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1. INTRODUCTION

To Fibonacci is attributed the arithmetic triangle of odd numbers, in which the nt row has n entries, the cen-
ter element is 72 for even n, and the row sum is n3. (See Stanley Bezuszka [11].)

FIBONACCI'S TRIANGLE SUMS
7 1=1°
3 5 8=2°
7 9 11 27 = 3%
13 15 17 19 64 = 4%

21 2 % 27 29 125 = 5°

We wish to derive some results here concerning the triangular numbers 7, 3,6, 70, 15, *, T,,,*" - . |f one cb—
serves how they are defined geometrically,

one easily sees that

(1.1 T, = 142+3+ +n = n(172+ 1)
and
(-2 Tap1 = Tatln+1).

By noticing that two adjacent arrays form a square, such as

3+6=9 /
we are led to

(1.3) n=T,+Tpy ,
which can be verified using (1.1). This also provides an identity for triangular numbers in terms of subscripts which

are also triangular numbers, ‘
(1.4) T2=Tr +Tr1

Since every odd number is the difference of two consecutive squares, it is informative to rewrite Fibonacci's tri-

angle of odd numbers:
21
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FIBONACCI'S TRIANGLE SUMS
(12 0% TZ-Ts

(2212 (32 -22) T3-T?

(42 _32) (52 — 42) (62 —52) T3-T3

(72 -62) (82— 72) (92 —-82) (17 -92) T2-T%

Upon comparing with the first array, it would appear that the difference of the squares of two consecutive tri-
angular numbers is a perfect cube. From (1.2),

T2, = (Ty+n+1)2 = T2+20+ 1T, +(n+1)?

But, from (1.1), 7,, = nfn+1)/2 so that

T2 = T2 = 20+ 1)lnfn + 1)/2] +(n+1)?
=nin+1)2+Mm+1)2 =(+1)3
Thus, we do indeed have
(1.5) T2 -T2 = n+1)3,
which also follows by simple algebra directly from (1.1).
Further,
T3 = (T7 = T21) (T2 =T ) +(T3 —T7) +(T7 = T5)
= 5 o+ -0 +e+ 282 + g3
or, again returning to (1.1),
n

(1.6) T2 = (142434 +n)2 = 3~ &3

k=1

For a wholly geometric discussion, see Martin Gardner [10].
Suppose that we now make a triangle of consecutive whole numbers.

WHOLE NUMBER TRIANGLE SUMS
0 0
1 2 3
3 4 5 12
6 7 8 9 30
10 77 2 13 14 60

If we observe carefully, the row sum of the " rowis nTpeq, or (n+2)T,, which we can easily derive by study-
ing the form of each row of the triangle. Notice that the triangular numbers appear sequentially along the left edge.
The n™" row, then, has elements

Ty Ty#l To+2 To+3 -~ Tp+n
so that its sum is
(n+ 1Ty +(1+2+34 - +n) = (n+ YTy +T, = (1 +2T,, .
Also, the n™” row can be written as

Tn Tn+7 -—n Tn+1 -3 Tn+7 -2 Tn+1 -1
with row sum
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Tn#nTpey —(1+2+3+ +n) = Tp+nTpe; — Ty = nTpz7 .
Then,
(1.7 nThpey = (0 +27, ,
which also follows from (1.1), since

nTn+7 = afn + 7)2(,1 +""2) =(n +2/'Tn .

The row sums are also three times the binomial coefficients 7,4 70, 20, -, the entries in the third column of Pas-
cal’s left-justified triangle, since

ey = 22 g (A1) -5 (22)

The numbers 7, 4, 70, 20, ---, are the triangular pyramidal numbers, the three-dimensional analog of the triangular
numbers. Of course, the triangular numbers themselves are the binomial coefficients appearing in the second column
of Paseal’s triangle, so that, by mathematical induction or by applying known properties of binomial coefficients, we
can sum the triangular numbers:

n
(1.8) Tn=("}§’) ; XTk=<"§Z)
k=0

Finally, by summing over n rows of the whole number triangle and observing that the number on the right of the

n™ rowis Tpeg—1,

n

(1.9) > iTier = Trprr .
1

since, by (1.1), summing all elements of the triangle through the ™ row gives
O0+1+243+ - +(Tpeg—1) = Tr, 101 -

Let us start again with

This time we observe the triangular numbers are along the right edge. Each row sum, using our earlier process, is
0Ty =Tpg = (0= UTpg+n? =(n+1T,—n.

Clearly, the sum over n rows gives us

{1.10) Tr, = Trp-1%7n

or, referring again to the row sum of (7 — 7)7,,4 +n? and to Equation (1.3},

o 7
Tr, = 9 = UTjg #5201 = 2 [~ Tjq # Tj# Tqd
=1 =1
n-1 n n—1 n—-1
= iTi+y . Ti+ Tf:z (i+2Ti+T, .
=1 =1 =1 =1
Therefore, from (1.10), n—1
(1.11) Trp-1= 2. ((+27;

=1
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It is also easy to establish that

(1.12) Top = 3Tp+Tpo1,
and

(1.13) Top—2T, = n?,
(1.14) Ton-1—2Tp-7 = n°.

2. GENERATING FUNCTIONS
Consider the array A

We desire to find the generating functions for the columns. The first column entries are clearly one more than the
triangular numbers 7, (n =0, 1,2, ). Thus, since the generating function for triangular numbers (as well as for
the other columns of Pascal’s triangle) is known,

- - n_ __ X 7 _1-x +x2
Golx) ; (T,+1x" = 3 & PR
We shall see that generally the column generators are
_ Tirr =k # 1% # (T + 6% _ Tierq = (Thwr # Tehx # (T + 1x?
(1-x)% (1-x)3
PROQOF: Clearly, G,(x) is given by the formula above when & = 0. Assume that
Tker— (k+1)2x+(T +1)x2
(1-x)3 '

Then, since each column is formed from the preceding by subtracting the first entry 7.7, and adding one, the
(k + 1)t column generator is

: 2 2
Grsg(x) =( Thrg = (k+1)x +(Tp + 1)x* Tk+1)/x+

(2.1 ) Gk (X)

Gk(X) =

(1-x)3 1-x
= Therr =k 1Px # (T # 1P = (1 - 3x +3x% — x5 Thsy 1
x(1—x)3 T—-x
_(3Thpg = (k+1)%) + (T + 1 = 3Ty Jx + Tywgx 2+ (1 = 2x +x%)
(1-x)3

Now, from (k+17)2 = Ty + Tk+7 and Ty = Tg_g+k, this becomes
Gi+1(x) = [BTppg 1= (Tp+ Tgag) #(Tge = 1= 3Tp1) X +(Tpepq + 7}X2]/” —X}3
= [(2T4pq = Te# 1) = (3Tppg + 1= Tihx #(Tgepq + IX2INT = x)3
- (Te12) = (Tgao+ TirgIx +(Tgspq + 1)x? _Tge2—(k+2) %+ (Tsy + 1) 2
(1-x)% (1-x° '

This may now be explaited as any triangular array.
We now proceed to another array B (Fibonacci’s triangle).
7

3 5
7 9 1
13 15 17 19

21 23 25 27 29

......... ‘s s e 8o
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We can tackle this immediately since we have already found the generators for array A, because each entry in array
B is twice the corresponding entry in array A4, less one. Thus the column generators are

2[Tk+1 —-(k+ 7)2X+(Tk+ I)ij _ 7 —2X+X2

(2.2) Gilx) =
(1-x)3 (1-x)°
_(2Tpeqg = 1) = 20k + 1)% = 1]x +(2T; + 1)x?
(1-x)3

Now since the row sums of Fibonacci’s triangle are the cubes of successive integers, we can find a generating func-
tion for the cubes.

Z ka (x) ‘( 2 E Tk+7xk—E xK - 2x Z“: (k +1)°xk

k=0 k=0

+2x Z xk+ 202 Z Tex® +x2 Z xk>/(1-x}3 .

But k=0 k=0 k=0

- 7
(2.3) TyrgxX = and Tix®

Z (1-x)3 Z (7 x)3
(2.4) D (kr 1)k = 1Ex Z (Tier# Tichk*

k=0 (1-x)° k=0
(25) 4 Xk = ﬁ B
k=0
Thus, applying (2.3), (2.4), and (2.5),
(26) Y wkapte) = 2(=a2 =t e 121 =% 1207 201 = 0
#e0 (1-x)3(1-x)3

(14 +x2 W1 =x)? _ 1+4x+x2 _ f: s 13k
(1-x)6 (1-x* 2o
Further extensions of arrays A and B will be found in a thesis by Robert Anaya [1].
Equation (2.6) also says that, for any three consecutive members of the third column of Pascal’s triangle, the sum
of the first and third, and four times the second, is a cube, or

()oe(737)759)
We can find (3)+("27)=n® ana (5)=n
7( )+77(n—7>+77( )+7( 43)=n4

by solving for the coefficients in the beginning values, using column 4 (7, 5, 75, 35, -/, in the order given:
14

Observe that

7. e Xy =
5exgt1exp=2%
15.x7+5x2+1-x3 = 3%
35°)(1+75-X2+5-X3+7'X4=44

In the same manner,
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(5) +25(""7) +66("5?) +26‘(”;3) + ("—4)=n5.

5 5
Applying this method to the kth column, we obtain
k i
Kk _ c kg g k+1 n+1—i
(27 | - (AT
=1 j=0

Returning to generating functions, (2.3) is a generating function for the triangular numbers. The triangular num-
bers generalize to the polygonal numbers P(n,k),

(2.8) Plnk) = [kin —1)—2(n—2)]n/2 ,

the nth polygonal number of k sides. Note that P(n,3) =T,, the nth triangular number, and P(n,4)=n2, the
square number. A generating function for P(n,k) is

(2.9) Llk=3k _ 5~ pln k"
(1—x) n=0
The sums of the corresponding polygonal numbers are the pyramidal numbers [9] which are generated by

(2.10) Lth i Z P*{nk)x"

(1—-x) n=0
where P*(n,k) is the n” pyramidal number of order k. Notice that k=3 gives the generating function for the
triangular numbers and for the triangular pyramidal numbers, which are the sums of the triangular numbers.

