FIBONACCI NOTES
3: ¢-FIBONACCI NUMBERS

L. CARLITZ*
Duke University, Durham, North Carolina 27706

1. It is well known (see for example [2, p. 14] and [1]) that the number of sequences of zeros and ones of
length n:

(1.1) (ag,az, -, ap) faj=0 or 1)

in which consecutive ones are forbidden is equal to the Fibonacci number F,.o. Moreover if we also forbid
ay; =ap =1, then the number of allowable sequences is equal to the Lucas number L,,_;. More precisely, for the
first problem, the number of allowable sequences with exactly & ones is equal to the binomial coefficient

Tn—k+1
VoK

for the second problem, the number of sequences with & ones is equal to
(n—k+1> _ (n—k—l)
k k-2
We now define the following functions. Let
(1.2) fink) = Zq1*222* *nan

where the summation is extended over all sequences (1.1) with exactly & ones in which consecutive ones are not
allowable. Also define

(1.3) glnk) = 2:qu,311L232.,L.,.+na,r, ,

where the summation is the same as in (1.2) except that a7 =a,, = 7 isalso forbidden. We shall show that
(1.4) f(n,k) =qk’{n—lz+7 ]

and

(1.5) alnk) = g** [T T] g kT

where

(1.6) [e] - (1=q"N1=g"")(1-¢g"*"")

(1-a)(1-q7)~(1-g")
the g-binomial coefficient.
These results suggest that we define g-Fibonacci and g-Lucas numbers by means of

(1.7) Frerla) = 25 "<
2k<n

(1.8) Lnlg) = Fpeolg) —q" Fpoo(qg) ,

where
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(1.9) Freala) = 3 q®H 0 kT
2k<n ’
It follows from the definitions that
(1.10) Fri1(a) = Fola) = "7 Fp_y(q)
Freila) = Fola) = ¢""TF7 () .
Thus
(1.11) Lolg) = Foiqlg) +q"(Fplq) — Fp_o(q)).

However, L,(q) does not seem to satisfy any simple recurrence.
2. Forthe first problem as defined above it is convenient to define fj(n,k) as the number of allowable sequences
with exactly & onesand a, =/, where j=0 or 1. It then follows at once that

(2.1) foln,k) = fgln — 1, k) +f1(n — 1,k) (n>1)
?gdZ) filnk) = q"foln—1,k- 1) (n>1).
Also it is clear from the definition that
(2.3) fln,k) = foln,k) +fq1(nk) .
Hence, by (2.1),
(2.4) fin,k) = foln+1, k).
Combining (2.1) and (2.2) we get
(2.5) foln,k) = foln —1,k) +q" fgln = 2,k — 1) (n>2.

This formula evidently holds for & = 0 if we define f(n, —7)=0
It is convenient to put

(26) o0k = {5 K39,
Also, from the definition,
(27) fol1k) = {5 %29
and
{7 (k=0
(2.8) fol2k) = <q (k=1)
é 0 (k>1)
It follows that (2.5) hiolds for n > 2.
Now put
(2.9) Dlxy) = Y folnkx"yk .

n,k=0
Then, by (2.6), (2.7) and (2.5),

Bluy) = 14x+ D D { foln—1,k)+q" " fin -2,k - 1)} x"y*
n=2 k
= 1+x®lxy) +gx2y dlgx, y),
so that
-1 qxzy
(2.10) D(x,y) % +7-x Dlgx, y).

