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1. INTRODUCTION
In [2], Webb and Parberry study the divisibility properties of the Fibonacei polynomial

sequence { fn(x)} defined by the recursion

fn+2(x) = xfn+1(x) + fn(x); folx) = 0, filx) = 1.
As one would expect, these polynomials possess many properties of the Fibonacci sequence
which, of course, is just the integral sequence {fn(l)}. However, a most surprising result
is that fp(x) is irreducible over the ring of integers if and only if p is a prime. In contrast,
for the Fibonacci sequence, the condition that n be a prime is necessary but not sufficient
for the primality of fn(l) = Fn' For instance, Fy9 = 4181 = 37-113.

in the present paper, we obtain a series of results including that of Webb and Parberry

for the more general but clearly related sequence {un(x, y)} defined by the recursion

Wty = xu Ly +yu ()5 uby) = 0, wky) = L

The first few terms of the sequence are as shown in the following table:

n w &, y)

0

1 1

2 X

3 <t + y

4 X3 + 2xy

5 <+ 3x2y + y2
6 5+ 453y + 3xy?

7 x8 + Bxly + 62y +

8  xT + 6x% + 10x°y% + 4xy®
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The basic fact that we will need is that Z[x,y], the ring of polynomials over the inte-
gers, is a unique factorization domain. Thus, the greatest common divisor of two elements
in Z[x,y] is (essentially uniquely) defined. v
Useful Property A: if «,f, and ¥ are in Z[x,y] and ¥ laﬁ with ¢ irreducible,

then ’yloz or 'ylﬁ.
For simplicity, we will frequently use w in place of un(x,y) and will let

X + Nx% + 4y

a = ax,y) = 5

and

- NX% + 4y
—_— .

B = Blx,y) ==

2. BASIC PROPERTIES OF THE SEQUENCE

Again, as one would expect, many properties of the Fibonacci sequence hold for the

present sequence. In particular, the following two results are entirely expected and are

easily proved by induction.

Theorem 1. For n =0,

Theorem 2. For m = 0 and n =0,

u = u u +yu_u_ .
m-+n+1 m+1%+1 T Y'mn

The next result that one would expect is that (un, un+1) =1 for n= 0. To obtain

this we first prove the following lemma.
Lemma 3. For n >0, (y, un) = 1.

The assertion is clearly true for n

Then, since

= 1 since u; = 1. Assume that it is true

Proof.
for any fixed integer k = 1.

u = x + yuk_l >

k+1

= k +1, and hence forall n =1 as claimed.

the assertion is also true for n

We can now prove
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Theorem 4. For n =0, (u , u =1,

+1)
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Proof. Again the result is trivially true for n = 0 and n = 1 since uy; = 0, u; = 1,

and uy, = x. Assume that it is true for n = k - 1 where k is any fixed integer, k > 2, and

let d(x,y) = (u Since

K i)

u Xy + yu

k+1 - g k-1

this implies that d(x,y) ] o 4

But then d(x,y) \ 1 since (uk-l’ uk) = 1 and the desired result holds for all n

claimed.

Lemma 5. For n =0,

[a=1)/2]
_ }i n-i-1\ n-2i-1i
un(x,y) = < i )x y

1=0

Proof. We define the empty sum to be zero, so the result holdsfor n = 0. For n

the sum reduces to the single term

Assume that the claim is true for n = k-1 and n = k, where k =1 is fixed. Then

o
|

= xu_+ yu

k+1 k-1
[(k-1)/2] [(k-2)/2]
_ E:(k-1_1)k211 (k—l—Z)Xk—Zi—Zyi+l
i=0 i=0
e ) k 1 k-2
-1-1 k211 -i- -2i i
( ) ( i-1 )X y
i=0 1=0

2; k-l k—Zii
y

Thus, the result holds for n = k + 1 and hence also for all n = 0 as claimed.

But (d(x,y), y) =1 by Lemma 3 and so d(x,y) l 0

=0 as

1,



116 DIVISIBILITY PROPERTIES [April

3. THE PRINCIPAL THEOREMS

Theorem 6. For m = 2, wo buy if and only if min.
Proof. Clearly u u_ . Now suppose that u l u where k =1 is fixed. Then,
—_— m' m m ! “km

using Theorem 2,

u(k+1)m = Yem+m

= Yem Ym+1 * Yem-1%m -

But, since L ]u by the induction assumption, this clearly implies that L \u

km (k+1)m"*
Thus, umi u, if mln.
Now suppose that m = 2 and that W luge If m/[’ n, then there exist integers q and:

r with 0 < r <m, suchthat n = mq +r. Again by Theorem 2, we have that

u = u
n mqg+r

= umq+1 u, + yumqur—l .

\u u_.
m' ‘mq+lr

) = 1 by Theorem 4, this implies that uy lur and this is impossible, since

Since u \ umq by the first part of the proof, this implies that u But, since

m
(umq’ umq+1
w, is of lower degree than w in x. Therefore, r =0 and mln and the proof is complete.

Theorem 7. For m =0, n =0, (u ,u ) =u .
Lheorem /. m’ n (m,n)
Proof. Let d = dx,y) = (um, un). Then it is immediate from Theorem 6 that
%(m,n) o
Now, it is well known that there exist integers r and s with, say, r > 0 and s <0,

such that
(m,n) = rm + sn .

Thus, by Theorem 2,

rm u‘(m,n)+(—s)n

= u(m,n) " _sn+1 * yu(m,n)-lu—sn :

But then d [ U_gn and d i W by Theorem 6 and so d l u(m,n) U_gnt1 But, (d, u-sn+1)=

1 by Theorem 4, and so d \ u(m n) by Useful Property A from Section 1. Thus, d =
H

u ( as claimed.

m,n)
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Theorem 8. The polynomial u = un(x,y) is irreducible over the rational field Q if
and only if n is a prime.

Proof. From Lemma 5, if we replace y by y* we have

[(a-1)/2]
un(x,yz) = (n - : - 1) Xn—21—1yZ1

i=0

which is clearly homogeneous of degree n - 1. Now it is well known (see, for example, [1,
p. 376, problem 5]) that a homogeneous polynomial f(x,y) over a field F is irreducible if
and only if the corresponding polynomial f(x,1) is irreducible over F. Since un(x,l) is
irreducible by Theorem 1 of [2], it follows that un(x, y?) and hence also un(x, y) is irredu-

cible over the rational field and thus is irreducible over the integers.

4. SOME ADDITIONAL THEOREMS

For the Fibonacci sequence {Fn}, for any nonzero integer r there always exists a
positive integer m such that r l Fm. Also, if m 1is the least positive integer such that
T Fm’ then r i Fn if and only if m\n. It is natural to seek the analogous results for the
sequence of Fibonacci polynomials {fn(x)} considered by Webb and Parberry and the gener-
alized sequence {un(x,y)} considered here. In a sense, the first problem is solved by Webb
and Parberry for the sequence of Fibonacci polynomials, since they give explicitly the roots
of each such polynomial. However, it is still not clear exactly which polynomials r(x) pos-
sess the derived property. On the other hand, it is immediate that the first result mentioned
above does not hold for all polynomials r(x). For example, if ¢ is positive, no linear fac-
tor x-c can divide any fn(x) since this would imply that fn(c) =0, and this is impossible
since fn(x) has only positive coefficients.

Along these lines, we offer the following theorems which, among other things, show
that the second property mentioned above does hold without change for un(x,y) and hence
also for fn(x). We give this result first.

Theorem 9. Let r = r(x,y) be any polynomial in x and y. If there exists a least
positive integer m such that r l Ws then r l w if and only if m ln.

Proof. By Theorem 6, if mln,, then o ‘ u- Therefore, if r l w, we have by
transitivity that r w- Now suppose that r I w and yet m,l’n. Then there exist integers
q and s with 0 < s < m such that n = mq + s, Therefore, by Theorem 2,

u

u =
n maq-+s

umq+1 ug + yumqus—l .
Since r \ umq and r l W it follows that r umq+1us' But (umq’ umq+1) = 1 and this
implies that r \ Uy But this violates the minimality condition on m and so the proof is

complete.
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Theorem 10. For n = 2,

n-1 - kmr
u (x,y) = 1I (x - 2iNy cos ——)
n k=1 n

Proof. From the proof of Theorem 8, it follows that

_ .n-1 X _ .h-1 X
u, &8 =y un(?’ 1) =y fn(?) ’

th Fibonacci polynomial mentioned above. Thus,

where fn(x) is the n
un(x,y) = y(n_l)/zfn(x/\/?)

and it follows from [2, page 462] that

_ n-1 X . km
fn(x/ Ny) = I [ =— - 2icos -
‘ k=1 \ Ny

This, with the preceding equation, immediately yields the desired result.

Corollary 10. For n =2, n even,

(n-2)/2 -
u (c,y) = x 1 x% + 4y cos? -

k=1

and, for n odd,

(n-1)/2 -
u (x,y) I x% + 4y cos? —
n -1 n

Proof. This is an immediate consequence of Theorem 10, since, for 1 =k <n/2,

kr _ n - k)
n n

It is clear from the preceding theorems that there is a precise correspondence between
the polynomial factors of un(x,y) and those of un(x, 1) = fn(x). Thus, it suffices to consider
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only those of fn(x). Also, it is clear that, except for the factor x, the only polynomial fac-
tors of fn(x) with integral coefficients contain only even powers of x. While we are not able
to say in every case which even polynomials are factors of some fn(x) we offer the following
partial results.

Theorem 11.

(i) x lfn(x) if and only if n is even.
@) &* +1)|f (x) if and onlyif 3 |n.
(i) (2 +2)|f () if and onlyif 4]n.
(iv) & + 3) lfn(x) if and only if 6 |n.

) &%+ c)){fn(x) if ¢ #1, 2, or 3 and c is an integer.

Proof. Since, except for x only, all polynomials with integral coefficients dividing
any fn(x) must be even, the results (i) through (iv) all follow from Theorem 9 with y = 1.
One has only to observe that f(x) is the first Fibonacci polynomial divisible by x, that
fy(x) is the first Fibonacci polynomial divisible by x% +1, and so on. Part (v) follows from
the fact that 1 =4 cos®? @ < 4 for an « in the interval (0, 7/2).

Theorem 12. Let m be a positive integer and let N(m) denote the number of even
polynomials of degree 2m and with integral coefficients which divide at least one (and hence

infinitely many) members of the sequence {fn(x)}. Then

m k
N@m) < 1 ‘E) 4,
k=1

Proof. Let f(x) be any polynomial counted by N(m). It follows from Corollary 10 with
y = 1 that

2m 2m-2 . 2

fx) = x +am_1x + oo+ oax* + 9
m
= x2 + a,) ,
=1 !

where o, = 4 cos? B, with 0 < ﬁj < /2 for each j. Therefore, 0 < a, < 4 for each j.

j
Since a is the K elementary symmetric function of the aj's, it follows that

and hence that
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m k
N@m) < II Ilf 4
k=1

Of course, the estimate in Theorem 12 is exceedingly crude and can certainly be im-
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as claimed.

proved. It is probably too much to expect that we will ever know the exact value of N(m)
for every m.

Our final theorem shows that with but one added condition the generalization to un(a,b)
of the first result mentioned in this section is valid.

Theorem 13. Let r be a positive integer with (r,b) = 1. Then there exists m such
that r |u_(a,b).

m
Proof. Consider the sequence un(a,b) modulo r. Since there exist precisely r?

distinct ordered pairs (c,d) modulo r, itis clear that the set of ordered pairs
{(w(a,b), uya,b), (uya,b), up@,b)), ==+, (wala,b), us (@ b))}
must contain at least two identical pairs modulo r. That is, there exist s and t with

0<s <t< r® such that

us(a,b) = ut(a,b) (mod 1)

and

us+1(a,b) = utﬂ(a,b) (mod 1) .
But

bu,_,(@,b) = u,, ., (a,b) - au (a,b)
and

bu, ,(a,b) (,b) - au (a,b)

T Y
and this implies that

bu, ,(a,b) = by, _,(,b) (mod r).