3. SOME MORE ARITHMETIC PROGRESSIONS
It is well known that the % column sequence of Pascal’s left-adjusted triangle is an arithmetic progression of
order k& with common difference of 7. In this section, we discuss subsequences of these whose subscripts are tri-
angular numbers. To properly set the stage, we need first to discuss polynomials whose coefficients are the Eulerian
numbers. (See Riordan [2].)
Let

(3.1) Alx)

(1-x) k1 n=0
Differentiate and muitiply by x, to obtain

0

x(1 = x)Ajlx) + xlk + DAglx) i ket
(1-x)**2 n=0
But, by definition,

Arz1lx) Z Pkt n

k+2
so that (1-x)
(3.2) Ag+1(x) = x(l—x/A/’((x}+x(k+ T)Ag(x) .
Since, from Section 2,
Z nx = —X__, Aqlx) = x
n=0 (1 “X)z
D X = X+X2 . Aalx) = x+x?
n=0 (1-x)3

oo

3
DI P oL WY S S
n=0 (7—){}4

From the recurrence it is easy to see that by a simple inductive argument,
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Also, we can easily write A4(x/ =x?+ 113+ 1162 +x, which allows us to demonstrate Eq. (1.6) in a second way.
Thus, using T,, = nfn+ 7)/2, and the generating functions just listed,

oo

2 pd 03, 2
2 + +
> Tk = 3 a2 ti)
n=0 n=0

=l.[X4+77X3+77X2+X +2(1—x}(x3+4x2+)() +(7—x}2(X2+x)J _ X3+l +x
4 (1-x)% (1-x)° (1-x)° (1-x)°

™
™

so that n
T = (142434 +n)% = 3 4°
Now we can write =0
k n .
(3.3) A = 30| 30 =it =p (ST )
n=1| j=0

from (2.4) by applying the generating function to Pascal’s triangle. Notice that A (x), Aofx), Az(x), and Alx)
all have the form given in (3.3).

Next, from a thesis by Judy Kramer [3], we have the following theorem.

Theorem 57. 1f generating function
__Nix)
(1-x)"1

where N(x) is a polynomial of maximum degree r, then A(x) generates an arithmetic progression of order r, and
the constant of the progression is V(7).
We desire now to look at

— - 3 k N (ntklntk=1)(ntl) o0 K
(1 — x)k*1 ‘E)(”Z )X"—Z AL L = n x"—}: Qlnjlx".

n=0 n=0
Now consider

Alx) =

Glx) = Y OfTp kX",

n=0
where 7, is the nth triangular number. Clearly, this is a polynomial in n of degree 2k. Let us assume it is expanded
2 i Ailx) =
AT, k) =Y b and L = D pl”
j=0 (1—x)/*7 n=0
so that
Glx) = E(: biA;lx) - Nyl(x)

j=0 (1 —X}j+7 (1 —X}2k+7
All of the Aj(x) are multiplied by powers of (7 —x) in Ny(x) except Agi(x); thus,
Ni(1) = Agi(1) = (2k)1/2% k1,

which is, of course, an integer. Thus Q(T,,k) is an arithmetic progression of order 2k and common difference
d = (2k)1/2% kI, The general result is that, for
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6 = 3 a (atnm, k) x"
n=0
Q(Q(n,m),k) is an arithmetic progression of order mk and common difference o = (mk}!/mkk! which thus must be an
integer.
4. PALINDROMIC TRIANGULAR NUMBERS
There are 27 triangular numbers 7,,, n < 7571340, which are palindromes in base 10, as given by Trigg [8]. How-

ever, borrowing from Leonard [4] and Merrill [5], every number in array C is a triangular number:

1

1"

11

1
1

(c

Clearly, base 10 is ruled out, but array £ indeed provides triangular numbers in base 9. Below we discuss some inter-
esting consequences including a proof.
Let Ty, = (11111 - 1)g = C, (n one’s) so that
Ch=9"+9""1+9"24..49+1=(9"" _1)f9-1) .
Now
UplU,+1)
Tu,= —>—
where U,,, written in base 3 notation, has /7 one’s,

Up = (1111 1)3 = (3™ —1)/(3-1).

Then
Ty = 1,(3""’— 7)(3”*’— 7+,> SBT3 g) 9" g c
n 2 3-1 3-1 8 9-1 n -
Also, it is simple to show that if 7, is any triangular number, then so is
(4.1) 9T, +1 = T3p+1
since

2
9T, +1 = 9n(nz+ 1) 4790 +29n +2 _ (3n+72)(3n+2) N

This means that, if 7,, is any triangular number written in base 9 notation, annexing any number of 1’s on the right
provides another triangular number, and the new subscript can be found by annexing the same number of 1's to the
subscript of 7,,, where n is written in base 3 notation. The numbers in array C, then, are a special case of Eq. (4.1).

Three other interesting sets of palindromic triangular numbers occur in bases 3, 5, and 7. In each case below, the tri-
angular number as well as its subscript are expressed in the base given.

Base 3 Base 5 Base 7
Ty =1 T =3 Tz =6
Ty =101 Too =303 T3z = 606
T, = 10101 T222 = 30303 T333 = 60606
T1777 = 1010101 T2222 = 3030303 T3333 = 6060606

Now, base 3 uses only even powers of 3, so the base 9 proof applies. For base 5, if 7, & any triangular number, then

4.2) 25T, +3 = Tgp+2

since
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n+2

25T, +3 = 25n(2n +1) , 4 - 250° +225n +6 _ (5n +2£(5n +3) - 7,

so that annexing 03 to any triangular number written in base 5 notation provides another triangular number whose
subscript can be found by annexing 2 to the right of the original subscript in base 5 notation. Base 7 is demonstrated
similarly from the identity
(4.3) 49T, +6 = Type3 .

Using similar reasoning, if any triangular number is written in base 8, annexing 1 to the right will provide a square
number, since
(4.4) 8T, +1 = (2n+1)? .

For example, Tg = (25)g and (251)g = 169 = 132,
Any odd base (2k + 7) has an “annexing property” for triangular numbers, for (4.3) generalizes to

(4.5) Tiok+1)ntk = (2k + 1) 2Ty + Ty,

but other identities of the pleasing form given may require special digit symbols, and 7} must be expressed in base
(2k + 1). Same examples follow, where both numbers and subscripts are expressed in the base given.

Base 9 Base 17 Base 25 (t)og = (12)19
Tg =11 Tg =22 T, =33
Taq = 1111 Tgg = 2222 T = 3333
T444 = 111111 ngg = 222222 Tttt = 333333
Base 33 (s)33 = (16) 49 Base 41 (q)g7 = (20) 19 Base 49 (r)49 = (24) 10
T, =44 Tq =55 T, =66
Tss = 4444 Tqq = 5555 T, = 6666
Tsss = 444444 Tqqq = 555555 T, = 666666
Base 57 (m)57 = (28) 19 Base 65 (n)gs = (32)10 Base 73 (p)73 = (36) 19
Tm =77 T, =88 T, =99
Tmm = 7777 Ton = 8888 Top = 9999
Toomm = 777777 Tpnn = 888888 Topp = 999999

Base 19 (t)19 = (12)19
Tg =tt
Tgg = ttit
Tggg = titttt

5. GENERALIZED BINOMIAL COEFFICIENTS FOR TRIANGULAR NUMBERS

Walter Hansell [6] formed generalized binomial coefficients from the triangular numbers,

TTm-7- T,
m| - "m"m-1 m-n+1 <
[n] T Ty T, " 0<n<m.

That these are integers doesn’t fall within the scope of Hoggatt [7]. However, it is not difficult to show. Since
Tm = mim +1)/2,
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[m - (,:) (7::17) m——;+_7 ‘

where (’:) are the ordinary binomial coefficients, so that r';’]are indeed integers if one defined

mj _rm7 _
[ 0] - [ m] 7
as will be seen in the next paragraph or two.
The generalized binomial coefficients for the triangular numbers are

If the Catalan numbers C,, = 1, 17,2, 5, 14,42, 132, --, are given by

_I1=\J1—4x _
Clx) = o = Z Cpx"
n=0
then we note that the row sums are the Catalan numbers, C,+;.

We compare elements in corresponding positions in Pascal’s triangle of ordinary binomial coefficients and in the
triangular binomial coefficient array:

1 7

171 11

1 2 1 T3 1
7@x3 7 1 ® 6 1
1 456 4 1 1 10 20 10 1

Let us examine
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ON FERNS' THEOREM ON THE EXPANSION
OF FIBONACCI AND LUCAS NUMBERS

A LW HILTON
The University of Reading, Reading, England

Let (F, ) be a Fibonacci-type integer sequence satisfying the recurrence relation Fp, = pF,_ 7+ gFp2
fn = 2 in which p2 +4g + 0, andlet {L,) be the corresponding Lucas-type sequence, as deseribed in [2].
The object of this note is both to generalize Ferns’ theorem [1] on the expansion of

FX1+X2+"‘+X,, and LX7+X2+'"+X"

and to simplify the proof. Ferns' theorem was proved for the case when (F,) and (L,) were the Fibonacci and
Lucas sequences, respectively, so in the statement and proof of the theorem the reader may interpret (F,) and
{L,) as the ordinary Fibonacei and Lucas sequences, if he so desires.

Let

Sp = TF,. F

i1 Friy F

. Lo L.
Xik LXI 7 Xin-k
where the sum ranges over all permutations (ij, -, ix, j7, =, Jg-k /) of (1, -, n) such that

1 <iy <ig <ig<n and 1 <j; <jo< = <fpk<n,

for 0<k<n. Letaand fbe the roots of xz—px—q andlet A=F;—FpB, B=F;— Fpa.ThenA + 0 and

B+ 0 (see [2]) so that .
_ L7+dF1 - L7—dF1
*s < 24 ) - P ( 25 |’

where
d=JF+ag .
Then the generalized version of Ferns’ theorem may be stated in the following way.
Theorem: \f
So =Sp+d?s8+d%sy+~ and I, = dST+d38G+d%SL+ -
then § ) ‘ l
= _l_. ___1.._ _ 1 + _Z.__ + _7__ >
FX,+X2+"'+X" 2/701 ? ( An—i Bﬂ—7 ) ze ( An—i 817'7 9;
and

R 11 !
Lx ptxgttxp = E; )(—An—7+ Bn~—7) Zot (An—I Bn-—i) Z°§

Pmof: It is well known that if  is a positive integer

r r
Fr= Aaa:gﬁ . Ly=Aa"+Bg" .

Therefore,
231
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_ L +dF, _L,—dF,

r r
a 24 B 2B

Therefore

2%([.)(7.;.)(24-... +Xp + dFX 7ixot +Xn}

X ptxgte+x
= q 17Xt n

1

27A7

(Lyy#dFx Nlyy# dFyy) = (Ly, +dFy, )

Similarly

7
EE (LX1+X2+"'+X,-, - dFX7+X2+"'+Xn)

= L (58— dsP+d?Sh— . +(~1)"d"S") .

27g"
The theorem now follows by addition and subtraction.
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ARGAND DIAGRAMS OF EXTENDED FIBONACCI AND LUCAS NUMBERS

F.J. WUNDERLICH, D. E. SHAW, and M. J. HONES
Department of Physics, Villanova University, Villanova, Pennsylvania 19085

Numerous extensions of the Fibonacci and Lucas Numbers have been reported in the literature [1—6]. In this
paper we present a computer-generated plot of the complex representation of the Fibonacci and Lucas Numbers.
The complex representation of the Fibonacci Numbers is given by [5,6].

