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1. It is well known (see for example [2, p. 14] and [1]) that the number of sequences of zeros and ones of 
length n: 
(1.1) (a1fa2f'"fan) (af = 0 or 1) 

in which consecutive ones are forbidden is equal to the Fibonacci number Fn+2- Moreover if we also forbid 
a j = an= 1, then the number of allowable sequences is equal to the Lucas number Ln„p More precisely,for the 
first problem, the number of allowable sequences with exactly k ones is equal to the binomial coefficient 

' n-k+1\ 

\ k J ' 
for the second problem, the number of sequences with k ones is equal to 

In-k+1\ _ I n - k - l \ 
\ k ) [ k-2 J ' 

We now define the following functions. Let 

(1.2) Hn,k) = xQ*i+2*i+"'+n*n , 

where the summation is extended over all sequences (1.1) with exactly k ones in which consecutive ones are not 
allowable. Also define 

(1.3) g(n,k) = ^'q^
+2a*+'"+nan . 

where the summation is the same as in (1.2) except that ar=an= 1 is also forbidden. We shall show that 

(1.4) f{n,k) = qk*[n-k
k

 + 1 ] 
and 

(1.5) g(n,k) = Q
k*["-k

k
+1] -q"+(k-»'["-!L2'] • 

where 

L*J (1-g)(7-q2>...(1-q*) ' 

the (/-binomial coefficient. 
These results suggest that we define ^-Fibonacci and q-Lucas numbers by means of 

(1.7) Fn+1(c)= D / ' [ V ] 
2k<n 

(1.8) Ln(g) = Fn+2(q)-qnF'n_2(q) , 

where 
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d.9) W*;«£ *'**"*[V] • 
2k<n 

It follows from the definitions that 
t [ Fn+1(q)-Fn(q) = qn-1Fn-1(q) 

(1.10) <J 
( F'n+i{q)-F'nlq) = qn+1F'nJq) . 

Thus 
(1.11) ^ - Fn+1(q)+qn(Fn(q)-F^2(q)). 

However, Ln(q) does not seem to satisfy any simple recurrence. 
2. For the first problem as defined above it is convenient to define fj(n,k) as the number of allowable sequences 

with exactly k ones and an =j, where j = 0 or /. It then follows at once that 
(2.1) f0(n,k) = fQ(n-1,k) + f1(n-1,k) (n > 1) 
and 
(2.2) f7(n,k) = qnf0(n-1fk- 1) (n > 1). 

Also it is clear from the definition that 
(2.3) f(n,k) = f0(n,k) + fi(n,k) . 

Hence, by (2.1 )# 

(2.4) f(n,k) = f0(n+1,k). 

Combining (2.1) and (2.2) we get 
(2.5) f0(n,k) = f0(n -1,k) + qn'1f0(n -2,k-1) (n > 2). 
This formula evidently holds for k = 0 if we define f(n, -1) = 0. 

It is convenient to put 

(2.6) fotW'Vo %">%. 
Also, from the definition, 

(2.7) fofW'H %l% 
and 

( / (k = 0) 
(2.8) f0(2,k) = \q (k=1) <{$ ik=li 

(0 (k>1) 
St follows that (2.5) holds for n >2. 

Now put 

(2.9) &(x,y) = X ) fo(^)xnyk . 
n,k=0 

Then, by (2.6), (2.7) and (2.5), 
oo 

<$>(x,y) = 1+x + Yl J^{f0(n-1,k) + qn-1f(n-2,k-1)\xnyh 

n=2 k 

= 1 +x^>(x,y)+qx2y&(qx,y), 
so that 

(2.10) Q(x,y) = j^— +f^$(qx,y). 

Iteration of (2.10) leads to the series 
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where 
Mk+i = (1-x)(1-qx)-(1-qkx). 

Since 

Mk+, _n where s~u 

is defined by (1.6), it follows that 

*=0 s=0 

-Z X>*M*v 
/?=0 2A:</7 

Comparison with (2.9) gives 

(2.12) f0(n,k) = qk2[n-kj . 
Therefore, by (2.4), 

(2.13) f(n,k}.= qk*[n-* + 1'] 

3. If we put 

(3.1) f(n) = J2 f(n'k} * 
2k<n+1 

it is evident that 

f(n) = Xqa^2a^'"+na^ , 

where the summation is over all zero-one sequences of length n with consecutive ones forbidden. This suggests 
that we define 

(3.2) Fn+1(q) = f(n-V= J^ qk% [n ~k] (n > 0) . 
2k<n 

We may also define 
(3.3) F0(q) = 0, F1(q)=1. 
The next few values are 

F2(Q) = h F3(q) = 1+q 

Fjq) = 1+q+Q2, F5(q) = 1+q + q2 + q3 + q4 

F6(q) = 1+q+q2 + q3 + 2q4 + q5 + q6 

F7(q) = 1+q+q2 + q3 + 2q4 + 2q5 + 2q6 + q7 + q8 + q9 . 

It is evident from the above that Fn(1) = Fn, the ordinary Fibonacci number. To get a recurrence for Fn(q) we 
U S e r- -I r " -, 

[i] = «n-k\r-1iHn-k
1\ • 

Then, by (3.2), 
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w«>-w - E **2([\-*H"-r7j) - E **2v-2*[\-v] 
AT A 

-,-' E «'*-'p L" r- >' 1 - «- ' E ̂  [" - J -21 -
so that 
(3.4) Fn+1(qj = Fn(q)+qn'1Fn^(q) (n > V. 

This of course reduces to the familiar recurrence Fn+j = Fn + Fn^ when q = 1. 
It follows easily from (3.4) that Fn(q) is a polynomial in q with positive integral coefficients. If dfk) denotes 

the degree of Fk(q) then d(1) = d(2) = 0f d(3)=1, d(4)=2, d(5) = 4, - . Generally it is clear from (3.4) that 
(3.5) d{n + 1) = n-1+d(n-1) (n > 11 
Thus 

d(2n + 1) = 2n- 1+d(2n - 1), d(2n) = 2n-2 + d(2n -2), 
which yields 
(3.6) d(2n + 1) = n2, d(2n) = n(n - 1). 

If we replace q by q~1 we find that 

Hence [z]-^[z] 
(3.7) FnH(Q-1)= E «*-""["~k

k] • 
It follows that 2k<n 

q
n2F2n+1(q-1)=Y,«(n-k)2\2n^k] 

(3.8) 
k=0 

n-1 
qn(n'1)F2n(q'1) = £ q(^)(n^-1)^2n-k-q 

k=0 

It follows from (2.11) and (3.2) that 

°° k2 9k 

n=0 k=0 {X)k+1 

G.E. Andrews proposed the following problem. Show that Fp+i(q) is divisible by 7 +q+~- + qp~7, where p 
is any prime = ±2 (mod 51 For proof see [3] . This result is by no means apparent from (3.2). The proof depends 
upon the identity 

(3.10) Fn+1 - £(-Vkx'/*k(5k-V[e'!k)] -
k=~r 

where 
elk) = [1/2(n + 5k)], r = [\(n+ 2) J 

In general it does not seem possible to simplify the right member of (3.9). However when x = q it is noted in [3] 
that 

CO CO . 

(3.11) ' * E W - E ' r r = 5 {1-x5n+1f1(1-x5n+4f1 . 
„=, k=0 'V* n=0 

4. We now turn to the second problem described in the Introduction. To determine g(n,k) as defined in (1.3) 
it is clear that 
(4.1) g(n,k) = f(n,k) - h(n,k), 
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where h(n,k) denotes the number of zero-one sequences (a<i,a2, —,an) with k ones, consecutive ones forbidden 
and in addition aj=an=t. Then ^2 = ̂ - / ~ # w n i ' e a3 and an„2 (if they occur) are arbitrary. Thus, for n >4, 

h(n,k) = qn+1+2(k-2)f(n-4,k-2) - q^^ffr,-2,k-2), 
so that (4.1) becomes 
(4.2) g(n,k) = f(n,k) -qn+2k-3f(n -4,k-2). 

Combining with (2.13) we get 

(4.3) g(n,k) = qk\ n~k
k
 + 1 ] -qrtk-1)* Q » - * j 'J <n>4, k>2) . 

As for the excluded values, it is clear that 

(4.4) g{n,0) = 1, g(n,1) = ? [ ' " ] (n > V. 
Also it is easily verified that '• 

g(3,k) = 0 (k>2), 
so that (4.3) holds for all n> 1. It is convenient to define 

(4.5) 
Now put 

(4.6) 

Then by (3.2) and (4.3) we have 
(4.7) 
where 

(4.8) 

It is easily verified that 
(4.9) 

We now define 
(4.10) 

(4.11) 
We have 
(4.12) 

g(0,Oj = 1, g(0,k) = O (k>0). 

g(n) = 2-t B(n,k). 
2k<n+1 

g(n) = f(n)-qnf'(n-4) , 

f'(n) 

2k<n+1 

(k+2) '[-£"] • 
fin) - f'(n - 1) = qn+1 fin - 2) . 

L„(Q) = Fn+2(q) - q" F'n-2(q) <n>2), 

Fn+1(q) = f'(n-1), F'o(q) = 0, 

F'nH(q)-F'n(q) = qn+1 F'n.-,(q) ; 
this recurrence should be compared with (3.4). 

The first few values of Ln(qj are 
L2(q) = 1+q+q2, L3(q) = 1+q+q2 + q3 , 

L4(q) = 1+q+q2+ q3 + 2q4 + q6 , 

L5(q) = 1+q+q2 + q3 + 2q4 + 2q5 + q6 + q7 + q8 . 

It follows from (4.8) that 

(4.13) 
n=0 k=0 

The first few values of F'n(q) are 

F'i(q) = q, F2(q) = q, F'3(q) = q+q4, F'4(q) = q + q4+ q5'.. 

F'5(q) = q+q4(1+q+q2) + q9, F'6(q) = q +q4(1 + q +q2 + q3') +q9(1 +q +q2). 
Thus, for example 

L4(q) = F6(q)-q4F'2(q) = (1+q+q2+ q3+ 2q4+q5+ q6) - q5 , 

L5(q) = F7(q)-q5F'3(q) = (1+q+q2+ q3 + 2q4+ 2q5+ 2q6+ q7+ q8+ q9) - q5(q+q4), 

in agreement with the values previously found. 
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It would be of interest to find a simple combinatorial interpretation of F'n(q). 
5. By means of the recurrence (3.4) we can define Fn(q) for negative n. Put 

(5.1) Fn(q) = (-I)"'1 F„n(q) . 
Then (3.4) becomes _ _ _ 
(5.2) Fn(q) = qn{Fn.1lq) + Fn^2(q)) (n >2). 
where 

Put 
F0(q) = 0, F1(q) = q. 

(5.3) $(x) = £ Fn(q)xn . 

Then n=0 

oo 

<&(x) = qx + Y^*n(~Fn-lW + ~Fn-2Whn , 
n=2 

so that 
(5.4) $ (x) = qx+ qxtl + qx)^(qx). 
Thus 

#(x) = qx + qx(1 + qx) j q2x + q2x(1 + q2x)&(q2x) f 

= qx+ q3x2(1 + qx) + q3x2(1 + qx)(1 + q2x)$(q2x). 
At the next stage we get 

$ (x) = qx + q3x2(1 + qx) + q6x3(1 + qx)(1+ q2x) + q6x3(1 + qx)(1 + q2x)(1 + q3x)<$>(q3x). 

The general formula is evidently 
QO 

(5.5) *W = J2 qm+1)(k+2)^+1(^+qx)(1+q2x)'' (1+qkx). 
k=0 

Since 
k 

(1 +qx)(1+q2x) -. (1 +qkx) = £ [ jQfW'+'V , 
(5.5) becomes 1=0 

oo k °° 

®M = X ) qm+1)(k+2)xkH V [ k\qm+1)xi = JZ xn+1 J2 \ " 7/\gm'+1)+y*(n~f+1)(n-/+2) 

k=0 1=0 n=0 2j<n 
Comparison with (5.3) gives 

(5.6) Fn+J(q) = E \»jl]q*<M><»+*>-«l*1<l-1> . 
2j<n 

The first few values of Fn(q) are 
F2(q) = q3, F3(q) = q4(1 + q2), F4(q) = q7(1+q+q3), 

Fs(q) = q9(7+q2 + qS + q4 + q6), F6(q) = q13(1+q+q2+ q3+ q4+ q5+ q6+ q8) . 

REFERENCES 
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Quarterly, Vol. 12, No. 1 (February, 1974), pp. 1-10. 
2. J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958. 
3. Problem H-138, The Fibonacci Quarterly, Vol. 8, No. 1 (February, 1970), p. 76. 



P* Q M-CYCLE8, A GENERALIZED NUMBER PROBLEM 

WARBESy PAGE 
City University of Syew York (Mew York City Community College), Brooklyn, S\lew York 11201 

In this note all letters will denote non-negative integers. A number 
N = nr10k + n2*10k~1 + - + nk_r10 + nk 

(abbreviated N = nin2~nk) will be called a /?»a /w-cvcle whpnpwpr 
P(nk-m-unk-m~2> •^k.7nkn1 -nk.m) = q(n1n2-nk! . 

Since four parameters \ p,q,m,k\ are involved, some rather interesting questions and conjectures arise naturally. 
The problem of Trigg [3], for examplê  yielded 428571, a distinct (i.e., the digits are distinctly 5-cycle when 
k = 6, and /• / /w-cycles which are /?-linked were considered in [2]. Klamkin [1] recently characterized the smal-
lest hB /-cycles.. Here we extend some of these concepts, show how to generate various p-q w-cycles, and actually 
produce the smallest hq /-cycles (q = 1,2,—, 9) together with some of their properties. As a special case of our 
more generalized results, we present a much faster method than Wlodarski [4] for obtaining the smallest hq 
/-cycles with nk= q . 

For notation, nyn2 means /?/ times n2, whereas njn2 will denote the two-digit number 10n7+n2. For a 
number r-s = n7n2r we shall use (r-s)io = n<i and (r°s)i=n2, 

1. hq /-CYCLES 
We first note that for each q (q= 1,2,.—, 9) and each n7 <9/q, there exists a smallest (unique non-repeating) 

hq 7-cycle 
Nq(n<j) = n1n2- nkq(ni) 

(kq(nlh the number of digits in Ngf/ij) will depend on q ana n7l Indeed, assume that kq(n7) isnotfixedand 
note that nkq(ni) = q»n1^0 when n^Q. Then Nq(nj) is readily obtained by the following simple multiplication: 

"1 "k-2 nk-l nk 
N = n - [q«nk„1 + (q*rik)1o]1 (q*"kh qa" 

qN = q-n- [q«nk„2+ [q*nk„1 + (q*nk)w]w^ [q'nk^+fq^nk)10]; (q-nk)1 

1 

EXAMPLE 1. 025641 and 205128 are h4 /-cycles, whereas 142857 h a h5 /-cycle. These numbers 
were obtained from 

nt nk4(2} n1 nk.8(i) 

N = 20512 8 N = 14285 7 
4N = 8205 1 2 = (4<8)7 3N = 7 14 2 8 5=(5-7)% 

For n-i=1, the above procedure yields the following hq /-cycles Nq( 1). (Note that by simply placing n7 = / 
after nqk(7)r one obtains the corresponding hq /-cycles Nq(0) = 0113114-q1). 

323 
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q Nq(1) kq(1) 

1 u,u where u = 0, 1,2, -,9 2 
2 105263157894736842 18 
3 1034482758620689655172413793 28 
4 102564 6 
5 102040816326530612244897959183673469387755 42 
6 1016949152542372881355932203389830508474576271186440677966 58 
7 1014492753623188405797 22 
8 1012658227848 13 
9 10112359550561797752808988764044943820224719 44 

We note here that there does not exist a largest hq 7-cycle Nq(n7) > 1 since n7n2 -nkn7n2 ».nk is a hq h 
cycle for each hq /-cycle Nq{ni). 

EXAMPLE 2. The smallest (nonzero) hq /-cycles are given by 

Ni(D, Nq(0) iorq = 2,3,4,5,6,7,8,9 

Indeed, 
N2(4) > N2(2) > N2(2) > N2(1) 

N3(3) > N3(2) and N4(2) = 205128 > N4{1)>N4(0). 

For q>5, the only nonrepeating hq /-cycles are Nq(0) and Nq(1). 
We conclude this section by mentioning that the smallest hq /-cycles whose last term nk (nl)

 = q a r e precisely 
the numbers Nq(1) in the above table. 

2. p-q /-CYCLES 

Each hq /-cycle is a p-p*q /-cycle for every integer p, and every p*q /-cycle is clearly a 

(p,q) (p,q) 

/-cycle. To obtain p»q /-cycles N = n7n2 — nk in general, let 

N' = nkn7 - nk_7 . 

Then pN'=qN requires that nk<n7 when p >q and nk>n7 for p<q, and since 

(p-nk.1)i = (q-nk)i , 

we use nk as a sieve for a generalization of the multiplication given in Section 1. Thus, keeping 

(P'tik-l), = (q-nk)x, [p'nk-2 + (p-nk_j)iQ]t = [q-nk„7 + (q-nk)Ji , 

etc., we proceed until the mth position (denoted by a vertical line preceeding the nk.m
th digit of N), where the 

sequence of digits begin to repeat anew in the m + 1st position. 

N* = nk 

pN' =; . . . . . . . . . 

qM = . . . . . . . . . . 

N = n7 

nk~2 nk-1 

lp^k-2 + (P'nk-l\Jx (P'Hk-l), 

[q'nk_7+(q-nk)Ji (q-nk)x 

nk-1 nk 

EXAMPLES, (i) 162 is a 3-4 /-cycle. 
(U) 21 is a 7-4 /-cycle. 
(iii) There does not exist a 5>8 /-cycle. 

(i) Since 
(3.nk_7{ = (4.nk)x 
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and since nk>nv consider nk = 2 (therefore nk_1 = 6). Then the above multiplication yields 

N* = 2 1 n2 n3 - nk„3 nk_2 6 

3N'= 8 

4N = 4 8 

N = 1 112 n3 n4 nk_2 6 2 

Since 
(3nk_2+iy =4 - nk_2= 1 

and 
(3nk-3)x = 6 => nk_3 = 2 , 

3N' = 3(2 1 n3 n4 -\2 1 6) 

6 4 8 

6 4 8 

4N = 4(1 n2 n3 n4 ~\l 6 2) 

from which it readily follows that 162 is a 3*4 /-cycle. 
(ii) (7nk„i)i = (4nk)i is satisfied by the pairs nk-.-t,nk 

nk 123456789 

nk„7 2468024 6 8 

Using the first pair yields 

7( 1 n7 n2 - I 7 2) 

8 4 
8 4 

4(n1 n2 n3 - j 2 1) , 

The numbers 42,63 and 84 are also 7'4 /-cycles. 
(iii) None of the pairs of values satisfying 

(5nk„1)1 = (8nk)1 

yield 5N' = 8N. 

3. P-Q M-CYCLES 
The procedure of Section 2, appropriately modified, also applies to p>q /77-cycles in general. We demonstrate this in 
EXAMPLE 4. Find a distinct 3-4 J-cycle for k = 6. 
For 

(4nk)1 = (3nk-3)<i 

which is satisfied by numerous values, first consider nk = 1 and nk„3 = 8. Then 

3(nk„2 nk-1 1 nj n2 - nk„6 nk„5 nk„4 8) 

4 
4 

4(n1 n2 n3 n4 n5 ••• 8 nk_2 ^k-1 1) 

yields 
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3(nk-2 nk-7 1 /?/ n2 -~\ 5 7 14 28) 

7 14 2 8 4 

7 14 2 8 4 

4(nf n2 n3 n4 n5 - I 4 2 8 5 7 1) 

so that 428571 is a solution to our probSem. 
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THE APOLLONIUS.PROBLEM 

CHARLES W.TRIGG 
San Diego, California 92100 

Problem 29 on page 216 of E.W. Hobson's/1 Treatise on Plane Trigonometry/' Cambridge University Press (1918) 
reads: "Three circles, whose radii are a, b, c, touch each other externally; prove that the radii of the two circles 
which can be drawn to touch the three are 

abc/ffbc +ca+ ab) ± 2^/abcfa +b +c)]»" 

Horner [1] states "The formula...is due to Col. Beard" [2]. That the formula is incorrect is evident upon putting 
a = b =c, whereupon the radii become a/(3 ± 2^/3), so that one of them is negative. Horner recognized this when 
he stated, "The negative sign gives R (absolute value)...". 

The correct formula has been shown [3] to be: 
abc/[2s/abc(a +b+c) ± (ab +bc +ca)L 

REFERENCES 
1. Walter W. Horner, "Fibonacci and Apollonius," The Fibonacci Quarterly, Vol. 11, No. 5 (Dec. 1973), pp. 541-

542. 
2. Robert S. Beard, "A Variation of the Apollonius Problem," Scripta Mathematica, 21 (March, 1955), pp. 46-47. 
3. C.W. Trigg, "Corrected Solution to Problem 2293, School Science and Math,, 53 (Jan. 1953), p. 75. 



SOME PROPERTIES OF A FUNDAMENTAL RECURSIVE 
SEQUENCE OF ARBITRARY ORDER 

A.G.SHANNON 
The New South Wales Institute of Technology, Broadway, Australia 

1. INTRODUCTION 

Sn this paper, three properties of a fundamental recursive sequence of arbitrary order are examined by analyzing 
and recombining the zeros of the associated auxiliary equation. The three properties in question are Simson's relation 
(Sections 2, 3, 4), a Lucas identity discussed by Jarden (Section 5), and Horadam's Pythagorean triples (Section 6). 

We define a fundamental Ith order linear recursive sequence \ u'n'* \ in terms of the linear recurrence relation 

Un = 1 n = 0, 

0) -Y.Pir»n-r ^>0e 

0 = 1 n = 0, 

uil} = 0 n<Q, 

in which the Pir are arbitrary integers. 
The "fundamental" character of this sequence has been shown elsewhere by the present writer [7 ] . 
Associated with the recurrence relation in (1.1) is the auxiliary equation 

/ 
(1.2) ff(x) s n (x-air) = 0 

r=1 

in which it is assumed that the complex numbers ajr are distinct. We shall restrict ourselves to this non-degenerate 
case, but the basic arguments survive when the zeros of (1.2) are not distinct. In the degenerate case the order of the 
/-related sequence described below may be reduced. 

We define an "/-related sequence of order /'," { xf{* I , as one which satisfies the jth order recurrence relation 

(1.3) 

with an auxiliary equation 

*f -Yl-u"'*-"*™ n>0 

r=1 

x(J} = 0 n<0 , I 

(1.4) g.-M = n (x - ajrajm) = 0, 
• r=1 

r<m 

in which the Qjr are integers and where the ajrajm are the zeros of (1.2). For example, when i = 3, j = 3, and 

f3(x) = (x - a31Hx - a32)(x - a33) 

g3(x) = (x - a31a32)(x - a31a33)(x - a32a33) = x3 - ^a31a32jr + ^^37a32a33^ - (®<3ia32a33r-

We choose the symbol Q/r rather than Qjr because the Q/r can be expressed in terms of the air as we show in 
Equation (4.7). 

327 
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2. SIMSON'S RELATION 

For the fundamental sequence of Lucas [4 ] , i u „ l , (in our notation), Simson's relation takes the form 

(2.1) (uPf-tofPiMul&i) = (a2ia22)
n = x(

n
1) 

since f 11 = 7. 

More generally we assert that 

(2.2) (uH>)2- (ufUjMulfrt) = x<>> , / = ( J ) • 
To prove this we use the fact that 

(2.3) uP-j^A,**, . 

wherein the A/r are determined by the initial values of u„, n = 0,1, - , / - /. Thus the left-hand side of (2.2) 
becomes, after cancellation of terms, 

- £ AirAim(dir-aim)2(airajmr1 = J2 BjsPfl 

in which 

2(airaimr1 

r<m r<m 

Pjs = ^ir^im^ and Bjsffjs = -AirAim x (ajr-aim)2. 

Note that / - ( i ) since there are ia/r to be taken two at a time. Note further that AjrAjm contains (ajr - aim)2 

in its denominator; see Jarden [3, p. 107]. 
The result (2.2) does not tell us much about the specific terms of j x(j' \. We can find the initial terms by substi-

tuting successively the first / * / values of | u„\ in (2.2). For example, the first three terms can be found as follows: 

(ugP-fuiyHu?)* 1 =x(j} . 

r<m 

Oil = Qi1*0 = X1 • 

(u«>)2- <ufHu{») = Pf2 - PnPi3 = anxf - Qi2x^ = xf . 

One can examine the nature of | xfj' I by the use of the multinomial expression for u„ , namely, 

/ (2.4) u<>> - £ x ™\ , n P}/ . 
Lr\f=n r-1 

and we shall do that in Section 4. We first consider the auxiliary equation for \xH \ and the coefficient, Qjr, 
of the recurrence relation separately. 

Equation (2.4) follows if we adapt Macmahon [5, pp. 2 - 4 ] , because u„ is in fact the homogeneous product sum 
of weight n of the quantities a/j. It is the sum of a number of symmetric functions formed from a partition of the 
number n. The first three cases are 

• »?'-'n • E*n . 
u<2 = Pfl+Pi2 ' Y,an+ HaHa,2' 

u(j> = P?1+2Pi1Pi2 + Pi3 = Y,a?i+ £ 4 ^ / 2 + Y,anai2ai3 • 
In general, 

H\=n EX=/7 r-1 
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It is of interest to note that another formula for u„ can be given by 

(2.5) C - 2 > r - y U(air-ais). 

From Jarden [3, p. 107] we have that 
t=1 ' "* 

/ 
(2.6) u!!} =Y.^Dr/D , 

r=1 
where D is the Vandermonde of the roots given by 

/ 
(2.7) D = ̂ 2 aTr1 n (ait-ajs) = n (ajr-ajs) II (ajt-ajs) 

r=1 r^s^t r>s s<t 
s<t 

and Dr is the determinant of order / obtained from D on replacing its rth column by the initial terms of | u„ I, 
n = 0, /, 2, - , / - /. It thus remains to prove that 

(2.8) Dr = a'fr
 1 n (aft - afs) = Do!fr

 1 / II (ajr - ajs). 
r¥^s¥=t / r>s 
s<t 

We use the method of the contrapositive. If 
Dr ¥= a!j~r

1 I I (oLlt-ais), 
r¥=$¥=t 
s<t 

then 

0 = ]C °r (fmm (2,6> With n = 0) 
r=l 

^Jl0-*1 n (ait~ais) 
r ' s<t 

which contradicts (2.7). This proves (2.8) and we have established that 

uS} = J2 afrDr/D = J2 o!trn-1Dr/DdJr
1 - | ] a ^ / n (air-afs), 

r=1 r=1 r=1 r>S 

as required. 
1 AUXILIARY EQUATIONS 

van derPoorten [6] has proved that if f(x) is a polynomial with complex coefficients, and J Un\, i Vn\ de-
note sequences of elements of C, and if 

/ 
n (E-ar)Un = 0, f(E)Vn = 0, 

then 
h(E)UnVn = 0, n > 0, 

where E is the operator on sequences which performs the action 

EU„ = VnH, EVn = Vn+1>... n > 0, 

and H(x) denotes the monic polynomial which is the least common multiple of the polynomials 
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f(x/ai),f(x/a2),~',f(x/aj), 

in which it is assumed that a?, ag, — ,&; aire non-zero and distinct. 
We now consider H(E - air)u^ = 0 in place of both Yi(E-ar)Un and f(E)Vn. Then it follows from above that 

(3.1) h(E)(u(/)2 = 0 , 

where H(x) is the l.c.m. of 
/ 
I I ((x/ajs) - ajr) 

s,r=1 
which can be re-written as Pj/E(x - aira/s) since 

Pu= t ats. 
s=1 

Thus the zeros of h(x) are a , / , —, a,,- taken 2 at a time. 
In (3.1) we have established that the sequence 

satisfies a linear recurrence relation of order (i+
2

1) with auxiliary equation 

(3.2) Fi+j(x)= n (x-a^ah), 

where / = I L) as before since 

(r)-(0*(i)-'*'-
Note that r may equal m in (3.2), and so 

Fj+j<x) = I I (x-afr) I I (x-ajmajs). 
r=1 m<s 

If we let 
(3.3) FfM = I I (x-afr), 

which is the auxiliary equation associated with the sequence j s2n I , then we have proved 
(3.4) gj(x) = Fg+jM/FfM . 

