 
acci numbers. 

There are many known combinatorial interpretations of the Fibonacci numbers (e. g. , 
[9 ]); indeed, the original use of these numbers was that of solving the rabbit breeding prob-
lem of Fibonacci [10]. The appeal of this new interpretation lies in the fact that it provides 
combinatorial proofs of several well known Fibonacci identities. Among them: 

' » \ £(•: IF. - * 
3=0 \ 

3 J 3 ^2n 

These results will be presented in Section 2. In Section 3, we shall describe further poss i -
bilities for exploration of Fibonacci numbers via combinatorics. 

2. FIBONACCI SETS 

Definition 1. We say a finite set S of positive integers is Fibonacci if each element of 
the set is — | s | , where | S | denotes the cardinality of S. 

Definition 2. We say a finite set S of positive integers is r-Fibonacci if each element 
of the set is — | s | + r . 

We note that n0-Fibonacci" means "Fibonacci. " 

Table 1 
Subsets of { l , 2, • • • , n} that are r-Fibonacci 

1-Fibonacci 2-Fibonacci n 

1 

2 

3 

Fibonacci 

*. {i} 

*. (i}> {2} 
<P, {1}, {2}, {3}, {3,2} 

0, {2} (P 

<̂ ? {2}? {3} </>, {3} 

4 0 , { l } 5 {2} , {3} , {4} , { 2 , 3 } , { 2 , 4 } , {3,4} 0 , {2} , ( 3 } 5 {4} , {3 ,4} 0 , {3} , {4} 

* Part ial ly supported by National Science Foundation Grant GP-23774. 
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Theorem 1. There are exactly F 9 subsets of { l , 2, • • • , n} that are r-Fibonacci 
for n ^ r - 1. 

Proof. When n = r - 1 o r r , <p is the only subset of { l , 2, • • • , n} that is r -
Fibonacci, since each element of an r-Fibonacci set must be >r . Since F1 = F2 = 1, we see 
that the theorem is true for n = r - 1 or r. 

Assume the theorem true for each n with r < n ^ n0 (and for all r ) . Let us consider 
the r-Fibonacci subsets of {l , 2, • • • , n0, n0 + l} that: (1) do not contain n0 + 1, and (2) 
do contain n0 + 1. Clearly there are F 9 elements of the first class. If we delete n0 + 
1 from each set in the second c lass , we see that we have established a one-to-one c o r r e s -
pondence between the elements of the second class and the (r + 1)-Fibonacci subsets of 
{ l , 2, • • • , n 0 ) , hence there are F l 0 . ,.v elements of the second class . This means L UJ n0+2-(r+l) 
that there are 

"En0+2-r + Fn0+2-(r+l) 

F(no+l)+2-r 

r-Fibonacci subsets of {l , 2, • • • , n0 + l } , and this completes Theorem 1. 
Theorem 2. For n c 0, 

n+2 

= 1 

Proof. By Theorem 1, F 9 is the number of Fibonacci subsets of { l , 2, • •• , n}. "n+2 
Of these (p is one such subset. There are 

( " ) 

singleton Fibonacci subsets of { l , 2, • • • , n} . The two-element Fibonacci subsets are just 
the two-element subsets of {2, 3, • • • , n} , and there a re 

(v) 
of these. In general, the j -e lement Fibonacci subsets of { l , 2, ••• , n} are just the j -
element subsets of { j , j + 1, • • * , n} and there are exactly 

(°-r) 
of these. Hence summing over all j and using Theorem 1, we see that 
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F n+2 

Theorem 3. For n a 0 

("^f;1)^-..^":1)^: n+1 F2n+2 

or 

E(°r) Fn+l-j F2n+2 ' 

Remark. This is the identity stated in the Introduction with n + 1 replacing n. 
Proof. By Theorem 1, F9 9 is the number of Fibonacci subsets of { l , 25 •• ' , 2n}. 
We first remark that there are at most n elements of a Fibonacci subset of { l , 3, 

• • • , 2n}9 for if there were n + 1 elements then at least one element would be ^n which is 
impossible. 

Let T. denote the number of Fibonacci subsets of ( l , 2, • - • , 2n} that have exactly 
j elements ^n. Clearly 

F 2n+2 

n 

3=0 

Now to construct the subsets enumerated by T., we see that we may select any j -
elements in the set {n5 n + 1, • • 8 , 2n} and then adjoin to these j elements a j-Fibonacci 
subset of { l , 2, • • • , n - l } . Since there are 

(T) 
choices of the j elements from {n, n + 1, • • - , 2n} and F , 1v+ 2_. = F

n+1, j -Fibonacci 
subsets of ( l , 2, • • • , n - l } , we see that 

T^ =' i V n 
Therefore 

n n 

F2n+2 = ^ T j = 2 - 1 V J )Fn+l- j 
3=0 j=0 X 7 

Theorem 4. For n ^ 0, 
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1 + F< + F2 + • • • + F = F ^ . 1 L n n+2 

Proof. Let R. denote the number of Fibonacci subsets of { l , 2, ••• , n} in which 
the largest element is j . Let R0 = 1 in order to count the empty subset <p. Clearly for 
j > 0, R. equals the number of 1-F.ibonacci subsets of {l, 2, • • • , j - l } ; thus by Theorem 
1, R. = F{. , ^ 0 , = F. . Therefore j ( j- l)+2-l j 

n n 

1=1 J=l 

3. CONCLUSION 

The genesis of this work l ies in the close relationship between the Fibonacci numbers 
and certain generating functions that are intimately connected with the Rogers-Ramanujan 
identities. Indeed if D (q) = D0(q) = 1, DA(q) = 1 + q, and D (q) = D (q) + qnD 0(q), —J. n n—J. n—z 
then [3; pp. 298-299] 

(3.1) Dn(q) = 
j>0 

where 

x y [••}-'] 
r ~i m -4-1 • _ 1 r i 

^ = n (1 - q11"3 X ) ( l - qJ) , for 0 < m < n5 £ = 0 ot 

It is not difficult to see that D (q) is the generating function for partitions in which each part 
is la rger than the number of par ts and <n. Thus D (1) must be F „, the number of Fib-
onacci subsets of ( 1 , 2, • " , n ) , and this is clear from (3.1) and Theorem 2 since 

[m] e(3uals fmj 
at q = 1. Actually, it is also possible to prove q-analogs of Theorems 3 and 4. Namely, 

n+1 

(3.2) D2n(q) = X V [ n r ] D n - l - ^ . 
]=0 

and 

n 

(3.3) Dn(q) = 1 +2^ qJDj_2
(c|) • 

j=l 

While (3.3) is a trivial resul t (3.2) is somewhat tricky although a partition-theoretic analog of 
Theorem 3 yields the result directly. 
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Since I>n(q) is also the generating function for partitions in which each par t is ^n and 
each par t differs from every other part by at least 2, we might have defined a Fibonacci set 
in this way also; i. e. , a finite set of positive integers in which each element differs from 
every other element by at least 2. Such a definition provides no new insights and only tends 
to make the resul ts we have obtained more cumbersome. C. Berge [6; p. 31] gives a proof 
of our Theorem 2 using this part icular approach. 

It is to be hoped that the combinatorial approach described in this paper can be extended 
to prove such appealing identities as 

Y = F F + F F 
n+m n-1 m n m+1 

[12; p. 7] 

2 * - l F E(2A ,y 
[8; p. 150, e.q. (10. 14. 11)]. 

Presumably a good guide for such a study would be to first attempt (by any means) to establish 
the desired q-analog for D (q). Such a result would then give increased information about 
the possibility of a combinatorial proof of the corresponding Fibonacci identity. This approach 
was used in reverse in passing from the formulae [1; p. 113] 

Fn = 2 - f ( " l f ([l/2(n -"I - 5a)]J 

to new generalizations of the Rogers-Ramanujan identities ( [4] , [5]). I. J. Schur was the 
f irst one to extensively develop such formulas [11] (see also [2] , [7]). 
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FIBONACCI SUMMATIONS INVOLVING A POWER 
OF A RATIONAL NUMBER 

SUMMARY 

BROTHER ALFRED BROUSSEAU 
St. Mary's College, Moraga, California 94575 

The formulas pertain to generalized Fibonacci numbers with given TA and T2 and with 
(1) T ^ = T + T n 

n+1 n n-1 
and with generalized Lucas numbers defined by 
(2) V = T _,_, + T n . 

n n+1 n-1 
Starting with a finite difference relation such as 

( 3 ) A ( b / a ) k T 2 k T 2 k + 2 " ( b k / a k + 1 > T 2 k + 2 ( b T 2 k + 4 " a T 2 k > 
values of b and a are selected which lead to a single generalized Fibonacci or Lucas num-
ber for the term in parentheses. Thus for b = 2, a = 13, the quantity in parentheses is 
3T . . Using the finite difference approach leads to a formula 

(4) E ( 2 / l 3 ) k T 2 k T 2 k + 5 - ( l / 3 ) [ ( 2 n + 1 / 1 3 n ) T 2 n + 5 T 2 n + 7 - 2 T 5 T 
k=l L 

Formulas are also developed with terms in the denominator. 

(Continued on page 156.) 
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THE MORGAN-VOYCE POLYNOMIALS 
1. INTRODUCTION 

Polynomial sequences often occur in solving physical problems. The Morgan-Voyce 
polynomial resul ts when one considers a ladder network of resis tances [ l ] , [2] , [3]. Let 
R be the resistance of two res i s tors RA and R2 in parallel. The voltage drop V across a 
resistance R due to flow of current I i s , of course, V = JR. 

R2 < R i v 

Now 

Thus 

so that 

V = IjRt = I2R2 = Ci + I2)B 

V ~ R i ' y - R2 5 

R V V Ri R2 ' 

Thus the formula for res i s to rs in parallel is 

1 = ± + ± 
R Rt R2 

For res i s to rs in ser ies 

-AAAvr-i 
A I 

V = I(Ri + R2) = IR 

147 
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so that the formula relating the res is tances is 

R = Bt + R2 . 

This is all we need to solve the ladder network problem. 

2. LADDER NETWORKS 

Consider the following: 

x x x x x C 
A © - W ^ r VW r——--Wv 1 \A/v 1 * a * — A A V -

\ | i S i S i \ i 
Bo L L L 1 

"TTzo 
-J o D 

n sections 

Assume that the terminals A and B are open. We desire the resistance as measured across 
terminals C and D. Fc 
consider the output Z 0 . 
terminals C and D. For n ladder sections, let us assume that the resistance is Z , and 

n 

x 
- ' W s * f * CT 

z < i < z a , 
n f f n+1 

• * D ' 

Since x and Z are in se r i e s , n 
R = x + Z . n 

Now R and 1 are in parallel , so that 

- x + Z + 1 
1 + l - n 

Z ^ x + Z x + Z 
n+1 n n 

x + Z n 
n+1 x + Z + 1 ' n 

To see what this means, let Z = b (x)/B (x), where b (x) and B (x) are polynomials. 

Wx ) x + b (x)/B (x) n n xB (x) + b (x) n n 
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so that 

( 2 a ) | V l ( x ) = -Bn(x) + bn(x) 

( Bn + 1(x) = (x + l)Bn(x) + bn(x) 

which is a mixed recurrence relation for the two polynomial sequences. Clearly, Za = 1, 
so we set b0(x) = 1 and B0(x) = 1. This completely specifies the two sequences which we 
call the Morgan-Voyce polynomials. 

Without too much trouble, one can derive that both sequences {b (x)} and ( B (X)} 
satisfy 
(2.2) Un+2(x) = (x + 2)Un+1(x) - Un(x) . 

This takes care of the resistance as seen from the output end of the ladder network. We now 
go to the input end, and consider input Z. . 

x x x 
D- ^V"v f Q *VVv — * « • VW~—j— © C 

V i 
o — A 6 •—' * * * i o D 

1 , 1 „ _ Z n + T , or , R = R Z 1 9 ^ ' Z + 1 
n n 

Z xZ + x + Z 
•7 = n _ n n 

n+1 X Z + 1 Z + 1 
n n 

Again let Z = P (x)/Q (x). Then, 
Pn + 1(x) _ x(Pn(x) + Qn(x)) + Pn(x) 
Q ^ i T = Pn(x) + Qn(x) ' 

Pn + 1(x) = (x + l)Pn(x) + xQn(x) , 

Qn + l ( x ) = Pn(x> + Qn(x) ' 

P n ( x ) = Q n + l ( x ) - Q n ( x ) 

Qn+2(x) - Qn + 1(x) = (x + l)(Qn+1(x) - Qn(x)) + xQn(x) 
or 

Qn+2(x) = (x + 2)Qn+1(x) - Qn(x) . 

From the case n = 1, we see that PA(x) = x + 1, Q^x) = 1, Q2(x) = x + 2, so that 
Q (x) = B (x) from the output considerations ear l ie r , and 

That i s , 

Simplifying, 
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P (x) = Q ,.,(x) - Q (x) = B ,n(x) - B (x) . n ^n+1 n n+1 n 

But, recalling the defining equation (2.1) for the Morgan-Voyce polynomials, a simple sub-
traction gives us b ...(x) = B , - (x) - B (x). Thus, P (x) = b ...(x) so that 

& n+lv n+1 n n n+1 ' 

z - b - * W 
Z n ~ B (x) ' n 

where b (x) and B (x) are the Morgan-Voyce polynomials. This is the resistance as seen 
looking into the ladder network from the input end. 

There are now several theorems we can prove. 

3. THEORETICAL CONSIDERATIONS 

Using the recursion (2.2) for b (x) and B (x), it is a simple mat ter to compute the 
first few Morgan-Voyce polynomials. 

n bn(x) 

0 1 
1 x + 1 
2 x2 + 3x + 1 
3 x3 + 5x2 + 6x + 1 
4 x4 + 7x3 + 15x2 + lOx + 1 
5 x5 + 9X4 + 28x3 + 35x2 + 15x + 1 x5 + 10x4 + 36x3 + 56x2 + 35x + 6 

bn + 2(x) = (x + 2)bn+1(x) - bn(x) 

Bn+2(x) = (x + 2)Bn+1(x) - Bn(x) . 

Comparing these polynomials to the Fibonacci polynomials f (x), f0(x) = 0, ft(x) = 1, 
f ,-(x) = xf (x) + f .(x), leads to some fascinating resul ts . n+1 n n - l 

X4 

x' 

X3 + 

+ 8x3 

B (x) n 

1 

x + 2 
1 + 4x + : 

6x + lOx 

+ 21x2 + 

3 

+ 4 

2 Ox + 5 

n 

1 

2 

3 

4 

5 

6 

7 

8 

1 

X 

X2 

x3 

X4 

X5 

X6 

X7 

+ 

+ 

+ 

+ 

+ 

+ 

f (x) n 

1 

2x 

3x2 + 1 

4X3 + 3x 

5x4 + 6x2 

6x5 + 10x3 

FIBONACCI POLYNOMIALS 

+ 1 
1 + 4x 

y1 

hA A 
h AA hA 

Ay 

y3 

4y 

h' 

6 X 

7 

y 1 

/ 3 

. 6 

10 

15 

21 

/ l 

/ 4 

10 

20 

35 

1 

5 

15 

35 

1 

6 

21 

1 

7 
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Theorem 3.1. See [3] , [5]. The polynomial sequences {b (x)}, { B (x)}, and 
{f (x)} are related by 

Wx> = xB„-i(x2) 
f2n+1(x) = b n ( ^ ) . 

Proof 1. By Generating Functions. 
It is not difficult to show that 

1 - A — = y \ (x)xn 

1 - (x + 2)A + A2 ~ n 

1 - (x + 2)A + A2 JL*d n - 1 

Hence, 

X(1~A2) - E b > 2 ) x 2 n + i 
1 - (x2 + 2)A2 + A4 *-*! n 

n=0 

A2x _ \ ^ „ . ?Xx2n 

Adding these gives 

1 - (x2 + 2)A2 + A4 

n=0 

A(l +Ax - A 2 ) 

Z > n - 1 ^ 2 

= E f n ( x ) X n • 1 _ 2A2 +A4 - x2A2 1 - xA - A2
 n = Q 

where we recognized the generating function for the Fibonacci polynomials (f (x)}. 
Proof 2. By Binet Forms . 
Since the Fibonacci polynomials have the auxiliary equation 

Y2 = xY + 1 , 

which a r i ses from the recurrence relation and which has roots 

a = x + ^ x 2 + 4 R = x - N/X2 + 4 

it can be shown by mathematical induction that the Fibonacci polynomials have the Binet form 

fn(x) = (<*n - j3n)/(<* - P) . 
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Similarly, from the recurrence relation for the Morgan-Voyce polynomials, we have the aux-
il iary equation 

Y2 = (x + 2)Y - 1 
with roots 

+ 2 + ^x 2 + 4X x + 2 - N/X2 + 4x 

leading to, via mathematical induction, 

Bn_1(x) = (rn - s n ) / ( r - s) . 
Then, 

f2n(x) = (^2n - i32n)/(a - j3) = O 2 / - (/32)n]/(a - p) 

On the other hand, 
Kx2 + 2 + XN/X2 + 4 \ n / x 2 + 2 - x ^x2 + 4 \ n 1 A n 2 ) " ( 5 ) J /^ + 4 . 