Flx) = X =0 [eos (xm) +isin (xm)]

5
where
6= ’LZ@_ and  Fl—x) = (-1)™Flx),
= __l_ X _ H~X .
RelF(x)] NG { ¢* — ¢™ cos (ﬂX}} ;
and ‘

Im[Fx)] = \7_;—- { —¢™sin (nx)§

The Fibonacci identity: F(x) = F(x — 1)+ F(x — 2) is preserved for the complex parts of F(x):

RelF(x)] = Re[F(x — 1)] + Re [F(x — 2)]
and

Im[F(x)] = Im[F(x — 1)] + Im[F(x - 2)] .

Figure 1 is a computer-generated Argand plot of F(x) in the range —5 <x < +5.
The branch of the curve for positive x approaches the real axis as x increases. Defining the tangent angle of the

curve as: !
= eon=14 Im[F(x)] .
v = tan | Re[F(x)] } ’

this angle approaches zero for large positive x since
m = im[F(x)] = 0.

The negative branch of the curve approaches a logarithmic spiral for x large and negative. The modulus r is
given by:

r = {ReZ [Flx)] +Im? [F(x)] } *
in the limit

1%

~ 2-X. ~ ~ 1 -Yrm
e S2X Vo~ mx r~\/§{¢ }
therefore,

233
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157 IM 151 IM
13 +3
4 +1i
-1 -1
-3 -3
R
-3 -1 +1 +3 14 -1 -1 + 13 15
Fig. 1 Computer-Generated Argand Plot Fig. 2 Computer-Generated Argand Plot
of the Fibonacci Function of the Lucas Function

Inr ~ (-y/w)k ,

where

k = In(p//5) and ro~ e (VKM o pkx

Similarly, the Lucas number identity:

Lix) = Fix+1)+F(x—1)

leads directly to [6]:

Lix) = ¢*+(-1)*¢p™>

and the complex representation of the Lucas Numbers follows

Lix) = ¢*+ ¢~ (cos nx + i sin wx)

with

RelL(x)] = ¢* + ¢~ cos mx and ImlL(x)] = ¢~ sin x .

Note:

- =1
imlLx] = —= ImlFl] .

As with the previous case for n large and positive, the positive branch of the Lucas number curve approaches the
Real axis. Again, the negative branch approaches a logarithmic spiral for » large and negative.

tal i B

o o

U~mx, r~ ¢'N’/7”, Inr ~ —(Y/a)inp, r= o W/m® _ gPx
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A PENTAGONAL ARCH

DUANE W. DeTEMPLE
Washington State University, Pullman Washington 99163

A pentagonal arch can be generated by rolling a regular pentagon along a baseline as follows. In Fig. 1, as the left-
hand pentagon is rolled toward the right, the vertex 4 moves first to B, then to £, 0 and finally to £ as the succes-
sive sides touch the baseline. Connecting these points by line segments, the five-sided polygonal arch ABCDE is formed.

Figure 1
Let s denote the sides of the generating pentagon, and let 7= %(/5 + 7) denote the golden ratic. It is then easy

to show

AB = DE = 315, BC =¢CD = J2+7Ts
LEAB = JAED = 54°, LABC = [BCD = /CDE = 144°.

Thus the pentagonal arch has some unexpected properties: BC

- :

(1) Sides AB and BC {and of course DE and CD) are in the proportion of the golden ratio: 4B
(2) The center O of the generating pentagon (in its initial position) lies on the line passing through A and B;

(3) The obtuse angles of the arch are equal.
While these three properties follow directly from the above formulas, a fourth property requires some additional

considerations.
agrea of arch =3

“ area of generating pentagon .
To see this first observe from Fig. 1 that it is enough to show that region ABCFG of Fig. 2a is equal in area to that

of the generating pentagon.

Figure 2
235
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But by referring to Fig. 2b it is seen
area ABCFG = area AB’C’F'GH = area HBC'F'G

and so property (4) is demonstrated.
In the way of generalization it is natural to ask: Are there analogous properties for the n-sided arch generated

by rolling a regular n-gon? The answer is that, upon replacing “pentagon” by “regular polygon,” properties (2), (3)
and (4) apply equally well to the general case. The two acute base angles are each

1_1
( y ”) x 180°
and the n — 2 abtuse angles are each equal to
( —1) x 180° .
n

A proof of (4) for the general case is the main content of [1]; as might be expected the above proof for the pen-
tagonal arch does not generalize, though the ideas are useful for the simpler cases 7 = 3,4,6.

There is one aspect of the pentagonal arches which does seem more interesting than for the general arch. By prop-
erty (2) five arches can be fit together in such a way that their bases form a regular pentagon.

Figure 3

The interior star region can then be partitioned into ten congruent isoceles triangles, each of which has area equal to
that of the original generating pentagon. Hence all of the twenty-five elemental polygons of Fig. 3 have equal area.

REFERENCE
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A GENERALIZATION OF THE HILTON-FERN THEOREM
ON THE EXPANSION OF FIBONACCI AND LUCAS NUMBERS

A. G.SHANNON
The University of New England, Armidale, N. S. W., and
The New South Wales I nstitute of Technology, Broadway, Australia

1. INTRODUCTION

The object of this note is to generalize Hilton's extension [2] of Fern’s theorem [1] to sequences of arbitrary
order. Ferns found a general method by which products of Fibonacci and Lucas numbers of the form

uX7uX2 ees an

could be expressed as a linear function of the w,,. Hilton extended Fern’s results to include effectively the general-
ized sequence of numbers of Horadam [3].
We shall extend the result to linear recursive sequences of order r which satisfy the recurrence relation

(1.1) win,, = Z (-1 Pl ; (s =071 -,r—1;n>r

where the P,; are arbitrary integers, and for suitable initial values Ws{,’z, n=0,1,-,r—1 When r=2, we have
Horadam’s sequence. We are in effect supplying an elaboration of the results of Moser and Whitney [4] on weighted
compositions.

Modifying Williams [5] let a,; be the r distinct roots of the auxiliary equation

r
(1.2) X" =3 =1,
j=1
where
r—~1
7 k, -jk .
(1.3) aj=L 3 Wi}y d*w (j=12-,r
=0
in which d is the determinant of the Vandermonde matrix
7 1 T
ar;  a4r2 vt pr
afi' ap' - dy

and w = exp(2iT/r), 2 =-1. (Thisis not as general as Williams’ definition, but it is adequate for our present purpose.)
When r=2, .
’ 2 i 2
azp = WG + (1) W)

which agrees with Hilton.
We shall frequently use the fact that

r
E w = ’51'0,
=1

where §;; is the Kronecker delta.
237
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2. PRELIMINARY RESULTS
The first result we need is that
r—1
(2.1) Wy = d= 3 agw (s =0,1,,r-1).
j=0
Proof:
f r—1 7 1 r—1
" P k)i
Z ﬁer” = ; /%Hd E W(l )i
j=0 . k=0 =u

- 7W(r}+1d/ ,

from which the result follows.

This suggests that we set
(S = 0] 7: ., r— 7}[

—
(2.2 W, ==y anwd
and it remains to see whether the I/ (’) of formula (2.2) satisfy the recurrence relation (1.1)

The right-hand side of this recurrence relation is
—1

Z Z (- ”k+1d—s n—kWsmPrk

(from (2.2)) k=1 m=0 —1 r
=g Z Z (-—7)k+1 r—kprk a;rl;’rwsm
m=0
=4 Z arman—r sm
(from (1.2))
= Ws(’,/ﬁr as required
(from (2.2)). It follows then that
r—1
(2.3) ay; = ;7- W,ﬁ,ﬁ akw7k
k=
=121
Proof: From Eq. (2.2), we have that
r-1 .
E a’;jw'/ = %W,—f;i,d’r
=0 . r-1 r-1
k i~k)j
-1 lir)r+1 d Z W(l )i
k=0 j=0
r—1 B
- Z E (r} Ide -jk wil
j=0
from which we obtain the result.
3. HILTON-FERN THEOREM

Following Hilton let
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(3.1) » smo= 2L W, (k=01 -r-1),
Zk=m i=1

where we have all permutations of {xy, -, x,/ For example, when r=2, we get
_ 2 {2} 2) (2)
S8 =3 Wiz Woxgt2 - Wox,_1+2Woix,+2 »
and

= S l2) (2} (2)
8177 = L WO,X1+2 Wé,z){_?f-z "'WO.X,-,_1+2W7,X,,+2 4

and so on, as in Hilton.
Theorem: For S7, defined in formula (3.1),

r-1 (r-1)n B
- —j K-S
W.'F(,’;)(1+x2+---+xn+l‘: r Z E (dw™) SI,(, i
=0 k=0
Proof: Let
n
Xn = 2 Xi -
Then =1
y n n r~7
Xj — ~fi
ag" = I & = —;7” I Ll/l/gil_,_, d* ik
x=1 T xF=1 k=0
= (SD +dwIST+ o + (dw ) TRgn )
{r-1)n -k
=™ E {dw™) 3/? .
k=0
Thus
r-1 X
rl  _ g~ /
Wosetr =7 2 ay"w¥
=0
{from (2.2)} -1 (r-1)n
= s Z Z: de(s—k)j SZ ,

=0 j=0
as required. For example,

7 n
W0(,2)37+x2+...+xn+2 = (%" E Z (dw kST
=0 k=0

n
(6" S (d* +(-a)*)s]
k=0

It

—L (55+d%85+ ),

and 2
7 n ket
(2} - L1 —f 1K1 n
W7,x1+x2+-~-+xn+2 = (%", E Z {dw™) Sk
j=0 k=0

n
= (8" (a4 (-d)*Is] = 2—,77_—7; (dS7+d355+ ),

k=0
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which agree with Hilton when his 4 = £ = 1. These results could be made more general by generalizing the definition
of a,; along the lines of Williams.

Thanks are due to Dr. A.LW. Hilton of Reading University, U.K., for suggesting the problem and for a preprint of
his paper.
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TO MARY ON OUR 34th ANNIVERSARY

HUGO NORDEN
Roslindale, Massachusetts 02131

Our wedlock year is thirty-four,
A number Fibo did adore,

He'd say, “Your shape is really great,
A perfect one point six one eight.”

As everyone around can see,
You're pure Dynamic Symmetry,
And when demurely you stroll by
Al know you are exactly Phi.

Proportions are what makes things run,
Like eight, thirteen and twenty-one,
Then, next in line is thirty-four,
But, wait, there’s still a whole lot more.

In nineteen hundred ninety-five
Our wedlock year is fifty-five,
There's much more living yet in store,
Today is only thirty-four!