Since (r,b) = 1, this yields
us_l(a,b) = ut_l(a,b) (mod 1) .

Applying this argument repeatedly, we finally obtain
0 = us_s(a,b) = ut_s(a,b) (mod 1)
so that r luths(a,b) and the proof is complete.
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GENERATING IDENTITIES FOR PELL TRIPLES

CARL SERKLAND
San Jose State University, San Jose, California 95192

This paper is modelled after an article by Hansen [1] dealing with identities for Fib-
onacci and Lucas triples. Free use has been made of the methods of that article, and this
paper follows its format closely. It is hoped that seeing Fibonacci methods used in a slightly
different context will lead the reader to a deeper understanding of those methods, in addition

to the production of some new Pell identities.

The Pell sequence is closely akin to the Fibonacci sequence; it is defined by Py, = 0,
P, =1, Pn+2 = Pn+2Pn+1' This gives us the sequence 0, 1, 2, 5, 12, 29, 70, 169, 408,
985, ***. We may also define a Pell analogue of the Lucas sequence: Ry, = 2, Ry = 2,
Rn+2 = Rn + 2Rn+1' It is simple to show that, with these definitions, Pn+1 + Pn_1 = Rn.

Another useful result, easily proved by the usual Fibonacci methods, gives the Pell sequence

and its Lucas analogue as functions of their subscripts:

where

a=1+~N2 and B =1-+~N2.
Note that @ and B are roots of the equation x2_-2x -1 =0, and hence o¢f = -1 and a+
B = 2.

Using the generating functions of

we shall obtain identities for the triples PquPr’ PpP R

, PR R, and R R R, where
qr paqr pqr

p, 9, and r are fixed integers.
To derive the desired generating functions we note that, using the Binet form of the

Pell numbers,

121
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o0 0
p Xn _ — a.n+m _ Bn+m Xn
n+m a-B
n=0 n=0 '
(=] 0
_ 1 m n_n m n_n
et o E a’x - p E B x
(1) n=0 n=0

_ 1 (am 1 _ﬁm 1 )
a - f 1 - ax 1 - Bx

~ 1 (am B Bm) _ aﬁ(am—l _ Bm_l)x
T o -B T —ax)T - Bx)

Pm - Pm- 1x

1 - 2x - x?

In a similar fashion we find

o0

E : n Rm * Rm 1X
(2) Rn+mx =
1 - 2x - x?

n=0

[April

We now evaluate formulas (1) and (2) for -2 =m =4, letting 1 - 2x - x2 = D,
0 0 ‘
N L R S T T S S ey 7
n-2 D D ’ n-2 D D
n=0 n=0
o0 0
I S DA L N S oo Bt ReX e
n-1 D D ’ n-1 D D
n= n=0
00 0
+
Pxn=P0 Pi1* _0+x Rxano“LR—lx= - 2x
n D D ’ n D D
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=] 0
+
p o1t : B oSt R aaax
nt1® ) i) ; n+1 ¥ ) i) ;
n=0 n=0
L]
. I S T S S S T S
n+2 ) ) ; n+2 i) ) ;
n=0 n=0
0 0
b _Pg T PeX 5ok R n_ B3t RX g4 iex
n+3 D D ’ n+3% D D ’
n=0 n=0
o0 0
S, o FatPs® 1 asx T S SR v
n+a ) D n-+4 i) i)
n=0 n=0

Using the fact that two series are equalif and only if the corresponding coefficients are
equal, we now find several elementary identities.

Since

it follows that

[>e] [~e] o0
E : n _ E n E : n
Rx = Pprn® 7 PaX
=0 n=0 n=0

[2e]
n
= E (pn+1 + P _1)x
=0
and hence
(3) Rn = Pn+1 + Pn-l; n a whole number .
Using the Binet forms, it is not difficult to show that L = (- 1)n+1 , and R =

(—1)nRn for any positive integer n.



124 GENERATING IDENTITIES FOR PELL TRIPLES [April

We now observe that

P(-n)+1 * P(—n)—l = P—(n—l) + P-n(n+1)

_ (n-1)+1 (n+1)+1
= 1 Pt (-1) Pr+1

_ n
= D% @, _; +P )

_ n
= (-1) R,

= R
-n
Hence Eq. (3) holds for all integers n.
We now proceed with some theorems necessary to the development of Pell triples.
Theorem 1. Pn Rm + Pn—lRm—l = Rm+n-1 .
Proof. Let m be any fixed integer. Then

0 0 ©0
n _ n n
Z (Pan * Pn—lRm--l)X - Rm Z an " Rm—l Z Pn-lX
n=0 n=0 n=0
- X 1 - 2x
= Ry §+Rm_1( D )
+ -
_ RmX Rm—l ZRm—lX - Rm-lJer—zX
D D
o0
_ Rn+m—1 n
D
n=
and, equating summands,
Pan * Pn—lRm—l = Rn+m—1 '
Theorem 2. Pan + Pn-1Pm—1 = Pn+m—1 .
Proof.
oo 0 00
n _ n n
z :(Pan * Pn-—lpm-—l)X = Pn : : Pyx *Pha z : Pho1¥
n=0 n=0 n=0
_ X 1 - 2x
=P 5 Pl 7D
+ -
_ P x Pm-l ZPm_lx ) Pm 2x+Pm_1
D D
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and, equating summands,

Pan * Pn-l Pm-l = Pn+m-l '

Theorem 3. Ran + R R = R + R = 8P

n-1"m-1 n+m n+m-2

Proof. Let m be any fixed integer. Then

[~}

2

=0

It

and hence,

R R
n

Now,

(R_R_+R R )x

n
n- m n-1"m-1

o0 o0
R E R x' +R E R _x®
m n m-1 n-1
n=0 n=0
2 - 2x -2 + 6x
B~ " Bul 7
ZRm - ZRmX - ZRm—l + GRm_lx
D
2R - R )+ 2BR__ - R_)x
D
Rm * Rm-Z * (ZRm—l - ZRm—Z )x
D
Rm * Rm—Z * (Rm—l * Rm-—S)X
D
B T By g X F By g * Ry 3%
D

m * Rn—lRm-l - Rn+m * Rn+m—2

n+m-1"

125



126 GENERATING IDENTITIES FOR PELL TRIPLES [April

R + R = (P )

n-1 n-1 n+2

= ZPn+1 + 3Pn * Pn-Z

4P + 3P_ + 2P + P
n n n-1 n-2

* Pn) * (Pn * Pn_z

Il

1]

8P
n

We now use a partial fractions technique to find the final necessary result:

p +ax) (r + tx) _ pr + (pt + gr)x + qtx?
D D o2

-qt (pr + gt) + (pt + qr - 2qt)x
D2

P +P X R +R x
m m-1
D 2 : n+m ™ Z n+s
o n
_ n
-2 2 Pem o™

n=0 k=0

@)

but also, by Eq. (),

P * Pm—lx Rs * Rs—lX “Pro1Bs1

D : D D

R ) 1 RIn+s—1 *
m-1"s-1" D D?

0 o0
_ n n n
B —Pm—le—IZPnﬂX +ZRn+m+s—1X E :Pn+1X
n=0 n=0

= (P

n=0
=Z(Pn+l mo1Rg)% +ZZ Prs1Pokrmes-1®
n=0 k=0

n

— n
B E(Pn+1 m-18s-1 Z P Roiermes-1) %

k=0
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Hence,
n n
2 :Pk+m Rn--k+s - —Pn+1 Pm—lﬁs-l * z :Pk+1 Rn—k+m+s—1
=0 k=0
and
n
Pn+1 Pm—l Rs-l - Z (Pk+1 Rn—k+m+s—1 - Pk+mRn—k+s)
k=0

Letting p=m-1, g =n+1, and r = s - 1, we obtain
Theorem 4.

q-1
PquRr - E ;(Pk+lRp+q+r-k * 1:'p+k+1Rq+r—k) :
k=0
Now we convolute

+ +
P +P  x P, + P, ;X

and, using the previous procedures, we find
Theorem 5.

r-1
Pp Pq Py = E :(Pp+q+r—kpk+1 - Pp+k—1pq+r—k) )
k=0
Similarly, we convolute
Rm + Rm—lx with Rt + Rt-lx
D D
to obtain
Theorem 6.
p-1
PquRr = E :(8pq+r+k+1 Pp—k - Rq+k+lRp+r—k)
k=0
Now,
RquRr = (Pp+1 + Pp-l)Rqu

= P BB, TP RR,
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p

Rp Rqu = E :(8Pq+r+k+1pp—k+1 - Rq+k+1Rp+r-k+1)
k=0
p-2

" E : (8Pq+r+k+1 Pp-k—l - Rq+k+1 Rp+r—k-1)

=0

p-1

B E :[8pq+r+k+1 (Pp-k " Pp—k—l)

=0

- Rq+k+1 (Rp+r-k+1 * Rp+r—k—1)]

+ (SPZPq+I‘+p - Rq+pRr+Z)

+ (8P1P )

ptqt+r+l - Rq+p+1Rr+1
p-2

§ : 8(Pq+r+k+1 Rp—k - Rq+k+1 Pp+r—k)

=0
+ 8(2P

pratr * Pprgiret)

- ( R

p-2

8 E : (Pq+r+k+1 Rp—k - Rq+k+1 Pp+r—k)

=0

+ 8P arre ~ CRo Ry FRORLF R R

)

Rp+q r+2 N Rp+q+1 Rr+1

)

and, by Theorem 3, we obtain

Theorem 7.

p-2

R BB, = 8 E :(Pp+q+r+k+1Rp—k - Pp+1’—qu+k+1)

k=0

- Poigiro1 |~ RpigRrer -
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A FIBONACCI ANALOGUE OF GAUSSIAN BINOMIAL COEFFICIENTS

G. L. ALEXANDERSON and L. F. KLOSINSKI
University of Santa Clara, Santa Clara, California 95053

Gauss, in his work on quadratic reciprocity, defined in [1] an analogue to the binomial
coefficients:

n-k+1
X

I:n:l N 1 el RN - 1)
K & - DEET D) - 1)

n and k positive integers. In order to make the analogy to the binomial coefficients more

complete, it is customary to let

for n =0, 1,2, ---, and

for n < k. We shall call these rational functions in x, Gaussian binomial coefficients. It

is shown in [7] that these functions satisfy the recursion formula:

_n_:Xk n-1 +'_n—1
|k K k-1]

and if we note that as x — 1,

where

is the usual binomial coefficient, then the above recursion formula becomes

(i) - (&) (03)

the recursion formula for the binomial coefficients.
Just as the binomial coefficients are always integers, although they appear to be ratios

of integers, the Gaussian binomial coefficients are in fact polynomials rather than rational

129
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functions. This is easgily seen from the recursion formula and mathematical induction. (See
[7]) The Gaussianbinomial coefficients and their multinomial analogues have some interest-
ing geometric interpretations and combinatorial applications in counting inversions and spec-
ial partitions of the integers. Some of these appear in [1] and [6].