The auxiliary equation for i xj' I can also be represented in terms of the coefficients of the corresponding recur-
rence relation by 

I 
(3.5) gjM = *> + £ (-VrQirX,~r • 

We now seek an expression for the Q/r in terms of the zeros of the auxiliary equation of the fundamental sequence. 

4. RECURRENCE RELATION COEFFICIENTS 
From (1.3) and (.1.4), we see that j x$\ is the product sum of weight / of the quantities a/ra/m fr< ml Thus 

(4.D *«> - u& - z 4- <& - - D 4142 ••- £ «# 42 - - E gAr -
For example, when i = 3, j = 3, and 

x(
7
3) « 2a3la32 

x2 = 2>a3ja32 i~^'a37a32a33 

x3 =^a31 a32 + ^ a 5 /• a32a32 + ^a31 a32a33 * 
Furthermore, by analogy with (2.4) 
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(4.2) x('> = T M / " * 2 " (MIL— h (fr 

the first few terms of which are 
Jj) 

/ V / y - j y r=i 

x'j> = Q„ 
4 = Qf1-Qi2 

4' = Q?1-2Qi1Qi2 + Qi3 , 
4' = 0f1-3Q?1Qi2 + 2Qi1Qi3 + Q?2-Qi4 . 

Write 

(4.3) n (J - a,raimx) = V Qin(-x)n 

r,m=1 „ 
«™ and then put 

(4-4) T.KinS=l/T.Qin(-x)n-
n=0 I n=0 

Thus 

E K'»X" = " E "balm*" 
n=0 r<n,n=0 

= ^ L fo/7a/2/"Ya,7a,-3;Xl2 ••• {a^a,,^1 •',-1 (al2a;3)Kn •••(al2ail)X2''~2(ai3ai4)X7il -x" 
n=0 ZX=2n 

= E E najw, 
in which i-r 

E X™*E 
m+v=r s= 1 

rs 

so that 

(4.5) 
SX=2n r 1 

n other words, Km is the product sum of weight n of the quantities a/rOjm (r < m), and so Kin = x£'. 
Sf we write -x for x in (4.4) we get 

XQinx" = 1/LKJn(-x)n , 

which can also be obtained by leaving x unchanged in (4.4) and simply interchanging the symbols Q and K. 
We next expand the right-hand side of (4.4) by the multinomial theorem to obtain 

IAQ) x(i) = K- - y (-iF+^V-—J21& & d^ * 

Lryir=n 

An interchange of symbols yields 

, 4 , , « * . s '-'r^iv&hzrtW 
which is an expression for Qir in terms of a / r , since from (4.5), 
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where 
X\=2n ' ~1 

rw 
m+s=r w=1 

For example, 
Q31 = x(3) = 2a3Ja32 , 

Q32 = -(Xj3*) +X^ = - f S a f 7 d32+^a3la32a33^ + (^a3la§2 + ^a31a32a33^ = ~^a37a32a33 ' 

Qjn can also be expressed in terms of Up from (4.1), and un' can be expressed in terms of P/n in (2.4), so that Q/n 

can be expressed in terms of Pm if desired. This has already been illustrated for (2.2). 
Another formula for x„ can be given by analogy with (2.5). Since 

4* - £ n <£ 
T,X=2n r 7 

and 

then 

4}-£<2n-'/*K-<H.). 
r*1 ' r>s 

which is somewhat surprising since it is expressed entirely in terms of the zeros of ff(x) rather than gjfxl 

5. JARDEN'S QUERY 

Corresponding to the "fundamental" sequence j u„ 1 and by analogy with Lucas'second-order "primordial" se-
quence [4 ] , we define an ith order primordial sequence by 

^ = I > ^ n>0, 
r=1 

(i) (5.1) ^ - / n = 0, 

so that 
v(

n
f) = 0 n<0, 

r=1 

Jarden [3, p. 88] suggests that it would be interesting to determine (in our notation) 

(5.2) u& -ul>>v<!> 

since , . , . , . 
(2) (2) (21 

"2n ~"n Vn 
is of great importance in the arithmetic of second-order sequences. We have already seen the auxiliary equation for 
\ u% j in (3.3). Thus 

u^-un'vn' - £ W - L . AidS. ^ ? , - - £ (Air+Ais)(airais)
n = £ CJmffm = v® , 

r=1 r^l m^f r,s=1 m 
r<s 

where (}jm = airais, r <s, and CJm = -(Ajr + AisK Note that since 



1974] SOIVIE PROPERTIES OF A FUWDAIVtEiTAL RECURSIVE SEQUENCE OF ARBITRARY ORDER 333 

»&' -> - E »* 
/ 

^ = E ^ = -^E^ = '-
Furthermore, the zeros of the auxiliary equations of 

are the same, namely |3/r. The j3/r also come into other properties of recurrence relations such as the quadratic forms 
of divisors of vj^j determined by Lucas [4, p. 43] . 

The mention of these examples is made to point out that though we have restricted our study of these "/-related 
sequences of order / " t o expressions for auxiliary equations (3.4) and (3.5) and for recurrence relation coefficients 
(4.3), (4.5) and (4.7), they can be used in other situations. 

6. HORADAH'S PYTHAGOREAN TRIPLES 

This basic approach of analyzing and recombining the zeros of the auxiliary equation might be the only fruitful one 
in studying other properties of recurrence relations of arbitrary order. For instance, Shannon and Horadam [8] 
proved a general Pythagorean theorem for 

e - E e 
with suitable initial values. It was shown that 

(6.1 > (fH> f(„ii+1)
2+&<,% tfin, - f(n'>»2 = uf® >2+ 2fj}ii - f/,"»2, 

and that all Pythagorean triples can be formed from such recurrence triples. The case 1 = 2 is the situation studied 
first by Horadam [2 ] . 

The proof of (6.1) cannot be extended to a similar expression for j u„\ because of the presence of the coef-
ficients P;r in the recurrence relation for | u(j'l . An essential feature of the proof of (6.1) was the result 

?f(i) f(i) 4 _ f(i) 

This suggests that we consider 

(6.2) 2uiiii-u<<li+1 = 2 E A/raf - E Afra^H 

r=1 r=1 

which follows from (2.3). 
The right-hand side of (6.2) becomes 

E Affair - al+i+1) = E A- E p^r's(2- air) 
r=1 r=1 s=1 

where we have set 

Suppose further that 

E E Airpis^hs(2 - air) = J2 Pis £ Air(2-air)a?r 

£Pis[^BiraOrA , 

Bjr = Air(2-air). 

n+i-s 
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/ 
JO _ V * D nn+i-s 

so that | z\l' J- satisfies the same recurrence relation as j u^ 1 but has different initia! conditions (which give 
rise to the Bir). Then 

/ 
JO = ST P. JO 

Proof: r=1 

i 
yd) _ \ ^ o ,ji~r 
zn-r ~ 2^ bisais • 

s=1 

i i 
' n Ji) V ^ n Jil 

r+1 E PfrSr = Z ^ E B-<r ' E P>r E ^ ^ - ̂ i K ^ = * E ^ " - " E ^ -
r=7 /=7 s=1 r=1 s=1 r=1 F=1 

(0 

r=1 r*1 r=1 r=1 

as required. So 

7 „ ^/s 2L# #/ra/> " 2 w Piszn+i~s = zn+i 
s=1 \ r=1 / s=1 

Thus we have proved 
(6.3) 2u<ili-ulili+1=zlili, 
from which it follows immediately that 

2u^ + JO „ - dJO JO 
£UnH + un+j+1 - 4Un+j-Zn+j . Thus we have 

which becomes 

This can be rearranged as 

(2uilli-uiili+1S(2uilli + ullli+1) = zglifof&i-zflli) 

Mu%)2-(u%+1)
2 = &l{*u%-i%) . 

(u{<li+1)2 = U%2 + 4u%(u%-z% . 
Multiply each side of this equation by (z„+;) and 

h(i) Ji) ,2 _ ( (;) A af (i) 2 0) ( c,)m Ji), 

Add 
(91id)./.JO 7d') 112 

to each side to get 
(6.4) (Siulil^f+UulililuHli-zlili))2 = Uz%)2

 + 2u{A;(u%-z%))2 . 

Equation (6.4) may be considered as an extension of (6.1) and a generalization of HoradanrTs Pythagorean theorem, 
since (6.4) reduces to (6.1) when Pfr= f fr= 1,2,.-~,i) because zfl+/ = Up then (from (6.3) above and Eq. 9 of [7]). 

Thus we have shown how three properties of a fundamental recursive sequence of arbitrary order can be general-
ized by analyzing and recombining the zeros of the auxiliary equation so that the essential features of the properties 
are revealed. 

It is worth noting that Marshall Hall [1] looked at the divisibility properties of a third-order sequence with auxiliary 
equation roots a1f a | , afa2 formed from a second-order sequence with auxiliary equation roots a / and a2-

Thanks are due to Professor A.F. Horadam of the University of IMew England, Mew South Wales, for his comments 
on a draft of this paper. 
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LETTER TO THE EDITOR 
January 1,1973 

Dear Prof. Hoggatt: 
HAPPY NEW YEAR. Here is a problem: 
Let Pi,P2''"'Ps be given primes and let aj<a2<— be the integers composed of the primes p 7, P2, —pr-

Put 
Ak = [a1fa2,-,ak] 

(least common multiple), then 

E J-
k=1 K 

is irrational. (Conjecture) This is undoubtedly true, but I cannot prove it. All I can show is that 

E^ 
is irrational, where in S ' the summation is extended only over the distinct A^'% (i.e., if 

hi,—,ak] = [a1,-,ak+1] , 

then we count only one of the 7/[aj, —, akJ ). 
Regards to all, 
Paul Erdos 



LATTICE PATHS AND FIBONACCI AND LUCAS NUMBERS 

C. A. CHURCH, JR. 
University of lo r th Carolina, Greensboro, North Carolina 27412 

Several papers have been presented in this quarterly relating lattice paths and Fibonacci numbers: [1 ] , [5 ] , and 
[6] , In [1] Greenwood remarked about a certain artificialness in his approach. Here we present what we believe is 
a more natural approach which gives direct derivations of the formulae. We also obtain the Lucas numbers and some 
generalizations. 

1. INTRODUCTION 

By a lattice point in the plane is meant a point with integral coordinates. Unless otherwise stated we take these to 
be non-negative integers. By a path (or lattice path) is meant a minimal path via lattice points taking unit horizon-
tal and unit vertical steps. 

It is well known [2, p. 167] that the number of paths from (0,0) to (p,q) is 

If we associate a plus sign with each horizontal step and a minus sign with each vertical step, there is a one-to-one 
correspondence between the paths from (0,0) to (p,q) and the arrangements of p pluses and q minuses on a line. 

Another well known result [2, p. 127] is that the number of paths from (0,0) to (p,q), p >q, which touch but 
do not cross the line y = x is 
(2) p-q+1 lp+q\ 

P+1 \ q I 

In otherwords (2) gives the number of paths from (0,0) to (p,q) such that at any stage the number of vertical steps 
never exceeds the number of horizontal steps. 

For p = q, (2) gives 
, / I 2p ) 
p+1 \ P I ' 

the Catalan numbers. These have a number of combinatorial applications [3, p. 192]. 
Note that if (1) is summed overall p + q = n, we get the number of paths from (0,0) to the line x+y = n. In 

this case we get 

id)-*-
p=0 

If each of these paths is reflected in the line x+y = n, we have all the symmetric paths from (0,0) to (n,nl 
If (2) is summed in the same way, we get the paths from (0,0) to x +y = n which may touch but not cross y =x, 

Reflect each of these to get the symmetric paths from (0,0) to (n,n) which do not cross y = x. This is a larger 
collection than Greenwood's. 

2. FIBONACCI NUMBERS 
The following problem appears in [4, p. 14]. In how many ways can p pluses and q minuses be placed on a line 

so that no two minuses are together? In our problem we shall also require an initial plus sign to keep the path from 
crossing y=x. 

First, we solve the more general problem of finding the number of arrangements of p pluses and q minuses on a 
line so that before the first minus and between any two minuses there are at least b pluses, b > 0, p >bqa 

330 
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Arrange the q minuses and bq of the pluses on a line with h pluses before the first minus and b pluses between 
each pair of minuses. Distribute the remaining p-bq pluses in the q+1 cells determined by the q minuses. This 
can be done in 
(3) I P-(b-Dq\ 

ways [4, p. 92]. 
For the original problem put b = 1 to get 

(4) ' ( 5 ) -
Summed over p + q=n, p >q, (4) gives, with q replaced by k, that there are 

[i] 
(5) f»«"E(""/) 

k=0 
paths with the stated conditions from (0,0) to x + y = n. These paths begin with a horizontal step and can have no 
two consecutive vertical steps, so they cannot cross y = x. Mow reflect each path in x +y = n to get the symmetric 
paths from (0,0) to (n,nl 

Here we have replaced each diagonal step of Greenwood with a horizontal step followed by a vertical step. Thus 
each of our paths crosses x + y = n on a lattice point. As indicated by Stocks [6, p. 83] , this accounts for the fact 
that we have Fn+j such paths where Greenwood gets fn+2 • That is, of the h(n) paths of Greenwood on-
ly h(n - 1) cross x + y = n on a lattice point 

Similarly, (3) summed over p + q = n, p > bq, gives 

ti&] 
n - bk 

k 
(6) - F"+lM = E 

k=0 

which has the analogous interpretation with respect to the line by = x. These numbers have a Fibonacci character, 
for it is easy to show that i 

Fn+l(b) - j Fn(b)+'Fn„b(b), n>b + 1 

For the enumeration of paths without subpaths [5, p. 143] we note that in Greenwood's terminology these are 
simply those paths which begin with a diagonal step, and the paths to be deleted are those that begin with a horizon-
tal step. By his proof of the recurrence this is precisely h(n) - h(n - 1) = h(n - 2). In our terminology the paths 
without subpaths are those that begin with one horizontal step followed by a vertical step, i.e., paths from (1,1). 
Thus directly by (5) or a recurrence argument similar to Greenwood's we find that these are Fn^i in number. 

Analogous results can be gotten for the paths enumerated in (6). 

1 LUCAS WUivlBERS 
Again consider the problem in Riordan [4, p. 14] of arranging p pluses and q minuses on a line with no two 

minuses together. There are 

(7) f p * / ) 
such arrangements. These are the paths from (0,0) to (p,q) which do not cross y = x+h That is, a path may start 
with a vertical step, but there will be no two in succession. 

Now look at the paths as enumerated in (7), but with the added restriction that if the first and last steps are both 
vertical, we consider them as being consecutive. We thus have two mutually exclusive cases. In the first case, the paths 
start with a vertical step and must end with a horizontal step. These are the paths from (1,1) to (p - 1,q). By (7) 
there are 
(8) {',-'<)-iC) 
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of these. In the second case, the paths start with a horizontal step and end with either. These are the paths from 
(1,0) to (p,q). By (7), there are 
(9) ( * ) 

of these. Note that the second case is really only (4). 
Add (8) and (9) to get the solution 

( 1 0 , ^ L ( P ) . 

Summed over p+q = n, with k = q, (10) gives 

[I] 
k=0 

Reflect each of these paths in x + y = n to get the symmetric paths from (0,0) to (n,n). 
Again it is easy to see that the number of paths without subpaths is Ln„2 • 
In analogy with (3), these results can also be generalized for arbitrary b > 0. In fact, (7) becomes 

/ p-(b- D(q -D + 1 \ 

(10) becomes 
P+q I p+q -bq\ 

p+q-bq \ q } ' 
and (11) becomes 

k=0 

Again parallel results follow with respect to the line y =x+b. 
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ON THE PARTITION OF HORADAM'S GENERALIZED SEQUENCES INTO 
GENERALIZED FIBONACCI AND GENERALIZED LUCAS SEQUENCES 

A. J. W.HILTON 
The University of Reading, Reading, England 

1. INTRODUCTION 

If p,q are integers, p +4q£ 0f let co = co(p,q) be the set of those second-order integer sequences 
(wj = (w0, wv w2, •••; 

satisfying the relationship 

which are not also first-order sequences; i.e., they do not satisfy Wn = cWn„7 fyn) for some c. In Horadam's papers 
( [3 ] , [4 ] , [5 ] , [6]) our Wn is denoted by Wn(a,b;p,-q). In this paper we show that oo can be partitioned natur-
ally into a set F of generalized Fibonacci sequences and a set L of generalized Lucas sequences; to each F e F 
there corresponds one L e L and vice-versa. We also indicate how very many of the well-known identities may be 
generalized in a simple way. 

2. THE PARTITION OF oo(p,q) 

If a,(l are the roots of x -px -q = 0, d= +\/p2 + 4q then the following relationships are true: 

a*fi = p, aft = -q, a - j3 = d, 

(1) w^^f.. 
where A = W1 -W0& B = W1~W0a. Since (Wn) is not a first-order sequence it follows that a±0,$±Q. A * 
0, B J=0. When Wn is represented as in (1) we say that Wn is in Fibonacci form. On the other hand, with differ-
ent constants C and D, Wn could be represented as 

Wn = Ca" + D$n . 
In this case, we say that Wn is in Lucas form. 

When Wn is in Fibonacci form (1) we may perform an operation ( ') to obtain a number W'm where 

Wn = Adn + B$n . 
We say that the sequence (W'n) is derived from the sequence (Wn). The sequence (W'n) is a sequence of integers 
since 
(2) WQ = A+ B = W7-W0$+W7-W0a = 2W1-W0(a + $) = 2Wr~pW0 

and 
(3) W7 - Aa + B$ = (W7 - W0$)a M\N1 - W0a)$ = W7(a + &)- 2W0a$ = pW7 + 2qW0. 

W'n may now be expressed in Fibonacci form. In that case 

If we perform the operation ( ') on Wn we obtain 
W% = [Ma - p)J an + f(-B)(a - fi)J $n 

-'«-«2[^f] 
ifw„ 

339 
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We have proved 
Theorem 1. W% = d2Wn for ail n > 0. 

St is not hard to verify that the equation Wn = W'n (vn) cannot be true if (Wn) is not a first-order sequence. 
Throughout this paper let (Xn), (Yn) e co (p,q), let X'n =Yn (n = Q, 1, 2, - ) and let X0 = a, X1 = b. 

Then, from (2) and (3), 
YQ = 2b - ap, Ky = pb + 2qa . 

By theorem 1, therefore, or directly, it follows that 

ad2 = 2Y1-pY0f bd2 = pY, +2qY0 . 
The following theorem now follows easily: 

Theorem 2. (i) 
(4) d2\2Yn-pYnm.t and d2\pYn+2qYn_1 for all n>1. 

(ii) If (Wn)eo>(p,q), d2\2W7-pW0 and d2\pW1+2qW0 then (Wn) = (Xn) for some 
(Xn)e<A)(p,q). 

Proof of (ii). If 
X0-^Lzfo. Xl.»bimL a n d (xH,e»<M). 

the* ' , «2 

xbJp^^oyphw^\Wo and x,JPw1+m0\ +2qhw^wg\ =Wi 

which proves part (ii). 
The basic linear relationships connecting (Xn) and (Yn ) are described in the following theorem. 

Theorem 3. The following are equivalent: 

(«» (X'n) = (Yn), 

(ii) Yn = 2Xn+1 - pXn for ail n > 0 , 

(iii) YnH = pXn+1+2qXn forail n>0, 

(iv) Yn = Xn+<i + qXn_7 for ail n > 1, 

(v) Xn =
 2Yn+1-pyn f f l r a | | n>Qf 

d2 

(vi) xn+1=
pYn+1+2SXR foraS| n>Qf 

d2 

(vii) Xn = Y-H+l+qY»-l for all n>1. 
d2 

NOTE: For each of (ii), —, (vii) we need only require that the expression is true for two adjacent values of n. 

Proof (i)=*(ii). If (X'n) = (Yn), then from (2) and (3), Y0 = 2X1~pXo and K ; =pX7 +q2X0 = 2X2-pX-j 
since X2 =pXf + qXg. Let m>2 and assume (ii) is true for 0<n<m. Then 

Ym = PYm-1 + QYm-2 = P(2Xm-pXm^) + q(2Xm^ -pXm„2) = 2Xm+1 ~pXm. 

The result now follows by induction. 
(ii) ^ ( i i i ) <» — <*» (vii). This follows easily using 

Xn+1 = pXn+qXn^ and Yn+1 = pYn + qYn^ (n>f). 

f ( i iU i i i ) , - ( v i i ) ]=>( i ) . Since 

x0 = ̂ fXo and Xf_Ph+*yo 
d2 d2 

it follows from (2) and (3) that 
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and similarly X^ = Y-j. Hence (X'n) = (Yn). This completes the proof of Theorem 3„ 
We now describe the partition of oo(p,q) previously referred to: 
If (Wn)<Eto(p,q) and d * 1 let Wn = dzm ton for all n > 0, where nr^O is an integer, (con) G CO and 

d / oon for at least one n > ft Then 
(Wn)<E L if d2\2cjf -pojg and d2\poj^ + 2qu>Q , 

(Wn)^F if either d2^2co7 -poo0 or d2^pojf+2qco0 . 

If (Wn)<=oj(p,q) and d=1 Set 
(Wn)^L if WT-WQGLKO, 

(Wn) ^F if W7-W0a > 0. 

The assignment of (Wn) to L or F is natural in the case d/1, but if d= 1, although the partition itself is nat-
ural, it is not true to say that a sequence is " l ike" the Lucas sequence rather than the Fibonacci sequence or vice-
versa. In view of Theorem 3 if (Wn) is a member of F {or D then any " ta i l " of (Wn) is also a member of F(m 

L, respectively). 
Theorem 4 . (XJ e F if and only if (Yn) G L . 

Proof Casel. d=1. (Xn)e F 

o Xn = Aan - BPn, where B < 0 

o Yn = Aan + B$n 

~ (YJ G L. 
Case 2. d?1. (i) If (Xn) G.F suppose that Xn = d2mxn for all n > 0, where m>0 is an integer, 

fr„ J G Fand tf2^ for at least one n>0. Clearly </2K*0 or flf2^;. By Theorem 3, Y0
S=2X1~pX0 and 

Y1=pX1 + 2qX0. Let Yn = d2myn forail /? > o. Then y# = 2x1-pxQ and j / v =pxt+2qxQ. Since 6rnJ G 
i ^ either d2\2x1-px0 or d2\px1+2qxQ. Therefore either £/2|Vo ° r ^ J W - But it is easy to verify that 

2y1-py0= d2x0 and py1+2qy0 = d2x1. 

Therefore ( / „ j G L and so f K^J G L „ 
(ii) If (YJ<EL suppose that Yn = d2myn forail /7 > 0, where /?? > 0 is an integer, 

/>„ ) G L and £ / 2 | / „ for at least one / ? > & Clearly ^ 2 | K ^ or d2\yp By Theorem 3, 

X0 = 

Let * „ = d2mxn for all /7 > 0, Then 

* 0 = 

Since (yn) ^L, 
d2\2y1-py0 and d2\py1+2qy0 , 

so * 0 and * / are integers, so (xn)^co-.But 

2x1~pxo = yo and pxj+2qxo = Yi, 
and since d2\y0 or d2\y1 it follows that either d2)(2x1-px0 or d2\px1+2qx0. Therefore (xn)(=F and 
so (Xn)(=F. This completes the proof of Theorem 4. 

Here are some examples of members of F alongside the corresponding member of L. 
0, 1, 1, 2, 3, 5, 8, 13,.» 2, 1, 3, 4, 7, 13, ••• 
0:i,p,p2 + q,<- 2,p,p2 + 2q,-
0, 1, 3, 7, 15, •, 2n - 1, ••• 2, 3, 5, 9, 17, - , 2n + 1, -
0, 1, 2, 5, 12, 29, •. 2,2, 6, 14, -

(Pell's sequences) 
a, b, qa, qb, q2a, q2b, — 2b, 2qa, 2qb, 2q2a, 2q2b, ••• 

2Y1-PY0 

d2 ' 

2yi~PVo 

d2 ' 

_pY1+2qY0 
A / - • • 

d2 

_ PYi+2qyo 
X1 

d2 
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3. BINOMIAL IDENTITIES 
Many identities involving Fibonacci and Lucas numbers are readily derived from the binomial theorem; for exam-

ple see [1], [2] or [8]. They can nearly always be generalized to become identities involving generalized Fibonacci 
and Lucas numbers, 

In this section we could derive a long list of such identities; but this seems unnecessary in view of the proofs in [21 
and [8], and also it would take up a lot of space, as the constant multipliers which have to be introduced seem to 
make the generalized formulae up to twice as Song as the formulae in [2] and [8]. Instead we derive one set of iden-
tities as an example and show how further identities may be derived. 

There often seem to be two very similar identities, one featuring Fibonacci numbers, the other Lucas numbers. 
When there are two such identities they may often be derived from one identity by using the fact that 1 and y/E are 
linearly independent over the rationals, although this is not the procedure adopted in [21 or [81. With generalized 
Fibonacci and Lucas numbers such a process would not be appropriate, but, as the examples show, the method of 
proof which is natural does lead to a single identity, from which the two identities may be obtained by specialization. 

For this section (Fn) and (Ln) denote a pair of sequences such that (Fn)^F, fZ^jeZ, and (Fn)' = (Ln). Also, 
C=F1~F0P, D = F1-F0a. 

The natural method of proof is firstly to derive a single identity involving (Xn) and (Ynl Then either of the 
following sets of substitutions may be made: 

!• Xn ~ Fn+r 

Yn = Ln+r 

A = Xj- X0P = FrH - Frp = Car 

B = Xj - X0a = Fr+1 - Fra = Dpr . 

(The third of these follows since 

"~r+i ~ 
Ca*1 ~DPr+1

 = (Car-DPr)P~-Carp+Car+1
 = F »+Car 

a-P a-P 

and the fourth follows similarly.! 
Or 

Xn - Ln+r 

Yn = d2Fn+r 

A = Xj - X0P - Lr+j - LrP = Cdar 

B = Xi-Xaa= Lr+1 - Lra - -Dcipr . 

Then each of these sets of substitutions leads to one of the two derived identities mentioned above. 
EXAMPLES OF BINOMIAL IDENTITIES 

EXAMPLE I Since 

it follows that 
n 

'£ 
i=0 

n 

am Y 
= .JH 

ri'Y1 Yn"s 
a Amrm 

E "'*!» YST\ 

, + dXm 

2A 

(? ) -

!?)• 

2B 

and pmn = mrn J^ f - / jV '4C( i-t 
i=Q 

Therefore, 

Ymn + dXmn = (2A) Un ] T d'xl
m Yn

m-'> (?), and Ymn - dXmn = (2B) Un £ l-lfd,Xl
mY^1 ( ,"). 

i=0 i=0 

Therefore, 

Xmn = 2-"d~1 £ {dXjYtfitf) [A1-n-(-1)iB1-f>] . 
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A similar formula may be derived for Ymn. 
Making the first set of substitutions, we obtain 

n 

Fmn+r = 2-»d"1 Y. (dFm+rH
n^r ( ?)([Car] 1'n - (-1)! [Dp] 1'n) 

1=0 
But 

pl-n^r-rn / 1u'n1-nnr-rn _ r1-n \ *•r-rn + °*r-rn \ \ — VD (Lr„rn — drr_r C a -1-7)0 p -C | Yc I — 

\ 
Therefore 

2 \ cr Dr J z \ cn Qn 

Fnm+r - r - ' f 1 t ( d F m + r H ^ 1 ) J Lr.rn [ ^ - ( - D ' j - n ) + dFr-rn{j-n-(-^j-n)\ • 

Making the second set of substitutions we obtain 

i=0 
But 

Therefore 

Lnm+r = 2~"d-1 J^ (dLm+r)
i(d2Fm+rr

i ( 1 ) (fedaTj h'n - (-iN-Ddpl1'") 

= 2~n E ^ W c t ( ; j (rearj ?~" - (-»"-'• (-n 1-nwi 1~n) 

= 2~n £ (dFm+rn^+r ( i ) <icar] 1-n+(- irwn 1'n). 

i=0 

C1-nar-rn + (_1)iD1-nrm __ ^ B ( J L +{-tf JL j +dFr.m ( ± -(-,)< J- ) . 

i=0 \ J 

EXAMPLE 2. Since 
dXm = 2Aam - Ym and dXm = ~(2B$m - YJ 

it follows that 

akd"Xm = E (-Yj(2A)n-i[nj\a
mn'mi+k and fdnX% - (~1)n £ (-YjW)™ [^ff1 

i=0 i=0 

Therefore 

Ykd
nX"m +Xkd

n+1X"m - 2 . <-Yj(2Ari([
 n. )(Ymn„mJ+k + dXmn„mi+k) 

s=0 
and 

n 

Ykd
nXn

m-Xkd
n+1X"m = (-1)" £ (~Ym)l'(2p)n'^ n

f)lYmn„mi+k-dXmn„mi+k) . 