So stay the way you are today,
Don't work too hard, take time to play,
And stay point six one eight to one
So we can still enjoy the fun.
Hugo
April 7, 1974



SOME ASPECTS OF GENERALIZED FIBONACCI NUMBERS

J.E.WALTON*
R. A. A. F. Base, Laverton, Victoria, Australia
and
A.F. HORADAM
University of New England, Armidale, N. S. W., Australia

1. INTRODUCTION

In a series of papers, Horadam [8], [9], [10], [11] has obtained many results for the generalized Fibonacci
sequence %H,.,} defined below, which he extended to the more general sequence { W,,(a,b,’p,q)}in [121,[13].

Additional results for the sequence { Hp, } , which we concentrate on here, have been obtained by, among other
authors, lyer [14], and Zeitlin [20]. Some of the results in §5 have been obtained independently by lyer [14].

It is the purpose of this paper to add to the literature of properties and identities relating to { Hp ¢ in the ex-
pectation that they may prove useful to Fibonacci researchers. Further material relating to properties of f H, } will
follow in another article.

Though these results may be exhausting to the readers, they are not clearly exhaustive of the rich resources
opened up. As Descartes said in another context, we do not give all the facts but leave some so that their discovery
may add to the pleasure of the reader.

2. A GENERATION OF H,
Generalized Fibenacci numbers #,, are defined by the second-order recurrence relation

(2.1) Hp+2 = Hpsg+H, (n>0)
with initial conditions
(2.2) Hp=9q, H;i=p

and the proviso that #,, may be defined for n < 0.
(See Horadam [12].)
Standard methods (e.g. use of difference equations), allow us to discover that

(2.3) Hy = d {'sza"—mﬁ”\,\,'
25 N

where

a= 7_’3@, B = 1-+5 (roots of x> —x — 1 = 0J, so that
2 2

atf=1 af=-1, a=f=+5 f=-a';
(2.4) ¢ =2(p—qgf), m=2(p—qgal, sothat

e+m = 2(2p—gq), ¢—m = 25 and

%em = p*—pg—q* =d (say).

It is well known that p = 7, g = 0 leads to the ordinary Fibonacci sequence % Fp ,t while p = 29 = —1 leads
to the Lucas sequence L, }

Following an analytic procedure due to Hagis [5] for generating the ordinary Fibonacci number £, we pro-
ceed to an alternative establishment of (2.3).

Puthn = Hn+1. Let

*Part of the substance of an M. Sc. Thesis presented to the University of New England, Armidale, in 1968.
241
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(2.5) hix) = Z hpx"
n=0
=hy +hx+h,x*+ .t hpx"+ ...

_ hl0)x , h10)x* , ... , h'™(0)x"
= h(0) + 277X 4 BIOX 4o g n(_‘,”X+

using a Maclaurin infinite expansion.
With the help of (2.2) one can obtain the generating function

(2.6) hix) = LEax

1—x—x?

Introducing complex numbers, we set

(2.7) h(z) = -R19z__
1—z—2*

where A(z) is an analytic function, whose only singularities are simple poles at the points

71— —1+./5
——-f@—= —a and —_ZAL =B
corresponding to the roots of the equation 2> +z—7 = 0.
From (2.5), in the complex case, it is clear that
(n)
_ h'"(g)
(2.8) hp = =1

on comparing coefficients of 2.
One may follow Hagis, appealing to Cauchy’s Integral Theorem and the theory of residues, or argue from
(2.7) that, after calcuiation,

_ 7 ‘ L m
(2.9) h(z) = —-—2\/g 1—6—2 +ar+z}

whence, on differentiating # times,

(nlg, - _1 n! (=1)"mn!
10 wee) 25 (——1_6)171‘7 ’ (z+a)”+7}

so that
(n) +7 +1
(211) h (0) = 1 Qan _mﬁn
I 25 { }
= hn

from (2.8) from which follows the expression for 4,7 .
Of course, if we wish to aveid complex numbers altogether, we could simply apply the above argument to (2.6)
instead of to (2.7).
3. GENERALIZED “FIBONACCI” ARRAYS

Consider the array (a re-arrangement and re-labelling of Gould [3]):

Row\Col. | 0 1 2 3 4 5 6 7
0 p

1 P q .

2 p p q

3 P B p+qg q

4 P P 2p+q p+g q

5 p P 3p+q 2p+q p+2 q

6 p p 4p+tq 3p+q 3p+3q p+2g q

7 P p 5p+q 4p+q 6p+dq 3p+3qg p+3q q
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Letting C,’-’ (/=012 ,n, ) beanelement of this array, where the superscript refers to rows and the sub-

scripts to columns, we define the array as in Gould [3] by the conditions:

8.1 c§=ch=p cl=4q
(3.2) =0 i j>n or j<0
i
3.3) et = cfy + ugi_”— cr i 0> 1, > 0.

The row-sums are given by

n

(34) Splpg) =Y. € (0 >0
=0
=pFpe1+aF, = Hpeg
by Horadam [8]. Thus the row-sums of this array generate the generalized Fibonacci numbers. As indicated in
Gould [3] the given array generalizes two variants of Pascal’s triangle which are related to Fibonacci numbers and
to Lucas numbers.
It may easily be verified that

(3.5) C5% =("—z—7) p+(";f77) g
(3.6 Chor = ("2 ) oe (75572 ) 4
so that
n [n/2] [(n-1)/2]
(3.7) D200 = D5kt D, Cha
j=0 k=0 k=0
=Hprr -

as expected (cf. (3.4)).
Similarly, we can show that

n
(3.8) S (-1)gf =Hpz, 0 > 2
j=0
If we define the polynomials {Cn(x)} by
n -
(3.9) Colx} =Y CF X,
=0
then we have on using (3.5) and (3.6) that
[n/2] o
(3.10) Colx) = 3 {("‘2*’)p+(";f;’)q}x
k=0
[(n-1)/2] (2 ket
R (e  E Crp T el
k=0

where it can be shown, as in Gould [3], that the polynomial C,(x/) satisfies the simple recurrence relation

(3.11) 2C,41(x) = (2x + 1)CpH(x) + Cp(—x)
on using (3.3). Similarly, it can be shown that C,(x) satisfies the second-order recurrence relation
(3.12) Cpe2(x) = Cpiplx) +x%Chlx) .
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It may be noted in passing that certain properties of an array involving the elements of { H, } are given in Wall [19].

4. GENERALIZED FIBONACCI FUNCTIONS

Elmore [1] described the concept of Fibonacci functions. Extending his idea, we have a sequence of generalized
Fibonacci functions { Hn(x}} if we put
Holx) = —— {00 _ mePx
0 2\/5 { }
Hilx) = Hoplx)
Halx) = HE (x

---------------

Holx) = HEY (x) = E\/_J;— g eag®* — mﬁ"eﬁx}

4.1)

so that we have

4.2) Hpiofx) = Hppqlx)+ Hylx) .
Obviously,

Hol0) = g = Hg, H4(0) =p =H; ,

(43) H‘?(U) =ptq = Hz,'~=,
etc., and
7
(4.4) H (0) = —— {92 —mp"} = H, .
n 2\/2 { é n

We are able to find numerous identities for these generalized Fibonacci functions, some of which are listed below for
reference:

(4.5) Hp1 (M psqfx) = H2(x) = (~1)" de*

{4.6) H g (XIFox) + Hoy()F g () = Hper(2x) ‘
where the F,{x) are the Fibonacci functions corresponding to the 7,{x) of Elmore [1]. Similarly,
@.7) Hp i (u)Folv) + Hp(u)F g (v} = Hppplu +v)

(4.8) H2 1 (x) + H2(x) = (2p = g)H 2.1(2%) — dF 2p.1(2x)

(4.9) HZ:1(x) = H2. 1 (x) = (2p — g)H2,(2x) — dF 2, (2x)

(4.10) H3 )+ HZ 1 (x) = 2Hp(x)HZ e 1(x) + (~1)" de* H,,.1(x)

(4.11) Hpe1- 00 i 1400x) — H211(x) = (1) de* F?

(4.12) Hy(x)H 1 74006) = Hpy O pppageq(x) = (=1)"5de” FoFroseq -

We note here that (8) to (14) of Horadam [8] are a special case of (4.5) to (4.12) above, since, as we have already
shown in (4.3) and (4.4), the generalized Fibonacci functions become the generalized Fibonacci numbers I-/n}
when x=0.

As in Horadam [8], we also note that (4.5) is a special case of (4.11) when r =17 and n isreplaced by n— 7.
If we put r=n in (4.11) we have

(4.13) Hilx)Hopsrlx) = H217(x) = de*FZ .
Corresponding to the Pythagorean results in Horadam [8], we have, for the generalized Fibonacci function H,(x)
(4.14) { 2Hpy1100H 12000} 2+ { Hp50H a3} 2 = { 2H s 1 (50H s ali) + HE ()}

from which we may derive (16) of Horadam [8]‘, for the special case when x = 0.
The above identities are easily established by use of the formula for H,,(x) given in (4.1) with reference to the
identities
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1+a? = a5 , 1+6% =65 ,
ag=-1 , %wm-=4d

®=2+y5, 1+a°=2d°
2a+8=a2 1+a =d?

atf=1

’

(4.15)

’

, 2p—gq)-2d = %92 , etc.
As in Elmore [1], we can extend this theory of generalized Fibonacci functions to generalized Fibonacci functions

of twa variables to give a function of two variables, thus:

> i 2
(4.16) oo = dxy) = ZH,-(X) L: = Holx) + Hqlxly + Holx) -+ .. .
s il 27
Differentiating (4.16) term-by-term gives

3py i i-1 _ > i
o = Ey Hilx) (7%1—)7 = 2‘; Hivq(x) {—,
= i=

ox
(4.17)
3¢, oo ;
2 2% Hisrlx)
p
i.e.
! 09, 00,
(4.18) raalry

Similarly, we can verify that all higher power partial derivatives are equal, so that if we denote the ktn partial
derivative by ¢, we have

k o - i
(4.19) Ok = —@r—ﬁ‘l—s- = E Hyetilx) ’.1,—= E Hirily) XT B
ax' oy -0 /! -0 1!

where r and s are positive integers such that r +s = k. Noting that

(4.20) W (x,0) = Hylx), &l0y) = Hly), &(0,.0) = Hy ,
we can expand @ (x,y) asa power series of the two variables x and y at (0,0 so that we have

%(00) ,  8(00)

dlxy) = ¢ (0,0) + [X

ax ay
L1 [XZ 2000, ., (00 , > a2¢k(0,0)] .
(4.21) 2! ox axdy ay2
2
+ +
= Hk+Hk+1 (X7_/ k) +Hk+2 (XZIZ) A
so that
k jalx+y) _ ok B(x+y)

(422) ¢k(X1y} = Hk{)( +y) = e mﬂ e

Ha-B)

5. GENERALIZED FIBONAGCI NUMBER IDENTITIES

Many other interesting and useful identities may be derived for the sequence { H, % using inductive methods or
by argument from (2.1). We list some elementary results without proof:

(5.1) Hp = (=1)"[gF peq —pFpl
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{5.2)

(5.3)

{5.4)

(5.5)

{5.8)

(5.7)

{5.8)

(5.9)

(5.10)

SOME ASPECTS OF GENERALIZED FIBONACCI NUMBERS

n

3 Hi= Hpsz~Hy [= Hpp2—pl
=0

n

D Hoig = Haq=Hop[ = Hap+lp—24)]
=0

n

Z Hoi = Hapsy — Hog [= Hapeg —(p —q)]
=0

2n )
2. (-1)"TH; = ~Hzpq+p—29
i=0

n
Z HE = HyHper —alo - gq)
=0

n
S iH; = (n+Hpsz— Hyeg* Hs
=0

n

5 (2

\

n
2(7)/7'3,—2 Han
=0

[}

}Z_j( )H4,—3H2,,.