3 n (X2) = f / x 2
 + 2 H- ^ x

4 + 4 x 2 \ n _ / x 2
 + 2 - ^x 4

 + 4x 2 \ n 1 A C T + 4xz 

Notice that, since N/X4 + 4X2 = jx|\/x2 + 4 , 
xB ,(x2) = f_ (x) . n-1 2n 

Since b ^ ( x ) = B , - (x) - B (x) , n+1 n+1 n 

leading to 

xb ^ ( x 2 ) = xB ^.(x2) - xB (x2) n+1 n+1 ' n ' 

= f2n+4(x) - f2n+2(x) = rf2n+3W ' 

b a.i(x2) = fo xoW or b (x2) = f0 ^ ( x ) n+1 2n+3 n 2n+l 

Proof 3. By the Recurrence Relations. 
Observe that 

b0(x) = 1, bi(x) = x + 1, b
n + 2 ^ = (x + 2 ) b

n + l ( x ) " b n ( x ) ; 

fl(x) = 1, f3(x) = x2 + 1, f2n+g(x) = (x2 + 2)f2n+3(x) - f2n+1(x) . 
Thus, 

b0(x2) = 1, bi(x2) = x2 + 1, bn + 2(x2) = (x2 + 2)bn + 1(x2) - bn(x2) . 

Now, the sequences \b (x2)} and {f (x)} have both the same starting pair and the same 
recurrence relation so that they are the same sequence. Similarly, 

B0(x) = 1, Bi(x) = x + 2 , B
n + 2

( x ) = ( x + 2 ) B n + l ( x ) " B.n(x) ; 

f2(x) = x, f4(x) = x3 + 2x, f2n+6(x) = ( x 2 + 2 ) f2n+4( x ) " f2n ( x ) ' 
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Next, 
xB0(x2) = x, xBi(x2) = x3 + 2xs xB .9(x2) = (x2 + 2)xB ^Ax2) - xB (x2) , 

so that the sequences {xB -,(x2)} and {f? (x)} are the same. 
Several resul ts follow immediately by applying known propert ies of the Fibonacci poly-

nomials. (See [3] , [6] , [7].) 
Corollary 3.1.1. 

b (1) = FQ _L1 and B ,(1) = F 0 n 2n+l n - l v 2n 

for the Fibonacci numbers F . 
n 

Corollary 3.1.2. The coefficients of b (x) and B (x) lie on adjacent rising diagonals 
of Pascal1 s triangle. 

Corollary 3.1.3? The polynomials {b (x)} are irreducible if and only if 2n + 1 is a 
pr ime. 

4. FURTHER PROPERTIES OF MORGAN-VOYCE POLYNOMIALS 

Let 

Q 

Then 

Q2 

(x + 2 - 1 \ 
1 OJ 

(x + 2 - l \ / x + 2 - l \ = / x 2 + 4x + 3 -(x + 2 ) \ 
1 0 J - y 1 0 ) - y x + 2 - 1 j 

/B3(x) -B 2 (x) \ 
= \B2(x) -Bt(x)J ' 

It can be proved by induction [10] that 

n / B n + l ( x ) ~ V X > \ 
Q \ B n ( x ) - V l ( x V 

Then, since det Q = (det Q) , 

B n + l < x ) B n - l ( x ) - B n W = "X 

Thus, one can write much by virtue of having B (x) trapped in a matrix. 

Let 

R 

so that 

/ x + 2 -2 \ R O n_ / C n + l ^ ~Cn^\ 
y 2 -(x + 2) J ' K W ^ Cn(x) -C n _ 1 (x ) j ' 

Cn+1(x)Cn_1(x) - C^(x) = -(x2 + 4x + 4) + 4 = -(x2 + 4x) 
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Then, C (x) corresponds to the Lucas sequence. 
Let { L (X)} be the Lucas polynomial sequence, L0(x) = 2, Lt(x) = x, L2(x) = x2 + 2, 

Ln + 2(x) = xLn + 1(x) + Ln(x). Actually, 

L (x) = f , - (x) + f - (x) , n n+1 n-1 

and for x = 1, L (1) = L , the n member of the Lucas sequence 1, 3, 4, 7, 11, 18, 
29, 

Now, C ^ x ) = 2, C0(x) = 2, Citx) = x + 2. Thus, since 

L2 n + 4(x) = (x* + 2)L2 n + 2(x) - L2n(x) , 
we have L 0 (x) = C . (x 2 ) , and C - (1) = Lrt , a Lucas number with even subscript. Al-2n n-1 n-1 2n F 

so, since 

L 2 n ( x ) = f 2 n + l ( x ) + f 2 n - l ( x ) ' a n d f 2 n + l ( x ) = V x 2 ) ' 

the relationship L~ (x) = C 1 (x2) implies that 

Also, 

C (x) = b (x) + b ^ ( x ) . n n n+1 

xB (x) = b ^ ( x ) - b (x) , n n+1 n ' 
so that 

bn+1(x) = [Cn(x) + xBn(x)]/2 . 

Finally, applying the divisibility properties of Lucas polynomials [6] , [8] , [9] , we 
have the 

Theorem. C (x) is irreducible. 
2n 

5. ATTENUATION RESULTS 

The attenuation is the ratio of input voltage VT to output voltage Vn. Since the system 
is l inear, we can assume that the output voltage is IV. Let us s tar t with no resist ive network. 
There is no current (I = 0) and between the terminals is 1 volt (Vn = 1). 

1 volt 

Ij = 1 amp Vt = x + 1 volts 

So we see that 
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I0 = 0 = B_1(x), v 0 = 1 = b_1(x) , 

Ii = 1 = B0(x) , Vj = 1 = B0(x) . 

We shall see that 

I = B -(x) and V = b - (x) . n n -1 n n - l v 

F i rs t , we note that from b , - (x) = xB (x) + b (x) and from 
n+1 n n 

Bn + 1(x) = (x + l)Bn(x) + bn(x) = Bn(x) + xBQ(x) + t>n(x), 

we have the lemma, 
Lemma 1. 

Bn+l(x) = V x ) + Vl( x ) • 

In the ladder network, the voltage across the n unit resistance is V ; hence, the 
current is also V . n 

1 _ui I 
n+1 n 

O ^ A A -i " V N A j -t & * s V s / s -
, 7

 X " V < 1 Q < 
11+1 n f ? 

Q _J 1 <% a $ s — 

Now, the voltage currents obey 

V ^ = xl n + V , T n = V + 1 n+1 n+1 n n+1 n n 

Now assume that I = B Jx) and V = b (x). Then, 

V „ + l = x B n ( x ) + b n ( x ) = b n + l ( x ) ' 

V l = bn(x) + V l ( x ) = Bn(x) ' 

applying Lemma l to the expression for I +1, which completes the induction. 
We note that 

Vn+1 = b n + l W = X t B n ( x ) + B n - l ( x ) + ' ' " + B o ( x ) + ^ ; 

B n ( x ) = \ + l = V n + Vl + ' • • + Vo = bn(x) + b ^ W + • • • + b0(x) 

These follow directly from the special resistive network. 
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GENERALIZATION OF HERMITE'S DIVISIBILITY THEOREMS AND 
THE MANN - SHANKS PRIMALITY CRITERION FOR s-FIBONOMIAL ARRAYS 

H. W. GOULD 
West Virginia University, Morgantown, West Virginia 26506 

1. INTRODUCTION 
In a previous paper [4] I found that two theorems of Hermite concerning factors of b i -

nomial coefficients might be extended to generalized binomial coefficients [2] , however one 
of my proofs imposed severe restr ict ions on the sequence {-A } used to define the general-
ized coefficients- Also it was found that the Mann-Shanks primality criterion [6] follows 
from one of the Hermite theorems and it appeared evident that the cri terion also held in the 
Fibonomial a r ray , but the proof was not completed. 

In the present paper I remove all these defects by proving the Hermite theorems in a 
more elegant manner so that very little needs to be assumed for the generalized a r ray , and 
the Mann-Shanks cri terion is not only proved for the Fibonomial a r r a y but for the s-Fibonom-
ial and q-binomial a r r ays . Some typographical e r r o r s in [4] are also corrected. 

2. THE GENERALIZED HERMITE THEOREMS 
Let {A } be a sequence of integers with A0 = 0, A ^ 0 for all n > 1, and other-

wise arbi t rary . Define generalized binomial coefficients by 

A A , • • • A <a i\ ) n ( '" n" n -1 n-k+1 .,, j n ) 

These generalize the o r d i n a l binomial coefficients which occur for A, = k identically. 
Proper t ies of the a r ray and their history may be found in [2]. Our attention here is fixed on 
the case when these coefficients are all integers. Arithmetic propert ies are then of pr imary 
concern. As usual, (a,b) will mean the greatest common divisor of a and b, and a |b 
means a divides b. 

Theorem 1. 

(2.2) 

and 

(2.3) 

We may now state: 

A 
n (A ,A. ) n k 

A n -k+ l 

fn\ 
\ 

{: 

provided only that in (2.3) we suppose (A , A )|A of course, in (2.2) we always 
have (A ,A. ) A , so that (2.3) is only slightly l e s s general than (2.2). n K ' n 

In [4] I stated that (2.3) holds provided A 1 - A, = A , or something close to 
this. We shall see that no such assumption is necessary. 

157 
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Proof of (2.2), By the Euclidean algorithm we know that there exist integers x and y 
such that (A , A. ) = xA + yA. . Therefore n k n J k 

(vv{n
kJ = *\{k} + ^k{k} = XAJJ} + y A n { j : ; } = A n . E , 

for some integer E. Since (A , A, )|A we have proved that (2.2) is true. 
Proof of (2.3). Again, for some integers x and y, (A - , A, ) = xA - + yA, , 

whence 

= xA ^ . in * H + yA ^ . (. n A = A _,, . -F , n+l-k ( k f J n+l-k [ k - 1 f n+l-k 
for some integer F. Thus we have proved in general that 

(2-4) A _,_-, , I (A .1.1» A, ) if \ > 
n+l-k I n+1' k \ kf 

and when we suppose that (A , A, )|A - , we obtain (2.3). 
The proof I tried in [4] motivated by HermiteTs own argument ran as follows: We have 

whence 
(An+l' V = ^ n + 1 + yAk = x(\+l " V + (x + y ) Ak ' 

(An+l> V {1} = x<An+l " V {k} + (x + ^Ak {J} 

^ A n + 1 - k { k } + ( x + y)An+l-k{k-l} 
A ^ - A, n+1 x 

A n + 1 -

and from this, if we suppose that A - - A. = A +1_k» as stated in [4] , we could obtain 
(2.3), because this also implies (A - , A, )|A . . We may also merely suppose that 
A - , J A - - A, and we shall have proved (2.4), but as seen in our general proof none of 
these assumptions is necessary. Hermite 's device of shifting te rms around does not gener-
alize, but then also the shifting is not needed. 

In the proof of (2.2) we have used the obvious fact that 

Ak{k( = \ \ k - 1/ ' 

and in our proof of (2.3) we used the obvious relations 

simple analogues of corresponding formulas for ordinary binomial coefficients. 
As our resul ts apply to the Fibonacci numbers , and Fibonomial coefficients, it still 

seems necessary to know that (F , F , ) = F, ,v if only to get an easy proof that (F + 1 » F ) 
I F - . so that we can have (2.3) as well as (2.2). Thus we have 

( F n + l ' V = F (n+l ,k) = F (n+l-k ,k) = ( F n + l - k ' V 
which means that (F - , F, ) |F + 1 _ k - In any event, our results are obtained more elegantly 
by our present proofs. 
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According to Dickson?s History [ l , p. 265] Th. Schonemann in 1839 proved that 

/9 t-x (a ,b, • • • , m)(a + b + • • • + m - 1)! 
W.b) afb! • • . m l ~ 

is an integer. The situation for two integers a ,b is just that 

(9 f\) (a,b)(a + b - 1)! 
U ' b ' ~ a lb! 

is an integer. This follows at once from Hermite 's original form of (2.2), because by putting 

H(n,k) = M \l\ , 
n | k f 

which is an integer, then clearly 

H(a + b, b) = (a + b ' b ) | a + b l = (a'b)(a,+
h,b - 1)! 

v a + b ( b ) a! bt 

must be an integer. The multinomial extension of Schonemann follows readily f romHermite !s 
theorem. I was reminded of these things by a le t ter from Gupta [5] who remarked that a nice 
Fibonomial extension of (2.6) would be that 

F , v [m + n - l ] t (m,n)L J 

(2.7) ' [mj I [nJT 

is an integer. This, of course, follows at once from (2.2) when A = F and we define gen-
eralized factorials by 

(2.8) [n]l = A n A n - 1 . . . A 2 A l f with [0] ! = 1 . 

Indeed, the more general assert ion from (2.2) is that since 

„, M
 (An5 V fn\ 

H(n,k) = — j _ - k 
n l ; 

is an integer, so also is 
(A , A ) , , x (A , , A ) [ m + n - 1] ! 

,<, „v TT/ , \ m+n' n ' m + n _ m+n? n / L J 

(2.9) H ( m + n , n) = — x — < \ r , r , 
Am+n f n } [m] ! [n] ! 

an integer. 
According to Dickson [1, p. 265] Cauchy also proved Schonemann's theorem for (2.5), 

and Catalan (1874) proved that (2.6) is an integer in case (a,b) = 1. 
Catalan, Segner, Euler, etc. , found that (n + 1) | < > by comb ina to rial or geo metrical 

arguments. See my bibliography [3] for a l i s t of 243 items dealing with the Catalan numbers , 
ballot numbers , and related mat te rs . A supplement of over 75 items is being prepared. 

The fact that (n• + 1) | \ > follows at once from (2.3) so that the number 
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(2.10) c(Q.k) = r 1 k e 
n+l-k ( k ' 

is a natural generalization. Unfortunately, even in the case A = F we do not yet have a 
suitable combinatorial interpretation of this number. 

3. THE MANN-SHANKS CRITERION FOR FIBONOMALS 

In [4] we gave some alternative formulations of the elegant Mann-Shanks primality 
criterion [6]. In part icular we noted that their beautiful theorem maybe written in the form: 

C = prime if and only if R f ~ nrt} 
(3.1) { l \ C - 2 R / 

for every integer R such that C/3 < R < C/2, R > 1 . 

Here R and C are the row and column numbers , respectively, in the original Mann-Shanks 
shifted binomial a r ray . We showed that when C is a prime the indicated divisibility follows 
at once from Hermite 's form of (2.2). 

The corresponding theorem for Fibonomial coefficients ( i .e . , with A = F in (2.1)) 
is also true. That i s , we have 

Theorem 2. In the Fibonomial coefficient a r ray , 

C = prime if and only if F g \ \ c 9T>\ 

for every integer R such that C/3 < R < C/2, R > 1 . 

Note that the single difference between this and (3.1) is that the row number R must be r e -
placed by the corresponding Fibonacci number F R . When C = pr ime, the divisibility 
follows from (2.2) since this implies that F ^ /(F-p, F ^ ™ ) is a factor of the Fibonomial 
coefficient; however we also have 

( F R ' F C - 2 R ) = F (R,C-2R) = F (R,C) = F l = x 

when C/3 < R £ C/2. Thus, we have only to consider the case when C is composite. Our 
proof is just a slight modification of the proof givenby Mann-Shanks. Suppose C = 2k, with 
k = 0, 2, 3, 4, • • • ; then the unit < ft ? = 1 always occurs in the column, so divisibility can-
not occur, and it is sufficient to consider odd composite C. Let p be an odd prime factor 
of C, and write C = p(2k + 1), with k >. 1. Choose R = pk. Then the coefficient in the 
R-row and C-column is { > , and 

1 / k p ) =
 F p k ' F p k - l ' F p k - 2 pk-p-fi 

F . \ p J F . . F - F , F-
pk l F ; pk p p -1 1 
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Cancel F , with F . . The factors F _ , F , • • • , F- in the denominator cannot affect 
the possible divisibility of F into the numerator since 

(F , F ) = F , v = F , v = F- = 1 for all 1 < r < p - 1 , 
p p - r (p,p-r) (p,r) 1 y 

while on the other hand F is relatively prime to every factor in the numerator since 

(V W = F(P,PN) = F(P,J) = Fi = 1 f o r * ' - j - p - x • 

and so F , which is greater than 1 for odd pr imes p, cannot divide into the numerator. 
This means, equivalently, that the row number F , cannot divide the coefficient I F > . 
The proof is complete. 

Our proof is a modification of the Mann-Shanks argument using the fact again that 

(F , F, ) = F , ,v . v a b ' (a,b) 

4. THE MANN-SHANKS CRITERION FOR s-FIBONOMIAL ARRAYS 

The s-Fibonomial coefficients follow from (2.1) when we set A = F , s being any 
positive integer. Our theorem 2 above handles the case s = 1. We now have 

Theorem 3. In the s-Fibonomial a r ray , the Mann-Shanks criterion is true. That i s , 

I C = prime if and only if r-P- I < c _ 2 R > 
(4.1) \ . s s 

l for every integer R such that C/3 ^ R ^ C/2, R > 1 . 

To see the motivation, consider Hermite 's extended theorem (2.2) with A ~ F . 
n sn 

We see that F „ / ( F ^, F n Q „ ) is a factor of the coefficient in the R-C position of the 
SR Sx\ S ^ — ZS-t\ 

Mann-Shanks type ar ray . But when C = prime we have 

( F s R ' F s C - 2 s R ) = F ( sR,sC-2sR) = F ( sR,sC) = F s (R,C) = F s ' 

since C = prime implies (R,C) = 1 for each C/3 < R < C/2, R > 1. Thus (2.2) yields 
F „ / F as a factor. By the way, it is a known fact that F | F R . To prove the converse 
case, when C is composite, f irst assume C = 2 k , k = 0, 2, 3, 4, • • • . Then again the 

unit < Q > = i occurs in the column; so that it is sufficient to study the situation for odd com-
posite C. Let p be an odd prime factor of C, and put C = p(2k + 1), k ^ 1. Choose as 
before R = pk. Then the coefficient in the R-C spot is the s-Fibonomial coefficient < p > . 
We find now that 
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Cancel F and F . . Now it is easy to see that s spk J 

(F , F ) = F, v = F , x = F . x = F 
sp sp - s r (sp, sp-sr) (sp,sr) s(p,r) s 

for all 1 < r ^ p - 1. Also, 

(F , F . .) = F , . .v = F, ., = F . .v = F 
sp spk-sj (sp,spk-sj) (sp,sj) s(p,j) s 

for all 1 < j ^ p - l . Remove the common factor F throughout. We see now that 

/ F F \ 
i SP sp - s r i 
V F s ' Fs ) 

1, for all 1 < r < p - 1 , 
\ x s x s / 

and 
/ F^ F o r a r o . \ 

for all 1 < j < p - 1 . 