1=0 

Therefore 

li/oDin-i ( n\ omn-mi+k 
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n 

XkX
nm = - 7 7 £ (-in^"-1 [n\ [Yrnn-wHkfA"^-(-1)nr') + dXmn.mi+k(A

n-i + (-1)"^-')] 

and 

Making the first set of substitutions we obtain 

zt/ 7=0 
and 

^ = ^ r Z t-D'l-m2"'1 [l)lLmn-mi+k(Cn-'' + (-1)" D"'1)+dFmn„mi+k(C
n--(-7)"D"-')] . 

i'=0 

Making the second set of substitutions we obtain 

d2FkL"m = j ^ £ (-Vi(d2Fj'2™'(»)fd2tmn^n(*™'C^ + {-in-V^d^D'H) 

+ dLmn.mi+k(d
n-iC"-i - (-1)n(-1jn-idn-iD"-i)] 

2d" M> 

so that 
n 

i=0 
and 

LkL
n

m = —j^ £ (-ind2Fj2n-i[n.)[d2Fmn.mi+k(d"-iCn-i-(-1)n(-1)n-id"-iDn-iS 

so that 
+ dLmn.mi+k(d

n-'Cn-' + (-Vn(-l)n-'dn-'Dn-')J 

LkL"™ = 1 Z ^ m / ^ " ' ( ? ) lLmn-ml+k(Dn-iH-1)lCn-i) - dFmn,mi+k(D
n-'' - (-D'C"'1)]. 

i=0 

Further three term identities from which binomial identities may be derived in the way described are 
dXn = Aa" - 50" , 
Yn = Aa" + B$n , 

(5) Aam+n = Xman+1 + qXm.1a
n , 

(6) Bpm+" = Xm?P+1-t-qX^f , 

a2 = pa+q , 

f ' = pP + q , 

(7) Y2 = d2X2+4AB(-q)i , 

Aa2m = Ymam-B(-q)m , 

Aa2m = dXrrflL
m + B(-q)m 

Bfm = Ym$m - A(-q)m , B02m = -dXm&m + A(-qjm . 
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Most of these identities are obvious, or nearly so. Identity (5) may be proved as follows: 

Aam = V2Ym + y2dXm = y2(PXm+2qXm„1+dXm) = Xm(<LjiL) +QXm-l = Xma^qXm^ , 

and identity (6) is proved similarly. Identity (7) is proved as follows: 

Y2 = (Aan + Bf)2 = (AcP-B$n) + 4AB(a$)n = (a-$)2 I ^ " ' ^ ) + 4AB(-q)n = d2X2+4AB(-q)n. 
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ERRATA 
Please make the following corrections to "Fibonacci Sequences Modulo /^/'appearing in the February 1974 (Vol. 

12, No. 1) issue of The Fibonacci Quarterly, pp. 51-64. 
On page 52, last line, last sentence, change " I f 2/f(p)," to read "If 2jff(p)/f 

On page 53, change the fourth line of the third paragraph from "which (a,b,pe) = 7,"to: "which (a,b,pe)^19" 

On page 56, third paragraph of proof, tenth line should read: 
"...is given by 52e - 52e~2 - 4-52e"2 = 4»52e~1 . . . . " 

On page 61, change the second displayed equation to read: 

n(k) = 2—p? . 
k 

Line 7 from the bottom should read: 

" f o r i=t, . » , * - 1. " 
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Theorem 

F1 F2 F4 F8 F16 2 

Proof 

is easily proved by induction using Binet's formula, and the theorem follows by letting n -> °° . The result resembles 
the formula 

where 

m > i aj = 2 Qj^L, an+1 = a* -2, (30 = 1, pn = a1a2- an . 
(Reference 1. 

Some curious properties of Fibonacci numbers appeared in [2 ] ; for example, 

A2g fn = 5
Fn+96_2 . fn+48 + / n 

is a multiple of 2123573 = 341, 397, 504 for n = 1, 2, 3, •••. 
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POWER SERIES AND CYCLIC DECIMALS 

WORRlSGOODWIi 
Santa Cruz, California 95060 

There is an interesting relation between series based on the powers of an integer, and infinitely repeating decimal 
reciprocals whereby the sum of the powers of a single integer give not one, but two reciprocals. Figures 1 and 2 illus-
trate this in the case of the two integers 3 and 19, which yield respectively the decimal reciprocals 1/29, 1/7; and 
1/189, 1/81. The left-hand member in each instance starts at the decimal point and develops (in reverse) to the left. 
Although it is obviously not a decimal, it is purely cyclic, and has the repetend of its decimal version. Since shifting 
the decimal by a suitable divisor rectifies this, and for the sake of simplicity, it is treated here as a decimal. 

If M is any integer having k digits, the following equations apply: 

(1) 

and 

1A10M-1) = J ] Mn~1xWn"1 

n=1 

(2) 1/(10k-M) = J2 Mn~1x10~kn 

n=1 
Equation (1) is limited by the expression (10M- 1) to a fraction having a denominator with the last digit 9, and 
will thus be odd and yield a cyclic decimal fraction having a repetend with the terminal digit /. Equation (2) is lim-
ited by the expression (10k - M) to a denominator which is the complement of M and will thus be odd, or even, 
and will not be limited as to type of repeating decimal. In the preparation of Figs. 1 and 2, zeros not contributing to 
the relations shown have been omitted. 

„n-1 10 n-1 

6 7 2 1 
4 8 9 0 7 
7 8 2 9 6 9 
1 5 9 4 3 2 3 

5 3 1 4 4 1 
1 7 7 1 4 7 

5 9 0 4 9 
1 9 6 8 3 

6 5 6 1 
2 1 8 7 

7 2 9 
2 4 3 

8 1 
2 7 

. 0 6 8 9 6 5 5 1 7 2 4 1 3 7 9 3 11 

Figure 1 

q _n-1 10-n 
2 7 

8 1 
2 4 3 

7 2 9 
2 1 8 7 

6 5 6 1 
1 9 6 8 3 

59 0 4 9 
1 7 7 1 4 7 

5 3 1 4 4 1 
1 5 9 4 3 2 3 

4 7 8 2 9 6 . 
1 4 3 4 8 9 . 1 4 2 8 5 7 1 

< 1/7—>k-

347 
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.9 

.0 1 

.779 

.3 04 

.7 17 

.045 
247 

1 

1 
39 
88 1 
6 09 
3 03 

6 

19n-1x10n"1 
9 
21 
859 

361 
1 9 

1J 
, 0 0 5 2 9 1 0 0 5 2 9 1 1 10 1 

19n"1 x 10 
9 
361 
6859 
130321 
2476099 
4704588. 
89387 1 . 
169835 
32268. 
613 1 
551 

0 12 3 4 5 6 7 9 . 
-1/81-

Figure 2 
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ON GENERATING FUNCTIONS FOR POWERS 
OF A GENERALIZED SEQUENCE OF NUMBERS 

A. F. H0RADAIV1 
University of !\Sew England, Armidafe, Australia 

GENERATING FUNCTIONS 
For the record, some results are presented here which arose many years ago (1965) in connection with the author's 

paper [3]. Familiarity with the notation and results of Carlitz [1], Riordan [6], and the author [2], [3] and [4], 
are assumed in the interests of brevity. Mote, however, that hn in [3] has been replaced by Hn to avoid ambiguity. 
Our results and techniques parallel those of Riordan. 

Calculations yield 
Mi-Mti + ttU = 2(~1)ne 

(1) 
HZ-MLi-Hi.2 = 3(-f)nBHn_f 

ft 7H^j + H*.2 = 2e2 + 8(- 1)neHl n-1 
(e = r -rs-s2) 

H' HHZ-1 "n-2 = 5e2Hn_i + 15(-1)neH^-, 

and so on. Corresponding generating functions for the kth power of Hn, 

[Continued on page 350.] 



A LOWER BOUND FOR THE PERIOD OF THE FIBONACCI SERIES MODULOM 

PAULA.CATL l i 
Ohio State University, Columbus, Ohio 43210 

In this note we shall determine a nontrivial lower bound for the period of the Fibonacci series modulo m. This prob-
lem was posed by D. D. Wall [2 ] , p„ 529. 

Let a(m) denote the subscript of the first term of the Fibonacci series 

(1» Fn+2= Fn+1 + Fn, F0 = 0, F, = 1, 

which is divisible by m. Let k(m) denote the period of \ Fn I modulo m. Define the sequence i Ln 1 so that 

(2) Ln+2= Ln+1 + Lnr L0=2f L1 = 1 . 

Then our main result is the following theorem: 

Theorem. Let t beany natural number such that Lt<m, where m>2. Then k(m)>2t, with equality if and 
only if Lt = m and t is odd. 

Wall posed the question for prime values of m. It is not known whether or not there are infinitely many prime m 
such that Lt = m when t is odd. 

For the proof of the theorem we need some preliminary results. The following theorem is proved in [1] (Th. 3). 
Vinson's Theorem. Let m beany integer greater than 2. If a(m) is odd, then k(m) = 4a(m); if 8^m and 

a(p) =2 (mod 4) for ail odd prime divisors of mf then k(m) = a(m); in any other case, k(m) = 2a(ml 
In addition to well known identities, the following is useful: 

(3) F, ss -(-i)jFk(m)_j (mod m) . 

Equation (3) follows by induction on i, using (1), Fo = Fj<(m) = Of and F'7 = F^(m)+^ ^ f (mod m). 

Lemma. k(Ln) = 4n when n is even; k(Ln) = 2n when n is odd. 
Proof: a(Ln) = 2n is known, and may be proved using F2n = FnLn, Ft<Ln for t<n+ 1, and the fact that 

subscripts n for which m\Un form an ideal. The lemma follows by an application of Vinson's theorem. 
Proof of Theorem: St is known [2] that k(m) is even. Using the identities (3) and 

(4) Ln = F^j + Fn+j , 

we see that if k(m) = 2t then Ft = -(-1)tFt (mod m)f so t is odd or Ft=0 (mod ml If t is odd then by (3) we 
have Ft+i = - F f _ / (modm) implying (by (4)) that 

(5) Lt = Ft+f + Ff-i = 0 (mod m). 

Otherwise, if Ft = 0 (mod m) then by (1), 

(6) Ft+i-Ft-i = 0 (mod m). 

Clearly, if t </? then 

(7) 0 < Ft+i + Ft„i < Fn+1 + Fn^ = Ln < m, 

by the hypothesis of the theorem. By (4) 

Ft+1 ~ Ft-1 = 2Ft+i - Lt, 

and since m > Lt> Ft+f when t < n, we have 

(8) Ft+1 - Ft„i < m . 

349 
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Now, (5) and (7) imply that t = n and Lt = m, and (6) and (8) are never simultaneously true. Thus t > n, with 
equality only if Ln = m. By the lemma, 

k(m) = 2t = 2n 

if and only if n and t are odd and Ln = m. The conclusion of the theorem follows. 
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[Continued from page 348.] 

HkM = Ys Hkn*n (Hk(Ot = (H0)
k = rk) , 

n=0 
where 

and 

are 

HQ(X) = f0M = Y, *n = (i-*r1 

n=0 

H7M - (r + sx)(1-x-x2f1 

(2) 

(1 - 3x +x2)H2(x) = r2 - s2x - 2exH0(-x) 

(1-4x- x2)H3(x) = r3+ s2x - 3exH1(~x) 

(1 - 7x +x2)H4(x) = r4-s4x + 2e2xH0M - 8exH2(-x) 

(1- 11x-x2)H5(x) = r5+s5x + 5e2xH1(x) - 15exH2(-x) . 

The general expression for the generating function is (see [3]) 

[k/2] 

(3) (1-akx + (~1)kx2)HkM = rk-(-s)kx + kx ] P (=U- Bj akjH k.2}U-i)!x) , 
hi J 

where 

(f-x-x2rJ= jr akjX*-2i, 
k=2j 

that is, akj- are generated by the jth power of the generating function for Fibonacci numbers tn. Note the occur-
rence in (3) of the Lucas numbers an. 

FUNCTIONS ASSOCIATED WITH THE GENERATING FUNCTIONS 

In the process of obtaining (3), we use 
lk/21 

(4) gk(x) = ^5Hk(x) = Y ( k
J)°

iFk-2j((-1)'x) (F0M = H0M) , 

hO 
where 

and 
Fk(x) = [{r~sh)a]k(]-akxf1 + [(sa~r)b]k(1-bkxf1 (k = 1,2,3,-) 

a=l±JLw b = LzJA (a,b rootsof x 2 - x - f = 0), 

leading to the general inverse 

[Continued on page 354.] 
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! S iTROiUCTlOi 

The first congruence in this paper arose in an effort to extend a result of CoSlings [1] and the second congruence 
is merely an elaboration of part of a theorem of Wall [5 ] . In the final section we look at some congruences modulo 
m2. 

Some of the symbols involved are: Dim), the period of divisibility modulo m (or rank of apparition of m or entry 
point of ml the smallest positive integer z. such that Fz = 0 (mod m) (see Daykin and Dresel [2]) ; C(m), the 
period of cycle modulo m, the smallest positive integer k: F^+n = Fn (mod m), n > 0; Tim), the smallest positive 
integer fi; F%+j == 7. (mod ml In fact, zfi = Ar. (See Wyler [6].) 

Ceilings' result was than when m is prime, c is even, 

(1.1) Fr + FVszz+r = 0 (mod m), 
where 

Fn = Pn~1 + Fn„2 (n>3), Fj = F2= 1 . 

We show that m can be composite if Fz+i = - / fmod ml 

2. LEIvlIViAS 
Lemma 2.1: (see Vinson [5].) 
For m>2, D(m) is odd implies that Tim) = 4; and Dim) is even implies that Tim) = f or 2. 

Proof: Simson's relation can be expressed as 

F2
ZH - FZ+2FZH-1)Z+2 

= l-Vz+2 since Fz = 0 fmod m), 

= / fmod m) if z = Dim) is even, 

= - / fmod m) if z = Dim) is odd. . 
When 

When 

F2
Z+1^1 (mudm), 

Tim) = 2 if Fz+1 ^ 1 

Tim) = 1 if Fz+1 = / 

F^+1 = -7 fmod m), 

Fz+1 = / fmod m) if 

fmod m), 

fmod m). 

m>2; 

so 
351 
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Fz+1 ^ ±7 fmod m). 

z+1 ~ tz+1tz+1 
Fi+1 = [FZHJ2 - / ^mod m), 

Fz+1 = Fz+1FZ+1 = -Fz+1 fmod m); 

and 
T(m) = 4. 

Lemma 2.2: Fk^ = 7 /'mod m). 
Proof: Fk^ = Fk+1 - Fk = Fr- 0 fmod m) 

= 1 fmod m) . 

1 THEOREMS 

Theorem 3.1: If e^7 and Fjt2
f = - 7 fmod m), then 

Fr+F%siz+r - 0 (mod m) for ail r> 0. 

Proof: z = T(m) which takes only the values 7,2,4 (Lemma 2.1). But c # 7 (given). Therefore fi is even. 

Therefore, f ^ / exists and is unique. Moreover, 

^ f i z - r = ^ - / ^ r ^m°d m) (see Eq. (8) of [4]) 

= - / > fmod m) as FJ^2/ = - 7 

•'• Fr + FlMz+r = 0 (mod m). 

NOTE, (i) Conversely, if for c^7 we are given that 
Fr + FV29.z+r - # f m o d mh 

forall /; this congruence must hold for r= 1. 

:. 7 = f 7 E= -FiMz+1 fmod /7?>/ 

On the other hand, it is possible for 
Fr+FlMz+r 

to be congruent to zero for some particular r without Fz
2+i being congruent to - 7 . Thus, when m = 12, 

F12 = 144 = 0 fmod 72; and z = 12. 
Fz+1 = F13 = 233 = 5 fmod 7Z> 

:. fi = 2 

•'• f i * 7 = F13^ ~1 fmod 72; . 
Despite this, 

F3 + FlMz+3 = F3 + F15 = 2 + 610 = 612 ^ 0 /"mod 72J. 
(ii) When c = 7 the situation is very untidy. If z is odd, Fy^z+r does not exist. Even when z is even, 

we have trouble with Fz+<i. As £ = 7, Fz+1^1 (mod /wA Therefore 

f j i7 = v ^ 7 ̂  v7 = ±7 
(and possibly other values as well). —/ is always a possible value for Fz+1f but never the exclusive value. 

(iii) Although - 7 is always a possible value for Fz+i (Q = 1), it is not necessarily true that 

Fr+Fy2%z+r = 0 /'mod m) forall r>0. 

Thus, when m = 4, z = 6. 
;. Fz^.; = 7 fmod /??,/, :. o. = 1. 

•'• F2 + F%z+2 = F2 + F5 =6^2 /'mod 4 ; . 
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Theorem 3.2: Fr + (-1)rFk„r == 0 frnod m). 

Proof: ~Fk = 0 = F0 and Fk^ = 1 = F1 (mod m), by Lemma 2.2 

~fk-2 = ~Fk + Fk-l = F0 + F1 = F2 (mod m). 

It follows by induction on k that 

<-ir1Fk_r = (-ir1Fk„r+2+(-DrFk„r+1 

= Fr-2 + Fr-1 ' m ° d ^ 
= /> (mod m), 

which gives the required result 
4. CONGRUENCES MODULO m2 

Here we use the results (see Hoggatt [3]) 

(4-1 > Fnr+1 = F(n-1)rFr + F(n-1)r+1Fr+l 
and 
(4.2) F2n+1 = Fn+Fn+1 . 

If a (mod m) = Fz+i=h (mod m), then b is of the form Bm+a, for some B. For example, F5 = 0 (mod 5), 
3 (mod 5) = F6 = 8 (mod 52), and 8 = 1 x 5 + 3. 

Using Fz^O fmod m) and (4.1) and (4.2) we find 
F2z+1 = l̂f-f-7 ' m ° d w2^ = b2 (mod m 2 ^ 

and 
F3z+1 = F2z+1FZ+1 (modw^J = b (modm ) , 

which, by the use of (4.1), can be generalized to 

(4.3) Fnz+1 = bn (mod m2). 

Furthermore, since Fz = Am for some A, then 
Fz_7 = b - Am /"mod m2) 

and 
F2z = Fz-1Fz + FzFz+1 

= (b -Am)Am+Amb fmod m2) 

= 2M/?i (mod /772/ 
Also, 

^ fe = F2Z-1FZ + F2ZFZ+1 (from (4.1)) 

= fa2 - 2bAm)Am+2bAm . A (mod /7?2j 

= 3&2/4/?7 /"mod /??2j . 

Similarly, F4 z = 4b3Am fmod /??2j. Thus 

(4.4) F „ z = nhn~1Am Anod /??2yL 
When Fnz = 0 the congruence nhn~1A=Q (modm) reduces to nA=0 (modm), because, from (4.3) and (4.4), 
if/? and m have any factor in common, so have Fnz and Fnz+i, which is impossible as adjacent Fibonacci num-
bers are always co-prime. Thus, if we solve nA=0 (modm) for n, then Z = A7z gives that Fz which is zero (mod 
m2l 

Let us apply these methods to find which Fibonacci numbers are divisible by convenient powers of 10. Instead of 
workina with m= 10, we shall find the equations simpler if we write 10 = mi>m2, where mi =2, m2 =5, and 
100=22>52 m1=2,z=3, F3=h2 and so A = 1. The equation nA^O (modm) reducesto n = 0 (mod 2}, 

which gives n = 2, so that Z = 2z=B. Similarly with m2 = 5, z = 5, and we find that Z=5z = 25. 
If we take m7 = 4, z = 6, F6 =2*4 and so A =2. Thus 2n =0 fmod 4) which gives n = 2 and Z=2z= 12. 

Similarly, with m2 = 25, z = 25 and F25= 75025 = 3001*25 which yields A = 1 (mod 251 So n * 25 
and Z = 25z = 625. 
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Relying on the known result that the period of divisibility by m^m2 (m],m2 co-prime) is given by D(m^m2) = 
LCMdf, z2) (see Wall [6]), we get the results: 

LCM (3,5) = 15, and so F^ is the first Fibonacci number to be divisible by 10. Icm (6,25) = 150, and so F-JQQ iS 

divisible by 100, LCM( 12,625) = 7,500 and so F7500 is divisible by 104. 
This has been an exercise in finding the z numbers. By an extension of the argument we can produce the corres-

ponding k numbers—the period of recurrence of the Fibonacci numbers (mod m2). 
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[k/2] 

(5) Fk(x) = £ (~f,J'eI T=J ( kJ! ) 9k-*(HM -
ho 

Write 
hk(x) = (1-akx + (-1)kx2)gk(x) 

ck = [(r-sh)a]k + [(sa~r)b]k . 

Following Riordan [6 ] , with ao = 2 and hpM= 1 -x, we eventually derive 

Cf+s^/5x = hf(x) 

I c2 - x(2e + 5s2) = h2(x) - 2e j h0(-x) - (a0 + a2)xg0(-x)) 

1 c3 + Ssj5 x(3e + 5s2) = h3(x) - 3e\h1(~x) - (a1 +a3)xg1(-x)\ 

(7) < C4-x(2e2 + 20s2e + 25s4) = h4(x) - 4ej h2(-x)- (a2 + a4)xg2(-x)} 

I +2e2\ ho(x) - (a4 - ao)xgo(x) | 

I c5-e1 = h5(x)-5e\h3(-x)-(a3 + a5)xg3(-x)^ +5e2^h1(x)~(a5-ai)xg1(x)j 

where 
e1 = 2r5~~5r4s + 30r2s2-40r2s3+35rs4~10s5 . 

Substituting values of ak = ak +bk, we have 

!

h7(x) = V 5 ( r + sx) 

h2(x) = 5(r2-s2x)~ 10exg0(-x) 

h3(x) - 5^/5 (r3 + s3x) - 15exg7(-x) 

h4(x) = 25(r4 - s4x) - 40exg2(-x) + 50e2xg0(x) 

h5(x) = 25^/5 (r5 + s5x)-~ 75exg3(-x) + 125e2xg / (x). 

These functions lead back to (2). 

(6) 

[Continued on page 362.] 



FIBONACCI NUMBERS IN TREE COUNTS FOR SECTOR AND RELATED GRAPHS 

DANIEL C. FIELDER 
Georgia Institute of Technology, Atlanta, Georgia 30332 

1. INTRODUCTION 

Consider a set of (n + 1) vertices of a nonoriented graph with vertices 1, 2, —, n adjacent to vertex (n + 1) and 
with vertex / adjacent to vertex (i + 1) for / < / < / ? - /. The graph described is called a sector graph herein. If 
the first n vertices are equi spaced in clockwise ascending order on the circumference of a circle with the (n + l)st 

vertex at the center, the geometry justifies the choice of name. 
If the first and nth vertices were made adjacent, the result would be the well known wheel*, Wn+i described by 

Harary [1 ] . For this reason, the lucidly descriptive terminology of Wn+j is applicable to a sector graph as well. 
Vertex (n + 1) is a huh vertex with spokes radiating outward to the n rim vertices which are adjacent by virtue of 
rim edges. Multiple spokes and/or rim edges are admissible. 

The designation used herein for a sector graph with n rim vertices is Sn followed in parentheses by spoke and 
rim edge multiplicity information. (In particular, rim edge position / is between vertices / and (/'+ 1)« This would 
also specify the position of sector L) Thus, the designation S8(f(2), 6(3), [J](2)) would describe a sectorgraph 
of nine vertices total having double spokes in the first spoke position, triple spokes in the sixth spoke position, and 
double rim edges in the third rim edge position. A simple sector graph would only require the designation Sn. The 
same terminology applies to wheels after a rim vertex is designated as vertex 1. An example is given in Figure 1. Tha 

Rim vertex 

Hub 

Rim edge position 
or Sector 

Spoke position 

© 
Figure 1 Example of SJK2), 6(3), 31(3)) 

number of trees is indicated by prefixing a T. Thus, TSn is the number of trees in a simple sector graph. (Unless 
otherwise stated, trees will refer to spanning trees.) 

*The subscript for the whee! customarily denotes the total number of vertices including the hub. The subscript n + 1 
is used here to retain identif ication wi th the n r im vertices. 

355 
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2. THE COUNT OF TSn(1(2), n(2)) AND A BASIC DETERMINANT 

If a graph has some measure of symmetry, an algebraic approach to counting of trees is often feasible. If one mw 
of the incidence matrix A of the graph is suppressed to obtain the reduced incidence matrix An (of rank n), it is 
known [2] that the number of trees is given by det (AnA

l
n), where t indicates the transpose operation In the case 

of Sn(1(2), n(2)), suppressing the hub vertex row yields 

(1) det(AnA
f
n) = TSn(1(2),n(2)) 

3 -1 
7 3 

OOO 
OOO 

OOO 
OOO 

-1 3 -1 
0 -1 3\ 

nX n 

The determinant an of (1) is basic to succeeding work. 
The recurrence realtion from (1) is easily found to be 

(2) 

whose solution is [3] 

(3) 

an - 3an„ i - an_2 

^fii^Y'-M""] 
Physically, (3) is valid for n > 2. However, ag- 1, a-j = 3 are consistent mathematically. The resulting numerical 
sequence of tree counts is 

(4) 1, 3,8,21 55, 144, - (n = 0, 1,2,3,4,5,-). 

It is evident that (4) gives alternate numbers of the Fibonacci sequence 

(5) F7, F2, F3, F4, F5, F6, •• - 1, 1,2, 3, 5, 8, •• . 

Upon comparing (5) with (4), it is seen that 

(6) an = TSn(U2),n(2)) = F2n+2 • 

This result is not surprising, of course, since it is well known [4] that electrical ladder networks have graphs of the 
sector type and immittance calculations on unit element ladders involve tree-derived numerators and denominators 
of Fibonacci numbers. 

Application of the Z-Transform [5] to (2), results in 

z2a0 + z(a7 -3ap) 

z2-3z+1 

By dividing the numerator of (7) by the denominator, the values of an are found as coefficients of 1/z11'. By setting 
ao= h a^3, 

z2 

(7) Z(an) 

(8) Z(an) 
z2-3z+1 

is found as the generating function in powers of 1/z of the sequence (4). 

3. THE COUNT OF TSn(1(2)) 

Next, consider TSn(1(2)) (by symmetry, TSn(n(2)L Det (AnA*n) isthe same as that of (DexceptthefirstSon 
the main diagonal is replaced by 2. Thus, in terms of an and through the use of (2) and (6), 

(9) TSn(1(2» = 2an-1-an-2 = an~
an-1 = F2n+2~ F2n = F2n+1 
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The Fibonacci numbers not in (4) satisfy the same recurrence relation (2) as those in (4). Use of new initial condi-
tions with (2), say, an = 5 for n = 2 and an= 13 for n = 3 yield 

(10) ^'i^M'-i^M^^ The resulting sequence of tree count numbers is 

(11) 1,2,5,13,34,89, (n = 0, 1,2,3,4,5, - ) , 

where physical validity applies for n >2. 
By letting ao = 1, a-j = 2 in (7), the generating function for the sequence (11) becomes 

(12) Z(TSn(1(2» z2-z 

z2-3z+1 

4. THE COUNT OF TSn 

In Sn, the degree of rim vertices / and n is two. Hence, the det (AnAn) for Sn is the same as (1) except that 
the 3's in the (1,1) and (n,n) positions are replaced by 2's. There results 

(13) TSn = 

2-10 
-1\ 

an-2 

0\ 
Oi 
OOO 

0 0 0 
0 
0 

0 
-1 

0 - 1 2 

n x n 

4an-2~4an-3 + an-4 = an-1 = ^2n • 

This means that 

(14) Sn.1(1(2), n- 1(2)) = ^ f a j ^ l \ n - l h z J s \ " \ TSn = TSn 

An index shift by one can be accomplished in (8) by multiplication by 1/z. Hence, the generating function for 
TSn becomes 

(15) Z(TSn) 
z2 -3z+ 1 

In terms oi sectors, the simple sector graph of k sectors has the tree count given by (6) with n replaced by k. 

