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1. INTRODUCTION 
To Fibonacci is attributed the arithmetic triangle of odd numbers, in which the nth row has n entries, the cen-

ter element is n* for even /?, and the row sum is n3. (See Stanley Bezuszka [11].) 

FIBONACCI'S TRIANGLE 
/ 

3 5 
7 9 11 

13 15 17 19 64 = 4$ 
21 23 25 27 29 125 = 5s 

SUMS 
1 = 
8 = 

27 = 

:13 

2s 

33 

We wish to derive some results here concerning the triangular numbers /, 3,6, 10, 15, ", Tn,'" »*". If one o b -
serves how they are defined geometrically, 

1 3 6 10 • -
one easily sees that 

(1.1) Tn - 1+2+3 + .- +n = n(n±M 

and 
(1.2) • Tn+1 = Tn+(n+1) . 

By noticing that two adjacent arrays form a square, such as 

3 + 6 = 9 '.'.?. 

we are led to 
(1.3) n2 = Tn + Tn„7 , 

which can be verified using (1.1). This also provides an identity for triangular numbers in terms of subscripts which 
are also triangular numbers, 

(1-4) Tn=TTn
 + TTn-1 • 

Since every odd number is the difference of two consecutive squares, it is informative to rewrite Fibonacci's tri-
angle of odd numbers: 
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FIBONACCI'S TRIANGLE SUMS 
f^-O2) Tf-T* 

(2* -I2) (32-22) Ti-Tf 
(42-32) (52-42) (62-52) Ti-Tl •2 

(72-62) (82-72) (9*-82) (Kp-92) Tl-Tl 

Upon comparing with the first array, it would appear that the difference of the squares of two consecutive tri-
angular numbers is a perfect cube. From (1.2), 

T2
+1 = (Tn+n + 1)2 = T2 + 2(n+1)Tn + (n + 1)2 

But, from (1.1), Tn = n(n + 1)/2, so that 

rf+1 - T2 = 2(n + 1)[n(n + 1)/2] + (n + 1)2 

= n(n + 1)2 + (n+1)2 = (n+1)3 . 
Thus, we do indeed have 
(1.5) T2

+1 -T2 = (n+1)3, 

which also follows by simple algebra directly from (1.1). 
Further, 

rf = cr„2 - Tnif) + (T„?, - rl2) +... +cri -T2
1) + ni-T$) 

n 
3 + (n- 1)3 + - + 23 + 13 

or, again returning to (1.1), 

(1.6) T2 = 11+2 + 3+- +n)2 = ] T k3 . 
k=1 

For a wholly geometric discussion, see Martin Gardner [10]. 
Suppose that we now make a triangle of consecutive whole numbers. 

WHOLE NUMBER TRIANGLE SUMS 
0 0 

1 2 3 
3 4 5 12 

6 7 8 9 30 
10 If 12 13 14 60 

If we observe carefully, the row sum of the nth row is nTn+i, or (n + 2)Tn, which we can easily derive by study-
ing the form of each row of the triangle. Notice that the triangular numbers appear sequentially along the left edge. 

ts 

Tn Tn + 1 Tn+2 Tn+3 «• Tn+n 

The nth row, then, has elements 

so that its sum is 

(n+1)Tn+(1+2+3 + ~ +n) = (n+1)Tn + Tn = (n+2)Tn 

Also, the nth row can be written as 
Tn Tn+1-n ••' Tn+1-3 Tn+1-2 Tn+1-1 

with row sum 
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Tn+nTn+1-(1+2+3+..- +n) = Tn+nTn+1 - Tn = nTnH . 
Then, 
(1-7) nTn+1 =(n+2)Tn , 
which also follows from (1.1), since 

nTn+1="Jn±lf±2L =(n+2)Tn . 

The row sums are also three times the binomial coefficients /, 4, 10,20, - . , the entries in the third column of Pas-
cal's left-justified triangle, since 

„T . - n(n + 1)(n+2) . ? [ n(n + lMn+2f] _ ? I n + 2 
3 

The numbers 1, 4, 10, 20, —, are the triangular pyramidal numbers, the three-dimensional analog of the triangular 
numbers. Of course, the triangular numbers themselves are the binomial coefficients appearing in the second column 
of Pascal's triangle, so that, by mathematical induction or by applying known properties of binomial coefficients, we 
can sum the triangular numbers: 

«•» ^ - ( " J ' ) ' g r * - ( B S 2 ) " 
Finally, by summing over n rows of the whole number triangle and observing that the number on the right of the 

nth row is Tn+i - 1, 
n 

M 

since, by (1.1), summing all elements of the triangle through the nth row gives 

0+1+2 + 3+~+(Tn+1-1)=TTn+1_1 . 
Let us start again with 

1 
2 3 

4 5 6 
7 8 9 10 

This time we observe the triangular numbers are along the right edge. Each row sum, using our earlier process, is 

nTn - Tnm.1 = (n - 1)Tn-i +n2 = fn + 1)Tn - n . 

Clearly, the sum over n rows gives us 
(UO) TTn= TTrr1 + Tn 

or, referring again to the row sum of In -• 1)Tn^ +rt2 and to Equation (1.3), 

TTn ' E fO- 1,TH +121 = E [(i- 1)TH + *l+ TH] 

n—1 n n-1 n—1 

- £ '7l+Z *}+ £ Tj - £ 0 + 2>Tj+ Tn . 
M H M ' M 

Therefore, from (! JU), n-i 

M 
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If is also easy to establish that 
(1.12) T2n = 3Tn+Tn.-, , 
and 
(1.13) T2n~2Tn = n2, 

»-14) T2n-i-2Tn_1=n2 . 

2. GENERATING FUNCTIONS 
Consider the array A 

1 
2 3 
4 5 6 
7 8 9 10 

11 12 13 14 15 

We desire to find the generating functions for the columns. The first column entries are clearly one more than the 
triangular numbers Tn, (n = 0, 1,2,.—.). Thus, since the generating function for triangular numbers (as well as for 
the other columns of Pascal's triangle) is known, 

^0 (1-x)3 1~X <1~x)3 

We shall see that generally the column generators are 

(2 1) G (x) = Tk+t-(k+V2x + (Tk+1)x2
 = Tk+1 - (TkH + Tk)x + (Tk + 1)x2 

(1-x)3 (1-x)3 

PROOF: Clearly, G0(x) is given by the formula above when k = 0. Assume that 
G (x) = Tk+l-lk+V2x + tTk+1)x2 

(1-x)3 

Then, since each column is formed from the preceding by subtracting the first entry Tk+i, and adding one, the 
(k + 1)st column generator is 

/ T...«-(k+ 1)2Y + (T.. + 1)Y2 

Gk-f 
(1-x)' 

= Tk+1 ~<k+ 1)2j( + (Tk + 1ix2- (1"3x + 3x2 - x3}Jk+l + 1 

x(1-x)3 1~x 

= (-3Tk+l - fk + V2}+ (Tk+1-3Tk+1)x + Tk+1x
2-f-(1-2x +x2) 

(1-x)3 

SMow, from (k+1)2 = Tk+Tk+f and Tk = Tk„<j+kf this becomes 
Gk+1(x) = [3Tk+1+1-(Tk + TkH) + (Tk-1-3Tk+1)x+(TkHi-1)x2]/(1^ 

= H2Tk+1 -Tk+D- (3Tk+1 + 1 - Tk)x + (Tk+1 + 1)x2]/(1 -x)3 

= fTk+2)~ (Tk+2 + Tk+1Jx + (Tk+1 + V*2
 s Tfr+2 ~ (k + 2)2x + (TkH + 1)x2 

(1-x)3 (1-x)3 

This may now be exploited as any triangular array. 
We now proceed to another array B (Fibonacci's triangle). 

1 
3 5 
7 9 11 

13 15 17 19 
21 23 25 27 29 

Ljciicaaiu! to 
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We can tackle this immediately since we have already found the generators for array/!, because each entry in array 
B is twice the corresponding entry in array A, less one. Thus the column generators are 

(2.2) G*k(x) -2Wk+i-(k+1)2x + <Tk + 1)x2] __ 1-2X+X2 

(1-x)3 (1-x)3 

_(2Tk+1-1)-2[(k+1)2-1]x + (2Tk+1)x2 

(1-x)3 

Now since the row sums of Fibonacci's triangle are the cubes of successive integers, we can find a generating func-
tion for the cubes. 

f>*<?j?w = (* f; w * - £ > * - * £ <k+D2xk 

k=0 \ k=0 k=0 k=0 

OO OO OO \ j 

+ 2x £ *k + 2x2 X ) Tkx
k+x2 X xk\ t1-x)3 . 

But Ar=0 k=0 k=0 » 

(2.3) Z W * — I — and j^ Tkx
k = - ^ ~ 

kT0 (1-x)3 t * (1-x)3 

OO OO 

(2.4) Y*(k+ 1)2xk = -L±JL-3 = E (Tk+l + TK)xk 

k=0 (1-x) k=0 

(2.5) X xk = j J - . 
k=0 

Thus, applying (2.3), (2.4), and (2.5), 

(2 6) V * x
kG*M = 2-(1-x)2-2x(1+x)+2x(1-x)2 + 2x3+x2(1-x)2 

to k (1-x)3 (1-x)3 

(1 + 4x+x2)(1-x)2
 = 1+4x+x2

 = y * (k+i)3
x
k 

(1-x)6 (1-x)4 to 

Further extensions of arrays >4 and B will be found in a thesis by Robert Anaya [1 ] . 
Equation (2.6) also says that, for any three consecutive members of the third column of Pascal's triangle, the sum 

of the first and third, and four times the second, is a cube, or 
„3 UMVMV)-^ 

l("4)+1l(°-4
iyil("-4

2) + l[n-4
3)=n4 

by solving for the coefficients m the beginning values, using column 4 (J, 5,. 15,35, °"l in the order given: 

Observe that 

We can find 

/ . j r y = 14 

5*xf + 1°x2
=;24 

15>x1 + 5*x2+1*x3 = 34 

35' • xi + 15' • x2 + 5 • x3+ 1 • x4 = 44 

In the same manner, 
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(«) +«(»-') +88("-*) +*["-*) + ( V ) ' n* . 
Applying this method to the kth column, we obtain 

/ 
(2.7) n 

k 

£ 
M 

.nil k+1 
u [k+l-f [n+1r) • 

Returning to generating functions, (2.3) is a generating function for the triangular numbers. The triangular num-
bers generalize to the polygonal numbers P(n,k), 

(2.8) P(n,k) = [k(n -1)- 2(n - 2)]n/2 , 

the nth polygonal number of k sides. Note that P(n,3)=Tn, the 11th triangular number, and P(n,4) = n , the 
nth square number. A generating function for P(n,k) is 

(2.9) 1 + <*-3k = V p(„,k)x
n . 

The sums of the corresponding polygonal numbers are the pyramidal numbers [9] which are generated by 

(2.10) l + (k-3)x m y P*(nJ()xn 

where P*(n,k) is the nth pyramidal number of order k. Notice that k = 3 gives the generating function for the 
triangular numbers and for the triangular pyramidal numbers, which are the sums of the triangular numbers. 

1 SOME MORE ARITHMETIC PROGRESSIONS 
It is well known that the kth column sequence of Pascal's left-adjusted triangle is an arithmetic progression of 

order k with common difference of t In this section, we discuss subsequences of these whose subscripts are tri-
angular numbers. To properly set the stage, we need first to discuss polynomials whose coefficients are the Eulerian 
numbers. (See Riordan [2] J 

Let 
Ak(x) (3.1) 

(1-x)*« % 
= y nkxn 

Differentiate and multiply by x, to obtain 

But, by definition, 

x(1-x)A'kM +x(k + 1)Ak(x) = <A k+1 n 

n=0 

so that 
(3.2) 
Since, from Section 2, 

Ak+lM = Y » n
k+1xn 

<1-x)k+2 ' ~ 0 

Ak+1(x) = x(1-x)A'k(x)+x(k+1)Ak(x) . 

oo 

V n1x" =—*—, A1(x)=x 
% (I-*)2 

f ; „ v _ JO+XL AsM = x+x2 
n=0 (I-*)3 

V „V =* + 4x2+x3 , A3(x) = x + 4x2+x3 

n=0 (1-x)4 

From the recurrence it is easy to see that by a simple inductive argument, 
Ak(V = k! . 
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Also, we can easily write A4(x) =x4 + 11x3 + 11x2+x, which allows us to demonstrate Eq. (1.6) in a second way. 
Thus, using Tn = n(n + 1)/2, and the generating functions just listed, 

E it*- - E (n4 + 2n3 + n2) ;M 

n=0 n=0 

1_ 
4' 

x4+Ux3+1lx2+x _t2{1-xHx3 + 4x2+x) + (1-x)2(X*+x) 
a-x)5 

oo n 

- E E *v 
(1-xf 

_ x3 + 4x2 + x 
(1-x)b J (l-x)L 

n=0 k=0 

so that 

Tjj = (1+2 + 3 + - +n)2 = £ k3 

IMow we can write 

(3.3) 

k=0 

AkM = J2 S>-^-"y(*--/) 
J=0 

from (2.4) by applying the generating function to Pascal's triangle. Wotice that A]M, A^x), A3M, and A4M 
all have the form given in (3.3). 

Next, from a thesis by Judy Kramer [3], we have the following theorem. 
Theorem 57. If generating function 

AM = • > 
(f-x)rH 

where NM is a polynomial of maximum degree r, then AM generates an arithmetic progression of order r, and 
the constant of the progression is N(1). 

We desire now to look at 
0 0 00 00 

<) + n=0 n=0 f' n=0 (1-X> 

Now consider 
OO 

GM = 22 Q(Tn>k,xtl < 
n=0 

where Tn is the nth triangular number. Clearly, this is a polynomial in n of degree 2k. Let us assume it is expanded 
2k °° 

MnM = E V and —^777 = E ^ 
(1-x)j

 n=0 
j=0 

so that 
2k 

GM - J2 bjA/M Nk(x) 

PaU-X)>+1 (1-x)2k+1 

All of the AjM are multiplied by powers of (1 -x) in N^M except A2kM; thus, 

Nk(D = A2k(V = (2k)!/2kk! , 
which is, of course, an integer. Thus Q(Tn,k) is an arithmetic progression of order 2k and common difference 
d = (2k)!/2kkf. The general result is that, for 



228 TRIANGULAR LUMBERS [OCT. 

G*(x) = Yl Q [Q(n,m),k}xn 

n=0 

Q(Q(n,m),k) is an arithmetic progression of order mk and common difference d = (mk)!/rrrk! which thus must be an 
integer. 

4. FAL1NDROEVIBC TRSASyOULAB SyUfVSBERS 
There are 27 triangular numbers Tn, n < 151340, which are palindromes in base 10, as given by Trigg [ 8 ] . How-

ever, borrowing from Leonard [4] and Merrill [ 5 ] , every number in array C is a triangular number: 
1 
11 

(0 111 

1111 
11111 

Clearly, base 10 is ruled out, but array C indeed provides triangular numbers in base 9. Below we discuss some inter-
esting consequences including a proof. 

Let TUfj = (11111- 1)9 = Cn (n one's) so that 
Cn = 9n + 9n~1 +9n~2+-+9+1 = (9n+1 -1)/(9-1) . 

Now 
_Un(Un+1) 

'Un 2 ' 
where Un, written in base 3 notation, has /; one's, 

Un = (1111 ••• 1)3 = (3n+1 - 1)/(3 - 1). 
Then 

T - ? l 3nH-l\j 3n+t - 1 . A - (3n+1 - 1)(3n+1 + 1} _ 9n+1 - 1 . 
Un 2 \ 3-1 j \ 3-1 J 8 9-1 ~ Cn • 

Also, it is simple to show that if Tn is any triangular number, then so is 
(4.1) 9Tn+1 = T3n+1 

since 
9T +1 = 9"(n + V +1 = 9n2 + 9n+2 = (3n+1)(3n+2) = T 

This means that, if Tn is any triangular number written in base 9 notation, annexing any number of 1's on the right 
provides another triangular number, and the new subscript can be found by annexing the same number of 1's to the 
subscript of Tn, where n is written in base 3 notation. The numbers in array C, then, are a special case of Eq. (4.1). 

Three other interesting sets of palindromic triangular numbers occur in bases 3, 5, and 7. In each case below,the tr i -
angular number as well as its subscript are expressed in the base given. 

Base 3 Base 5 

Ti 
Tn 

T111 
T1111 

= 1 
= 101 
= 10101 
= 1010101 

T2 - J 
T22 = 303 
T222 = 30303 
T2222 = 3030303 

T3 =6 
T32 = 606 
T333 = $0606 
T3333 = 6060606 

Now, base 3 uses only even powers of 3, so the base 9 proof applies. For base 5, if Tn is any triangular number, then 

(4.2) 25Tn + 3=T5n+2 

since 
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25Tn + 3 25n(n + 1) . 9 = 25n2 + 25n + 6 _ (5n+2)(5n+3) + 3 = ~ T5n+2 2 2 2 

so that annexing 03 to any triangular number written in base 5 notation provides another triangular number whose 
subscript can be found by annexing 2 to the right of the original subscript in base 5 notation. Base 7 is demonstrated 
similarly from the identity 

(4.3) 49Tn + 6 = T7n+3 . 

Using similar reasoning, if any triangular number is written in base 8, annexing 1 to the right will provide a square 
number, since 
(4.4) 8Tn+1 = (2n + 1)2 . 

For example, T6 = (25)8 and (251)8 = 169 = 132. 

Any odd base (2k + 1) has an "annexing property" for triangular numbers, for (4.3) generalizes to 

(4.5) T(2k+1h+k = (2k+1)2Tn+Tk , 

but other identities of the pleasing form given may require special digit symbols, and Tk must be expressed in base 
(2k + 1). Some examples follow, where both numbers and subscripts are expressed in the base given. 

Base 8 

T4 = 11 

T44 = 1111 

T444 = 111111 

BilgJO 

t8 =22 

T88 =2222 

T888 = 222222 

Base 25 (t)25 * (fflw 

Tt = 33 

Tn = 3333 

Tm = 333333 

Base 33 (s)33 = (16)10 Base 41 (q)41 = (20) w 

Ts = 44 

Tss = 4444 

TSSs = 444444 

= 55 

= 5555 

Tqqq = 555555 

Base m(r)49 = (24) w 

Tr = 66 

Trr - 6666 

Trrr = 666666 

Base 57 (m)57 = (28) w Base 65 (n)65 = (32) 10 

77 
7777 
777777 

88 

8888 

888888 

Base 73 (p)y.? = (36) w 

'PP 

= 99 

= 9999 

Tppp = 999999 

Jay 19, (t)m = (W10 

T9 = tt 

T99 = tm 

T999 = tttttt 

5. GENERALIZED BINOMIAL COEFFICIENTS FOR TRIANGULAR NUMBERS 

Walter Hansell [6] formed generalized binomial coefficients from the triangular numbers, 

>m>m-1 '" 'm-n+1 [:]- TnTn-1 "• T1 
0 < n < m . 

That these are integers doesn't fall within the scope of Hoggatt [7 ] . However, it is not difficult to show. Since 
Tm = m(m + 1)/2, 
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where 

fml = I m\ I m+ 1 
ln\ \n) [n+1 •n + 1 

lm) are the ordinary binomial coefficients, so that ]~m Tare indeed integers if one defined 

as will be seen in the next paragraph or two., 
The generalized binomial coefficients for the triangular numbers are 

/ 
1 / 
/ 3 1 

1 6 6 

1 10 20 

1 15 50 

1 21 105 

1 
10 1 

50 15 

If the Catalan numbers Cn = 1, 1,2, 5t '14,42, 132, - , are given by 

2x 
n=0 

then we note that the row sums are the Catalan numbers, Cn+i. 
We compare elements in corresponding positions in Pascal's triangle of ordinary binomial coefficients and in the 

triangular binomial coefficient array: 

Let us examine 

[-] 

/ 
1 
1 
1 
1 

1 
2 1 
@ - 3 1 
4^6 4 1 

Im+1\ 1 m + 1\ 

1 1 
1 3 1 
1 ® 6 1 
1 10 20 10 1 

_ Im\lm+1\. 1 
\n J\n+1 ) m-n+ 1 
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ON FERNS* THEOREM ON THE EXPANSION 
OF FIBONACCI AND LUCAS NUMBERS 

A.J.W.HiLTOM 
The University of Reading, Reading, England 

Let (Fn ) be a Fibonacci-type integer sequence satisfying the recurrence relation Fn = pfn-i
 + yFn-2 

(n > 2) in which p + 4q ¥= 0, and let (Ln) be the corresponding Lucas-type sequence, as described in [2 ] . 
The object of this note is both to generalize Ferns' theorem [1] on the expansion of 

^xi+K2i""+Xn a n ^ ^xj+X2/m"m+xn 

and to simplify the proof. Ferns' theorem was proved for the case when (Fn) and (Ln) were the Fibonacci and 
Lucas sequences, respectively, so in the statement and proof of the theorem the reader may interpret '(Fn) and 
(Ln) as the ordinary Fibonacci and Lucas sequences, if he so desires. 

Let 

k ~ x/y x;2'" Xjk xjj xjn^k 

where the sum ranges over all permutations dp — , /£, jj, — , jn-k ) of (1, — f n) such that 

1 < if < i2 - < Ik < n a n d 1 < jj < J2 < '" < Jn-k < n* 

for 0<k<n. Let a and j3 be the roots of x2-px -g and let A = F 1 - F0fi, B = F1 - F0a. Then 4 *0 and 
B±0 (see [2]) so that 

L1+dF1 

2A • • »* 2B J 
where 

d = sJfTJq . 
Then the generalized version of Ferns' theorem may be stated in the following way. 

Theorem: If 
Ve=So+ d2S%+ d4Sn

4 + - and 2 0 = dS? + d3Sn
3 + d5S§ + -

then 

and 

^xi+x2+""l~xi 
= _1_\(_JL i_\ % + ( JL. + -!—] s f 

'" 2nd\\An-1 B"-1 J ' \An-1 B"-1 J °) 

i » . + ^ - + * „ T \\ ——-, + —T^ ~£>e + 

xi+X2+-+xn 2" ) \ A"-1 B"-1 B \ A"'1 B"-1 

Proof: It is well known that if r is a positive integer 

Fr = Aa^Mf Lr = Aar + Bpr 

Therefore, 
231 
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Therefore 

a 2A ' P 28 

•2^<Lx1+X2+-+xn
+dFx1+x2+-"+xnt 

x1+x2+-+xn 
= a 

±-(Lx1+dFx1)(LX2 + dFX2)~. (LXn + dFXn) 
2nAn 

-— (SS+dSn+d2S$+- +dnS"). 
on An u ' * n 

Similarly 
1 

2R (L*1+X2+-+Xn " dFx1+x2+-+xn> 2B 

= -1— ($n - dSn+ d2S%- .» + <-1)ndnS") . 
2nBn 

The theorem now follows by addition and subtraction. 
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ARGAND DIAGRAMS OF EXTENDED FIBONACCI AND LUCAS NUMBERS 

F, l WUWDERL1CH, D. E. SHAW, and SVL J. HOiES 
Department of Physies, Wlllanova Uniwersity, Villanova, Pennsylvania 19085 

Numerous extensions of the Fibonacci and Lucas Numbers have been reported in the literature [1-6]. in this 
paper we present a computer-generated plot of the complex representation of the Fibonacci and Lucas Numbers. 
The complex representation of the Fibonacci Numbers is given by [5,6]. 