There is another well known analogue to the binomial coefficients, the so-called "Fib-

n) _ FoFo1 Fogn
kg FeFe oy

().~ C) -

for n = 0, 1, 2, +--. It is well known that this is always an integer [5].

onomial coefficients:'"

n,k positive integers, and

Let us now examine the Gaussian analogue of the "Fibonomial coefficient:"

Fp_k+1 _

- F F
nJ I Y e VR TI 1)
k i ’
- I ¥
¥ x K- Dix k‘l—l)---(xFi-l)
n,k positive integers and
L
_p Mp
for n =0, 1, 2, ***. Again it is clear that as x — 1,
[n] . n)
k F k F
Since
Fo T Pt Fooe ¥ FieFogeg
F F + F F F F
[n] _ (x k+1" n-k kKPn-k-1 _ gy -1 _ gy ... g o-k+l _ g
kg T F F
- oF xE_px &l w oy
Pt Food e ok Fefnker | FeFaoken -
" . - x + x —1)[n-l]
F k -1
x X 1) ¥
F _F F F F F
_x k n-k~1(X k+1" n-k 1)+ (x k" n-k-1 “1) -1
Fk k-1
x = -1 F
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F

k+1 .
o FeFhka Fp1 DFp e \ - 17
= X X
s
=T
F
n-k-1 .
Fp k1 DFe Y -1
+ X
k- 1],
=T

so that we have a recursion formula for the "Gaussian Fibonomial coefficients" and this, with
mathematical induction, implies the rather remarkable property of these functions: they are
polynomials rather than rational functions as they appear to be. Furthermore if we let x—

1 in the recursion formula (1) we obtain

n n-1 n-1
= F + F
(k)F k+1( k )F n-k-l(k - 1)F

the recursion formula for the Fibonomial coefficients. This is the recursion formula used in
[3] to prove that the Fibonomial coefficients are integers.
= = = p. . >
The more general sequence gy where g, = 0, g; = 1, 8h+g ~ P8y tAB D 0,

p >0, q 20, satisfies 8 = 8ki18nk T8 ko1 (see [3]) and if we define

En-k+1 - )

g g
‘. n n-1
[E] as follows: [EJ - & g_ 1 - -1 (x -
& & (x k_ X k-1 1

- 1) (x -1

n,k positive integers, and

for n =0, 1, 2, -, then it follows, mutatis mutandis, that

g
ag.e 5 (g, -Dg
n _ k®n-k-1 k+1 n-k n-1
K = x X K
g i=1 g
q'gn--l«:+1 Q- i)-
+ % D8 k17 8 n - 17
k - 1J
i=1 &

Again,
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n
k
g

are polynomials. Furthermore the functions are again polynomials where g, = fn(t), the

Fibonacci polynomials, at least for positive integral t, where fy(t) = 0, fi(t) = 1,

fn+2(t) = t-fn+1(t) + fn(t), nz0.

Since the Pell sequence can be generated as a special case of the Fibonacci polynomials
(where t = 2), the above ''coefficients' are polynomials also when defined in terms of the
Pell sequence.

Furthermore, because of the direct analogy between the definitions of the Gaussian bi-
nomial coefficients and the related Fibonacci analogues defined above and the expression for
the binomial coefficients as ratios of factorials, the polynomials when arranged in a triangu-
lar arraylike Pascal's Triangle will have the beautiful hexagon property described by Hoggatt
and Hansell in [4], that the product of the elements '"surrounding' an element in the array is
a perfect square and the set of six elements can be broken down into two sets of three, the
products of the elements in each set being equal. In fact all the perfect square patterns of

Usiskin in [8] will appear in these new arrays; the proofs carry over directly.
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A SOLUTION OF ORTHOGONAL TRIPLES
IN FOUR SUPERIMPOSED 10 x 10 x 10 LATIN CUBES

JOSEPH ARKIN
Spring Valley, New York 10977

Recently at the 78th Summer Meeting of the American Mathematical Society, Missoula,

Montana (August 20-24, 1973), Professor P. Erdds and Professor E. G. Straus proposed the
following classical problem to this author: Consider four digits where each digit can have a
value of 0, 1, 2, ---, 9. Divide the four digits into four sets where each set contains three
digits in the following way: Set A = 1st, 2nd, 3rd digits; set B = 1st, 2nd, 4th digits;
set C = 1st, 3rd, 4th digits; and set D = 2nd, 3rd, 4th digits. For example: if a cell con-
tains the four digits 3742 then 374 would belong in set A, 372 belongs in set B, 342 be-
longs in set C, and 742 belongs in set D.

Then, using only the digits 0, 1, 2, .-+, 9, is it possible to superimpose four 10X 10
X 10 Latin Cubes such that (we consider one set at a time) set A, set B, set C, and set D will
each contain in some way every one of the following 1000 three-digit numbers 000, 001,
002, «++, 999, without repetition? (It is, of course, evident there will be four digits in each
and every cell of the 1000 cells.) This author has solved the above problem and we are able
to construct for the first time orthogonal triples in four 10X 10 X 10 superimposed Latin
Cubes.

Note. With the method of construction shown in this paper, we are also able to con-
struct for the first time orthogonal triples in four (4m +2)X (4m + 2) X (4m + 2) superim-
posed Latin Cubes, where 3 <m = 3, 4, ---.

In Tables 1-10, we have systematically constructed orthogonal triples in four 10 X10

X 10 superimposed Latin Cubes.

Table 1

Square Number 0

7630 6861 3405 2793 1152 8289 4014 5547 0326 9978
0796 2633 1972 4544 6321 5017 7280 9868 8409 3155
6971 5407 8639 0016 3795 4324 9548 2153 1282 7860
9408 8549 2013 1632 4284 7150 6791 0976 3865 5327
2323 0286 7540 6151 9638 1862 3975 8019 5797 4404
5287 4974 9328 7400 8869 3635 0156 1792 2543 6011
3545 1322 0866 9288 7010 2973 5637 6401 4154 8799
8159 7790 6281 3325 5977 0406 2863 4634 9018 1542
4864 3015 5157 8979 0546 9798 1402 7320 6631 2283
1012 9158 4794 5867 2403 6541 8329 3285 7970 0636
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8721
1854
5006
2645
9590
0168
6219
3932
7383
4477

5902
6133
3524
7717
0469
2651
1378
4080
8245
9896

9873
3311
4669
8234
6187
1025
7752
2496
5508
0940

5386
9720
0648
3212
1164
7003
4597
8851
6479
2935

3244
0909
2711
4370
6653
8525
9466
5132
1898
7087

4509
6877
1235
2756
3021
5668
0180
9313
7942
8494

A SOLUTION OF ORTHOGONAL TRIPLES IN

Table 2
Square Number 1
6649 9850 4937 3162 7473 0218
4007 7213 5596 0478 8161 2385
3722 1474 6859 7593 2215 9930
9470 4727 7163 8931 5856 1004
8211 5936 2725 4387 6009 3472
2595 8641 3382 6729 1934 4857
1384 2165 8471 9000 0728 5646
5166 6599 0008 1644 9380 7723
0938 3002 1214 2855 4647 8591
7853 0388 9640 5216 3592 6169

Table 3
Square Number 2

1718 0139 9086 4650 8895 2371
9526 8375 3464 2891 5652 7247
4900 6893 1138 8464 7377 0089
0899 9906 8655 5082 3134 6523
5372 3084 7907 9246 1528 4890
7467 5712 4240 1908 6083 9136
6243 7657 5892 0529 2901 3714
3654 1468 2521 6713 0249 8905
2081 4520 6373 7137 9716 5462
8135 2241 0719 3374 4460 1658

Table 4

Square Number 3

7232 6317 0490 2026 5948 1755
0660 5758 4189 1945 9023 8504
2876 3941 7312 5188 8754 6497
6947 0870 5028 9493 4319 3661
9753 4499 8874 0500 7662 2946
8184 9233 2506 7872 3491 0310
3501 8024 9943 6667 1875 4239
4029 7182 1665 3231 6507 5878
1495 2666 3751 8314 0230 9183
5318 1505 6237 4759 2186 7022

1594
3642
4167
6389
0858
9210
7933
2475
5726
8001

6463
4710
9656
1248
2131
0379
8085
7897
3904
5522

3181
2236
0020
7502
1315
6757
5498
8944
4879
9663

2005
6939
8381
0598
7643
5476
3852
4217
9160
1724

7527
1088
5242
2461
8715
3894
4130
9376
0659
6903

8664
7492
9503
1185
5238
4949
2316
0750
6027
3871
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0064
9272
2787
1550
8838
7996
4621
5343
3419
6105

4255
8427
1143
0881
3916
9309
5030
6578
2692
7764

6446
4988
0292
5369
7055
3770
2804
1617
9121
85633

2417
8068
7556
5623
9992
3789
6835
0274
4101
1340

1693
3256
9889
6038
8307
2142
7914
4425
5760
0571

0122
7445
3360
1807
4778
9291
8053
6986
2534
5619
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4551
6785
5063
8108
0624
1830
9412
2997
7346
3279

5880
7144
6258
3766
4035
0911
8697
1303
9579
2422

2364
8293
1447
7535
6806
5059
4128
0772
3610
9981

8278
3629
9102
6065
2347
0554
1990
4831
5783
7416

3426
2032
8767
7254
1573
4885
0301
5910
6148
9699

7985
9801
4538
8443
0612
6366
5779
2054
1297
3120

Table 5

Square Number 4

6345 5993
2837 7106
4271 3839
3999 0344
1060 6415
5413 4061
0104 8788
7786 9552
9622 1270
8558 2627
Table 6

Square Number

7574 6308
1913 9769
5420 2912
2302 4575
0251 7694
6698 5250
4765 3146
9149 8887
8037 0421
3886 1033
Table 7

Square Number 6

8613
0052
2984
9771
5449
1127
6536
3290
4808
7365

1777
3530
9051
6616
8123
2444
7295
4368
5989
0802

3109
0994
1620
2277
4781
9342
7066
8418
6555
5833

2762
4305
0031
1423
5140
8577
9259
3696
7884
6918

9531
6776
5809
0982
2294
4618
3440
7125
8363
1057

7626
1410
8348
9782
5103
6275
2557
3069
0834
4991

9039
0691
3576
8147
6768
7424
1883
2252
4915
5300

3800
5129
7615
4298
1537
8983
0362
9441
6056
2774

9832
5553
6995
4411
7276
8628
3349
1100
2067
0784

8917
6888
7304
5690
9429
3036
2572
7761
1253
4145

4058
1367
8773
2124
3980
7805
9611
5539
0442
6296

1780
4341
0414
7836
3559
2107
5273
6625
8998
9062

0141
5570
4695
9919
2882
1763
6428
7034
3306
8257

5299
2614
6126
3050
9361
0532
1987
8803
7775
4448
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3397
5045
7458
4176
1201
8512
0963
9824
6730
2689

2118
7569
8330
3093
4672
6844
9487
0705
1956
5221

1589
2600
9815
6922
5744
4433
8196
7261
0077
3358

7738
1391
8172
9964
5515
6450
2209
3047
0683
4826

8950
4112
6094
0485
7849
1336
5671
2568
9227
3703

9075
5584
4923
7191
2430
0817
3748
1609
8356
6262
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Table 8

Square Number 7

0173 1041 2829 9514 6680 8962
2459 6960 7208 8682 3517 4736
9394 5685 0043 6200 4966 1821
1681 2399 6510 3827 7048 5455
3967 7828 4396 2739 0453 9684
4206 3177 9734 0393 5825 2049
5735 4516 3687 1451 8392 7178
7518 0203 8452 5175 1731 6390
8822 9454 5965 4046 2179 3207
6040 8732 1171 7968 9204 0513

Table 9

Square Number 8

9097 4562 5701 0845 1226 6484
5331 1486 8670 6224 2848 3953
0115 7229 9567 1676 3483 4702
4222 5111 1846 2708 8560 7339
2488 8700 3113 5951 9337 0225
3673 2098 0955 9117 7709 5561
7959 3843 2228 4332 6114 8090
8840 9677 6334 7099 4952 1116
6704 0335 7489 3563 5091 2678
1566 6954 4092 8480 0675 9847

Table 10

Square Number 9

8926 5604 3268 7431 0357 4193
3818 0197 9745 4353 1439 6072
7581 2350 8606 0747 6192 5264
5354 3588 0437 1269 9605 2810
1199 9265 6582 3078 8816 7351
6742 1929 7071 8586 2260 3608
2070 6432 1359 2814 4583 9925
9435 8746 4813 2920 5074 0587
4263 7811 2190 6602 3928 1749
0607 4073 5924 9195 7741 8436

5205
9174
2519
0733
8042
1961
6820
4686
7398
3457

7679
0095
5841
9957
6564
4482
1706
3223
8110
2338

2740
7921
3438
8076
4603
5194
0267
6352
9585
1819

4456
0823
3737
8202
6170
7688
9044
2969
1511
5395

3333
9707
2958
6674
1096
8220
0565
5481
4842
7119

6812
8266
1079
4743
0927
9355
7601
3198
5434
2580

[April
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Proof that Construction is Correct. Before going on with the proof, we will set down a

few definitions to facilitate our explanation of the proof. It will be noted that the squares in
Tables 1-10 are labeled Square 0 through 9. Then suppose we wish to find a certain number
of a certain cell — we shall write S (row number, column number, square number) = num-
ber in cell. To find a row on a certain square, we write S (row number, *, square number),
and S ¢, ¢, s) = column number on a certain square.