5. EXTENSION TO TWn+1 

In Sn, by additionally making rim vertices / and n simply adjacent, the simple wheel Wn+i is obtained. 
Det(AnAn) is the same as (1) except that -1's replace ^s in the (1,n) and (n,1) positions. There results 

-1\ 

(16) TW, fn+1 

0 
0 

an-1 
0 

-1 
-10 0 ... 0 - 1 3 

- 3an-1-2an-2-2 = an-an-

= _3_ 
s/5 [(3-¥-)"-(3-¥)"- 2sj5 

3 ~ F2n+2-F2n-2-2-
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6. COUNT OF TREES WHICH INCLUDE INDIVIDUAL SPOKES OR RIM EDGES 

One way to find the number of trees which contain a particular graph edge is to coalesce the vertices of the edge 
and count the trees of the vertex-reduced graph, the count being the desired number of trees in the unreduced graph 
[6] containing the edge. The self loop into which the edge degenerates can be disregarded for tree counting. 

If a connected graph is separable, the number of trees is equal to the product of the trees of the separable sub-
graphs. When removal of a graph edge produces two separable but connected components, the difference between 
the product tree count and the number of trees of the original graph provides an additional way of finding the num-
ber of trees containing a particular graph edge. A few easily extended illustrative examples follow. 

COUNT OF TREES WITH A GIVEN SPOKE. Consider the hth spoke of Sn. By coalescing vertex h with 
hub vertex, two edge-disjoint subgraphs appear so that the vertex-reduced graph is separable with the hub vertex be-
ing a cut vertex. Each subgraph is a sector graph having a double end spoke. One subgraph has (h - 1) vertices and 
the other has (n - h) vertices. Through use of (9) and the product rule for separable graphs, it is seen that the num-
ber of trees of Sn which contain spoke h is 

(17) Th-i(U2)) • Tn,h(1(2)) = F2h-i • F2n-2h+l. (1 <« <n) r 

Consider any spoke of Wn. Coalescing the rim vertex to the hub yields Sn.j (1(2), n - 1(2)) which, by (6), has 

(18) TSn.1(1(2)/n-1(2)) = F2n 

trees. Thus, any spoke of Wn is in F2n trees. 
COUNT OF TREES WITH A GIVEN RIM EDGE. Let rim edge k be the edge of Sn which is incident with rim 

vertices k and (k + 1). Removal of rim edge k reduces Sn to a separable graph having the hub vertex as the cut 
vertex. The subgraphs are the sector graphs Sk and Sn-k. They are 

(19) TSk-TSn_k = F2k.F2n_2k 

trees in the reduced graph. Since Sn has F2ri trees, the number of trees of Sn in which rim edge k appears is 

(20) TSn - TSk • TSn_k = F2n - F2k • F2n.2k . 

If any rim section is removed from Wn, Sn results. Therefore, any rim selection of Wn must be in 

(21) TWn~TSn = F2n+2-F2n_2-F2n-2 

trees. 
7. GRAPHS WITH MULTIPLE SPOKES AND RIM EDGES 

TREE COUNT WITH MULTIPLE SPOKES. Suppose that the number of spokes in position h of Sn is increased 
to / Since a spoke cannot be in a tree with any other spoke in the same position (resulting loop could not be part 
of a tree), the number of trees would be (with the aid of (13) and (17)), 

(22) TSn + (j- DTh^(1(2)) • T^h(1(2)) = F2n + (j- 1)F2h-i • F2„-2h+v (1<h<n). 

Correspondingly, the increase of the number of spokes in any position of Wn+i results in a total of trees given by 
(see (16) and (18)) 
(23) TWn + (j- 1)TSn-7(1(2),n-1(2)) = F2n+2- F2n_2 + (j- 1)F2n-2. 

TREE COUNT WITH MULTIPLE RIM EDGES. If the number of rim edges for sector k of Sn is increased to j, 
the number of trees would become (with the aid of (13) and (20)), 

(24) jTSn - (j- 1)TSk. TS^k = jF2n - (j- 1)F2k • F2n.2k . 

Also, rf the numb&r of rim edges for any given sector of Wn+f were increased to j, the number of trees becomes (see 
(16) and (21)) 

(25) JTWn+1-(j-1)TSn=j(F2n+2-F2n„2-F2n-2)+F2n. 

Extensions to additional multiple edges are available only for the trying. One obvious use for the tree count formu-
las is the evaluation in general Fibonacci terms special determinants whose form fits c/et(AnA

f
n) for the multiple 

edge-modified sector graph or wheel. 
Examples showing numbers of trees containing various edges are given in Figure 2. 
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TSp1 TS2=3 TS3,8 T54=21 TS^SS 

w3 w4 w5 % 
TV\£ =5 TW4 =16 TW5 =45 TW6 =121 

(Integers adjacent to edges indicate trees having that edge. ) 

Figure 2. Examples of Sn and Wn+j 

8. SOIVIE OBSERVATIONS 

From Figure 2, it can be surmised that the sum of the number of trees containing edge one, edge two, etc., of 
Wn+j. is exactly n times TWn+i. Since there are n spokes and n rim edges in Wn+i, multiplication of the sum 
of (18) and (21) by n doesyieSd n times (16), which verifies the surmise. 

Also, from Figure 2 it can be surmised that Sn has this same property. The surmise again is true and rests eventual-
ly on the identity 

f i - / 

(26) F2n-2 = 5 3 tF2h-1 " F2n~2h+1 - F2h'F2n~2hl 

h=1 

which is left as a search or research exercise for the reader. 
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COMBINATORIAL INTERPRETATION OF AN ANALOG 
OF GENERALIZED BINOMIAL COEFFICIENTS 

IV!. J. HO DEL 
Duke University, Durham, North Carolina 27706 

1. INTRODUCTION 

Defining f/^fn;r,s) as the number of sequences of nonnegative integers 
(1.1) {a7,a2,-~,an} 
such that 
(1.2) -s < aj+1 -a,- < r (1<i<n-1), 

where r and s are arbitrary positive integers, and 

(1.3) a7 = /, an = k, 

the author [2] has shown that the generating function 
00 mm 4 n(r+s),j+nr\ 

<t>j,r,s(x-y) = E £ fj,j+nr-m(n + I'V^y™ 
n=0 m=0 

can be expressed in terms of generalized binomial coefficients cr+s(n,k) defined by 

/ .r*s \ n 

(1.4) E * * - £ cr+s(n,k)xk . 
\ h=0 ) k=0 

For the cases r=1 or s=1 we have explicit formulas for fji<(n;r,s), namely 

s-1 

cs+1(n + t,n + t-k)-X\{h + 1)cs+1(n + t,n+t - k-h-2) 
1 

(1.5) fj,k(n + 1;1,s)=Y,cs+1(-t-1,j-t) 
t=o 

and 
h=o 

k 

(1.6) fj/k(n+7;rJ) = Y^cr+lf-'t~^k-^ 

These formulas generalize a result of Carlitz [1] for r=s= 1. 
We now define an analog of cr+s(n,k), n > 0, by 

n I r+s \ n(r+s) 

(1.7) TI £ q(r-h»xh U £ Cr+s(n,k;q)x 
M\ h=0 J k=0 

Letting fk(m,n;r,s) denote the number of sequences of integers 

0<8) [ a 1 f a 2 f ' ' , a n } 
satisfying 
(1.9) -$ < a,+i-a; < r (1 <i<n-1) , 

where r and s are nonnegative integers, 

(1.10) a7 = 0, an = k 

and 

360 

r~7 
cr+1(n•f-tn-f-t-/)-J2(h + 1)cr+1(n + t,n + t-j-h-2) 

h=0 
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(1-11) E */ 
we show in this paper that 

n 

m 
i=1 

(1-12) cr+s(n,k;q) = J^ fnr-k(™, n + Vv)qm . 

From (1.12) we obtain a partition identity. 
2. COMBINATORIAL INTERPRETATION OF cr+s(n,k;q) 

From the definition of fk(m,n;r,s) it follows that 
(2.1) fk(m,l;r,s) = dk,0$m,0 
and 

r+s 

(2.2) fk(mtr) + 1;r,s) = ] T fk+s-h(m - k, w l • 
h=0 

Now (2.1) had (2.2) imply respectively 

(2.3) Y*fk(m<1;r's>clm = bk,0 
M 

and 
r+s 

(2.4) £ fk(m,n + 1; r,s)qm = ^ £ fk+s„h(m,n;r,s)qm+k . 

m h=0 m 
Let 

00 n(r+s) 

tfx>Y>'*> = Z Z E fnr-k(™,n + 1;r,s)qmxkyn . 
n=0 k=0 m 

Using (2.3) and (2.4) we get 
r+s °° (n+1)(r+s) I r+s \ 

<t>(x,y;q) - / ^ ^ j ; £ 5 ] fnr-k+h(m,n + Wig"*"***/ = 7 + W £ < T V <S>(xq1,yqr;q). 
h=0 n=0 k=0 m \ h=0 ) 

By iteration 
00 7 r+s \ °° n(r+s) 

#**-'*> = E n E ^ ' * * K = E E ^+s(nfk;q)xkyn . 
/?=0 y ; \ h=0 } n=0 k=0 

Equating coefficients we have 

(2.5) cr+s(n,k;q) = J^ fnr-k(mfn + t;r,s)qm . 
m 

1 APPLICATION TO PARTITIONS 
Assuming the parts of a partition to be written in ascending order, let ur(k,m,n) denote the number of partitions 

of m into at most n parts with the minimum part at most r, the maximum part k and the difference between 
consecutive parts at most r. Define vr(kfm,n) to be the number of partitions of m into k parts with each part at 
most n and each part occurring at most r times. We show that 
(3.1) ur(k,m,n) = vr(k,m,n) (n?1), 

Proof. It is easy to see that 
(3.2) ur(k,m,n) = fk(m,n + 1;r,0) . 
By (2.5) and (1.7) we have 

nr nr n [ r \ 

£ £ f«(m'n + 1;rf)qmJ = Y, cr(n,nr-k;qlS - I I £ qh'xh 

k=0 m k=0 j=1\ h=0 J 
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Thus the generating function for ur(k,m,n) is 

(3.3) n ( V <^V J . 
" \ ,=0 / 

But it is well known (see for example [3, p. 10] for r = 1) that the generating function for vr(k,m,n) is also (3.3). 
Hence we have (3.1). This identity is also evident from the Ferrers graph. 

To illustrate (3.1) and (3.2) let m = 7, n = 4, k = 3 and r = 2. The sequences enumerated by fs(7,5; 2,0) are 
0,0,1,3,3 , 0,0,2,2.3 and 0,1,1,2,3 . The function U2(3,7,4) counts the corresponding partitions, name-

ly 132, 223 and 1223. The partitions which 1/2(3,7,4) enumerates are 223, 132 and 124. From the graphs 

we observe that 132 is the conjugate of 223, 223 is the conjugate of 132 and 1223 is the conjugate of 124. 

REFERENCES 

1. L Garlitz, "Enumeration of Certain Types of Sequences/' Mathematische Nachrichten, Vol. 49 (1971), pp. 
125-147. 

2. MJ. Hodel, "Enumeration of Sequences of Nonnegative Integers/'Mathematische Nachrichten, Vol. 59 (1974) 
pp. 235-252. 

3. P.A.M. MacMahon, Combinatory Analysis, Vol. 2, Cambridge, 1916. 
izkkkkkk 

[Continued from page 354.] 
SPECIAL CASES 

Putting r= 1, s = 0, we obtain the generating function for the Fibonacci sequence (see [3] and Riordan [6]). Put-
ting r = 2, s = -1, we obtain the generating function for the Lucas sequence (see [3] and Carlitz [1]). 

Other results in Riordan [6] carry over to the //-sequence. The //-sequence (and the Fibonacci and Lucas se-
quences), and the generalized Fibonacci and Lucas sequences are all special cases of the ^sequence studied by the 
author in [4 ] . More particularly, 

\HB) = \wn(r,r+s;1,-1)\ 

and so 
\fn\ = \wn(1,1;1,-1)), \an\ = | wn(2, 1;1,-1)\ . 

Interested readers might consult the article by Kolodner [5] which contains material somewhat similar to that in 
[3 ] , though the methods of treatment are very different. 
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ON THE SET OF DIVISORS OF A NUMBER 

MURRAY HOCHBERG 
Brooklyn College (CUNY), Brooklyn, Wew York 11210 

If z is a natural number and if z=pi1pfy —Pjl is its factorization into primes, then the sum X/ + \2
 + '" + \ " 

will be called the degree of z. Let m be a squarefree natural number of degree /?, i.e., m is the product of n dif-
ferent primes. Let the set of all divisors of m of degree k be denoted by Dk, k = Q, /, •,/?; clearly,the cardinality 
of Dk is equal to C(n,k), where C(nJ<) denotes the binomial coefficient, n!/[k!(n - k)!]. Two natural numbers 
5 and f are said to differ in exactly one factorif § = rpi and f= rp2 , where pi and P2 are prime numbers, with 
Pi ?P2- Let a be a natural number that is a divisor of m. A natural number |3 is said to be an extension of a if 0 is 
a divisor of m, a is a divisor of |3 and the degree of j3 is one more than the degree of a- A natural number 7 is said 
to be a restriction of a if 7 is a divisor of m, 7 is a divisor of a and the degree of 7 is one less than the degree of 
a . If A is a non-empty set of divisors of m, we shall denote by A+ the set of all extensions of the divisors in A; if 
A = 0, we define A+ = 0* The cardinality of any set A will be denoted by \A\ and we use the superscript "c" to 
denote complementation. 

In this note, the author gives a relatively short and interesting proof of the following theorem: 
Theorem. Let A be a collection of divisors of a squarefree natural number m such that each divisor in A has de-

gree k, 0<k <n. Then 

(1) \A+\ > \AWnfk+1) 
C(n,k) 

and for A ^ 0 equality holds if and only if \A\ = C(n,k). 
Before proving the theorem, we need to prove one lemma that is also of independent interest. 
Lemma. Let A be a non-empty collection of divisors of a squarefree natural number m such that each number in 

A has degree k, Q<k<n, and \A\<C(n,k). Then there exists natural numbers ae>4 and |3e / l c nZ7^ such that 
a and |8 differ in exactly one factor. 

Proof. Let vQ be an arbitrary number in A Since \A\<C(n,k), there exists a number 8<EAC with the degree of 
5 equal to k. Let q be the greatest dommon divisor of vQ and of 5 and let the degree of q be equal to co. Then 

^ o = tit2~tk„oj , 

where i,j = 1, 2, - , k - co. We now define recursively a finite sequence of numbers by setting 

V; = VH[ £], j = 1,2,-,k-U. 

Plainly, Vj<aDk, v-^ and Vj differ in exactly one factor and ^ . - o ) = S . Since the first number in the sequence vQ, 
P/, ••'•, *>fc-co isin A and the last number is in Ac, there exist consecutive numbers Vj0-1, Vj0 such that VJQ_I e A 
and V; e Ac\ these can be taken to be, respectively, the numbers a and |3 of the lemma. 

Jo 

We now prove the previously stated theorem. 
Proof. Since (1) holds trivially when either A=<j> or k = n, we may assume that A ^ 0 and k<n. Consider the 

set of ordered pairs, 
E = -J (a,$): a G A, $ is an extension of a I 

Since each number CL<EA has precisely n - k extensions, |£| = \A\(n - k). Ifwenowset 
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F = I (a,p) : (5<=A+, a is a restriction of j3 [ , 
it is clear that EcF and \F\ = (k+1)\A+\, Hence, 

(k+1)\A+\ > \A\(n-k), 
which is equivalent to (1). 

If \A\ = C(n,k), then 
C(n,k+1) > \A+\ > C(n,k+1), 

so that equality holds in (1). 
Suppose conversely that A £ 0 and 

(?) 1/1*1 - \A\C(n.k+1) - j/||fo-A:J 

We wish to prove that \A\ = C(n,k); since this is trivial for the cases k = 0 and k = n, we may restrict attention 
to integers k such that 0<k<n. If M I < C(n,k), by the lemma there are numbers a(EA, fi<EAcnDk such 
that a and j3 differ in exactly one factor. Let a = rp<$ and $=rp2, with p?^P2, and put y=rptP2. Then y e 
4 * and 
(3) M e £ c n f . 
On the other hand, (2) implies that 

\F\ = (k+1)\A+\ = \A\(n-k) = \E\ . 

Since EcF, we conclude that E = F, which contradicts (3). Thus, \A\ = C(n,k). 
Recently, it was communicated to the author that the second part of the theorem with m any integer and with 

\Dk\ in place of C(n,k) is false. For exampleJf m=12, k=1, A = \3\, then \Dk\ = \Dk+i\ = 2, A+=\6^„ 
Thus, 

\A+\ = (\A\\Dk+1\)/\Dk\ and yet 
A ?Dk. Nevertheless, it is the author's conjecture that the first part of the theorem remains true if one omits the 
hypothesis that m is a squarefree number and if one substitutes \Dk\ for C(n,k). However, the above assertion 
has not been proved completely by the author, 
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ON THE MULTIPLICATION OF RECURRENCES 

PAUL A. CATLIN 
Ohio State University, Coiumbus, Ohio 43210 

In this note we shall consider recurrences of the form 
(1) An+2 = An+1+An , 

with initial values AQ and A-j. The special case AQ = 0, AI= 1 in (1) is the well known Fibonacci series (Fn), 
and AQ = 2, AJ=1 is the Lucas series (Ln), The integer N(A) = A\ -A0A2 is the norm (also known as the char-
acteristic number) of (1).\Nben recurrences (An) and (Bn) are multiplied (the multiplication of recurrences, which 
is defined below, was developed in [5]), we have that N(A)N(B) = N(AB). This multiplicative property is the justi-
fication of the use of the word norm. In this paper, we shall derive some basic properties of recurrences under mul-
tiplication. Our main result will be that recurrences can be factored uniquely (up to order and sign) into recurrences 
whose norms are prime. 

Let AQ = AO, A*I= AQ- Ap The recurrence (A„), obtained by using AQ and /S/ as initial values in (1),will 
be called the dual recurrence of (An), and the asterisk will be used to denote dual recurrences. The notion of dual 
recurrences was introduced in [3]. It may be shown by induction that 
(2) A*= Fn+1A*0-FnA*f. 

t(An) will denote the scalar product (taken term-wise) of an integer t and (An). If (AQ,Ai)=t> 1, we can 
express the recurrence as a scalar product t(Bn) = (An), where tBj = A; for all i. It is only necessary to consider 
such reduced recurrences. 

We define the product (An)(Bn) of two recurrences to be the recurrence (Cn) (of the form (1)) such that 
(3) C1 ~aC0 = (A7- aA0HB1 - aB0). 

where a is a zero of x2 - x = 1, the characteristic polynomial of (1) (a is adjoined to the integers, and (3) is an 
equation in the extension). It follows (see [5]) that 
(4) Cm+n = AmBn+1+Am+1Bn-AmBn , 
and 
(5) Cm+n+1 = Am+1Bn+1+AmBn . 

As stated before (and in [5]), N(A)N(B) = N(C). 
We point out that the value of N(A) changes only in sign as the starting point AQ of the recurrence (An) is trans-

lated one term at a timer the value of N(A) = A\ -AQA2 alternates in sign. This follows from the identity 
(6) (An+1)

2-AnAn+2= (~1)nN(A) , 

which may be proved by induction. Henceforth, we shall disregard the sign when we discuss the norm; we shall only 
use its absolute value. Also, the signs of terms of (An) will be disregarded in the sense that (An) and ~(An) will 
be considered equivalent. Thus, for the Fibonacci and Lucas series, we have that N(F) = 1 and N(L) = 5. 

It has been shown (see [1]) that a recurrence other than (Fn) can be translated so that |40| > \AX\, and that 
this representation is unique. For the purposes of this paper, however, we shall make no such assumption. 

It follows from (4), (5) and the definitions of the norm and dual recurrences that 
(7) (An)(A*) = N(A)(FJ = N(A *)(FnL 
Since (L*) = (Ln), it follows from (7) that 

(Ln)
2=5(Fn). 
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The sum, taken termwise, of (An) and (A„) is Ao(Ln). Of course, ((A„)*) = (An). Several identities involving 
(An) and its dual can be derived as special cases of general identities in [5]; among them are the following, which 
are generalizations of well known identities for (Fn) and (Ln). 

AnA* + N(A)F2 = f-1)nA§ , 

F2nA0 = Fn(An+K> = A0FnLn -
Using the theory of binary quadratic forms, it may be shown that distinct recurrences of norm m (where distinct 

recurrences are recurrences which are not translates or scalar multiples of each other) are in a one-one correspond-
ence with roots n of 

n2 = 5 (mod 4m) , 

where 0 < n <2m. It follows that there are recurrences with norm m if and only if fp/5) = 0 or / for aU prime 
factors p of m, and that the number of distinct recurrences of norm m is 2r where r is the number of prime 
factors/? of m such that (p/5) = 1 (i.e., p= 10k ±1). Also, it is not possible for 25 to divide the norm. These 
results may be found in [2] and [4]. In [1] there is a table of the recurrences having a given norm for all possible 
norms up to 1000. 

We remark that multiplication of recurrences with a given discriminant d (d = 5 in this paper) corresponds to the 
composition of binary quadratic forms of the same discriminant; in fact, (4) and (5) are used in the definition of 
composition of forms. 

The following theorem shows that (A„) is in a sense the inverse of (An), since (Fn) is the multiplicative identity. 
Theorem 1. X= (A*) is the only recurrence satisfying (An)X= N(A)(Fn). 
Proof. By setting CQ=0, C-j = N(A)f m = n = 0 in (4) and (5) and solving simultaneously for BQ and BJ, we 

find that BQ = Ao = AQ and Bj = Aj - AQ = -A*p Thus, if signs are disregarded, (Bn) = (A^), proving 
the theorem. 

Theorem 2. The dual map is an automorphism of the group of recurrences under multiplication. 
Proof. By (7), if (An)(Bn) = (Cn) then 

N(A)N(B)(Fn) = (An)(Bn)(A*)(B*i = (C*)((A*)(B?,)) , 

whence (Ap)(Bp) = (C^) by Theorem 1. Since the dual map is bijective, the theorem follows. 
Theorem J# Any automorphism of the multiplicative group of recurrences preserves the value of the norm. 
Roof By (7), 

(An)(A*n) = N(A)(Fn). 

Let (An)-*(A'n) be an automorphism. Then 
(A'n)(A*') = N(A)(F'n) = N(A)(Fn) , 

since an automorphism must map the multiplicative identity onto itself. Thus, by Theorem 1, (A%') =.(A'n*),so 
that 'N(A') = N(A'*) = N(A*'), and the theorem follows by the multiplicative property of the norm. 

Let S = ipi, P2, — \ be a subset of the set Q of primes which are quadratic residues of 5 and let S'= Q- S. 
Then the function T mapping recurrences onto recurrences such that 

T((A » = \ (AV i f WA)*S 
n \ (AJ if N(A)eS* 

determines an automorphism, and any automorphisraof the multiplicative group of recurrences can be so character-
ized. The proof, which uses Theorem 3 and the Unique Factorization Theorem to be proved later, is left to the 
reader. 

Theorem 4. Consider recurrences (Gn) and (Hn) such that 
N(G) = m2

1f N(H) = m2
2, (mhm2) = 1. 

Then 
(GjfHj = m7m2(Fn) 

if and only if 
(Gn) = mf(Fj and (Hn) = m2(F„). 
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Proof. Suppose m1m2(Fn) = (Gn)(Hnl Multiplying by (G*), 

mtm2(G*) = (Gn)(G*)(Hn) = m^Hj . 

Thus, 
m2(G*) = mi(Hn). 

St follows that 
m2Gf = mtHf 

for all i. Since (m1f m2)= 1, then /77/1 (?*and m2\H-,. Therefore, 

m2(G%) = mj(Hn) = m1m2(En) 
for some recurrence (En), whence 

/nf = N(G) = N(GV = NfmjE) = m^NfE) , 

so that N(E) = t It has been shown in [2] that there is only one recurrence whose norm is 1: namely (Fn). Hence, 
(En) = (FJ. 

The converse is obvious. 
TheoremS. (Unique Facorization). Recurrences of a given norm whose terms have no common divisor factor 

uniquely up to order and sign into recurrences whose norms are the prime divisors.of m. 
Proof. First we shall show that a recurrence (En) can be factored uniquely into recurrences whose norms are 

(relatively prime) maximal prime power divisors of m. St is only necessary to prove uniqueness for m = mjm2 with 
(mi,m2) = /, and uniqueness for prime power divisors follows. 

Sf N(E) has only one prime power factor or if (En) =(Fn), we are done. Otherwise, let (En) have at least two 
relatively prime factors /7?/ and m2, and assume that factorization is unique for recurrences whose norms are those 
relatively prime factors. We shall show that (En) factors uniquely. 

Since there are 2r recurrences with norm m-j „where r is the number of prime divisors p of m-j satisfying (p/5)= 1 
and assuming that (p/5) = -1 for no divisors of m-j (see [2]), and since, under similar conditions, there are 2s re-
currences with norm m2, then the set of recurrences obtained by taking products of recurrences, one with each 
norm is contained in the set of 2r+s recurrences of norm mjm2l with equality of sets if and only if any pair of 
products is distinct. Thus, we must show that if (An)(Bn) = (Cn)(Dn) with 

N(A) = N(C) = mu N(B) = N(D) = m2, (m1fm2) = 1, 

then' (An) = (Cn), (Bn) = (Dn). 
Under the conditions stated, there exists a recurrence (Gn), equal to (A%)(Cn) such that N(G) = m1 and 

(An)(Gn) = n>i(Cn}. 

Likewise, there is an (Hn) such that 
N(H) = m2

2 and (Bn)(Hn) = m2(Dn). 
Substituting these relations into 

(AJBJ = (CnHDn) 
we get 

mim2(An)(Bn) = (An)(G„)(Bn)(Hn) , 

and multiplying by (A^)(B*n) and applying (7) obtain 
m1m2(Fn) = (Gn)(Hn), 

Since (mi,m2)=1, we have that (Gn) = m7(Fn) and (Hn) = m2(Fn) by Theorem 4. Thus, 

mjfCn) = (An)(Gn) -•= mj(An), 

whence (An) = (Cn), and (Bn) = (Dn), likewise. 
Wext we show that each of the two recurrences of prime power norm pk factors uniquely into k recurrences 

of norm p. Let (An) be a recurrence of norm p. Then the only other recurrence of the same norm is (A„) and 
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no recurrence (except the identity recurrence (Fn)J has a norm dividing p. We shall proceed by induction. 
For k = 1, the theorem is obviously true. Assume truth for all exponents not greater than k. Then there are two 

recurrences of norm p which factor uniquely, and since (An) and (A%) are factorizations of the recurrences 
of norm pk, they are unique factorizations. Multiplying (An) and (A%) by each of the recurrences of norm p 
and using (7), we get the products 

(An)
k+1> W r l , (An)

k(A*n) = N(A)(An)
k-1, and (A*)*(An) = MAMA})*-', 

and the last two products fail to satisfy the requirement that the terms have no common factor. Thus, (An)
k+1 and 

(A„)k+1 are two factorizations of recurrences of norm pk+1, and they are the only two meeting the requirement 
that the terms of the product have no common factor. Since there are two recurrences of norm pk+1 (see [2]), 
(An)

k+1 and (Ap)k+7 must be their factorizations. This completes the proof. 

REFERENCES 
1. Brother U„ Alfred, "On the Ordering of Fibonacci Sequences/' The Fibonacci Quarterly, Vol. 1, Mo. 4 (Decem-

ber, 1963), pp. 43-46. 
2. T.W. Cusick, "On a Certain Integer Associated with a Generalized Fibonacci Sequence," The Fibonacci Quarter-

ly, Vol. 6, No. 2 (April, 1968);pp. 117-126. 
3. P. Naor, "Letter to the Editor," The Fibonacci Quarterly, Vol. 3, No. 4 (December, 1965), pp. 71-73. 
4. Dmitri Thoro, "An Application of Unimodular Transformations," The Fibonacci Quarterly, Vol. 2, No. 4 (De-

cember, 1964), pp. 291-295. 
5. Oswald Wyler, "On Second-Order Recurrences," American Math, Monthly, 72 (1965) pp. 500-506. 