F(x) = <fox - &~x [cos (XTT) + i sin (xn)] 

where 

0 = LLs/T and F(-x) = i-l)n+1 Fix), 

and 

Re[FM] = -jL- \<t>x-<t>-xcoshx)^ ; 

lin[F(x)l = -j=r { -</>'* sin fax)) 
V5 

The Fibonacci identity: Fix) = Fix - 1) + Fix - 2) is preserved for the complex parts of Fix): 

Re [Fix)] = Re [Fix - 1)] + Re [Fix - 2)1 
and 

lm[F(x)] = lm[F(x - 1)1 + lm[F(x - 2)1. 

Figure 1 is a computer-generated Argand plot of Fix) in the range -5 <x < +5. 
The branch of the curve for positive x approaches the real axis as x increases. Defining the tangent angle of the 

curve as: 

{ Re [Fix)] I 

this angle approaches zero for large positive x since 

fJ?L = ImlFM] = 0. 
The negative branch of the curve approaches a logarithmic spiral for x large and negative. The modulus r is 

given by: 
r = I Re2[Fix)] + lm2[F(x)l ) % 

in the limit 

therefore, 
233 
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Fig. 1 Computer-Generated Argand Plot 

of the Fibonacci Function 
In r 

-3 -I 41 +3 +5 
Fig. 2 Computer-Generated Argand Plot 

of the Lucas Funct ion 
l-1/Mk , 

where 
k = in (<l>A/s) and r « 

Similarly, the Lucas number identity: 

L(x) = Ffx +1) + Fix - 1) 

leads direct ly t o [ 6 ] : 
Llx) - 0 X * l-1)x<t>-x 

and the complex representation of the Lucas Numbers fo l lows 

Llx) = <px + (p~x (cos rrx + i sin TTX) 

f\l/k/7T) -kx 

with 

Note: 
Re[L(x)] = <!>* + <j>* cos TTX 

lm[Llx)] 

and 

- 7 
<J5 

lm[L(x)] 

imlFlx)] . 

0 x sin TTX . 

As wi th the previous case fo r n large and positive, the positive branch of the Lucas number curve approaches the 
Real axis. Again, the negative branch approaches a logarithmic spiral fo r n large and negative. 

if ~ m, r « <f^l/7t)
f Inr « -l^Mln 0, r ~ e^™* = e^x. 
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A PEPJTAGOWAL ARCH 

DUAHJE W. DeTEMPLE 
Washington State University, Pullman Washington 99113 

A pentagonal arch can be generated by rolling a regular pentagon along a baseline as follows. In Fig. 1, as the left-
hand pentagon is rolled toward the right, the vertex A moves first to B, then to C, D and finally to £ as the succes-
sive sides touch the baseline. Connecting these points by line segments, the five-sided polygonal arch ABODE is formed. 
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Figure 1 

Let s denote the sides of the generating pentagon, and let r= %(\/5 + 1) denote the golden ratio, ft is then ea«y 
to show 

AB = DE = -s/S^rs, BC = CD = «J2 + TS 

LEAB = LAED = 54°; LABC = LBCD = LCDE = 144°. 

Thus the pentagonal arch has some unexpected properties: 
(1) Sides AB and BC (and of course DE and CD) are in the proportion of the golden ratio: ^ = r ; 

AB 
(2) The center O of the generating pentagon (in its initial position) lies on the line passing through A and B; 
(3) The obtuse angles of the arch are equal. 
While these three properties follow directly from the above formulas, a fourth property requires some additional 

considerations. 
area of arch (4) = 3 . 

. area of generating pentagon 
To see this first observe from Fig. 1 that it is enough to show that region ABCFG of Fig. 2a is equal in area to that 
of the generating pentagon. 

Figure 2 
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But by referring to Fig. 2b it is seen 

area ABCFG = area AB'C'F'GH = area HBC'F'G 

and so property (4) is demonstrated. 
In the way of generalization it is natural to ask: Are there analogous properties for the /7-sided arch generated 

by rolling a regular /7-gon? The answer is that, upon replacing "pentagon" by "regular polygon/' properties (2), (3) 
and (4) apply equally well to the general case. The two acute base angles are each 

and the n - 2 obtuse angles are each equal to 

1-1-\ x 180° . 
n I 

A proof of (4) for the general case is the main content of [ 1 ] ; as might be expected the above proof for the pen-
tagonal arch does not generalize, though the ideas are useful for the simpler cases n=3,4, 6. 

There is one aspect of the pentagonal arches which does seem more interesting than for the general arch. By prop-
erty (2) five arches can be fit together in such a way that their bases form a regular pentagon. 

Figure 3 

The interior star region can then be partitioned into ten congruent isoceles triangles, each of which has area equal to 
that of the original generating pentagon. Hence ail of the twenty-five elemental polygons of Fig. 3 have equal area. 

REFERENCE 

1. D.W. DeTempie, "The Area of a Polygonal Arch Generated by Rolling a Polygon," Amer. Math. Monthly, (to 
appear). 
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A GENERALIZATION OF THE HSLTON-FERN THEOREM 
ON THE EXPANSION OF FIBONACCI AND LUCAS NUMBERS 

The Uniwereity of Mew England, Armidale, N. S„ W.f mi 
The l e w South Wales Institute of Technology, Broadway, Australia 

• 1 . UTRODUCTfOi 

The object of this note is to generalize Hilton's extension [2] of Fern's theorem [1] to sequences of arbitrary 
order. Ferns found a general method by which products of Fibonacci and Lucas numbers of the form 

could be expressed as a linear function of the un. Hilton extended Fern's results to include effectively the general-
ized sequence of numbers of Horadam [3 ] . 

We shall extend the result to linear recursive sequences of order r which satisfy the recurrence relation 

r 

(1.1) Wi%+r = T , ( ~ V'+1 PriW<sr
rn+r-j (s = 0, h - . r-1;n>r) 

1=1 
where the Prj- are arbitrary integers, and for suitable initial values W^, n = 0,1, —, r- 1. When r = 2, v,we have 
Horadam's sequence. We are in effect supplying an elaboration of the results of Moser and Whitney [4] on weighted 
compositions. 

Modifying Williams [5] let arj be the r distinct roots of the auxiliary equation 

(1.2) xr = £ (~^'+7^H > 

where 
r-1 

(1.3) arJ - J J ] Wi[^ dkw^k (J - 7,2, »., r) 
k=0 

in which d is the determinant of the Vandermonde matrix 

/ 1 - / 
ar1 ar2 " an 

ar-1 ar-1 _ jr-1 
^dr1 dr2 dn 

and w = exp(2iTt/r), i2 = -1. (This is not as general as Williams' definition, but it is adequate for our present purpose.) 
When r = 2, , . . -. (9] 

which agrees with Hilton. 
We shall frequently use the fact that 

where 8/j is the Kronecker delta. 

J2 w'V^rtio, 

23? 
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2. PRELIMINARY RESULTS 

The first result we need is that 
r-1 

(2.1) W{
s
r}+1 = d~s J2 arjW8* (s = 0, 1, - , r - 1). 

j=0 
Proof: 

2>x y ^E<^*E ^ ' 
j=0 « k=0 }=U 

= LwM d'r 
r
vvi,r+1a r ' 

from which the result follows. 
Th is su ggests th at we set 

r-1 

(2.2) Ws
(rJ+r - d~s J^ a"j wsI (s = 0,1,-, r-1), 

1=0 

and it remains to see whether the wJrJ of formula (2.2) satisfy the recurrence relation (1.1). 
The right-hand side of this recurrence relation is 

r r—1 

£ £ (-1)k+ld-°a?m
kw"»Prk 

(from (2.2)) k=1 m=0 

d~S E ( £ <-1>k+1°™Prk) < 
m=0 V k=1 

r-1 

""SE 
m=0 

r n-r sm 
armarm vv 

(from (1.2)) 
W^n]

 +r as required 

(from (2.2)). It follows then that 

(2.3) '3-fEC^ 
r-7 

k=0 

(j = 1,2, .-.,r). 

Proof: From Eq. (2.2), we have that 

r-1 

- f E 4% dk £ *<"» 
k=0 1=0 

= E ( $X **%,**»•* 
i=0 \ k=0 

from which we obtain the result. 
3. HILTON-FERN THEOREM 

Following Hilton let 
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n 

(3-D *£« E n ^ (k = 0,1,...,r-tJ, 
%k=m i=1 

where we have all permutations of fir 7, •- ,xn). For example, when r = £ we get 

sno = E * * & « »»&«? -w'o2Ln_1+2w<£ln+2, 
and 

*? - E ^ S U " ^ •••»<_,*<,„ -
and so on, as in Hilton. 

Theorem: For S^ defined in formula (3.1), 

W<%+X2+...+Xn+r= r» £ ^ ^ / % " • 

B-oo/l- Let 

few 
/=o k=o 

n 

^n ~ 2^J
 xi 

Then 

Thus 

(from (2.2)) 

as required. For example, 

4"= " .J =-f n X<,+rA^ 
= r'n(Sn

0 +dw-iSn
1 + '--+(dw-n(r-1hS?r_1jn) 

(r-1)n 

r-1 
WM = ^ y xn sj 
¥%xn+r u Z-# arj 

1=0 
r-1 (r-1)n 

= rnd^ £ X dkw(s~k}isn
k , 

1=0 1=0 

<1+x*...+*n+2 - <*>n E E ^ * * z 
7=0 /t=0 

and 

(JH" E (dk + (-d)k)Sn
k 

k=0 

>€W-^ - «y, E E ^/"'^ 
/=0 ^=0 

= ^ * E (dk~1 + (-d)k~1)Sn
k =-^f (dSn

1+d3S%+~). 

k=o 2 d 
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which agree with Hilton when his A = B= 1. These results could be made more general by .generalizing the definition 
of arj along the lines of Williams. 

Thanks are due to Dr. A.J.W. Hilton of Reading University, U.K., for suggesting the problem and for a preprint of 
his paper. 
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TO MARY ON OUR 34th ANNIVERSARY 

HUOONORDEN 
Rosiiodafe, Massachusetts 02131 

Our wedlock year is thirty-four, 
A number Fibo did adore, 

He'd say, "Your shape is really great, 
A perfect one point six one eight." 

As everyone around can see, 
You Ye pure Dynamic Symmetry, 

And when demurely you stroll by 
All know you are exactly Phi. 

Proportions are what makes things run, 
Like eight, thirteen and twenty-one, 

Then, next in line is thirty-four, 
But, wait, there's still a whole lot more. 

In nineteen hundred ninety-five 
Our wedlock year is fifty-five, 

There's much more living yet in store, 
Today is only thirty-four! 

So stay the way you are today, 
Don't work too hard, take time to play, 

And stay point six one eight to one 
So we can still enjoy the fun. 

Hugo 
April 7,1974 



SOME ASPECTS OF GENERALIZED FIBONACCI NUMBERS 

J.E.WALTON* 
R. A. A. F* Base, Lawerton, Victoria, Australia 

and 
A .F . HORADAHH 

Uniwersity of l ew England, ArmidaSe, N. S„ W., Australia 

1. i iTRODUCTlOi 
In a series of papers, Horadam [8 ] , [9 ] , [10], [11] has obtained many results for the generalized Fibonacci 

sequence \Hn> defined below, which he extended to the more general sequence j Wn(a,b;pfq) \ in [12], [13]. 
Additional results for the sequence \ Hn >, which we concentrate on here, have been obtained by, among other 

authors, Iyer [14], and Zeitlin [20]. Some of the results in §5 have been obtained independently by Iyer [14]. 
It is the purpose of this paper to add to the literature of properties and identities relating to j Hn > in the ex-

pectation that they may prove useful to Fibonacci researchers. Further material relating to properties of j Hn \ will 
follow in another article. 

Though these results may be exhausting to the readers, they are not clearly exhaustive of the rich resources 
opened up. As Descartes said In another context, we do not give all the facts but leave some so that their discovery 
may add to the pleasure of the reader 

2. A GEiERATlOi OF Hn 

Generalized Fibonacci numbers Hn are defined by the second-order recurrence relation 

(2.1) Hn+2== Hn+1 + Hn (n>0) 
with Initial conditions 
(2.2) H0 = q, H1 = p 
and the proviso that Hn may be defined for n < 0. 

(See Horadam [12] J 
Standard methods (e.g.. use of difference equations), allow us to discover that 

(2.3) Hn = -l—[uf-mPn 

2y/S- X 

a =
 11 y/s. p - LZL>^E (roots of x2 - x - 1 = 0), so that 

2 ' 2 

a+@ = 1, a/3 = - 7 , a-($= <Js, 0 = -a~l ; 

(2.4) \ s. = 2(p- q(U, m - 2(p - qa)e so that 

n + m = 2(2p -q), 2-m = 2q^/s and 

%&m = p2 -pq -q2 = d (say). 

It is well known that/7 = 1,q = 0 leads to the ordinary Fibonacci sequence j Fn^, while/? = 2q = ~1 leads 
to the Lucas sequence \Ln^. 

Following an analytic procedure due to Hagis [5] for generating the ordinary Fibonacci number Fn, we pro-
ceed to an alternative establishment of (2.3). 

Put/?n = / / n + 1 . Let 

where 

*Part of the substance of an M. Sc. Thesis presented to the University of New England, Armidale, in 1968. 
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(2.5) h<x> = Z V 
n=0 

= h0 + hxx + h2x
2 + ... + hnx

n + ... 

= MO) + h'<°)* + h"M*2 + ~ + h[n)(Q)xn , i . (n) / / i i . n 

using a Maclaurin infinite expansion. 
With the help of (2.2) one can obtain the generating function 

(2.6) h(x) 

Introducing complex numbers, we set 

(2.7) 

p + q* 
1 -x -x2 

1 - z - z2 

where h(z) is an analytic function, whose only singularities are simple poles at the points 

- / - N / 5 . 
~2 " - ~a ar,d 

-1+s/5 
= ~$ 

corresponding to the roots of the equation z2 + z - 1 = 0. 

From (2.5), in the complex case, it is clear that 

(2-8) * „ - ^ 

on comparing coefficients of zh-

One may follow Hagis, appealing to Cauchy's Integral Theorem and the theory of residues, or argue from 
(2.7) that, after calculation, 

whence, on differentiating n times, 

(2.10) h<">(z) - - L - l *n!
 +1 + (=!&$, \ 

so that 

(2.11) h(n)(0) -J—\*d>+1-mF+1\ 
2sf5 

from (2.8) from which follows the expression for Hn+ / . 
Of course, if we wish to avoid complex numbers altogether, we could simply apply the above argument to (2.6) 

instead of to (2.7). 
3. GENERALIZED "FIBONACCI" ARRAYS 

Consider the array (a re-arrangement and re-labelling of Gould [3]) : 

Row\Col. 
0 
1 
2 
3 
4 
5 
6 
7 

0 

P 
P 
P 
P 
P 
P 
P 
P 

1 

q 
p 
p. 
p 
p 
P 
p 

2-

q 
p + q 

2p + q 
3p + q 
4p + q 
5p + q 

3 

„ 

q 
p + q 

2p+-q 
3p + q 
4p + q 

4 

q 
p + 2q 

3p + 3q 
6p+4q 

5 6 

q 
p + 2q q 
3p + 3q p + 3q 

7 •• 

q 
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Letting Cj (j = 0, /, 2, - , n, —) be an element of this array, where the superscript refers to rows and the sub-
scripts to columns, we define the array as in Gould [3] by the conditions: 
(3.1) C$=Cl= p, C] = q 

(3.2) Cf = 0 if / > / ? or j<0 . 

(3.3) Cf+1 = C}1, + LtI=!JL Cf if n > 7, J > 0. 

The row-sums are given by 

n 

(3.4) SJp,q) = YJ tf (n > 0) 
1=0 

=pFn+1+qFn = Hn+1 

by Horadam [8 ] . Thus the row-sums of this array generate the generalized Fibonacci numbers. As indicated in 
Gould [3] the given array generalizes two variants of Pascal's triangle which are related to Fibonacci numbers and 
to Lucas numbers. 

It may easily be verified that 

(3.5) Cn
2k = ( " - £ - ' ) /»+( n ; V ) q 

(3.6) C&H= (n-k
k-

2)p+ ["-k
k-l2) 1 

so that 
n [n/2] [(n-1)/2] 

0-7) E C?= Ts°2k+ E C&+1 
j=0 k=0 k=0 

= Mn+1 > 
as expected (cf. (3.4)). 

Similarly, we can show that 
n 

(3-8) YL(-VlcJ = Hn-2- n > 2 . 
j=0 

If we define the polynomials 
{cnM\ by 

n 
(3.9) CnM = YiC?xJ, 

j=0 
then we have on using (3.5) and (3.6) that 

[n/21 I, x i , ) 
(3.10) cnM= Z{ (n-k

k-')p+(nj!L7')'i\** 
k=0 X ; 

Un-1)/2] n-n/zj , \ 

k**0 l 

where it can be shown, as in Gould [3 ] , that the polynomial Cn(x) satisfies the simple recurrence relation 

(3.11) 2Cn+1(x) = (2x + 1)Cn(x) + Cn(-x) 

on using (3.3). Similarly, it can be shown that Cn(x) satisfies the second-order recurrence relation 
(3.12) Cn+2(x) = Cn+1(x)+x2CnM . 
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It may be noted in passing that certain properties of an array involving the elements of \Hnt are given in Wall [19]. 

4. 6E1ERAL1ZED FIBONACCI FUNCTIONS 
Elmore [1] described the concept of Fibonacci functions. Extending his idea, we have a sequence of generalized 

Fibonacci functions | Hn(xj I if we put 

H-,(x) = H'0M 

H„M = H(
0

n> (x) = -J—1 atfe** - mfe**) 
2^/5 

so that we have 
(4.2! Hn+2M = Hn+ j (x) + Hn (x) 

Obviously, 

HofO) = q = H0, Hj(O) = p = Hj 
H2(0) = p+q = H2 , - , (4.3) 

etc., and 
(4.4) Hn (0) = -L-\toP-mir\= H„. 

2sJ5 ( 

We are able to find numerous identities for these generalized Fibonacci functions, some of which are listed below for 
reference: 
(4.5) Hn.iMHn+1M-H%M = (-1)ndex 

(4.6) Hn_ j (x)FrM + Hn MFr+ r(x) = Hn+r(2x) , 

where the Fn(x) are the Fibonacci functions corresponding to the fn(x) of Elmore [1]. Similarly, 
(4.7) Hn_ t (u)Fr(v) + Hn (u)F,+1M = Hn+r(u + v) 

(4.8) Hi 1 (x) + H*(x) = (2p - q)H2n-1 (2x) - dF2n. 1 (2x) 

(4.9) H%+ j M - Hi j (x) = (2p - q)H2n (2x) - dF2n (2x) 

(4.10) H*M + H3
n+1 (x) = 2Hn(x)H2

+1(x) + <-1)ndexHn.7(x) 

(4.11) Hn+1.r(x)Hn+1+r(x) - Hi+1 (x) = (-1)n-rdexF? 

(4.12) HnMHn+i+rM ~ Hn.s(x)Hn+r+s+1(x) = (-1)"-sdexFsFr+s+1 • 

We note here that (8) to (14) of Horadam [8] are a special case of (4.5) to (4.12) above, since, as we have already 
shown in (4.3) and (4.4), the generalized Fibonacci functions become the generalized Fibonacci numbers \Hn\ 
when x = 0. 

As in Horadam [8], we also note that (4.5) is a special case of (4.11) when r = 1 and n is replaced by n - 1. 
I fweputr = fl in (4.11) we have 
(4.13) HtMH2„HM - Hln(X) = dexFi . 

Corresponding to the Pythagorean results in Horadam [8], we have, for the generalized Fibonacci function Hn(x) 

(4.14) 12Hn+ j MHn+2(x) \2+{Hn MHn+3M } 2 = { 2Hn+, (x)Hn+2(x) + H^(x) } 2 

from which we may derive (16) of Horadam [8\, for the special case when x = 0. 
The above identities are easily established by use of the formula for Hn (x) given in (4.1) with reference to the 

identities 
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/ + a2 = cujs , l + f= -frsjn , 
a$ = -1 , %9m = d 
ar = 2 + y/ii, 1 + or = 2 or , 

2a+$ = a2
 r 1 + a= a2 

a+($= 1 , n(2p-q)-2d = 1A22 , etc. 

Asin Elmore [1 ] , we can extend this theory of generalized Fibonacci functions to generalized Fibonacci functions 
of two variables to give a function of two variables, thus: 

(4.16) <po = (pfx,y) = T ) H,(x) £•' = H0(x) + Hf(x)y + H2(x) *— + - . 

Differentiating (4.16) term-by-term gives 

i=1 i=0 
(4.17) 

i7 = lLHi+i(xj fr 

(4."l8) ^ = ^ ° . 
dx dy 

Similarly, we can verify that all higher power partial derivatives are equal, so that if we denote the kth partial 
derivative by 0^# we have 

oo oo 

(4.19) <t>k = -£^s = £ "k+iM £ - = £ »K+i<y> TT . 

where r and s are positive integers such that r + s = k. Noting that 

(4.20) 4>k(x,0) = Hk(x), 4>k(0,y) = Hk(y). <l>k(0,.0) = Hk , 

we can expand <j>k(x,y) as a power series of the two variables x and y at (0,0) so that we have 

<Pk(x,y) = h(0,0) + 4>k(o,o) <pk(o,on 
dx ¥ by J 

(4.21) +2! L " dx2 
1 r ..2 *2<l*(o,o) +?xv *2<t>k(o,Q) ll.2s2<pk(o,o)'\r 
>!l zx2 ™y by2 J 

= Hk+Hk+1i^yi+Hk+2(^f£ + ... 
so that 

(4.22) ftfcW - Hk(x + y) - cJLJL__^|p 

5. GENERALIZED FIBONACCI MUIVIBER IDEWTiTSES 
Many other interesting and useful identities may be derived for the sequence \Hn\ using inductive methods or 

by argument from (2.1 h We list some elementary results without proof: 
(5.1) H.n = (-Dn[qFn+1-pFn] 
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n 

(5.2) 22 Hj = Hn+2~H1[= Hn+2-p] 
1=0 

n 

(5.3) £ H2H = H2n-H„2[= H2n + (p-2q)] 

i=0 

n 

(5.4) 22 H2i = H2n+1 - *Lf [= H2n+1 -(p- q)J 
1=0 

2n 

(5.5) 22 (-Vi+lHi = 'H2n-1 +P ~ 2q 
i=0 

n 

(5.6) 22 H? = HnHn+1-q(p-q) 
1=0 

n 

(5.7) £ ///,- = (n + 1)Hn+2 - Hn+4 + H3 

i=0 

(5.8) Y, (")"• = »2n 
i=0 

n 

(5.9) 22 ( / ) H * = 2"H2n 
i=0 

n 

(5.10) 22(1 )H4i = 3nH2n . 
i=o ' 

The three summations (5.8), (5.9) and (5.10), which are generalizations of similar results for the ordinary Fibonacci 
Sequence \ Fn I as listed in Hoggatt [ 6 ] , may all be proved by numerical substitution as, for example, in 

s(;)»»-i£|'S(;K-s(;H 
i=0 I i=0 i=0 ) 

2\J5 

- ^{m2"-mf"\=2"H2n . 