The ten columns in each square are considered to be numbered 0, 1, ***, 9 from left
to right; the ten rows on each square are considered to be numbered 0, 1, -+-, 9 from top
to bottom. For example: The number 7630 on Square Number 0 = S(0,0,0); or the row on
which 7630 is found may be written as S(0, *, 0); and the column we find 7630 in is
S(*, 0, 0). Finally if we refer to a specific square, say square 0, we write S(*,*, 0); if
we refer to each and every one of the ten squares we write S(x, *, A); to refer to each and
every top row (say) in each and every one of the two squares we write S(0,*, A).

(1) We now consider the 2nd and 3rd digits in each cell of the S(0, x, A), and keeping
the cells in the same positions, we place S(0, *, 0), on top of S(0, *, 1), -+, on top of
S(0, *, 9) itis easily verified that we have constructed the following 10 X 10 square which
was formed by superimposing two Latin Squares in such a way that the 100 two-digit num-

bers are mutually orthogonal.

63 86 40 .- 97
72 38 64 .. 00
(1a)

58 07 92 cee 81

(1b) It should also be noticed that the 2nd and 3rd digits in each cell of the S{0, *, A)
is repeated ten times in its own respective square. For example: The ten cells of 2nd and
3rd digits in S(0, *, 0) are 63 86 40 --- 97, and it is seen that in the Square 0, the number
63 is repeated (as a 2nd and 3rd digit) ten times in a different row and a different column,
the number 86 is repeated (as a 2nd and 3rd digit) ten times in a different row and a differ-
ent column, -+, the number 97 is repeated (as a 2nd and 3rd digit) ten times in a different
row and a different column.

(lc) Now it is easily verified; each and every one of the ten Squares is constructed in
the exact way we constructed the Square Number 0 in (1b).

(2) We now look at the first digit in each cell, where it is easily verified that the first
digit in each cell of the S(0, *, A) is repeated ten times in a different row and different col-
umn on its own respective square.

(2a) For example: the first digit 0 on Square 0 will be found in ten different cells
where each cell ig in a different row and different column, and this exact arrangement of the
first digit 0 is constructed into each and every square 0 through and including Square 9.
It is also easily verified that each first digit 0 is on a different file.
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(2b) Now, each and every first digit (0, 1, **+, 9) in every cell is arranged in the
exact way we placed the 0's in our example (2a).
Therefore, there are no two identical first digits in the same row, the same column,

or the same file throughout the cube.

(Let the 100 numbers 000, 001, 002, ---, 099 = a;;
the 100 numbers 100, 101, 102, .-+, 199 = a;;
the 100 numbers 900, 901, 902, ---, 999 = ag.)

Now, combining (1, a, b, ¢) with (2, a, b) leads to

(3) The first three digits in each cell in the cube that belongs to —--a

of its three-digit numbers in a different column, different row, and in a different file,

will have each

where we replace the subscript k (in ak) one at a time with the number 0, then 1, :--,
then 9.

(32) In (3), we have then satisfied the requirement that set A (set A = the 1st, 2nd,
and 3rd digit in each and every cell throughout the cube) will contain (in some way) every one
of the 1000 three-digit numbers 000, ---, 999, without repetition.

(3b) We now combine in each cell throughout the cube—the second and third digits with
the fourth digit —and in the exact way we found (3a) — we find that we have satisfied the re-
quirement that set D (set D = the 2nd, 3rd, and 4th digit in each and every cell throughout
the cube) will contain (in some way) every one of the 1000 three-digit numbers 000, ---,
999, without repetition.

(4) Now, it will be noticed that every identical first digit is paired with an identical
fourth digit — we inspect one square at a time. For example: In Square 0, every one of the
ten cells that have a first digit 0 also have as a fourth digit the number 6; every one of the
ten cells that have a first digit 1 alsohave as a fourth digit the number 2; ---; every one of
the ten cells that have a first digit 9 also have as a fourth digit the number 8. It should
also be noticed that the ten first digits (say 1st digit = A) paired with ten fourth digits (say)
B to get the numbers A--B in ten cells on a particular square — shall never again have
this particular first and fourth digit combination repeated (that is, the combination A--B) on
any one of the nine remaining squares. For example: on Square 0 the first digit 7 is
paired with the fourth digit 0, on Square 1 the first digit 7 is paired with the fourth digit
3, **+, on Square 9, the first digit 7 is paired with the fourth digit 1. This arrangement
for first and fourth digits is ridgidly enforced throughout the construction.

(5) Now, the first and second digits in each square (we consider one square at a time)
are mutually (pairwise) orthogonal. For example: The first and second digits in Square 0
are mutually orthogonal and are constructed by superimposing two 10X 10 Latin Squares.

(52) The exact orthogonal properties of digits 1 and 2 in each of the ten squares (we
consider one square at a time) that we find to hold true in (5) also are easily verified to hold
true for the first and third digits. That is, the first and third digits in each and every one of

the ten squares (we consider one square at a time) are mutually (pairwise) orthogonal.
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(6) Now, we combine (4) and (5), which leads us to the fact that set B (set B = 1st,
2nd, and 4th digits in each and every cell throughout the cube) will contain (in some way)
every one of the 1000 three-digit numbers 000, ---, 999, without repetition.

(6a) Finally, we combine (4) and (5a), which leads us to the fact that set C (set C =
1st, 3rd, and 4th digit in each and every cell throughout the cube) will contain (in some way)
every one of the 1000 three-digit numbers 000, ..., 999, without repetition.

Remark. We used The Arkin-Hoggatt method {1} to get the 100 mutually orthogonal
numbers in (1).

Note. For singly-even cubes greater than 10X 10 X10 we can combine the above
methods with Bose, Shrikande and Parker's work on mutually (pairwise) orthogonal numbers
[2] and after the proper extensions of their magnificent theorems — it is easily shown that we
can obtain a solution of orthogonal triples in four “4m + 2) X (4m + 2) X (4m + 2) superim-
posed Latin Cubes (where 2 < m = 3, 4, +-+).

In conclusion, we discuss (our discussion relies entirely on the construction in this
paper) orthogonal triples in Five 10 X 10 X 10 superimposed Latin Cubes.

(7) In our discussion, the ten numbers 7630, 7860, 7400, 7790, 7150, 7280, 7010,
7540, 7320, 7970, that are found in Square Number 0 will be used as an illustrative example.

1t is evident that in each of the ten numbers above, the first and fourth digits form the
two-digit number 70, and also the second and third digits in the above ten numbers are
mutually (pairwise) orthogonal.

(7a) Now, let us add a fifth digit to each of the ten four-digit numbers written above.
It is evident that it would be impossible to form orthogonal triples if any two of the ten fifth
digits we placed are identical. For example: Say we placed a 0 after (in the fifth position)
two of the ten numbers in (7) — say the two numbers are 7630 and 7280. We then have
76300 and 72900 and it is evident that the 700 in 76300 and the 700 in 72800 are nof in
a set of orthogonal triples. Therefore, every one of the ten fifth digits we add to the ten
numbers in (7) above must be different and thus the fifth digit in (7) must include each number
in 0, 1, -+, 9. However, since the second and third digits in each of the ten numbers in (7)
are mutually (pairwise) orthogonal, it follows that the second, third, and fifth digits in the
above ten numbers in (7) are mutually (pairwise) orthogonal.

Thex, using the exact method of our example in (7a) we extend our reasoning (step-by-
step) to include the entire Square 0, and then Square 1, --., and Square 9. In this way,
we are easily led to the following.

(7b) IN ORDER TO FIND A SOLUTION OF ORTHOGONAL TRIPLES IN FIVE 10 X 10X
10 SUPERIMPOSED LATIN CUBES, WE MUST FIRST BE ABLE TO CONSTRUCT A SYSTEM
OF THREE MUTUALLY ORTHOGONAL NUMBERS (three pairwise orthogonal) IN A SQUARE
MADE OF THREE SUPERIMPOSED 10 X 10 X 10 LATIN SQUARES.

(8) It is easily verified that by combining the NOTE above with (7b), we extend (7b) to
read: IN ORDER TO FIND A SOLUTION OF ORTHOGONAL TRIPLES IN FIVE (4m + 2) X
(4m + 2) X (4m + 2) SUPERIMPOSED CUBES, WE MUST FIRST BE ABLE TO CONSTRUCT A
SYSTEM OF THREE MUTUALLY ORTHOGONAL NUMBERS (three pairwise orthogonal) IN A
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SQUARE MADE OF THREE SUPERIMPOSED (4m+2) X (4m+2) X (4dm+2) LATIN SQUARES,
where 2 <m = 3, 4, ++-.
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Remark. It should be noted that the methods of construction of the cube in the above
paper are the same methods that were used to construct the cubes in the following two pa-
pers (we mention the following two papers, since each paper stated that a method of con-
struction was forthcoming). See [3] and [4].
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COMBINATORIAL ANALYSIS AND FIBONACCI NUMBERS

GEORGE E. ANDREWS
The Pennsylvania State University, University Park, Pa. 16802

1. INTRODUCTION

The object of this paper is to present a new combinatorial interpretation of the Fibon
acci numbers.

There are many known combinatorial interpretations of the Fibonacci numbers (e.g.,
[9]); indeed, the original use of these numbers was that of solving the rabbit breeding prob-
lem of Fibonacci [10]. The appeal of this new interpretation lies in the fact that it provides

combinatorial proofs of several well known Fibonacci identities. Among them:

=0

These results will be presented in Section 2. In Section 3, we shall describe further possi-

bilities for exploration of Fibonacci numbers via combinatorics.

2. FIBONACCI SETS

Definition 1. We say a finite set S of positive integers is Fibonacci if each element of
the set is E\VS{, where IS\ denotes the cardinality of S.

Definition 2. We say a finite set S of positive integers is r-Fibonacci if each element
of the set is EISI +r.

We note that "0-Fibonacci' means "Fibonacci."

Table 1
Subsets of {1, 2, 00, n} that are r-Fibonacci
n Fibonacci 1-Fibonacci 2-Fibonacci
1 ¢, {1} ¢ ¢

2 ¢, {1}, {2} ¢, {2} ¢
3 o, {1}, {2}, {3}, {3,2} ¢, {2}, {8} 9, {3}
¢, {1}, {2}, {3}, {4}, {2,3}, {2,4}, {34} o, {2}, {3}, {4}, (3.4} ¢, {3}, {4}

S

* Partially supported by National Science Foundation Grant GP-23774.
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Theorem 1. There are exactly - subsets of {1, 2, **+, n} that are r-Fibonacci

2
for n =r - 1.

__Pﬂ)_f_. When n = r-1 or r, ¢ is the only subset of {1, 2, *°°, n} that is r-
Fibonacci, since each element of an r-Fibonacci set mustbe =r. Since F{=F;=1, we see
that the theorem is true for n = r -1 or r.