=0

[OCT.

The three summations (5.8), (5.9) and (5.10), which are generalizations of similar results for the ordinary Fibonacci

Sequence { F,

as listed in Hoggatt [8], may all be proved by numerical substitution as, for example, in

£ S (1250 ]
B ;\% for1+a®)" —m(1+8%)"}
= 2_5_51 { 2" — mp2" } =2"Hap .

Some further generalizations of identities listed in Subba Rao [17] are:

(5.11)

n
2. Haiz = KlHz,—H.3)
=0

Proof: Using identity (3) of Horadam [8], viz.,

we have

2Hy = Hppo—Hpq
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2H. = Hy—H.g
2H; = Hz—Hy

Adding both sides and then dividing by two gives the desired result. Similarly,

n
(5.12) > Hszip = BlHzpes —H_2)
=0
n
(5.13) D Hzi= BlHzne2—H_q) .
=0

Some additional identities corresponding to formulae for the sequence { F, } in Siler [16], are

n
(5.14) Z Hai-3 = F2(n+1)H2n-3
=0
n
(5.15) Z Hai-1 = F2(n+1)H2p-1
=0
n
(5.16) > Haiz = Fatnen)Han-2
i=0
n
(5.17) D Hai = FammengHan -
i=0

As in Siler [16], identities (5.4) and (5.11) to (5.17) suggest that we should be able to solve the general summation
formula

n
(5.18) D Haib
=1
Proceeding as in Siler [16], we have:
n n n
j-b ai-b
3 oy = e 1T @ -n 3 6
=1 25 =1 =1
= (—1)2Han-p = Hatnt1)-b — (- 1)°H_p + Hap
(-1)2+71—-L,
on using the fact that
E @b = ga-b [1+a2 + - +a(n—7)a] = @b a1
=1 —— aa -7
n terms

with a similar expression for the term involving (. Here it should be stated that Siler rediscovered a special case due
to Lucas in 1878.

The identity (5.19) below which arose as a generalization of the combination of (2) and (3) of Sharpe [15], may
be established thus:
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(5.19) Hisoker + Hasok = Hors1Honsairs + HoH sz
Proof:
20(H/72+2k+1 - H;1?+2k ) = (ea2K*T _ gt 2kt )2+ (oq2k _ mp™t2k )2
= (2a2mHAKt2 | 2020H4K+2 4 02 2ntAk 1 220+4K _ gy g)2K 17 4 0]
= g2a2mHAKYZ o 2020HAKH2 4 0202tk | o 220+ ak
(22MHAK2 4 1 202+ 4K+2 4 020 20K 4 202K

_ Qm(aﬁ)Zk” [a2n " 62n 1- Qm(aﬁ)Zk[CLZn +an]

= Q2a2"+4k+2+m2ﬁ2n+4k+2+522a2n+4k+m252n+4k ]

20(H 2k +1H2n 42641 + HorcHaneok ) =

In an attempt to generalize those identities found in Tadlock [18], involving the Fibonacci sequence { Fp } and
the Lucas sequence { L, } we have

(5.20) Fojeq |(HRije1 + HE )
Froof Hk2+j+7 + H%_j = [ ak** T _ gkttt ]2 + [Qak—j— mﬁkoj]z
2(a - B) 2Aa - B)
_ 92a(2k+7(a2j+7 + a—2j—7 +m252k+7 (32/'+7 +B-2j—7)
4fa—- B2
_ 2d(aB)*" aB+(a8) ]
(a—B)?
(T g g2 2T _ 262K
' fa—8) 4fa— )
since

@ %1 - gt
g2 - g2t

ie.,
2 2+T . 2n2k+]
Hl?+j+?+ng—j = Fopry + pEa a~{r3n g
ie.,
Fajrq |(H/€+j+1+/'//€—j} .
Also,
(5.21) 20202+ (—1)d]% = HE + HE +HE,

This identity which is a generalization of Problem H-79 proposed by Hunter [7], may be solved as follows. From
the identity {11} of Horadam [8], we have

(5.22) 2[2H2+(=1)7d] = 2[H,,_1Hppq + HEIZ
= HA+HA+AHZH 1 e+ 2HE 1 HE 7 .
Now,
(5.23) Hrf"' 4H§Hn—-1Hn+1 +2H2—:VH1€+7 = (Hn+7 - Hn-7}4 * 4(Hn+1 - Hn-7}2Hn—7Hn+l
on calculation, so that (5.21) follows from (5.22) and (5.23).

Two further interesting results are obtained by considering the following generalization of Problem B-9 proposed
by Graham [4]. From

1 - Ho  _Hptr=Hp1 g 7

Hn—7Hn+7 Hn-—il'/an+1 Hn~1Han+7 H,,_7H,, - Han+1
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we have, on summing both sides over n=2, -+, o,

oo

(5.24) 3y !

Hp-1Hps1 ~ plp+q)

n=2
Similarly, from
Hn = Hpr1 = Hp-g P R |
Hp-1Hn+1 Hp-1Hn+1 Hp-1 Hpt1
we have
(5.25) P L /L1 X
Hp-1Hpe1  plp+4q)

n=2
6. RECURRENCE RELATIONS FOR «g H/-/n }

If we define a sequence { G, } by G, = Hy,, and define { Xy § and { Ya } by X = Fn),

then we may verify that

H
(6.1) Gpiz = GpioVpes — (1716, ,
which corresponds exactly with (1) of Ford [2], and that
(6.2) 2613 = Gpi1Yneot GoraYner — (1)1 HpY,

corresponding to (5) of Ford [2].
If we now define the sequence { Z, % by 2, = HH,,+j: then

Zy = —L= J ed""d — mg" /}
7=k | s
(6.3) ; ; ; } .
=_1_ Joddn, — mfis,
2\/‘5— { a n mB n
Hp Hp .
where B, = a 7 (and S, = B ) for convenience.
. - _1 i )
o Zpt2 PN { 2a! R0 — mf Sn+2§‘
(6.4) = 1 {edRys 1Ry~ mBS,41S, }
2/5

Hn+2 _ aHn+7aHn

since Rp+2 = a = Ru+1R,, and similarly for S0 .

Zn+2 = ;\/%— jg Hn{Qaan+1 —mﬁjS,,+7}+S,,+1(Qaan —mﬁjS,,)
(6.5) o
ie — RnSpr1led —mB!) } = RpZn+1*Sn+1Zn — BnSn+1H;
H,
(6.6) Zp12 = RnZpe1+Sps1Zn— (=1) "Sp_1Hj
since
Hy Hp-
RnSars = a 7671 = (ag) 7671
Similarly, o
{6.7) Zpio = S‘,,Z,,+1+Hn+72’,, — (-1} nﬁ,,..]Hj .

Adding Egs. (6.6) and (6.7) gives

H
(6.8) 2Zp19 = ZpatlRy#Sp) # ZplRytq + Speg) = (=1) "HilBppg * Sp-1)

i.e.
! H
2749 = YpZper * Vn+7Z,, —(~-1) nyn_yl"/j
since
. An+Sy = OLH""'BH“ = LH,, =Y,
i.e.

H,
(6.9) ZHH,,.,LZt’-j = LHnHHn+7+LHH'-"7HHI7+/”_(_H nLHnml Hj

248

and yn = LH”,
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which is a generalization of (14) of Ford [2].
One can continue discovering new generalizations ad infinitum (but not, we hope, ad nauseam!), but the time has
come for a halt.

1.
2.

bl o

10.
11.

12.
13.
14.
15.
16.
17.

18.
19.

20.
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AN EXTENSION OF FIBONACCI'S SEQUENCE

P. J. deBRUIJN
Zoutkeetlaan 1, Oegstgeest, Holland

Fibonacci's sequence is generally known as the sequence 7, 7,2, 3, 5, 8, 13, 21, 34, 55, 89, - defined by u; = 1,
U = 1, Upty = Uy +up_g, inwhich n is a positive integer >2. It is easy to extend this sequence in such a way
that 7 may be any integer number.

We then get:

- =21, 13, -8 5 -3 2 -1, 1, 0 1, 1, 2 3 5 8 13 21, -

4 4 4 1 + { 1 L 2 2R T T T TR T
u.g U.7 U.g U.5 U.gq U3 U.2 U_7 Up U7 Uz U3 Uy Us Ug Uz Ug

In this sequence we have:
(1a) up =1, us=1, Upry = up+uy; for al neZ.
The following definition is known to be equivalent to the previous one:

(1b) u,,=c—‘g—_'—gLn forall neZz,

2

in which a is the positive root and (8 the negative root of the equation x“ = x+ 7.

We know the following relations involving a and § to be valid:
a=Y%+%/5 = 1.6180339 -
B=%—%/5 = —0.6180339 -
2

a®=a+1, B2=0+1 af=-1, a+f=1 a-B=+5.

The proof of the identities in this paper will in most cases be based upon a2 =a+l.

The purpose of this article is to study the results of an extension of definition (1b) in such a way that for n not
only integers, but also rational numbers, and even all real numbers can be chosen.
If we try n=2% in definition (1b), we get

% %
a” —
uy = ,
% a-B

in which ﬁyz = /B causes trouble, because § is negative.
To avoid these difficulties, we define:

2n

a“" — cos nm +i sin nmw
(2) un = -
fa—Bla

or U, = Xp*iy, . inwhich

2n .

_ a“" —cosnm
Xy = ——————— and Vn = _‘.’lﬂﬂ; .
fa—Bla" fa—Bla

In this definition we have: n€R, u, cC.
First we shall have to show, of course, that this definition is equivalent to (1b) for n 2. We calculate:

251
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= o —cosm+isinm - a+1 =a,2+7 =7
{a—Bla ?-af B+1
uy = a?—cosontisinzn - _a®—1 _(aP+1)a®-1) _ (P+1)a _ a®+1 _ 7
(a— Bla? (a— Bla? (a— BJa? (a-Bla® a?®-af
Now we will show that forall n the relation u,+7 = u,+u,-7 remains valid.
Uptq = a®"*2 _ cos (n+ 1)u+isinln + 1w _ a®*2 +cos nmw—isin nw
n
{a— B)an+1 (a—ﬁ}a””
g = a®'2 _ cos (n— Nutisinln—1)u _ a®2+cosnm—isinnm
n- .
(a—Bla™ (a—Bla""
The identity which we have to prove can now be reduced to:
@2 ¢ cosnm—isinnm = a7 — acos nm+ aisin n+ a?" + a2 cos nm— aZisin nm ,
or:
(a® — a— 1)(a®" - cosnm+isinnm) = 0,

which is a proper identity, since aZ-a-1=0

The numbers, introduced by definition (2) also satisfy identically the relation u,u, + Upr1Upt1 = Umin+t,
which is well known for the ordinary Fibonacci numbers. The truth of this assertion can also be verified without too
much difficulty.