Some further generalizations of identities listed in Subba Rao [17] are: 

n 

(5.11) J2 H3i'2= 1/2(H3n-H-3> 
i=0 

Proof: Using identity (3) of Horadam [8 ] , viz., 

2Hn = Hn+2 - Hn„<i , 
we have 
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2H_2
 =

 HQ— H„3 

2H-] = H3- H0 

Adding both sides and then dividing by two gives the desired result. Similarly, 

n 

(5.12) £ H3h1 = V2(H3n+1-H_2) 
1=0 

n 
(5.13) 22H* = MH3n+2-H-1). 

1=0 

Some additional identities corresponding to formulae for the sequence \Fn\ in Siler [16], are 

n 
(5.14) £ H4h3 = F2(n+1)H2n„3 

=0 

n 

(5.15) ] P H4h1 = F2(n+1)H2n-l 
1=0 

n 

(5.16) 22 H4h2 = F2(n+1)H2n-2 
1=0 

n 

(5-17) J2 H4i = F2(n+1)H2n • 

As in Siler [16], identities (5.4) and (5.11) to (5.17) suggest that we should be able to solve the general summation 
formula 

n 

< 5 - 1 8 » 22 H*hb • 
i=i 

Proceeding as in Siler [16], we have: 

M 2yJ5 { M i=i ) 

_ (-DaHan.b - Ha<n+1hb - (-1)aH.b + Ha.b 

<-1)a+1-La 

on using the fact that 

£ aahb - aa~b [1 + aa+- + a("-1,a] = aa'b ^—^ 

i=i aa-1 

with a similar expression for the term involving j3. Here it should be stated that Siler rediscovered a special case due 
to Lucas in 1878. 

The identity (5.19) below which arose as a generalization of the combination of (2) and (3) of Sharpe [15], may 
be established thus: 
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(5.19) H n+2k+1 + H n+2k = H2k+1H2n+2k+1 + H2kH2n+2k 

Proof: 

20(H2
n+2k+1 + H2

n+2k) = (mn+2k+1 - mf$n+2k+1)2 + (m"+2k - mBn+2k)2 

= z2a2n+4k+2 + m2p2n+4k+2 + i2<]2n*4k + m2&2n+4k _ gd(ap}n+2k fJ + ^ 

= 92a2n+4k+2 + m2$2n+4k+2 + s.2a2n+4k+m2$2n+4k 

20<H2k+iH2n+2k+1+H2kH2n+2k) = i2a2»+4k+2 + m2B2"+4k+2 + *2a2n+4k
+m

2B2n+4k 

-Rm(aB)2k+1 [a2n + B2n]- m(aB)2k[a2n + B2n] 
= z2a2n+4k+2 + m2B2n+4k+2 + 9.2a2n+4k + m2B2n+4k . 

In an attempt to generalize those identities found in Tadlock [18], involving the Fibonacci sequence \ Fn\
 ar |d 

the Lucas sequence j Ln J we have 

(5.20) F2i+l\(Hk+j+i+H2-j) 

Vr00f'' H2 +H2 _ f mk+'+1 - mBk+J+'~\2
 + \mk-i-m&k-n2 

Hk+i+i+»k-i-\_ Jfi-f J + |_ 2(a -% J 
_ z2a2k+1(a2i+1+a2>-1 + m2 B2k+1 (B2i+1

 + B'2''1) 
4fa- S)2 

2d(aQ)k+I[aB+(cSr2i] 
(a-S)2 

_ (a2'+1 - B2>+1)(z2a2k+1 - m2B2k+1) 
(a-Q)4(a-B) 

since 

i.e., 

i.e., 

a2>-l = -B2'+1 

pr*-' = -a2'*1 

2 2 o.2a2^+^ — m28* 
Hk+j+1 + Hk-j = F2j+1 ' % a_o 

2_„_^u2 F2j+1 I (Hk+j+l + Hk-j^ 
Also, 
(5.21) 2[2H2+(-1)nd]2 = H* + H*+1 + H*-1 • 

This identity which is a generalization of Problem H-79 proposed by Hunter [7]., may be solved as follows. From 
the identity (11) of Horadam [8 ] , we have 
(5.22! 2[2H2+l-1)nd] = 2[Hn„1Hn+1+H2]2 

Now, 
(5.23) H4 + 4H2Hn„1Hn+1 + 2H2

n„1H
2
+1 = (Hn+1 - Hn^)4+ 4(Hn+1 - Hn^)2Hn^Hn+1 

on calculation, so that (5.21) follows from (5.22) and (5.23). 
Two further interesting results are obtained by considering the following generalization of Problem B-9 proposed 

by Graham [4 ] . From 

Hn-1^n+1 Hfl„1HnHn+1
 Mn-1HnHn+1 ^n-1^n HnHn+1 
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we have, on summing both sides over n = 2, —,-°° 
oo 

(5.24» y ; 

Similarly, from 

we have 

_0 Hn-iHn+1 ptp+q) 
n=z 

Hn _ Hn+i~ Hn„i __ / 
Hn-1Hn+1 ^n-1^n+1 Hn-1 Hn+1 

,5!5' £ HZ*. 
= M+JL-

0 ~fn-lH„+i P(p+q) 

6. RECURRENCE RELATIONS FOR \HHA 

If we define a sequence | Gn I by Gn = HH , and define | Xn \ and j Yn I by Xn = Fnn and Yn = L 
then we may verify that 

(6.1) Gn+3 = Gn+2Yn+i ~ (-ffn+1Gn . 

which corresponds exactly with (1) of Ford [2 ] , and that 

(8.2) 2Gn+3 = Gn+1 Yn+2
 + Gn+2Y„+i - (~1)Hn+1 H0Yn 

corresponding to (5) of Ford [2 ] . 
If we now define the sequence \Zn\ by Zn = HH +j, then 

( 6 . 3 ) , l • • ) 

H H 
where Rn = a " (and Sn = |3 " ) for convenience. 

•• Zn+2 = z-jf { &aJRn+2-mPJSn+2} 

{GA) =-L= {*a>Rn+1Rn-mVSn+1Sn\ 

since Rn+2 = a n+2 = a n+1 a " = /?„+//?„, and similarly for Sn+2 . 

••• Zn+2 = zjjr { Rn<za! Rn+1 - m$>Sn+i) + Sn+i(mi Rn-m&Sn) 

. ; - RnSn+1(m>-m$i) | = RnZn+1 +Sn+-,Zn - RnSn+1Hj 
I.e., ' 

H 
(6.6) Zn+2 = RnZn+1 + Sn+ iZn-(-1) Sn„ / Hj 

RnSn+1 = < / V " + ? = (a&)H"$H"-1. 
Similarly, H 

16.7) Zn+2 = SnZn+1 + Rn+1Zn - (-11 nRn-iHj . 
Adding Eqs. (6.6) and (6.7) gives 

(6.8) 2Zn+2 = Z^fRn+SJ + ZnfRn^+Sn+O-hV^HjfR^+S^) 

L e " Hn 

Si l lC8 H H 
Rn + Sn = a " + /J n = LHn= Yn 

i.e. 
(6.9) 2Hu+2+j = LuHH^+LH^Hu^-f-D^LH^Hj 
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which is a generalization of (14) of Ford [2 ] . 
One can continue discovering new generalizations ad infinitum (but not, we hope, ad nauseam!), but the time has 

come for a halt. 
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AW EXTENSION OF FIBONACCI'S SEQUENCE 

P.J.deBRUIJN 
Zoutkeetlaan 1, Oegstgeest, Holland 

Fibonacci's sequence is generally known as the sequence 1, 1,2, 3, 5, 8, 13,21, 34,, 55, 89, - defined by Uf = 1, 
u2 = h Un+t = un + un-h ' n which n is a positive integer > 2 It is easy to extend this sequence in such a way 
that n may be any integer number. 

We then get: 

- -21, 13, -8, 5, -3, 2, -1, /, 0, 1, 1, 2, 3, 5, 8, 13, 21, •« 

u„8 u-y u„6 us u„4 u„3 u„2 u-i u0 ui u2 u3 u4 u5 u6 u7 u8 

In this sequence we have: 

(1a) u-i = 1, U2 = h un+i = Un+Un-1 for. all u e Z . 
The following definition is known to be equivalent to the previous one: 

(1b) un = g^zf~ fora,f ^eZ' 
in which a is the positive root and |3 the negative root of the equation x = x+ 1. 

We know the following relations involving a and j8 to be valid: 

a * % + %y/s = 16180339 -

P - % - %s/s = -0.6180339 .» 

a2 = a+1, B2 = p+1, aP=-1, u+p=1, a-p=sjs. 

2 
The proof of the identities in this paper will in most cases be based upon a = a+ 1. 

The purpose of this article is to study the results of an extension of definition (1b) in such a way that for n not 
only integers, but also rational numbers, and even all real numbers can be chosen. 

If we try n = ft in definition (1b), we get 

in which $A 

Uy2 
_a*-fl* 

a-fi 

' = xj& causes trouble, because |8 is negative. 
To avoid these difficulties, we 

(2) 

or un = xn + iyn, in which 

i define: 

Un 

a2n~ xn = — — 
(a-

_a2n-

- COS Ml 

•P)aP 

i 

- cos MT + i'sin MT 

(a-fl)an 

and Vn sin MT 

(a-P)aP 
In this definition we have: n e R, un^C. 

First we shall have to show, of course, that this definition is equivalent to (1b) for n e Z . We calculate: 

251 
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„ _ a2-cosTS + isinn „ a2 + f _a2+1 _ -
fa-fi)a ar-aJP ar + 1 

„ _ a4~cos27r+j$m2T[ _ a4 - / _ (a2 + I Ma2 - 1) _ fa2 •/• /ja _ a2 + 1 _ -
(a-p)a2 fa-~pia2 fa- p)a2 fa-p)a2 a2-a® 

Now we will show that for all n the relation un+i = un + un„i remains valid. 

- a2"*2 - cos (n + 1fa+isin(n + 1h _ a2n+2 + cos mr - / sin mr 
un+1 — — — — — - —- . - / 

(a-P)an+1 (a-Pia"*1 

_ a2i1"2 - cos fn - 1h+isin (n - 1h _ a2"""2 + cos rnr - / sin rnr 

(a-VaT1 (a-pia?-1 

The identity which we have to prove can now be reduced to: 

a + cosnir-i sin mr = aJn+1 -a cos nit + ai sin mr + a2n + a cos mr - a i sin nn , 

or: 
fa2 - a- f)(a2n - cosnrr + isin nn) = 0 , 

which is a proper identity, since a -a- 1 = 0. 
The numbers, introduced by definition (2) also satisfy identically the relation umun + um+iun+<i = um+n+i, 

which is well known for the ordinary Fibonacci numbers. The truth of this assertion can also be verified without too 
much difficulty. 

Furthermore we can show that for the moduli of the complex numbers the relation \u^\ •- \un\ is valid, just as 
for the real numbers. For xzn + y?n = x2 + y2 is equivalent to 

On \ 2 / . \ 2 / 9n \ 2 I . \ 2 

a~zn __ CQS njf \ ^ | sm mr \ _ I a - cos mr \ + \ . sm mr 
fa-Ph"11 j {(a-pia* J \ (a-~P)an j \fa-~P)an 

and this in its turn is identical to: 
aT4n - 2a~2n cos mr+1 „ a4n - 2a2n cos nir+1 

or: 
(a-P)2dT2n (a-P)2a2n 

a"2n - 2 cos mr + a2n = a2n -2 cos mt+.aT2" q.e.d. 
We now calculate the numerical values of u„, for n climbing from -4 to +4, with intervals of 1/6 as shown in 

Tablet 
If we take a close look at these numbers, we find that 

uVs - iu-% - 0L569 + 0.352i, 

u„V/2 = iu1% - 0.217 +0.921 i, 

u2% = iu-2% = 1.489+ 0i134i, 
etc., etc. 

It is simple to prove this property from definition (2), and it is clear that it corresponds with \u„n \= \un\. 
If we make a map of the newly introduced numbers in the complex plane, we get the interesting picture shown in 

Fig. 1. The curve that we have thus found intersects thex-axis in those real points corresponding with the well-known 
Fibonacci numbers for n e Z 

For decreasing negative values of n it has the shape of a spiral, and for increasing positive values of n it has the 
shape of a "sinus-like" curve, with increasing "wave-length" and decreasing "amplitude." 

Note how the relation \u„n \ = \un\ is made visible through this graphical representation of un. 
On differentiating, 
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a2n - cos nn 
Yn sm nn Table 1 

(a-$an (a~$)an 

with n as independent variable, we find: 

dxn _ In a (a2n + cos nn) + it sin nn 
dn 

dn 

so that 

dyn 

dxn 

(a-$)an 

= 7T cos nn - in a sin nn 

(a-$)an 

IT cos nn - in a sin nn 
^2n n In a (a n + cos nn) + nsin nn 

For instance: 

dy 
dx, n=0 2lna 

JZ-
dx, 

- vloae = 11416x0.4343 
2 log a 2x0.2090 

= 1264. 

n=1 aln a aloga 

11416x0.4343 _ _4Q35 
1.618x0.2090 

dx n=-1 
na 

In a 
naioge 
log a 

3.1416 x 1.618x0.4343 10.56 

-24 
-23 
-22 
-21 
-20 
-19 

I - 1 8 
I -~17 

-16 
-15 
-14 
-13 
-12 
-11 
-10 

r-9 
-8 
-7 
-6 
-5 

~~4 
-3 
-2 
-1 

0 

| 6 ) i 

-3.000 + 0.000 i 
-2.380+ 1.415 i 
-1.229 +2.261 i 
+ 0.083 +2.410 s 
+ 1.203 + 1.926! 
+ 1875 + 1.026 i 
+ 2.000 + 0.000 i 
+ 1.629 + 0.874! 
+ 0.931-1.398 i 
+ 0.134-1.489! 
-0.542- 1.190! 
-0.941 - 0.6341 
-1.000 + 0.0001 
-0.751+0.540! 
-0.298 + 0.864! 
+ 0.217 + 0.9211 
+ 0.661 + 0.736 i 
+ 0.934 + 0.392 ! 
+ 1.000 + 0.000! 
+ 0.878-0.334 i 
+ 0.633-0.534! 
+ 0.352-0.569! 
+ 0.118-0.455! 
-0.007-0.242! 

0.000 + 0.000! 

Un = Xn+iYn 

6n 

| 0 
+1 
+2 
+3 
+4 
+5 
+6 
+7 
+8 
+9 

+10 
+11 
+12 
+13 
+14 
+ 15 
+ 16 
+17 
+18 
+19 
+20 
+21 
+22 
+23 
+24 

un=xn+iyn 

0.000 + 0.000 i I 
+0.127 + 0.206! 
+0.335 + 0.330 i 
+0.569 + 0.352 i 
+0.779 + 0.281 ! 
+0.927 + 0.150! 
+1.000 +0.000 i 
+1.005-0.128! 
+0.967 - 0.204! 
+0.920-0.217! 
+0.897-0.174! 
+0.920 - 0.093 i 
+1.000 + 0.000! 
+1.132 +0.079 i 
+1.302 + 0.126! 
+1.489 + 0.134! 
+1.676 + 0.107! 
+1.848+0.057! 
+2.000 + 0.000! 
+2.137-0.049! 
+2.269-0.078! 
+2.410-0.083! 
+2.573-0.066! 
+2.768-0.035! 
+3.000 + 0.000! 

0.2090 
etc., etc. 

Among the points in which the curve intersects it-
self, there is one with y # 0, a complex number z, 
so that z e £ but z £ /?. With the extension we 
now have achieved, we can make a similar extension 
for all Fibonacci-like sequences 

If we start with any two complex numbers, say z ; 
and Z2, adding them to find the following number 
we get 

zp Z2, z<i+Z2,Zi+ 2z2,2zj + 3z2, 3zi +'5z2, 6zf + 8Z2, 8zi + 13z2, 

etc., etc. The coefficients are Fibonacci numbers. 
To find the extension of this sequence, all we have to do is to apply the extension to the coefficients. 
In this manner we will now study the sequence that appears when we start with z ; = 1, Z2 = i Then we have: 

I i, 1+i, 1+21 2 + 31 3 + 5i, 5 + 81, 
etc. It is clear that we can start by extension "to the left," to find: 

- , 5-31 -3 + 21 2-1 -1 + 1 I i, 1 + 1 1+2ir 2 + 31 3 + 51, .--. 

For reasons of symmetry we shall refer to these terms as v^, in such a way that v-% = 1 and 

v+% = h v+i% = 1 + 1 v+2% = 1+2if v+3% = 2 + 31 -" 

I v~2% = 2~h v-3% = -3 + 21, •••-v-1% = ' 
The relation between the -̂sequence and the (/-sequence is: vk 

Uk-V2 + Uk+1/J- Therefore: 
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vk ~ Uk-% + Uk+%i = (%k-ys
 + iYk-yJ + (xk+ys

 + iYk+yJi = (xk-%- Yk+yJ + i(Vk-%+*k+%) • 

We shall nqw demonstrate that \v~k\ = \vk\. 

I vk\2 = (*k-x ~ Yk+yJ2 + (Yk-% +*k+%)2 = (4-y2 + Y2-yJ + (xk+% + Yk+yJ - 2(xk-%yk+% - yk-%xk+%). 

We can now say that: 

Wk\2 = \"k-x\2+\uk+x\2-2(xk.%yk+%-yk-%xk+%). 
Therefore: 

I v.* I 2 = I u-k-<% I 2 A"-k+x\2 - fo-k-xy-k+x - y-k-xx-k+x) = \"k+x I2 + W-x I2 -2(x.k-xY-k+x - y-k-x*-k+xl 
so that the relation that we want to prove, namely \v„k\ = \vk\, or \v„k\

2 = \vk\
2, Is equivalent to 

Xk-XYk+X ~ Yk-XXk+X = * - * -£ / - * • / •£ - Y-k-XX-k+X • 

When we now proceed to introduce the index t by means of k = t + X; -k = —t - X, we have to prove that: 

Xtyt+1-Ytxt+1 = x-t-jy-t-y+ix-t . 
Or: 

a2t - cos tit x sin (t + pit sin tit x g2^t+1^ ~cos(t+ Pit 

(a-$)af (a-Pfa**1 (a- p)af (a-$)atH 

= a2(~*~1}' -cos(-t- Pit x sinj-tfa sinf-t-Pit x a2(mmt) - cos f-th 

fa-fl/a"*"' {a-flla* (a-Pid*'1 (a-PJaT* 
This is an identity, if completely worked out. 

We have already seen that if vk = ak +ihk, then ak = xkm.% - yk+y2 and bk = yk-x
 +xk+x • Thus: 

a - v „ - °<2k~1- cos (kit - Xrt) sinfkit+Xit) $k - xk„y2 - yk+y2 -7—r k+% 

Or: 

a - a2S< ~ aSi"n kit- C0S kit 
k~ <a-Vak+V> 

In the same way we derive from hk = yk-y2 +xk+y2: 

h = &2k+1 - ®>cos krt + sin kit 

It is now fairly easy to calculate some values of vkl simply by choosing different values of k; we find 
¥y2 = I, ¥V/2 = 1+1, V2X = 1+2l, 

as it should be. We also have: 

Vf = -l=r+i>Ja, 1/1/ = -j=r + iy/(i , 

(so that I/L./ = Vf), and VQ ~ 0- Also 

¥2 = -j^ + isja (=v„] = i/f) and vm2 = --7= - i\/a / V3 =-j=r + 2iy/a and vm3 =-y= + 2i\/a, ¥4 =-=r +3i\fo>. 

It now seems Very likely that 

Vk \ Z/a +j^\ Uk ' 
for all values of t Indeed we have: ^ ' 

(a% + ia/s) x uk = (aTH + ia%)(xk + iyk) = (a'%xk - aVsyk) + i(a~%yk + a/zxk), 
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whereas 
"%„. _ „%>,. - a~V2(a2k -coskn) _ a/z sin k-n = a2k - cos kir- asin kn _ 

a ~xk - a yk (a - $)ak (a - (3)ak (a - $}a! k+y2 
ak< 

and in the same way we prove that aVsyk + aVsxk = hk ,so that (a% + iaVz)uk = ak + ibk = vk, which had to be 
proved. The relation / > 

Vk \JT* W Uk 

implies that the graphic representation of the numbers vk in the complex plane has the same shape as the one that 
we have found previously for uk ; 

Fig. 2 Graphic Representation of the Numbers vk in the Complex Plane 

There is one continuous curve going through all these points, a curve that originates from the one in Fig. 1 by 
multiplication with 

It is clearly shown how the points (0,1);. (1,1); (12); (2,3); (3,5); (5,8); (8,13); - belonging to the index-
values %, V/2,2%, 31A, 4Y2, 51A, 6Y2, - . of k are lying closer to the asymptote y = ox as k increases, thus indicat-
ing that 

lim -& = a 
*-*» uk 
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34 

21 

13 

SET 
- 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 8 9 

Fig, 3 Graph of \un\ as a function of n 
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SPANNING TREES AND FIBONACCI AND LUCAS NUMBERS 

A. J. W.HILTON 
The University of Reading, Whltefcnsghfs, Reading, England 

1. INTRODUCTION 
The Fibonacci numbers Fn are defined by 

F1 = F2 = I Fn+2 = Fn+1 + Fn (n > 1), 

and the Lucas numbers Ln by 

L1 = I L2 = 3, Ln+2= Ln+1 + Ln (n>7j. 

We shall use the graph theoretic terminology of Harary [2 ] . A wheel on n + 1 points is obtained from a cycle on 
n points by joining each of these n points to a further point This cycle is known as the rim of the wheel, the other 
edges are the spokes, and the further point is the hub. A fan is what is obtained when one edge is removed from the 
rim of a wheel. We also refer to the rim and the spokes of a fan, but use the word pivot instead of hub. We give now an 
illustration of a labelled wheel and a labelled fan on 9 points. 

Figure 1 

Acomposition of the positive integer n is a vector (a-/, a2, ~, ak) whose components are positive integers such that 
ai + a2 + -~+Ok = n. If the vector has order k then the composition is a /r-part composition. 

For n > 2 the number of spanning trees of a labelled wheel on n + 1 points is L.2n - 2, and the number of span-
ning trees of a labelled fan on n + 1 points is F2n- References concerning the first of these results may be found in 
[3 ] ; both results are proved simply in [4 ] . 

In this paper, by simple new combinatorial arguments, we derive both old and new formulae for the Fibonacci and 
Lucas numbers. 

2. A SIMPLE COMBINATORIAL PROOF THAT F2„+2m = F2n+lF2m
 + F2nF2m-l 

Let the number of spanning trees of a labelled fan on n+1 points be fn, and the number elf those spanning-trees 
259 
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n 

+ m 

n+ 1 
n +m + 1 

Figure 2 Figure 3 
of a labelled fan on n + 1 points which include a specified leading edge (11, n + 11 in Fig. 2) be e^ Clearly 

(1) en+1 = en + fn (n > 1). 