Also, F / F > 1, and we find that F / F cannot divide the numerator; equivalently we sp s sp s 
have shown that F , / F cannot divide the s-Fibonomial coefficient so that our proof is 
complete. 

It would appear that a Fibonacci-type property (a homomorphism) 

<4-2) ( A a ' V = A(a,b) 

would be very useful for proving Mann-Shanks type cr i ter ia in general a r rays . 

5. THE MANN-SHANKS CRITERION FOR q-BINOMIAL ARRAYS 

The q-binomial or Gaussian coefficients are defined by 

a b (a b) 
They are polynomials in q. Since in fact (q - 1, q - 1) = q - 1, it is not surprising 
now that we can as se r t the Mann-Shanks criterion for the q-binomial ar ray . The q-analogue 
of (3.1) is motivated by Hermite 's generalized theorem (2.2) for we now have that the coef-
ficient in the R-C position is divisible by 

g - i 
/ R ., C-2R .,\ 
(q - 1, q - 1) 

which reduces to 
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q - 1 

when C is a prime and C/3 ^ R ^ C/2, R ^ 1. Consequently we are led to the following: 
Theorem 4. The Mann-Shanks criterion for primality holds in the q-binomial ar ray . 

That i s : 

!

C = prime if and only if 
for every integer R such that C/3 ^ R ^ C/2, R > 1, 
and where the q-binomial coefficients a re defined by (5.1). 

The proof is left to the reader. 
In each of the cases we have presented in this paper, the first non-trivial instance of 

the non-divisibility by a row number occurs when C = 25. The next case is then C = 35. 
Up to this point a row number fails to divide an a r ray number because of the presence of a 
unit in the column. C = 25 and 35 are the first composite numbers where no unit appears. 
The next such numbers are 49, 55, 65, 77, 85, 95, corresponding to those numbers of form 
6j ± 1 which are composite. 

The column entr ies for C = 25 in the ordinary Pascal case are 36, 252, 165, 12, with 
corresponding row numbers 9, 10, 11, 12. 10 fails to divide 252, while the other row 
numbers divide their column entr ies . Similarly, for the Fibonomial a r ray , the column en-
t r ies are 714, 136136, 83215, 144, with row numbers 34, 55, 89, 144. Here 55 fails to 
divide 136136. In the q-binomial a r ray , the column entries a re 

(q9 - l)(q8 - 1) ^ (qio - i)(q» _ i)(q» _ p(qT _ i)(q6 _ x) ^ 

(q2 - l)(q - 1) ' (q5 - l)(q4 - l)(q3 - l)(q2 - l)(q - 1) 

(q11 - l)(q10 - l)(q9 - 1) (q12 - 1) 

(q3 - D(q2 - l)(q - 1) q - 1 

The corresponding row numbers are 

(q9 - l) /(q - 1), (q10 - l) /(q - 1), (q11 - l) /(q - 1), and (q12 - l) /(q - 1). 

It is again, of course, the second row number that fails to divide the coefficient in the column. 
For a r r ays of the type we are studying this behavior is typical. 

The column entries for C = 35 in the Pascal a r r ay are 12, 715, 3432, 3003, 560, 17, 
with row numbers 12, 13, 14, 15, 16, 17. Here 14/3432, and 15J3003. For the Fibonom-
ial a r ray the entries are 144, 27372840, 14169550626, 22890661872, 113490195,1597, with 
row numbers 144, 233, 377, 610, 987, 1597, and the row numbers 377 and 610 are the 
ones which fail to divide their corresponding column entr ies . 

I C - 2 E | 
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6. GENERALIZED MANN-SHANKS CRITERIA 

[April 

By placing units in the (R, 2R) and (R, 3R) positions in their rectangular a r ray and 
carefully choosing the other entries (which turned out to be binomial coefficients) Mann and 
Shanks developed a kind of sieve which tests numbers of the form 6j ± 1 for primality. This 
suggests that there may be ways to devise similar sieves based on other arithmetic p rogres -
sions. After all, it is a very old theorem of Dirichlet that if (a,b) = 1 then there are infin-
itely many primes of the form a + bt, where t ranges over the integers. We might expect 
then to find a criterion similar to that of Mann-Shanks by using the progressions 4j ± 1 for 
example. Although I have not found amy simple formula for gene rating the entries in an ar ray , 
I can suggest some obvious necessary propert ies of such an a r ray , by analogy with the or igi-
nal Mann-Shanks ar ray . Below is presented an outline for such an array: 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 

1 

1 2 3 4 

1 - 1 
1 

5 6 7 

2 - 2 
1 3 

8 9 

1 
_ * 
1 * 

10 

_ 
-
1 

11 

3 
4 
5 

12 

1 
-
_ 
1 

13 

4 
5 
6 

14 

-
_ 
_ 
1 

15 

* 
* 
* 
* 

16 

1 
_ 
_ 
-
1 

17 

5 
6 
7 
8 

18 

_ 
_ 
_ 
_ 
1 

19 

5 
6 
7 
8 
9 

20 

1 
_ 
_ 
_ 

1 

21 

* 
* 
* 
* 
* 

Numbers listed above are the smallest factors which an entry musthave in order to be allow-
ed, so that the row number will divide each entry in a prime column. This guarantees that 
a prime will correspond to the row-column divisibility property desired. However, of the 
remaining entr ies , those spots marked by a dash (-) can be filled arbi t rar i ly , while those 
marked by a s tar (*) must be chosen so that at least one of the s ta r red numbers in each col-
umn will not be divisible by the row number. Such special column numbers are 9, 15, 21 , 
25, 27, etc. One may imagine that it would be desirable to have a symmetrical row, in an-
alogy to the binomial coefficients, though this may not be desired. However, it seems worth 
exploring. The first few rows suggest such symmetry. For this reason, I place a factor of 
7 in the R = 7, C = 25 position to preserve symmetry in that row, etc. It would be very 
remarkable if we could determine simple formulas for generating such generalized Mann-
Shanks a r rays based on Dirichlet progressions. 

In the outline a r r ay based on 4j ± 1, it is easy to see that the bottom s tar in the special 
columns will always occur for row number (K - l ) / 2 , where K = 4j ± 1 ^ prime. If we 
choose an entry for that position which is not divisible by the row number and otherwise fill 
open spots in the a r r ay by the row number in any given row, we shall obtain the following 
a r ray having the Mann-Shanks property: 
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1 

9 

1 

8 

9 

1 

b 

8 

9 

1 

6 

7 

8 

9 

1 

5 

6 

7 

8 

9 

1 

a 
5 

6 

7 

8 

9 

1 

3 

4 

5 

6 

7 

8 

9 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

3 

4 

5 

6 

7 

8 

9 

1 

4 

5 

6 

7 

8 

9 

1 

5 

6 

7 

8 

9 

1 

6 

7 

8 

9 

1 

7 

8 

9 

1 

8 

9 

1 

9 1 

1 c 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1 

1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1 

where 4/fa, 7/fb, l o | c , 12/[d, etc. For example, we could simply choose a = b = c = d 
= . . . = 1 throughout. We summarize in the following: 

Theorem 5. Let an a r r ay be defined by 

A(n,0) = A(n, 2n) = 1, n ^ 0 , 

A (n,k) = n, 2 =£ k < 2n - 1 , 

T*C — 1 A(n, l ) = n, if n f —^— , where K = 4j ± 1 f- p r ime, 

A(n,l) = x, with n/fx, if n K - 1 

Then this a r r ay has the Mann-Shanks property when shifted in the way of the original Mann-
Shanks a r ray . 

Similarly, the binomial coefficients in the original Mann-Shanks a r ray maybe replaced 
by numbers chosen in the same way. We have 

Theorem 6. Let an a r ray be defined by 

A(n,0) = A(n,n) = 1, n ^ 0 , 

A(n,k) = n, 2 ^ k < n - 1, 

A(n, l ) = n, if n / ~ , where K = 6j ± 1 ^ pr ime, 

A(n,l) = x, with n/x, if n K - 1 

Then this a r ray , when shifted as prescribed by Mann-Shanks has the Mann-Shanks primality 
criterion property. 

These two examples are not what we mean by a ?simple formula' of course, because we 
must prescr ibe and know the prime nature of a + bt in advance, whereas the beauty of the 



GENERALIZATION OF HERMITE'S DIVISIBILITY THEOREMS AND THE 
166 MANN-SHANKS PRIMALITY CRITERION FOR s-FIBONOMlAL ARRAYS April 1974 

binomial coefficients, Fibonomial coefficients, or q-binomial coefficients is that they auto-
matically take care of the situation. Nevertheless, it is felt that Theorems 5 and 6 shed fur-
ther light on the nature of the Mann-Shanks property. 

Another intriguing problem would be to find out whether any similar extensions to high-
e r dimensions might be possible, using multinomial coefficients and variations. 

7. TYPOGRAPHICAL ERRORS IN PREVIOUS PAPER 

In [4] the following e r r o r s have been noted: p. 356, in (2.3), for "mod • • • " read 
" (mod • • • ) " ; ? . 359, line 4, for 

( i LT1) read [S-^-lJ ; 

p. 360, lines 6 and 8 from bottom, for "Erdos" read "Erdbs" ; p. 372, in Ref. 2, for "Insti-
tute" read "Institution. " 
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ALGORITHMS FOR THIRD-ORDER RECURSION SEQUENCES 

BROTHER ALFRED BROUSSEAU 
St. Mary's College, Moraga, California 94575 

Given a third-order recursion relation 

(D T
n + 1 = a l T n " a 2 T n _ i + a 3 T n 

Let the auxiliary equation 

(2) x3 - 2Ltx2 + a2x - a3 = 0 

have three distinct roots r l 5 r2, r3. Then any term of a sequence governed by this r e cu r -
sion relation can be expressed in the form 

(3) T n = A i r f + A 2 r ? + A 3 r f . 

THE SEQUENCE S = £ r ? 

Since the individual elements of these sums are powers of the roots, the sums obey the 
given recursion relation. Hence it is possible to determine a few terms of S by means of 
symmetric functions and thereafter generate additional te rms of the S sequence. Since this 
sequence is basic to all the algorithms, its generation constitutes the first algorithm. (Note. 
This use of the S sequence is exemplified in [ 1 ].) 

ALGOEITHM FOE FINDING THE TERMS OF S 

Three consecutive terms of the sequence are: 

!

Si = ax 

S2 = a2
x - 2a2 

S3 = &\ - 3aA a2 + 3a3 

Then use the recursion relation to obtain positive and negative subscript terms of the sequence, 
The algorithm will be illustrated for two recursion relations which will be used to check 

other algorithms numerically. 

167 
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EXAMPLE 1: x3 - x2 

30 
29 
28 
27 
26 
25 
24 
23 
22 
21 
20 
19 

-14429 
13223 
-3253 
-4459 
5511 
-2201 
-1149 
2161 
-1189 
-177 
795 
-571 

-23 
-22 
-21 

-18 
-17 
-16 
-15 
-14 
-13 
12 
-11 
-10 
-9 
-8 
-7 

47 
271 
-253 
65 
83 

-105 
43 
21 
-41 
23 
3 

-15 

EXAMPLE 2: 

Sn <-4)n 

-6 
-5 
-4 
-3 
-2 
-1 
0 
1 
2 
3 
4 
5 

X3 -

11 
-1 
-5 
5 
-1 
-1 
3 
1 
3 
7 
11 
21 

- 7x2 

2450995949 6004997927 85 
2879858678 8067714806 5 
3383761613 1827843249 

-20 3975834906 620902593 
-19 4671506147 59541201 
-18 5488902409 1011041 
-17 6449322392 180465 
-16 7577792077 14561 
15 
14 
13 
12 
11 

10 
-9 
-8 
-7 
-6 

-5 
-4 
-3 
-2 
-1 

8903714463 
1046164399 
1229215792 
1444301540 
1697004500 

1993985121 
234271601 
27532161 
3232913 
380577 

44465 
5313 
593 
81 
5 

1313 
5681 
433 
49 
9 

6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

39 
71 
131 
241 
443 
815 
1499 
2757 
5071 
9327 
17155 
31553 

7x̂  + 5x + 4 = 0 

0 
1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

3 
7 
39 
226 
1359 
8227 

49890 
302659 
1836255 
11140930 
67594599 

410112523 
2488250946 
1509681561 
9159600445 
5557349493 

1 
5 
46 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

58035 
106743 
196331 
361109 
664183 
1221623 
2246915 
4132721 
7601259 
13980895 
25714875 
47297029 
86992799 

16 3371777360 703 
17 2045738276 0371 
18 1241198527 21698 
19 7530649458 07219 
20 4569025826 000559 

21 2772137664 2081026 
22 1681922475 81335511 
23 1020462746 554941211 
24 6191392481 409586818 
25 3756466464 6767059627 

26 2279138391 3410171845 5 
27 1382807980 7792383837 78 

RECURSION RELATIONS FOR SPACED TERMS OF A SEQUENCE 

Given a sequence T satisfying the given recursion relation. It is desired to find the 
recursion relation for a spacing of k among the t e rms , namely, for the sequence T . . 

Since 
(5) nk+a 

A nk+a , A nk+a , A nk+a At rt + A2 r2 + A3r3 
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and since there is a change of r, from one te rm to the next, the recursion relation is that 
k x 

whose roots correspond to r. . Let the coefficients be given in the relation 

x3 - Btx2 + B2x - B3 = 0 . 
Then 

-r, v ^ k k k „ - k k_ 
B2 = Eri r j = a9Eri = a3 s_k 

B3 = 4 

Hence the recursion relation is given by 

(6) x3 - Skx2 + a!f S_k - a!f = 0 . 

EXAMPLE FOR x3 - x2 - x - 1 = 0 with k = 5. 

T _,_-= -21T + T _ + T 1A . n+5 n n-5 n-10 

Using the sequence S with n = 20, 

T25 = 21*196331 + 9327 + 443 = 4132721 . 

EXAMPLE FOR x3 - 7x2 + 5x + 4 = 0 using the t e rms of the S sequence. 

T„5 = (-593 T-2 + 226 Ti - T4) /64 

T_5 = (-593*81/16 + 226*7 - 1359)/64 = -44465/1024 . 

SECOND-DEGREE HOMOGENEOUS SEQUENCE FUNCTIONS 

If there are several sequences satisfying the given recursion relation, a sum of te rms 
of the form T T would form a homogeneous sequence function of the second degree. mi m2 
Such te rms if expanded using the roots of the auxiliary equation would yield t e rms of the form 

r
m i m 2 a n ( j others of the form C r. 1 r . 2. The first type obey the recursion relation for i i 13 1 j J P J 

r2 since there is a change of 2 in the power in going from one te rm in the product to the 
next as the m f s change by 1. The second type obey the recursion relation for the quantities 
r . r . . 
1 J 

ALGORITHM FOR THE SECOND-DEGREE FUNCTIONS 

The recursion relation governing the quantities r? has already been obtained and is 
given by: 

(7) x3 - S2x2 + asS_2x - 4 = 0 . 
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For the second we need to find the symmetric functions of the roots r. r . . 

B i = X)rirj = a2 

B3 = r? r? r? = a3 . 

Hence the recursion relation is 

(8) x3 - a2x2 + a ^ x - a3 = 0 . 

The total recursion relation is the product of (7) and (8): 

(9) (x3 - S2x2 + a3S_2x - a3)(x3 - a2x2 + a ^ x - a |) = 0 . 

EXAMPLE FOR x3 - 7x2 + 5x + 4 = 0. 

Si = 44 s | - 248 sf - 655 Si + 1564 Ŝ  + 848 S2, - 256 S2^ 

= 44*13592 - 248*2262 - 655*392 + 1564*72 + 848*32 + 256*(5/4)2 

= 67683529 = 82272 

THIRD-DEGREE HOMOGENEOUS SEQUENCE FUNCTIONS 

An expression of the form 
T (1 ) T (2 ) T (3 ) 

mx m2 m3 

gives r ise to te rms of the form 

m-i+mo nii+mo m« mi m? mo 
i i j * i j k 

The first type corresponds to the recursion relation for r ? , the second to the recursion r e -
lation for r 2 r . 5 and the third to the recursion relation for ao. The first relation is : 

I j ' * 

(10) x3 - Sgx2 + a3S_3x - a| = 0 • 

The last relation is : 

(11) x - a3 = 0 . 

For the second we have a relation of the sixth degree with coefficients symmetric functions 
of the roots 
Rx = r ^ r 2 , R2 = r f r ^ R3 = r f r 3 , R4 = r 3 r l 9 R5 = r 2 r 3 , R6 = r | r 2 . 
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B i = E R i = <21) = " 3 a 3 + a2ai , 

where the notation (21) = J^r? r . taken as a symmetric function. 

B a - S R j R . = (412) + (32) + (321) + 3(222) 

B2 = 6a3 - 5a3a2ax + a3a3 + a2 

B3 = L R . R . R k = (531) + 2(432) + 2(33) 

B3 = -7a | + 6a 3 a 2 a t - 2a3aj - 2a3a2 + a 3 a 2 a 2 

(12) 
B4 = (632) + (522) + (543) + 3(444) = a| (3) + a |(32) + a|(21) + 3(43) 

B4 = 6a | - 5a3a2ax + aga^ + a3a2 

B5 = (654) = af (21) = -3a3 + a f a ^ 

B 6 = ag 

The product of (10), (11) and the polynomial whose coefficients are given by (12) is the r e -
quired recursion relation for the third degree. APPLIED TO x 3 - x 2 - x - l = 0, we have 

(x3 - 7x2 + 5x - l)(x - l)(x6 + 4x5 + l l x 4 + 12X3 + l l x 2 + 4x + 1) = 0 
o r 

x10 - 4x9 - 9x8 - 34x7 + 24x6 - 2x5 + 40x4 - 14x3 - x2 - 2x + 1 = 0 . 