Furthermore we can show that for the moduli of the complex numbers the relation |u_,| = |u,| is valid, just as
for the real numbers. For x_2,, + y.z,7 = xﬁ + y,? is equivalent to

( a2 —cosnm ? + ( sinom_ \° _ [ a®—cosnm 2+ sinnm_\?
 fa—BJa™" fa—Bla™" fa—B)a” fa—Bla"

and this in its turn is identical to:

& — 2072 cosnm+ 1 _ a®" — 202" cosnm+ 1
(a-B8)2a2" (a—B)%a®
or:
a2~ 2cosnm+a® = a®" - 2cosnn+a?" qed.

We now calculate the numerical values of wu,, for n climbing from —4 to +4, with intervals of 1/6 as shown in
Table 1.
If we take a close look at these numbers, we find that.

uy = iu_y = 0.569+0.352i,

U-13 = fugy = 0.217+0.921i,

Uy = iu_oy = 1.489+0.134i,
etc., etc.

It is simple to prove this property from definition (2), and it is clear that it corresponds with |u_,| = |u,|.

If we make a map of the newly introduced numbers in the complex plane, we get the interesting picture shown in
Fig. 1. The curve that we have thus found intersects the x-axis in those real points corresponding with the well-known
Fibonacci numbers for n € Z

For decreasing negative values of n it has the shape of a spiral, and for increasing positive values of n it has the
shape of a ““sinus-like” curve, with increasing ““wave-length” and decreasing “amplitude.”

Note how the relation |u_,| = |u,} is made visible through this graphical representation of u,, .

On differentiating,
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_d® —cosnm _ _sinnm

(a-Bla" " (a— Bla”

with n as independent variable, we find:

Xn

9% _ Ina(a®" +cos nm) + mwsin n

dn (a—B)a” !
4Yn _ mcosnm—In asinnm
dn fa—Bla” ’
so that
Yn _  meosnm—Inasinnm
dxp In ala®" +cos nm) + msin nm

For instance:

dy _ _m__ mloge _ 3.71416 x 0.4343
dxp=g 2Ina 2loga 2x 0.2090
= 3.264.
dy _ __ wm _ mloge
dXp=1 alna alga

- _31416X 04343 _ _4 05
1.618 x 0.2090

_dy _ _ma_ maloge
x.__; Ina loga
_ 31416 x 1.618 x 0.4343 _
0.2090 = 1056
etc., etc.

Among the points in which the curve intersects it-
self, there is one with y + 0, a complex number z,
so that zeC but z& R With the extension we
now have achieved, we can make a similar extension
for all Fibonacci-like sequences

If we start with any two complex numbers, say z7
and z2, adding them to find the following number
we get

2y, 22,27122,27+229, 227+ 329, 327+ 525, 521+ 825, 827 + 13z,

etc., etc. The coefficients are Fibonacci numbers.

AN EXTENSION OF FIBONACCI'S SEQUENCE
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Up = Xptiyp

Table 1
6n
—24 -3.000+0.000i 0
-23 -2.380+1.415i +1
=22 —-1.229+2.261i +2
-21 +0.083+2410i +3
=20 +1.203+1.926i +
-19 +1875+1.026i +5
—18 +2,000+0.000i +6
—-17 +1.629+0.874i +7
—-16 +0931-1.398i +8
—-15 +0.134- 1.489i +9
—-14 —-0.542 - 1.190i +10
—-13  —0.941- 0.634i +11
-12 -1.000+0.000i +12
—-11  —0.751 +0.540i +13
—-10 -0.298 +0.864 i +14
-9 +0217+0921i +15
-8 +0661+0.736i +16
-7 +0934+0392i +17
-6 +1.000 +0.000i +18
-5 +0.878-0.334i +19
-4 +0633-0.534i +20
-3 +0.352-0.569i +21
-2 +0.118 -0.455i +22
-1 -0.007 -0.242i +23
0 0.000 +0.000i +24
6n up = xptiyp

0.000 + 0.000 i
+0.127 +0.206 i
+0.335+0.330i
+0.569 + 0.352 i
+0.779 + 0.281i
+0.927 +0.150 i
+1.000 + 0.000 i
+1.005 -0.128 i
+0.967 - 0.204 i
+0.920 - 0.217i
+0.897 - 0.174 i
+0.920 - 0.093i
+1.000 + 0.000i
+1.132+0.079 i
+1.302 +0.126 i
+1.489 +0.134 i
+1.676 + 0.107 i
+1.848 +0.057i
+2.000 +0.000 i
+2.137 - 0.049 i
+2.269 - 0.078 i
+2.410 -0.083 i
+2.573 - 0.066 i
+2.768 - 0.035 i
+3.000 + 0.000 i

To find the extension of this sequence, all we have to do is to apply the extension to the coefficients.
In this manner we will now study the sequence that appears when we start with z; = 7, zo =i Then we have:

1,0 1+ 1+2i, 2+3i, 3+5i, 5+8i,
etc. It is clear that we can start by extension “‘to the left,” to find:

v, §=30, =3+2i, 2—i, =1+i, 1,0, 1+ 1+2[, 2+3i, 3+5j, -

For reasons of symmetry we shall refer to these terms as vy, in such a way that v_y = 7 and

Vi =0, Vagy = 140, Vaoy = 1+2 Vezy = 2+ 30 -

Vogyg = i—1, vepy = 2—i, v.gy = —3+2i, -

The relation between the v-sequence and the u-sequence is: vy = uy.y * ug+yi Therefore:
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Vi = Uk-3%* Uksssl = (Xpeus # iV icotg) + (Xpcr 5 TV ksl = (Kpety = Vit ss) # ily gy + Xpeang) .

We shall now demonstrate that |v_g| = |vi].

2 _ 2 2 _ 2

il © = (X-tg = Vierss) # (Vi # Xr5)? = OBgg #yBsg) + OXFoir # yBass) — 20— igV ki s — Vie-siXict ).
We can now say that:

|2

e l? = lug-21? # lugesss? = 20—V ker3s — ViereXcrss)

Therefore:
vk 12 =|u- -z|2 +{U-k+%|2—2(X-k-zV..k+yz — Vek-Xokr ) = Vet P+ |”k-%|2 =~ 2(X -1V ke #36 — Yok TX k5.
so that the relation that we want to prove, namely |v_g| = |vg|, or |v_g|? = |vg|?, is equivalent to

Xi=-2Yk+% — Vi-%Xk+% = X-k=3Y-k+% — V—-k-%X-k+% -

When we now proceed to introduce the index ¢ by means of k = ¢+ % —k = —t— %, we have to prove that:
XeVer1 = VXt = Xepei Vet = Vep=1 Xt -
Or:
a? — costm w Sinft+1)m _ _sintn a2t _ s (t+ 1)1
fa-Blat  (a-Bla*’ (a-Blat (a— Blat*’

_ a2(—t— 7)

—cos(—t—1)n  sin(=t)n _sin(~t—1)w a2t _ cos (~t)n ]
(a—Blat? (a-Blat  (a—BlatT (a—Bla~t
This is an identity, if completely worked out.
We have already seen that if vy = ay #iby, then ag = X3 — Vi+3 and by = Yp—3 + Xg+25. Thus:

a?~1 _ cos (kn— %m) _ sin (km + %m)

&% (a—p) (a—Blakt%

g = X1~ Vk+% =

Or:

- a?* — asin kn— cos km

(a— Bak*”

ak
In the same way we derive from by = yx_y + Xg+3 -

_ a®*1 _ acos km+ sin km

bk - D
(a— Blak**

It is now fairly easy to calculate some values of vy, simply by choosing different values of &; we find

Vy2=i, Viy = 1+i, Voy = 1+2i,
as it should be. We also have:

vy = —7a—+i\/&, vog = TZ"/\/C_L p

(so that v.; = v7J, and vp = 0. Also

. . 2 . =2 . _ 3 .
V2=\—/%+1\/E (=v_y=vy) and v_2=—\/—%—1\/6; v +2iv/a and V_3-ﬁ+21\/a, V4-\7a- + 3G,

It now seems very likely that

7 .
= oL E— a ,
vk ( Ja ’*/—>”"

for all values of & Indeed we have:

(a™% ~%

+ia”) x ug = (@™ +ia”)xg +iyi) = (@ %x — a’yp) +ila Py, +a%xi ),
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whereas 4 .
a¥xp -y = a”(a® —coskn) _a”sinkn _ a®* — cos kn < asin km _ 3y,
(a— BJak (a— Blak (a— Blak?* k
and in the same way we prove that a'%yk + a%xk = by 50 that (g% + iay’}uk = ay + iy = vy, which had to be
proved. The relation ; \
Vk =(\/T + i\/C—'-) ug

implies that the graphic representation of the numbers v, in the complex plane has the same shape as the one that
we have found previously for vy - 7 .

x=-5% ak

3%
-3, k=3
k=-3% 2

k=-1,k=+1,k=+2

k=-4%

k:-6%

Fig. 2 Graphic Representation of the Numbers v in the Complex Plane

There is one continuous curve going through all these points, a curve that originates from the one in Fig. 1 by
multiplication with

7+i
VA

It is clearly shown how the points (0,7); (1,1); (1,2); (2,3); (3,5); (5,8); (8,13); - belonging to the index-
values %, 1%, 2%, 3%, 4%, 5%, 6%, - of k are lying closer to the asymptote y = ax as k increases, thus indicat-
ing that

u
/im k—H=a_

k—>oo Ug
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—

9-8-7-6-5-4-3-2-10122345@678 9

Fig. 3 Graph of |u,| as a function of n
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SPANNING TREES AND FIBONACCI AND LUCAS NUMBERS

A.J.W. HILTON
The University of Reading, Whiteknights, Reading, England

1. INTRODUCTION
The Fibonacci numbers £, are defined by

Fy=F2=1, Fne2=Fpe#Fy (n>1),
and the Lucas numbers L,, by

Ly =1 Lo=3 Lho= Lptg+L, fn>1).