Mow consider a fan on n + m + 1 points. This may be thought of as two fans A and B, connected at the pivot 
and at two points labelled n and n + f as indicated in Fig. 3. Then 

(2) fn+m = fnfm + fnem + enfm (n,m > 1) 

so 
(3) fn+m = en+1fm + fnem (n,m > 1) 

by (1). In formula 12) fnfm is the number of those spanning trees which do not include j n, n + 11 . The restrictions 
of a spanning tree which includes | n, n + 11 to A and to B are either a spanning tree of A and a spanning sub-
graph of B consisting of two trees, one including j n + 11, the other including j n + m + 11, or are a spanning 
tree of B and a spanning subgraph of A consisting of two trees, one including in i , the other including i n+m 
+1 \ . Therefore, the number of spanning trees which include i n, n + 1 I is fnem +Bnfmm But fn = F2n, and it 
is shown in [4] that en = F2n-1 • Therefore, from (3), 

F2n+2m = F2n+1F2m + F2nF2m-1 fa m > V. 

The corresponding formula for L2n+2m does n o t appear to come through so readily from this type of argument. 

1 COMPOSITION FORMULAE FOR F2n 

If (a,f, — , Ofr) is a composition of n, then the number of spanning trees of the fan in Fig. 2 which exclude 
Id], a? + ll , idf + CL2, aj + 0*2+ ll, — \CL1 + '" +&k-1' a1 + '" + %-7 + 1\ 

but include ail other edges of the rim is a^o^ — &k, for this is the number of different combinations of spokes 
which such a spanning three may include. Therefore 

(4) F2n = £ a,02-a* , 
y(n) 

where y(n) indicates summation over all compositions (a-i —, a&J of nf the number of components being vari-
able. This formula is due to Moser and Whitney IB]. 

Hoggatt and Lind [5] have shown that this formula may be inverted to give 
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y(n) 
This may be demonstrated combinatorially as follows. The number of spanning trees of the fan in Fig. 2 which do" 
not have any rim edges missing is n. The total number of spanning trees is F2n. For a given composition 
fez,-., <W of n with k > 2, the number of spanning trees which do not contain the edges J aj, ay + / L 

\®>l+a2,a1+a2+l\r~! \.a1 + - +ak-i,a1 + >» +0^-1 + 1 } 

"s fr2a1^2a2 '". ^2ak - Therefore, by the Principle of Inclusion and Exclusion (see Riordan [7 ] , Chapter 3) 

" = Y*(-Vk-lF2«1F2^~F2ak • 
y(n) 

Of course it now follows that 

«5> F2n = n+j^ 22(-1}kF2aiF2a2:-F2ak , 
k=2 yk(n) 

where jk(n) denotes summation overall impart compositions of /?. 

4 COWSPOSlIfOi FORMULAE FOR L2„-2. 

The formulae in this section are analogous to the formulae (4) and (5) of the previous section. The main difference 
is that the formulae in this section are obtained from the wheel in Fig, 4, whereas in the last section they were ob-
tained from the fan in Fig. 2. 

/ ? - / 

Figure 4 

If (ai, - . , ak) is a composition of n, and / is an integer, 0 < / <n, then the number of spanning trees of the 
wheel in Fig. 4 which exclude the edges 

lat+haj+j+lX, iaf+a2+laf+a2+l+ / L - , | % + ». + ak+i a$ + - + ak+j + 7 J 

[the integers here being taken modulo n], but include all the remaining edges in the rim, is fl/fl^ •» an„ It W8 Slim 
over all such compositions into k parts and all possible values of j, we obtain 

_^ 
yk(n) 

But this sum counts each spanning tree which has exactly k specified edges on the rim excluded, precisely k 
times. Therefore the number of spanning trees which exclude exactly k edges of the rim is 
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7k M 

Therefore 

n 

L2„~2 = n ^ J J2 ala2"' ak -
k=f ykfn) 

i.e., 

L2n~2= E 
y(n) 

a formula which is analogous to (4). 
We now find a formula for l-2n - 2 which is analogous to (5). The number of spanning trees of a wheel which do 

not have any rim edges missing is 0. The total number of spanning trees of a wheel is L2n -2. For a given com-
position (df, d2, ~',ak) of n, and a given integer/, 0<j<n, the number of spanning tre® which do .not con* 
tasn the edges 

| aj+j, Q,i+j+l\, [ai +a2+[f a; + a2+j+ f I, —, j a / + ••• + ak+j, a-j + - +ak+j+ 1) 

ls ^2at ^2a2 '" F2ak • By a similar argument to that just used above, the sum 

\ LA F2al
 F2*2 - F2ak 

Jk(n) 

is the sum taken over all combinations of k edges from the rim of the number of spanning trees which do not con-
tain any of the k rim edges of the combination. Therefore, by the Principle of Inclusion and Exclusion 

O = L2n -2+Y, <-1>k I E F^i F2«* " F2a« • 
k=1 yk(n) 

Therefore 

hn-2 = Z ) (~1>k'1 | F2ai F2a2 - F2ak , 
y(n) 

a formula which is analogous to (5). 
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ON POLYNOMIALS RELATED TO TCHEBiCHEF POLYNOMIALS 
OF THE SECOND KIND 

D. V. JA1SWAL 
HoSkar Science College, lndoref India 

1. Tchebichef polynomials of the second kind have been defined by 

It is known [ I ] that 

and 

Also [2] 

Un+f(xj = 2x Ujx) - Un-tfx) , 

U0 = I Uj = 2x . 

n t m Sin (n + 1)8 

[n/21 
•2r U"M= £ (V r ) (-iffor 

Fn+1 ='fn Un(i/2) , 
nth where Fn represents the n Fibonacci number. 

The first few polynomials are 
U0M = 1 

Uffx) = 2x 

U2M = 4x?-1 

U3M = 8x2-4x 

U4(x) = 16x4~12x2+L 

Figure 1 
If we take the sums along the rising diagonals in the expression on the right-hand side, we obtain an interesting 

polynomial pn(x), which is closely related to Fibonacci numbers. 
The first few polynomials are 

Pl(x) = 1, P2M = 2x, p3(x) = 4x2 , 
p4fx) = 8x3- I p5(x) = 16x4-4x . 

In this note we shall derive the generating function, recurrence relation and a few interesting properti.es of these 
polynomials. 

2. On putting 2x = y in the expansion on the right-hand side in Figure 1 we obtain 
263 
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Rows 

] 
2 
3 
4 
5 

Columns 
0 1 2 3 

Figure 2 

The generating function for the lrr/? column in Figure 2 is (-1)k(1 - ty)~'k+1. Since we are summing along the 
rising diagonals, the row adjusted generating function for the kth column becomes 

Since 
hk(y)^(-1)k(1-ty)-(k+1)t3k+1 

1 °° -f 

k=0 
ty £}\t-ty 

we have 

(2.1) 

From (2.1) we obtain 

1-ty + r 
o<s> 

G(x,t) = Ya PnMt" = 

n=0 1-2xt + t* 

YjPnMf = t(1-2xt + t3) 3i~1 

n=1 

On expanding the right-hand side and comparing the coefficients of t , we obtain 
[n/3] 

(2.2) pn+1M = (2x)n-[n-J
2 ) (2xr3+ [n~2

4 ) (2x)"*+...= Yl \n~r2l (-WW*3' 
F=0 

Again from (2.1) we have 
oo 

a~~2xt+t3} 23 p„Mtn = t. 
n=1 

On equating coefficient of t on both sides, we obtain the recurrence relation 

(2.3) Pn+3M = 2xpn+2(x)-pn(x), n > 1, pjfx) = 1, P2M = 2x, P3M = 4X2. 

Extending (2.3) we find that p0M = 0. 
From (2.1) we have 

(2.4) G(x,t) = tFQxt - t3h Ffu) = (1 - u)"f -

Differentiating (2.4) partially with respect to x and t, we find that G(x,t) satisfies the partial differential equation 

2t 3S -(2x-3t2)-2£-2G = 0. 
dt $x 
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Since 

ff— E npnMf-\ |f - Xi &<*>* 
n=1 ox n=1 

it follows that 
(2.5) 2xp'n+2M - 3p'n(x) = 2fn + 1)pn+2M . 

3. On substituting x = 1 in the polynomials p „ M , we obtain the sequence { ^ I which has a recurrence relation 
(3.1) Pn+2 = Pn+1+Pn+h Po=0. Pf=i. 

The sequence I Pnl is related to the Fibonacci sequence | Fn I by the relation 

Pn~~Pn-1 = Fn ' 
which leads to 

(3.4) Pn'T, Fk • 
k=0 

From (3.4) several interesting properties of the sequence \Pn I can be derived. A few of them are 

(1) Pn = Fn+2-1 

(3.5) 

II 
(2) Yj\ = Fn+4-(n+3) 

k=1 

(3» X > f = Fn+2Fn+3~~2Fn+4 + fa+4) 
k=1 

n 

(4) with I I (1+xLi) = a0a1x+ - + a w x m
5 m = L / + L2 + - + L / ? . 

/=/ 

and ^n equal to the number of integers A: such that both 0< k < m and a^ = 0, Leonard [3] has proposed 
a problem to find a recurrence relation for qn. The author [4] has shown that the recurrence relation is 

Qn+2 = Qn+1 +^n +1^ Q'1 = °> ®2 = 1 -
Comparing this result with (3.1) we observe that 

Pn = ^n+1 • 

On using (3.5)—(1) and (2.2) we obtain 
[n/3] 

(3.6) Fn+2 = 1 + 22 in~r
2r) l-W**r. "> 0. 

r=0 l # 

a result which is believed to be undiscovered'so far. 
I am grateful to Dr. V. M. Bhise, G.S. Technological Institute, for his help and guidance in the preparation of this 

paper. 
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CORRIGENDUM TO: ENUMERATION OF TWO-LINE ARRAYS 

L. CARLITZ and MARGARET MODEL 
Duke University, Durham, North Carolina 27706 

The proof of (2.5) and (2.7) in the paper: "Enumeration of Two-Line Arrays" [1] is incorrect as it stands. A 
corrected proof follows. 

Let g(n,k) denote the number of two-line arrays of positive integers 

a1 a2 - an 

b1 b2 - bn 

satisfying the inequalities 

and 

We wish to show that 

(2.7) 

max(a}-,bg) < min (aj+i,hj+i) (1 < / < n) , 
max(aj,bj) < / (1 < i < n) 

max(an,bn) = k. 

gln + k,k) = ^ g(j,j)g(n +k-j, k-j + 1) (n > 1). 

M 

Let / be the greatest integer <k such that 

max (apbj) = j . 

It follows that ai+i = bj+f = /. 
Consider the array 

a7 .» / 
/ ... . •j ... . j 

Put 
a- = aj+;-(j-U 

bj = bJH-(/-V 

It follows from the conditions satisfied by a-t, bj that 

(1 < i < n + k-j) 

max(a;,b;) < min{a'j+i,b'j+1) (1 < / < n+k-j), 

max(aj,bj) < / (1 < / < n +k-j), 

max(a'n+H,b'n+k„j) = k-j+1. 

This evidently yields (2.7). 

REFERENCE 
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ORESSVIE NUMBERS 

A. F. HORABAfVi 
University of iew England, Armida!ef N.S.W., Aistralia 

1. INTRODUCTION 

/ 
2l 

2 
T 

3 
8f 

4 
W 

5 
32 ' 

6 
m* 

7 
128 ' 

8 
258 

The purpose of this article is to make known some properties of an interesting sequence of numbers which I believe 
has not received much (if any) attention,, 

In the mid-fourteenth century, the scholar and cleric, Nicole Oresme, found the sum of the sequence of rational 
numbers 

(1) 

Unfortunately, Oresme's original calculations were not published., 
Such a sequence is of considerable biological interest As Hogben [3] remarks: "...what is of importance to the bi-

ologist is an answer to the question: if we know the first two terms, Le., the proportion of grandparents and parents 
of different genotypes, how do we calculate the proportions in any later generations?" 

2. ORESME IIUMBERS 
The sequence (1) of Oresme can be extended "to the left" to include negative numbers if we see the pattern of the 

sequence, which is easily discernible. More is gained by recognizing the sequence (1) as a special case of a general se-
quence discussed by Horadam [4], [51 and [6]. 

This general sequence 1 wn(af b;p,q) | is defined by 
(2) wn+2 = pwn+1~qwn f 

where 
(3) WQ = a, w-j = b 

and p,q are arbitrary integers at our disposal. To achieve our purpose, we now extend the values of p,q to be 
arbitrary rational numbers. 

Taking a = 0, b = 1, p = 1, q = fA and denoting a term of the special sequence by On (n = —, —2, -1, 
ft 1,2, -), we write the sequence f On | = | wn (0, fAf 1, %) | as 

... $_ / 0„6 0_5 0^.4 0_3 0__2. 0-1 00 Of 02 % 04 % % 07 ... 

(4) . oqc om -im -R4 -24 - 8 - 2 0 — - - — — — -^— — * 
Wb dm iw m z^ a z u 2 4 8 16 32 64 128 

The extension (4) of the original sequence (1) studied by Oresme we will call the Oresme sequence.!'erms of this 
sequence are called Oresme numbers. Thus, Oresme numbers are, by (2), (3), (4), given by the second-order relation 

(5) 0n+2 = On+1-^On 

with 

(6) 00 = 0 , 0 / = 0 2 = j -

An interesting feature of the Oresme sequence is that it is a degenerate case of | wn \ occurring when p2 -4q = 0 
(Le., I2 -4 x % = 0). Further comments will be made on this aspect later in §6. 

217 
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A number which characterizes special cases of \wn (a,b;p,q)\ is e = pab - qa2 - b2 which depends on the 
initial values a, b and on p, q. For the Oresme sequence, 

(7) e = - i . 
4 

Immediate observations from (4) include these facts: 
(8) 0n = n2Tn (n>0) 

(9) 0_„ = ~n2n (n < 0) 
Le., 

Om = m2~~m (m integer) 
whence 
(10) 0-n0n = -n2 

(11) - ^ a = -22n 

and °n 

(12) lim On-*0, lim 0 „-»-<*> 

(13) lim - ^ 2 - - » . 
/77->-oo t / # f | - l 

Two well-known sequences, associated with the researches of Lucas [9] are: 

(14) \U„\ =\wn(1,p;p,q)\ 

(15) {Vn\ ={w„(2,p;p,q)\. 

When p ~..q = — 7, (14) gives the ordinary Fibonacci sequence and (15) the ordinary Lucas sequence, 
It is a ready consequence of (4) and (14) that 

(16) On= I */„_, J 

where, for this llJni,p = 1, q = % . 
That is, the Oresme sequence turns out to be a special case of the sequence \Unt after division by 2. 

1 LINEAR RELATIONS FOR ORESIVIE iUHBERS 
Two simple expressions derived readily from (5) are: 

(17) 

(18) 

Sums of interest are: 

(19) 

(28) 

(21) 
n-1 

j=0 

Orf-2-

0n+2 ~ 

n-1 

£ 
1=0 

-1)' Oj 

•i°"+i' 
•\on+1 + 

0 / = 4{1/2 

co 

Y.O,-
to 

-JM 

On-

1 
16 

- 0 

= 2 

+ (-

-1 -

On-

n+fl 

-f)n 

0 

• 1 = Q . 

<On+i~ 
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n-1 

(22) 

(23) 

Also, 

(24) 

(25) 

(26) 

(27) 

(28) 