Starting with S9 = 241 we have: 

4*2413 + 9*1313 + 34*713 - 24*393 + 2*213 - 40*113 + 14*73 + 33 + 2*13 - 33 

= 86938307 = 4433 - SZ
1Q . 

FOURTH-DEGREE HOMOGENEOUS SEQUENCE FUNCTIONS 

We proceed as before but without going through the preliminary details we arr ive at the 
conclusion that the symmetric functions of the roots are given by the partitions (4), (31), (22), 
(211) of four into three par ts or less . We determine the recursion relations or equivalently 
the coefficients for each of these. 

.(4) 
(13) x3 - S4x2 + afs_ 4 x - af = 0 . 

(211) Since this symmetric function is equivalent to a3 rj in i ts t e rms , we 

have the relation 
(14) x3 - a ^ x 2 + a | a 2 x - af = 0 . 

(31) 

At = (31) = -SLZSLt - 2a2 + a2a2 
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A2 = (611) + (44) + (431) + (332) 

= a3(5) + (44) + a3(32) + a§a2 

A2 = -a 3 a 2 + Sa^a^ + 2a3a2a1 - 5a3a2a3 + a3a^ + a2 

A3 = (741) + (642) +. (543) + 2(444) 

= a3(63) + a3(42) + ajj (21) + 2af 
( 1 5 ) A3 = 2a3 - I 3 a | a 2 a 1 + a3a^ + a 3 a | + 10a3a2ai - 3a3a2a^ 

- S a g a ^ i + a3a2af 

A4 = af(52) + a| (4) + af (31) + a| (1) 

A4 = -afa-i + 5a3a2 + 2a3a2a^ - 5a3a2ax + a3af + a3af 

A5 = aj(32) = - a | a 2 - 2afa2
1 + 44*1 

A6 = a | 

(22) 
Bx = (22) = -2a3ai + a2 

(16) B2 = (422) = a3 (2) = -2a3 a2 + a3 af 

B3 = 4 

The product of the polynomials given by (13), (14), (15), and (16) gives the required recursion 
relation for the fourth degree. 

APPLICATION TO x3 - x2 - x - 1 = 0. 

(x3 - l l x 2 - 5x - l)(x6 + 4x5 + 15x4 - 24X3 + 7x2 + l)(x3 + x2 + 3x - 1) 

X (x3 - x2 - x - 1) = 0 
o r 

X15 _ 7x14 _ 3 3 x i 3 _ 223x12 + 197x11 + 41 x10 + 1559 x9 - 451 x8 - 373x7 - 637x6 

+ 269x5 + 131x4 + 47X3 - 5x2 - 3x - 1 = 0 . 

REMARKS 

The determination of the coefficients of the polynomials for higher degrees in te rms of 
the coefficients of the original recursion relation leads to expressions of ever greater com-
plexity which make calculations tedious and present a greater possibility of e r ro r . A simpler 
approach is to use symmetric functions of the roots which in turn can be calculated by means 
of the S sequence of the given recursion relation. For three roots all such symmetric func-
tions can be reduced to one of the forms (ab), (a2) or (a). The las t is simply S while the 
others are given by: 
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(17) (ab) = S a S b - S a + b 

(18) (a2) = (S2
a - S 2 a ) / 2 . 

FIFTH-DEGREE HOMOGENEOUS SEQUENCE FUNCTIONS 

On the basis of partitions we consider symmetric functions of the roots of the forms 
(5), (41), (32), (311), (221). 

IS 
(311) 

(221) 

:3 - S5x2 + 

Bi = 

B2 = 

B3 

Ci = 

c2 = 

c3 = 

Di = 

afs_6x 

= as(2) 

a | (2 8 ) 

a3a2 

4*1 
4 

•• ( 4 1 ) (41) 

D2 = (812) + (52) + (541) + (442) 

= a3(7) + (52) + a3(43) + a3
2(22) 

D3 = (951) + (852) + (654) + 2(53) 

= a3(84) + a3(63) + a3(21) + 2ajj 

D4 = (992) + (10,55) + (965) + (866) 

= al(72) + a3
5(5) + a3

5 (41) + a3
6 (2) 

D5 = (10,96) = a3
6(43) 

D6 = aj° 

(32) E t = (32) 

E2 = (622) + (55) + (532) + (433) 

= a|(4) + (52) + a£(31) + 4*1 

E3 = (852) + (654) + 2(555) + (753) 

= af (63) + a3(21) + 2a| + ajj (42) 

E4 = (884) + (10,55) + (875) + (776) 

= af(42) + a|(5) + af(32) + a3
6a2 

E5 = (10,87) = a3'(31) 

E6 = aj° 
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APPLICATION TO x3 - x2 - x - 1 = 0. 

(x3 - 21x2 - x - l)(x3 - 3x2 - x - iMx3 + x2 + x - l)(x6 + Ox5 + 7x4 - 24x3 + 15x2 + 4x + 1) 

X (x6 + 10x5 + 75X4 + 28x3 - x2 - 6x + 1) = 0 . 
The product is 
x21 - 13x20 - 110x19 - 1374x18 ± 2425x17 + 543x16 + 60340 x15 - 3976x14 

- 43106 x13 - 149310 x12 + 137592 x11 + 88200x10 + 63126 x9 - 21742 x8 - 13076 x7 

- 8932x6 + 1041x5 .- 37x4 + 150x3 - 10x2 + x - 1 = 0 . 

CONCLUDING NOTES 
1. That the symmetric functions of the roots can always be expressed in t e rms of the 

quantities S is an elementary proposition in combinatorial analysis. (See [2; p. 7] .) 
2. For the n degree, the recursion relation has degree 

/ n + 2 \ 

V 2 I ' 
This follows from the fact that the number of t e rms involving the roots is equivalent to the 
solution of x + y + z = n in positive integers and zero. 

3. For the sixth-degree relations, the coefficients AA and A5, A2 and A4, are com-
plementary, the respective quantities in the symmetric functions adding up to 2n. 

4. Each term in a coefficient has a weight. The coefficient A, would have its t e rms 
of weight kn where n is the degree being considered for the te rms of the original recursion 
relation. Thus for n = 8, E4 has a term a|(72) which has a weight 6 X 3 + 2 X 7 = 32== 
4 X 8 . 

5. If a3 = 1, all the factors for the n degree are found for degree n + 3. 
6. With some modifications on the symmetric functions involved, this approach could 

be used to produce algorithms relating to recursion relations of higher order . 
7. The algorithms were checked numerically by using a relation with roots 1, 2, and 

4, finding the symmetric functions directly and comparing the result with that given by the 
algorithms. 
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ON THE DIVISORS OF SECOND-ORDER RECURRENCES 

PAUL A. CATL1N 
Carnegie-Mellon University, Pittsburg, Pennsylvania 15213 

1„ INTRODUCTION AND NOTATIONS 

In this note, we shall give a criterion to determine whether a given prime p divides 
te rms of the second-order recurrence 

(1) A ,Q = PA ,., - QA , 
n+2 n+1 ^ n ' 

with a rb i t ra ry initial values A0 and Al s and we shall give several applications. 
A part icular case of (1) is the recurrence 

(2) U n + 2 = P U n + 1 - QUn> U„ = 0, Ut = 1 . 

We shall denote by & the discriminant P2 - 4Q of the recurrence. The general term U 
of (2) may be denoted by 

(a11 - b n ) / ( a - b) , 
where 

Q _ P + ^ A a - 2 

and 

b = _ . 

There is an integer k(m) such that m divides U if and only if k(m)|n. p will denote a 
prime not dividing Q. In this paper, we shall be working in the field of integers modulo p. 

2. THE CRITERION FOR DIVISIBILITY 

Let R be the quotient U - /U (mod p): i . e . , the solution X of 

XU = U ,-, (mod p) . n n+1 *' 

R exis ts , unless p divides U , in which case the value of R will be denoted by °°o (All 
n n n J 

quotients which have a zero divisor will be denoted °°e) If R exists and is nonzero, then 

(3) R n + 1 , U n + 2 / U n + 1 , P - Q E ; 1 (mod p) ; 

175 
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if P | R then R ^ = °°; if R = °° then p |u , so R ± = P (mod p). . ' n n+1 n F ' n n+1 ^ 
Theorem 1. (R ) is a f i r s t -order recurrence mod p and is periodic with primitive 

period k(p). 
Proof. We have already shown that (R ) is a f i rs t -order recurrence (3). That it has 

primitive period k(p) follows from the definition of k and the fact that R = 0 if and only 
if P | u n + 1 . 

The following theorem gives a criterion for determining whether p is a divisor of 
te rms of (A ). It is known that if a number m divides some te rm A of (1), then m di-
vides A , , , v for any integer t for which the subscript is nonnegative, and only those 
t e rms . 

Theorem 2. (Divisibility criterion), p is a divisor of A.,, . (for any t for which 
the subscript is nonnegative) if and only if 

At /A0 = Rn (mod p) . 

Proof. By Eq. (8) of [6] . 

n 

Q A = U ,.. A. . , - U A. . v , n ^ m n+1 k(p) n k(p)+l 

where m + n = k(p). Thus, p |A if and only if 

A k(p)+1 / A k(p) " R n ' 

and it is known that 

Ak(p)+1 / A k(p) = A l / A o • 

Furthermore , p |A if and only if P |A , , / _̂ , and the theorem follows. 

3. APPLICATIONS OF THE CRITERION 

It is well known that k(p) |p - (A/p). A proof is given in [4] for the Fibonacci se r i e s , 
and it may be easily generalized to the recurrence (2). For most recur rences , there are 
many pr imes p such that k(p) = p - (A/p). In the first two theorems in this section, we 
consider such pr imes . 

The following result was proved in [l] and [2] for the Fibonacci se r ies . 
Theorem 3. If 

k(p) = p + 1 

then p divides some te rms of (A ) regardless of the initial values A0 and Al5 and 
conversely. 
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Proof. It follows from Theorem 1 that if 

k(p) = p + 1 , 

then for any residue class c there is an n such that c = R (mod p). Therefore, there 
is an n such that 

AA /A0 = Rn (mod p) , 

and the first par t follows by the criterion of Theorem 2. If k(p) is less than p + 1 then not 
every residue class is included in (R ), and the converse follows. 

Theorem 4. p is a divisor of terms of (A ) for any initial values A0 and AA, ex-
cepting when A1 /A0 = a or b , if and only if k(p) = p - 1. 

Proof. Since 
k(p) = p - 1 , 

we have 

(A/p) = 1 , 

so a and b are in the field of Integers modulo p and p|A . By definition, 

Rn = (a - b )/(a - b ) . 

If R = a (or b) (mod p) then it follows that a = b , whence p |A , giving a contradiction. 
Thus, R ^ a or b. By Theorem 2 and the fact that R = At /A0 for some n when 

k(p) = p - 1 
and 

At /A0 ^ a or b (mod p) , 

we see that p divides t e rms of (A ). If k(p) is less than p - 1, then not every residue 
class can be included in (R ), whence the converse follows. 

Theorem 5. If 
A1 /A0 = a or b (mod p) 

then p divides no te rm of (A ). F n 
Proof. If 

then 

and pJA . If 

At /A0 = a or b 

(A/p) = 1 
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R = a (or b) (mod p) 

then 

/ n+1 , n + l w / n ,riv . , x 
(a - b )/(a - b ) = a (or b) 

so that a = b and p | A , giving a contradiction. Thus, R £ a (or b) = A x / A 0 , and so 
PzfA for any n, by Theorem 2. 

4. CONC LUDING RE MARKS 

Hall [3] has given a different cri terion for whether a prime p divides some terms of 
(1). Bloom [2] has studied the related question of which composite numbers (as well as which 
primes) are divisors of recurrences of the form (1) with P = 1, Q = - 1 . 

Ward [5] has pointed out that the question of whether or not there are infinitely many 
pr imes for which k(p) = p + 1 or p - 1 is a generalization of Art in 's conjecture that an 
integer not - 1 or a square is a primitive root of infinitely many pr imes . For recurrences 
in which A is a square and a or b is 1, the question is equivalent to Art in 's conjecture. 
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FIBONACCI NOTES 
2: MULTIPLE GENERATING FUNCTIONS 

L CARLITZ 
Duke University, Durham, North Carolina 27706 

1. The Hermite polynomial H (x) may be defined by means of 

oo 

/Q\ z 2az-z2 

(a) . — = e n n! 
n=0 

The wri ter [ 1 ] has proved formulas of the following kind. 

(1.1) > H _,_ (a)H (b)H (c) 

OO 

2>» m n 
x y 

"m+nVM'/"mw/'"nv~/ m! n! 
m,n=0 

= (1 - 4x2 - 4y2)-2 exp j -4a2(x2 + y2) + 4a(bx + cy) - 4(bx + cy)2 | 
I 1 - 4x2 - 4y2 ) 

OO 

— ^ m n p 
(1.2) > H M ^ (a)H (b)H (c)H (d) X . yf

 z. 
ZsmJ m+n+p m n p mint p! 

4y* 

. m n p 
H M _, (a)H (b)H (c)H (d) -

m+n+p m n p 
m,n,p=0 

-4a2 (x2 + y2 + z2) + 4a(bx + 
4y2 - 4z2 

= (1 - 4x2 - 4y2 - l z 2 H c::p { ' ^ ^ + y* + ^ + 4 a ( b x + C y + d z ) " 4 ( b x + C y + d z ) ^ 
I 1 - 4x2 - 4y2 -

_™^ m n p 
(1.3) > Ef (a)H ^ (b)H ^ (c) x y z 

x -̂  n+p p+m m+n m! nipt 
m5n,p=Q 
i ( 2 Sa2 - 42a2x2 - 4Sabz + 8Sabxy| 

= d 2 e x p J 2 â  -g * I , 
where 

d = 1 - 4x2 - 4y2 - 4z2 + 16xyz 

and Sa2, Sa2x2, Sabz, Zabxy are symmetric functions in the indicated parameters . 
The object of the present note is to prove formulas of a s imilar kind for the Fibonacci 

and Lucas numbers. 
2. Consider first the sum 

OO 

S = y F F F x m y n . 
/ , / m+n m n J 

m,n=0 
* Supported in part by NSF Grant GP-17031 
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Since 

F = a " P , a + p = 1, afi = -1 , n a - B 
we get 

c 1 X _ „ / m+n 0m+n, m n S = g- > F F (a - ]8 ) x y 
m,n=0 

1 #x ay fix fiy 
a " ^ 1 - ax - A 2 1 - ay - a V 1 - fix - fi2x2 1 - fiy - fi2y2 

1 { A y fi2xy I 
a " ^ ( ( l - A ) ( l - Qffix)(l - <*2y)(l - tffiy) (1 - a/3x)(l - fi2)(l - flf/3y)(l - fi2y)j 

_ xy_ a 2 [ l - p2(x + y) + fi4xy] - fi2[l - #2(x + y) + A y ] 
^ ( - W l H x H H y , ( 1 _ 3 x + x 2 ) ( 1 _ 3 y + y 2 ) 

Thus 

(2.1) ^ F M F F x m y n = 2LzJ?£ 
^ 0 m n m n (1 + x)(l + y)(l - 3x + x»)(l - 3y + y2) 

Similarly we find that 

/oo\ ^ T „ -, m n 3 - 2(x + y) + 3xy (2.2) > L , F F x y = — -E m,n=0 m + n m n " (1 + x)(l + y)(l - 3x + x 2 ) ( l - 3y + y2) 

The sum 

T T T m n 
L , L L x y 

m+n m n J 

m,n=0 

is somewhat more complicated. We get 

(2 - ax)(2 - ay) [1 - P2(x + y) + fi4xy] + (2 - fix)(2 - fiy)[l - a2(x + y) + A y ] 
(1 + x)(l + y)(l - 3x + x 2 ) ( l - 3y + y2) 

After some manipulation we find that 

(2.3) V ^ L L L x m y n 

/ J m+n m n J 

m,n=0 
8 - 14 (x + y) - 2(x2 + y2) + 27xy + 7xy(x + y) + 3x2 y2 

(1 + x)(l + y)(l - 3x + x2) (1 - 3y + y2) 
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Recurrences of an unusual kind are implied by these formulas. In part icular (2.1) yields 

(2.4) F F F + F F F + F F F + F F F 
m+n m n m+n-1 m - 1 n m+n-1 m n-1 m+n-2 m - 1 n-1 

= F F - F F 
2m 2n 2m-2 2n-2 

while (2.2) gives 
(2.5) L F F + L „ F . F + L F F + L F F 

m+n m n m+n-1 m - 1 n m+n-1 m n-1 m+n-2 m - 1 n-1 
= 3F F - 2F F - 2F F + 3F F 

o r 2 m + 2 r 2 n + 2 r 2 n i 2n+2 *2m+2 2n ^ 2 H I 2n ' 

It may be of interest to mention that the generating functions (2.1), (2.2), (2.3) can be 
extended in various ways. For example we have 

V ^ m n F n + 2 X y " F
n

X y ( x + ^ + F n 2 x 2 y 2 
(2.6) > F _, M F F x m y n = - E l f _ E . E l i 

^ m + n + P m n ( l + x ) ( l + y ) ( l - 3 x + x 2 ) ( l - 3 y + y 2 ) 

This in turn leads to the following extension of (2.4): 

(2.7) F ^ ^ F F + F ^ ^ - t F - F + F F J + F . ^ ^ F . F -
m+n+p m n m+n+p-1 m - 1 n m n -1 m+n+p-2 m - 1 n-1 
= F F F - F ( F F + F F ) + F F F 

p+2 2m 2n p l 2m-2 2n 2m 2n-2 ; p-2 2m-2 2n-2 

Since L = F _,_- + F , , it is evident that (2.6) and (2.7) imply n n+1 n -1 F J 

E L , 0 - L xy(x + y) + L 0 x2 y2 

L , + F F x m y n = Ei^ E_l - P ^ _ i 

m,n=0 m n ( 1 + x ) ( 1 + y ) ( 1 - 3x + x*)(l - 3y + y*> 
and 
(2*9) L m + n + p F m F n + Lm+n+p-l ( F m - l F n + F m F n - l ) + Lm+n+p-2 F m - 1 F n - 1 

= L p + 2 F 2 m F 2 n " L p ( F 2m-2 F 2n + F 2 m F 2n-2 ] + L p - 2 F 2 m - 2 F 2n-2 ' 

respectively. 