Assume the theoremtrue for each n with r <n = nj (and for all r). Let us consider
the r-Fibonacci subsets of {1, 2, «-+, ng, ng + 1} that: (1) do not contain ny+ 1, and (2)

do contain ny + 1. Clearly there are F elements of the first class. If we delete ny +

n0+2—1’
1 from each set in the second class, we see that we have established a one-to-one corres-
pondence between the elements of the second class and the (r + 1)-Fibonacci swubsets of

{1, 2, co0, no}, hence there are F elements of the second class. This means

ng+2-(r+1)
that there are

Fn0+2—r * Fn0+2—(r+l)
= F(n0+1)+2—1‘

r-Fibonacci subsets of {1, 2, +++, ng+ 1}, and this completes Theorem 1.

Theorem 2. For n = 0,

P - 1+(g)+(n51)+(n52)+...
_ 1+Z(n-§+1>

=1
Proof. By Theorem 1, Fn+2 is the number of Fibonacci subsets of {1, 2, s, n}.
Of these ¢ is one such subset. There are
n
1
singleton Fibonacci subsets of {1, 2, ---, n}. The two-element Fibonacci subsets are just
the two-element subsets of {2, 3, cv0, n} , and there are

()

of these. In general, the j-element Fibonacci subsets of {1, 2, ", n} are just the j-

element subsets of {j, jtl, eee, n} and there are exactly

(1)

of these. Hence summing over all j and using Theorem 1, we see that
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= g n-j+1
Fn—l~2 L= ( j >

=1
Theorem 3. For n =0

n+1 n+1 n
(3 (v52) e (4
4 Y

+

1 _
>Fn *F = F2n+2 ’

or
o f
Z, (n ; 1>Fn+l—j = Fonsa
j=0
Remark. This is the identity stated in the Introduction with n + 1 replacing n.
Proof. By Theorem 1, F2n+2 is the number of Fibonacci subsets of {1, 2, "0, Zn}.
We first remark that there are at most n elements of a Fibonacci subset of {1, 3,
«++, 2n}, for if there were n +1 elements then at least one element would be =n which is
impossible.

Let Tj denote the number of Fibonacci subsets of {1, 2, =+, Zn} that have exactly
j elements =n. Clearly
n
Fon+a :E :Tj

=0

Now to construct the subsets enumerated by Tj’ we see that we may select any j-

elements in the set {n, n+1, ---, Zn} and then adjoin to these j elements a j-Fibonacci
subset of {1, 2, -++, n-1}. Since there are
n+1
i
choices of the j elements from {n, n+1, «¢-, Zn} and F(n-l)+2-j = Fn+1—j j-Fibonacci

subsets of {1, 2, ,n- 1}, we see that

_f{n-+1
'3 ‘( j )Fnﬂ-j

Therefore

Theorem 4. For n =0,
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1L+ F +Fp+-e+F =F o

_Piof. Let Rj denote the number of Fibonacci subsets of {1, 2y see, n} in which
the largest element is j. Let Ry = 1 in order to count the empty subset ¢. Clearly for
j > o, Rj equals the number of 1-Fibonacci subsets of {1, 2, 00, j- 1}; thus by Theorem
1, R Fj' Therefore

i~ Fyop+e-1 T
n n
Fn+2=1+z RJ.=1+E F .
1 1

3. CONCLUSION

The genesis of this work lies in the close relationship between the Fibonacci numbers
and certain generating functions that are intimately connected with the Rogers-Ramanujan '
identities. Indeed if D_l(q) = Dy(@ = 1, Dy(@) = 1+q, and Dn(q) = Dn_l(q) +ann_2(q),
then [3; pp. 298-299]

_z:jz n+1-j
(3.1) Dn(q) = q [ i ] s

where

Mn m noj+l it n
] = I (1-gqg )1 -¢q') , for 0<m <n, [ ] = 0 otherwise.
m j=1 _m

It is not difficult to see that Dn(q) is tke generating function for partitions in which each part

is larger than the number of parts and <n. Thus Dn(l) must be F the number of Fib-

n+2’
onacci subsets of {1, 2, -++, nj, and this is clear from (3.1) and Theorem 2 since

[g] equals (;)

at q = 1. Actually, it is also possible to prove g-analogs of Theorems 3 and 4. Namely,

n+1 ) _
(3.2) D, (@) = ; g [n ; 1 J D@
and :
n
(3.3) D@ =1 +Z quj_z(q)
=1

While (8.3) is a trivial result (3.2) is somewhat tricky although a partition-theoretic analog of

Theorem 3 yields the result directly.
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Since Dn(q) is also the generating function for partitions in which each part is =n and
each part differs from every other part by at least 2, we might have defined a Fibonacci set
in this way also; i.e., a finite set of positive integers in which each element differs from
every other element by at least 2. Such a definition provides no new insights and only tends
to make the results we have obtained more cumbersome. C. Berge [6; p. 31] gives a proof
of our Theorem 2 using this particular approach.

It is to be hoped that the combinatorial approach described in this paper canbe extended

to prove such appealing identities as

[12; p. 7]

[8 p. 150, e.q. (10.14.11)].

Presumably a good guide for such a study would be to first attempt (by any means) to establish
the desired g-analog for Dn(q). Such a result would then give increased information about
the possibility of a combinatorial proof of the corresponding Fibonacci identity. This approach

was used in reverse in passing from the formulae [1; p. 113]

(<]
Fp = z -1 ([1/2(n -nl - 5a)])

a=-o00

to new generalizations of the Rogers-Ramanujan identities ([4], [5]). I. J. Schur was the

first one to extensively develop such formulas [11] (see also [2], [7]).
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FIBONACCI SUMMATIONS INVOLVING A POWER
OF A RATIONAL NUMBER
SUMMARY

BROTHER ALFRED BROUSSEAU
St. Mary’s College, Moraga, California 94575

The formulas pertain to generalized Fibonacci numbers with given T, and T, and with
(1) T =T + T
n n-

n+l 1
and with generalized Lucas numbers defined by
@) Vn = Tn+1 + Tn-l

Starting with a finite difference relation such as

@) Ab/a)kT = O/ T, 6T, L, - aTy)

2k T 2k+2 2k+2 P T alcta
values of b and a are selected which lead to a single generalized Fibonacci or Lucas num-
ber for the term in parentheses. Thus for b = 2, a = 13, the quantity in parentheses is

3T2k-3' Using the finite difference approach leads to a formula
- k n+l, .n
) kzzjl 2/13)" Ty Ty o = (1/3) [(2 /180T, Ty - 2T5T7].

Formulas are also developed with terms in the denominator.

(Continued on page 156.)



A PRIMER FOR THE FIBONACCI NUMBERS: PART XIV
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THE MORGAN-VOYCE POLYNOMIALS
1. INTRODUCTION

Polynomial sequences often occur in solving physical problems. The Morgan-Voyce
polynomial results when one considers a ladder network of resistances [1], [2], [3]. Let
R be the resistance of two resistors R; and R, in parallel. The voltage drop V across a

resistance R due to flow of current I is, of course, V =.IR.

Ry Ry vy
Now
VvV = 1131 - 12R2 = (11 + IZ)R
Thus
L I,
v = Bis 7 - R
so that
1o0,2_ 1
R vV V R R,
Thus the formula for resistors in parallel is
1 _ 1 1
R R 'R

For resistors in series
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[April
so that the formula relating the resistances is
R = Ry + Ry.
This is all we need to solve the ladder network problem.
2. LADDER NETWORKS

Consider the following:

X X X X C
Ao—ANA AN AN AAN/ o s 0 o
Z; 1 1 1 1 Zo
B o oD

n sections

Assume that the terminals A and B are open. We desirethe resistance as measured across

terminals C and D. For n ladder sections, let us assume that the resistance is Zn’ and

consider the output Z, .

X
CV
Zn 1 Zn+1
? 3 .
Since x and Zn are in series,
R = x+ 7%
n
Now R and 1 are in parallel, so that
x+Z +1
z1 -t = 7
n+1 X n X n
X+ 7Z
” _ n

41 T X FZF1
n

To see what this means, let Zn =

bn +1(x) x + bn(x)/ Bn(x) B xBn(X) + bn(X)
Bn+1(x) T x + 1+ bn(x)/Bn(x) T+ 1)Bn(x) + bn(x)

bn(x)/Bn(x), where bn(x) and Bn(x) are polynomials.
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so that

(2.1) {bn+1(x) = XBn(X) * bn(x)

Bn+1(X) = (x + l)Bn(x) + bn(x)

which is a mixed recurrence relation for the two polynomial sequences. Clearly, Z; = 1,
so we set by(x) = 1 and By(x) = 1. This completely specifies the two sequences which we
call the Morgan-Voyce polynomials.

Without too much trouble, one can derive that both sequences {bn(x)} and {Bn(x)}
satisfy

(2.2) Un+2(x) = (x + 2)Un+1(x) - Un(x) .

This takes care of the resistance as seen from the output end of the ladder network. We now
go to the input end, and consider input Zi .

X X X
(s} AAA- 4 —AN vse AAN O C
Zn+1 §1 Z
t n
o] ® O PR ¢ D
B
Z
1 1 1 n
== =t =, or, R =
R z, 1 Zn+l
Zn xZn+x+Zn
oyl T XTI T T 7oA
n n

Again let Zn = Pn(x)/Qn(x). Then,
P (®) x(P () +Q (x) + Pn(X)

n+1 _
Q& P&+ Q&
That is,
Pn+1(x) = &+ DP (0 +xQ &,
Qn+1(x) = Pn(X) * Qn(X)
Simplifying,
P = Q0 - QK
Qn+2(X) - Qn+1(x) = (x + 1)(Qn+1(X) - Qn(X)) + XQn(X)
or

Quip® = & +2Q & - Q

From the case n = 1, we see that Py(x) = x+1, Qux) =1, Qyx) = x+2, so that

Q]n(x) = Bn(x) from the output considerations earlier, and
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P& =Q ,®-QK =B & -BK

But, recalling the defining equation (2.1) for the Morgan-Voyce polynomials, a simple sub-
traction gives us bn+1(x) = Bn+1(x) - Bn(x). Thus, Pn(x) = bn+1(x) so that

_ bn+1(x)

Zn - Bnixi ’

where bn(x) and Bn(x) are the Morgan-Voyce polynomials. This is the resistance as seen
looking into the ladder network from the input end.

There are now several theorems we can prove.

3. THEORETICAL CONSIDERATIONS

Using the recursion (2.2) for bn(x) and Bn(x), it is a simple matter to compute the

first few Morgan-Voyce polynomials.

n bn(x) Bn(x)

0 1 1

1 x +1 X + 2

2 X%+ 3x + 1 X2 + 4x + 3

3 x3 + 5x% + 6x + 1 x3 + 6x + 10x + 4

4 xt+ 728 + 15%% + 10x + 1 o+ 8x3 + 21x% + 20x + 5

5 x% + 9xt + 28x3 + 35x% + 16x + 1 x% + 10x% + 36x% + 56x% + 35x + 6
b o = (x+2)b  x -b &
Bn+2(x) = (x + 2)Bn+1(x) - Bn(x)

Comparing these polynomials to the Fibonacci polynomials fn(x), folx) =0, fi(x) =1,
fn +1(x) = xfn(x) + fn_l(x), leads to some fascinating results.