1=0 
n-1 

J2o2J = p2 + 02n„r-502J 

E °2J+1 = | (10 + 502n^ - 1602n). 
1=0 

on+r= orun-^or_7un_, 

= OnUr-^O^U^-, 
1 

Qin+r = Or-_j Un+j - ^ Or-j-1 Un+j- f 

= On+j Ur-j - j On+j-i Ur-j-i 

0n+r + 4~~r On^r 

~~~~~7T = Vr (independent of n) 
un 

Jn+$- -4~sOn 

°2n = (-*)"$!(]) (-^r-'o^-j 
j=0 

4. NON-LINEAR PROPERTIES OF ORESHE NUMBERS 

A basic quadratic expression, corresponding to Simson's result for Fibonacci numbers, is 

(29). 0n+10n-1-02=-(%r'. 

This result is the basis of a geometric paradox of which the general expression is given in Horadam [5 ] . 
A specially interesting result is the "Pythagorean" theorem of which the generalization is discussed in Horadam [5 ] : 

(30) (02
n+2 - 02

n+1)
2 + (20n+2 OnHf = (02

n+2 + 02
Hf 

For instance, n = 3 leads to the Pythagorean triple 39, 80, 89 after we have ignored a common denominator 
(= 1024); n = 4 leads to the Pythagorean triple 8, 6,10 after simplification (and division by 64/ which we ignore). 

Some other quadratic properties are: 

(31) 

(32) 

(33) 
(an extension of (29)) 

(34) 

(35) 
(an extension of (33)). 

7, 

- On+jOn-t-LOnOn-2 

Qn+r O w „ r - On= -(%) Ur- f 

02
nH - l%)2 0 ^ = 1 02n+1 +1 02n_7 

ron+r+t - onon+t = -iv^-^u^ ur+t_i 
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iany other results can be obtained, if we use the fact that \on] is a special case of \wn\« Rather than 
produce numerous identities here, we suggest (as we did in [7] with Pell identities) that the reader may entertain 
himself by discovering them. Recent articles by Zeitlin [11] , [12] and [13] give many properties of j wn\ which 
may be of assistance. 

Some' of the distinguishing features of \on\ arise from the fact that it is a degenerate case of (2), occurring 
when p - 4q = 0„ 

5. GEiERATl iG FUMCTIOM 
A generating function for the Oresme numbers On (n > 1) is 

(36) E On*? y2x 
n=1 1-x + %x .2 

This may be obtained from the general result for wn in Horadam [6 ] , by the appropriate specialization. 

6. COMMENTS 0 1 THE DEGE1ERACY PROPERTY 
Since the general term of \wn\ 'IS 

(37) wn= AaP + Bf , 
where 

(38) a = e + yfr-* , & = P-Jp-4q 

are the roots of x - px + q = 0, and 

(39) A=^=^f B-^fk (a-@ = ^^riq)f 
a-p a-p 

it follows that in the degenerate case, On cannot be expressed in the form (36), as we have seen earlier in (8) and (9). 
An interesting derivation from Eq. (4.6) of Horadam [4] is the relationship OJj- %UJj-i = 0, leading back to (16). 

Carlitz [2 ] , acknowledging the work of Riordan, established an interesting relationship between the sum of km 

powers of terms of the degenerate sequence 1 Un I (for which q =p2/4) and the Eulerian polynomial A^x) 
which satisfies the differential equation 

(40) ' An+1M = (1 +nx)An(x) + x(1 -x) ~AnM , 
where 
(41) AQ'M = Affx) = I A2(x) = 1+x, A3(x) = 1+4x+x2 . 

This result specializes to the Oresme case where p - h 

7. HISTORICAL 
It is thought that Nicole Oresme was born in 1323 in the small village of Allemagne, about two miles from Caen, 

in Normandy. Records show that in 1348 he was a theology student at the College of Navarre-of which he became 
principal during the period 1356-1361-and that he attended Paris University. 

His star in the Church rose quickly. Successively he became archdeacon of Bayeux (1361), then caron (1362), and 
later dean (1364) of Rouen Cathedral. In this period, he journeyed to Avignon with a party of royal emissaries and 
preached a sermon at the papal court of Urban V. While dean of Rouen, Oresme translated several of Aristotle's 
works, at the request of Charles V. 

Thanks to his imperial patron (Charles V), Oresme was made bishop of Lisieux in 1377, being enthroned in Rouen 
Cathedral the following year. In 1382, Oresme died at Lisieux and was buried in his cathedral church. 

Mathematically, Oresme is important for at least three reasons. Firstly, he expounded a graphic representation of 
of qualities and velocities, though there is no mention of the (functional) dependence of one quality upon another, 
as found in Descartes. Secondly, he was the first person to conceive the notion of fractional powers (afterwards re-
discovered by Stevin), and.suggested a notation. 

In Oresme's notation, 41/s is written as 



1S74] ORESJiEiUfiBERS 271 

f / 4 or 
1*2 

Thirdly, in an unpublished manuscript, Oresme found the sum of the series derived from the sequence (1). Such re-
current infinite series did not generally appear again until the eighteenth century. 

In all, Oresme was one of the chief medieval theological scholars and mathematical innovators. It is the writer's 
hope that something of Oresme's intellectual capacity has been appreciated by the reader. With this in mind, we 
honor his name by associating him with the extended recurrence sequence (4), of which he had a glimpse so long 
ago. 
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INCREDIBLE IDENTITIES 

DANIEL SHANKS 
Haws! Ship R&D Center, Bethesda, Maryland 20034 

Consider the algebraic numbers 
A = Vs + J22 + 2<4§ 

B = y/l1+2y/& +Jl6-2-sf29+2«J55- 10<s/29 

To 25 decimals they both equal 
7.38117 59408 95657 97098 72669. 

Either this is an incredible coincidence or 
(1) A = B 

is an incredible identity, since A and B do not appear to lie in the same algebraic field. But they do. One has 
(2) A = B = 4X- 1, 

[Continued on page 280.] 
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1. liTRODUCTIOi 
In this paper we are concerned with developing and establishing further identities for the generalized Fibonacci 

sequence | Hn J, with particular emphasis on summation properties. First we obtain a number of power identities 
by substitution into some known identities and then we establish a number of summation identities. Next we pro-
ceed to derive some further summation identities involving the fourth power of generalized Fibonacci numbers 
I Hn f from a consideration of the ordinary Pascal triangle. Finally, we arrive at some additional summation identi-
ties by applying standard difference equation theory to the sequence \Hn\* Notation and definitions of Walton 
and Horadam [9] are assumed. 

2. POWER IDENTITIES FOR THE SEQUENCE \Hn.\ 

In.this section a number of new power identities for the generalized Fibonacci numbers I Hn J have been ob-
tained by following the reasoning of Zeitlin [10], for similar identities relating to the ordinary Fibonacci sequence 

Use will be made of identities (11) and (12) of Horadam [6], viz., 

(2.1) HnHn+2-H*+1 = l-1)n+1d 

(2.2) Hm+hHm+k-HmHm+h+k = (~t)m dFhFk * 

(where we have substituted n = m+he h = s and k = r + s+1), and the identity 

a3) Hk+1Hm_k + HkHm^k^ = (2p~~q)Hm-dFm . 

where the right-hand side of (2.3) is derived from (9) of Horadam [6]. 
Re-writing (2.1) in the form 

(2.4) H2
n-H

2
n+1 = (-l)n+1d-HnHn+1 

yields 
(2.5) Hiv+H* = (H2~H2

n+1)
2 + 2H2H2

n+1 = d2' + 2(-l)ndHnHn+, +3H2 H2
H 

(2.6) ~2H3
n+1Hn - H2

+-,H
2 + 2Hn+1H

3
n = 2HnHn+1[(-1)n+1 d - HnHn+1J - H2H2

+1 

= —2(—1) dHnHn+i — 3H^Hn+f . 

Adding (2.5) and (2.6) gives 
(2-7) Hi+1-2H^1Hn-H*+1H*+2Hn+1H%+H*=d2 . 

If we now substitute the identities 

*Part of the substance of an M„Sc. thesis presented to the University of New England in 1968. 

272 
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Hn+4 - 3Hn+i + 2Hn 

(2.8) | Hn+3 = 2Hn+1 + Hn 

^n+2 = Hn+1 + ^ti 
into the expression 

Hi+4 - 4H*+3 - WHt+2 - 4H*+1 + H4 

we have -6 times the left-hand side of (2.7), i.e., 

(2 J) H4
+4 - 4H*+3 ~ 1M*+2 - 4H*+1 + H4 = -Bd2 . 

Re-arranging (2.9) and substituting n = n + 1 yields 

(2.10) H*+s = 4H4
+4+19H4

+3 + 4H4
+2-H

4
+1 - Bd2 

so that substitution for -Bd2 from (2.9) gives 

(2.11) H*+s = SHi+4 + 15H*+3 - 15H*+2 - 5H*+1 + H4 . 

We note here that (2.9) is a verification of ;(4.6) of Zeitlin [11]. 
If we now let Vn = H4+j - H4, we may re-write (2J) in the form 

(2.12) Vk+3 - 3Vk+2 - 22Vk+1 - 26Vk - 25Hf = -Bd2 , 

where 
n 

Summing both sides of (2.12) over k, where k = 0,1, ••> n, gives 
n 

( 2 J 3 ) 25 £ //j£ = H4
n+4 - 3H*+3 - 22H*+2 ~ 26H4

+1 + Bin + 1)d2 + 8 3 

k=0 
where 

5 = 9p4-2Qp3q-6p2q2 + 4pq3 + 28q4 . 
(8 = 9 for the Fibonacci numbers | Fn J J 

Substituting for H4+4 in (2.13) by using (2.9) gives 
n 

(2.14) 25 ] P Hf= H*+3 - 3H*+2 - 22H4
n+1 - H4+Bnd2 + 8 

k=0 

which yields the obvious result 
(2.15) H*+3 - 3H*+2 - 22H4

H - H4+ Bnd2 + 8"= 0 mod 25 , 
where 

8' = 9p4 - 2Qp3q - Bp2q2 + 4pq3 + 3q4 . 
(8" = 9 forthe Fibonacci numbers | Fn I J 

Multiplying (2.11) by (-1)n+5 and replacing n by k gives 

(2.16) Wk+4 + BWk+3 - 9Wk+2 - 24Wk+1 - WWk = 181- 1)kHf , 
where 
(2.17) Wn = (-1)n+1Hf+1-(-1)nHf. 

Summing over both sides of (2.16) for k = 0,1, —f n, and using 
n 

(2.18) ] P Wk+j = l-1)n+i+1H4
+j+1 - (-1)1 Hf 

k=0 

gives 
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n 

(1M W YJ (-DkHi = (~nn[-Hfi+5 + 6Hfl+4i-9Hi+3-24Hi+2+mHfl+1] +6e 
k=0 

= (-1)n[H*+4 - 6H4
+3 - 9H4

+2 + 24H4
+1 - H4] + 6e by (2.11) 

= (~-1)n [-2H4
+3 + WH4

+2+28H4
+1 -2H4~ 6d2] + 6e by (2.9), 

where 

e = 2p3q-3p2q2-2pq3 + 3q4( = q(2p3 - 3p2q - 2pq2+ 3q3)) . 

(e = 0 for the Fibonacci numbers | Fn J J 
Therefore, on using (2.11), we have 

n 
(2.20) 18 Y, (~1)k^k- (-Dn [H4

+4-6H4
+3-9H4

+2 + 24H4
+1-H

4] +6e 

= 2 | (-1)n [-H4
n+3 + 5H4

n+2
+ MH*+1 -H4-3d2] +3e\ 

on using (2.9). Wow (2.20) implies that 
(2.21) H4

+4 - 6H4
+3 - 9H4

+2 + 24H4
+1 - H4 = 0 mod 6 

from which we conclude that 
(2.22) H*+4 - 9H*+2 -H4 = 0 mod 6 
so that 
(2.23) H*+4 -H4^ 0 mod 3 . 

We will now use the identity 

(2.24) Hk+iHk+2
Hk+4Hk+5 = Hk+3~d 

(which is a generalization of an identity for the sequence | Fn | stated by Gelin and proved by Cesaro - see 
Dickson [2]) to establish the two results 

n 

(2.25) 25 Y, Hk+1Hk+2Hk+4Hk+5 = 26H4
+3 + 22H4

+2 + 3H4
+1 - H4- 19nd2 - 25d2 + 8 - 50t2 

k=0 

m 

*2-26* 9JL (~^kHk+lHk+2Hk+4Hk+5 = (-l)m [-H^6 + 5H4+5 + M**4- M4
+3~ 3d27 

k=0 -~3e-9d2g(m) + 18y 
where 

nf™i - < 0 if m = 2n - 1, n = 1, 2, -
9(m) - \ 1 if m = 2n, ' n = 0,1,-

and 
{ y = q4 + 2q3p+3q2p2+2qp3( = q(q3 + 2q2p + 3qp2 + 2q3)) 
\ t = p2 + pq+q2 . 

for the Fibonacci numbers \Fn\ , y=0, t = 1. 
Proof: Sun both sides of (2.24) with respect-to k. Then 

n n 
(121) 25 1C Hk+1Hk+2Hk+4Hk+5 = 25 22 Hi+3-25(n + 1)d2 

k=0 k=0 
m m 

(2.28) 9 22 (-VkHk+lHk+2Hk+4Hk+5 = 9 ^ (-*>*'Hk+3 - 9d2g(m) , 
k=0 k=0 

where m 

g(m) = 22 (~f)k ' 
k=0 
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Now, 

where 

n n+3 

k=o 1=0 

t = p2 + pq-fq2 , 

so that on using (2.14), with n replaced by n + 3, the right-hand side of (2.27) reduces to 

Hn+6 - 3H^+5 - 22H^+4 - H&.3 - 19nd2 -7d2 + 8~ 50t2 

Eliminating H^+Q, Hf,+s and Hn+4 by using (2.9) gives (2.25). Since 

m m+3 

k=0 j=0 

where 
y = q4+2q3p + 3q2p2+2pq3

 f 

use of (2.20), where m + 3 replaces n, and of (2.28) yields (2.26). 
From (2.2) with m = n -j, h = j and k = 1, we obtain 

(2.29) HnHnH+1 - HnHHn+1 = (-D^dFjF, - (-U^'dFj . 

Now 
Hn = Hn+2" Hn+1 i 

so that (2.29) simplifies to 

(2.30) Hn+2Hn+1H - Hn+1Hn+2H = (-~1)n+idFj. 

From (2.3), with m = 2n + 4-j and k = n+2, we obtain 

(2.31) (2p - q)H2n+4~j- dF2n+4-j = ^n+3^n+2-j + Hn+2Hn+l-j . 
Substituting for Hn+2Hn+i-j in (2.30) by means of (2.31) gives 

(2p-q)H2n+4~i-dF2n+4-] = ^n+3Hn+2~! + Hn+1-hn+2->l + (-V^'dFj 

(2-32» = (pLn+3^qL^2)Hll+2_1H-nn+idF1 

which may be written as 

(-1)i+1HiH | (2p-g)H2n+4H-dF2n+4-j\ 

( 2 " 3 3 ) = (-1)i+1(pLn+3 + qLn+2)Hn+2HHl+1 + (-1)"HdHjHFj . 

From (2.2) with m = j+ 1, h = n + 1 - / and k = n +2~j, we obtain 

(2.34) Hn+2Hn+3-Hj+1H2n+4H = <-1)l+1dFn+1HFn+2H 

so that 
(2.35) (-1)>+1Hj+1(2P-q)H2n+4-.j = (-1)i+1 (2p -q)Hn+2Hn+3-d(2p-q}Fn+1^Fn+2-j . 

Substituting (2,35) into (2.33) gives 
(2p - q)dFn+i_jFn+2-.j+(-1)i+1 (pLn+3+qLn+2) 'Hn+2_jHj+1 + {-1)1+1 dHj+1F2n+4H 

( 2 - 3 6 ) + (-1)n+1Hj+1Fj = (-1)i+1(2p - q)Hn+2Hn+3 . 

The following identities may be proved by induction: 
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n 
( Z 3 7 ) 2 E <-1>kHm+3k = (-^nHm+3n+1+Hm-2 (m - 2,3, - j 

k=0 

n 

(138) 3 J2 (~VkHm+4k = (-irHm+4n+2 + Hm-2 (m = 2,3, »J 
k=0 

n. 

(2.39) 1t £ (~ »kHm+5k = (-»" [5Hm+5n+1 + 2Hm+5n] + 4Hm - 5Hm„, 
k=0 

(m = 1,2,-) 
n 

(2.40) 4 22 Hk»2k+1 = H2n+3Hn + H2nH2n+3-2q2 

k=0 

n 
(2M) 3 E (-f^kffm+2k - (-nnHm+2nHm+2n+2 + HmHm^2 (m = 2,3, •-) 

k=0 

n 
{2M) 7 E ^>kHm+4k = (~-1)nHm+4nHm+4n+4

 + HmHm~4 (m = 4,5, •••) 
k=0 

n 

(2.43) 2 J ] Hk+2Hi+1 = Hn+3Hn+2Hn+1 ~pq(p+q) 
k=0 

n 

(2.44) 2 52 i-VkHk"k+1 = (-1)nHn+2Hn+1Hn+pq(P -q) . 
k=0 

Zeitlin [11] has also examined numerous powej identities for the sequence \Hn\ as special cases of even power 
identities found for the generalized sequence | co„ [ used in Horadam [7] , and earlier by Tagiuri (Dickson [2]). 

As seen in Horadam [7], the generalized Fibonacci sequence \Hn\ is a particular case of generalized sequence 
| <^n\ for a = q, b = p, r=1 and s = -h Hence applying these results to (3.1 )# Theorem I, of Zeitlin [11] 
yields, for n - 0,1, — (see (Z47) below): 

(2.45) (-1)mrn 52 l-»mnbk
2t) ( - f W W - * ; + „ 0 (i - y/=7) 

k=0 

- M / " * \m0+.mt(4r- + t>*(»j(_5rdr^ ^ 

However, 

/ 112mtr-mt(t+ 1)+mt(t+1)/2 

/jimt(4r-t~1)/2 _ /•ji2mtr-mt(t+1}/2 

l 
= (_i)mt(t+1)/2 

since 2mtr and mtft + 1)* are always even. Hence, we may rewrite (2.45) as 
*This result for mt(t + 1} may be easily verified by considering the table 

m i t+1 mt(t + 1} 
o d d - - — o d d — — even-—--̂ _ . , J > even even—-—— even —-——odd --""^ 
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k=0 

where ng = ft 7, •••; m,t = 1, 2, - , r = 0,1, - , t, and where the 

*°{-i) k = 0,1, • • • ; * , 

are defined (as a special case of (2.9) of Zeitiin [11]) by 

(2.47) £ bp> ( - j-) v2t'k = n (y2 - <-DmkL2mky + 1) . 

If we now consider r = t = 1 in (2.46) and then (2.47), then (2=46) reduces to 

(2.48) i-1)mn [H2
m(n+2)+na - L2mH2

m(n+1}+n<t+H
2

mn+na 1 = 2(-1)m*n*dF2 • 

on calculation. This corresponds to (4.5) of Zeitiin [11]. 
Similarly,, we can obtain (4.6) to (4.16) of Zeitiin [11] by the correct substitutions into (2.46) and (2.47), where 

as already mentioned, (4.6) is our previous identity, (2.9). Identities (4.7) to (4.16) of Zeitiin should be noted for 
reference and comparison. 

1 FOURTH POWER GENERALIZED FIBONACCI IDENTITIES 
, Hoggatt and Bicknell [5] have derived numerous identities involving the fourth power of Fibonacci numbers 
\Fn\ "from Pascal's triangle. 

By considering the same matrices 5 and U where u/ = Hg = q and U2 ='Hj = ' p, i.e., 

(3.1) 

0 0 0 0 f 
0 0 0 14 
0 0 13 6 
0 1 2 3 4 
1 1 1 1 1 

and U = (ajj) is the column matrix defined by 

(3.2) a l 7=( ,-i , ) H%H*}1 , 1=1,2,-., 5, 

the following identities for the fourth' power of generalized Fibonacci numbers may easily be verified by proceeding 
as in Hoggatt and Bicknell [ 5 ] : 

(3.3) % ( - V i ( * i ' ) H h = 25n(Hi,<J-"&HJ+l) = A/ <»Y> 

4n+2 . 

(3.4) E f-^'( 4nt2 ) "h = 25n(H£n+r2Hl+M + Hl+j+2) = Aj-AjH 

i=0 

4n*4 7 + \ 

1=0 =AJ-3A/+I+3AJ+2-AJ+3 . 
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Noting that the coefficients of the terms involving the A's on the right-hand side of the above equations are the 
first four rows of Pascal's triangle, we deduce the general identity 

4n+k 

i*=0 
= Aj-Ik- DAfH + - + (-1)k-1Aj+k • 

Similarly, we have 
4n+5 

(3.8) £ (-1)1 ( Y 5 ) ^r25n+UH4
2n+l+2-M

4
2n+i+3) = 25A!+2l 

i=0 

which results in the recurrence relation 
(3.9) Aj - 4Aj+1 + 6Aj+2 - 4Aj+3 + Aj+4 = 25Aj+2 
i.e., 
(3.10) Aj-4AJH - WAj+2-4Al+3 + Aj+4 = 0 

on equating (3.8) and (3.7) with k = 5. Defining 

(3.11) G(j) = H4
+j - 4H4+j+1 - WH4

n+i+2 - 4H4
+j+3 + H4+/+4 

yields 
(3.12) 25n{GQ)-G(j+1)\ = Aj-4Aj+1-19Aj+2-4Aj+3 + Aj+4 

= 0 on using (3.10). 
Hence, G(j) is a constant. 

When n = j = Of (3.11) reduces to 
(3.13) G(O) = -6d2 , 

which leads to identity (2.9) which is in turn a generalization of a result due to Zeitlin [10] while also being a ver-
ification of a result due to Hoggatt and Bicknell [5] and also Zeitlin [11]. 

4. FURTHER GENERALIZED FIBONACCI IDENTITIES 
In addition to the numerous identities of, say, Carlitzand Ferns [1 ] , Iyer [4 ] , Zietlin [10], [11], Subba Rao [8] 

and Hoggatt and Bicknell [5 ] , Harris [3] has also listed many identities for the Fibonacci sequence | Fn \ which 
may be generalized to yield new identities for the generalized Fibonacci sequence | Hn \ . 

n 
(4.1) Y<kHk = nHn+2-Hn+3 + H3 

k=0 

If oof: ff 
ukAvk = A(ukvk)-vk+1Auk 

(A is the difference operator) then 
n n 

^ ukAvk = [ukvk]
ng1 - J2 Vk+1&"k • 

k=0 k=0 

Let uk = k and Avk = Hk. Then 
k-1 

Auk=1 and vk = ] T /// = Hk+1 -p. 
i=0 

Omitting the constant -p from vk , we find 
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n n 

Y, kHk = [kHk+1]
n

0
+1 - J^ 1-Hk+2 = (n+Wn+2-Hn+4-p-H7-H0 = nHn+2-Hn+3+(2p+ql 

k=0 k*D 

Using this technique, we also have the following identities: 
n 

(4.2) ] T (-1)kkHk = (-1)n(n + 1)Hn.f + (~1)n'1Hn.2 - H.3 

k=0 

n 

(4.3) X kH2k = (n+ 1)H2n+i ~ H2n+2 + H0 

k=0 

n 

(4.4) J^ kH2k+l = <"+ 1)H2n+2 - H2n+3 + H1 

k=0 

' n 

(4.5) Yl k2H2k = (n2 + 2)H2n+1~(2n+1)H2n-(2o-q) 
k=0 

n 

(4.6) £ k2H2kH = (n2 + 2)H2n+2 - (2n + 1)H2n+1 - (p + 2q) 
k=0 

n k 

(4.7) £ X HS= H^4'(n + 3)p-q 
k=0 j=0 

n 

(4.8) £ k2Hk - (n2 + 2)Hn+2 - (2n - 3)Hn+3 - H6 

k=0 

(4.9) ]jjT k2Hk = (n3+6n- 12)Hn+2 - (3n2 - 9n + 19)Hn+3 + (50p +31q) 
k=0 

(4.10) ^ k4Hk = (n4 + 12n2 - 48n + 98)Hn+2 

k=0 

+ (4n3 - Wn2 + 76n - 159)Hn+3 - (416p + 257q) 

n 
(4.11) 5 J^ (~HkH2k = (-1)n(H2n+2+H2n) -(p- 3q) 

k=0 

n 

(4.12) 5 ^ {-t)kH2k+i = l-nnlH2n+3 + H2n+1) + (2p-q) 
k=0 

(4.13) 5 J^ (~f)kkH2k = (-Vn(nH2n+2 + (n+VH2„}-q 
k=0 
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(4.14) 5 ^ (-t}kkH2k+i = (-1)n(nH2n+3
 + (n+nH2nH)-P 

n 

(4.15) 4 £ (-1)kkHm+3k = 2(-7)n(n + Wm+3n+f - W H ^ ^ - H^ (m = 2, 3, •».) 
k=0 

and so on. 
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[Continued from Page 271.] 

where X is the largest root of 
(3) x4-x3 -3x2+x+ 1 = O. 

The astonishing appearance of (1) stems from a.peculiarity of (3). The Galois group of this quartic is the octic 
group (the symmetries of a square), and its resolvent cubic is therefore reducible: 
(4) P-8z-7 = (z+JMz2-!-/) = O. 
The common discriminant of (3) arid (4) equals 725 = 52*29. While the quartic field QfXJ contains Q(sJE) as a 
subfield it does not contain Q(sj29l Yet X can be computed from any root of (4). The rational root z = -1 
gives X=(A + 1)/4 while z = (1 + ̂ /29)/2 gives X=(B+1)/4. 

It Is clear that we can construct any number of such Incredible Identities from other quartscs having an octic group. 
For example 

x4-x3-5x2-x+1 = O 
has the discriminant 4205 = 292 • 5, and so the two expressions involve s/s and %/29~ once again. But this time 
Q(y/&) Is In Q(X) and Q(y/s) Is not. 

*MM** 



EXPLICIT EXPRESSIONS FOR POWERS OF LINEAR RECURSIVE SEQUENCES 

Aa G.SHAi iOW 
The Wew South Wales Institute of Technology, Broadway, N.S.W., Australia 

1. DEFi i iT lO iS 

Van der Poorters [6] in a generalization of a result of Shannon and Horadam [8] has shown that On my notation) 
if | w™ X is a linear recursive sequence of orbitrary order / defined by the recurrence relation 

/ 

where the P;j are arbitrary integers, with suitable initial values w$, w^, - , w('Jp then the sequence of pow-
ers ^ w^ J- , for integers r > 1, satisfies a similar recurrence relation of order at most 

In other words, he has established the existence of generating functions 

(1.2) w(
r