We shall use the graph theoretic terminology of Harary [2]. A whee/ on n+ 7 points is obtained from a cycle on
n points by joining each of these n points to a further point. This cycle is known as the rim of the wheel, the other
edges are the spokes, and the further point is the fub. A fan is what is obtained when one edge is removed from the

rim of a wheel. We also refer to the rim and the spokes of a fan, but use the word pivot instead of hub. We give now an
illustration of a labelled wheel and a labelled fan on 9 points.

Figure 1
A compoasition of the positive integer n isavector (a;, ap, -+, az) whose components are positive integers such that
ajg +dp + - +ag = n. If the vector has order & then the composition is a k-part composition.
For n >2 the number of spanning trees of a labelled wheel on n+ 7 peintsis Lo, — 2, and the number of span-

ning trees of a labelled fan on n + 7 pointsis Fo,. References concerning the first of these results may be found in
[3]; both results are proved simply in [4].

In this paper, by simple new combinatorial arguments, we derive both old and new formulae for the Fibonacci and
Lucas numbers.

2. ASIMPLE COMBINATORIAL PROOF THAT Fopiom = Fope1Fam* FanFam-1

Let the number of spanning trees of a labelled fan on n+7 points be 7,,, and the number of those spanning trees
259
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n+m+17

Figure 2 Figure 3
of alabelled fan on n + 7 points which include a specified leading edge ( { I,n+1 } in Fig. 2) be ¢, Clearly

(1) 8pt7 = eptiy (n>1).

Now consider a fan on 7 + m + 1 points. This may be thought of as two fans A and B, connected at the pivot
and at two points labelled 7 and n+ 7 asindicated in Fig. 3. Then

(2) fotm = Tnfm* fnem*epnfm (n,m > 1)
50
(3 fotm = €nt1fm* Frlm (n,m > 1)

by (1). In formula (2) 7,,f,, is the number of those spanning trees which do not include { n, n # 7} . The restrictions
of a spanning tree which includes { n,n+ 7} to A and to B are either a spanning tree of A and a spanning sub-
graph of B consisting of two trees, one including { n+ 7}, the otherincluding { n+m+ 7}, orare a spanning
tree of B and a spanning subgraph of A consisting of two trees, one including {n , the other including { n+m
+ 7} . Therefore, the number of spanning trees which include {n, n+1 } is fném+epfy. But f, = Fo,, andit
is shown in [4] that e, = Fo,_;. Therefore, from (3),

Fan+2m = Fan+1F2m* F2nF2m-1 (n,m > 1).
The corresponding formula for L5,+2, doesnotappear to come through so readily from this type of argument.

3. COMPOSITION FORMULAE FOR F»,

If (a;, -, ai) is a composition of n, then the number of spanning trees of the fan in Fig. 2 which exclude
{01,a1+7}, {a1+02,a1+‘12+7}, {04*"' *Qq, Ayt F Qg F 7}

but include all other edges of the rim is a;ay - ax, for this is the number of different combinations of spokes
which such a spanning three may include. Therefore

@ Fan = 3 G184 ,
v(n)
where yfn) indicates summation over all compositions (a; -, ax/) of n, the number of components being vari-
able. This formula is due to Moser and Whitney [6].
Hoggatt and Lind [5] have shown that this formula may be inverted to give
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—-n= Z (_7}kF2oz, Foa, = Fagy -
v(n)
This may be demonstrated combinatorially as follows. The number of spanning trees of the fan in Fig. 2 which do”
not have any rim edges missing is »n The total number of spanning trees is F5,. For a given composition
(ag, -, ax) of n with k > 2, the number of spanning trees which do not contain the edges { az, ay + 7},
{ a7 +dg, a7 +az+ 7}, {61 Foet Qg gt F O gt ] }'

is F2u,Fa, . Faay - Therefore, by the Principle of Inclusion and Exclusion (see Riordan [7], Chapter 3)

n= 3 A~-1* T Fpy Foo = Fooy

v(n)
Of course it now follows that
n
(5) Fon =n+ 9 S (~1)¥Faq Fou, - Faoy ,
k=2 . (n)

where 7, (n) denotes summation over all A-part compositions of .

4. COMPOSITION FORMULAE FOR Ly, — 2.

The formulae in this section are analogous to the formulae (4) and (5) of the previous section. The main difference
is that the formulae in this section are obtained from the wheel in Fig. 4, whereas in the last section they were ob-
tained from the fan in Fig. 2.

n
7
n—1
/
/
[ } 2
\ n+i /
\ /
\ 7
A /
~ -
~— e =
Figure 4

If (a;, -, ;) isacomposition of n, and j is an integer, J </ <n, then the number of spanning trees of the
wheel in Fig. 4 which exciude the edges

{a1+i,ai+i+7},«{a1+<12+/la1+<12+i+“,"', {a1+'"+ak+lla1+"'+ak+f+7}

f

[the integers here being taken modulo nl, but include all the remaining edges in the rim, is a;ao + @,,. If we sum
over all such compagsitions into & parts and all possible values of j, we obtain

But this sum counts each spanning tree which has exactly & specified edges on the rim excluded, precisely &
times. Therefore the number of spanning trees which exclude exactly 4 edges of the rim is
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,ki Z Arap - 0p.

Yg (n)

Therefore

. 7

L2,«,—2=HZ ; Z Ardp -+ Gk .
k=1 Yg(n)
iLe.,
= 07 do - G
lon-2=3 72k ko
y(n)

a formula which is analogous to {(4).

We now find a formula for L5, — 2 which is analogous to (5). The number of spanning trees of a wheel which do
not have any rim edges missing is O The total number of spanning trees of a wheel is L5, — 2. For a given com-
position (az, ao, -, ak) of n, and agiven integer j, 0 <j<n, the number of spanning trees which do notcon-
tain the edges

{a7+/'la1+j+1} , ga1+a2+f,a7+a2+j+7},..., ;a1+... +ak+j, a7+... +ak+/'+7}

is Foq, F2o, * F2ay - By asimilar argument to that just used above, the sum

% Z FZx:\z1 F2a2 FZak
7k(n)

is the sum taken over all combinations of & edges from the rim of the number of spanning trees which do not con-
tain any of the & rim edges of the combination. Therefore, by the Principle of Inclusion and Exclusion

n
0=Ly,—2+ Z (_j)kﬂ Z F2ozl "'-2052 F20tk -

k=1 ’)’k(ﬂ)
Therefore

Lop—2 = Z: (—1)%7 Il‘:' F2a, F2o, = Fooy .
y(n)
a formula which is analogous to (5).
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ON POLYNOMIALS RELATED TO TCHEBICHEF POLYNOMIALS
OF THE SECOND KIND

D. V. JAISWAL
Holkar Science College, Indore, India

1. Tchebichef polynomials of the second kind have been defined by

Upeglx) = 2x Uplx) ~ Up_4(x) ,

Up=1, Us;=2x.
Itis known [1] that

U, lcos 0) = &—ng—.%;]—}g ,
and
fn/2]
Und = 35 ("77) =120
=0
Also {2]

Fn./..] =i-” U,,(I'/Z) ’
where £, represents the n™ Fibonace number.
The first few polynomials are

Uplx) = 1
Uelx) = 2x
Uslx) = 4% — 1

Usix) = 8x° —4x
Uglx) = 16x% — 12x% + 1.

Figure 1

If we take the sums along the rising diagonals in the expression on the right-hand side, we obtain an interesting
polynomial p,{xJ, which is closely related to Fibonacci numbers.
The first few polynomials are

pilx) = 1, palx) = 2x, palx) = 42,

(1.1)
palx}) = ac-1, psix} = 16x% — 4x .

In this note we shali derive the generating function, recurrence relation and a few interesting properties of these
polynomials.

2. Onputting 2x = y in the expansion on the right-hand side in Figure 1 we obtain
263
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Columns
0 1 3
1 T
2 -y - -
Rows 3 2T -1
¢ -y Ly
5 I',_y4’,,-3’y2 _ -1

- -

Figure 2

The generating function for the k™" columnin Figure 2 is (— 1k(1- ty}_(k”). Since we are summing along the
rising diagonals, the row adjusted generating function for the k™ column becomes

hily) = (—1)%(1 = ty)~(k*1) (3k41

Since
o ) k
7 —t3
5 = iy 2 [720]
- T—ty o\ 1-
- t
T—ty+t3
we have
(2.1) Gix,t) = Z pn(X)tn = L 3
n=0 1—-2xt+t

From (2.1) we obtain

Z o)t = t(1—2xt+¢3)77

n=1

On expanding the right-hand side and comparing the coefficients of t”+7, we obtain

[n/3]
- n n—-2 n-3 n—4 n-6 _ n—2r r n-3r

22 ppeld = (207~ (752 ) (20734 (75 ) (2070 4= 3 (757 ) (-0 1207

=0
Again from (2.1) we have

(1-2xt+¢3) Z Palx)t" =t .
n=1

On equating coefficient of "3 on both sides, we obtain the recurrence relation
(2.3) Pa+3(x) = 2xppialx) —ppix), n > 1, pix) =1, pofx) = 2x, pslx) = 22,

Extending (2.3) we find that p,(x) = 0
From (2.1) we have

(2.4) Gixt) = tF(2xt—t3), Flu) = (1-u)™" .
Differentiating (2.4) partially with respect to x and ¢, we find that G(x,t) satisfies the partial differential equation

2t 26 _(x-32) 25 _26 =0.
At ox
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Since o e

gtg-= g npplx) ", %f— = ;; prlx)e
it follows that
(2.5) 2xppe2lx) = 3p5(x) = 2n + 1)ppiafx) .

3. On substituting x = 7 in the polynomials p,,{xJ, we obtain the sequence { P, } which has a recurrence relation
(3.1) Potg = Ppag +Pp+1, Pg=0. Pj=1.
The sequence gP,,} is related to the Fibonacci sequence {F,,} by the relation
Pon=Pp_q = Fq:
which leads to

n
(3.4) P, =2 Fr .
k=0
From (3.4) several interesting properties of the sequence {P,,} can be derived. A few of them are
(n Py = Fpp—1
)
(2) -~ P = Forg—1(n+3)
(3.5) k=1
I
3) ZPI? = Fn+2Fn+3"‘2Fn+4+(n+4}
k=1
n
(4} with 0 (1+x%i) = agajx+ - +apx", m= L+l +L, .
=1

and g,, equal to the number of integers & such thatboth 0< k< m and ag=0, Leonard [3] has proposed
a problem to find a recurrence relation for g,,. The author [4] has shown that the recurrence relation is

Gn+2 = Gpr1¥Gn*h g1 =0, q2=1.
Comparing this result with (3.1) we observe that

Py = Gntr -
On using (3.5)—(1) and (2.2) we cbtain
[n/3]
(3.6) Frz=1+ 2, (777 ) -7 273, a5 0,
=0

a result which is believed to be undiscovered so far.
| am grateful to Dr. V. M. Bhise, G.S. Technological Institute, for his help and guidance in the preparation of this
paper.
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CORRIGENDUM TO: ENUMERATION OF TWO-LINE ARRAYS

L. CARLITZ and MARGARET HODEL
Duke University, Durham, North Carolina 27706

The proof of (2.5) and (2.7) in the paper: “Enumeration of Two-Line Arrays” [1] is incorrect as it stands. A
corrected proof follows.