FIBONACCI POLYNOMIALS

fn (X) /

n

1

2

3 x+1 f3/1 ?3/1

4 B+ 2x £ 17 47 6" 4

5 xt+3x+1 f5/1 5/10/10 5

6 x° + 43 + 3x f6/1/6/15 20 15 6

7 x84+ 5xt+6x2+ 1 f7/1 7 21 3 3 21 7 1
8  xT+ 6x5 + 10x® + 4x f8/
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Theorem 3.1. See [3], [5]. The polynomial sequences {bn(x)}, {Bn(X)}, and
{fn(x)} are related by

f2n(x) = XBn-l(X2 )

fanra® = b, &%)

Proof 1. By Generating Functions.
It is not difficult to show that

[>e]
1 -2 =Zb(x)/\n
1-(x+2n+ A n=0n

- (x+2n+22 =0

Hence,
(=]
Y Z
A(l A ) _ b (XZ)}\.ZH+1
1- 2+t ="
(=)
2
Ax - z xB (@2
1 - (X2 + 2))\2 + A4 =0 n-

Adding these gives

[>e]
2
AL +ax =A%) A =Zf(x)>\“,
1-22 40 - 1-xa-ar =0

where we recognized the generating function for the Fibonacci polynomials { fn(x)}.
Proof 2. By Binét Forms.
Since the Fibonacci polynomials have the auxiliary equation

Y: = xY+ 1,

which arises from the recurrence relation and which has roots

_x+ﬂjx2+4 _x -Nx*+4a
R b =—,:

it can be shown by mathematical induction that the Fibonacci polynomials have the Binét form

£, = (@ - ")/ - p) .
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Similarly, from the recurrence relation for the Morgan-Voyce polynomials, we have the aux-
iliary equation
Y2 = (x +2)Y-1

with roots

x + 2+ Nx? + 4x S_x+2—\1x2+4x

2 ’ 2 E]

leading to, via mathematical induction,

B & = @ - ")/ - s)
Then,

£ = @ - 65/ - p) = [ - )]/ - p)

[<x2 + 2+ x’\[x2_+_4>n_ (x2 + 2 - xM)n]/m

2 2
On the other hand,

2 N 2\ 2 2 1 s\l _—
Bn_l(xz) = [(X +2+zx +4X) _(X +Z£\/X +4X)j|/xfx4+4x2

Notice that, since Nxt +4x% = |x|\/xZ +4,

xBn_l(xz) = f_ (%)

2n
Since bn+1(x) = Bn+1(x) - Bn(X) ,
2y = 2y _ 2
xbn+1(x ) xBn+1(x ) xBn(x )
= fopag® - L o = xfy g
leading to

b &) = 1, (x) .

2) =
“n+3(x) or bn x?) =1

2n+1

Proof 3. By the Recurrence Relations.
Observe that

bylx) = 1, by(x) = x + 1, b p® = (x+2b & - b ) ;

flx) = 1,  fx) ==+l £ & = &2 6 -6 LK),
Thus,

bots) = 1, by(d) = &+ 1, b ) = &+ 2b &P - b ()

Now, the sequences {!om(x2 )} and { f2m+1(x)} have both the same starting pair and the same

recurrence relation so that they are the same sequence. Similarly,

Bylx) = 1, Bylx) =x+2, B ,& = x+2B & - B &;

f(x) = x, fix) = x* + 2x, f2n+6(x) = (2% + 2)f2n+4(x) - f2n(x)
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Next,
xBy(x?) = x, xBy(x?) = x3+2x, XBn+2(){2) = (x2 + 2)xBn+1(x2) - xBn(Xz) ,

so that the sequences {xBn_l(xz )} and {fzn(x)} are the same.

Several results follow immediately by applying known properties of the Fibonacci poly-
nomials. (See [3], [6], [7].)

Corollary 3.1.1.

bn(l) = F and Bn_l(l) = F

2n+1 2n

for the Fibonacci numbers Fn'

Corollary 3.1.2. The coefficients of bn(x) and Bn(x) lie on adjacent rising diagonals
of Pascal's triangle.

Corollary 3.1.3. The polynomials {bn(x)} are irreducible if and only if 2n +1 is a

prime.

4. FURTHER PROPERTIES OF MORGAN-VOYCE POLYNOMIALS
Let

Then

2 _fx+2 -1y [x+2 -1\ _[(x2+4x+3 -(x+2)
Q=1 0 1 0]~ X+ 2 -1
B3 (x) -By(x)
“\B®)  -B®
It can be proved by induction [10] that
Qn _ (Bn+1(x) _Bn(x)
Bn(x) -Bn_l(x)
Then, since det Qrl = (det Q)n ,
(X)Bn_l(x) - B%l(x) = -1.

Bn+1

Thus, one can write much by virtue of having Bn(x) trapped in a matrix.

Let
R=(*" 2 -2 RQ" = Cn+1(x) 'Cn(x)
2 -x+2))° Cn(x) —Cn_l(x) ’

Coy®@C, &) - Clx) = (& +4x +4) +4 = (2 + 4x) .

so that
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Then, Cn(x) corresponds to the Lucas sequence.
Let {Ln(x)} be the Lucas polynomial sequence, Lj(x) = 2, L;(x) = x, Ly(x) = x* + 2,
Ln+2(x) = an+1(X) + Ln(x). Actually,
L& =f ,&+f &,
and for x = 1, Ln(l) = Ln, the nth member of the Lucas sequence 1, 3, 4, 7, 11, 18,
29, **-
Now, C_i(x) = 2, Cylx) = 2, Cy(x) = x+2. Thus, since

= Z -
2L2n+4(X) (< + 2Ly ,&) - Ly (),
we have L2n(x) = Cn-l(x ), and Cn-l(l) = LG, a Lucas number with even subscript. Al-
so, since
= = 2
LZn(X) f2n+1(x) * f2n—1(x) ’ and f2n+1(x) bn(x )s

the relationship LZn(X) = Cn_l(xz) implies that

Cn(X) = bn(X) + b .(x).

n+l
Also,
xB (x) = b ;& -b &,
so that
bn+1(X) = [Cn(x) + xBn(X)]/Z.
Finally, applying the divisibility properties of Lucas polynomials [6], [8], [9], we
have the

Theorem. C n(x) is irreducible.
_— 2

5. ATTENUATION RESULTS

The attenuation is the ratio of input voltage V. to output voltage V.. Sincethe system

I o)
islinear, we can assume that the output voltage is1V. Let us start with no resistive network.

There is no current (IO = 0) and between the terminals is 1 volt (VO = 1).

Iy — 1 volt

I, = 1 amp Vy = x+ 1volis

So we see that
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We shall see that

First, we note that from bnﬂ(x)

B

n+1

we have the lemma,

Lemma 1.

In the ladder network, the voltage across the n

current is also Vn.

A PRIMER FOR THE FIBONACCI NUMBERS

I, =0 =B, V
11 =1 = Bo(X) ’ V1
In = Bn-l(X) and

B1r1+

= xBn(x) + bn(x)

() = (x+ DB, () + b ()

1

x) = Bn();) + b

=1= b_l(X) )
=1 = Bo(X)
Vn = bn-—l(X)
and from

= Bn(x) + xBn(X) + bn(X),

(%)

n+1l

th

V():l

n+l n
NN A v b0 AN e
xQ 1Q
n+l n
lo —% G0 ¢ "3
Now, the voltage currents obey
Vn+1 = XIn+l * Vn’ In+1 - Vn * In ’
Now assume that I[l = Bn_l(x) and Vn = bn(x). Then,
Vn+1 = xBn(x) + bn(x) = bn+l(x) s
InJrl = bn(x) + Bn-l(x) = Bn(x) .

applying Lemma 1 to the expression for L.y which completes the induction.
We note that

Bn(x) =

A%

I

n+1

n+l

= bn+l

vV +V
n n-

I

x) = X[Bn(X) + Bn—l(x) + o

1

4 .. +V0 = bn(x) +bn_1(x) + e

These follow directly from the special resistive network.

+ Bylx) + 1] ;

+ bo (X) .

155

unit resistance is Vn; hence, the
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the work of finding the Fibonacci and Lucas expressions in parentheses, and 78 pages of for-

mulas. There are 625 formulas in all arranged in categories according to the difference re-

lation from which they are derived.
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GENERALIZATION OF HERMITE'S DIVISIBILITY THEOREMS AND
THE MANN - SHANKS PRIMALITY CRITERION FOR s-FIBONOMIAL ARRAYS

H. W. GOULD
West Virginia University, Morgantown, West Virginia 26506

1. INTRODUCTION

In a previous paper [4] I found that two theorems of Hermite concerning factors of bi-
nomial coefficients might be extended to generalized binomial coefficients [2], however one
of my proofs imposed severe restrictions on the sequence {An} used to define the general-
ized coefficients. Also it was found that the Mann-Shanks primality criterion [6] follows
from one of the Hermite theorems and it appeared evident that the criterion also held in the
Fibonomial array, but the proof was not completed.

In the present paper I remove all these defects by proving the Hermite theorems in a
more elegant manner so that very little needs to be assumed for the generalized array, and
the Mann-Shanks criterion is not only proved for the Fibonomial arraybut for the s-Fibonom-~

ial and q-binomial arrays. Some typographical errors in [4] are also corrected.

2. THE GENERALIZED HERMITE THEOREMS
Let {An} be a sequence of integers with Ay = 0, An # 0 forall n= 1, and other-

wise arbitrary. Define generalized binomial coefficients by

n
k

A A
- nn-
A

2.1

- A
n-k+1 : n{ _
"'A1 R with {0}~1.

L
k" k-1
These generalize the ordinary binomial coefficients which occur for Ak = k identically.
Properties of the array and their history may be found in [2]. Our attention here is fixed on
the case when these coefficients are all integers. Arithmetic properties are then of primary
concern. As usual, ' (a,b) will mean the greatest common divisor of a and b, and aib
means a divides b. We may now state:

Theorem 1.

2.2) A ym
. BAD) ' Lk f
and
2.3) Aokt I fny
iAn+1’ Kk; 1k

provided only that in (2.3) we suppose (An+1’ Ak)\An—k+1' Of course, in (2.2) we always
have (An’Ak) lAn, so that (2.3) is only slightly less general than (2.2).

In [4] 1 stated that (2.3) holds provided A - Ak = An+1—k or something close to

this. We shall see that no such assumption is necegsary.
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Proof of (2.2). By the Euclidean algorithm we know that there exist integers x and y
such that (An, Ak) = xAn + yAk. Therefore

n| _ n ni{ _ n n-1{ _
(An’Ak){k! = XAn{k}+ yAk{k} B XAn{k} * yAn{k - 1} = AGE
for some integer E. Since (An, Ak)lAn we have proved that (2.2) is true.

Proof of (2.3). Again, for some integers x and y, (A Ak) = xA + yA

n+1’ n+1 k"’

whence

[n} _ n} {n
Bpas Ak = ikl T k&
_ n+1 n _ .
= XAn+1-k{ k } * yAn+1-k{k - 1} = A F o

for some integer F. Thus we have proved in general that

n
(2-4) Ao | @uir A e

and when we suppose that (An+1’ Ak) |An+1-k we obtain (2.3).

The proof I tried in [4] motivated by Hermite's own argument ran as follows: We have

A LA =xA L+ YA = x(A - A+ &AL,
whence
Jnl _ _ {n} n)\
Ay Ay ]k} XAy~ A Qg &R {k{
A - A )
n+1 k ! n} n
= X —— A + (x + yA 2 } s
An+1—k n+l-k { k n+l-k {k - 1
and from this, if we suppose that A 1 -A=A L,  as stated in [4], we could obtain
(2.3), because this also implies (An+1, Ak)iAnﬂ—k’ We may also merely suppose that
An +1-kIAn 4 Ak and we shall have proved (2.4), but as seen in our general proof none of

these assumptions is necessary. Hermite's device of shifting terms around does not gener-
alize, but then also the shifting is not needed.

In the proof of (2.2) we have used the obvious fact that

Ak{ﬁ} = An{rli:i}’

and in our proof of (2.3) we used the obvious relations

fn B n.+1} {n _ n }
An+llk} _An+1-k{ K and Ay k} —An+1—k{k-1 ;

simple analogues of corresponding formulas for ordinary binomial coefficients.