3. We consider next the triple sum 

(3.1) \ F ^ M F F F x m y n z P 

AmmJ m+n+p m n p J 

m,n,p=0 

Exactly as above we find that (3.1) is equal to 
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a & I (1 - a2x)(l - a/3x)(l - a2y)(l - c*j3y)(l - a2z)(l - apz) 

_ _ ]63xyz 
(1 - ar/3x)(l - j82x)(l - a0y)(l - j32y)(l - ^ z ) ( l - /32z2) 

xyz J a?[l - j32(x + y + z) + j34(yz + zx + xy) - j36xyz] 
a " ? 1(1 + x)(l + y)(l + z)(l - 3x + x 2 ) ( l - 3y + ^ X l - 3z + z2) 

«3 [l - a2(x + y + z) + cfijyz + zx + xy) - #6xyz ] f 
(1 + x)(l + y)(l + z)(l - 3x + x2)( l - 3y + y2)( l - 3z + z2)5 

Simplifying we get 

(3.2) \ ^ F _, _, F F F xmynzP 

/ j m+n+p m n p J 

m,n,p=Q 
._ 2 - (x + y + z) + (yz + zx + xy) - 2xyz 

(1 + x)(l + y)(l + z)(l - 3x + x2)( l - 3y + y2)( l - 3z + z2) 

= (1 - x)(l - y)(l .- z) + 1 - xyz 
(1 + x)(l + y)(l + z)(l - 3x + x2)( l - 3y + y ^ U - 3z + z2) 

The general formula of this kind can now be stated, namely 

V* F A A F . . . Fn. xf 1 . . . x"k (3.3) > F __ __ F . . . F n i xr1 . . . xrK 

X ^ n ^ - « • +n^ nx
 n k l k 

n i ' * *• ' n k = 0 

k k ' 
n (l + x.)- n (i - 3x. + x2) 

j=l J j=l 3 3 

where c. is the j elementary symmetric function of xl9 x2, • • • , x^. 
To prove (3.3) it is enough to observe that the numerator is equal to 

^4-? j f f k n (i - i82^) - £k n d - ctxA 

{ k k 

( j=0 ]=0 
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2j<k 2j>k 

2j<k 2j<k 

2j<k 

In exactly the same way we can prove the more general resul t 

(3.4) > F _,_ _,_ ^ F • • • F n i xf1 • • • xk 
Z - # n ^ . - - + n k + p n* % i k 

n i» - e • >nk=0 

k k 
n (i + x.)- n (i - 3x. + x?) 

j=i J j=i J 3 

Hence we also have 

L , , ^ F • • • F n i X-. 1 • • • xv, n ^ . *-+nk+p ni n k * * 
nls» • . 5nk=0 

g^V^j 
k k 
n (i + x.). n (i - 3x. + x2.) 

3 = 1 J 5 = 1 3 3 

4. We consider next the ser ies 

^ _ _ m• n p 1 " \ 7 ^ / n+p fln+pw p+m flp+mW/im+n oHi+iiv m n p 
F , F , F , x y z F = -—— > (a ^-B H)(aF -/3F )(<* -B )x y z^ n+p p+m m+n J

 {ao^£^j ^ r r / j 
m,n,p=0 H m,n,p=0 

i f 1 T-. 1 . ^ 1 1 
(cH3)3 / (l-a2x) (l-a2y) (l~a2z) (l-a2x) (1+y) (1+z) (l-j32x) (1+y) (1+z) (l-j32x) (l-/32y) (1-J82Z) ' 

1 (l-j32x) (l-j32y) (l-/32z) - (1-a2x) (l-a2y) (l-ah) 1 _ y^ (a2 - ff2)x 
(a-|3)3 (l-3x+x2)(l-3y+y2)(l-3z+z2) (a-j8)3 (l-3x+x2)(l+y)(l+z) 
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It follows that 

(4.1) 

oo 

m,n,p= 

1 
5 

=0 
n+p F _, : 

p+m 

2x 
_, „ 2 \ , 

FIBONACCI NOTES 

_ m n p F , x y z F 
m+n J 

- 32xy + 8xyz 
/-, o - . , „ 2 \ / i o , „2 \ 

[April 

iE-5 " (1 - 3x + x 2 ) ( l + y)(l + z) 

It can be shown that the right member of (4.1) is equal to 

,* 2) _ _ q - 5r + 2pr + 2qr + r2 - q2 

(1 + x)(l + y)(l + z)(l - 3x + x 2 ) ( l - 3y + y ^ U - 3z + z2) 

where 

p = 1 3 x ' <* = Hxy> r = xyz-

A somewhat more general result than (4.1) is 

OO 

(4.3) \ ^ F ^ F ^ _ F M ^ x m y n z P 

x J n+p+r p+m+r m+n+r J 

m,n,p=0 

- F 0 - F 0 0 V x + F n . V x y - F 0 „xyz A 3r 3r-2 *-*» 3r-4 Z^ J 3r-6 J 

5 (1 - 3x + x2)( l - 3y + y2)( l - 3z + z2) 

r v—« F - F 0 x 
(-1) ^ / ^ r r -2 

5 Z « ^ (i _ 3x + x 2 ) ( l + y)(l + z) 

Similarly we can show that 

(4.4) V " L L L x m y n z P 

x J n+p+r p+m+r m+n+r J 

m,n,p=0 
L^ - L 0 rt V*x + L0 . V*xy - L„ ~xyz 3r 3r-2 £*> 3r-4 ^ J 3r-6 J 

(1 - 3x + x 2 ) ( l - 3y + f)(l - 3z + z2) 

E J-j — J_J n X 
L ^ 2 

(1 - 3x + '(1 - 3x + x2)( l + y)(l + z) 
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We remark that the left member of (4.3) can be transformed in a ra ther interesting way. 
Put 

mf = n + p, nf = p + m, pf = m + n 

Then 

(4.5) I -mf + nf + p' = 2m 
< m? - nf + pf = 2n 
( mf + nf - p' = 2p 

so that 

(4.6) mf + n! + pT = 0 (mod 2) 

and 

(4.7) m1 ^ nr + pf
 5 nf ^ pf + m f , p! ^ mf + nf . 

Conversely if mT, nf , p? are nonnegative integers satisfying (4.6) and (4.7) then m5 n, p as 
defined by (4.5) are also nonnegative integers. Hence replacing x5 y, z by vw, wu, uv, 
(4.3) becomes 

I F F J^J mf+r n? (4-8) J . F _ f _ F ^ ? + r F p f + r U ^ vXi w^ 

- F 0 - F„ ^ y ^ u v + F 0 . uvw y ^ u - F„ „u2v2w2 
1̂  3r 3 r - 2 Z ^ 3r-4 Z^j 3r-6 

(1 - 3vw + v2w2)( l - 3wu + w2u2)( l - 3uv + u2v2) 

r «-"*% F - F 0vw 
(-1) \ / ^ r r -2 

(1 -' 3vw + v2w2)( l + wu)(l + uv) 

A similar resul t can be stated for (4.4). 
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A COMBINATORIAL IDENTITY 

MARCSA ASCHER 
Ithaca College Ithaca, New York 14850 

Define 

(1) f(n,k) 

where 

i>'M(*y 
n /2 , n even 
(n - l ) / 2 , n odd 

By induction, it is proved that 

» «*-•»• <-« t ( iV , ) -^ l t ( . , : i ) for 0 

The usual induction procedure must be modified since the identity involves both n and k but 
only restr ic ted values of k associated with each n. Figure 1 i l lustrates how the induction 
proceeds. For the n and k shown, the identity is valid at the darkened grid points. The 
let ter label on a grid point or on an arrow refers to part A, B, C, or D of the proof. 

Pa r t A of the proof shows that when n even, assuming (2) is true for (n,k), (n - l , k ) , 
and (n - 1, k - 1), then (2) is true for (n + 1, k). This applies to all k associated with n 
and n + 1 except for k = 0 and k = n /2 . Par t B shows that for n even, k / 0, k ^ 
(n + 2)/2, assuming as in A that (2) is true for (n,k), adding the assumption that (2) is 
true for (n, k - 1), and using the resul t of A that (2) is true for (n + 1, k), then (2) is true 
for (n + 2, k). Pa r t C shows that (2) is true for (n,0) and P a r t D deals with the special 
cases of (n, n/2) and (n + 1, n/2) for n even. 

A. Starting with 

(3) (^i(Hn'W(':0C;H:0(-
for 1 < k < i - 1, i ^ n / 2 , n even, a factor of ( - l ) 1 2 n " 1 is introduced into each term. 
Each term in the equation is summed over i = k + 1, • • • , n /2 . For notational convenience, 
call the resul t 

186 
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n l 

C 

6 C 

5 C 

4 C 

3 C 

2 C 

1 C * 

Tr 

D 

Figure 1 

(4) l , n 2,n 3,n 4,n 

It is found that, for n even, 

l , n f(n + 1, k) - 2 ( 

(5) 

"4,n 

S2 n = f(n,k) - 2 n " 2 k ( - l ) k 

S 3 5 n = " f ( n " *• k ) / 2 

f(n - 1, k - 1) + 2 n + 1 " 2 k ( - l ) k 

(V) 

(-)]/ 
If (2) is true for (n,k), (n - 1, k), and (n - 1, k - 1), (4) can be solved for f(n + i , k) and 

(6) f(n + 1, k) = (-1) k / n + 2 \ 
I n + 1 - 2k J 

for 1 < k < (n - 2) /2, n even,. 

B. Using (3) modified such that each n is replaced by n + 1 , a factor of 

(_1 }i 2 n + l - 2 i 
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is introduced into each term and each term of the equation is summed over i = k + 1, 
n /2 . The result is 

S l , n + 1 " W*)(-V 

n+2 / n + 2 
2 / 2 

(4') S2,n+1 + S 3 . n + 1 " (l/2){-1] 

n+2 / n 
2 I 2 

S4 ,n+1 " {l/2){-1] 

n+2 
2 

n 
2 

k - 1. 

If (2) is true for (n,k), (n, k - 1), and (n + 1, k), (4T) can be solved for f(n+2, k) and 

(5') f(n + 2, k) = (-1)J d n + 3 \ 
1 n + 2 - 2k 1 

for 1 < k ^ n /2 , n even. 
C. When k = 0, (3) reduces to the familiar identity 

(3") ("j- ' ) • ( - . - ' )*(?--}) 

for 1 < i < n /2 , n even, and (4) reduces to 

(4") l , n 2,n 3,n 

where S- , S0 , S0 are as defined in (5). l , n 2,n 3,n 
Hence, if f(n,0) = n + 1 and f(n - 1, 0) = n, then f(n + 1, 0) = n + 2 for n even. 
Similar modification of Par t B leads to f(n + 2, 0) = n + 3 if f(n,0) = n + 1 and 

f(n + 1, 0) = n + 2 for n even. Verifying by substitution into (1) that f(2,0) = 3 and f(l,0) 
= 2 completes the case of k = 0. 

D. Finally by substitution into (1), it is verified that (2) is true for (n, n/2) and 
(n + 1, n/2) for n even. 
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In [ l ] , we find three well known divisibility propert ies which exist between the Fibon-
acci and Lucas numbers. They are 

(1) F I F iff m = kn ; 
n I m 

(2) L I F iff m = 2kn, n > 1 ; 
n I m 

(3) L I L iff m = (2k - l)n, n > 1 . 
n ' m 

The pr imary intention of this paper is to investigate the decomposition of Fibonacci and 
Lucas numbers in that we are interested in finding n such that n |F or n|L . As a r e -
sult of this investigation, we will also il lustrate several interesting congruence relationships 
which exist between the elements of the sequences \ F } and (L } . 

The first result , due to Hoggatt, is 
Theorem 1. If n = 2-3k , k > 1, then n|L . 
Proof. Using a and /3 as the roots of the equation x2 - x - 1 = 0 and recalling that 

L = a + j3 , we have n r 

T 3n , 03n 
L3n = a +fi 

, n , „ n w 2n n 0 n , D2n^ = \a + jS )(a -aft + j3 ) 

= VL2n " (-1)n> = VL2n " » ' 

However, L2 = Lrt + 2 if n is even so that n 2n 

(4) L 3 n = Ln(L^ - 3) . 

The theorem is true if k = 1 because n = 6 and L6 = 18. The result now follows by 
induction on k together with (4). 

Curiosity leads one to ask if there are other sequences (nk) such that njLn k . The 
authors were unable to find other such sequences until they obtained the computer resul ts of 
Mr. Joseph Greener from which they were able to make several conjectures and establish 
several resul ts . Before stating the resul ts , we establish the following theorem which was 
discovered independently by Carlitz and Bergum. 
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Theorem 2. If p is an odd prime and p|L then p |L k_i > k ^. 1. 
Proof. By hypothesis, the theorem is true for k = 1. Assume p L ^ -i and let 

j _ i n p ^ " 1 

t = p then pt|L ,. We shall show that p2t|L ,. 
Using the factorization of x F + y , we have 

nt p nt p 

(5) L n p t = (ant) + dSnt) 

= L n t ( ^ 

The middle term of the summation is 

( 6 ) ( - 1 ) (p+3)/2 ( a j 3 )nt(p-l) /2 = ( - 1 ) (n+l ) (p- l ) /2 

The sum of the q and (p + 1 - q) t e rms , where q =J= (p + l ) / 2 , is 

(7) ^^q+ l^n t tp -q j^n t tq - l ) + ^ p - q ^ n t f a - l ^ n t f o - q ) 

= (-i)(l+1(Qf/3)nt((l-1)(Qfnt(p"2q+1) + j3nt(P-2<l+1)) 

= , v(n+l)(q-l)T 
l " l j nt(p-2q+l) ' 

Using (6) and (7) in (5) with p = 4k + 1, we have 

2k 
L npt " L n t l ^ j ( _ 1 ) n C| Lnt(4k-2q+2) + * (8) 

l i p t l i t 1 

q=l 

k-1 
L n t ( I ^ L 4 n t ( k - q ) + X / ' ^ ' ^ - ' o , a „ ^ + 1 

^ + 1 T 
•J2nt(2k-2q+l) 

, q=0 q=l 

( k-1 k 

X ) [ 5 F 2 n t ( k - q )
 + 2 1 + X ) ( - 1 ) n + 1 [ L n t ( 2 k - 2 q + l ) " 2 ^ " 1 + * 

q=0 q=l 

( k-1 k 

X 5 F 2 n t ( k - q ) + S ( - 1 ) n + l L n t ( 2 k - 2 q + l ) + P 
q=0 q=l since L. = 5F2 + 2, L2 = L0 + 2 ( - l ) r , and t(2k - 2q + 1) is odd. 4r 2r r 2r ^ 

Now pt|L , (2k - 2q + 1) is odd, and 2(k - q) is even so that by (2) and (3) one sees . 
that p is a factor of the expression in the parentheses of (8). Hence, p2t|L , and the theo-
rem is proved if we have p = 1 (mod 4). 
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Suppose p = 4k + 3» An argument s imilar to the above yields 

k+1 k-1 
(9) V = Lnt ( J ] Lnt(2k-2q+3) + ] £ ^ ' " W q ) " ^ 

q=l q=0 

and we see , as before, that p2t|L , if p = 3 (mod 4). 
Since 3|L2, we have 

ki ki 
3 lL2,,3k-l o r 3 | L

2 - 3 k for k - X ' 

However, 2|L 3k for k ^ 1. But (2,3) = 1 and we have an alternate proof of Theorem 1 
so that Theorem 1 is now an immediate consequence of Theorem 2. Fur thermore , this p ro -
cedure can be used to establish sequences {n, } such that n, |Ln, . We have 

Theorem 3. Let p be any odd pr ime different from 3 and such that p L qu , k zLl, 
Let n = 2-3 p where t >. 1; then n L . 

k Proof* By Theorem 1 and (3), we see that 2-3 L 9 Q^ ^ for all t ^ 1. However, by 
Theorem 2 and (3), one has p |L ^ ^ for t ^ 1. Since ( 2 * 3 ^ ^ ) = 1, one has 2-3 p | 
L2-3kpt f o r t £ 1 -

By an argument s imilar to that of Theorem 3, it is easy to see that the following are true. 
Corollary 1. If p and q are distinct odd primes such that p L and q |L where m 

and n a re odd, then (pq) L , vk„i for all k >. 1. FM l m n (pq )^ ± 

and 
Corollary 2* If p and q are distinct odd pr imes different from 3 such that ptL9 Qk 

k t r i 
and q |L9 ok w n e r e k — 1 a n ( i n ~ 2 ' 3 P Q t n e n n | L £° r t ^ 0 and r ^ 0. 