******* 

A NOTE ON FERMAT'S LAST THEOREM 

DAVID ZEITLIN 
Minneapolis, Minnesota 

In this note, n, m,x,y, and z are all positive integers, with x <y <z. 
Theorem 1. For n > 2, the equation xn + yn = zn has no solutions whenever x + ny < nz. 

Corollary. For m> 1 and n>2, xmn+ymn =zmn has no solutions whenever V77 + nym < nz™. 

Proof Suppose xn *yn =zn has a solution with y = x + a, z - x + b, where/? >a > 0 are integers. Then, by using 
the binomial theorem, we have 

n 
xn=zn-yn = (x + h)n-(x + a)n « £ ) (^ ) f^W-d) = nxn~7(b -a) + Q(n^c,b,a), Q>0. 

i=0 
Thus 

xn-1(x-n(b-a)) = Q , 
and so x - n(b -a)>0 is a necessary condition for a solution. Since 

b - a = (x + b) - (x + a) = z-y, x - n(z-y) < 0 

is the stated result. 
REMARKS. Si nee nz <ny+x is a necessary condition for a solution and since/ <z, we see that 

[Continued on Page 402.] 



A ^-IDENTITY 

L.CARLITZ* 
Duke University, Durham, North Carolina 27706 

1. The object of this note is to prove the following ^-identity: 

(*) V (-D"-k (fk (a)k(b)kQ
y°<"-k)<n+k-1l(ab)"-k = (a)n+1 V <-1)k \n. 1 q

m(k'1> —£ 
fa (g,k fa L J / - « q°*a 

k=0 1-q b 
where 

W/t = fofl^* = (1-a)(1- qa) - ft - qk'1aK (a)0 = 1, 

(q)k = (M)k = d ~qHl- q2) •» (1 - qkK (q)0 = 1, 

M = 7
 (BhL- = \ n .) (0<k<n) 

L*J (qhcWn-k L " - * J 

%k(k-1) aK 

and q is not a tth root of unity, 1 <t<n. 

(q)kWn-k 

'oot of unity, 1 <t 

Since each side of 

n-kWn , . /, , J/3(n-k)(n+k-1),.in~k _ /*, i V * / f j A r r ^ l „1/*k(k-1) ak 

Kb 

is a polynomial in b of degree </7, it will suffice to show that (1) holds for b = q~r, 0 < r < n. 
We have 

fVn±l 
-r 

(j _ g-T) ... (j _ q-1)(1 _ g)(7 _ q2) ... (1 _ qn-r} = f - t f V ^ ^ f o W n - i - . 

Thus the right-hand side of (1) reduces to 

(2) ( - i r r \ ^ ^ ^ f ^ ^ = (-Vn(q)nq
1/2n(n'1)'nra^r . 

As for the left-hand side, since 
(q-r)k s ( J _ q-r}(1 _ q-r+1) ... (j _ qf**-1 j = f_7/q-rk+%k<k-1) (J _ Qr)(j _ qr-1} ... (J _ qr-k+1} 

_ \(-1)kq-rk+m(k-1)(q)r/(q)r-k (0<k<r) 
\ 0 (lor) , 

we get 

y (_J)n-k(q)n_gn.k(/'A(n.k)(n^1), f_J}kq-rk+Jik(M) Wj_q-r(n-k) ^ p ^ Xnfn-V-nr^ y f r ] ^ / -

fa (q)k W<* fa1 J 

*Supported in part by NSF Grant GP-37924. 
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We shall now show that 
r 

(3) J2 \ k] ^ ^ = 1 (r= 0.1,2, ••), 
k=0 " " 

so that the left-hand side of (1) is equal to 
(-1)n(q)nq

1/2n(n~'1)~nran-r 

in agreement with (2). 
To prove (3) we take 

net *- OO o n 

/ X^V r"\ fn\ nr-k _. V"» (a)k 

~ k=0 — 

OO 

E -Mk J< .. e(x) 

r=0 k=0 "* k=0 r=0 
By a well known identity 

(q)k e(ax) 
k=0 

where 

(4) e(x) - V / — « II (1-qnxr 
^0(q)n n-0 

Thus 

r=0 r k=0 
and (3) follows at once. 

This evidently completes the proof of (*). 
2. The identity (*) can also be proved by making use of the -̂analog of Gauss's theorem (see for example [1, p. 

68]): 

(c) V (a,^bk I 2L )k - e(xh(x/ab) 
^ (q)kMk \ ab 1 e(x/a)e(x/b) ' 
k=0 

where e(x) is defined by (4). 
Define the operator £ by means of 

Enf(x) = f(g"x) (n = 0,1,2,.-) 

and A" by means of the operational formula 
An = (1-E)(q-E)..(qn-1 -E). 

Then it is easily verified that 

r=0 
It follows that 

n 
A" = £ (~1)n~r\ n

r]q
1/2r(r-7)En-r . 

r=0 

A V = J^ (-1)n'r[nry
/2r{r"7)q(n'r)kxk = (qk-1)(qk-q)..(qk-qn~7)xk , 

r=0 

so that 
( 0 (n > k) 

(6) Anxk = I 
( (-1)kq1/2k(k-1)(q)kx

k (n = k) 

Wow multiply both sides of (5) by fx)n and apply An. Then divide by xn and put x = 0. in view of (6) the LHS 
becomes 
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J2 i8)ffk (abrk . (-1)n-kgX<n-*)(n-k-1)**(n-k) . (_7)n g%n(n-1) ^ 

(7) #i , , 

Wk 

As for the RHS, we have first 

/ i e(xje(x/ab) _ e(qnx)e(x/ab) 
' '" e(x/ah(x/b) e(x/a)e(x/b) 

y^ fg-"/4 , „ ,/ y - Mk j x_ 

J=0 J k=0 

- E ^ E L*] (s)k<at>rk(q-"/a)r.kq»<^ . 
r=0 k=0 

Apply An, divide by xn and put x = 0. We get 

(8) (-1)nqy*n(n-1) £ ^ 1 (a)k(abr
k(q-n/a)n_kqn(n-k) . 

k=0 
Since 

(q-»/a)n_k = (1-q-n/a)(1-q~n+1/a)-(1~q-k-1/a) = (-1)n~ka~n+k
 q'1^(nH)+Vsk(k+1) 

>(l-qk+1a)(1-qk+2a):-(1-qna) , 
(8) becomes 

n ,- n (a) 
a1/2n(n'1)(ab)"n\% (-1)k\ n] q1/2n(n-1^nk+1/2k(k+^hn"k nH 

k=0 1-q a 

= (-nnq%n{n'1)(ahrn £ (-i)k[n
k\q*k(k'm1)bk - ^ g 

k=o 1 ~ Qn < 
Comparing this with (7) it is clear that we have proved (*). 
3„ We have 

n 

n=0 " k=0 K 

_ y (^kpk xk y (_j)ngy,n(n-1)(cikabx)n 

M (q)k £>• 
Also, since 

(a)„H = (a)n-k(1-qn-ka)(qn-k+1a)k , 

oo fl oo oo 

V (a>n+1 y" V ( i\k\ nl n
1Ak(k-1) hk Y^ / 1]k%k(k-1)bkxk \ p (a)" (nn+ la]i yn 

Thus (*) is equivalent to the identity 
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£ (-1)°QX°<"-1>(abx)" V (^L(Q"x)k - £ ) ^ 2 - y V (-1)Kq
Y>kik-1} K ^ (bx)k 

n=0 k~0 <q>k ^o'q)n k^O Wk 

0) _ V (b,n y" V 1 /- Hk„%k<k-1) (qn+1b)k , , k 

~ n1^ h ~wr(ax)' 
n=0 k=0 

where now \q\ < 1. 
4. The following special cases of (*) may be noted. For b = q we have 

Yzkik+D 

•k 
a 

(10) n
 r n ak 

= (1-qn+1) £ (-D^ njgy2k(*-V a 
1-Qn-k+1 

k=0 ' q 

For a = q this reduces to 

" ~ %k(k+1i 

' ' -k+1 

and 

*=o k=o i - qn~ 

\n + l\ = 1-«"+1 f " 1 
I '< I )_Qn-k+1 \.k] 

k=0 
(11) becomes 

(12) £ (-Vn'k(q)kq
1/2(n'k)(n+k+3) = (q)n+l + (-Dnq1/2(n+1)(n+2) • 

k=0 
Somewhat more generally, it follows from (10) that 

(13) ] T (-1)n-k(a)kq
1/2h'k)(n+k+1}an-k = (a)n+1+(-1)nqy2n(n+1)an+1 . 

k=0 
We shall give a direct proof of (13). The formula evidently holds for n = 0. Assuming that it holds up to and in-

cluding the value n, we replace a by qa and multiply both sides by 1-a. Thus 

£ {-^k(a)k+W
Mn'kHn+k+3)an'k = (a)n+2 + (-1)nq%(n+1)(n+2)an+1(1-a) . 

k=0 
Hence 
n+1 
22 (-irk+Ua)kq

1/2(n-k+1)(n+k+2)a^k+1 = (a)n+2 + (-l)ng*(n+1)(n+2)Qn+1 ff _ a) + (_1}n+1 

• jtin+Mn+Qji+l^ (a)n+2 + (-1)"+1g%(n+1)(n+2)an+2 

REFERENCE 
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THE EVALUATION OF CERTAIN ARITHMETIC SUMS 

B.C. GRIIVISON 
Dept. of Biostatistfes, University of Worth Carolina, Chapel Hill, Worth Carolina 27514 

1. In this paper we evaluate certain cases of the expression 

(1.1) ^ max(Ai,A2.",An); 
where 

^k = aki + ~'+akmk 

and where the sum is over all the a'%, each ranging from zero to some positive integer. We also consider analogous 
sums for min. For example we obtain, from some general results which we establish, the formula 

r , 
] P max(a + h,c+d) = 22^ \ ) + 170(r

2 ) + 42ol r
3 ^ + 420^ r

4 ] + 148^ ] . 
a,b,c,d=Q 

Some general properties of more general cases of (1.1) are established. 
Solutions of many problems, particularly combinatorial problems, are often expressed in terms of such sums. For 

example, without going into detail, we frequently encounter sums of max and min in problems of enumerating 
arrays. See H. Anand eta/. [1] and Carlstz [2] for details. 

In a related work, Carlitz [3] and [4] obtains, and relates to other problems, generating functions for max (ni,—r 

n^) and min (n / , —, n/<l More generally, he evaluates 
oo 

£ Mr(ni. ~.nk)£x -4k (r= I ~,ki , 

where Mr(n^ —, n^) is defined by the following two properties: (a) it is symmetric in n1f - , % ; (b) if /?? < n2 

< — < /?£ then 
MJnV '"*nki = nr (r = t '",k) -

He also evaluates the related series 
JOO 

Z x ^ - x ^ z ^ ' " ' " * ' (r=1,..;k). 
nu'",nurO 

Roseile [6] examines the relationship between this series and the Eulerian function. 
Other than [3 ] , [ 4 ] , [6] and this paper, there apparently has been very little published on problems of this nature. 
A number of techniques are employed to solve various aspects of the problem and computer computation was 

necessary in some instances. 
The main results of this paper are (3.3), (4.3), (4.7), (4.8), (4.11), (4.12), (4.13), (4.14), (4.15), (5.7), (5.9), (5.10), 

(5.131,(5.14), (5.15) and (5.16). 
2. Preliminary to our discussion we need some basic properties of Eulerian polynomials. The nth Eulerian poly-

nomial, anM, is defined,following Riordan [5] ,by 
oo 

ajx) = (1-x)nH J ] ^xk ' 
k=0 

From this definition we get 
373 
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an (x) = nxan„ / (x) + x( 1 - x)Dan„ / (x) , 

where D is the differential operator. Hence, the first few polynomials, which we will use later, are 
ao(x) = 1, aj(x) = x, a2(x) = x2 +x, 

a3(x) = x3 + 4x2+x, a4(x) = x4+11x3 +11x2+x. 

A recurrence and a table for the coefficients (Eulerian numbers) of Eulerian polynomials and a generating function 
for an(x) may be found in [5; pp. 39, 215]. 

As for convenient notation we write 
max . . 
min (a'b> > 

where we wish to discuss both max (a,b) and mm (afb). 
Also we adopt the convention 

0 = <P„ = (1-X1)(l-X2)"(1-Xn). 

3. Taking the simplest case first we evaluate the sum 

]C nf)in(iv-Jn). 

To do this, we put 

(3.1) F(xu -.,xn) = ] T lJ2" min (iU"Jn)xi -xn
n , 

which becomes 
oo 

F(x1f -,xn) = <f1 J2 min ('1' '"' 'n>x'l '" x'n • 

Now since 

mintiw-rin) = J2 1= 2 1f 

j=0 kx+i+1=ix 

it follows immediately that 
oo 

V* • /• - i h in A~1 x1x2'xn 
> M minhi,-,n)xi -xn = 0 jz—— s—. . 

. t-i n (1-x7x2-xn) 
Therefore, 
trt «\ i-/ i M-2 x 1 x 2 ' x n 

(3.2) F(xh - ,xn) = 0 ̂  — . 
t-XfX2'"Xn 

Comparing the coefficients in the expansion of (3.2) with those of (3.1) gives 

(3.3) Ys min °i<'"' M = £ n (ri -# ' 
ii*m",in=0 j<min(r1, — ,rx%) i=1 

If ri =... = rn = r then the right side of (3.3) reduces to the familiar series 

r 

1=0 

4. The sum 
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/"i'""'/"n 
(4.1) Y^ maxtii,-,in) 

is apparently more difficult to evaluate. If n = 2 we may use (3.3) and the identity 
(4.2) min (ij) + max (i,j) = i +j 

to get 
r,$ min(r,s) 

(4.3) ^ max (ij) = %r(r + 1)(s +D+ s(s + 1)(r + 1)- J^ (r~J,(s " j ) ' 
i,j=0 l=Q 

Now, considering the case of (4.1) where all the f% are equal we define 
r 

(4.4) Fn(r) = ^ max ('1< - / U • 
<t,'~'in=0 

Then by an inclusion-exclusion argument, 
r r 

Fn(r) = [ " ) 2 mdX ('1' ""' 'n~1' r) " ( 2 ) Z) max (i1' '"' in~2' r' r) 

+ ... + (-•ir+'fymaxfo-sf + Fnfr-V 

or 

(4.5) / V i W - ' X [nk)(-1)k+1(r+1)n-k + Fn(r-D (r>1). 

The expression 
k=1 

(4.6) £ iK
n

ky-1)k+1(r+1)r 

k=1 

may be simplified, according to the binomial theorem, giving 
(r+W-t" 

so that (4.5) becomes 
(4.7) Fn(r) = r(r + 1)n - ^ + Fn(r -1) (r>1). 

Applying (4.7) to Fn(r-1) we get 
Fjr) = rfr+ir-/"1 +(r-.1)rn-(r-1)n+1+Fn(r-2) 

and continuing in this manner we eventually arrive at 
r-7 r-7 

Fn(r) = ] £ fr-jUfr+7-#"_]£ fr-W1*' . 

r r r r n-1 

k=0 k=0 k=0 k=0 j=0 

Now by comparing the last expression with (4.4) we have 

(4.8) F„M = £ max 0h -,in) = E £ ( /) ^ 
ixr'JxrO k=0 J=0 
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or, in the usual notation for Bernoulli polynomials, 

(4.9) ± ^,,,..,,J«f^ „ 
/ i , - , / „ -0 1=0 

The first few special cases of Fn(r), obtained from (4.7) are 
Fn(1) = 2n-1, Fn(2) = 2*3n-2n- 1, and Fn(3) = 3-4n - 3n+1 +2-3" ~ 2n ~ 1. 

Next we evaluate the generating function 
oo 

(4.10) £ Fn(r)x
n . 

n=0 
From (4.8), (4.10) becomes 

n-1 r °° n 

Z{j\ E **v - E E 
n=0 j=0 k=0 n=0 j=0 v ' k=0 n=0 ' ' k=0 

E E(7) E ̂ ^ - E E (7) E ^'-"-E (") E '"^ 
/- oo oo /• oo 

E * E *" I) (n;y>^'-£ *£ tor 
£=0 n=0 y=0 Ar=0 /?=0 

k=0 n=0 k=0 

r r 
= 23 k(1-kx-xr7-J2 k(1-kx)~1 

k=0 k=0 

r 

~ x• J2 Ml - (k + 1)x)-1(1 - kx)"1 . 
k=0 

We have therefore proved 

r 
(4.11) £ FjrJx" = J2 I ] max(iv-Jn)x

n = x ] T k(1 - (k+1)x)~1 (1 - kx)~1 . 
n=0 n=0 ilf-"fin=0 k=0 

From (4.11) it is easy to see that 
oo oo 

2 ^ ^ ^ r / _ K ; Z-, (i-{k+1)x)(1-kx) 
n,r=0 k=0 

If, on the other hand, we define 
oo 

Gn<y) = E Fn<r)yr 

r=0 

then using the recurrence (4.7) and setting Fn(-1) = 0 we have 

oo oo oo ° ° 

GnM = E (r(r+ T)n->"+1)yr+Y, Fn<r- Vvr - E ^ V-rn+1)yr+y E ^W^ • 
r=0 /=0 r=0 r = 0 
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Then 

(1-y)Gn(y) = £ (r(r + 1)n-^+1)yr = £ r ^ ( » V V ~ £ ' " + V 
r=0 r=0 k=0 r=0 

k=0 r=0 r=0 

= y* ( n \ ak+1(y) _ an+1(y) _ y ^ / „ V ak+1(y) 

to{k> (1-Y)k+2 (1-Yr2 to[kJn~v)k+2 ' 

where 3pM. is the p Eulerian polynomial introduced in Section 2. 
Therefore, we have 

n-1 

(4.12) Gn<v) = Y* J2 ™^^-wV/r-E( /i \ ^ - f / W 
-0^

khl-y)k+3 

From (4.12) and from the list of Eulerian polynomials in Section 2 we easily arrive at the special cases 

G2(y)=3jLtlf_ G3(y) = 7Y+1°V2 + Y3 , and G4(y) = 1JY + 55y2 + 25y3 + y4_ 
(1-y)4 (1-y)5 (1-y)6 

The expansions of each of these generating functions yield, for r > 0, 

(4.13) £ max(a,b) = 3[ r+
3
2\-{r+

3
1\ , 

a,b=0 

(4.14) £ maX(B,b,c) = 7{r+
4

3Ywy+
4

2Y\rV) • 
a,b,c=0 

and 

(4.15) £ max(a,b,c,d)=15[r+5
4)+55[r+5

3) + 25 {r+.2) + [r+5
1) , 

a,b,c,d=0 

respectivelya 
In general, from (4.9) it may be seen that Fn(r) is a polynomial in r of degree n + 1. 

5. In this section, we consider A(r,m,n) and B(r,m,n), where 
r 

(5.1) A(r,m,n) = ^ max(ai + -+am,b1 + -+bn) , 
au"^am^u"'rbn=0 

and 
r 

(5.2) B(r,m,n) = ^ min (at+ -+am,b1 + -+bn) . 
ax,~',am,bl,-,hn=0 

St is convenient to let the expression a,b=0 mean ai,—,am,bi,—,bn = 0. 
Using the formula 

' (ajb) = %(a+b±\a-b\) , 

(5.2) becomes 

max , 
min 
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(5.3) B(r,m,n) = 1A J2 hi+ - + am + b1+ >» + bn)-% J^ \ai+ '" + am-bi-"'~bn\ 
afb=0 a,h=Q 

a,b=0 
SMow 

r 
(5-4) i C a1 + "'+am"b1 bn = ~J^(a1 + ~+am-hi bn) +Yl(a1 + ~' + am " bl - ••— bn), 

a,b=0 I II 
where / and // stand for 

ai + — + am K bj + -" + bn < rmax(m,n) 
and 

bi + - + bn < ai + - + am < r max (m,n). 

respectively, and where it is understood that a;, bf < r. 
Moreover, 

r maxim,n) 

J2fai + '" + am-bf bn) = J^ J2 iC (a7 + - + am-k) 
I k=0 bt+-+bn=k ax+-+am<k 

b,-<r a;<r 

rmax (m,n) k 

- Z E E E u-k) . 
k=0 j=0 bt+~'+bn=k ax+-+am=i 

b/<r a,-<r 
Now let P(a,b,c) be the number of partitions of a > 0 into at most b parts, each part <c, and let P(Ofb,c) = t 

r maxim, n) k 

(5.5) ^hf + '-' + Hm-bf bn)= 2^ J^ (k-iMkMMiM) -
/ k=0 j=0 

By a similar argument we find 
rmaxim,n) k 

(5.6) Yj(ai + '" + am-bf- --bn) = J^ 2 (*-iMk>m>r>p0>s)-
N k=0 j=0 

By substituting (5.5) and (5.6) into (5,4) and referring to (5.3), and then by applying this same argument for A(r.mji) 
we find that A(r,m,n) and B(r,m,n) are given by 

(5-7) E ZZ(», + ™ + »n,.b, + "-H>*)-(a+ak![+VmH' 

rmaxim,n) k 

k=0 j=0 
respectively. 

Mow, although (5.7) expresses our problem in terms of a difficult partition problem the formula is nevertheless very 
useful in that it affords us a method of determining the generating function. Here we observe, from (5.7), that A(r,m,n) 
and B(r,m,n) are polynomials in r. Furthermore, their degrees are less than or equal to m + n + 1, for if not, then 
for large values of r, B(r,m,n) will be negative. In fact, in view of special cases, we may conjecture that the degree of 
A(r,m,n) and B(r,m,n) is precisely m+n + 1. 

We may now evaluate several cases. First, we consider B(r,2,1). 
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r 

BtaV- £ min(a+b,c) = Y. <a+b>+ E C ~ E E 
a,h,c=0 ~ x ^ _ „-LU^„ __/! -_,_u-

After some manipulation it is seen that 

a,h,c=0 a+b<G a+b>c c=0 a+b=c 
a,bFc<r a,b,c<r 

r c 

E ^ = ZZ; E * -J2> 3 ** 2 *A; 
a*6^c c=0 £=0 a*/?=/r c=0 
a A c < ^ 

and 

E E *-£,*+» • 
c=0 a+b=c c=0 

Then we have 
r r min(a+b,r) 

B<r,V) = Y[l-k
3-U)+Y,c=T2r

2(r+1>2-16r(r+1>+?, E ' 
c=0 a+b>c a,b=0 c=0 

a,h,cKr 

Since the degree of B(r,2,1) is at most 2+ 1 + 1, it suffices to compute B(r,2,1) for r = /, 2, J, 4. If we put 
r min(a+bfr) 

«r= E E « 
a,b=0 c=o 

so that 
(5.8) B(r,2,1) = J- r2(r + 1)2-1- r(r+ 1) + Kr 

Iz o 
then it is easy to compute Kj = 3, K2 = 20, Ks = 71 and K4=185. Then from (5.8), we have 

B( 1,2,1) = 3, B(2,2,1 )= 22, B(3,2,1) = 81 and B(4,2,1) = 215. 

Then we find the differences 
AB(r,2,1) = 3, A2B(r,2,1) = 16, A3B(r,2,1) = 24, A4B(r,2,1) =11. 

Substituting these values into IMewton's expansion for the generating function we have 

J] B(r,2,1)xk = T AkB(0,2,1) ^-— = ^— (3 + 7x+x2) . 

Upon expanding we get 

(5.9) B(r,2,1)= £ min(a+b,c) = 3[r+4
3)+7[r+4

2)+{
r+

4
1 

a,b,c=0 

From (4.2), 
r r 

^ P (max (a +b,c) + min (a +bfc)) = Y^ (a+h+c) 

a,b,c=0 a,b,c=0 

which, from (5.9) reduces to 

£ max<a+b,c) = 3{'4
3)+7['4

2)+['4iy
3

:r<r+ir (5 1Q) V ^ . /„ j . A -I - o(r + 3\_L7lr + 2 \ , ,f r + 1\ ,3 „/„ ^ i\3 

a,b,c=0 
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Next we put B(r,2,2) = Bfr) for brevity, and consider 
r 

(5.11) Bfr) = 5Z min(a+b,c + d) . 
a,h,c=Q 

From (5.7) we have 
2r k 

Bfr) = r(r + 1)4 - ] T £ (k-j)Pfk,2,r)P(j,2,r) . 
k=0 j=0 

Hence Bfr) is a polynomial in r of degree <5. Therefore the generating function is 
5 

E BfrJS = T AlB(0) x' . 
r-0 1=0 (7-xJ 

Resorting to a computer to calculate A'B(O) for / = 1, 2, 3,4, 5, (5.12) becomes 

Y\ B(r)x - 10* + 90x2 + 240x3 + 252x4
 + 92x5 

~ (f^x)2 (f_x)3 (1_x)4 (1_x)5 (1_x)6 ' 

Expanding for the coefficients we find 

(5.13) YJ min (a+hfc+d) = 70 ( r
7 ] + 90\ r

2 ) +24o[ r
3 \ + 252 ( r

4 ) +92 
a,b,c,d=0 

In the very same way that we obtained (5.13) we get 
r 

(5.14) ] T max(a+b,c+d) = 221 r
f \ + 1701 r

2 \ +42ol r
3 \ + 42o(^\ + 148 I rA 

a,hfc,d=0 

(5.15) J^ min (a+b +c,d) = 7 ( ;
r j + 61 ( £ ) + 159 ( £ ) + 164 (4

r ) * 5£ ( £ ] 
a,b,c,d=0 

and 

(5.16) ] T max(a+h+c,d) = IS^'A + 199 ( ^ ]+501 f r
3)+508^ ^) + 181 ( £ ] . 

a,b,c,d=0 

6. The author wishes to express his appreciation to Prof. L. Carlitz for suggestions which resulted in simplifications 
of several areas of this work and to Worden J. Updyke, Jr. for the programming and computing necessary in estab-
lishing (5.13), (5.14), (5.15), (5.16). The computations were performed on an IBM 360 model 20 at the Electronic 
Computer Programming Institute, Greensboro, North Carolina. Computer time was provided by the Institute. 
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MATRICES AND GENERALIZED FIBONACCI SEQUENCES 

MARCELLUSE.WADDiLL 
Wake Forest University, Winston-Salem, Worth Carolina 27109 

Horadam [4] has pointed out that generalizations of the Fibonacci sequence | Fn I fall in either of two cate-
gories: (1) an alteration of the recurrence relation of the sequence, and (2) an alteration of the first two terms of the 
sequence. He further states that these two techniques may be combined, and in this paperwe follow this suggestion 
by considering the sequence i Un I defined as follows: Let UQ, £// be arbitrary integers, not both zero; let r,s 
be non-zero integers, and let 
(1) Un = rUn^+sUn.2, n > 2 

This sequence has been considered by Buschman [2 ] , Horadam [5] , and Raab [7] . If r = s=1, the sequence 
\ u n \ becomesthe sequence considered by Horadam in [4 ] . Quite clearly, if r = s=l and Uo = 0,Uj= 1, then 
i £/„ l becomesthe Fibonacci sequence i Fn\. 

King [6 ] , Bicknell and Hoggatt [1 ] , and others have used the Q-matrix to generate, so to speak, the Fibonacci 
sequence where 

(2) a = [ \ I 
It is routine to show that 

In order to generate the sequence j Un I we define the /?-matrix, 

(4) "'fill-
It is also useful to define what we call the sequence \ Kn\ as the special case of | Un J- where UQ = KQ=0, 
UJ = KJ=J, and Kn = rKn-i+sKn-2- With these stipulations, it follows that 

(5) 

In (5) if we replace n by n +p, p > 0, then 

(6) 

r K„ sKn.nrup+1i 
= lKn.lSKn.2\\_Up J • 

Now by equating corresponding elements in (6), we obtain 

(7) Un+P = KnUp+t+sK^Up. 