As our results apply to the Fibonacci numbers, and Fibonomial coefficients, it still

seems necessary to know that (Fa’ Fb) = F(a b) if only to get an easy proof that (F Fn)

n+1’
Fn+1-k so that we can have (2.3) as well as (2.2). Thus we have

Fra i) = Frpag = Forkw - Fome i

which means that (Fn 41 Fk) an 1ok In any event, our results are obtained more elegantly

by our present proofs.
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According to Dickson's History [1, p. 265] Th. Schonemann in 1839 proved that

is an integer. The situation for two integers a,b is just that

(a,b)@ + b ~ 1)!

2.6) Al by

is an integer. This follows at once from Hermite's original form of (2.2), because by putting

il = S0 et

which is an integer, then clearly

_{@+b,b) $a-+bl _ (abla+b - 1)
H@ + b, b) = a+b { b } B albl

must be an integer. The multinomial extension of Schonemann follows readily from Hermite's
theorem. 1 was reminded of thege things by aletter from Gupta [5] who remarked that a nice

Fibonomial extension of (2.6) would be that

F i, [@ * 0 - 1]

{m[t [n]?

2.7)

is an integer. This, of course, follows at once from (2.2) when An = Fn and we define gen-

eralized factorials by

(2.8) ]t = A A |-+ AAy,  with  [0]t =1,

indeed, the more general assertion from (2.2) is that since

(A AP

R = —— |}
n
is an integer, so also is
A »A ) N (A A Y[m +n - 1]
_ m+n’ " n m +ng _ m-n’ " 'n
(2.9) H{m +n,n = — { N } : .
m+n [m}? [n]®

an integer.

According to Dickson [1, p. 265] Cauchy also proved Sch@nemann's theorem for (2.5),
and Catalan (1874) proved that (2.6) is an integer in case (a,b) = 1.

Catalan, Segner, Euler, etc., found that (n + 1) I {2;1} by combinatorial or geometrical
arguments. See my bibliography [3] for a list of 243 items dealingwith the Catalan numbers,
ballot numbers, and related matters. A supplement of over 75 items is being prepared.

The fact that (n + l)\ {2;11} follows at once from (2.3) so that the number
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(An+1’ Ak) {n }

An+1--k k

(2.10) Cl,k) =

is a natural generalization. Unfortunately, even in the case An = Fn we do not yet have a

suitable combinatorial interpretation of this number.

3. THE MANN-SHANKS CRITERION FOR FIBONOMIALS

In [4] we gave some alternative formulations of the elegant Mann-Shanks primality

criterion [6]. In particular we noted that theirbeautiful theorem maybe written in the form:

an

for every integer R such that C/3 < R < C/2, R 2> 1.

C = prime if and only if R

(3.1)

Here R and C are the row and column numbers, respectively, in the original Mann-Shanks
shifted binomial array. We showed that when C is a prime the indicated divisibility follows
at once from Hermite's form of (2.2).

The corresponding theorem for Fibonomial coefficients (i.e., with An = Fn in (2.1))
is also true. That is, we have

Theorem 2. In the Fibonomial coefficient array,

C = prime if and only if FRi {C -RZR}

for every integer R such that C/3 < R < C/2, R 2 1.

(3.2)

Note that the single difference between this and (3.1) is that the row number R must be re-
placed by the corresponding Fibonacci number FR. When C = prime, the divisibility

follows from (2.2) since this implies that FR / (FR, is a factor of the Fibonomial

Fo_or)
coefficient; however we also have

(F F, =1

rR Fc2r) = Fwr,co2r) ~ Fm,0 ~
when C/3 < R = C/2. Thus, we have only to consider the case when C is composite. Our
proof is just a slight modification of the proof givenby Mann-Shanks. Suppose C = 2k, with
k=0, 2, 3, 4, -+-; thenthe unit {Lé
not occur, and it is sufficient to consider odd composite C. Let p be an odd prime factor
of C, and write C = p(2k +1), with k 2 1. Choose R = pk. Then the coefficient in the

R-row and C-column is { kg} , and

= 1 always occurs in the column, so divisibility can-

1 ;kp} _ ok Fpk-1"Fpk-2 pk-p+1

Fpk l p Fpk'Fp'Fp-l' cee . Fl
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Cancel F with F . The factors F
pk pk

the possible divisibility of Fp into the numerator since

p-1’ Fp-z’ T, F1 in the denominator cannot affect

F,F = F = F =F =1 f <r<p-1,
(p p-r) (s p-1) (0, 1) 1 orall 1=<r=< p-1

while on the other hand Fp is relatively prime to every factor in the numerator since

(F .) = F F,. =1 forall 1< j <p-1.

, F 4 = F,_ . =
p’ " pk-j (p, pk-j) (P ) 1
and so F_, which is greater than 1 for odd primes p, cannot divide into the numerator.
This means, equivalently, that the row number Fpk cannot divide the coefficient { kp}.
The proof is complete.

Our proof is a modification of the Mann-Shanks argument using the fact again that

(Fa, F

b)=F(

a,b)

4. THE MANN-SHANKS CRITERION FOR s-FIBONOMIAL ARRAYS

The s-Fibonomial coefficients follow from (2.1) when we set An = an, s being any

positive integer. Our theorem 2 above handles the case s = 1. We now have

Theorem 3. In the s-Fibonomial array, the Mann-Shanks criterion is true. That is,

F
- . . . sR Ij R l
(‘ C prime if and only if t \C - 2R{

(4.1) : S
for every integer R such that C/3 = R < C/2, R 2 1.

To see the motivation, consider Hermite's extended theorem (2.2) with An = F
We see that FSR /(FSR’ FsC-ZsR
Mann-Shanks type array. But when C = prime we have

sn’
) is a factor of the coefficient in the R-C position of the

F

Fir' Fscoasr’ = F(sm,sc-2sR) ~ F(sR,sC) ~ Fs@®,0) - Fs°

since C = prime implies (R,C) = 1 for each C/3 < R < C/2, R 2 1. Thus (2.2) yields
FsB /FS as a factor. By the way, it is a known fact that FS] FsR' To prove the converse
case, when C is composite, first assume C = 2k, k =0, 2, 3, 4, -++. Then again the
unit { lg} = 1 occurs in the column; so that it is sufficient to study the situation for odd com-
posite C. Let p be an odd prime factor of C, and put C = p(2k +1), k =2 1. Choose as
before R = pk. Then the coefficient in the R-C spot is the s—Fibonomial coefficient { kp}.
We find now that b

F I, ¥, F

Fs {kp} ¥ ook Fopkos Fepk-2s’ " “Fepk-sprs
s spk sp ~ sp-s 3s 28" s

spk
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Cancel FS and Fspk' Now it is easy to see that

(Fsp’ Fsp—sr) = F(sp,sp-sr) = F(sp,sr) = Fs(p,r) = Fs

forall 1 =r=p-1. Also,
’ L) = N = 4 = F N = F
(FSp FSPk-S]) F(sp, spk-sj) ~ T (sp,sj) s(p,j) s

forall 1 =j = p - 1. Remove the common factor FS throughout. We see now that

F

Fs Fep-sr
F_p’_p_—_ =1, forall l=r=p-1,
S S

and

IA
IA
iel
|
[

F

Foo F_ o
-, ) =1, foranl 1
S S

Also, FSp /FS > 1, and we find that FS /FS cannot divide the numerator; equivalently we
have shown that Fspk /FS cannot divide the s-Fibonomial coefficient so that our proof is
complete.

It would appear that a Fibonacci-type property (a homomorphism)

4.2) (Aa’ Ab) = A(a,b)

would be very useful for proving Mann-Shanks type criteria in general arrays.

5. THE MANN-SHANKS CRITERION FOR q-BINOMIAL ARRAYS

The g-binomial or Gaussian coefficients are defined by

TR
_0]_1.

(a,b) _

n k qn_j+1 -1
(5.1) [ :‘ = I *——— with
=1 d -1

They are polynomials in q. Since in fact (qa -1, qb -1) =q 1, itis not surprising
now that we can assert the Mann-Shanks criterion for the g-binomial array. The g-analogue
of (3.1) is motivated by Hermite's generalized theorem (2.2) for we now have that the coef-

ficient in the R-C position is divisible by

R _1

R C-2 ’
(Cl - 19 q R - 1)

which reduces to
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f_—i
q-1

when C is aprime and C/3 =R =C/2, R = 1. Consequently we are led to the following:

Theorem 4. The Mann-Shanks criterion for primality holds in the g-binomial array.

That is:
R _

5.2 C = prime if and only if qq—_-—ll ’ ’_C FZR:]

for every integer R such that C/3 = R = C/2, R = 1,
and where the qg-binomial coefficients are defined by (5.1).

The proof is left to the reader.

In each of the cases we have presented in this paper, the first non-trivial instance of
the non-divisibility by a row number occurs when C = 25. The next case is then C = 35.
Up to this point a row number fails to divide an array number because of the presence of a
unit in the column. C = 25 and 35 are the first composite numbers where no unit appears.
The next such numbers are 49, 55, 65, 77, 85, 95, corresponding to those numbers of form
6j £ 1 which are composite.

The column entries for C = 25 in the ordinary Pascal case are 36, 252, 165, 12, with
corresponding row numbers 9, 10, 11, 12. 10 fails to divide 252, while the other row
numbers divide their column entries. Similarly, for the Fibonomial array, the column en-
tries are 714, 136136, 83215, 144, with row numbers 34, 55, 89, 144. Here 55 fails to

divide 136136. In the g-binomial array, the column entries are

(@ - (g® - 1) @® - 1)@°® - )® - D" - D@ - 1) ’
@ - @ - 1 @ - D* - @@ - Di® - Vg - 1)

(g - 1)@ - 1) - ) @? - 1) _
@ - Vi - g -1 q-1

The corresponding row numbers are
@-1/@-1, @ -1/@-1, @-1)/@-1, ad @*-1/@q-D.

It is again, of course, the second row number that fails to divide the coefficient in the column.
For arrays of the type we are studying this behavior is typical.

The column entries for C = 35 in the Pascalarray are 12, 715, 3432, 3003, 560, 17,
with row numbers 12, 13, 14, 15, 16, 17. Here 14*3432, and 15*3003. Foi‘ the Fibonom-
ial array the entries are 144, 27372840, 14169550626, 22890661872, 113490195, 1597, with
row numbers 144, 233, 377, 610, 987, 1597, and the row numbers 377 and 610 are the

ones which fail to divide their corresponding column entries.
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6. GENERALIZED MANN-SHANKS CRITERIA

By placing units in the (R, 2R) and (R, 3R) positions in their rectangular array and
carefully choosing the other entries (which turned out to be binomial coefficients) Mann and
Shanks developed a kind of sieve which tests numbers of the form 6j + 1 for primality. This
suggests that there may be ways to devise similar sieves based on other arithmetic progres-
sions. After all, it is a very old theorem of Dirichlet that if (a,b) = 1 then there are infin-
itely many primes of the form a + bt, where t ranges over the integers. We might expect
then to find a criterion similar to that of Mann-Shanks by using the progressions 4j+ 1 for
example. Although I have not found any simple formula for generating the entries in an array,
I can suggest some obvious necessary properties of such an array, by analogy with the origi-

nal Mann-Shanks array. Below is presented an outline for such an array:

0123456789 1011 12 13 14 15 16 17 18 19 20 21
of1

1 1 -1

2 12 -2

3 13 -*% _- 3

4 1* - 4 - 4 - %

5 15 - 5 - * 5 - 5

6 1 6 - * - 6 - 6 *
7 1 - 7 - 7 - *
8 1 8 - 8 - *
9 1 9 - %
10 1 0*

Numbers listed above are the smallest factors which an entry musthave in order tobe allow-
ed, so that the row number will divide each entry in a prime column. This guarantees that
a prime will correspond to the row-column divisibility property desired. However, of the
remaining entries, those spots marked by a dash (-) can be filled arbitrarily, while those
marked by a star (*) must be chosen so that at least one of the starred numbers in each col-
umn will not be divisible by the row number. Such special column numbers are 9, 15, 21,
25, 27, etc. One may imagine that it would be desirable to have a symmetrical row, in an-
alogy to the binomial coefficients, though this may not be desired. However, it seems worth
exploring. The first few rows suggest such symmetry. For this reason, I place a factor of
7 inthe R =7, C = 25 position to preserve symmetry in that row, etc. It would be very
remarkable if we could determine simple formulas for generating such generalized Mann-
Shanks arrays based on Dirichlet progressions.