Using F = F L , we have 
I k i 

Corollary 3. If p is an odd prime and p|L then p | F 9 £_•]_ for k > 1. 
and 

Corollary 4, If p and q are distinct odd pr imes such that p|L and q|L where 
m and n a re odd integers then (pq) | F„ / v^_i for k > 1. 

Corollaries 3 and 4 can be strengthened if we know that p is an odd prime and p |F .• 
To do this, we show another theorem discovered independently by Carlitz and Bergum. 

I k i 
Theorem 4, If p is an odd prime and p |F then p | F \^_i for all k > 1. 
Proof. By hypothesis, the theorem is true for k = 1. Assume p | F j ^ and let 

t = p " then pt J F fc. We shall show that p2t ( F ,. Using Binetfs formula together with 
the factorization of x F - y , we have 

(10) F = F ^ J\nt(p-i)pnt(i-l) 
i=l 
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The middle term of the summation is (-1) p " while the sum of the q and 
(p + 1 - q) t e rms , where q ^ (p + l ) / 2 , using the formula L 2 = 5 F | + 2(-l) , is 

(11) ant(p-q)^nt(q-l) + ^nt(q-l)^nt(p-q) = ( _ 1 )
n (q-D L 

^2nt(p-2q+l)/2 

( " l j 5 Fnt(p-2q+l) /2 + Z{~1} 

By substitution into (10), we obtain 

' p -1 /2 

™ %t = Fnt I 2^ ^^^"^ ^t(P-2q+1)/2 + P^)n(P"1)/2 

q=i 

Using ptjF , and (1), we see that p is a factor of the expression in the parentheses of 
(12) so that p2t I F , and the theorem is proved. 

n I I ki ki Let F (L ) be the least such that p F (p L ) then it is still unresolved if p F (p , n n , , 9
 F | n ^ 1 n v ' m F ' 

L ) o r p K | F (p / L ) for npK"Z < m < npk-1 and k > 2. 
An immediate consequence of Theorem 4, by use of (1), is 
Corollary 5. If p and q are distinct odd pr imes such that pJF and qJF then 

Another result of Theorem 4 which was already discovered by Kramer and Hoggatt and 
occurs in [2] is 

(13) s k | F
5 k ' for k > 1 

since F5 = 5. Note that this result also gives us a sequence {n^} such that n, | Fn , . 
Jus t as the authors could find several sequences {nj^} such that n, |L n , they were 

also able to show that there are several other sequences {n^} such that n, [Fn, . With this 
in mind, we prove the next four theorems. 

Theorem 5. If n = 3 m 2 where m > 1 and r > 1 then n | F . 
— i n 

Proof. By the discussion following Theorem 2 and Corollary 3, we have 3 \F. o m for 

3m m > 1 . But 4 | F 6 so that 4 | F 4 < 3 m for m > 1. Since (4, 3 m ) = 1, we have 4 - 3 m | F ^ 
for m ^. 1 and the theorem is proved if r = 1. 

Since 

F
3 n 2 r + 2 = F3Hi2r+lL3m2r-H = ^ n ^ r + l ( 5 F | m 2 r + 2) 

l m r+21 
and 2 | F 3 , we have by induction on r that 3 2 | Fom.9r+2 • 

Theorem 6. If , 
~ n = 2 r + 1 3 m 5 k , 

where r > 1, m > 1, and k >. 1 then n | F . 
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Proof. This resul t follows immediately from Theorem 5, (1), and (13) because 

(5k, 2 r + 1 3 m ) = 1 . 

By using Theorem 4 and Corollary 5 in an argument s imilar to that of Theorem 6, we 
have 

Theorem 7. Let p be any odd prime different from 3 and such that p | F 9 r + i n m where 
r > 1 and m > 1, Let n = 2 3 p where k ^ 1, then n F . 

1 n 
and 

r~t~l m 1 
Theorem 8. Let s = 2 3 . Let p and q be distinct odd pr imes such that p F 
1 k t 1 s 

and q F . Let n = sp q where k > 0 and t > 0 then n F . 
For our next divisibility property, we establish 
Theorem 9. If k > 1 then 2 k + 2 1F 9k„ 

I k - 1 1 
Proof. Since 8 F6, the theorem is true for k = 1. Suppose s = 2 and 8s F , . 

1 ° ^^ ' 6 s 
Since F 9 = F L = F (5F2

Q +2) and 21F3, the result follows by induction with the 
X^JS O S O S D S O S 

use of (1). 
Throughout the remainder of this paper, we analyze the prime decomposition of L 

where n is odd and establish several congruence relations between the elements of { F } 
and ( L } . With this in mind, we first establish 

Lemma 1. If n is odd then L = 4 M where t = 0 or 1 and M is odd. 
n 

Proof. Since n is odd, we have (1) L = L 0 ,., where m is even, (2) L = Ln , _ 
n 3m+l ' n 3m+2 

where m is odd, or (3) L = L 0 where m is odd. 
n 3m If L = L 0 ^ and m = 2r then L = L- _ . Since 2 | F O , L c = 5F2

0 + 2 ( - l ) r , n 3m+l n 6r+l ' 3r 6r 3r ' and (L^ , L« i n ) = 1, we have L 0 in is odd or that L_ , - = 4°M where M is odd. 6r. 6r+l 3m+l 3m+l 
By a s imilar argument, it is easy to show that L = 4°M where M is odd. 
Suppose L n = L 3 a 

2, it is easy to show that 

Suppose L = L where m = 2r + 1. By an argument s imilar to that of Theorem 

<"> L „ = L6r+3 

if r is even; 

if r is odd 

Now 2 F n / x so that the t e rms in the parentheses are odd and L = 4M where M i 3(r-q) ^ n 
is odd. 

The following theorem is due to Hoggatt while the proof is that of Brother Alfred 
Brousseau. 

Theorem 10. The Lucas numbers L with n odd have factors 4 M where t = 0 or 
1 and the prime factors of M are pr imes of the form 10m ± 1. 

Proof. The first part of the theorem is a result of Lemma 1. 

From l £ - \_1
L

n+1 = ( -Dn55 we have that L - j L ^ = 5 (mod p) for any odd 
prime divisor p of L . However, L ,n = L + L - so that L ,- = L -. (mod p ) . n n+1 n n-1 n+1 n-1 F 
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Therefore, L2 .. = 5 (mod p) and 5 is a quadratic residue modulo p. Since the only 
pr imes having 5 as a quadratic residue are of the form 10m ± 1 , we are through. 

Using Binet's formula, it can be shown that 

( 1 5 ) L 12 t + j = 5 F ( l 2 t + j - l ) / 2 F ( 1 2 t + j + l ) / 2 + (-»{]~m> J o d d -

Combining the resul ts of Lemma 1 with (15), we have 
Theorem 11. There exists an integer N such that 

(a) L 1 2 t + 1 = ION - 1 , 

(b) L 1 2 t + 3 = 4(10N + 1) , 

(0 L 1 2 t + 5 = ION f 1 , 

(d) L 1 2 t + ? = ION - 1 , 

and 
(e) L 1 2 t + 9 = 4(10N - 1) , 

(f) L 1 2 t + l l = WN - 1 . 

Since the proof of Theorem 11 is trivial , it has been omitted. However, a word of cau-
tion about the results is essential. Even though L-„. « = 4(10N + 1) and L ? , _ = ION + 1, 
not all prime factors are of the form lOn + 1 since 192|L12.i443 and 1992 |L«I2.I82+5- How-
ever, the number of prime factors of the form lOn - 1 which divide L ? or L , 
must be even. 

Since l l 2 L ^ ^ + T * 21l|Ll2el+9 and ll2|L12.22+11» we see that there can be pr imes of 
the form lOn + 1 which divide L for j = 7, 9, or 11. In fact, the number of pr imes 
of the form lOn - 1 which divide L- n , ,. where i = 7, 9, or 11 must be odd. 

12t+j J 

Examining [4] , we see that L49 = 29-599786069 so that L - 2 - may have prime fac-
tors of the form lOn ± 1. 

By Binet 's formula, we have 

( 1 6 ) F n + 6 - F n -2 = L n + L n + 4 = L n + 2
L 2 " 

Hence, by expanding and substitution of (16), we have 

2 5 - l 
(1?) J2 Ln+4i = Fn+2i+2.2 " Fn-2 • 

i=0 
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Using (16) and induction, it can be shown that 

2 3 - l j 
(18) J2 Ln+4ki = V(2J-l)2k " L

2ik • ^ X ' 
i=0 1~1 

Hence, by (17) and (18) with k = 1 and n replaced by n + 2, we have 

195 

(19) 

so that 

Ln+2J+1 .n
n V = Fn+2J+2 " Fn 

1=1 

(20) F
n +23 + 2 " F n ( m o d L 2 i ) for 1 ^ i < j 

and 

(21) F n + 2 J + 2 S F n (mod L n + 2 j + 1 ) if j t 0 . 

In papers to follow, the authors will generalize, where possible, the results of this pa-
per to the generalized sequence of Fibonacci numbers as well as to several general l inear 
recur rences . They will also investigate sums and products of the form occurring in (18). 
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COMBINATIONS AND SUMS OF POWERS 

MYRON TEPPER 
195 Dogwood, Park Forest, Illinois 60466 

We adopt the following notation and conventions: 
1. n and Q are non-negative integers . 

n 
2. 

i=l i>-
b 

F(i) = 0 for a > b 

H F(i) = 1 for a > b 
i=a 

5. Bj = l / 6 , B2 = -1 /30 , B3 = 1/42, e t c . , are the non- zero Bernoulli numbers . 

? Q (x t , x2, • • • , x m ) = ^•[A(I; ; : ) ] - (V-0 
For example, 

ao) = rMo5) 
ad. s) = d-sr 1 ^)^) 

ftd.3.4) = (1-3-4)-1 ( ; ) ( { ) ( J) 

7. dQ(x1? x2, • • • , x m ) = gq(Xi, x2, • " , x m ) - n X l 

Theorem 1. Say Q > 0. Then 

Q 
(Q + 1)S^ = n Q + 1 + (Q + l )n Q - 1 + n (1 - r . ) 

^ i = l x 

where 

196 
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Q 
n (i 

i=2 V 

is expressed in te rms of sums of products of the r . , and for each such product, e .g. 

x l x2 r x , where xt< x2 < • • • < x m for m > 2, we let r x -r-x1 ^x2 
dQ(xl5 x2, • • • , x m ) . 

Theorem 2. Say Q > 1. Then 

where 

2Q 
(2Q + l ) B n - -Tt n (1 - r . ) 

Q i=2 x 

2Q 
-rt n (1 - r . ) 

i=2 x 

is expressed in terms of sums of products of the r . , and for each such product, e. g. , 
rxi ' V r v , where XH < x2 < • • • < x for m ^ 2, we let r v -r. x l "x2 
&9rvxi' x 2 ' ' "' ' x m ' * 32Q 

Theorem 3. Say Q > 1. Then 

(S + 1)Q - s Q = (n + 1)Q - 1 , 

where S is formally replaced by S, when the left-hand side of this equation is expanded; 
e .g. , 1S0 + 3St + 3S2 = (n + l)3 - 1. Hence, starting with S0 = n, this theorem canbe used 
to find S^ in a recursive fashion. 

Theorem 4. 

St - 2T + n 

1 0 n 
1 2 n2 

1 3 n3 
+ n4 

So = - ^ + na 

etc. , where the entries in the determinants are binomial coefficients, zeros , and powers of 

We now illustrate two more methods for finding S~. 
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Method 1. The "(i + 1)Q - (i - 1 ) Q " method. For example, 

n 
4i 

"1=1 ~ i=l 

n n 

E[(i + i ) 2 - ( i - i ) 2 ] = Z ' 
n 

(n + l)2 + n2 - 1 = J 4i 
i=l 

n 
4 y i = 2n2 + 2n . 

i=l 

n 
• - n 2 + n _ n(n + 1) 

i=l 

Method 2. Lagrange interpolation. Assuming that S^ is a polynomial of degree Q + 
1 in n, we now compute St. Let f(n) = S1 = 1 + 2 + • • • + n . Then, by Lagrange interpola-
tion, we have f(n) = f(l)Pt + f(2)P2 + f(3)P3 , where, letting t. = i, 

( n - t 2 ) ( n - <*> (n - 2)fa - 3) 
F l I t T - taXti - %) (-l)(-2) 

( n - t i ) ( n - t 3 ) (n - i)fa - 3) 
^ 2 TtT- t t)(t2 - tj) d ) P i 5 

( n - ^ H n - t ^ ) ( n . 1 ) ( n _ 2 ) 
F s Tti" - tjHta - t2) (SHU ' 

Editors1 Note: This abstract qualifies for the Fibonacci Note Service. It is an abstract of a 
paper which is fifty pages long. If you would like a Xerox copy of the entire article at four 
cents a page (which includes postage, mater ia ls and labor), send your request to: 

Brother Alfred Brousseau, St. Mary's College, Moraga, California 94575. 



FUNCTIONAL EQUATIONS WITH PRIME ROOTS 
FROM ARITHMETIC EXPRESSIONS FOR ® 

BARRY BRENT 
Efmhurst, New York 11373 

1. In this ar t ic le , a generalized form of Euler f s law concerning the sigma function will 
tained and used to derive expressions for ^ which contain ju 

addition and multiplication. These will be substituted in the equations 
be obtained and used to derive expressions for T% which contain just functions involving 

(1) <§^(n) - na - 1 = 0 

to obtain equations with classes of solutions identical with the class of prime numbers. 
2. Let 

F<n> = Sf ( d ) 
d|n 

Proposition 1. If 

D Ftn) xn 

n=l 

converges on some interval about 0, then 

n 
(2) 0 = nR(n) + V F(a)E(n - a) 

a=l 

where 

_ ^ °° f(n)/n 
(3) 2 ^ E(n)xn = II (1 - xn) 

n=0 n = 1 

The proof mimics Eule r ' s for the case f = identity, which is the recursive expression 
for sum of divisors he obtained by describing E. [l] 

199 
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Proof. 

J^ f (n)xn / ( l - x n ) = £ f ( n ) 2] x 

n=l n k 

nk 

f(l)x + f(l)x2 + f(l)x3 + f(l)x4 + f (l)x5 + f(l)x6 + . . . 

+ f (2)x2 + f (2)x* + f (2)x6 + . . . 

+ f (3)x3 + f (3)x6 + . . . 

+ f (4) x4 + • • • 

+ f(5)x5 + • • • 

+ f (6)x6 + . . . 

OO OO 

= X > n £ f ( d ) = £ F(n)xn . 
n=l d n n=l 

That i s , 

(4) J ] f (n)x n / ( l - x n ) = Yl FWx 1 1 . 
n=l n=l 

Suppose 

f(n)/n 
(5) o < n ( i - x

n ) < «> 

on some interval about 0. We show that (2) holds under (5) and then that (5) holds when 

n=l 

converges on some interval about 0. 
Let (5) hold. We have the identity: 

00 f(n)/n 
log n (1 - x n ) = J2 f(n)/nlog (1 - x n ) 

n=l x 

Differentiating, and substituting from (3) as (5) permits : 
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E-WVtt-^) =_L1 
sf?(i - - f(n)/n 

n (1 - x11) 
1 

TCJ75T 

^E»tm)^)/EBto)^ 

2 mRdnJx111"1/ ^ R(m)xm . 
0 0 

Hence, by (4), 

( 6 ) " 2 m R ( m > x m / £ R ( m ) x m = 2 « n ) x n / (1 - x n ) = J^ F(n)x 
0 0 1 1 

and Eq. (6) gives: 

= I 2 F(n)xJ1 J{ 2 R ( m ) x m J + 2 ^w^ 

So, for each n > 0, the coefficient x is 0: 

0 = 2 F ( a > R ( n - a) + nR<n) 
a=l 

It remains to show that (5) holds when 

OO 

2F(n) *n 

n=l 

converges on some interval about 0. By Eq. (6), 

E F(n)xn = -xd/dx log P(x) 
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where 

Therefore, 

(7) 

Hence P(x) = 0 iff 

iff 

P(x) = n (l . x11) 
1 

f(n)/n 

P(x) = exp 

OO 

f - E FdDx11"1 

J x 
dx . 

n - 1 , I E F(n)xn~\lx = <*> 
•* 1 

F(n)x 

and P(x) =oo iff 

Thus (5) holds iff 

E (l/n)F(n)xn = -oo . 
1 

E (l/n)F(n)xn 

1 

on some interval about 0, and this is the case when 

E F(n)xn 

1 

< oo 

on the same interval. Q .E .D. 
Now it is necessary to show that the conditions of Proposition 1 apply to ^ . Actually, 

we show a little more. 
Proposition 2. Let 

E f(d) = F(n) 
d |n 

Then, 

| E F ( n ) x n | < -
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on some interval about 0 if and only if 

E f ( n ) x n | < -

on some interval about 0. 
Proof. 

| 5 > ( n ) x n | < - - » | ^ f ( n ) x n / l - x n | < - - * | ^ f ( n ) x n | < 

by (4) and comparison. For the other direction, let 

By the root test , 

I E fWx11 | < °° 

lim sup |f(n) | < 

That i s , sup L. < °° , where 

on some sequence {a., }. 
Define {c, } by: 

L. = lim |f(a ) | 
k 

aik 

|f(c ) | = max |f(d)| 

for a sequence {a, }. For each k, c, is one of the divisors of a, . Thenf 

l im f(c, ) < sup L < oo, 

and over all sequences {a, } the {c, } a re bounded by: 

sup lim f(c. ) < sup L. < °° 
{ a k } k ' 

That i s , 

sup lim max |f(d) 
dla, 

< sup L. . 