Let gfnk) denote the number of two-line arrays of positive integers

37 az .re an
by by -~ b,
satisfying the inequalities
max (a;,b;) < min (aj+q7, bi+1) (1 <i<nl,
max (ajh;) < i (1 <i<nl
and
max (a,, b,) = k.
We wish to show that
k
(2.7) oln+kk) =" olijlgln+k—j k—=j+1) (0 >1).
=1

Let j be the greatest integer <k such that
max (agbj) = j .
It follows that aj.7 = b7 = L
Consider the array

Put
a; = ajpj— i—1)

bi = bji~(G—1)

It follows from the conditions satisfied by a;, 5; that

(1 <i<n+tk-—jl.

max (af, bj) < min (afs1, bjsq) (1 <i<ntk-j),
max (a7, b7) < i (1<i<n+k-jl,
max (a5 4kj, bprk-j) = k—j+1.

This evidently yields (2.7).

<
<
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ORESME NUMBERS

A.F. HORADAM
University of Mew England, Armidale, M.S.W., Australia

1. INTRODUCTION

Thepurpose of this article is to make known some properties of an interesting sequence of numbers which | believe
has not received much (if any) attention,

In the mid-fourteenth century, the scholar and cleric, Nicole Oresme, found the sum of the sequence of rational
numbers

1 L2 3 4 5 6 7 8
2 4 8§ 16 32 64 728 256
Unfortunately, Oresme’s original calculations were not published.
Such a sequence is of considerable biological interest. As Hogben [3] remarks: “...what is of impertance to the bi-
ologist is an answer to the question: if we know the first two terms, Le., the proportion of grandparents and parents
of different genotypes, how do we calculate the proportions in any later generations?”

2. DRESME NUMBERS

The sequence (1) of Oresme can be extended “to the {eft” to include negative numbers if we see the pattern of the
sequence, which is easily discernible. More is gained by recognizing the sequence (1) as a special case of a general se-
guence discussed by Horadam [4], [5] and [6].

This general sequence -g wpla, b,'p,[//'i} is defined by

(2) Wpt2 = PWpiy —GW,
where
(3} wg =a Wwy=5h

and p,g are arbitrary integers at our disposal. To achieve our purpase, we now extend the values of p,g tobe
arbitrary rational numbers.

Taking a=0, b=1, p=1,  g=% anddenotinga term of the special sequenceby 0, fn=-, -2, -1,
g,1,2 -, we write the sequence 20,,‘ g; «g w, (0 %, 1, %}} as

wl_7 06 0.5 0_4 0_3 0_5 09 0p 07 05 02 04 05 05 0

@) 896 —384 —160 —64 -24 -8 - 123 4 5 6 7
896 -384 —160 —64 ~24 -8 -2 0 3 5 7 7= 35 Fr 798

The extension (4) of the original sequence {1} studied by Oresme we will call the Oresme sequence. Terms of this
sequence are called Oresme numbers. Thus, Oresme numbers are, by (2), (3), (4), given by the second-order relation

i

(5) Opiz = Optq— ;50,,
with
(6) 00=0,0,:02=g,

An interesting feature of the Oresme sequence is that it is a degenerate case of g Wy, } oceurring when p2 —4g=0
fie., 12 - 4% % = 0). Further comments will be made on this aspect later in §6.

267
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A number which characterizes special cases of { wy, (a,b; p,q}} is e =pab — qa2 — b2 which depends on the

initial values a, & and on p, g For the Oresme sequence,

4
Immediate observations from (4) include these facts:
(8) 0,=0n2"" (n=0
9) 0_,=-n2" (<0
ie.,
Om = m2™™  (m integer)
whence
(10) 0_,0, = -n°
(1) ———%"' = 220
and n
(12) lim 0,-0 lim 0,-—
>0 n—>oe
m—> Ym-1

Two well-known sequences, associated with the researches of Lucas [9] are:
(14) {U,,} ={wa(l,p:p,0)}
1= :
(15) {V,,, .gw,, (2,p,p,q}}.

When g =g= —1, (14) gives the ordinary Fibonacci sequence and (15) the ordinary Lucas sequence.
It is a ready consequence of (4) and (14) that

(16) 0,=Lu,_;

where, for this §U,},p =7, ¢ =% .
That is, the Oresme sequence turns out to be a special case of the sequence { U,,} after division by 2.

N

3. LINEAR RELATIONS FOR ORESME NUMBERS
Two simple expressions derived readily from (5) are:

17 0,,+2—§0,,+§0,,_, =0
(18) 0,,+2—%0,,+,+72— O0p_y=0.
Sums of interest are:

n—171
(19) 30 = 4(%=0,s9)

j=0
(20) >.0;=2

/=0
n—1 .

1) S -1 o = % [~%+(=1)" (0,17 — 20,,)]

j=0
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n—1
(22) 3 04 = ;i [2+ 09,1 — 502, ]
j=0
n—1
(23) 3 0547 = g (10+505,_1 — 1602, ).
=0
Also,
(24) | Ontr = OpUn=} Oy Upyg
=0pU,— ZITUH—I Ury
(25) @n-l-r = 0,-_]' U,,.,«.j —Z?: 0,__/'_1 Un+j—1
= Op+j Ur——j“ZZ' Ontj—y Ur—j—1
Opsp+4770,_
{26) _'liL__a_n_"f_ = V, (independent of n)
(27) Optr— 4 Op—r = Uy
Opis—4°Ops Ys—1
n -
(28) Ozn = (=%)" 3 ( 7 )(—4}”“! Opej -
=0

4, NON-LINEAR PROPERTIES OF ORESME NUMBERS
A basic quadratic expression, corresponding to Simson’s result for Fibonacci numbers, is
{29) Opi1 Op—g— 02 = ~(%4)".

This result is the basis of a geometric paradox of which the general expression is given in Horadam [5].
A specially interesting result is the “Pythagorean” theorem of which the generalization is discussed in Horadam [5]:

2 2 2 2
(30) (0215~ 0241)° #2042 Ops1)” = (Opy2+ 0241

For instance, » = 3 leads to the Pythagorean triple 39, 80, 89 after we have ignored a common denominator
{= 1024); n = 4 leads to the Pythagorean tripie 8, 6, 10 after simplification (and division by 64, which we ignore).
Some other quadratic properties are:

31 }ZOm-f-n—? = 0O On_§0m~70n—7
(32) %02,7—1 = 03—4105—1
= Opry Op—y "4?7 0,042
(33) Opir Opy— 02= ~(5)~*1 Y2,
(an extension of {29))
(34) 0Fey— (42 02 = % O2n+1 +§ O2p—1
(35) On—r0n+r+t = O0p0p4 = ~(h)n=ry —1 Urs—1

(an extension of (33)).
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Many other results can be cbtained, if we use the fact that 430,, is a special case of {w,¢. Rather than
produce numerous identities here, we suggest (as we did in [7] with Pell identities) that the reader may entertain
himself by discovering them. Recent articles by Zeitlin [11], [12] and [13] give many properties of { W,,} which
may be of assistance.

Somé of the distinguishing features of { 0,,} arise from the fact that it is a degenerate case of (2), occurring
when p2 —4q = 0 :

5. GENERATING FUNCTION

A generating function for the Oresme numbers J,, n > 1) is

(36) Oy x" = —Bx__
g ” 1—x+4%x°

This may be obtained from the general result for w,, in Horadam [6], by the appropriate specialization.

6. COMMENTS ON THE DEGENERACY PROPERTY

Since the general term of { W, } is

(37) w, = Aa" +B3" ,
where ,
= PP -4g = 8=~p -4
(38) a 3 , B 5
are the roots of x2 —px+g = 0, and
- b—af -aa—4_ — 8 = Jp? — dg
(39) A= BTuTp (a—B = «/p* —4d),

it follows that in the degenerate case, 0,, cannot be expressed in the form (36), as we have seen earlier in (8) and (9).
An interesting derivation from Eq. (4.6) of Horadam [4] is the relationship 07— %UZ2_, = 0, leading back to (18).

Carlitz [2], acknowledging the work of Riordan, established an interesting relationship between the sum of £
powers of terms of the degenerate sequence { U,,} (for which g = p2/4) and the Eulerian polynomial Aplx)
which satisfies the differential equation

(40) ' Ansilx) = (1+mx)A ) #x(1—x) A (x) ,
where dx
(41) Aglx) = Aglx) = 1, Aslx) = 1+x, Aslx) = 1+4x+x° .

This result specializes to the Oresme case where p = 7.

7. HISTORICAL

It is thought that Nicole Oresme was born in 1323 in the small village of Allemagne, about two miles from Caen,
in Normandy. Records show that in 1348 he was a theology student at the College of Navarre—of which he became
principal during the period 1356—1361—and that he attended Paris University.

His star in the Church rase quickly. Successively he became archdeacon of Bayeux (1361), then caron (1362), and
later dean (1364) of Rouen Cathedral. In this period, he journeyed to Avignon with a party of royal emissaries and
preached a sermon at the papal court of Urban V. While dean of Rouen, Oresme translated several of Aristotle’s
works, at the request of Charles V.

Thanks to his imperial patron {Charles V), Oresme was made bishop of Lisieux in 1377, being enthroned in Rouen
Cathedral the foliowing year. In 1382, Oresme died at Lisieux and was buried in his cathedral church.

Mathematically, Oresme is important for at least three reasons. Firstly, he expounded a graphic representation of
of qualities and velocities, though there is no mention of the {(functional) dependence of one quality upon another,
as found in Descartes. Secondly, he was the first person to conceive the notion of fractional powers (afterwards re-
discovered by Stevin), and suggested a notation,

In Oresme’s notation, 4 1% is written as
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l L -1
ip 3 4 or 7'24.

L

Thirdly, in an unpublished manuscript, Oresme found the sum of the series derived from the sequence (1). Such re-
current infinite series did not generally appear again until the eighteenth century.

In

all, Oresme was one of the chief medieval theological scholars and mathematical innovators. It is the writer’s

hope that something of Oresme’s intellectual capacity has been appreciated by the reader. With this in mind, we
honor his name by associating him with the extended recurrence sequence (4), of which he had a glimpse so long

ago.

N =

- -
S w®ee N

12.

13.
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INCREDIBLE IDENTITIES

DANIEL SHANKS
Maval Ship R&D Center, Bethesda, Maryland 20034

Consider the algebraic numbers .
A =[5 +/22+2/5

To

B =.\/11+229 + \/76‘ — 23/29 +2./55 — 10/29
25 decimals they both equal
7.38117 59408 95657 97098 72669 .

Either this is an incredible coincidence or
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