Similarly, it may be shown that for any p,q such that 0<q <n - 1 and 0<q <p, 

(8) Un+p ~ Kn+qUp-q+1 + sKn+q-1 Up-q -

Using (5), (7) and (8) we derive a number of vector-matrix relations which are listed here since they will be used in 
the sequel. 
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We have 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

-Un-ll l ~ 1 ° \ \_-Uo\ l-Kn-1 sKn-2\l-U0\ ' 

f <W"| \KP ±sKp.nrunHi = rKp+1 ±SKpir un i 
l±un\

=\_o 1 \l±un\ [±i o Jl±un.}j 

f Un 1 = f Kp tsKp.fl \Un_pHl _\Kp+1 ±sKpl [ Un.p 1 

r un -j _r o 1 lTUn.fi r 1 oi[ un -i 

L "n+P J L sKP V d L Un J L sKp-1 KP\ lUnHJ ' 

V r\ ~ L Kn-1 Kn J 

When considering generalizations of the Fibonacci sequence, one of the natural questions to investigate is which, if 
any, of the Fibonacci identities may be generalized to identities for the generalized sequence. In many cases identi-
ties can be modified to generalized identities which, as special cases, reduce to Fibonacci identities. For example, 
Horadam has shown [4] that the well known Fibonacci identity, 

(16) F'i-Fn-fFn+f^-D"-1 , 

becomes 

(17) Hn - Hn„iHn+i = (-l)n~l (Hf ~ HJHQ-- HQ) , 

where / / # , / / / are arbitrary integers and 

Hn^H^ + Hn-z-

Other well known Fibonacci identities have been generalized in [4] also. 
In [5 ] , Horadam has given the generalization of (16) for the j Un \ sequences as well as the generalization of 

several other identities. We show here a derivation and proof of these generalizations using appropriate matrices and 
vectors. This method not only provides a very clear proof, but it also derives the generalized expression. This latter 
task is not always easy if we have to rely on "guessing" what the generalized form should be. 

If we consider the following vector dot product and use (5) and (10), we have 

Un-Un-^^ = fU„,Un.,] 

ssnce 

T r 11V 0 -7~| T -s Ol . 

Now if we multiply out these three matrices, we get 

(18) 

If U-i= 1, Uo=0, we have 

Un- Un-Iun+1 isrUu2!- rUjU0 -sUl). 
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= (• 

= (-

(19) K^-Kn.rKnH = (s)n~1 , 

an expression independent of r. Thus, we conclude that if s= I the j Kn \ sequence satisfies (16) without alter-
ation regardless of what value r assumes. 

The method above may be used to show that 
(20) U%- Un„qUn+q = (~s)

n^K^- rUjUo-sl/gj, 

(2D Un+pUn+q-UnUn+p+q = (srKpK^-rUjUo-sU^. 

These identities also appear in [5], but the method used there to derive them is quite different Since the proof of 
(20) and (21) is more involved than the proof of (18), we give the proof of (20) here. Using (12), (13), and then 
(15), we have, 

v%-un„qun+q = [un,un+q] \-un
nA 

If we multiply these three matrices, rearrange terms properly and observe that 
Kq+1 -sKq^-j = rKq , 

we have 
U2

n- Un^Un+q = (~s)n~qK%[U^- rUjUo-sUg] . 
Again if we let UQ=0, UI=1, (20) becomes 

(22) Kg- Kn.qKn+q = (~s)n-q , 
an expression independent of r. 

Another well known Fibonacci identity is 
(23) F2n+1+F%= F2nH . 

Matrix methods are again especially helpful in not only proving a generalization of (23) but in discovering what this 
generalization ought to be. 

Using (10) and (14), we have 

U2
n+1+sU2

n = [Un+1,sUn]Y'u+
n

1'\ = fUl,sl>oj['i o ] " [ / J ] " [ ! / O ] 

= [u1,su0:l\'i h\2n\u,
0\

 = [ui'sU<>] I Ufi£~\ = uiu2n+i+su0u2n. 
Hence, we have L J L J L n J 
(24) U2

H + sU2 = UjU2nH +sU0U2n , 

which is again an expression independent of r. For the | Kn \ sequence, this becomes 
(25) K2

+1+sK2= K2n+1 . 

As an alternate way of writing the right side of (24), we observe in the proof that 

[-.sircsi*-Gsrv.sr • 
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Substituting this expression into the above proof, we see that we may write 

(26) U1U2n+1+sUoU2n = Un-q+lUn+q+1+sUn-qUn+q • 

As a further exercise in identities we see that if we replace n by n + 1 in (8), let p = n, and (J,- = K,, we have 
(27) K2n+] =z Kn+q+lKn-q+1+sKn+qKn-q • 

We may also obtain (27) as a special case of (26) by simply replacing (J,- by Kj. However, (8) cannot be obtained 
from (27). 

The Fibonacci identity 
(28) F2n+1-F2n-1 = F2n, 
generalizes to 
(29) U%+1-s

2uti = r(U1U2n+sU0U2n-l) • 

We may prove (29) by using (24) or by using matrices as follows: 
U2

n+1-s
2U2^ = U2

+1+sU2-<sU2+s2U2.1) 

.„,,.**[', ;]"[[; ;]*-U?]]U J 
= r[Ui,sU0][

r
f o}2n'2[r7

 So] [a]} = ^1^2n+sU0U2n.1). 

Again, the identities (24) and (29) are found in [5] and perhaps elsewhere in the literature, although the alternate 
way of expressing the right side of (24) which appears in (26) is apparently not known. 

The method used in the proof of (29) may be generalized to find and prove numerous other identities for the 
sequence < Un\. As an illustration, we note that in the proof of (29) we needed and used the fact that 

ps]'-D ?]-'['. J]-
Using this as a clue, we can show, for example, that 

[;&]'-'[; s]*-«,[i?]-['.s] 
Therefore, since 

uZ+2 + sU2
+1 - r(Un+2Un+i +sUn+1 U„) - s2(U2 + sU2

+1) 

- IUUSUOJ^ i]2-2[[r • ] ' - , [ ; °0-]3S2[l ? ] ] [ £ ] ', 
we conclude in the manner used above that 

(29) U*+2 + sU*+1 - rUn+2Un+1 - rsUn+1 Un-s
2'</*- s3}U*+1 = rs(U7U2n+sU0U2n„f). 

The use of matrices adapts itself very nicely for generalizing some of the identities involving sums of Fibonacci 
numbers. One such identity is 

n 
(30) * J2 F) = Fn+2 - / . 

/= / 
Si! order to generalize this identity for the sequence I Un I , we first prove that 

(31) sJ£'n-iKi*Kn+2-rn+1 . 
1=1 

The method of derivation and proof is a generalization of a method used by Hoggatt and Ruggles [3 ] . We first ob-
serve that for the matrix R as defined by (4) and the matrix 
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/ = 7 0 
0 1 

(32) Rn+1-rn+1l = (rnl + rn-1R+:+r2Rn-2 + rRn-1 + Rn)(R-rl) . 

Furthermore, it is easy to show that 

R2-rR-sl = .0 , 
or 

R(R - rl) = si . 
Hence, we see that 

(R-rl)~1 = s~1 R . 

If we multiply both sides of (32) by s~1 R and then subtract rn I from both sides, we obtain 

(33) rn'1 R+rn"2R2 + -+rRn-1 +Rn = s~7 (Rn+2 - rnR2) „ 

Writing out the matrices in (33), we have 

rn-l[ K2 s / C j l , rn-2\ Kz sK2~\ . rn-3[ K4 sKd 1 , + X Kn sKn-1 1+ f Kn+1 sKn~\ 

L ^ SK° J L * ' SK> J 13 **' J K /̂t-2 J [^ * ^ J 
_ c-/ IT *n+3 * W l nr 3̂ ^2 l l 

Now equating elements in the upper right corner of this matrix equation, we obtain (recall that K2 = r) , 

srn']' K1-hsrn-2K2+-+srKn_1+sKn = Kn+2-r
n+1 , 

which is (31). 
Sn order to generalize this identity for arbitrary UQ, L/J, we use (7) with p = 0 to get 

5 !E /W£/ ' ' = s H, r (UlKi + sU0Kh1) 
i=1 i=1 

= uisZ rtl"'K^s2lJoZ rn"'K>'-i 
1=1 i=1 

// / n+1 
SU0 l \ ^ n-O-Vt s2U0 

Now we use (31) on these two sums to obtain 

uLt ^K; V-T-i'E 'n-<i-1,K;.l\-S^-Kn= Ul(Kn+2-r^)A(Kn+2-^) 

S2U0Kn _ n+1 Sl/0 . „ n+1 . S U0Kn •f^ = U1Kn+2-U1r"+'+-^L(rKnH+sKn-r"+')- f 

= U1Kn+2 + sUoKn+1-r
n+1U1-srnUo= Un+2-r

nU2 

Hence we find that the generalized form of (30) is 
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n 

(34) sJ2 rn-'Ui= Un+2-r
nU2 . 

By factoring the expression 

(f}2,nH_(r2)nH/ ^ 

and proceeding as above, we find 

n 

(35) s(2r2-s) J2 r2(n-i}K2j = (r2-s)K2n+2 + rsK2n+1-r
2n+3 

1=1 

and 

n 

(36) $(2r2-s) J2 r2(n^K2i^ = (r2-s)K2n+1 + rsK2n-r
2n+2+ sr2n . 

i=l 

If we use (35) and (36) in the same manner as we did in proving (34), we get 
n 

(37) s(2r2-s) £ r2(n-i}U2i = (r2-s)U2n+2 + rsU2n+1+s2r2nU0-r
2n+2U2 

1=1 

n 

(38) s(2r2-s) J J r2(n"ijU2h1 = (r2-s)U2n+1 +rsU2n+r2n(sU1 -rU2) . 

l=l 

It is quite Sikeiy that many other well known identities can be generalized in ways similar to those used above. It is 
not our purpose to provide an exhaustive list, but to illustrate the method and in particular the usefulness of the /?-
matrix. 

REFERENCES 

1. Marjorie Bicknell and Verner E. Hoggatt, Jr., "Fibonacci Matrices and Lambda Functions," The Fibonacci Quar-
terly, Vol. 1, Wo. 2 (April, 1963), pp. 47-52. 

2„ R.G. Buschman, "Fibonacci IMumbers, Chebyschev Polynomials, Generalizations and Difference Equations," The 
Fibonacci Quarterly, Vol. 1, No. 4 (December, 1963), pp. 1-8. 

3. Verner E9 Hoggatt, Jr., and f.D. Ruggles, "A Primer for the Fibonacci Sequence-Part I I I , " The Fibonacci Quar-
terly, Vol. 1, No. 3 (October, 1963), pp. 61-65. 

49 A. F„ Horadam, "A Generalized Fibonacci Sequence," Amer. Math. Monthly, Vol. 68,1961, pp. 455-459. 
5. A»F„ Horadam, "Basic Properties of a Certain Generalized Sequence of IMumbers," The Fibonacci Quarterly, Vol. 

3, No. 3 (October, 1965), pp. 161-176. 
6. Charles H. King, "Some Properties of the Fibonacci Numbers," Master's Thesis, San Jose State College,June, 

1960. 
7. J.A. Raab, "A Generalization of the Connection between the Fibonacci Sequence and Pascal's Triangle," The 

Fibonacci Quarterly, Vol. 1, No. 3 (October, 1963), pp. 21-32. 



ANTiMAGiC SQUARES DERIVED FROIVI THE THIRD-ORDER MAGIC SQUARE 

CHARLES W.TRIGG 
San Diego, California 92109 

In a third-order ants magic square, the three elements along each of the eight lines-three rows, three columns, and 
two unbroken diagonals-have different sums. An antimagic square, its rotations and reflections are equivalent and 
count as only one square. 

It is not difficult to modify the distribution of the digits around the central 5 of the unique nine-digit third-order 
magic square 

8 7 6 
3 5 7 
4 9 2 

so as to convert it into the antimagic square 
/ 2 3 
6 5 8 
9 4 7 

while preserving an odd-even alternation of digits around the perimeter. Nor, to set up a sequence of antimagic squares, 

1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 
9 5 8 9 5 8 9 5 7 9 5 6 7 5 6 7 5 6 
6 7 4 4 7 6 4 8 6 4 8 7 4 8 9 4 9 8 

still around the central 5, in which each square results from the interchange of two digits in the previous square. 
The complements of the squares in this sequence, obtained by subtracting each of the digits from 10, form the 

similar sequence 

9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 
1 5 2 1 5 2 1 5 3 1 5 4 3 5 4 3 5 4 
4 3 6 6 3 4 6 2 4 6 2 3 6 2 1 6 1 2 

Of course, if a square is antimagic, its complement also is. The eight sums of the complementary square may be ob-
tained by subtracting each sum of the parent square from 30. 

The question naturally arises, what is the minimum number of digits that need to change position and what is the 
minimum number of moves, or interchanges, necessary in order to convert the magic square into an antimagic square? 

THE CRITERIA 

To convert the magic square into an antimagic square by interchanging digits, two conditions must be met: 
(1) Not more than one line (sum = 15) can remain unaltered; 
(2) If two or more lines contain the same single changed element, only one of those lines can be left without an^-

other change. 
There are 16 distinct ways in which three markers (x) can be distributed on a nine-cell 3-by-3 array. Thus 

xoo 
OXO 

oox 

xoo 
xxo 
000 

0X0 

0X0 

xoo 

0X0 

xxo 
000 

xox 
oxo 
000 

xxo 
oox 
000 

xox 
000 
0X0 

xxo 
000 

xoo 

0X0 

XOO 
oox 

xxo 
000 

0X0 

XXX 

000 
000 

xxo 
000 

oox 

000 

XXX 
000 

xox 
000 

xoo 

xxo 
xoo 
000 

0X0 

xox 
000 

387 
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If the x"s indicate the elements to be moved by interchange, than only the first five configurations meet the first 
condition, and none of those five meet the second condition. So atleast four digits must be involved in the interchange. 

There are 23 distinct ways in which four markers ix) can be distributed on a nine-cell 3-by~3 array. Thus 

XXX 

xoo 
OOO 

xxo 
xoo 
oox 

XXX 

0X0 

000 

A 

XXX 

000 

OXO 

XXO 

OOX 

XOO 

XXX 

000 

xoo 
B 

xoo 
XXX 

000 

xxo 
oox 
OXO 

XXO 

OXO 

xoo 
c 

OXO 

XXX 

000 

xxo 
OXO 

oox 

xxo 
oxx 
000 

D 

xxo 
xxo 
000 

OXO 

XXO 

oox 

xxo 
000 

xox 
E 

xxo 
000 

xxo 

xox 
OXO 

OOX 

xxo 
oox 
oox 
F 

xxo 
000 

oxx 

xox 
000 

xox 

xox 
OXO 

OXO 

G 

xxo 
xox 
000 

OXO 

xox 
OXO 

If the x's indicate the elements to be moved in the interchanging, then only the last seven meet both conditions. 
Each of the three symmetrical arrangements (A, F and G) can be applied to the magic square in four ways, and the 
four asymmetrical configurations (B, C, D and E) and their mirror images can each be applied in four ways. So there 
are 44 applications of change patterns to consider. 

TWO INTERCHANGES 

Four elements can be divided into two pairs in three distinct ways. These pairings are applied to the seven change 
patterns. If both members of a pair fall on the same line, interchange of their positions does not affect the sum of the 
elements of that line. Each of the patterns A C, D and E has one ooo Sine unaffected by interchange of the x's. In 
any pairing of their x elements, any interchange between members of the pairs leaves the sum of the elements un-
changed in one of the lines involved. Thus two lines of the square retain their original, and hence equal, sums. 

In patterns F and G interchange between members of the pairs leaves the pairs in the original lines or interchanges 
the elements of a column and a row. Thus that column and row retain their original equal sums. 

In the asymmetrical B, the interchange 
abc cda 
ooo -> ooo 
doo boo 

leaves only one line sum unmodified. However, when applied to the nine-digit magic square in each of the eight pos-
sible ways, duplicate sums of 12,14,16 or 18 appear after the interchange. 

Consequently, no antimagic square can be created by interchange of the members in each of two pairs of the ele-
ments of the nine-digit third-order magic square. 

THREE INTERCHANGES 

There are 24 permutations of the four elements M, N, P, Q. In 15 of these at least one of the elements has not 
moved from its original position. In 3 others, there have been two interchanges of positions. The other 6 can be 
attained from MNPQ by three successive interchanges, namely: 

U - NPQM : MN, MP, MQ X- PQNM : MP, NQ, MN 
V - NQMP :MN, MP, PQ Y - QMNP: PQ, MQ, NM 

W - PMQN : MP, NM, NQ Z - QPMN: MQ, NP, NM 

These six permutations, identified by the prefaced letters U, V, W,X, Y,Z can be applied to each of the seven pat-
terns A, B, C, D, E, F, G in their various orientations on the magic square. The letters M, N, P, Q may be ar-
bitrarily assigned to the four x elements of the pattern without affecting the ultimate position of the interchanged 
digits. 

Pattern B is asymmetrical, so it and its mirror image both are applied to the magic square in the four orientations, 
proceeding clockwise around the square. Thus the magic square operated on by pattern B becomes 

M N P Q 1 M 8 1 Q P 1 6 
3 5 7 3 5 N 3 5 7 N 5 J 
Q 9 2 4 9 P P JH M M 9 Q 

Bf B2 Bj B$ 
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P N M 8 1 P Q 1 6 M 1 a 
3 5 7 3 5 N 3 5 7 N 5 7 
4 9 Q Q 9 M M N P P 9 2 

% % B7 B8 

The particular orientation of the operating pattern is indicated by the numerical subscript. This notation will be 
followed with subsequent pattern operators. 

In B-j, M = 8, N = 1, P = 6, Q = 4, so for the six permutations we have: 

U-NPQM V-NQMP W-PMQN 
1 &4 8 14 8 6 6 8 4 1 

X-PQMN Y-QMNP Z-QPMN 
64 18 4 8 16 468 1 

The digits in each of the permutations are placed, in sequential order, in the M, N, P, Q positions of the square array, 
Bp Not all of the permutations will yield antimagic squares. No sum of 15 remains, but other duplicate sums may 
appear in the process. In £??, no antimagic squares are produced by Vf W, and Y. Indeed, V does not produce 
an antimagic square in any B,. 

When the pattern orientations are 180° apart, as in B1B3, B2B4, B^By, and B^Bg, complementary antimagic 
squares are produced. (The MNPQ. sets are complementary.) Only one of each complementary pair is recorded be-
low in identifying the twenty antimagic squares produced by pattern B. In general, the orientation of the pattern 
which has operated on the magic square can be identified by the digits which occupy the same position in the anti-
magic square as they did in the original magic square. 

/ 6 4 
3 5 7 
8 9 2 

8 1 4 
3 5 2 
7 9 6 

6 4 1 
3 5 7 
8 9 2 

2 8 1 
3 5 7 
4 9 6 

4 6 8 
3 5 7 
1 9 2 

1 2 8 
3 5 7 
4 9 6 

6 1 7 
3 5 2 
4 9 8 

1 6 2 
3 5 7 
4 9 8 

6 1 2 
3 5 8 
4 9 7 

6 8 2 
3 5 7 
4 9 1 

Since pattern B always leaves a mid-row or mid-column undisturbed, each of these antimagic squares has a central 
5. The last square is particularly noteworthy in that its sums are 10,11,12,13,14,15,16, and 22, where seven of 
the eight are consecutive numbers. No antimagic square has all eight sums in arithmetic progression. [1,2] 

In Pattern C, 
MNo 
0P0 

Qoo 
application of X or Z leaves the sums of the row and diagonal which have the upper right-hand element in com-
mon unchanged and hence equal. (J, V, W, and Y also fail to produce an antimagic square in the eight orientations 
of C. 

In Pattern D, 
MNo 
oPQ , 
000 

application of X or Z fails to produce an antimagic square in any of the eight orientations. Nor do any of the per-
mutations produce one with D2 or D4. As with pattern B, complementary antimagic squares are produced by pat-
tern orientations 180° apart. One of each of the eight complementary pairs resulting from pattern D is recorded 
below: 

/ 5 6 
3 7 8 
4 9 2 

8 5 6 
3 2 1 
4 9 7 

1 7 6 
3 8 5 
4 9 2 

8 7 6 
3 1 2 
4 9 5 

5 8 6 
3 7 1 
4 9 2 

8 5 6 
3 7 2 
4 9 1 

7 8 6 
3 1 5 
4 9 2 

8 5 1 
6 3 7 
4 9 2 
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Pattern £ fails to yield any antimagic squares when X and Z are used as operators, nor from £2 o r £4 w ' t n 

any operator. As in B and D, the antimagic squares formed are in complementary pairs. One member of each of the 
eight pairs from pattern £ follows: 

7 4 6 
3 5 7 
2 9 8 

8 6 2 
3 5 7 
7 9 4 

7 2 6 
3 5 7 
8 9 4 

2 7 6 
3 5 4 
8 9 7 

4 8 8 
3 5 7 
2 9 7 

7 7 6 
3 5 2 
8 9 4 

2 8 6 
3 5 7 
7 9 4 

4 7 6 
3 5 2 
7 9 8 

In common with the squares from B, all these squares have 5 as a central digit. 
Pattern A, /wjyp 

0Q0 , 
000 

being symmetrical, can be applied to the magic square in only four orientations. Of the permutations, only X fails 
to produce an antimagic square from some orientation. Those formed when the pattern orientations are 180° apart are 
complements. One of each of the six complementary pairs is given here: 

7 6 5 7 5 8 6 8 5 5 8 7 5 6 8 8 7 5 
3 8 7 3 6 7 3 7 7 3 6 7 3 7 7 3 7 2 
4 9 2 4 9 2 4 9 2 4 9 2 4 9 2 4 9 6 

The sums of the fourth square in this set are 10,11,12,13,14,15,16, and 23, another case where seven of the sums 
are consecutive integers. 

In patterns F and G, the other two symmetrical patterns, X and Z merely interchange a row and column and 
leave the sums equal. The other four permutations fail to produce an antimagic square with any of the four 
orientations. 

SUMMARY 
In order to convert the nine-digit third-order magic square into an antimagic square by interchange of digits, not 

less than four digits must be moved in three successive interchanges. The four digits must fall into one of four basic 
patterns (B, D, E, A) to which one of the six permutations U, V, W, X, Y, Z is applied. The 64 antimagic squares 
which can be produced in this manner fall into 32 complementary pairs. Complementary pairs are produced by pat-
terns 180° apart in orientation. Six of these pairs come from a symmetrical pattern. The 26 pairs that are the result 
of applying asymmetrical patterns are produced in equal quantities by the patterns and their mirror images. The cen-
tral digit of 36 of the antimagic squares is 5. The frequency of occurrence of the other central digits follows each of 
the following digits in parentheses: 1(4), 2(3), 3(5), 4(2), 6(2), 7(5), 8(3), 9(4). Two of the squares have seven of 
their sums in arithmetic progression, with d = 7. 
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CONCERNING AN EQUIVALENCE RELATION FOR MATRICES 

EIVSAg\3UEL VEGH 
U.S. §\Saval Research Laboratory, Washington, D.C, and imperial College, London SW 7 

Let each of s and /? be a positive integer, p an arbitrary prine, A the field of integers modulo p and S the 
set of aSi s by /? matrices over A. Let each of A and B be in S. We say that A is equivalent to B (written 
A ~ B) if and only if there is a non-singular matrix X over A and a matrix Y= (yfy) in S with 

VH = Vi2 = "• = Yin (mod Ph i = h2, -,s 
such that 

A = XB+Y. 

It is easy to show that ~ is an equivalence relation on S. Let Lp(s,n) be the smallest non-negative number not 
greater than p - 1 such that each equivalence class contains a member X= (x,j) with the property that 

0 < Xjj < Lp($,n) 1 < i < s, 1 < j < n. 

We shall give an elementary proof of the 
Theorem. 

Lp(s,n) < 2[p{ns-t-1)/(ns-t)], n = 2,3, - , 
where 
(1) t = s2 if s < [n/2] and t = [n/2]2 -n[n/2] +ns if s > [n/2]. 

Here [x] is the greatest integer <x. 
For the case s= 1 the theorem gives 

Lp(ln) < 2[p (n-2M"-l)]f n=2,3, ••• . 
L. Redei [3] has shown, using the geometry of numbers, that 

Lp(1,n) < 2n-1/("-1)p(n-2>/<"-1>, n = 2, 3, - . 

Using elementary methods (a theorem of Thue [4]) , Redei has also shown that 
Lp(1,n) < 2([p 1/{n~1}] + I)"'2, n = 2,3, - . 

Our theorem then generalizes the results of Redei and improves his weaker inequality, by elementary methods. 
We shall make use of the following theorem which has an elementary proof. 

Theorem A. (A. Brauer and R.L. Reynolds [1]). Let r and s be rational integers r <s and let f§ be positive 
numbers less than m (8 = 1,2, ~,s) such that 

s 
n f§ > mr . 

6=7 ° 
Then the system of r linear congruences 

s 
VP = 2 a 8X8 ̂  ° ^mod m^ ^p== ̂  2' '"' r^ 

8=f P 

391 
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has a non-trivia! solution in integers x<t,X2, ~,xs such that 
|*5 | < fS (& = 12, -, s) . 

We note that the hypothesis of this theorem can be weakened by letting the numbers /§ (8 = 1,2, —, s) be posi-
tive numbers not greater than m. The proof is the same as in [1] . We follow, in part, the method of Redei [3 ] , as 
given when s = 1. 

Now let Y=(yij) be a member of S. The matrix Z=(zsj), where Z=IY+B, I is the identity matrix and B = 
(bjj) is the matrix with 

bj1 = hi2 = - = bin = -Yin r7= 1,2, -,s), 

is equivalent to K Note that z/n = 0, i= 1,2, —, $. 
Let r be the rank of the matrix Z It is well known that there is a non-singular matrix C over A, such that the 

matrix U' = CZ has s - r zero rows and has r columns each with exactly one non-zero element (see for example 
[2]). The matrix U then has at least 

fir) == r2 -nr + ns, 0 < r < s 

zero elements. The minimum value for fir) is given by t in (1). Thus Y is equivalent to a matrix U that has at 
most ns — t non-zero elements. 

Let U], U2, -, u\ be the non-zero elements of U. Consider the system 
(2) Xj = auj (mod p), i= 1,2, —,X 

of X congruences in the \+1 variables a, xj (/'= 1,2, --,X), Setting fg=p and /§ - [p^x'1^] + 1, id = 1, 
2, ", X), we have 

(3) n /s = p([P
(x-1)/x] + i)x > p(p(x'1)/x)x = px. 

8=0 
Using Theorem A, the remark following it, together with (3), It follows that the system of linear congruences (2) has 
a non-trivial solution a, x, (i' = 1, 2, —, X) with 

\a\ <p-1 and |x;| < [p ̂ ~ ^ A / , /= /, 2, »•, X . 
Since the solution is non-trivial, a £0 (mod p); and since X < ns -t, 

(4) \Xf\ < [p ("s-^lM"*-*)], j= 12, -.., X . 
The s by n matrix X= (x/j) with entries x,- (/'= 1,2, ~, X) in the same position as u-t (i = 1,2, —, X) of U, 

and zero elsewhere, satisfies the equation X = Ail, where A is the diagonal matrix with all diagonal entries equal to 
a. Naturally, since a£Q (mod p), A is non-singular. 

S e t t = max \Xjj I . 
U 

If T is the s by n matrix all of whose entries are t, then W= (w(y), where W= IX+T h equivalent to X, and 
(5) 0 < Wjj < 2[p

(ns-t"1)/(ns"t)], 1 <i <s, 1 <j <n. 

Since Y ~ W, we have, using (5) together with the definition of Lp(s,n), proved the theorem. 
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SOME SEQUENCES GENERATED BY SPIRAL SIEVING METHODS 

H.W.GOULD 
West Virginia University, M organ town, West Virginia 26506 

The object of this note is to point out some curious sequences which may be generated by natural number spirals 
and rotating grids. The method is a combination of the spiral introduced by Ulam [2] in his studies of prime number 
distribution and a well known technique employed in cryptographic work. We illustrate with Fibonacci numbers. 

Ulam considers a spiral numbering of the lattice points in the plane, i.e., by starting at (0,0) and proceeding 
counterclockwise in a spiral so that 

(0,0)^1, (7,0)-+2, (1,1}* $, (0,1)-* 4, (-1,1)-* 5, (-1,0)-* 6, (-1,-1)-+7, (0,-1)^8, 

(1-1) ~>9, (2-1) -10, (2,0) - /1, (2,1) - 12, (0,2) - 13, (-1,2) -* 14, etc. 

This mapping gives us the spiral below. 