204 

Now 

FUNCTIONAL EQUATIONS WITH PRIME ROOTS [April 

max f(d) 
d a , 

So: 

sup Hm 
{ a k } 

max I f (d) J 
d ! \ 

max |f(d)| 
dla, 

^ sup L. < °° 

That i s , 

l im sup max |f(d)| < sup L. < °°. 
d |n * 

Now, we demonstrate below that 

| X > ( n ) x n | < °° 

on some interval about 0, where T is the number-of-divisors function. The demonstration 
below is valid but clearly circuitous. Thus, n 

lim sup T(n) < °° 

by the root test , and 

lim 

Thus, 

sup |~T(n) max | f ( d ) | ] n = lim sup | r ( n ) | n [ m a x |f(d) | l n 

L 4 n J Ld|n J 
1 1 

[ m a x | f ( d ) | 1 n 

Ld|n J 
< lim sup T(n) lim sup 

2 > n T ( n ) max |f(d)| < °° 
n d n 

< OO 

on some interval about 0. Then, 

| 5 > ( n ) x n | < j ^ |F (n ) |x n < E E |f(d) |xn 

djn 

< E T W max | f (d ) |x n < °o 
din 

q. e .d. 
We repair the gap in the proof of Proposition 2, the assertion without demonstration that 

E r ( n ) x n 

converges on some interval about 0, by comparing this sum with another. The result is 
obvious on comparing T(n) with the identity function: 
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IE**111 < °° 
on (-1,1). 

One more proposition is needed to finish the background for a demonstration that Prop-
osition 1 applies to 9/ . 

Proposition 3: 

J ] l / n F(n)xn 

converges on some interval about 0 iff 

^ F ( n ) x n 

converges on some interval about 0. 
Proof. Under the hypothesis that 

X ; i / n F ( n ) x n 

converges we have by the root test: 
1. 

lim sup | F ( n ) ( l / n ) | n < » . 

That i s , 

Now, clearly when 

a, 
sup lim | F ( a k ) ( l / a k ) | < <*> . 

| F ( a k ) ( l / a k ) | k 

converges, its limit is -

Also, it is clear that 

converges if and only if 

too 5 convergese So 

a, 
lim | F ( a k ) | K 

a. 
| F ( a k ) | k 

| F ( a k ) ( l / a k ) ) a k 

1 1 1 
— a, a, 

lim sup j F(n) | n = sup lim | F(afe) | = sup lim | F (a- M l / a , ) | 

= lim sup F(n)(l/n) 
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So X>(n ) x n 

converges on some interval about 0. The other direction is s imilar , or by comparison, 
q. e.d. 

Now we prove that Proposition 1 may be applied to CZ^. 
Proposition 4. 

converges on some interval about 0. 
Proof, y^x converges on [0,1). Apply Proposition 3 inductively: for each a, 

E a n n x 

converges on some interval. Then., by Proposition 2, 

E CZP i \ n 
1fa

(n) x 

converges, q. e.d. Propos i t ion! now yields a recursive relation on ^ in te rms of the co-
ex. efficients of the power ser ies for P(x) with f(n) = n . P(x) is an infinite product and, in 

order to determine an expression for ^ which is recursive in addition and multiplication, 
we express the coefficients of the power ser ies for P(x) as the coefficients of the expansion 
of a finite product. 

Proposition 5. 
n 

0 = nR(n) + £ ^ ( a ) R ( n - a) , 

where R(k) = coefficient of x in 

a=l 

k n 
n (i - x

n ) 
n=l 

Proof. Applying Proposition 1, to 
a-l 

n 

Let 

(Definition). Then 

n (i - x
n ) = £ SW*11 

n=l n=0 

k n*'1 

n (i - xn) = E Rk(n)xn 

1 n 

k+1 n , - Lk+lJ 
5 3 \ + 1 ( n ) x n = n (1 - x n ) = (1 - x K + 1 ) x £ Rk(n)xn 

n n=l n 

E ] 7 [ k +
r

l ] a _ 1 ) ( - l ) r x ( k + 1 ) r x E \ ( n ) x n 

r=0 \ r / n 
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= E Rk(n)x* +
 [ k + ^ _ 1 ( fk + I]""1 ) ( -D 'x^ 'x E Hk(n)xn 

n r=l > ' n 

= E W)** • 
n 

None of the te rms in the second summand have exponents ^k. Thus 
Rk(D = Rk + 1(D 

for all i ^ k„ Indeed, R*k(i) = R^i) for all i and 1 such that i < k < 1. Thus 

k n 
E s ( n ) x n = lim n (1 - x11) = lim V R, (n)xn = T lim R, (n)xn = E B Wx1 1, 

k l k V k n k R n n 

and R: (n) = S(n), q . e .d . 

It is now possible to define a function, which turns out to be ^ , which is expressible in 
terms of just addition and multiplication, and which leads to the equation mentioned in the 
title. 

Define F (1) = 1 and, supposing F defined on 1, 2, o e o , n - l f let F (n) satisfy 

n 
0 = nR(n) + ] P F (a)R(n - a) , 

a=l 

where R is defined as in the statement of Proposition 5. Then, by Proposition 5, F = ^ 9 
a and F satisfies 0 = F (n) - n - 1 just when n is a prime number. 

REFERENCE 

1, Euler , Opera Omnia, Series 1, Vol. 2, pp6 241-253, nDiscovery of a Most Extraordinary 
Law of the Numbers Concerning the Sum of Their Divisors^" 



AN EXPANSION OF ex OFF ROOTS OF ONE 

BARRY BRENT 
Eimhurst, New York 11373 

The proposition below is proved in [ l ] , 
Let A be the operator on arithmetical functions such that 

(1) AFtn) = E F(d) . 
din 

Let 

converge. Let 

(2) 

Then for all n: 

(3) 

00 

JjxnAf(n) 

f(n) n (1 - x n ) n = V"V(n)xn . 
n=l *-* f 

n=0 
n 

0 = nRf(n) + V ^ A f ( a ) R f ( n - a) 

when x is not a root of one. 
Now, let f = ju (the Mobius function) and let 

= 1 on 1, 
' = 0 , elsewhere . 

It is well known that Aju = rje Now, S x ?7(n) converges. It follows immediately (by 
induction) from (3) that R (n) = (-1) /nS and hence that 

°° w(n)/n ^—"% / i \ n 

n X n=0 
(when x is not a root of 1); thus 

e = fl (1 - x ) 
n=l 

off roots of 1. 

REFERENCE 

1. Barry Brent, "Functional Equations with Pr ime Roots from Arithmetical Expressions for 

^ i " Fibonacci Quarterly, Vol. 12, No. 2 (April 1974), pp. 199-207. 
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INFINITE SEQUENCES OF PALINDROMIC TRIANGULAR NUMBERS 

CHARLES W. TRIGG 
San Diego, California 92109 

A triangular number, A(n) = n(n + l ) / 2 , is palindromic if it is identical with its r e -
verse . It has been established that an infinity of palindromic triangular numbers exists in 
bases three [ l ] , five [2] , and nine [5]. Also, it has been shown [3] that, in a system of 
numeration with base (2k + I)2 , when k(k + l ) /2 is annexed to n(n + l ) /2 then 

[n(n + l) /2](2k + I)2 + k(k + l ) /2 = [(2k + l ) n + k] [(2k + l)n + k + l ] / 2 , 

another triangular number. If the first value of n is k, then an infinite sequence of t r ian-
gular numbers can be generated, each consisting of like "digi ts ," k(k + l ) / 2 , so that each 
member of the sequence is palindromic. 

In the following discussion, n and A(n) are expressed in the announced base. An ab-
breviated notation is employed, wherein a subscript in the decimal system following an ex-
pression indicates the number of times it is repeated in the integer containing it. Thus, the 
repdigit 333333 = 36, 21111000 = 21403, and 1010101 = (10)31. 

The base (2k + l)2 = 8 [k(k + l ) /2] + 1 is of the form 8m + 1, where m itself is a 
triangular number. It is not necessary to res t r ic t m to this extent. In general, if n has 
the form (10 - l ) / 2 , then A(n) = (10 - l ) /2 3 . It follows that in any system of notation 
with a base , b = 8m + 1, a palindromic A(n) = m9, corresponds to the palindromic 2k 
n = 4m, . 

BASE NINE 
The smallest base of the form 8m + 1 is nine, for m = 1. Hence n = 4, generates 

the palindromic A(n) = 12. , k = 1, 2, 3, ••••. Nine also is of the form (2k + I)2. The 
above argument regarding the existence of an infinity of palindromic triangular numbers in 
bases of this type does not deal with the nature of the corresponding n f s . 

In base nine, for k = 0, 1, 2, • • • , n = 14. may also be written as 

n = 10k + (10k - l ) /2 = [3(10k) - l ] / 2 = (10 k + 1 - 3)/6 . 

Then 

A(n) = (10 k + 1 - 3)(10k + 1 + 3)/2(62) = (10 2 k + 2 - 10)/80 = ( 1 0 2 k + 1 - l ) / 8 = l 2 k + 1 • 

These two results reestablish that, in the scale of nine, any repunit, 1 , with p = 1, 2, 3, 
•e e , is a palindromic triangular number. 

209 
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Fur thermore , for k = 0, 1, 2, • •* , we have 

n = 24k6 = 2(10k + 1) + (10k - l)(10)/2 + 6 = [5( lQk + 1) + 3] /2 . 

It follows that 

A(n) = [5(10 k + 1 ) + 3] [5(10 k + 1 ) + 5 ] /8 

= 5 2 (10 2 k + 2 ) /8 + 8(5)(10k + 1)/8 + 3(5)/8 

= 3(10 2 k + 2 ) + 10 k + 2 (10 k - l ) /8 + 6(10k + 1) + 10(10k - l ) /8 + 3 

= 31k61k3 . 

Thus there are two infinite sequences of palindromic triangular numbers in base nine. 
These do not include all the palindromic A(n) for n < 42161. Also, there a re : 

A(2) = 3, A (3) = 6, A(35) = 646, A(115) = 6226, A(177) = 16661, A(353) = 64246 

(the distinct digits are consecutive even digits), 

A(1387) = 1032301 

(the distinct digits are consecutive), 

A(1427) = 1075701, A(2662) = 3678763, A(3525) = 6382836, A(3535) = 6428246 

(the distinct digits are consecutive even digits), 

A(4327) = 10477401, A(17817) = 167888761, A(24286) = 306272603, A(24642) = 316070613, 
A(26426) = 362525263, A(36055) = 666707666 . 

BASES OF FORM 2m + 1 
k In bases of the form 2m + 1, if n = m, = (10 - l ) / 2 , then 

A(n) = (102 k - l ) /2 3 = ( 2 m 2 k ) / 2 3 . 

Now, if 

[2m(2m + 1) + 2m]/2 3 = m(m + l ) /2 < 2m + 1 , 

then A(n) is palindromic. Thus, in base three, A ( l k ) = 0 1 k . In base 5, A(2k) = 03k . In 
base seven, A(3k) = "06^. In base nine, A(4k) = TT^. In base eleven, A(5k) = T4k. 
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That i s , in every odd base not of the form 8m + 1 there is an infinity of triangular 
numbers that are smoothly undulating (composed of two alternating unlike digits)0 In these 
odd bases <nine, these triangular numbers are palindromic with 2k - 1 digits. In such odd 
bases >nine, these triangular numbers consist of repeated pai rs of unlike digits, so they 
are not palindromic. 

In bases of the form 8m + 1 (including nine), these triangular numbers are repdigits 
with 2k digits, and are palindromic. 

In base three , all of the palindromic triangular numbers for n < 11(104) are of the 
A d j ) = 0Tk type. 

In base five, for n < 102140, the other palindromic triangular numbers are 

A(l) = 1, A(3) = 11, A(13) = 121, A(102) - 3003 , 

A(1303) = 1130311, A(1331) = 1222221, A(10232) = 30133103 , 

A(12143) = 102121201, A(12243) = 103343301, A(31301) = 1022442201 . 

In base seven, for n < 54145, the other palindromic numbers are: 

A(l) = 1, A(2) = 3, A(15) = 141, A(24) = 333, A(135) = 11211, 

A(242) = 33033, A(254) = 36363, A(1301) = 1012101 , 

A(1611) = 1525251, A(2414) = 3251523, A(2424) = 3306033 , 

A(2442) = 3352533, A(2522) = 3546453, A(12665) = 100646001 , 

A(13065) = 102252201, A(13531) = 112050211, A(15415) = 142323241 , 

A(16055) = 15202051, A(23462) = 312444213, 

A(24014) = 321414123, A(25412) = 363030363 . 

Thus, in bases five, seven, and nine (but evidently not in base three) there are palin-
dromic A(n) for which n is palindromic and palindromic A(n) for which n is non-
palindromic. 

BASE TWO 

In base two, for k > 1, if n = 10 + 1 , then 

A(n) = (10k + l)(10k + 10)/10 = (10k + D d O ^ 1 + 1) 

= io2k-x + iok
 + iok-x

 + i = io2k-x
 + iido^1) + i 

For n < 101101, in the binary system, palindromic A(n) not contained in this infinite 
sequence are : 
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A(l) = 1, A(10) = 11, A(110) = 10101, A(10101) = 11100111, 

A(11001) = 101000101, A(101010) = 1110000111 . 

No infinite sequence of palindromic triangular numbers has been found in base ten [4] 
or in other even bases > two. 

REFERENCES 

1. Charles W. Trigg and Bob Prielipp, "Solution to Problem 3413," School Science and 
Mathematics, 72 (April 1972), p. 358. 

2. Charles W. Trigg and E. P. Starke, "Triangular Pa l indromes ," Solution to Problem 840, 
Mathematics Magazine, 46 (May 1973), p. 170. 

3. Charles W. Trigg, Mathematical Quickies, McGraw Hill Book Co. (1967), Q112 p. 127. 
4. Charles W. Trigg, "Palindromic Triangular Numbers , " Journal of Recreational Mathe-

matics , 6 (Spring 1973), pp. 146-147. 
5. G. W. Wishard and Helen A. Merr i l l , "Solution to Problem 3480," American Mathemati-
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A NOTE ON THE FERMAT- PELLIAN EQUATION x2 - 2y2 = 1 

GERALD E. BERGUM 
South Dakota State University, Brookings, South Dakota 57006 

It is a well known fact that 3 + 2 \l2 is the fundamental solution of the Fermat-Pel l ian 
equation x2 - 2V2 = 1. Hence, if U + VN/2 is any other solution then there exists an integer 
n such that u + v N/2 = (3 + 2\H) . Let T = (a..) be the 3-by-3 matrix where a12 = a2l = l , 
a33 = 3, and a.. = 2 for all other values. It is interesting to observe that there exists a 
relationship between the integral powers of T and 3 + 2N/"2. In fact, a necessary and suf-
ficient condition for M = T is that M = (b..) with b33 = 2m + 1, b12 = b2i = m, bn = 
b22 = m + 1 and b13 = b23 = b31 = b32 = v, where (2m + l)2 - 2v2 = 1. If n ^ 0 both the 
necessary and sufficient condition follow by induction. Using this fact, it then follows for 
n < 0. 



ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
RAYMOND E. WHITNEY 

Lock Hayen State College, Lock Haven, Pennsylvania 17745 

Send all communications concerning Advanced Problems and Solutions to Raymond E. 
Whitney, Mathematics Department, Lock Haven State College, Lock Haven, Pennsylvania 
17745. This department especially welcomes problems believed to be new or extending old 
resul ts . Proposers should submit solutions or other information that will ass is t the editor. 
To facilitate their consideration, solutions should be submitted on separate signed sheets 
within two months after publication of the problems. 

H-234 Proposed by R. E. Whitney, Lock Haven State College, Lock Haven, 
Pennsylvania. 

Suppose an alphabet, A = {xl 5 x2, Xg, • • •} , is given along with a binary connective, 
P (in prefix form). Define a well formed formula (wff) as follows: a wff is 

(1) x, for i = 1, 2, 3, • • • , or 

(2) If Al5 A2 are wfffs, then PAtA2 is a wff and 

(3) The only wfffs are of the above two types. 

A wff of order n is a wff in which the only alphabet symbols are xl5 x2, • • • , x 
in that order with each let ter occurring exactly once. There is one wff of order 1, namely 
xA. There is one wff of order 2, namely Pxtx2. There a re two wff's of order 3, namely 
Px1Px2X3 and P P x j X ^ , and there are five wff?s of order 4, etc. 

Define a sequence ( G )°° 
J i=i 

as follows: 
g. is the number of distinct wff?s of order i. 

a. Find a recurrence relation for G. and 
1 x i=i 

b. Find a gene raiting function for \G. / 
1 i=l 

213 
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H-235 Proposed by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

a. Find the second-order ordinary differential equation whose power se r ies solution is 

n+1 
n=0 

b. Find the second-order ordinary differential equation whose power se r ies solution Is 

T n 

L . ., x n+1 
n=0 

H-236 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Show that 

n=0 n=0 

2n °° . 
(i) > ( - l T x " = > - j f j— n ( i _ x k ) 

" W 2 n k=l 

(2) j2(-»a*(n+i)2 = y ^ ^ - L n (i - x S , 2 n+1 <*> 

^ 2 n + l k=l 
n=0 n=0 

where (x)k = (1 - x)(l - x2) . . . (1 - x k ) , (x)0 = 1. 

SOLUTIONS 

TO COIN A THEOREM 

H-199 Proposed by L. Carlitz and R. Scoville, Duke University, Durham, North 
Carolina. 

A certain country's coinage consists of an infinite number of types of coins: • • • , C 9, 
C ^, C^, C , , • • • . The value V of the coin C is related to the others as follows: for - 1 0 1 n n 
all n, 

V = V o + V Q + V - . n n-3 n-2 n-1 

Show that any (finite) pocketful of coins is equal in value to a pocketful containing at most one 
coin of each type. 
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Solution by the Proposer. 