nM = £ "n*'*"- <4h - ("ft'*'*-

n=0 
The aim here is to find the recurrence relation for | w^r I and an explicit expression for w]!'(x). We shall con-

cern ourselves with the non-degenerate case only; the degenerate case is no more difficult because the order of the 
recurrence relation for I w'^ \ is then lower than 

r + i-1 

It is worth noting in passing that Marshall Hall [1] looked at the divisibility properites of a third-order sequence 
by a similar approach. From a second-order sequence with auxiliary equation roots a-j ami ag he formed a 

2 2 third-order sequence with auxiliary equation roots aj ,0*2 , &1&2 -

2. RECURREiCE RELATiOi FOR SEQUENCE OF POWERS 

Van der Poorten proved that if the auxiliary equation for | w„ \ is 
/ / 

(2.1) g(x) ^ x'1 - £ Pip1-' = n (x- ajt) - 0 , 
1=1 t=i 

then the sequence j w^r \ satisfies a linear recurrence relation of order 

r + i-1 
r 

with auxiliary equation 
A, \ \. 

(2.2) gr(x) H II fx - an aj2 - aJ) = 0 , 
Ykn=r 

the zeros of which are exactly the zeros of g(x) taken r at a time, 

281 
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We now set 

(2.3) gr(x) =xu-j^ Rujx
u-i, u = (r + [-1) 

M and we seek the RUJ-. 
Macmahon [5, p. Sidelines hj, the homogeneous product sum of weight / of the quantities a-irs as the mm 

of a number of symmetric functions, each of which is denoted by a partition of the number /. He showed that in 
our notation 

h - Y* ®M PXIPX* PKJ 

The first three cases of hj are 
h1 = P;j = 2a/7 

h = Pn+Pi2= Xa2 + Zana/Z 12 -

h3 = Pfi+2P„Pf2 + Pl3 - 2 4 + %aff aj2^anaj2aj3 . 

Now g/x) = 0 is the equation whose zeros are the several terms of hr with ay = 0 for / > i, since from 
its construction its zeros are ay taken r at a time; that is, 

RU1 = hr with ay = 0 for j > i, 

since we have supposed that there are 

''T'H 
distinct zeros of gr(x) = 0. 

Macmahon has proved [5, p. 19] that Hf the homogeneous product sum, / together, of the whole of the 
terms of hr, can be represented in terms of the symmetric functions (denoted by [ ] ) of the roots of 

x1 -hfx
M+h2x

1'-2-- = 0 
by 

(2,4) Hr= V ( 7f
(3^5^+-~! [Il^[2r ]**&]** - . 

Some examples of Hr are (with ay = 0 for / > i) 

R2 = ^2
2l'fa22 +a2ia22 > 

1 
H2 = a4

21 + a4
22 + 2a2

21a2
22 + a3

21 a22 + a2f a2
22 , 

2 

H2 = a6
21 +a6

22 +2a3
21a3

22 +a5
21 *22 + *21o»5

22
 + ^21^22 + 24fa

22 -
3 

H2
2 = H2H2 = a4

21 +a4
22+3c?21 a\2 +^21&22

 + 2*21^22 . 

H2 = a6
27 + a6

22 + 7a3
21 a3

2 + 3a5
21 a22 + 3a2f a5

22 + 6a4
; a2

2 + 6a2
21 a4

2 . 

hm is the homogeneous product sum of weight m of the terms of P,f. Hr is the homogeneous product sum of 
weight m of the terms of Ru / . m 

(~1}i+1 Py is the product sum, / together, of the terms of P,-f. 
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(- 1)J+1 Ruj is the product sum, / together, of the terms of Ru1. It follows directly from Macmahon [5, p. 4] that 

and so 

For example, 

u *-* Xi/Xot - hi m 

Vrikfrj ' * J m=1 

®uj= E M J ^ S \ ™' TIH^ . 
UJ *-* X f / X 2 / - X / / rm 

^nXn=j * J m=1 

R3J = H2 = afy + a§2 + ^2la22 * 
1 

32 = ~ 2 "^ 2 ~ ~' J2f ~^ ^21^22 "^ 21 ®22 
1 2 

+ (1^CL^1 + Y,^a22 + 2a21°22^ 

- —2j&2i &22 ~ ^^21^22 ' 

33 = 2 "^ 2 ~~ 2 2 = ^"21^22 ' 
1 3 2 1 

We can verify these results by utilizing some of the properties of the generalized sequence of numbers | w(2) I 
developed by Horadam [3 ] . 

From Eq. (27) of Horadam's paper we have that 

(2-5) - ' n 2 ' ^ - ^ = ( ^ 2 2 ^ , 
where 0 0 

P-P ,J2),A/2UP W(2) w(2) • 
~ 21 0 1 22 0 ~~ 1 

Thus 0 
J2) J2) J2f - / p \n-3p wn-1wn-3 ~wn-2 " ' " ' 2 2 } e 

and 
(2-6) P22<i)2-P22<»n!A% = (-P22)"-2*-
Subtracting (2.5) from (2.6), we get 

(2.« P22w
(
n
2J2

 + "ft = P22^-1 wi% + ^nM% ' 

But 

and 
42}-p22^% =p2A% 

%J2) p w(2) = p WW 
wn-1 ~F22wn-3 F21wn-2 -

SO o o 

%J2).p2j2f 9p W(2).J2) _ p w(2r 
wn +P22wn-2 ~2 P22wn wn-2 ~ F21wn-1 > 

and 
PZP$ +P

22
wn2-3-2P22^n

2-Wn% = fyzP^t • 
Adding the last two equations we obtain 

Combining this with (2.7) we then have 
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(2.8) *>{f = (P2
21+p22><2Ji +<ph+phr22><2>l+(-py<2£ -

so 
2 2 2 

11 ™ 21 "^ 22 = ®21 ~^~ ^22 ~*~ ^21^22 * 
3 3 2 2 

32 ~ 22 21 22 = —®*21 ®22 — ^21 ®*22 — ^21 ®*22f 

^33 = ~^22 ~ a21a22 > 
as required. 

To obtain an expression for Hr in terms of afy, we now use a result of Macmahon, namely, 
furj = (-f)r(u+1)0u f 

where au denotes the sum of the uth powers of the roots of g/x) = 0. It is sufficient for our purposes to state 
that Macmahon has shown that ou is the homogeneous product sum of order r of the quantities a}}. It is thus 
given by 

°" = 5T na// 
by analogy with s * = r m 

ut 
m 

Zt=r m 
K - £ n <h 

the homogeneous product sum of order r of the quantities a,y. We now define OjU, the homogeneous product 
sum of order r of the quantities a"- such that afj = 0 for / > / : 

/ 
uv; 

and we introduce the term 

We have thus established that for 

Es/=r j=1 

On., = (-1V(U+1)0,. . 

(2.9) 

where 

and 

1=1 

tn\n^j S Z ' m=1 l 

•m 
r 
m 

(a- r¥ 
Mr - J2 (-lf(3^^5^+'"} n (°jur) 

ZnlLn=m v=1 fv°l*v 

and **=* M 

- ( ' * ; - ' ) • 

It is of interest to note that another formula for 0/ur can be given by 
/ 

(2.9) 
,=1 f i>k 
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We prove this by noting that 

°-,u - E n « y - (-nr<u+1)oiur 

and defining 

*;- E "4" 
Si/=r jj=1 

and showing that 

1=1 J>k 

It follows from Macmahon [5# p. 4] that h'r satisfies a linear recurrence relation of order / given by 
7 

/?; = 1, r = o 
h'r = 0, r < 0 ; 

the P-ir and a/r are those of (2.1). We again assume that the a-ir are distinct so that from Jarden [4, p. 107] 
/ 

M 
where D is the Vandermonde of the roots, given by 

/ 
(2J 1 > D = )Ca#1 n (a^ -a^ = n (aU"a^J ° fa/w ~ain} 

1=1 j^n^m j>n j^n^rn 
n<m n<m 

and Dj is the determinant of order / obtained from D on replacing its j t h column by the initial terms of the 
sequence, h'a, h'j, — /?/„./. It thus remains to prove that 

(2.12) D^dfj1 n (aim-aj = D4j!/ n (a,f-aln) 

We use the method of the contrapositive* If 

Dj ± a1;]1 n (aim-ain} , 

then m > r f 

M 
(from (2.10) with n = 0) 

/ 
^XX/^ H (afm-<h'n) 

m>n 



286 EXPLICIT EXPRESSIONS FOR POWERS OF LINEAR RECURSIVE SEQUENCES [OCT. 

which contradicts (2.11). This proves (2J 2) and we have established that 
/ / / 

as required. / = / i=1 j=t / j>n 

3. GENERATING FUNCTION FOR SEQUENCE OF POWERS 

Van der Poorten [6] further proved that if ^ 

(3.1) wmM = 2 w'n**" = fM/x'gfx-1), 
n=0 

then there exists a polynomial fr(x) of degree at most u - 1, such that 

(3.2) wf'VxJ = frM/xugr(x-1), u = lr + i
r~

1\ . 

We first seek an expression for fr(x). 

w(
r
nM = w(/ + wfx + wfx2 +.« + w^x"-1 + w(fxu + .« 

-Ru1xw'r»(x) = -Ru1wfx-RulWfx2-----Ru1w^1-Ru1^1
xU--" 

-Ru2x
2w(J>M = -Ru2wfx2 Ru2w<>>!3 x"-1 - Ru2w

1^ x» - -

-Ru^x^w'j'M = -*UrU-1*>tfxU-1-Ku,u-i»>¥xU-" 

-Ruuxu
w«Ux) = -Ruy>fxu--

We then sum both sides of these equations. On the left we have 

wr')M[ ; " E HuJxJ J = w(
r
nMxu I x~u ~J2 Ru/x-(u-J) = w(

r°Mxugr(x-1)t 

as in van der Poorten. 
On the right we obtain 

(3.3) f/x) = J2 Tu/ > 
j=0 where 

since 

TurWf-llRum*>jL< *uO = °> 

w0f„n _ V* a .JDr„n 

Thus we have M 

"P'M - ( E J ™f~ E "um»f!n l A AW I-
\ i=0 f m=1 ) I / 

(3.4) wl _ 
\ j±0 ( m=1 

We now show how (3.4) agrees with Eq. (33) of Horadam [3] when 1 = 2 and r = 2. We first multiply each side 
of the equation by x3g2(x~1). 

The left-hand side of (3.4) is then 
x3g2(x'1)wj2

2)(x) = (-UPl1+P22)x-lPl2+P2lP22^2 + P22x3^ 
= (1 + P22x)(1-(P21 ^2P22)x^P§2x2)w{

2
2)(x) . 

When i = 2, the right-hand side of (3.4) is 
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E j wi2'2 - E »*»•"# I *; - »f+*>f*+"f*2 - "sA21*2 - "3A2,x2 - «32»>fx2 

h° ^ ' = w12? + w<2>2x+P21w
(2>2x2 + P2

2w<2> 2x2 + 2P21P22w<0
2W1

2>x2 

'21W
(^ X-P22W

(^ X-P^wf* X2-P22wf)2X2 

~ P22W02'2*2 ~ P221 P22>»0>2X2 

= (1 + P22x)wo) -(1 + P22
xHp2iw(o> ~ wi2>> x 

- 2X(P2A2)^2> * p&f - »f > £ ^ g 
= (1+P22x)<w^' -x(P21w'0

2)-wfh -2xew'0
2,(-P22x)) 

(since w0(-P22x) = (J + p ^ - 1 K 

This agrees with Horadam's Eq. (33) if we multiply that equation through by (1 + P22X) and note that a21 + a22 

- P21 + 2P22. When r= 1, we get u = i, Rlm = P/m. If we consider the special case of -j wf}*l: 

w^ = 0, n < 0 

w1'1 = h n = 0 

r=1 

then | w*j' \ = \ UH \* t n e fundamental sequence discussed by Shannon [7 ] , and (3.4) becomes 

= Ux!'g(x~7)l where „ = ^ + r-l^ 

which is effectively Eq. (1) of Hoggattand Lind [2]. (Equation (2) of Hoggattand Lind [2] is essentially, the same 
as Eq, (2.4) of Shannon J _ r 

Thus in (2.9) we have found the coefficients in the recurrence relation for | w^ I and in (3.4) an explicit ex-
pression for the generating function for j w^r I . 

Thanks are due to Professor A.F. Horadam of the University of New England for his comments on drafts of this paper. 
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1. LATIW SQUARES 

A Latin square of order n Is an n x n square in which each of the numbers 0,1, - , n - 1 occurs exactly once. 
in each row and exactly once in each column. For example 

0 1 0 12 0 12 3 

10 12 0 12 3 0 

2 0 1 2 3 0 1 

3 0 12 

are Latin squares of order 2,3,4, respectively. Two Latin squares of order n are orthogonal, if when one is super-
imposed on the other, every ordered pair 00, 01, —,n - 1 n - 1 occurs. Thus 

0 12 0 12 0 0 1 1 2 2 

12 0 and 2 0 1 superimpose to 12 2 0 0 1 

2 0 1 12 0 2 1 0 2 10 

and therefore are orthogonal squares of order 3. A set of Latin squares of order n is orthogonal if every two of them 
are orthogonal. As an example the 4 x 4 square of triples 

0 0 0 
1 2 3 
2 3 1 
3 1 2 

1 1 1 
0 3 2 
3 2 0 
2 0 3 

2 2 2 
3 0 1 
0 1 3 
1 3 0 

3 3 3 
2 1 0 
1 0 2 
0 2 1 

represents three mutually orthogonal squares of order 4 since each of the 16 pairs 00, 01, — , 33 occurs in each of 
the three possible positions among the 16 triples. 

There cannot exist more than n - 1 mutually orthogonal Latin squares of order n, and the existence of such a 
complete system is equivalent to the existence of a finite projective plane of order n, that is a system of n +n + 

1 points and n2 + n + 1 lines with n + 1 points on each line. If n is a power of a prime there exist finite fields of 
order n which can be used to construct finite projective planes of order n. So# for n = 2,3, 4,. 5,7, 8, 9 there ex-
ist complete systems of n - 1 orthogonal Latin squares of order n. We have listed the examples n= 2,3,4, above. 
It is known [2] that there are no orthogonal Latin squares of order 6 and that there are at Least two orthogonal Latin 
squares of every order n>2, n *6. In fact, the number of mutually orthogonal Latin squares of order n goes to 
infinity with n [3 ] . However no case of a complete system of n - / orthogonal Latin squares is known for any n 

which is not a power of a prime. 
2. L A T i l CUBES 

We can generalize all these concepts to nxnxn cubes and cubes of higher dimensions. 
A Latin cube of order n is an n x n x n cube (n rows, n columns and n files) in which the numbers 0,1,.—, 

n — 1 are entered so-that each number occurs exactly once in each row, column and file. If we list the cube in terms 
of the n squares of order n which form its different levels we can list the cubes 

288 



OCT. 1974 LATIN k-CUBES 289 

0 1 2 
1 2 0 
2 0 1 

1 2 0 
2 0 1 
0 1 2 

2 0 1 
0 1 2 
1 2 0 

0 1 1 0 A 

and 
10 Of 

as Latin cubes of order two and three, respectively. Since even this method of listing becomes unwieldy for higher 
dimensions we also use a listing by indices. Thus we write the first cube as A = (a^) with agoo = t agio - 1, 
3oii = 0, 3ioo= f, aioi^O, afio= 0* am = 1- In a similar manner we can describe four-dimensional cubes 
A = (a/j/fz) or order n, where each of the indices, ij,k,& ranges from / to n. Generally we can discusser-cubes 
A = (aij2—jk) with k indices ranging from 1 to n. These cubes will be Latin /r-cobes of order n if each of the 
nk entries a-lv^k is one of the numbers 0,1, - , n - / so that a^...^ ranges over all these numbers as one of the 
indices varies from / to n while the other indices remain fixed. 

Orthogonality of Latin cubes is now a relation among three cubes, or in genera! among k Latin k-mbes. That is, 
three Latin cubes of order n are orthogonal if, when superimposed, each ordered triple will occur. Similarly k Latin 
Ar-cubes are orthogonal if, when superimposed, each ordered Ar-tuple will occur. A set of at least k Latin Ar-cubes is 
orthogonal if every k of its cubes are orthogonal. 

Theorem, If there exist two orthogonal Latin squares of order n then there exist 4 orthogonal Latin cubes of 
order n and k orthogonal Latin Ar-cubes for each k >3e 

Proof. Let A = (ajj), B = (b/j) be orthogonal Latin squares of order /?„ 
Define 4 cubes C, D, E, F of order n by 

cfjk = 3a.lhk, dfjk = abij.fk, Cjjk = ba..gk, fjjk = bbjjtk, i,j,k = 0,1, -,n- f. 

Note that the squares A,B are used both as entries and as indices in the construction of the cubes. For example the 
pair of 3 x 3 Latin squares 

0 0 11 2 2 
12 2 0 Of 
2 f 0 2 10 

leads to the four 3x3x3 cubes 
0 12 12 0 2 0 1 

C: 12 0 2 0 1 0 12 
2 0 1 0 12 12 0 

0 12 12 0 2 0 1 
D: 2 0 1 0 12 12 0 

12 0 2 0 1 0 12 

0 2 1 10 2 2 10 
E: 2 10 0 2 1 1 0 2 

10 2 2 10 0 2 1 

0 2 1 10 2 2 10 
F: 10 2 2 10 0 2 1 

2 10 0 2 1 10 2 

Superimposed these lead to a cube of quadruples 
CDEF: OOOO 1122 2211 1111 2200 0022 2222 0011 1100 

1221 2010 0102 2002 0121 1210 0110 1202 2021 
2112 0201 1020 0220 1012 2101 1001 2120 0212 

where each ordered triple occurs in every one of the four possible positions in the quadruples. 
It is easy to see that C,D,E,F are Latin cubes. For example, for fixed ij the values Cfjk=aaf.k go through the 

ajfh row of A, that is, through the values 0,1, —, n - t For fixed i,k the index a^ goes tnrough all the values 
in the / row of- A, that is, through all values 0,1, —, n—1 and hence cyik goes through all values in the kth 

column of A Finally for fixed j,k the index a,y goes through all values in the jth column of A and therefore 
c/jk again goes through ali values in the kf^ column of A. 

To prove the orthogonality of, say, C,D,E we have to prove that for every triple (x,y^) from | 0,1, —, n- 1 \ 
the equations 

Cjjk = x, djjk = y, eijk = z 
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have a solution ij,k. By the orthogonality of A and B the pair (x^) occurs exactly once in the superimposed 
square AB so that the equations a%fk=x, b%k=z determine k and c. Thus the equations 

cijk = aay,k = x and *#y* = baj.k = z 

determine ay and k. Mow, since A is a Latin square, there is exactly one occurrence of y in the kth column of 
A so the equation 

dijk = aby,k = V 
determines by and the pair (ajj,hjj) determines ij; 

Thus for every triple (x,y,z) there is a unique triple (ij,k). 
This construction is essentially that given by Arkin for 4 orthogonal 10 x 10 x 10 cubes [1]. 
To prove the last part of the theorem we proceed by induction on k. Let A \ - , Ak be orthogonal Latin ̂ -cubes 

of order n, and write the entries of AJ" as s/r....,-.. We now define k+ 1 orthogonal Latin (k+ /j-cubes B1, —, 
5*+' by , ' " * 

/? . . = a 1 
'/>">/*+/ al1,-,ikJk+1 

bh,~JkH = 8-k 

hk+1 - h 
aih-~>ik<ik+1 

We omit the proof that the # are Latin cubes, which is the same as before. In order to prove orthogonality we 
have to solve 

B'- • = *i I = 1, -,k+1 . 

For any (k+1)-tup\e (xf, ~-,xk+f) from I 0,1, ••> n - If. Mow, by the orthogonality of A and B the two 
equations 

A 1 = xj, B 1 m = xk+1 
ah,~;tk>'k+i 

determine ajr..,k and ik+j. Once ik+i is determined the equations 

,'-ik''k+1 

^1^ik 0 = 2,-,kl 

A j . = xj j = 2, 

determine 

Once the elements 
a'ir.,k (l=h-M) 

are determined it follows from the orthogonality of the £-cubes A1, -, A that the indices //, —, ik are determined. 
Thus for every (k+1)-tup\e (xf, —,xk+i) there is a unique (k+1)-tup\e (if, •-, ik+f) with 

Bi . = Xj / = 1,-,k+1. 
®1~!k+1 J 

Since, as we mentioned, there are orthogonal Latin squares of every order n>2, n ¥=6 we have the following. 
Corollary. There exist orthogonal ^-tuples of Latin ̂ r-cubes of order n for every n>2, n # 6. 

3. FIWITE FIELDS 
A field is a system of elements closed under the rational operations of addition, subtraction, multiplication and 

division (except by 0) subject to the usual commutative, associative and distributive laws. There exist finite fields 
with n elements if and only if n is a power of a prime p. The prime p h the characteristic of the field and we 
have pa= 0 for every a in the field. Following are the addition and multiplication tables for the fields with 3 and 
4 elements: 

+ 

0 
f 
2 | 

]0 / 2 

0 1 2 
1 2 0 
2 0 1 

X 

0 
1 
2 

0 1 2 
OOO 
0 1 2 
0 2 1 
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+ 

0 
1 
a 

1 + a 

0 

0 
1 
a 

1 + a 

1 

1 
0 

1+a 
a 

a 

a 
1+a 

0 
1 

1 + a 

1 + a 
a 
1 
0 

X 

0 
1 
a 

1+a 

0 

0 
0 
0 
0 

1 

0 
1 
a 

1 + a 

a 

0 
a 

1+a 
1 

1 + a 

0 
1+a 

1 
a 

If there is a field Fn with n elements, that is if /i is a power of a prime, we use the elements { f1f f^ - , fn\ 
of Fn as indices to construct Latin squares, cubes, etc. We give the construction for cubes, but the generalization to 
£-cubes is easily seen. 

Let a, p, 7 be three nonzero elements of Fn then w&can define the Latin cube A = (a;jk) by 
am = afi + Pfj + fiffc . 

To see that A is a Latin cube consider, say, fixed /;/ and see that yfk runs through all elements of Fn as fk does. 
Hence afjk runs through Fn as k= 1, -,n. 

Mow let l%P,y), (a',P',y') and (a",P",y") be three triples of nonzero elements of Fn so that the determinant 
\a P y 
\a' P' y'\*0. 
U" 0" y" 

Then the three Latin cubes 

with 
(agjkK ^= fay, A <*W 

a}jk = af1 + Pfj + yfk, afa = a?, + P'f/ + y'fk, a'fa = a"f,- + P"ff + j'% 

are orthogonal. This follows from the fact that for any triple (x,y,z) from Fn the three equations 

aijk = x* a'ijk = V, a'fjk = z 

have a unique solution fj,fj,fk. 
Wow the Vandermonde determinants 

/ a of 
1 p p2 = (P-a)(y-a)(y-P) 

\1 7 T 2 ! 
are different from zero for any three distinct elements a,j3,Y of Fn. Thus, letting a run through the nonzero ele-
ments of Fn we get n - 1 orthogonal Latin cubes of order n, 

Aa=(a%h a% = fi + afI + a% . 

The construction for a system of n - / orthogonal Latin /r-cubes of order n proceeds in exactly the same way if we 
set 

Aa = (afr.,kK a%...,k = fh * afi2+ - * a*"'' f,k 

where a runs through the nonzero elements of Fn. 
Theorem. If n is a power of a prime and k<n, then there exists a system of n - / orthogonal /r-cubes of order n. 
Our previous examples constructing four orthogonal cubes of orders 3 and 4 show that/? - / is not necessarily the 

maximal number of orthogonal Ar-cubes of order/? for k >2. However, the orthogonal cubes constructed with the aid 
of finite fields satisfy additional properties. For each fixed value of k the squares 

A% = (a%) U = hl-,n 

form a complete system of n - 1 orthogonal Latin squares as a ranges through the nonzero elements of Fn, mi 
similarly for each fixed / the squares 

(»m> j,k = 1,2, -,n 

form a complete system of orthogonal Latin squares. If n is a power of 2 then the third family of cross-sections 

A%=(afjk) i,k=1,2,-,n 
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form a complete system of orthogonal Latin squares for each fixed J, while for n odd we get a system of (n - 1)/2 