In the outline array based on 4j + 1, it is easyto seethat thebottom star inthe special
columns will always occur for row number (K - 1)/2, where K = 4j+1 # prime. If we
choose an entry for that position which is not divisible by the row number and otherwise fill
open spots in the array by the row number in any given row, we shall obtain the following
array having the Mann-Shanks property:
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1
1 1 1
1 2 2 2 1
1 3 3 3 3 3 1
1 a 4 4 4 4 4 4 1
l1 5 5 5 5 5 5 5 5 5 1
1 6 6 6 6 6 6 6 6 6 6 6 1
1 b 7 7 7 7 7 7 7 7 7 7 7 7 1
l1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 1
19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1
1 ¢ 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1
111 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1

where 4*a, 7Xb, 10*(:, 12*d, etc. For example, we could simply choose a =b =c¢ =d
= ... =1 throughout. We summarize in the following:

Theorem 5. Let an array be defined by

A(n,0) A, 2n) = 1, n=20,

An,k) =n, 2 =k =2n-1,

n, if n;éK—_—l, where K = 4j + 1 # prime,

A(n,1) 5

K -1
2

A(n,1) X, with n,{'x, if n =

Then this array has the Mann-Shanks property when shifted in the way of the original Mann-
Shanks array.

Similarly, the binomial coefficients in the original Mann-Shanks array maybe replaced
by numbers chosen in the same way. We have

Theorem 6. Let an array be defined by

An,0 = A@n,n) = 1, n =0,

An,k) = n, 2 =k=mn-1,
. K-1 _ ps .
A(,1) = n, if n # -5 where K = 6j +1 # prime,
. . K-1
Am,1) = x, with n*x, i n==——.

Then this array, when shifted as prescribed by Mann-Shanks has the Mann-Shanks primality
criterion property.
These two examples are not what we mean by a 'simple formula' of course, because we

must prescribe and know the prime nature of a +bt in advance, whereas the beauty of the
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binomial coefficients, Fibonomial coefficients, or qg-binomial coefficients is that they auto-
matically take care of the situation. Nevertheless, it is felt that Theorems 5 and 6 shed fur-
ther light on the nature of the Mann-Shanks property.

Another intriguing problem would be to find out whether any similar extensions to high-

er dimensions might be possible, using multinomial coefficients and variations.

7. TYPOGRAPHICAL ERRORS IN PREVIOUS PAPER

In [4] the following errors have been noted: p. 356, in (2.3), for 'mod.-." read
" (mod +--)"; p. 359, line 4, for

(“51> read [nél];

p. 360, lines 6 and 8 from bottom, for "Erdos" read "Erdds'; p. 372, in Ref. 2, for "Insti-

tute' read "Institution. '
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ALGORITHMS FOR THIRD - ORDER RECURSION SEQUENCES

BROTHER ALFRED BROUSSEAU
St. Mary’s College, Moraga, California 94575

Given a third-order recursion relation

(1) Tn+1 = a;Ty - a;T_ 1 + 23Ty

Let the auxiliary equation

(2) %3 - a4+ ax -ag =0

have three distinct roots r;, ry, r3. Then any term of a sequence governed by this recur-

sion relation can be expressed in the form

(3) T, = Ajri + Apry + Agry

THE SEQUENCE S =3r!

Since the individual elements of these sums are powers of the roots, the sums obey the
given recursion relation. Hence it is possible to determine a few terms of Sn by means of
symmetric functions and thereafter generate additional terms of the S sequence. Since this
sequence is basic to all the algorithms, its generation constitutes the first algorithm. (Note.

This use of the S sequence is exemplified in [1].)

ALGORITHM FOR FINDING THE TERMS OF Sn

Three consecutive terms of the sequence are:

S1=3.1

a% - 22,

)

(2]
~
Il

Sg = a:{ - 3aja; + 3a3

Then use the recursion relation to obtainpositive and negative subscript terms of the sequence.
The algorithm will be illustrated for two recursion relations which will be used to check

other algorithms numerically.

167
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EXAMPLE 1: x® - x* -x -1 = 0

n S n S n S n S n S

n n n n n
-30 -14429 -18 47 -6 11 6 39 18 58035
-29 13223 -17 271 -5 -1 7 71 19 106743
-28 -3253 -16 -253 -4 -5 8 131 20 196331
=27 -4459 -15 65 -3 5 9 241 21 361109
-26 5511 -14 83 -2 -1 10 443 22 664183
-25 -2201 -13 -105 -1 -1 11 815 23 1221623
-24 -1149 12 43 0 3 12 1499 24 2246915
-23 2161 -11 21 1 1 13 2757 25 4132721
-22 -1189 -10 -41 2 3 14 5071 26 7601259
-21 -177 -9 23 3 7 15 9327 27 13980895
-20 795 -8 3 4 11 16 17155 28 25714875
-19 -571 -7 -15 5 21 17 31553 29 47297029

30 86992799
EXAMPLE 2: x3 - 7x2 + bx + 4 = 0

n
n Sn (-4) n Sﬁ
-23 2450995949 6004997927 85 0 3
-22 2879858678 8067714806 5 1 7
-21 3383761613 1827843249 2 39
3 226
-20 3975834906 620902593 4 1359
-19 4671506147 59541201 5 8227
-18 5488902409 1011041
-17 6449322392 180465 6 49890
-16 7577792077 14561 7 302659
8 1836255
-15 8903714463 1313 9 11140930
-14 1046164399 5681 10 67594599
-13 1229215792 433
-12 1444301540 49 11 410112523
-11 1697004500 9 12 2488250946
13 1509681561 1

=10 1993985121 14 9159600445 5

-9 234271601 15 5557349493 46

-8 27532161

-7 3232913 16 3371777360 703

-6 380577 17 2045738276 0371

18 1241198527 21698

-5 44465 19 7530649458 07219
-4 5313 20 4569025826 000559
-3 593

-2 81 21 2772137664 2081026
-1 5 22 1681922475 81335511

23 1020462746 554941211
24 6191392481 409586818
25 3756466464 6767059627

26 2279138391 3410171845 5
27 1382807980 7792383837 78

RECURSION RELATIONS FOR SPACED TERMS OF A SEQUENCE

Given a sequence Tn satisfying the given recursion relation. It is desired to find the

recursion relation for a spacing of k among the terms, namely, for the sequence Tnk+a'

Since nk+a nk+a nk-+a
(5) Tnk+a = Z&l I‘l + Az Ty + A3I‘3
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and since there is a change of rli( from one term to the next, the recursion relation is that

whose roots correspond to r]f . Let the coefficients be given in the relation

x3 - Byx? + Byx - By = 0.

Then
B =Zrk =S
1 i k
= k k _ k -k _ k
By, = rirj —aSZri = ag S
B3 = a:lf ?
Hence the recursion relation is given by
k k
(6) B -8 xt+agsS, -ag =0
EXAMPLE FOR x3-x*-x-1 =0 with k = 5.
Thes= 20T, * Ty s * Thito

Using the sequence Sn with n = 20,
Tys = 21%196331 + 9327 + 443 = 4132721
EXAMPLE FOR x® - 7x%2 + 5x + 4 = 0 using the terms of the S sequence.

T_5 = (-593T—, + 226T; - Ty)/64

T_5; = (-593*81/16 + 226*7 - 1359)/64 = -44465/1024

SE COND-DEGREE HOMOGENEOUS SEQUENCE FUNCTIONS

If there are several sequences satisfying the given recursion relation, a sum of terms

(1) (2)

of the form Tm T would form a homogeneous sequence function of the second degree.
1

my
Such terms if expanded using the roots of the auxiliary equation would yield {erms of the form
B; r;n1+m2 and others of the form C,. rfﬂlr?lz. The first type obey the recursion relation for

ri since there is a change of 2 in the power in going from one term in the product to the
next as the m's change by 1. The second type obey the recursion relation forthe quantities

r.r..
1]

ALGORITHM FOR THE SECOND-DEGREE FUNCTIONS

The recursion relation governing the quantities r% has already been obtained and is

given by:

(7) X3 - SzX2 + a%S_zx - a% =0
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For the second we need to find the symmetric functions of the roots T rj .

B, = r.r. = a
1 ify 2

B, =Er§rjrk = aza,
2

By = rgrgrf{ = aj
Hence the recursion relation is
(8) x3 — a,x? + aga;x - ai = 0 .
The total recursion relation is the product of (7) and (8):

(9) (X3 - Szxz + a.%S_zx - a%)(x3 - azxz + agayx - a%) =0 .

EXAMPLE FOR x3% - 7x% +5x +4 = 0.

St = 44S% - 2488 - 6558% + 1564 S} + 848S% - 2568,

44%1359% - 248%226% - 655%392 + 1564%*7% + 848%3% + 256%(5/4)2

67683529 = 82272

THIRD-DEGREE HOMOGENEOUS SEQUENCE FUNCTIONS

An expression of the form
7 @) 1 (3)
m; mp; myg

gives rise to terms of the form

m;+m,; Mg
i .,

m.+m. m4 1My 1M
ri1 2, r 1r_2rk3

r.
1

The first type corresponds to the recursion relation for ris, the second to the recursion re-

lation for r% rj, and the third to the recursion relation for as. The first relation is:
(10) x3 - Syx? + alS_gx - a) = 0 .

The last relation is:

(11) X -a; = 0.

For the second we have a relation of the sixth degree with coefficients symmetric functions

of the roots

— .2 ] I R _ 2 J—
R1 = TIiTy, Rz = TyTy, R3 = TIirg, R4 = TYgIy, R5 = T9Tg, Rs = I3Ty .
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B, =LRi = (21) = -3a3 + aza, ,
where the notation (21) = Eri rj taken as a symmetric function.

BZ:ZRiRj = (41%) + (3%) + (321) + 3(222)
By, = 6a§ - dagaza; + a3a? + a%
By = ERiRij = (531) + 2(432) + 2(3%)
Bs = —7a§ + 6a§aza1 - Zaga? - Zagag + a3a§a§
(2 By = (63%) + (5%2) + (543) + 3(444) = a3 (3) + al(3?) + aj(21) + 3(4%)

By = 6a§ - 5a§a2a1 + agaﬁ + a%ag
Bs; = (654) = a}(21) = -3a) + afaya,

By = 2

The product of (10), (11) and the polynomial whose coefficients are given by (12) is the re-

quired recursion relation for the third degree. APPLIED TO x® -x*-x-1 =0, we have

(2 - 7x% + Bx - 1)(x - 1)(x8 + 4x5 + 11x4 + 12x® + 11x%2 + 4x + 1) = 0

or

x10 _ 4x% - 9x® _ 34xT + 24x6 - 2x% + 40x - 14x3 - x2 - 2x +1 = 0

Starting with Sy = 241 we have:

4%2413 + 9*1313 + 34%713 - 24%39% + 2%213 _ 40%*113 + 14*7 + 38 + 2%13 _ 38

= 86938307 = 4433.83,

FOURTH-DEGREE HOMOGENEOUS SEQUENCE FUNCTIONS

We proceed asbefore but without going through the preliminary details we arrive at the
conclusion that the symmetric functions of the roots are given by the partitions (4), (31), (22),
(211) of four into three parts or less. We determine the recursion relations or equivalently
the coefficients for each of these.

[
(13) x3 - §x* +ajSy4x -a} =0 .
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