Call a pocketful Q canonical if it consists entirely of coins of different types and such 
that no three coins of "adjacent" types (e. g. , c , c - and c 9) a re present. Call two 
pocketfuls equivalent if they have the same value. 

We will prove for any pocketful P the statement: 

S: P is equivalent to a canonical pocketful. 

Note that any pocketful containing only differing types is equivalent to a canonical pock-
etful since the three adjacent coins of highest value, C , C -, C + 2 can be replaced by 
C n + 3 , etc. 

Assume for the moment, the following statement: 

R: S is true for any canonical pocketful to which one extra coin has been added. 

Then the general result follows by induction on the number of coins for any pocketful P: Re-
move a coin to get P ? , apply the induction hypothesis to Pf to get a canonical pocketful Q, 
return the removed coin and apply R. 

Now to prove R, let us prove by induction on j the ser ies of statements R.: 

I If Q is any canonical pocketful in which the coin of least value is a C , then if 

a C or a C . and a C be added to Q to get a pocketful P f , then S 

is true for P ! . 
Assume R, for all k < j (it is obvious if k < -3). Now let Q be canonical. We can sup-
pose that n + j = 0. Suppose Q contains S| coins of type C , 5. = 0 or 1, 5.5. -6. 9

 = 

0 for all i. Then 
Q U C0 5 . . . 6_3> 5_ 2 , 8 _ r S0 + l , S r 5 2 , 83 > ••• . 

If 50 = 0, we are finished, so assume 50 = 1. Then 

Q U C0 = . . . 5_ 3 + 1, S_2, S _ r 0, 5 1 + 1, 5 2 , 5 3 , 

Again, if S1 = 0, by induction, we are finished, so assume 51 = 1. Then 

Q U C0 = . . . 5_ 3 + 1, 5_2 + 1, 5_ 1 , 0, 0, 6 2 + 1, 5 3 • - . . 

Now, since S Q S ^ = 0, 5 2 = 0 so we are finished. 
For the next part , 

Q U C0 U Ct = . . . 5_ 3 , 5_ 2 , 5__r 5Q + 1, S± + 1, 8 2 , 5 3 ••• . 
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If either 50 or 8j = 0, this case can be handled as above, so suppose 60 and 8t are 
1. Then 

Q U C0 U Ct 2 2 8n 

S„3 + l S_2 + l 5_ 1 + 1 1 2 8 2 8 3 

8 _3 + X 5 - 2 + 2 8 - l + 2 2 X 5 2 8 3 
5_;3

 + 1 8_2 + 2 8 - l + ! 1 ° 8 2 + X 5 3 

8 - 3 + 1 8 - 2 + 1 0 1 8 2 + l 8 3 

and again, by induction, we are finished. This completes the proof. 
We note, without proof, that no two canonical pocketfuls are equivalent. 

Editorial Note: The given sequences identify the elements of the union. 

ASYMPTOTIC PI 

H-200 Proposed by Guy A. R. Guillotte, Cowansville, Quebec, Canada. 

Let M(n) be the number of primes (distinct) which divide the binomial coefficient, 

.n _ / n \ * 
k • w 

Clearly, for 1 < n < 15, we have M(l) = 0, M(2) = M(3) = 1, M(4) = M(5) = 2, M(6) = 
M(7) = M(8) = M(9) = 3, M(10) = 4, M(ll) = M(12) = M(14) = 5, M(13) = M(15) = 6, 
etc. Show that 

(m ( n )}n=i 

has an upper bound and find an asymptotic formula for M(n). 

*Divide at least one C, .where 0 < k < n. 

Solution by D. Singmaster, Instituto Mathematica, Pisa, Italy. 

For a prime p, if 

1(0 
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for some k5 0 ^ k ^ n, then p|n! and so p ^ n. Hence M(n) rs 7T(n), where 7r(n) is the 
number of pr imes less than or equal to n. We claim M(n) ~~ 77(n). To see this, we can use 
the following result of B. Ram. (See: L. E. Dickson, History of the Theory of Numbers, Vol. 
1; Chelsea, 1952; p. 274, item 98.) There is at most one prime p < n such that 

m 
for 0 < k < n and such a prime p exists if and only if n + 1 = ap with 1 < a < p < n. 

Since Ram's paper is somewhat inaccessible, I will prove a slight sharpening of it, u s -
ing an accessible result. N. J . Fine ("Binomial Coefficients modulo a P r ime , " Amer. Math. 
Monthly, 54 (1947), 589-592, Theorem 4) has shown that 

-/CO 
for 0 ^ k ^ n if and only if n = ap - 1 with 1 < a < p and s ^ 0. Now suppose we have 
two primes pA and p2 with pt< p2 — n + 1 and 

* 

for 0 ^ k ^ n. By Fine's result , we have 

n + 1 = 3iipi l = a2P2 s2 

with 1 < a.t < pt and 1 < a2 < p2. But B.t < pt < p2 implies that p 2 |a 1 p 1
1 , so s2 = 0 

and n + 1 = a2 < p 2 , contrary to p2 < n + 1. Hence there is at most one prime p < n + 1 
such that 

# 

for 0 < k ^ n and such a p exists if and only if n + 1 = ap with 1 ^ a < p. (More d i s -
cussion related to this may be found in my survey paper: "Divisibility of Binomial and Multi-
nomial Coefficients by Pr imes and Pr ime P o w e r s , " (to appear).) 

By carefully examining the role of n + 1, we can deduce the following formulas for 

M(n). 
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M( ) =\ ^n + ^ i f n + 1 ^ a P S w i t h 1 ~ a K P 1 {n) ) 7T(n + 1) - 1 otherwise . 

/ v _ , 7T(n) if n + 1 / ap with 1 =s a < p ^ n 
M W ^ 7T(n) - 1 otherwise. 

Hence M(n) «~ 7T(n) - [ ( l ogn j /n ] " 1 . 
Incidentally, M(13) = M(15) = 5, contrary to what was asser ted in the statement of the 

problem. The first place where M(n) > M(n + 1) is n = 83, where M(83) = 23 and M(84) 
= 22. The next cases are n = 89 and n = 104. From the expression for M(n), we have 
the following necessary conditions for such an n: n + 1 must have three distinct prime fac-
tors and n + 2 must not be prime, 

Also solved by the Proposer. 

DISPLAY CASE 

H-201 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, 
California. 

Copy 1, 1, 3, 8, • • • , F (n ^ 1) down in staggered columns as in display C: 

1 
1 1 
3 1 1 
8 3 1 1 

21 8 3 1 1 

(i) Show that the row sums are F ? - (n = 0, 1, 2, • • • ) . 
(ii) Show that, if the columns are multiplied by 1, 2, 3, • • • , sequentially to the right, 

then the row sums are F 0 i n (n = 0, 1, 2, • • • ) • 
2n+2 

(iii) Show that the rising diagonal sums ( / ) are F2 - (n = 0, 1, 2, "e •) . 

Solution by P. Bruckman, University of Illinois at Chicago, Chicago, Illinois. 

(i) Let R denote the row sum of the (n + 1) row, (n = 0, 1, 2,- • •), with R0 = 1. 
n -1 n n 

Bn = X + ] £ F2n"2k = X +Y1 F2k = X + X ) <F2k+l - F2k-1> = 1 + F2n+1 " l = F2n+1' 
k=0 k=l k=l 
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as asser ted. 
(ii) Let S denote the sum as defined in the problem, for the (n + 1) row, (n = 0, 

1, 2, . . . ) , with S0 = 1. Then, if n ^ 1, 
n n -1 

Sn = 1 C kF2n+2-2k + (n + 1} = ^ (n " k>F2k+2 + <* + « = <n + 1) + 

k=l k=0 

n -1 n - i -1 n -1 

= (n + 1] + ]C X 2 3 F2k+2 = (n + X) + ] C (F2n-2i+l - W = (n + D ^ F. 
i=0 k=0 i=0 i=l 

= 1 + > (F - F ) = 1 + F - F = F 
/ j K 2i+2 * 2 i ; 2n+2 2 2n+2 * 
i=l 

as asser ted. This is also true for n = 0. 
(iii) Let T denote the rising diagonal sums. Then, if n ^ 2, 

n-

1 
k= 

n 

•1 

=0 

«4 

f F2k+2 

F r 2 i + l 

n-k-

I i=0 

• n 

• 1 

\ 
1 

\ (n+1) 2 1 1 2 

Tn = /JF4k + l s if n i s e v e n ; T n = V ^ F4k-2S if n i s o d d ; T0 = T t = 1 
k=l k=l 

m m 2m 

T2m = Yi, F4k + X = ^ + Z ) <F4k+l " F4k-1> = 2 (-1)iF2i+l ; 
k=l k=l i=0 

also, 
m+1 m+1 2m+l 

T2m+1 7 * F4k-2 7 „ (F4k-l F4fc.3> = Z , ( - 1 ) i + l F 2 i + i 
k=l k=l i=0 

Combining these resul t s , we have 
n n 

Tn ^ - ^ m = Z ^ <1+1 + 1 > 
i=0 i=0 

n 

J2 ( - D n ^ + 1 - (-l)n-i+1F| = (-Dn-V+ 1 - (-l)n+1. 0 = F ^ . 
i=0 

This last result is also true for n = 0 and n = 1. 

Also solved by the Proposer'and one unsigned solver. 
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DEFINITIONS 

The Fibonacci numbers F and the Lucas numbers L satisfy F 10 = F , - + F , 
n n J n+2 n+1 n 

F0 = 0, Fj = 1 and L n + 2 = L f l + 1 + LQ> L0 = 2, L t = 1. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-280 Proposed by Maxey Brooke, Sweeney, Texas. 

Identify A, E, G, H, J , N, O, R, T, V as the ten distinct digits such that the follow-
ing holds with the dots denoting some seven-digit number and *p representing zero: 

V E R N E R 
X E 

- Rcbcb cbcb J R 

H O G G A T T 

B-281 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, 
California. 

Let T = n(n + l ) / 2 . Find a positive integer b such that for all positive integers m, 
T n - • • i = 11 • • • 1» where the subscript on the left side has m lTs as the digits in base b 
and the right side has m lTs as the digits in base b 2 . 

B-282 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Characterize geometrically the triangles that have 

L ^0 L , , 2L , n L , and 2L0 + Ln _ 
n+2 n-1 n+1 n 2n 2n+l 

as the lengths of the three sides. 
220 
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B-283 Proposed by Phil Manaf University of Mew Mexico, Albuquerque, New 
Mexico. 

Find the ordered triple (a, b , c) of positive integers with a2 + b2 = c2, a odd, c < 
1000, and c/a as close to 2 as possible. [This approximates the sides of a 30°, 60°, 90° 
triangle with a Pythagorean tr iple. ] 

B-284 Proposed by Phil Mana, University of New Mexico, Albuquerque, New 
Mexico. 

Let z2 - xy - y = 0 and let k, m, and n be nonnegative integers. Prove that: 
(a) z = p ( x , y ) z + q (x,y), where p and q are polynomials in x and y with in-

teger coefficients and p has degree n - 1 in x for n > 0; 
(b) There a re polynomials r , s , and t, not all identically zero and with integer co-

efficients, such that 

z r(x,y) + z s(x,y) + z t(x,y) = 0 . 

B-285 Proposed by Barry Wolk, University of Manitoba, Winnipeg, Manitoba, 
Canada. 

Show that 

[n/2] 

•wi>^X>>r(k-1)(n;r)Lr2'' • 
r=0 

SOLUTIONS 
A LUCAS PRODUCT 

B-256 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Show that L 9 - 3(-l) is the product of two Lucas numbers. 

Solution by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

L n L + 1 = * * n + 1
+ 0 n + 1 ) e * n - 1

+ 0 n - 1 ) 
n-1 n+1 

= L 2 n + (a2 + / 3 2 ) ( - l ) n " 1 

= L 2 n - 3 ( - l ) n . 

Also solved by Wray G. Brady, Paul S. Bruckman, James D. Bryant, Tim Carroll, 
Juliana D. Chan, Warren Cheves, Ralph Garfield, JohnE. Homer, Graham Lord,, 
Fe D. Parker, C. B> A. Peck, M. N. S. Swamy, William E. Thomas, Jr., David 
Zeitlin, and the Proposer. 
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A FIBONACCI PRODUCT 

B-257 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Show that [L2n + 3(-l) ] /5 is the product of two Fibonacci numbers. 

Solution by Graham Lord, Temple University, Philadelphia, Pennsylvania. 

F F = («"-l . p i - l ^ n + l - ,3 n + 1 ) /5 
n-1 n+1 

= (a2n + j32 n - ( a / 3 ) n ' V + |32))/5 

= (L 2 n + 3 ( - l ) n ) / 5 . 

Also solved by Wray G. Brady, Paul S. Bruckman, James D. Bryant, Tim Carroll, 
Juliana D. Chan, Warren Cheves, Ralph Garfield, John E. Homer, F. D. Parker, 
C. B. A. Peck, M..N. S. Swamy, William E. Thomas, Jr., Gregory Wulczyn, 
David Zeitlin, and the Proposer. 

GOLDEN RATIO FORMULA 
B-258 Proposed by Paul S. Bruckman, University of Illinois, Chicago Circle, 

Illinois. 

Let [x] denote the greatest integer in x, a = (1 + \[E)/29 and e = (1 + (-1) ) /2. 
Prove that for all positive integers m and n 

(a) nF ^, = [naF 1 + e 
n+1 L n J n 

(b) nF ^ = F ([naF ] + e ) + nF - F . 
nr+n m L nJ n m - 1 n 

Solution by Graham Lord, Temple University, Philadelphia, Pennsylvania. 

Since aF = F - - b , where b = (1 - \/"5)/2, to prove (a) it suffices to show 
|nbn | < 1. But 

l 'W"5 - l ) /2 < .65 < 1 
and 

2.(^5" - l ) 2 /4 < 2- (.65)2 < 1 . 

The lat ter inequality verifies the case n = 2 of the induction hypothesis: if n > 2 then 
n | b n | < l . Then 

(n + l ) | b n + 1 | < (n + l ) ( .65) n + 1 < (n + l)(.65)/n < 1 , 

for n > 2, which completes the induction and the proof of (a). 
Equality (b) comes from substituting (a) in the known identity: 

Y = F F + F F . 
m+n m n+1 m - 1 n 

Also solved by C. B. A. Peck and the Proposer. 
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A. P. OF BINOMIAL COEFFICIENTS 

B-259 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Characterize the infinite sequence of ordered pairs of integers (m,r) with 4 < 2r < 
m, for which the three binomial coefficients 

f m - 2 \ / m - 2 \ / m - 2 \ 

V r - 2 / ' V ' - 1 / ' V r / 
are in ari thmetic progression. 

Solution by Paul Smith, University of Victoria, Victoria, B.C., Canada. 

Equivalentiy, find all solutions of: 

( - ; • ) • ( " : , * ) - » ( ? : • . • ) • 
A simple computation yields m = (m - 2r)2

5 whence m = n2 and r = (m - Nrm)/2; 2r is 
s tr ict ly less than m. The required sequence is thus 

{(n2, (n2 - n)/2)} n>2 

Also solved by Wray G. Brady, Paul S. Bruckman, Tim Carroll, Herta T. Freitag, 
Graham Lord, David Zeitlin, and the Proposer. 

SUMS OF DIVISORS 

B-260 Proposed by John L. Hunsucker and Jack Nebb, University of Georgia, 
Athens, Georgia. 

Let a (n) denote the sum of the positive integral divisors of n. Show that 

a(mn) > a(m) + a(n) 

for all integers m > 1 and n > 1. 

Solution by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

We may write 
r e k r fk r ek+ fk 

m = n P k , n = n p k , mn = n p k 
k=i k=l k=l 

where the p, are distinct pr imes and the e, and f, a re nonnegative integers. Since 

r e, 
n 

k=l 
a(m) = n (1 + p k + p|. + e e . + p k

k ; 

one has 
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e, 

a(m)/m = n \ p J 

k=l jL*i 
3=0 

Then it follows that a(mn)/mti > a(m)/m and a(mn)/mn > a(n)/n. We may add these in-
equalities and multiply by mn, which yields: 

2a (ma) > na(m) + ma(n) >. 2a (m) + 2a (n) 

and the desired result follows. 

Also solved by Wray G. Brady, Tim Carroll, Graham Lord, C. B. A. Peck, 
Philip Tracy, and the Proposer. 

CYCLIC GROUP MODULO D 

B-261 Proposed by Phil Mana, University of New Mexico, Albuquerque, New 
Mexico. 

Let d be a positive integer and let S be the set of all non-negative integers n such 
that 2 - 1 is an integral multiple of d. Show that either S = {o} or the integers in S 
form an infinite arithmetic progression. 

Solution by Tim Carroll, Western Michigan University, Kalamazoo, Michigan. 

0 E S since d |(2° - 1). Let n be the least positive integer in S when S ^ {o}. For 
any positive integer k, 

2kn _ 1 = (2n _ 1 ) ( 2 n(k- l ) + 2n(k-2) + . . . + -2
n + 1) . 

Since d divides 2 - 1, d divides 2 - 1 for all positive k. Therefore kn G S for all 
positive integers k. We now show there are no other integers in S. Suppose m E S and 
m = qn + r , 0 < r < n. 

2 m - 1 = 2 q n 2 r - 1 

= 2 q n 2 r - 2 q n + 2 q n - 1 

= 2 q n ( 2 r - 1) + (2 q n - 1) . 

on r 
Since q E. S, m E S, and d does not divide 2M , d divides 2 - 1 . But this is impos-
sible by our choice of n. Therefore, S = {o } or S = {o, n, 2n, 3n, • • •} . 
Also solved by Wray G. Brady, Paul S. Bruckman, Warren Cheves, Herta. T. 
Freitag, Graham Lord, Richard W. Sielaff, Paul Smith, David Zeitlin, and the 
Proposer. 