orthogonal Latin squares, each square occurring twice. 

Theorem. If n is a power of 2 then there exist n—1 orthogonal Latin cubes of order n with the propeftythat 
the corresponding plane sections form systems of n - 1 orthogonal Latin squares. 

If n is a power of an odd prime then there exist n - 1 orthogonal Latin cubes with the property that the corres-
ponding plane cross-sections in two directions form complete systems of orthogonal Latin squares, while the plane 
cross-sections in the third direction form a system of (n - / j /? orthogonal Latin squares, each square occurring twice. 

Finally we observe that if we have orthogonal r̂-cubes of orders m and n then we can form their Kronecker 
products to obtain orthogonal Ar-cubes of order mn. That is from orthogonal £-cubes 

A' = (a]r.,kK -,A* - (a)r.,k); B1 - ft/,...,^, - , Bs - (h^K 

where the a's run from 1 to m and the b's from 1 to n we can form the orthogonal Ar-cubes C1, —, £e , where 

^ - ^ # r V -d clr.,r(air.,k,bjr..kI 
so that the c's run through all ordered pairs (1,1), —, (m,n) as the pairs d'lJj),—, O'kJk) rurs through these 
ordered pairs. Thus we have the following. 

Corollary. If 

then for any k < g there exist at least q-1 orthogonal Latin Ar-cubes of order n. 
The relation to finite Ar-dimensional projective spaces is not as immediate as it is for Latin squares, and we shall 

not discuss it here. 
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ON EXTENDING THE FIBONACCI NUMBERS TO THE NEGATIVE INTEGERS 

M.G.MONZINGO 
Southern Methodist University, Dallas, Texas 75275 

A sequence of positive integers defined by the formula 

(1) xn+f = axn+bxn„i, n a positive integer, 
is said to be extendable to the negative integers if (1) holds for n any integer. See page 28 of [1] . The purpose of 
this note is to show that the Fibonacci numbers form a sequence which is extendable to the negative integers in a 
unique way. In this note only nontrivial integral sequences will be considered. 

[Continued on Page 308.] 



A METHOD OF CARLITZ APPLIED TO THE KJH POWER 
GENERATING FUNCTION FOR FIBONACCI NUMBERS 

A.G.SHAi iOi 
University of Papua and New Guinea, Port Moresby, T.P.N.G. 

1. iiTRODUCIiOi 
If we consider ffx) such that the power series expansion of ffx) is given by 

OO' 

then ffx) is called the ordinary generating function of the sequence I fn I. 
We define the generating function for the kth power of fn as 

(1.2) fkM - 2 : fy . 
n=0 

The complexity of expressions which involve f* increases as k increases. This makes it increasingly difficult to 
determine f^fx) by the methods described by Hoggatt and Lind [2], Riordan [5] devised a method to overcome 
this. His approach depended basically on the expansion of f„ by the binomial theorem and subsequent examina-
tion of the coefficients. Carlitz [1] applied this to the more general relation 

(1.3) un = pun-<i+qun-2 (n>2), UQ= 1, ur = p . 

He then developed an elegant approach which employed a special function of x and z and depended for success on 
the. identity un+fUn^,f -un = qh. Because it is so elegant and because it has -appeared hitherto In abbisvtated 
form in papers by Carlitz, Riordan, and Horadam [3], it is proposed here to apply it to the Fibonacci sequence and 
to expound it in sufficient detail for the general reader to be able to follow it. It is worth pointing out that Kolodner 
[4] used another approach in which he exploited the fact that the zeros of r 2 - 2zcos 0 + 1, with any 0 real or 
complex, are e^ and e''1®, the powers of which are easily managed. 

2. CARLITZ'METHOD 
Following Carlitz, we write 

00 

(2.1) F(x,z) = £ f7 - akx)(1 ~bkx)fkfx) z— , 
k=1 k 

where a = 1M1 + sjs) and b = 1Ml -\fs) satisfy the auxiliary equation x2 ~ x - 1 = 0. If we expand this, 
F(x,z) using the power series expansion of log (1 + z), we find that 

293 
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f(^ = Y,<1-*k+bk)x+<*b)kx2)i
1- Y*?xi 

k=1 j=0 

= ~]LXJf/°0n'-f/d + J^x'**' log(1-afjz) 
1=0 J=0 

oo oo 

i=o )=o 

= -logfl - f0z) +xiog (1 + f_fz) 
oo 

+ x Y,xJ!og(l~(a + h)fjz + ahffz2) 
ro 

oo oo 

"x S*Jf/og (1" fJ+*zJ ~xYlx* lo9 (1 + fHz)' 
j=0 j=0 

Since f/+JfH - ff = (-DH , it follows that 

(1 - fJHzMf + fHz) = 1 - (fj+1 - fH)z - fj+1 fHz2 

= 1-fjZ-{f-(-1)J)z2 . 

These last two Sines are the crucial steps because they make it possible to eliminate terms in z from the numerator 
in the next few lines. It is the inability to do this with higher degree equations that seems to make the method break 
down then as will be pointed out later. 

F(x,z) = -log (1 -f0z)+xlog ff + Lfz) 

(2.2) 
+xJ^xJ!og(f-fjZ~ffz2) 

J=0 

-xJ^xflogd-fjZ-fff-f-VOz2). 
j=0 

The last two terms can be combined to give 

ho { L i-ff-f,z 
where there is no z in the numerator. This becomes 

oo oo 

' I X E ^ <-1)r'z i,2r 

2,2 ,r j=0 , = / (1-fjZ-ffz^S 

(2.3) oo oo 

The numbers a^r are, in a sense, the serth convoluted Fibonacci numbers;" they are generated by the rth power 
of the ordinary generating function for Fibonacci members. They will be considered in more detail in Section 4. (2.3) 
becomes 
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oo oo 

j=0 r=1 k=2r 

oo oo [k/2] 

- E ^ ' Z ^ X ^ ^ r J=0 k=1 

in which [k/2] is the greatest integer function: it represents the integral part of the real number k/2. 
If we replace this in (2.2) we get 

F(x,z) = -log (1 - f0z) +x/og (1 + Lfz) 

[k/2] 

u / w k=1 r=1 j=0 

[k/2] 

= -log (1 - f0z) + xlog (1 + f.1z)+x E * * E ~ ~ akA-2r((-Vrx) 
k=1 ,=1 

Comparing coefficients of zk we get 

L/1 — n. ~J.f_l\k„2\ 
xk / f \k [k/2] 

k k L^d r 
•(1-lkx + (-1)Kx~z)fk(x) = ^ - - x — ^ + x Y tz^-akrfk-2r((-1)rx) , 

k k ^-f r 
rf=1 

where % is the kth Lucas number. Thus, 
[k/2] 

(2.5) (l-zkx + (-7)kx2)fkM = l + kx ] T (-1)r(akr/r)fk_2rU-Drx) , 
r=1 

which agrees with the result obtained by Riordan's method [5 ] . For example, put k=2, and 

(1-3x+x2)f2M = 1+2x(-1)(1)f0(-x) = 1--^-

whichgives 

f2(x) = ^ — — -
1 -2x-2x2+x3 

1 THE COEFFICIENTS OF fk(x) 

It is still necessary to look more closely at the coefficients, especially for high k. Carlitz' approach here is also re-
warding to study. Applying his method to the Fibonacci coefficients we get from before 

~ / an+1 hn+1 \ k n w"-£('-^-)' 
(3.1) = 5k/2 E ( s ){ak~sbs + a2k-2sb2sx + a3k-3sb3sx2+ -j 

s=0 

k 

= 5k/2 E ( s ) *k'*b*(1-ak-sb*xr1 . 
s=0 

Define, 
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k 
Dk(x) = n (1-ak'sbsx) 

s=0 

and write fk(x) = Fk(x)/Dk(x)f where Fk(x) is a polynomial of degree < k (k > 1). We show that the coef-
ficients of these polynomials satisfy certain recurrence relations and can be determined explicitly. 

Then 

(3.3) 

Wow, 

n=0 

jLfkM--±rfkM. 

Ffc+iM = _a_ Fk(ax) __ j ^ _ _ ^ Fk(bx) 

D/c+jfx) V 5 Dk(ax) y/E Dk(bx) 

k+1 
I I U-ak+Usbsx) 

Dk+lM ... s=0 = fj _jjk+1xj 
Dk(ax) k 

E (1-ak+1~sbsx) 

s=0 
Similarly, 

Dk(bx) 

Whence from (3.3) we get 

(3.4) FkHfx) = ^ (1 - bk+1x)Fk(ax) - 4 = (1 - ak+1x)Fk bx) . 

Put 
k 

(3.5) Fk(x) = J^ Fksx
s 

s=0 

and it follows from (3.4) if we equate coefficients of xj that 

c - a'+1 ,- a'bk+1
 F b'+1

 F +a
k+1b> c 

(36)
 Fk+1J ~ w ki-~irFkJ-1-jfFki *-jrFk-'-1 

= fjFkj+<-1)kf-(k-j+2)Fk,j-1 

which is an expression that enables us to find Fk(x) explicitly. We still need to find Dk and to do this we need the 
following piece of algebra. 

It can be shown easily that 
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(3.7) 

where 

More generally we have that 
k k+1 

(3.8! 
. s=0 s=0 

where 

3 

O (1-r>x) = (-1)°z°x0 + (-1)1 (j-=4z°x1 

+ (- J)? (z4-1)(z3-1) z 1X2 + (_1}3 (z4-1j(z3-1)(z2-1) z3x3 

(z - 1)(z2 -1) (z-~ 1)(z2 - 1)(z3 - 1) 

+ (-1)4 (24 - 1Hz3 - 1Hz2 - 1Hz - 1) Z6X4 = y (_1)z'As<s-1)[4\s 

(z-1l(z2-1)(z3-1)(z4-1) J£ L S J ' 

r * i - i \4i=(z
4-i)<z3-i)-(z4-^-i) (s>0) 

L°J ' I" J (2-1)fz2-1)~(z*-1) 
k k+1 r 

n a-zsx) = J2(-i)sz,As(s~7)\ k+
s

1 

=0 s=0 •-

\k+n = 1 \k+?1 _ u k + i - D ( z k - D - ( z k - s + 2 - D (s>0) 
L ° J ' L s J (Z-IHZ2-I)...(Z*-I) 

f k + 1 l - Kb/a)k+1 - 1)((h/a)k - 1) '- ((b/a)k~s+2 - 1} 

L S J ((b/a) - 1)((b/a}2 - 1) - Ub/af - 1) 

_ a^
Us)(hk+1~ak+1Mbk-akh- (bk~s+2) 

a2 (b~aHb2-a2)-lhs-as) 

= g-ks+s(s-1l fkfk-1 "'fk~s+1 _ ~ks+s(s-1) ik\ 
f0fl'"f*-1

 U ^ ' 
Thus if we replace x by akx in (3.8) we get 

k+1 

(3j> %w-Ef-/ j^r^/ j I^K -
SF=0 

since ab = -1. This completes the examination of the nature of the coefficients of fk(xl 

4 CONVOLUTED FIBONACCI NUMBERS 
We shall now review briefly the so-called "convoluted" Fibonacci numbers [5]. akj satisfies the recurrence relation 

(4.1) ay - ak«. j j - ak^2j = *k-2J- U k>2j + 2 . 

Moreover; it is convenient to write 
akJ = 0, k < 2j . 

By definition, 

In 

replace z by b/a, and 

ajM - £ w** 
k=2j 

Consider 
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(1-x-x (ajfx) = a2u + (a2j+ij-a2jj)x + (a2ii-2j-a2j+ij-32u)x2-i--
= a2jJ +a2H,/x + a2hi,H>< + a2j,H*2 + -
= a2j,j + a2j- 1j* " a2j-2,j-1 + a2j-2,j- 1 + a2j- 1j- 7* + a2Jj-1*2 + ~ 

= aHM 

since ay = 0, k < 2j. Thus 

(4.2) (1-x-x2)J
aj(x) = (1-x-x2)HaH(x) = (1-x-x2f2ah2M - (1-x-x2)af(x) = 1 

Hence 
(4.3) ajM = (1-x-x2f* = {f(x)\ i , 

where f(x) is the ordinary generating function for Fibonacci numbers. 
8. PROBLEMS FOR FURTHER STUDY 

Consider the third-order recurrence relation. 
(5.1) 
and the sequences 

in which 

and for n > 2, 

*n = Kn-1 + Kn-2 + Kn-3 h > 3) 

0, 1, 7, 2, 4, 7, 13, 24, 44, - , Kn, 
1, 0, I 2, 3, 6, 11, 20, 37, Lh-: 

Kj ~ KQ, t-j - K2- Kf , 

Ln ~ Kn-1 + K, ^n-2 

Using a simple induction proof and matrix and determinant theory, we can show that 
K, Kn n+1 ^n-1 Kn 

Kn Kn-2 Kn-1 I ~ 
/ / 1\ 
1 0 0\ 
0 1 0\ 

1. (5.2) 
Kn-1 Kn~3 Kn-2\ 

Similar treatment with a fourth-order recurrence relation and the sequences 
0, 0, I 1, 2, 4, 8, 15, 29, 56, - . Mn 

0, 1, 0, 1, 2, 4, 7, 14, 27, 52, .«, Nn 

1, 0, 0, 1, 2, 3, 6, 12, 23, 43, ••, On 

yields 

(5.3) 

M„+3 Mn+2 Mn+1 Mn 
Mt 'n+2 Mn+1 Mn 
Mn+1 Mn Mn.j 

Mn-1 
Mn-2 

Mn Mn-1 Mn-2 Mn„3 

= (-1)" 

Ordinary generating functions for these are easily found, but what about generating functions for the powers of the 
numbers? The forms of (5.2) and (5.3) by comparison with 

Un+l"n-l-tfi = q2 

ah 
and fnHfn_7-f2 = (-1) n-1 

rule out Carlitz' method for finding the k power generating function for third- and fourth-order recurrence re-
lations. The complexity of the multinomial coefficients would seem to make Riordan's approach break down. 
Kolodner's dependence on quadratic equation theory makes it difficult to extend his method to general cubic and 
quartit equations. What approaches then can be used for recurrence relations of order greater than the second? 
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A CONSTRUCTED SOLUTION OF o(n) = ofn + 1) 
RICHARD 6 i Y 

University of Calqary, Calgary, Alberta, Canada 
and 

DANIEL-SHANKS 
Computation & Mathematics Dept., Naval Ship R&D Center, Bethesda, Maryland 20034 

With o(n) the sum of the positive divisors of n, one finds that 
(1) o(n) = o(n + 1) 

for 
(2) n = 14, 206, -, 18873, 19358, •», 174717, •». 
Sierpinski [1] asked if (1) has infinitely many solutions. Earlier, Erdos had conjectured [2] that it does, but the 
answer is unknown. Makowski [3] listed the nine solutions of (1) with n < 1(r and subsequently Hunsuckeref ai 
continued and found 113 solutions with n < 107. See [4] for a reference to this larger table. 

It is unlikely that there are only finitely many solutions but, in any case, there is a much larger solution, namely, 
(3) n = 5559060136088313. 

It is easily verified that the first, second, and fourth examples in (2) are given by 
(4) n = 2p, n + 1=3mq, 

where 
(4a) q = 3mH-4, p = (3mq - 1)/2 

are both prime, and m equals 1,2, or 4. One finds that 

(4b) o(n) = o(n + 1) = | (9mi1 + 3)-6»3m . 

The third and fifth examples in (2) are given by 
(5) n = 3mq, n+1=2p 

with the primes 
(5a) q = 3m+1 -10, p = (3mq + 1)/2 

for m = 4 and 5. Then 
(5b) o(n) = o(n + 1)=1~ (9mH +9) - 15« 3m . 

Our new solution (3) is given by (5 - 5a) for m = 16. But there are no other examples of (5) or (4) form <44. 
While we do conjecture that there are infinitely many solutions of (1) we do not think that infinitely many solutions 
can be constructed in this way. D.H. and Emma Lehmer assisted us in these calculations. 
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THE DESIGN OF THE FOUR BINOMIAL IDENTITIES: HORIARTY INTERVENES 

H.W.GOULD 
West Virginia University, Morgantown, West Virginia 26S06 

We have seen in a previous episode [3] some of the artful disguises of the Moriarty identities. With skillful de-
tective work we may unmask fVSoriarty in many situations. The ease we. are about to discuss arose in a study of ques-
tions asked me by David Zeitlin (personal correspondence of 9 August 1972), and reveals Moriarty in a fourfold 
fantasy; for there are actually a full dozen formulas to be analyzed. As corollaries we find other interesting sums. The 
objective in our study is pedagogical, viz. to show how to handle IVloriarty. But let us hear Zeitlin's question. 

"Are the following two related identities, 

m-7 

m~1 

G> E (;)(m%\-1)<-*>*-<-»m + i + 1 ( s * i ) 2m-7 
m+j 

k=j 

fisted (or special cases) in your tables [4] ?" asked Zeitlin. " I am convinced that (1) and (2) are correct, but I am 
unable to prove it so." 

Zeitlin stumbled onto these formulas as a consequence of several Fibonacci identities. Naturally no set of tables is 
ever complete; but the careful reader will ascertain at once that relation (2) is precisely (3.162) in my tables...pre-
ciseiy upon changing a few letters and shifting m to m+ 7. Relation (1) is not listed. However, relations (3.160) 
and (3.161) are obviously related to (1) and (2) in some manner, as we shall see. 

We are therefore concerned at the outset with the four identities 

(3) E (-»' ( I ) { "*' ) ** = (-»* ( "L8 ) ^ §77 . (3-162) 

E '-«*( * )(**A) 2* = (-»"-'(£?,) 2*. (Zeitlin) (4) 

k=0 

n 

k=0 

n 
(3.160) 

k=0 
and 

(6) ± (-Dk(j) («£*) 2» |±_i = (_ir j n ^ 2 2 . t (3.161). 
k=0 

Here a is a non-negative integer; the range of summation in each case may start with k = a if one prefers, since 
( * ) = 0 for 0 < k < a. However, we state the four in a more elegant form as above. 

Relations (3) and (6) are inverses of each other; this is so because of the easy and well known inversion 
principle that 

300 
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J2 (~1)k[k
a) ffk) = (~1)ng(n) 

if and only if 

n 

12 (~1)k (a) g(k) = (-V"*")-
k=a 

Thus we have only to prove the one to obtain the other. Observe that (4) and (5) are 8fi1f-inYers.es. 
There are various ways to prove (3)—(6) directly; to this we shall give attention. But the main object of our work 

will be to show that these four sums are equivalent to the following four sums: 

o 

2a+1 

m S(M')(-'.)-('i')'*£f. 
K~ (J 

(8) 2 \2kll) ( / ! - / - * ) = \2a++ai) 2 

k=0 

n 
(9) Y k f 2 n \ l k \ I n+a\ ?2a n 

fe\2k)\n-a) =[ 2a ) Z 

k= 

n 

n+a 

2a 

k=0 

These are the four relations of Moriarty. The attentive reader of [3] may at first think we-proved two relations, 
and indeed we did. They were: 

I ' l l 
<"> E ( £ ) ( * ) = 2"'2r'1 ( " 7 r ) W±r • C3.120) m [4] , 

k=0 
and ,-

<12» T,l2
n

kVr)(k
r) = 2»*["-') , (3.121)inl4]. 

k=0 N ' X 

Toseehowweget (7)-(10)from these, proceed asfollows. In (11) put 2n + 1 for/?, and recall that [n+1/2] = n. 
Replace r by n -a. The result is (7). In (12) put 2n - / for /?, and note that [n - 1/2] = n - 1. Replace r by 
n - a - 1. The result is (8). In (11), put 2n for n and replace r by n-a. The result is (9). Finally, in (12), put 
2n for n and replace r by n-a. The result is (10). 

What we have done above is reveal the fourfold design of the Moriarty identities. These formulas occur frequently 
in trigonometric identities. 

We shall need the easy formula 

(13) £ (-'>*(a*)(X+rk)-(-'>"( r-n, 
k=0 

valid for all real x; this is formula (3.47) in [4] and can be proved from the Vandermonde convolution, for example. 
To carry out the proofs that the fourfold Moriarty (7)—(10) imply and are implied by (3)—(6), we need to note 

the following four sums: 

(H) 2 (* i ' ) ( ; : i ) - ("2:aK* ^smm, 
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(15) Z [2k
2"i) ("7-'**) -(Z?,)**" (3.158)m[4l. 

k=0 

(16) ± [lnk){na-Jk) = w£T(n+°\2*>, (3.26)in[4], 
k-0 

and 

(17) ± (r,l)(r-k
k)-

2iij{"^)^, (3.27) .n [4]. 
k=0 

By the way, formula (3.157) in [4] is redundant, being equivalent to (3J 58) by a simple change of variable. 
Relations (14)—(17) may be proved directly as we could even prove the original (3)-(6). They occur quite natur-

ally in work with trigonometric identities, and I first came on them some years ago while studying Bromwich [1] 
wherein they are implicit...some other time -we may discuss this case. Note how (14)—(17) differ from the corres-
ponding (7)—(10) in that 'k' has been replaced by '/? - k' in each case, or 'n-k-V fof thfe transition from 
(8) to (15). The relations (14)—(17) may be called another of IVIoriarty's disguises. The design of the four changes 
here. For proofs of (14)-(17), see [5]. 

PROOFS 
We turn now to the proofs. To begin with, we show that (3) may be found from (7) using (14) and (13). Here are 

the step-by-step details: 
n n k 

E <-'>"[!){"*')22k = £ (~1)k{*•)£ ( 2 V) [l-'i\ *««>. 

i=0 ' i d 

X ) f-tf1 ( %+ ') Y,(-Vk( "k') ( kV) > bV cha"ge o f variable, 
/=0 k=0 ^ ' ^ ' 

.fw;'(V')^(1.iJ . by (is). 

j**0 ' ' f 

The proofs that (8) and (15) imply (4), that (9) and (16) imply (5), and that (10) and (17) imply (6) are done in 
similar fashion, using (13), and we give the details so the reader will have no mystery left to solve. 

The steps may be reversed so that (7) follows from (3) using (14) and (13),etc., so that we find relations (3)-(6) 
equivalent to relations (7)—(10) assuming relations (14)-(17). 

To show that (4) may be found from (8) using (15) and (13): 

t (-»'(k
a) U+A)*2k+1 - £ (-»*(£) E (£t)(%"VJ - *«» 

k=0 ' j=0 k=0 k=0 j=0 

ho k=j 
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n i n-*j 

" E <-^[^l) E (-1)k ("V) ["'l'1)' by change of variable, 
1=0 k=0 

•t <-*[£,) "E <-»"["-:-')(':')' 
1=0 k=0 / * / 

i=o 

- ' - ^ ' E U ? , ) ( . - B V , ) 
l=o 

n 

' -^ 'E(£ i ) (» - / - . ) 
= r-7j"-? ( £ * • ) -?2a+', by (8). 

To show that (5) may be found from (9) using (16) and (13): 
n n 

(-<")i^r[n») ^ = E^U)E(t ) (n) - ^m-
k=0 ' 1=0 f 

E(i;)i>^)(n) 
k=l 

n—j 

( %)(~rf]Ef~1,k[kZJ)[nkJ)' by change of variable, 

k=0 ' k=0 1=0 
n n 

£*i \2j ) iL 
1=0 k=j 

Ed;)'-"7!; 
j=0 k=0 

n 

j=0 

n 

-'-irZ(J)(.-U)-'-»"S(J)(.i.) 
1=0 1=0 

, (-1)n_n_(n + a\ 22a b y ( g ) 
/ I •/• a \ Z s / 

To show that (6) may be found from (10) using (17) and (13) 

E (-»*{ .*)tM (**) ?2k - 5>«*( * ) E (%:})(i-i)- *™> 
z / c # k=0 1=0 

-E(s;/)E^(*)(r^ 
t[V^)(-1)n{nLa)'

 b V< 1 3 > -

*=0 ZA # k=0 1=0 

E (?;/)! 
/ - 0 Ar-/ 
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-^"E(?;/)(»-.) '(-""(V)**. "ydO). 
1=0 

PROOFS USING GENERATING FUNCTIONS 
From the binomial theorem we have 

oo oo 

n=0 
In particular 

op 

(18) £ ( £ ; * ) * " - ^ V r - x r * * 
n=a+1 

We first use (18) to prove (4) of Zeitlin, as follows: 

n 

#, k=a n=k 

= ±(-i>k[k
a)2

2k ± r - (^) 

-t)2\(J-t)2f \ (J-t)2f 

-a-r 

I'- 1)a22ata+1(1 + t)~2a'2. 
But also 

oo 

~22a H ( ^ V / ) ^ 1 1 = -22af+1(-na+1(i+tr2a~2, 