(D 

f"""" - -

17 

18 

19 

20 

21 

16 

5 

6 

7 

22 

15 

4 

1 

8 

23 

14 

3 

2 

9 

24 

13 

12 

11 

10 

25 

27 

26 

A nice illustration of the basic Ulam spiral makes up the front cover of the March 1964 Scientific American. In the 
same issue Martin Gardner [1] gives an account of Ulam's work. Briefly, Ulam marks the primes (1,2,3,5,7,11,—) in 
the spiral and studies the visual display for patterns or almost-patterns in the prime number sequence. By use of a 
computer at Los Alamos he is able to generate displays having around 65,000 points in them. It would be of interest 
to try something of the same sort for the Fibonacci, Lucas, and other recurrent sequences, however the writer does 
not have available such versatile equipment as that used by Ulam and his colleagues at Los Alamos, so we have little 
to suggest about possible patterns in a spiral display of Fibonacci numbers. Of course, the fact that we now know [3 ] , 
[4] that 1 and 144 are the only square Fibonacci numbers does tell us that the diagonals 1,9ff25,49, — and 4, 16, 
36, 64, —. will be conspicuously blank in such a display. 

Now, there is a technique in cryptographic work which makes use of a rotating grid. We can best illustrate by means 
of an example. Consider the message, 'INTUITION LIKE A FLASH OF LIGHTNING LASTS ONLY FOR A 
SECOND." We write this in a square array 

I N T U I T ! 
ON L I K EA 
F L A S H O F 
L I G H T N I 
NG L A S T S 
ON LY F 0 R 
A S E C D N D 
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and then impose a prepunched grid, e.g., of the form (where an X indicates a hole) 

[x 

X 

— 

I n , 

X 

1 X 

X 

- J 

X 

X 

X 

X 

X 

X 

X 
X 

and copy out the visible letters, which are (serially, row by row) ITTIAOHTSOLOC. We then rotate the grid counter-
clockwise through 90° and again copy out the visible letters, which are IOLESIHIMLTAIM. Two more rotations gives 
us UMKAFGHGSYSODand NILHFLHNAIMFRE. Running these four groups together and breaking the whole up in-
to convenient blocks then gives us the enciphered message. To decipher, one merely places the grid on a sheet of pa-
per, writes in the letters serially, row by row, thirteen at a time here, rotating the grid until all four positions are used, 
removes the grid and reads off the message. Here we have used a 7 by 7 grid which leaves the middle point fixed (H). 
This is unsatisfactory for cryptographic work in some cases and most ordinary uses involve an even-order grid. 

The effect of an odd-order grid in the case of superposition on the natural number spiral is to partition the natural 
numbers into four sets, any two of which have onlv the number 1 in common. 

It is clear that the very special cryptographic grid cannot be made from the Fibonacci sequence (or the prime num-
ber sequence) without adding and/or deleting elements, since any given square annulus of the grid must be so design-
ed that one-fourth of its lattice points are punched, and in such a way that the same hole does not appear under 
successive rotations of 90° until the original position is assumed. We shall not discuss how this can be effected. 

We modify the rotating grid as follows. On the original natural number spiral (1) superimpose a square sheet of 
paper which will just cover the first (2n - 1)2 natural numbers, unity being kept at the center. IVSake a grid by punch-
ing the sheet wherever an element ak (k = 1,2, 3, •-) of a given sequence appears in the natural number spiral. We 
shall call this the (counterclockwise) spiral grid of the sequence \ak\. We next rotate the spiral grid through 90° 
and read off from the natural number spiral a new sequence generated by the spiral grid of our original sequence. 
With any given sequence there will be associated three new sequences, and by turning the grid over (making it a clock-
wise spiral grid) we can generate four other sequences. Clearly all these eight sequences will be somehow related, 

For a grid measuring 2n - / by 2n - 1 (n>2) there will be the natural numbers from 7 through (2n - 1)2 

with the outer square annulus containing the successive natural numbers from (2n - 3)2 + 1 to (2n - I)2. If an 
element ak of our given sequence lies in the outer square annulus, then so will the corresponding element b'k of any 
of the associated sequences obtained by use of the grid. It is possible to work out complicated formulas relating bk 

to ak depending upon the position of an element in the annulus. For example, any two diagonally opposite ele-
ments in the outer annulus have numerical difference 4n. 

We give below, in Table 1, a few values for the sequences generated by the counterclockwise spiral grid of the Fib-
onacci sequence (I, I I , I I I , IV) and also for the clockwise grid (T, IT, I I I ' , IV) . 

Here, d = dk is the minimum positive difference between terms in the sequences, or 

d = dk = min (b'k - b{) > 0, 
U 

(with d0M. = Q) 

for Counterclockwise (I - SV), or for Clockwise (V ~ IV) . 
In our table, ak = Fk+u with 

Fk+1 = Fk + Fk-1. Fo = 0, Fj= I 

St is convenient to begin our sequence with F2 instead of making some rules abouthowto interpret 0, 1, 1,2,3, - . 
(The indistinguishability of f y and F2 prevents us from calling the ordinary Fibonacci sequence a subset of the 
set of all natural numbers.) 

There is no reason to confine our attention to spirals based on a square. Ulam's work with the sequence of primes 
quite naturally fits in well with such a spiral because quadratic polynomials Ax + Bx + C are often so rich in 
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k 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

a* 

I 
— 

2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 

»i 
II 

r~ 2 
4 
5 
7 
17 
25 
40 
63 
99 
156 
249 
397 

bk ' 

III 
. _ 

4 
6 
7 
9 
13 
21 
46 
71 
109 
168 
265 
417 

Table 1 

• etc. 

IV 

1 
3 
6 
8 
9 
17 
25 
28 
79 
119 
132 
281 
437 

r 
— 

3 
5 
6 
8 
17 
25 
34 
67 
103 
134 
265 
405 

II' 

1~~ 
2 
5 
7 
8 
13 
21 
40 
75 
113 
146 
281 
425 

IIS' 

~ 
2 
4 
7 
9 
17 
25 
46 
51 
83 
158 
233 
365 

IV 

1 
3 
4 
6 
9 
13 
21 
28 
59 
93 
122 
249 
385 

d 

(T 
1 
1 
1 
1 
4 
4 
6 
8 
10 

| 12 
16 

I 20 
primes for integral values of x (Euler's polynomial x +x + 41 being the most well-known example). However, to 
exhibit other properties of a sequence, as well as to generate variations of a given sequence, it is natural to pass on to 
figurate numbers as the basis of our spirals. That is, we may consider a polygon of m sides. 

Consider, for example, a pentagonal spiral as shown below. 

21 
20 

19 

23 

22 

11 

10 
18 

17 

24 

25 

12 
5 6 

13 14 

31 

16 

30 
15 

26 27 28 29 

It would be of interest to examine the distribution of primes, Fibonacci numbers, etc., in an extended pentagon with 
thousands of points, and of course this would require quite an elaborate computer set-up. 

It is fairly easy to type out a pentagonal spiral on ordinary typing paper with 456 points and this is sufficient to 
give an idea of how the pentagonal spiral grid of the Fibonacci sequence can be used to generate curious sequences. 
Here, of course, we shall have in all ten sequences. The sequences are tabulated below in Table 2. 

The number d tabulated in the last column is defined as before by 

(3) d = min (bi
k-h{) > Q 

(for I - V or I' - V ) , and it is not difficult to see that for any given value of k the numbers II - V determined 
by our grid will differ from the Fibonacci number ak by a multiple of the number d. The reader may find it of in-
terest to try and develop a general formula for d in terms of k and m (generalizing to an /7?-gon). 
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Table 2 

_Jk 
" 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

3k 

I 
1 
2 
3 
5 
0 
13 
21 
34 
55 
89 
144 
233 
377 

bk 

n_ 
1 
3 
4 
6 
10 
15 
24 
38 
60 
95 
152 
243 
389 

bk 

in 
1 
2 
4 
5 
7 
12 
27 
42 
65 
101 
160 
253 
341 

... 

IV 
1 
3 
5 
6 
9 
14 
30 
46 
70 
77 
168 
263 
353 

etc. 

V 
1 
2 
4 
6 
11 
16 
18 
50 
75 
83 
176 
273 
365 

!' 
1 
3 
4 
6 
10 
15 
19 
38 
59 
77 
156 
241 
371 

II' 
1 
2 
4 
5 
7 
12 
22 
42 
64 
83 
164 
251 
383 

III' 
1 
3 
5 
6 
.9 
14 
25 
46 
69 
89 
172 
261 
335 

IV 
1 
2 
4 
6 
11 
16 
28 
50 
74 
95 
180 
271 
347 

V 
1 
2 
3 
5 
8 
13 
31 
34 
54 
101 
148 
231 
359 

d 
0 ' 
1 
1 
1 
1 
1 
3 
4 
5 
6 
8 
10 
12 

The visual display of perfect squares in a pentagonal spiral turns out to be a simple trefoil spiral appearing some-
what as diagrammed below. 

This is easily verified to be in accord with the fact that the three arms of the spiral are formed by squares of form 
(3n)2, (3n + 1)2, and (3n+2)2, respectively. 
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Finally, we turn to the case of a triangular spiral grid. Because of the hexagonal rotational character in this case, 
one may generate 12 sequences for a given spiral grid, 6 counterclockwise and 6 clockwise. A portion of the triangu-
lar spiral appears below. 

39 7 35 
15 13 50 

26 3 22 
8 6 34 

16 1 12 
4 2 21 

9 10 5 
18 19 11 

The 12 sequences generated by a triangular spiral grid based on the Fibonacci numbers are tabulated in Table 3. 

Table 3 
d ..d* I 

1 
2 
3 
5 
8 
13 
21 
34 
55 
89 

il 
1 
4 
6 
8 
15 
22 
23 
35 
57 
70 

III 
1 
3 
4 
7 
10 
16 
25 
39 
61 
97 

IV 
1 
2 
8 
10 
18 
26 
27 
40 
63 
77 

V 
1~ 
2 
4 
6 
9 
19 
29 
44 
49 
105 

VI 

~~1 
3 
6 
10 
12 
30 
31 
45 
51 
84 

r 
1 
3 
4 
6 
9 
15 
27 
40 

i 5 1 

99 

II' 
1 
3 
8 
10 
16 
29 
30 
44 
55 
81 

III' 

~~7~ 
2 
4 
5 
8 
18 
31 
45 
57 
107 

IV 
1 
4 
6 
10 
19 
21 
22 
34 
61 
67 

V 
1 
2 
3 
7 
10 
12 
23 
35 
63 
91 

VI' 
~1 
2 
6 
8 
13 
25 
26 
39 
49 
74 

~~i 0 
1 
1 
1 
1 
3 
4 
5 
6 
8 

0 
1 
2 
2 
3 
4 
4 
5 
6 
7 

Here, d is based on either l - l i l - V or I* — 111' — V* while d* is based on II - IV - VI or I I ' - I V - V I ' . 
This is because I I , IV, and VI arise from the hexagonal effect. Thus it seems of interest to list d as based on both 
triangular pattern and hexagonal. 

With this much as an introduction to the notion of a spiral grid for generating variations of a given sequence, we 
shall close this account. Our purpose has been mainly to exhibit the results of some calculations and suggest possible 
avenues of research. Various questions could be posed. For example: What can be said about divisibility properties 
of the new sequences? What can be said about when such sequences will satisfy simple recurrence relations? Does 
any of this shed light on when a Fibonacci number may be a figurate number? Can simple formulas be written for 
the various derived sequences? What is a simple formula for the number we have called dl 
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Send a!! communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathematics De-
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believed to be new or extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, solutions should be submitted on separate signed sheets within two months 
after publication of the problems. 

H-239 Proposed by D. Finkel, Brooklyn, New York. 

If a Fermat number 2 + 1 is a product of precisely two primes, then it is well known that each prime is of the 
form 4m + 1 and each has a unique expression as the sum of two integer squares. Let the smaller prime be ar +b , 
a >b; and the larger prime be c +d , od. Prove that 

k -£ i < j _ 
\d b\ ^ 100 ' 

Also, given that 
•2* + 1 = (274, 177H67, 280, 421, 310, 721), 

and that 
274,177 = 5162 + 892, 

express the 14-digit prime as a sum of two squares. 

H-240 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Let 
min*Sf} 0miHn-i)(p-i) 

S(m,n,p) = lq)n(q)p ^ fefr^V/ " 

where 
(q)j = (1-q){1-q2)...tT-q'), (q)Q = ' -

Show that S(m,n,p) is symmetric in m,n,p. 

H-241 Proposed by R. Garfield, College of insurance, New York, New York. 

Prove that 
n-1 

-L-'1-Y. 2kix . 
k=0 — i 

1-xe n 

SOLUTIONIS 
GEE! 

H-207 Proposed by C. Bridger, Springfield, Illinois 

Define G^fx) by the relation „ Q 
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2
1
 2 3 = E Gk(xhk., 

1-(x2+1)s2-xs3
 n=0 

where x is independent of s. (1) Find a recurrence formula connecting the Gk(x). (2)?\xtx=1 and find Gk(1) in 
terms of Fibonacci numbers. (3) Also with x = 1, show that the sum of any four consecutive G numbers is a Lucas 
number. 

Solution by the Proposer. 

After carrying out the indicated division, we find 

GQ(X) = 1, G7M = 0, G2(x) = x2+ 1, G3(x) = x, G4(x) = (x2+1)2, 
etc. 

(1) Assume the recursion formula of the type 

Gk+sM = pGk+2M
 + qGk+1(x)+rGk(x), 

and put k = 0, k = 1, and k = 2. The solution of the resulting equations gives p = 0, q-x+ 1, and r = x. So the 
recursion formula is 

Gk+jM = (x2 + 1)Gk+1(x) +xGk(x). 

(2) Put x= 1 to obtain 
@k+3 = 2®k+l + Gk • 

This has the characteristic equation z ~2z~ 1 = 0, whose roots are 

a = l±f., b-Lzj£, c--1. 
Mow, 

ak -bk 

VF = Fk > S0 Gk'1) = fk + (~1)k • 

(3) Use Fk+1 + Fk„<i = Lk and Fk+2 + Fk = Lk+1, replace F by G and add to obtain 

Gk+2 + Gk+1 + Gk + Gk„<i = Lk+2 . 

Also solved by G. Wulczyn, P. Tracy, P. Bruckman. 

BOUWDSFOR A SUM 

H-208 Proposed by P. Erdbs, Budapest, Hungary. 

Assume 
, ; , (a/>2, 1<i<k), 

af.a2l—akl 
is an integer. Show that the 

k 

maxY^ ai < - n , 

1=1 

where the maximum is to be taken with respect to all choices of the a/s and k. 

Solution by O.P. Lossers, Technological University Eindhoven, the Netherlands. 

From the well known fact that the number cp(m) of prime factors p in m! equals 
m 

(fxj denotes greatest integer in x), it follows that 

Lp2J 

' 1 
m 

P
3J 

c2(2) = c2(3) = 1, j < c2M < m (m>4) t3(m) < 1-m (m > 2). 
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Now writing 
afia2i-aki = (2i)0i(3lfb1i-bSiif 

where b,>4 0=1,—,9.) lower bounds for the number of factors 2 and 3 in a-/!—ak! and a fortiori for c2(n)and 
c3(n) are found to be a + P+'AUb,- and j3, respectively. So 

Say = 2a + 3$ + T,bj < 2c2(n)+c3(n) < 2n + 1-n = jn . 

/I/so s0/i/e</ #/ V. £ Hoggatt, Jr. 

SEARCH! 
/A200 (Corrected). Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Put 

"" £_£ 
where a + (3= a/3 = z determine the coefficients CY/7>,/ such that 

A7 

Z n - 22 C(n>k)Un-k+1 (n>U. 

Solution by the Proposer. 

It is easily verified that 

Put 

Since 

k=1 

Z = Iff 

Z^ = l$2 + Uf 

z3 = u3 + 2u2 + 2u<i 

z = U4 + 3U3 + 5u2 + 5u-\ 

z5 = u5 + 4u4 + 5u3 + 14u2 + 14u 1 

zn = J2 C(n,k)un„k+1 

k=1 

nk+1 Rk+1 nk+2 ak+2 nk ak 
(a+&uk = (a+$) a

 a " P - « — a - q f — +00 ^ j - = uk+1 + (a + P)uk„i , 

it follows that 
(a + $)uk = ui + u2 + ~+uk+1 . 

Hence 
n n n-k+2 n+1 n-J+2 n+1 J 

zn+1 = 22 C(n,k)(a+$)un„k+1 = 22 C(n>k) 12 ui = J2 ui 12 C{n>k} = 12 u*H+2 22 MM-
k=1 k=1 J=1 j=1 k=1 j=1 k=1 

It follows that C(n,k) satisfies the recurrence 
k 

C(n + 1,k) = 22 cfn'k) • 
1=1 

The first few values are easily computed (1 < k < n < 5). 

1 
1 1 
1 2 2 
13 5 5 
1 4 9 14 14 . 
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Thus C(n,k) can be identified with the number of sequences of positive integers (a-j, a2, - , an) such that 
( a1 <a2 < - < an 

\ a; < / (i = 1, 2, -, n) . 

It is known (see for example L. Carlitz and J. Riordan, "Two Element Lattice Permutation Numbers and Their q-
Generalization," Duke Math. Journal, Vol. 31 (1964), pp. 371-388) that 

w- (-;^2)-(";-"/) 
LUCAS CONDITION 

H-210 Proposed by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

Show that a positive integer n is a Lucas number if and only if 5n2 + 20 or 5n2 - 20 is a square. 

Solution by the Proposer. 

I. (a) Let n = L2m+i 

5n2 + 20 = 5(a2m+1 + $2m+1)2 + 20 = 5[a4m+2 ~2<*V2m+1 + $4m+2l = 25F2
2m+r 

(b) Let n = L2m 

5n2-20 = 5(a2m + $2m) -20 = 5[a4m - 2(ap)2m + $4m] = 25F%m . 

II. s2 = 5n2 + 20. 

(a) One solution chain is given by the rational part (for s) and the irrational part (for n) of 
(5+y/5)(9+4y/5)t, t= 0,1,2, ». 

with the irrational part also identical to l-Qt+i. Let 

(5 + s/5)(9 + 4^s)t = st+L6t+1^5 , s? = 5L2
6tH+20. 

(5+sj5)(9 + 4<s/5)t+1 = 9st + 20L6t+1 + y/S(9L6t+i+4st) . 

9L6th1+4yj5L\m +20= 9L6t+1+4^5(*^ - pS^T = 9L6t+1+20F6t+7 

L6t+7 - a ^ + f^7 = a6t+1(9 + 4^f5) + ft+1(9-4sj5) 

= 9L6t+1+20F6t+1 

(b) A second solution chain is given by the rational part (for s) and the irrational part (for n) of 
(10 + 4^/s)(9 + 4^5)t, t = 0,1,2,.« -

The proof that the rational part of 
(10 + 4^5)(9 + 4sf5)t 

is identically i-6t+3 is similar to that used in II (a). 
(c) A third solution chain is given by the rational part (for s) and the irrational part (for n) of 

(25+ 11y/sH9 + 4s/5)t
/ t= 0,1,2,- . 

The proof that the irrational part of 
(25+11sf5)(9 + 4*j5)t 

is identically L^t+s 's similar to that used in II (a). 
III. s2 = 5n2-20. 

(a) One solution chain is given by the rational part (for s) and the irrational part (for n) of 

(5 + 3^51(9 + 4^/5)*, t = 0, 1,2,- . 
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Assume 
(5 + 3slsH9 + 4^5)f = * f + L6t+25, sf = 5L2

6t+2 - 20. 

(5+3^5)l9 + 4s/5)t+1 = 9st + 20L6t+2o + -j5(9L 6t+2 + 4$t) 

9L6t+2 + 4st = 9L6t+2 + 4yjWjo^+^^+Z)'z -4] = 9L6t+2 + 20F6t+2 

L6t+8 - a6t+8
 + f

t+8 = (9 + 4jE)a6t+2H9-4sl5)b6t+2 

= 9L6t+2 + 20F6t+2 . 

(b) A second solution chain is given by the rational part: (for si and the irrational part (for n) of 

(15+7s/5)(9 + 4^5)t, t = 0,1,2,-. 

The proof that the irrational part of 
(15 + 7^51(9 + 4^5)* 

is identical to Lst+4 l$ similar to that used in i l l (a). 
(c) A third solution chain is given by the rational part (for s) and the irrational part (for n) of 

(40 + 18y/s')(9 + 4yfs)t, t = 0, 1,2, ». . 

The proof that the irrational part of 
(4Q+18sj5H9 + 4^[5)t 

is identical to Z.5f is similar to that used in III (a). 

Also solved by P. Bruckman, P. Tracy, and J. I vie. 

AAAwAAA 

[Continued from Page 368.] 

y + 1 < z < y + fx/n) 

is a necessary condition for a solution. Thus, we see that there can be no solution for integer x, 1 < x < n, a well 
known result (see [ 1 , p. 744]). Again, if y = n, there is no solution for 1 <x <n, a well known result (see [1fp. 744]). 
Our proof can also be used to establish the following general result 

Theorem 2. For n >m >2 and integers A >1, B> 1, the equation 

Axn + ByiT' = Bim 

has no solution whenever Axn~m+1 + Bmy < Bmz. 
REMARK. Theorem 2 gives Theorem 1 f o M =B and n = m, 

REFERENCE 

1. L.E. Dickson, History ofthe Theory of Numbers, VoL 2, Diophantine Analysis, Carnegie Institute of Washington, 
1919, Reprint by Chelsea, 1952. 

AAAAAArA 
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DEFINITIONS 
The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+1 + Fn< F0 = ft F1 = 1 a n d Ln+2 = Ln+1 + Ln* L0 = 2* L1 = 1 -

PROBLEMS PROPOSED IN THIS ISSUE 

B-292 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Obtain and prove a formula for the number S(n,t) of terms in 

(X<j+X2+ — +Xn)
f , 

where n and t are integers with n >0 and t> 0. 

B-293 Proposed by Harold Don Alien, Nova Scotia Teachers College, N.S., Canada. 

Identify T, W, H, R, E, F, I, V, and G as distinct digits in | 1,2, -,91 such that we have the following sum (in 
which 7 and 0 are the digits 7 and 0): 

7 
7 

TWO 
THREE . 

FIVE 

EIGHT 

B-294 Proposed by Richard Blazej, Queens Village, New York. 

Show.that FrtLk + FkLn = 2Fn+k for all integers n and k. 

B-295 Proposed by Verner E. Hoggatt, Jr., California State University, San Jose, California. 

Find a closed form for 
n 

J2 <n + 1- k)F2k
 = nF2+(n - 1)F4 + ••••/• F2n • 

k=1 

B-296 Proposed by Gary Ford, Vancouver, British Columbia, Canada. 

Find constants a and b and a transcendental function G such that 

G(Vn+3) + GfyJ = G(yn+2)G(yn+1) 

whenever yn satisfies 

Vn+2 = Wn+1+bVn • 
403 
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B-297 Proposed by PaulS. Bruckrnan, University of Illinois, Chicago Circle, Illinois. 

Obtain a recursion formula and a closed form in terms of Fibonacci and Lucas numbers for the sequence I Gn I de-
fined by the generating function: 

(1-3x-x2 + 5x3+x4-x5r1 = G0+G1x + G2x
2 + ~+Gnx

n + -- . 

SOLUTIONS 
FIBONACCI COMPLEX NUMBERS 

B-268 Proposed by Warren Cheves, Littleton, North Carolina. 

Define a sequence of complex numbers \cn\,n=1,2,>-, where Cn = Fn+iFn+i. Let the conjugate of Cn be 
£/? = Fn-iFn+1> Prove 
(a) CnCn

 = F2n+1 ; 

(b) CnCn+1 = F2n+2 + (-1)ni. 

Solution by J. L Hunsucker, University of Georgia, Athens, Georgia. 

In solving this problem we quote identities by number from V.E. Hoggatt's Fibonacci and Lucas Numbers. 
First 2 2 

CnCn = Fn +(Fn+1) = F2n+1 

by / ; / in Hoggattand (a) is proved. Second, 
cncn+1 = (FnFn+i+Fn+1Fn+2) + HFn+i- FnFn+2) . 

Then 
FnFn+1 + Fn+iFn+2 = Fn+1(Fn + Fn+2) = (Fn+2 - Fn)(Fn+2 + Fn) = F%+2-F^2 = F2n+2 

by Iw- Also, by l13, 

F2nH - FnFn+2 = (~1)(-1)nH = (-Dn , 
and (b) is proved. 

Also solved by Wray G. Brady, Herta T. Freitag, Ralph Garfield, John W. Milsom, C.B.A. Peck, M.N.S. Swamy, P. 
Thrimurthy, Gregory Wulczyn, David Zeitlin, and the Proposer. 

DIAGONALIZING THE Q MATRIX 
B-269 Proposed by Warren Cheves, Littleton, North Carolina. 

Let Q be the matrix 

( ; . ' ) • 

The eigenvalues of Q are a and fi, where 
a= (1 + sj5)/2 and 0 = (1 - y/s)/2. 

Since the eigenvalues of Q are distinct, we know that Q is similar to a diagonal matrix A Show that A is either 
laO\ (PO\ 
\0Bl o r \Oal 00 

Solution by P. Thrimurthy, Gujarat University, Ahmedabad, India. 

The eigenvectors corresponding to the two eigenvalues a and /? are 

( 7 ) a n d ( 7 ) • 
respectively. Hence the transforming matrix is either 

/ > - ( « ? ) or , - ( ? « ) . 
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r'»-(J!2zt->&z%)(',!)M)-(i$) - «-'«-(ii) • 
Also solved by David Zeitlin and the Proposer. 

A MULTIPLE OF L2m+1 

B-270 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Establish or refute the following: If k is odd, 

Lk\[F(n+2)k-Fnk'l • 

Solution by C.B.A. Peck, State College, Pennsylvania. 

F(n+2)k ~ Fnk = LkF(n+1)k 

for k odd (see The Fibonacci Quarterly, Vol. 7, Mo. 5 (Dec. 1969), p. 486). 

Also solved by W.G. Bradyy Gregory Wulczyn, David Zeitlin, and the Proposer. 

FIND THE MULTIPLE OF L2m-2 

B-271 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Establish or refute the following: If k is even, Lk-2 is an exact divisor of: 

(a) F(n+2)k+2Fk-Fnk ; 

(b) F(n+2)k - 2F(n+i)k + Fnk; 
and 
(c) 2[F(n+2)k - F(n+1)k + Fkl -

Solution by David Zeitlin, Minneapolis, Minnesota. 
Since 

F(n+2)k ~ LkF(n+1)k + (-D Fnk = 0 , 

F(n+2)k-2F(n+1)k + (-1)kFnk = (Lk-2)F(n+1)k . 

For k even, 
(Lk - 2)(F(n+2)k - 2F(n+1)k + Fnk) 

and (b) is true, (a) False. For n = 0, 

(Lk-2)/(F2k+2Fk) 

when k = 4. (c) False. For n = 0, 
(Lk-2)/2F2k 

when k = 4. 

Also solved by C.B.A. Peck, Gregory Wulczyn, and the Proposer. 

A NONLINEAR RECURRENCE 

B-272 Proposed by Gary G. Ford, Vancouver, British Columbia, Canada. 

Find at least some of the sequences j yn I satisfying 

Vn+3 + Yn = Vn+2Vn+1 • 

Solution by David Zeitlin, Minneapolis, Minnesota. 

Three solutions are given by: 
(1) yn = 0 for ail n. 

(2) yn » 2 for ail n. 
(3) Let b denote a parameter, independent of n. Then one may let y4m = b, y4m+i = -1 = V4m+3' Y4m+2 = 1 ~ 

b, for all integers m. 
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NOTE: Herta T. Freitag and P. Thrimurthy each pointed out that any three consecutive terms may be chosen arbitrarily, 
and then the recurrence determines the other terms. Another version of this problem is proposed in this issue as B-296. 

GOLDEN MINIMUM PERIMETER 

B-273 Proposed by Marjorie Bicknell, AC. Wilcox High School, Santa Clara, California. 

Construct any triangle AABC with vertex angle A = 54° and median AM to the side opposite A such th%t AM** t 
Now, inscribe AXYM in tsABC so that M is the midpoint of BC, and X and Y lie between A and B and between 
A and Cf respectively. Find the minimum perimeter possible for the inscribed triangle, AXYM. 

Solution by the Proposer. 

Construct LMAB & LM'AB, AM'=AM; LMAC'S LM"AC, AM"=AM. Then draw M'M", intersecting AB at X 
and AC at Y. Since, by S.A.S., bM'AX - AMAX and AM"AY s MAY, MX + XY + YM = M'X + XY +YM", 
which is a minimum when M', X, Y, and M" are colinear. So, the minimum perimeter is given by the length M'M". 
Also, LM'AM" = 2A. (This construction was given by Samuel L. Greitzer, Rutgers University, as solution to a problem 
appearing in Summation, Association of Teachers of Mathematics of New York City, Spring, 1972.) 

By the Law of Cosines, 

(M'M")2 = (AM')2 + (AM")2'- 2(AM')(AM") cos 2A = 2(AM)2(1 - cos 2A) = 4(AM)2sin2 A. 

Thus, M'M" = 2(AM)(s\n A). 
Now, that sin 54° = (1 + %/5)/4 = (p/2 is easily seen from the following: 

sin 36° = cos 54° = cos 18° cos 36° - sin 18° sin 36° 

2 cos 18° sin 18° = cos 18° cos 36° -2s'm2 18° cos 18° 
leading to 

4s\n2 18°+2$\n 18° - 1 = 0 
so that 

sin 18° = (y/5 - 1)/4 = 7/2(1) -
Then, 

cos 38° = 1 - 2 s'm2 18° = (l + sfs)/4 = (p/2 = sin 54° ~ 

Therefore, the minimum perimeter is given by 

M'M" - 2(AM)(s\n 54°) = 2(1)((p/2) = 0 ' , 
the Golden Section Ratio. 

Notice that nowhere was the fact that AM was a median required. If M is any point between B and C such that 
AM = 1, we have the same minimum perimeter. 

* * * * * * * 
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B-265, Vol. 12, No. 3, p. 315; B-266, Vol. 12, No. 3, p. 315; B-267, Vol. 12, No. 3, p. 316; H-207, Vol. 12, 
No. 4, p. 399; H-210, Vol. 12, No. 4, p. 402. 

BRYANT, JASV1ES DB PROBLEM SOLUTIONS: B-256, Vol. 12, No. 2, p. 221; B-257, Vol. 12, No. I p. 222. 

CAPOBIANCO,MICHAEL. PROBLEM SOLUTION: B-252, Vol. 12, No. 1, p. 104. 

CARLITZ, L. "Fibonacci Notes - 1. Zero-One Sequences and Fibonacci Numbers of Higher Order," Vol. 12, No. 
1, pp. 1-10. "Fibonacci Notes - 2. Multiple Generating Functions," Vol. 12, No. 2, pp. 179-185. "Cor-
rigendum To: Enumeration of Two-Line Arrays," Vol. 12, No. 3, p. 266 (co-author, Margaret Hodel). 
"Fibonacci Notes - 3. ^-Fibonacci Numbers," Vol. 12, No. 4, pp. 317-322. "A ^Identity," Vol. 12, No. 4, 
pp. 369-372. PROBLEMS PROPOSED: B-255, Vol. 12, No. 1, p. 106; H-231, Vol. 12, No. 1, p. 107; H-236, 
Vol. 12, No. 2, p. 214; H-199, Vol. 12, No. 2, p. 214; B-259, Vol. 12, No. 2, p. 223; H-238, Vol. 12, No. 3, 
p. 309; H-202, Vol. 12, No. 3, p. 309; H-205, Vol. 12, No. 3, p. 311; H-240, Vol. 12, No. 4, p. 398; H-209, 
Vol. 12, No. 4, p. 400. 
PROBLEM SOLUTIONS: B-255, Vol. 12, No. 1, p. 106; H-199, Vol. 12, No. 2, p. 215; B-259, Vol. 12, No. 
2, p. 223; H-202, Vol. 12, No. 3, p. 310; H-205, Vol. 12, No. 3, p. 312; H-209, Vol. 12, No. 4, p. 400. 

CARROLL, TIMOTHY B. PROBLEMS PROPOSED: B-263, Vol.12, No. 3, p. 314. 
PROBLEM SOLUTIONS: B-252, Vol. 12, No. 1, p. 104; B-253, Vol. 12, No. 1, p. 105; B-254, Vol. 12, No. 
1, p. 106; B-255, Vol. 12, No. 1, p. 106; B-256, Vol. 12, No. 2, p. 221; B-257, Vol. 12, No. 2, p. 222; B-259, 
Vol. 12, No. 2, p. 223; B-260, Vol. 12, No. 2, p. 224; B-261, Vol. 12, No. 2, p. 224; B-263, Vol. 12, No. 3, 
p. 314. 

CATLIN, PAUL A. "On the Divisors of Second-Order Recurrences," Vol. 12, No. 2, pp. 175-178. "On the Mul-
tiplication of Recurrences," Vol. 12, No. 4, pp. 365-368. "A Lower Bound for the Period of the Fibonacci 
Series Modulo M," Vol. 12, No. 4, pp. 349-350. 

CHAN, JULIANA D. PROBLEM SOLUTIONS: B-250, Vol. 12, No. 1, p. 102; B-254, Vol. 12, No. 1, p. 106, B.256, 
Vol. 12, No. 2, p. 221; B-257, Vol. 12, No. 2, p. 222. 

CHEVES, WARREN. PROBLEMS PROPOSED: B-275, Vol. 12, No. 1, p. 101; B-268, Vol. 12, No. 4, p. 404; B-269, 
Vol. 12, No. 4, p. 404. 
PROBLEM SOLUTIONS: B-250, Vol. 12, No. 1, p. 102; B-256, Vol. 12, No. 2, p. 221; B-257, Vol. 12, No. 
2, p. 222; B-261, Vol. 12, No. 2, p. 224; B-264, Vol. 12, No. 3, p. 315; B-267, Vol. 12, No. 2, p. 316; B-268, 
Vol. 12, No. 4, p. 404; B-269, Vol. 12, No. 4, p. 405. 

CHURCH, C.H., JR. "Lattice Paths and Fibonacci and Lucas Numbers," Vol. 12, No. 4, pp. 336-338. 

COHN, E.M. PROBLEM PROPOSED: H-198, Vol. 12, No. 1, p. 111. 
PROBLEM SOLUTION: H-198, Vol. 12, No. 1, p. 111. 

COLLINGS, S.N. "Some Congruences for Fibonacci Numbers," Vol. 12, No. 4., pp. 351-354 (co-authors, A.G. 
Shannon and A.F. Horadam). 

deBRUIJN, P.J. "An Extension of Fibonacci's Sequence," Vol. 12, No. 3, pp. 251-258. 

DeTEMPLE, DUANE. "A Pentagonal Arch," Vol. 12, No. 3, pp. 235-236. 
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ERDOS P. "Letter to the Editor/' Vol. 12, No. 4, p. 335. PROBLEM PROPOSED: H-208, Vol. 12, No. 4, p. 399. 

FIELDER, DANIEL C. "Fibonacci Numbers in Tree Counts for Sector and Related Graphs/' Vol. 12, No. 4, pp. 
355-359. 

FINKEL, D. PROBLEM PROPOSED: H-239, Vol. 12, No. 4, p. 398. 

FORD, GARY G. PROBLEMS PROPOSED: B-296, Vol. 12, No. 4, p. 403; B-272, Vol. 12, No. 4, p. 405. 

FREITAG, HERTA T. PROBLEMS PROPOSED: B-282, Vol. 12, No. 2, p. 220; B-256, Vol. 12, No. 2, p. 221; 
B-257, Vol. 12, No. 2, p. 222; B-286, B-287, Vol. 12, No. 3, p. 313; B-262, Vol. 12, No. 3, p. 314; B-292, 
Vol. 12, No. 4, p. 403; B-270, Vol. 12, No. 4, p. 405; B-271, Vol. 12, No. 4, p. 405. 
PROBLEM SOLUTIONS: B-250, Vol. 12, No. 1, p. 102; B-252, Vol. 12, No. 1,p. 104; B-253, Vol. 12, No. 
1, p. 105; B-254, Vol. 12, No. 1, p. 106; B-255, Vol. 12, No. 1, p. 106; B-256, Vol. 12, No. 2, p. 221; B-257, 
Vol. 12, No. 2, p. 222; B-259, Vol. 12, No. 2, p. 223; B-261, Vol. 12, No. 2, p. 224; B-263, Vol. 12, No. 3, 
p. 314; B-264, Vol. 12, No. 3, p. 315; B-265, Vol. 12, No. 3, p. 315; B-262, Vol. 12, No, 3, p. 314; B-266, 
Vol. 12, No. 3, p. 316; B-267, Vol. 12, No. 3, p. 316; B-268, Vol. 12, No. 4, p. 404; B-270, Vol. 12, No. 4 , 
p. 405; B-271, Vol. 12, No. 4, p. 405. 

GARFIELD, RALPH. PROBLEMS PROPOSED: H-232, Vol. 12, No. 1, p. 107; H-241, Vol. 12, No. 4, p. 398. 
PROBLEM SOLUTIONS: B-250, Vol. 12, No. 1, p. 102; B-251, Vol. 12, No. 1, p. 104; B-252, Vol. 12, No. 1, 
p. 104; B-253, Vol. 12, No. 1, p. 105; B-254, Vol, 12, No. 1, p. 106; B-255, Vol. 12, No. 1,p. 106; B-256, 
Vol. 12, No. 2, p. 221; B-257, Vol. 12, No. 2, p. 222; B-262, Vol. 12, No. 3, p. 314; B-263, Vol. 12, No. 3, 
p. 314; B-264, Vol. 12, No. 3, p. 315; B-265, Vol. 12, No. 3, p. 315; B-266, Vol. 12, No. 3, p. 316; B-268, 
Vol. 12, No. 3, p. 316; B-268, Vol. 12k No, 4, p. 404. 

GOOD, I J . "A Reciprocal Series of Fibonacci Numbers," Vol. 12, No. 4, p. 346. 

GOODWIN, NORRIS, "Power Series and Cyclic Decimals," Vol. 12, No. 4, pp. 347-348. 

GOULD, HENRY W. "Generalization of Hermite's Divisibility Theorems and the Mann-Shanks Primality Criterion 
for s-Fibonomial Arrays," Vol. 12, No. 2, pp. 157-166. "The Design of the Four Binomial Identities: 
Moriarty Intervenes," Vol. 12, No. 3, pp. 300-308. "Some Sequences Generated by Spiral Sieving Methods," 
Vol. 12, No. 4, pp. 393-397. PROBLEM PROPOSED: H-62, Vol. 12, No. 1, p. 108. 

GOULD, LAWRENCE D. PROBLEM SOLUTION: B-252, Vol. 12, No. 1, p. 104. 

GRASSL, RICHARD M. PROBLEMS PROPOSED: B-279, Vol. 12, No. 1, p. 101; B-264, Vol. 12, No. 3, p. 314. 
PROBLEM SOLUTION: B-264, Vol. 12, No. 3, p. 315. 

GRIMSON, R.C. "The Evaluation of Certain Arithmetic Sums," Vol. 12, No. 4, pp. 373-380. 

GUILLOTTE, GUY A.R. PROBLEMS PROPOSED: B-250, VoS.*12, No. 1, p. 102; H-200, Vol. 12, No. 2, p. 216. 
PROBLEM SOLUTIONS: B-250, Vol. 12, No. 1, p. 102; H-200, Vol. 12, No. 2, p. 218. 

GUPTA, A.K. "Generalized Hidden Hexagon Squares," Vol. 12, No. 1, p. 45. 

GUY, RICHARD. A Constructed Solution of o(n) = o(n + 1)/' Vol. 12, No. 3, p. 299 (co-author, Daniel Shanks). 

HARRIS, V„C. "On Daykin's Algorithm for Finding the G.C.D./' Vol. 12, No. 1, p. 80. 

HILLSVIAN, A.P. Editor of Elementary Problems and Solutions: Vol. 12, No. 1, pp. 101-106; Vol. 12, No. 2, pp. 
220-224; Vol. 12, No. 3, pp. 313-316; Vol. 12, No. 4, pp. 403-406. 

HILTON, AJ.W. "On Fern's Theorem on the Expansion of Fibonacci and Lucas Numbers," Vol. 12, No. 2, pp. 231 
-232. "Spanning Trees and Fibonacci and Lucas Numbers," Vol. 12, No. 3, pp. 259-262. "On the Partition 
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of Horadam's Generalized Sequences into Generalized Fibonacci and Generalized Lucas Sequences/'Vol. 12, 
No. 4, pp. 339-345. 

HINDIN, HARVEY J. PROBLEM SOLUTIONS: B-252, Vol. 12, No. 1, p. 104; B-253, Vol. 12, No. 1, p. 105. 

HLYNKA, MYROW. PROBLEM SOLUTIONS: B-250, Vol. 12, No. 1, p. 102; B-252, Vol. 12, No. 1, p. 104. 

HOCHBERG, MURRAY. "On the Set of Divisors of a Number," Vol. 12, No. 4, pp. 363-364. 

MODEL, MARGARET J. "Corrigendum To: Enumeration of Two-Line Arrays," Vol. 12, No. 3, p. 266 (co-author, 
L. Carlitz). "Combinatorial Interpretation of an Analog of Generalized Binomial Coefficients," Vol. 12, No. 
4, pp. 360-362. 

HOGGATT, V.E., JR. "Diagonal Sums of the Trinomial Triangle," Vol. 12, No. 1, pp. 47-50 (co-author, Marjorie 
Bicknell). "Sets of Binomial Coefficients with Equal Products," Vol. 12, No. 1, pp. 71-79 (co-author, C.T. 
Long). "Irreducibility of Lucas and Generalized Lucas Polynomials," Vol. 12, No. 1, pp. 95-100 (co-author, 
G.E. Bergum). "Divisibility Properties of Generalized Fibonacci Polynomials," Vol. 12, No. 2, pp. 113-120. 
(co-author, C.T. Long). "A Primer for the Fibonacci Numbers: Part XIV," Vol. 12, No. 2, pp. 147-156 (co-
author, Marjorie Bicknell). "Divisibility and Congruence Relations," Vol. 12, No. 2, pp. 189-195 (co-author, 
Gerald E. Bergum). "Triangular Numbers," Vol. 12, No. 3, pp. 221-230 (co-author, Marjorie Bicknell). 
PROBLEMS PROPOSED: H-201, Vol. 12, No. 2, p. 218; B-281, Vol. 12, No. 2, p. 220; B-290, Vol. 12, No. 
3, p. 313; B-295, Vol. 12, No. 4, p. 403. 
PROBLEM SOLUTIONS: H-201, Vol. 12, No. 2, p. 219; H-208, Vol. 12, No. 4, p. 400. 

HOMER, JOHN E. PROBLEM SOLUTIONS: B-256, Vol. 12, No. 2, p. 221; B-257, Vol. 12, No. 2, p. 222. 

HONES, M.J. "Argand Diagrams of Extended Fibonacci and Lucas Numbers," Vol. 12, No. 3, pp. 233-234 (co-
authors, FJ. Wunderlich and D.E. Shaw). 

HORADAM, A.F. "Some Aspects of Generalized Fibonacci Numbers," Vol. 12, No. 3, pp. 241-250 (co-author, 
J.E. Walton). "Oresme Numbers," Vol. 12, No. 3, pp. 267-270. "Some Further Identities for the Gener-
alized Fibonacci Sequence Hn " Vol. 12, No. 3, pp. 272-280 (co-author, J.E. Walton). "Some Con-
gruences for Fibonacci Numbers," Vol. 12, No. 4, pp. 351-354 (co-authors, E.G. Shannon and S. N. 
Collings). "On Generalized Functions for Powers of a Generalized Sequence of Numbers," Vol. 12, No. 4, 
pp. 348, 350, 354, 362. 

HUNSUCKER, JOHN L PROBLEM PROPOSED: B-260, Vol. 12, No. 2, p. 223. PROBLEM SOLUTIONS: B-260, 
Vol. 12, No. 2, p, 224; B-268, Vol. 12, No. 4, p. 404. 

HUNTER, J.A.H. PROBLEM SOLUTION: B-250, Vol. 12, No. 1, p. 102. 

HUNTLEY, H.E. "The Golden Ellipse," Vol. 12, No. 1, pp. 38-40. "Phi: Another Hiding Place," Vol. 12, No. 1, 
pp. 65-66. 

IVIE, J. Problem Solution: H-210, Vol. 12, No. 4, p. 402. 

JAISWAL, D.V. "Some Geometrical Properties of the Generalized Fibonacci Sequence," Vol. 12, No. 1, pp. 67-70. 
"On Polynomials Related to Tchebichef Polynomials of the Second Kind," Vol. 12, No. 3, pp. 263-265. 

KARST, EDGAR. "Iteration Algorithms for Certain Sums of Squares," Vol. 12, No. 1, pp. 83-86. 

KIOSINSK!, L F . "A Fibonacci Analogue of Gaussian Binomial Coefficients," Vol. 12, No. 2, pp. 129-132 (co-
author, G.L. Alexanderson). 

KNUTH, DONALD E. "Letter to the Editor," Vol. 12, No. 1, p. 46. 

KUMAR, SANTOSH, "Fibonaccian Pathological Curves," Vol. 12, No. 1, pp. 92-94. 

LAXTON, R.R. "On a Problem of M. Ward," Vol. 12, No. 1, pp. 41-44. 
LONG, CALVIN T. "Sets of Binomial Coefficients with Equal Products," Vol. 12, No. 1, pp. 71-79 (co-author, 

V.E. Hoggatt, Jr.). "Divisibility Properties of Generalized Fibonacci Polynomials," Vol. 12, No. 2, pp. 113-
120 (co-author, V.E. Hoggatt, Jr.). 
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LORD, GRAHAM. PROBLEM PROPOSED: B-276, Vol. 12, Mo. 1,p. 101. 
PROBLEM SOLUTIONS: B-252, Vol. 12, No. 1, p. 104; B-253, Vol. 12, No. 1, p. 105; 8-254, Vol. 12, No. 
1, p. 105; B-256, Vol. 12, No. 2, p. 221; B-257, Vol. 12, No. 2, p. 222; B-258, Vol. 12, No. 2, p. 222; B-25SL 
Vol. 12, No. 2, p. 223; B-260, B-261, Vol. 12, No. 2, p. 224; H-206, Vol. 12, No. 3, p. 312; B-262, Vol. 12, 
No. 3, p. 314; B-263, Vol. 12, No. 3, p. 314; B-264, Vol. 12, No. 3, p. 315; B-265, Vol. 12, No. 3, p. 315; 
B-266, Vol. 12, No. 3, p. 316; B-267, Vol. 12, No. 3, p. 316. 

LOSSERS, O.P. PROBLEM SOLUTION: H-208, Vol. 12, No. 4, p. 399. 

MANAV PHIL. PROBLEMSPROPOSED: B-283, B-284, Vol. 12, No. 2, p. 221; B-261, Vol. 12, No. 2, p. 224; B-291, 
Vol. 12, No. 3, p. 313. PROBLEM SOLUTION: B-261, Vol. 12, No. 2, p. 224. 

McGEE, ROBERT. PROBLEM SOLUTION: B-254, Vol. 12, No. 1, p. 106. 

MILLIN, D.A. PROBLEM PROPOSED: H-238, Vol. 12, No. 3, p. 309. 

MILSOM, JOHN W. PROBLEM SOLUTIONS: B-250, Vol. 12, No. 1, p. 102; B-268, Vol. 12, No. 4, p. 404. 

IVIONZINGO, M.G. "On Extending the Fibonacci Numbers to the Negative Integers," Vol. 12, No. 3, p. 292. 

NEBB, JACK. PROBLEM PROPOSED: B-260, Vol. 12, No. 2, p. 223. 
PROBLEM SOLUTION: B-260, Vol. 12, No. 2, p. 224. 

PAGE, WARREN. "P-Q M-Cycles, a Generalized Number Problem," Vol. 12, No. 4, pp. 323-326. 

PARKER, F.D. PROBLEM SOLUTIONS: B-256, Vol. 12, No. 2, p. 221; B-257, Vol. 12, No. 2, p. 222. 
PECK, C.B.A. PROBLEM PROPOSED: B-274, Vol. 12, No. 1, p. 101. 

PROBLEM SOLUTIONS: B-250, Vol. 12, No. 1, p. 102; B-252, Vol. 12, No. 1, p. 104; B-253, Vol. 12, No. 1, 
p. 105; B-255, Vol. 12, No. 1, p. 106; B-256, Vol. 12, No. 2, p. 221; B-257, Vol. 12, No. 2, p. 222; B-258, 
Vol. 12, No. 2, p. 222; B-260, Vol. 12, No. 2, p. 224; B-262, Vol. 12, No. 3, p. 314; B-264, Vol. 12, No. 3, p. 
315; B-265, Vol. 12, No. 3, p. 315; B-266, Vol. 12, No. 3, p. 316; B-267, Vol. 12, No. 3, p. 316; B-268, Vol. 
12, No. 4, p. 404; B-270, Vol. 12, No. 4, p. 405; B-271, Vol. 12, No. 4, p. 405. 

POPE, J I M . P R O B L E M S O L U T I O N : B-250, vol. 12, No. 1, P . 102. 

RAPHAEL, BROTHER L. "Linearly Recursive Sequences of Integers," Vol. 12, No. 1, pp. 11-37. 
SCOVILLE, RICHARD. PROBLEMS PROPOSED: B-255, Vol. 12, No. 1, p. 106; H-199, Vol. 12, No. 2, p. 214. 

PROBLEM SOLUTIONS: B-255, Vol. 12, No. 1, p. 106; H-199, Vol. 12, No. 2, p. 215. 
SERKLAND, CARL. "Generating Identities for Pell Triples," Vol. 12, No. 2, pp. 121-128. 
SHALLIT, JEFFREY. PROBLEM SOLUTION: B-263, Vol. 12, No. 3, p. 314. 
SHANKS, DANIEL. "Incredible Identities," Vol. 12, No. 3, p. 271. "A Constructed Solution of- a(n) = o(n+ 1)/' 

Vol. 12, No. 3, p. 299 (co-author, Richard Guy). 
SHANNON, A.G. "A Generalization of the Hilton-Fern Theorem on the Expansion of Fibonacci and Lucas Num-

bers," Vol. 12, No. 3, pp. 237-240. "Explicit Expressions for Powers of Linear Recursive Sequences," Vol. 
12, No. 3, pp. 281-287. "A Method of Carlitz Applied to the Kth Power Generating Function for Fibon-
acci Numbers," Vol. 12, No. 3, pp. 293-298. "Some Properties of a Fundamental Recursive Sequence of 
Arbitrary Order," Vol. 12, No. 4, pp. 327-335. "Some Congruences for Fibonacci Numbers," Vol. 12, No. 
4, pp. 351-354 (co-authors, A.F. Horadam and S.N. Collings). PROBLEM PROPOSED: H-233, Vol. 12, No. 
1,p. 108. 

SHAW, D.E. "Argand Diagrams of Extended Fibonacci and Lucas Numbers," Vol. 12, No. 3, pp. 233-234 (co-
authors, F.J. Wunderlich and MJ. Hones). 

SIELAFF, RICHARD W. PROBLEM SOLUTIONS: B-250, Vol. 12, No. 1, p. 102; B-261, Vol. 12, No. 2, p.224. 
SINGH, SAHIB. "Stufe of a Finite Field, Vol. 12, No. 1, pp. 81-82. 
SINGMASTER, D. PROBLEM SOLUTION: H-200, Vol. 12, No. 2, p. 216. 
SMITH, PAUL. PROBLEM SOLUTIONS: B-259, Vol. 12, No. 2, p. 223; B-261, Vol. 12, No. 2, p. 224; B-263, Vol. 

12, No. 3, p. 314; B-267, Vol. 12, No. 3, p. 316. 
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SOMER, LAWRENCE. PROBLEM PROPOSED: H-197, Vol. 12, No. 1, p. 110. 
PROBLEM SOLUTION: H-197, Vol. 12, No. 1, p. 110. 

STAPLES, DENNIS. PROBLEM SOLUTION: B-251, Vol. 12, No. 1, p. 103. 

STRAUS, E.G. "Latin k-Cubes," Vol. 12, No. 3, pp. 288-292 (co-author, Joseph Arkin). 

SWAMY,IVLN.S. PROBLEM SOLUTIONS: B-256, Vol. 12, No. 2, p. 221; B-257, Vol. 12, No. 2, p. 222; B-263, Vol. 
12, No. 3, p. 314; B-264, Vol. 12, No. 3, p. 315; B-265, Vol. 12, No. 3, p. 315; B-266, Vol. 12, No. 3, p. 316; 
B-267, Vol. 12, No. 3, p. 316; B-268, Vol. 12, No. 4, p. 404. 

TEPPER, MYRON. "Combinations and Sums of Powers," Vol. 12, No. 2, pp. 196-198. 

THOMAS,WILLIAM E., JR. PROBLEM SOLUTIONS: B-256, Vol. 12, No. 2, p. 221; B-257, Vol. 12, No. 2, p. 222. 

TRACY, PHILIP. PROBLEM SOLUTIONS: B-255, Vol. 12, No. 1, p. 106; H-197, Vol. 12, No. 1, p. 111; B-260, 
Vol. 12, No. 2, p. 224; H-207, Vol. 12, No. 4, p. 399; H-210, Vol. 12, No. 4, p. 402. 

TRIGG, CHARLES W. "Infinite Sequences of Palindromic Triangular Numbers," Vol. 12, No. 2, pp. 209-211. 
"The Apollonius Problem," Vol. 12, No. 4, p. 326. "Antimagic Squares Derived from the Third-Order Ma-
gic Square," Vol. 12, No. 4, pp. 387-390. PROBLEM SOLUTION: B-250, Vol. 12, No. 1, p. 102. 

TRIMURTHY, P. PROBLEM SOLUTIONS: B-268, Vol. 12, No. 4, p. 404; B-269, Vol. 12, No. 4, p. 404. 

TURNER, MICHAEL R. "Certain Congruence Properties (Modulo 100) of Fibonacci Numbers," Vol. 12, No. 1, pp. 
87-91. 

USISKIN, ZALMAN. PROBLEMS PROPOSED: B-265, Vol. 12, No. 3, p. 315; B-266, Vol. 12, No. 3, p. 315. 
PROBLEM SOLUTIONS: B-265, Vol. 12, No. 3, p. 315; B-266, Vol. 12, No. 3, p. 316. 

VEGH, EMANUEL. "Concerning an Equivalence Relation for Matrices," Vol. 12, No. 4, pp. 391-392. 
WADDILL, MARCELLUS. "Matrices and Generalized Fibonacci Sequences," Vol. 12, No. 4, pp. 381-386. 
WALTON, J.E. "Some Aspects of Generalized Fibonacci Numbers," Vol. 12, No. 3, pp. 241-250 (co-author, 

A.F. Horadam). "Some Further Identities for the Generalized Fibonacci Sequence Hn ," Vol. 12, No. 3, 
pp. 272-280 (co-author, A.F. Horadam). 

WHITNEY, R.E. Editor of Advanced Problems and Solutions: Vol. 12, No. 1, pp. 107-112; Vol. 12, No, 2, pp. 
213-219; Vol. 12, No. 3, pp. 309-312; Vol. 12, No. 4, pp. 398-402. 
PROBLEM PROPOSED: H-234, Vol. 12, No. 2, p. 213. PROBLEM SOLUTIONS: B-250, Vol. 12, No. 1, p. 
102; B-252, Vol. 12, No. 1, p. 104; B-254, Vol. 12, No. 1, p. 106. 

WILLIAMS, LAWRENCE. PROBLEM SOLVED: B-250, Vol. 12, No. 1, p. 102. 

WOLK, BARRY. PROBLEM PROPOSED: B-285, Vol. 12, No. 2, p. 231. 

WULCZYN, GREGORY. PROBLEM SOLUTIONS: B-254, Vol. 12, No. 1, p. 106; B-256, Vol. 12, No. 2, p. 221; 
B-257, Vol. 12, No. 2, p. 222; B-262, Vol. 12, No. 3, p. 314; B-263, Vol. 12, No. 3, p. 314; B-264, Vol. 12, 
No. 3, p. 315; B-265, Vol. 12, No. 3, p. 315; B-266, Vol. 12, No. 3, p. 316; B-267, Vol. 12, No. 3, p. 316; 
H-207, Vol. 12, No. 4, p. 399; H-210, Vol. 12, No. 4, p. 401; B-268, Vol. 12, No.4,p.404;B-270,Vol. 12, 
No. 4, p. 405; B-271, Vol. 12, No. 4, p. 405. 
PROBLEMS PROPOSED: H-230, Vol. 12, No. 1, p. 107; H-235, Vol. 12, No. 2, p. 214; H-210, Vol. 12, No. 
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