n=a+t 

so that each side of (4) gives the same generating function, whence, by uniqueness of the expansion, (4) is proved. 
The generating function for (3) is-similar, and is in fact 

t- Da22atat 1 - t)d+tr2-2. 
We have on the one hand 

n=0 k=0 ' k=0 n=k 

£M/(J)^*£ (»£*)<* 
k=a n=0 



-1974] T H E DESIGN OF THE FOUR BiiOHfAL IDENTITIES: MORIARTY INTERVENES 3 0 5 

k=a k=a 

On the other hand 
oo oo 

(-f)* 2 f(1^j} = (_na22af(1 _ t) J* j /, +2a +1 J (_t)n = 22a(f _ tf £ ("^a
+%1)(-t)n 

(1+ ti n=Q n=a 
oo o© 

= ̂ E (n^y)(-»n-22a E ("2^V)^"^7 
/?=a n-^ 

- ^ i ( ^ ' ) <-<>- +22a t ( r / » ) ^ 
/?=a n=a*7 

- ** E {(-iv/)*(r/,)} ^" - ̂  E <-*n(r//) If;7, 
n=a ' n=a 

so that (3) is proved. 
PROOFS USING HYPERGEOMETRIC FUNCTIONS 

The ordinary hypergeometric function is given by 
oo 

(19) F(a,b;c;x) - £ (-Vk ( ~a) ( ̂  ) ( ~c) " V . 

Since it is easy to verify that 

(20) ( " ; / ) ^ - ( " , ) ( - v ? ) ( " / ) _ / ' 
it is easy to see that series (3) may be put in hypergeometric form using a^ derivatives; in fact because 

Dlxk = al[k\ "k'a 

Da
xF(-n, n + 1; Kx)\xmf = a! £ (-1)k[ k ) ( » £ k ) 22k = a!S . 

k=>0 

Now a standard result about the hypergeometric function is that 

D^Flafb;c;x) = / n / ( a + ™ - ? ) ( b + %~ 1) ( c + ™~ ?) " F(a + m,b +m;c+m;x) , 

and thus 
a!S = al{-n+a

a~ ' ] ( n+
a

a\[ Vs+a
a~

 ? ) " 'F(-n+a,n + 1+a;%+a;1) 

= ,i( n\(n+a\l -KV1 i-% + a)!(-3/2 - a)! 
a-\a)\ a j\ a ) (-%+n)!(-3/2-n)! . 

by Gauss'formula for a terminating F(-m,h;c; 1), since a<n, 

= (_1la92a (n + a)!(-h+a)!(-3/2-a)!d! 
(n-a)!(-1/2 + n)l(-3/2-n)!(2a)! 

= i-i)a92a (n + aM-% + a)!(-% - a)fa! 2n+1 
(n- a)H-1/2 + nM-Y* - n)!(2a)! ' 2a+1 ' 

Making use of the formula (-'A + m)!(-'A - m)! = (-?)mir, this then reduces to 
/_*i/7 (n + a)!(2n + 1)a! P2a 

which proves (3). (n-a)!(2a+1)! ' 
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Somewhat similar proofs may be given for (4)-(6). Because 

«> ( iV , )^ -SF? i ( \ ' ) ( -V ' ) (•?)"-
some proofs of relations like (4) using hypergeometric series will involve integration techniques as well 

OTHER PROOFS BY DIFFERENTIATION 
For any function f we have trivially 

(22) ± ( »£*) M = ± ( - + *) *0 - £ ( * " ^ - k) . 
k=0 k=0 k=0 

Thus, for example, 
n 

<*> ./E (n^)UKa = '-'E(;V) (fl7*^-^E (V*K &=0 k=0 k=0 

;*M 
The series 

[n/2] 

can be written in a (complicated) closed form. See relation (1.70)—(1.71) in [4 ] . In principle then, one can obtain 
(23) in closed form. The form of the series again shows how our work is related to Fibonacci numbers since we 
know that 

[n/2] 
J 2 ( n k k ) = fn+1 = Fn + Fn-u F0 = 0, F, = 1. 

k=0 

A RECURRENCE RELATION 
Some other interesting things can be deduced by looking briefly at a recurrence relation for (4). Since 

I n+k\ .( n+k\ = (n+k + 1\ 
\ 2k J \2k + 1) \ 2k+1 J' 

we find easily 

t <-'>"( "s) ( n2k
k) ** * t <-»*[ ka ) ( £?,) ** = t '"«*( 'I "&! ') * 

k=0 k=0 k=0 
or, in virtue of (3), then 
(24) Sn+1-Sn = <-1)°(";a°)2*>%±l, 

where Sn is Zeitlin's series in (4). 
Recalling that n„1 

j=0 

we next find, since SQ = 0, that for arbitrary Sj, 

and unless we know how to sum this in closed form the method yields nothing. But since we do know the value of 
Sn, we may look on this as a way to have evaluated a new series, and so we have found in fact 

n 

(26) J2 (-1>k[k2a
a)(2ki-1) = (-Dn(n+a+1)[ n+a

a) -
k=0 

INVERSION 
As the reader will recall from the previous Moriarty episode [3 ] , a.good detective learns something by adroit use 

of inversion. Indeed, we now make use of the following inversion principle, that 

2k 
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*M'1t,[%k)'M 
k=0 

if and only if 

k=0 

This is relation (21) on p. 67 of [6 ] . Applying this principle to (3), we find by inversion that 

(26) £ ^_Y \[k£>)(2k+1)2=(2n + 1)(2a + 1) ^ ^ " 2 s . 
k=0 ' * a ' 

This relation might be somewhat difficult to come by without the inversion application and may possibly serve in 
some way to indicate the fondness with which I like to use inversion techniques to establish new identities. 

Riordan gives another inversion formula, same page, which is 

k=0 
if and only if 

n 

9^= E (-1)rHk[n2-k)m-
k=0 

This may be used to obtain other interesting series. 
A F i i A L REMARK 

The four series (14)—(17) were posed as a problem in the American Math, Monthly [5] and the solution by M.T.L 
Bizley used just simple coefficient comparison in suitable generating functions. We asked there to sum 

m t(2
2
x
kVj)[x

n--\ 
for all real x and for / = 0, 1,. and / = 0,1. Our question as to whether the series can be summed for all integers 
i,j remains unanswered. 

It seems of value to remark also that in the case of (16) and (17) we have factorizations that are of interest: 

and *=° 

<29> t {2
2

X+
+l)(

Xn--k
k)= (§^n~i\(2X+1)2-(2k+1)2\ . 

k=0 k~° 
We leave it as an exercise for the reader to determine whether factorizations exist for (14) and (15). This has an 

easy affirmative answer. 
Sherlock Holmes [2, p. 470] remarked about the original Professor ioriarty that "the man pervades London, and 

no one has heard of him...l tell you Watson, in i l l seriousness, that if I could beat that man, if I could free society of 
him, I should feel that my own career had reached its summit, and I should be prepared to turn to some more placid 
line in-life." Our mathematical ioriarty formulas pervade mathematics and his formulas are the secret behind half of 
the conspiracy of formulas we meet with-in our work. Moriarty is everywhere Watson, everywhere! Look closely and 
you cannot help seeing him and his formula! 

EPIL06UE 
As if to show the force of the remark that Moriarty is everywhere, if we just look for him, it is instructive to say 

now that relations (14)—(1-7) are nothing in the world but relations (7)—(10) of ioriarty viewed in a slightly differ-
ent way. An easy way to see this is to make sufficient use of the following simple operations on series and binomial 
coefficients: 

for k> m, and, typically, v ' 
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i l lustration. We show that (14) is equivalent to (10): k==® k=0 

i (*•£,')( :zi) • t (*i»)( "-'-"•) • t ( v ) ( ;r.*) 
k=0 k=0 k=0 x 

Similarly (15) is equivalent to (8): 

jLi\2k+lj[ a-k ) 
k=0 

The reader should now have no diff iculty in showing that (16) is equivalent to (9), and that (17) is equivalent to (7). 
The equivalences are so complete and obvious that we wonder how anyone could miss them. Thus we have used the 
IVSoriarty formulas twice in our proofs of ( 3 ) - (6 ) . IVioriarty, IVJoriarty, all is Moriarty! " Indubitably my Dear Watson, 
indubitably." 
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[Continued f rom Page 292.] 

Theorem. The Fibonacci numbers form the only sequence of integers for which its extended sequence satisfies: 

(i) x„n = (-1)n+1xn, n an integer, 

(ii) any three consecutive terms of the sequence are relatively prime. 

Proof. Let xn be a sequence which satisfies (I) and (i i ) ; then, 

Xf = axo + bx-i = axo+hx-} . 
Hence, 
(*) ax0 = (f-b)xt . 

Now, 
XQ = ax„i +hx„2 = axj-bfaxj +bxg), 

which implies that 
(1+b2)x0 = ax-gtt -h) = a2x0 , 

using (*). Since the sequence is nontrivial XQ and x^ cannot both be 0. If XQ¥=0; then a = 1+b , which im-
plies that a = ±1 and b = 0. In either of these cases, (ii) wil l not hold. Hence, X Q = 0 . From (*) i t follows that b-t 

Thus far, the sequence hs the form x0 = 0,Xf,axf, - ; hence, in order to satisfy ( i i ) , Xf must equal 1 This 
yields a sequence of the form 

x0 = O, 1, a, a2+ 1, a3+2a, ••• * 

[Continued on Page 316.] 

JLI \ 2n-2k) \ n-a) ~ 2 ^ ( 2k + 1 )( n - a J 
k=0 k=0 

a n-1 

E l 2n \ I n-1 - k \ _ *T* ( 2n ) ( n-1-k \ 

[ 2k+1 / [n-1 -a ) " La [ 2k+1 j \ n-1 -a 
k=0 k=0 

= L * \ 2 n - 2 k - l ) \ n - 1 - a l = l ^ \ 2 k + l ) \ n - 1 - a ) 
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H-237 Proposed by D. A Millin, High School Student Annville, Pennsylvania, 

Prove 
oo 

E 1 - 7-<j5 
k=0 T 

H-238 Proposed by L Carlitz, Duke University, Durham, North Carolina. 
Sum the series 

oo 

s * Y! xmy"zP • 
m,n,p=0 

where the summation is restricted to m,n,p such that 
m<n*p, n<p + m, p<m + n. 

SOLUTIONS 
FIBONACCI C0MBINAT101 

H-202 Proposed by L Carlitz, Duke University, Durham, North Carolina. 
Put 

I k\ _ FkFk-1 "• Fk-i+1 i k\ = 1 

\'i~ F1F2~Fi • W 

]=-k l ; M 

E (-W i f } L
<hk)2 * ™r°kF,F3 - F2k.t (k even) 

2k . , 

E (-^{?}F^,2 = 24*(k-1iF1F3- F^ (k odd). 

Show that 

(*) 

309 



310 ADVANCED PROBLEMS AND SOLUTIONS [OCT. 

Solution by the Proposer. 

1. We use the well known identity 
k k-1 

(D ^ - / y M ^ - ' V - n (*-qJx), 
j=0 L J j=0 

where 

f* k l . (1-qk)(1-qk-1)- (1-qk-i+1> 

I ' \ (1-q)l1-q2)-(1-qi) 

Put q = a/ft where a + fi = 1. a/3 = - / . It is easily verified that 

Next, replace k by 2k and * by a1~k$kx. Then (1) becomes 
2k 2k 

(2) IMBf-a/-**1^) = T<-1)ii2k\(a&)v^+1^kxh 

Since 

n (6l-a!-k+1Qk-ix) = JT (-tjiffXfflj* 
i=o i=o * y ' 

n (ah1 -fllxMpI-1 -afx) = (ofi)****'1* U (1-a-**kplx}(f-affi^'x) 
1=1 J=1 

k-1 
= (ap)M(k~7) 0 (1-a!^x)(1-ak-illhk+1x) 

i=o 

2k-1 

= (a$)1Ak(k-1) n (l-a/-k+1pk-J'x) . 
i=o 

(2)reduces to 

J2 f-f)XJ0-W*f 2k\x
j = (~l)1/^k'1^ n fo^ - 0 W ~ * - afx) 

I=o ' 7 ' 1=1 

k 

s (_vr2k(k-D n ((-ni-i-L^x+t-nix2). 
1=1 

Hence for x = / we get 
2k 

(3) 
/=0 x ' 1=1 

while for x = —1, 
2k ( s k 

(4) 

2k I \ k 

J2 (--f)*l(hiMk )2ki = {_1}%k(k+D n L2ji / 

J2 (-DWU+D+ik hk) s f_fyAk(k+i) n £ ^ 
/=0 * ; ' 1=1 

Finally, replacing / by j + k, (3) and (4) become 
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i=-k v ' j=i 
respectively. This completes the proof of (*) 

2. To prove (**}, we use Gauss's identity 

(5) 
2 k mm mm 

TO L J 
= n a~q2H) 

M 

(for proof see for example G.B. Mathews, Theory of Numbers, Stechert, Mew York, 1927, p. 209). Replacing q by 
a/P; we find that (5) reduces to 

2k k 
(6) £ (^J'lf\^k)2 = (-Vk(a-fi}k n F2H 

TO ' J / - / 

Similarly, if q is replaced by |3/a, we get 

2k 
(1) £ M / hk\ o-k)2

 = (__f)k(p__a)k n 2/-f 

When k is even, we add (6) to (7) to get 

2k k 
7%k X ,-#{?} Lihk}2 = 2.5™ n F 2 / . , 

TO x ; / = / 
When k is odd, we subtract (6) from (7) and get 

2k k 

TO l } M 

This completes the proof of (**). 
ON r 

H-205 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Evaluate the determinants of nth order 

z 1 
- / qz 1 

Dn 
-1 q2z 1 

-1 qn'2z 

- / • tf'1z 

A„-

z / 
- 7 Z (/ 

- / z ^ 

-1 z q 
-1 z 

n-2 

Solution by P. Bruckman, University of Illinois at Chicago, Chicago, Illinois. 

If we expand the last row of each determinant by minors, we may readily obtain the following recursions: 
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(1) Dn = qn~1zD^f + Dn„2 (n > 3); D1 = z; D2 = qz2 + 1 

(2) An = zAl|_/ *qn-2\„2 l* > & Af =z-' A2 = z2 + 1 • 

The first recursion readily admits expression in continued fraction form. Dn is equal to the numerator of the nth 

convergent of the simple continued fraction: 
z + 1/qz + 1/q2z + 1/q2z + - . 

An alternative notation for this infinite simple continued fraction is: 
[z, qz, q2ze q

3z, -, qn~1z, .»/. 
Recursion (2) may also be expressed in continued fraction form, but as it stands, it cannot be expressed in the form 

of a simple continued fraction, i.e., one with continued numerators of unity. If, however, we make the substitution: 

(3) A„ = q%(n2"2n}Cn (n = 1,2,3, -) , 

then (2) reduces to a form similar to that of (1), namely: 

(4) Cn = zq'%(2n'3jCn^ + Cn„2 (n > 3); C«f = zq%; C2 = z2 + U 

Thus, Cn is equal to the numerator of the nth convergent of the simple continued fraction: 

hq\ «,-*, zq-3/4, ..; zc-Wn-V, ...], 

An is then found, by using (3). 

Also solved by the Proposer, 

UNITY OF ROOTS 
H-206 Proposed by Pe Bruckman, University of Illinois, Urbana, Illinois. 

Prove the identity: 
m-.1 

1 s i<y 1 __ ^2km/n 
k=0 

Solution by C. Bridger, Springfield, Illinois 

Let a,b,c, ••• k, - be the n nth roots of unit. Among them, say the kth, is e2km/n. Put x = 1/y and set 
yn - 1 = (y- a)(y - b)(y -c) — (y - k) —. The logarithmic derivative is 

jj£L = -J—+ - J _ . + ...+-1- +.... 
yn - / y-a y-b y-k 

But this is exactly what the identity becomes when x is replaced by 1/y and the extra y is discarded. The next 
and final step is to replace y in the logarithmic derivative with 1/x, discard the extra x and divide both sides by n. 

Also solved by G. Lord and the Proposer. 
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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy Fn+2 = Fn+1 + Fn, FQ = 0, Ff = 1, 
and Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1. 

CORRECTED PROBLEM 

B-279 Correction of typographical error in Vol. 12, No. 1 .(February 19741 

Find a closed form for the coefficient of x" in the Maclaurin series expansion of (x+2x2)/(1-x-x2). 

PROBLEMS PROPOSED IN THIS ISSUE 

B-286 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Let g be the "golden ratio" defined by g = lim (Fn/Fn+1). Simplify 

t(iyn~3i-
B-287 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Let g be as in B-286. Simplify 

B-288 Proposed by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

Prove that F2n(4k+1) = F2n (mod L2n) for all integers n and k. 

B-289 Proposed by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

Prove that F(2n+1)(2k+1) s F2n+1 (mod L2n+1) for all integers n and k. 

B-290 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Obtain a closed form for 
n 

2n + l + Y^ (2n + 1~-2k}F2k . 
k=1 

B-291 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Find the second-order recursion relation for j zn 1 given that 
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n 
Zn = Z ) (k) Vk a0d ¥n+2 = aVn+1 +bVn ' 

k=0 V 

where a and b are constants. 
SOLUTIONS 

LUCAS SUM MULTIPLES OF 5 AND 10 
B-262 Proposed by Herta T. Freitag, Roanoke, Virginia. 

(a) Prove that the sum of n consecutive Lucas numbers is divisible by 5 if and only if n is a multiple of 4. 
(b) Determine the conditions under which a sum of n consecutive Lucas numbers is a multiple of 10. 

Composite of Solutions by Graham Lord, Temple Unweniiy, Philadelphia, Pennsylvania* and Gregory Waiczyn, 
Buckneli University, Lewisburg, Pennsylvania. 

The sum S = La+i + La+2 + — + La+n of n consecutive Lucas numbers is equal to La+n+2~ i-a+2' hence 
d\s if and only if La+n+2 s La+2 (mod d). 

(a) Modulo 5, the Lucas sequence is the block of four numbers 1,3,4,2 repeated endlessly. Thus 5\S if and 
only if 4\n. 

(b) Modulo 10, the Lucas sequence is the block of twelve numbers 
1,3,4,7,1,8,9,7,6,3,9,2 

repeated endlessly. From this one sees that 10\S [or equivalently, La+n+2 - l-a+2 'm°d 1W1 if and only if either 
(i) 12\n, or(ii) 12\(n-4) and 3\(a+1), or (iii) 12\(n-8) and 3\a. 

Also solved by C.B.A. Peck and the Proposer. Partial solutions were received from Paui S» Bruckman, Ralph 
Garfield, and David Zeitlin. 

LUCASLBKE SEQUENCE 
B-263 Proposed by Timothy B. Carroll, Graduate Student, Western Michigan University, Kalamazoo, Michigan. 

Let Sn = an+bn + cn + dn, where a,b,c, and d are the roots of x4-x3 -2x2+x + 1 = 0. 
(a) Find a recursion formula for Sn. 
(b) Express Sn in terms of the Lucas number Ln. 

Solution by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

(a) Since a4-a3 - 2a2+ a+1 = 0, then,for n = 0, 1,2, ••> 
an+4-an+3-2an+2 + an+1+an = 0; 

a similar relation holds for b, c, and d. Adding these four equations, we obtain the recursion: 
Sn+4-Sn+3-2Sn+2 + Sn+i+Sn = 0 (n = 0, 1,2,.») ' 

(b) x4-x3-2x2+x+1 - (x2-1)(x2-x-1) = (x-1)(x+1)(x-aMx-$). 
So 

Sn = 1 + (-1)n + an + Pn = 1 + (-1}n + Ln . 

Also solved by Clyde A. Bridger, Herta T. Freitag, Ralph Garfield, Graham Lord, Jeffrey Shallit, Paul Smith, MJiS. 
Swamy, Gregory Wulczyn, David Zeitlin, and the Proposer. 

FIBONACCI PRODUCT 
B-264 Proposed by R. M. Grass!, University of New Mexico, Albuquerque, New Mexico. 

Use the identities F2 - Fn^FnH = (~1)n+1 and F2- Fn„2Fn+2 = (~Vn t 0 o° t a m a factorization of F%-1 
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Solution by David Zeitlin, Minneapolis, Minnesota. 

We note that 

Fl-1 = { F2
nH-ir\\ F*-(-Vn] = F^Fn+1Fn„2Fn+2 . 

In the paper by D. Zeitlin, "Generating Functions for Products of Recursive Sequences/' Transactions oftheAmer. 

Math.Soc, 116(April, 1965), pp. 300-315, it was shown on p. 304 that if Hn+2 = Hn+1+Hn, then for n = 0, 

(D Hn-2Hn-fHn+fHn+2 = H4
n- W$- H0H1H3H4) . 

Thus, if H0 = 0 and H1 = /, the Hn = Fn and (1) gives the above result If H0 = 2 and H1 = 1, 

then Hn = Ln and (1) gives 

(2) Ln,2Lnm1LnHLn+2 = L4
n -25 (n = 0, 1,,-J. 

Also solved by Paul S. Bruckman, Warren Cheves, Herta T. Freitag, Ralph Garfield, Graham Lord, C.B.A. Peck, 

M.N.S. Swamy, Gregory Wulczyn, and the Proposer. 

FIBONACCI NUMBERS FOR POWERS OF 3 

B-265 Proposed by Zalman Usiskin, University of Chicago, Chicago, Illinois. 

Let Fn and Ln be designated as F(n) and Lfnl Prove that 

n-1 

F(3n) = O [L(2^1-1]. 
k=0 

Composite of solutions by Ralph Garfield, College of Insurance, N.Y., N. Y., and David Zeitlin, Minneapolis, Minn. 

Using the Binet formulas F(n) = (an - bn )/(a - b) and Ifn) = an+bn, one easily shows that 

F(3m)/F(m) = L(2m) + (- 1)m. 

This with m = 3k, 0 < k < n - 1, and the facts that F(1) = 1 and 3k is odd, help us obtain 

n-1 k+1 n-1 

FO") = n ^ — I = n IU2.&) -1]. 
k=o F(3k) k=o 

Also solved by Paul S. Bruckman, Herta T. Freitag, Graham Lord, C.B.A. Peck, M.N.S. Swamy, Gregory Wulczyn, 

and the Proposer. 

LUCAS NUMBERS FOR POWERS OF 3 

B-266 Proposed by Zalman Usiskin, University of Chicago, Chicago, Illinois. 

Let Ln be designated as L(n). Prove that 
n-1 

L(3n) = n [L(2.3k') + 1]. 
k=0 

Solution by David Zeitlin, Minneapolis, Minnesota. 

Since L(3m) = L(m)[L(2m) - f-1)mJ, we have, for m = &, 0< k<n-1, 
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n—1 k+* n—1 

U3n) = n &—}-= n [U2*3k) + 1]. 
k=0 L(3 ) k=0 

Also solved by Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, Graham Lord, C.B.A. Peck, M.N.S. Swamy, 

Gregory Wulczyn, and the Proposer. 

REGULAR POLYGON RELATION 

B-267 Proposed by Marjorie Bicknell, Wilcox High School, Santa Clara, California. 

Let a regular pentagon of side p, a regular decagon of side d, and a regular hexagon of side h be inscribed in the 
same circle. Prove that these lengths could be used to form a right triangle; i.e., that p2 = d2 + h2. 

Solution by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

Hobson, in Plane and Advanced Trigonometry, on page 31 states: 

sin 18* = *lLzl f Sin 36* = sh 0-2^/5 
4 4 

p = 2rsin 36°, h = r, d = 2rsin 18° 

h2 + d2 = f2 + 4ri (6_2y/§) = £ = # ! r2 

so 2 

16 d 

:. p2 = h2 + d2 . 

Also solved by Paul S. Bruckman, Warren Cheves, Herta T. Freitag, Graham Lord, C.B.A. Peck, Paul Smith, M.N.S. 

Swamy, David Zeitlin, and the Proposer. 

[Continued from Page 308.] 

and in order for (ii) to be satisfied a must equal /. Therefore, the given sequence must be the Fibonacci sequence. 
8M0TE: The most general sequence satisfying (i) has the form 

»>,axi,xi,xo = 0,Xf,.axi,h2+ ^K1> '"-
Also, if condition (ii) is weakened to the restriction that two consecutive terms be relatively prime, then the most 
general sequence would have the form 

-,-a, f,x0 = 0, 1,a,a2+1,--
REFERENCE 

1. V.E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton-Mifflin Co., New York, 1969. 
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