Iteration of (2,10) leads to the series
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= K2 2k k

(2.11) Dlxy) = 97)7’;27} ,
k=0

where

(dksq = (1—=xH1—qgx) —(1—g¥x).
Since

(X)kl./.y =Z [k;s:ﬁ Xs'

where s=0

is defined by (1.6), it follows that

d(xy) = Z qk2X2kyk Z [k:sJ X5
k=0 s=0
o o
_ Z Z gk [nkk]Xnyk

n=0 2k<n
Comparison with (2.9) gives
(2.12) foln) = ¢ " K]
Therefore, by (2.4),
(2.13) fin,k) = qkz[ n _/f * 1]

3. If we put

(3.1) fin) = ., fink),

2k<n+1
it is evident that

f(n) = 2q31+232+"'+”an

’

where the summation is over all zero-one sequences of length n with consecutive ones forbidden. This suggests
that we define

(3.2) Frerla) = fn—1) = 3 q¥ [";k_l (nh>0.
2k<n
We may also define
(3.3) Folg) = G, Fqilg) = 1.
The next few values are
Falg) = 1, F3lq) = 1+q

Fylg) = 1+q+9%  Fslg) = 1+q+q2+q°+q*
Felg) = 1+qg+q2+q3+2g%+q%+4¢°
Flq) = 7+q+q2+q3+2q4+2q5+246+q7+q8+q9_

It is evident from the above that F,(7) = F,,, the ordinary Fibonacci number. To get a recurrence for F,(g) we
use .
n| - n-k| n—1 n—1
[f] = ezl L]

Then, by (3.2),
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Fovafa) = Fafa) = 3 € ([ 7% -
k

Fn—k-—1 _ k2 n-2k[n—k—1]
k ])~Zq q !- k=1 j
- k

- _142 e 1 - 2 ke —
=anzq(k1_; tnkfji ___qn7>::qk[n I/: 2] )
k

5
so that

(3.4) Fpe1lg) = Folg) +q"™ 7 F,_s(q) (n>1).

This of course reduces to the familiar recurrence F,+7 = F,+ F,-7 when g=1.
It follows easily from (3.4) that F,(g) isa polynomial in g with positive integral coefficients. If d(k/ denotes
the degree of Fi(g) then d(1)=d(2) =0, d(3)=1, d(4) =2, d(5)=4, --. Generally it is clear from (3.4) that

(3.5) din+1) =n—1+dn~-1) fn > 1)
Thus
d2n+1) = 2n~1+d(2n - 1), d(2n) = 2n -2 +d(2n - 2),
which yields
(3.6) d(2n+1) = n?,  dl2n) = nfn—1).
If we replace ¢ by q"’ we find that
l:n] N k’-nk[ n]
k|9 k|-
Hence :
(3.7) Fasrlg™) = 30 ¥k 7ok
It follows that 2k<n
2 n 2 [~
9" Fanerla™") = Y g/ {2",: k]
k=0 -
(3.8) n—1
g"m 1V, (g71) = E g (=) (nk=1) [LG —lf - 1]
k=0 i
It follows from (2.11) and (3.2) that
bl =, k* 2k
(3.9) D Faerlghx” = =
n=0 k=0 Xk+1

G.E. Andrews proposed the following problem. Show that Fp+1(q) is divisible by 7 +g +---+qp’7, where p
is any prime = +2 (mod 5). For proof see [3]. This result is by no means apparent from (3.2). The proof depends
upon the identity

,
(3.10) Fner = (—”"X%k{%”[e?kﬂ ’

k=-r
where

elk) = [%(n +5k)], r=[+(n+2)]
In general it does not seem passible to simplify the right member of (3.9). However when x =g itis noted in [3]
that

oo 0o kz o _ )
(3.11) 7+Z Fn(q)qn = E ?7_= I (7—X5”+7) 7(7_X5n+4} 7 )
n=1 k=0 Tk n=0
4. We now turn to the second problem described in the Introduction. To determine gfn,k) as defined in (1.3)

it is clear that
(4.1) gin,k) = fln,k) —hink),
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where A(n,k) denotes the number of zero-one sequences (2 1,42, -, 3,) with k ones, consecutive ones forbidden
and in addition a7 =a,=1. Then ap=a,.; =0 while a3 and a,_o {if they occur)are arbitrary. Thus, for n >4,
k=2

hink) = g 1*2002 g, 4k 2y = g3 gy 2 p—2),
so that (4.1) becomes

4.2) gink) = fnk) —q™*2k3fn -4 k- 2).
Combining with (2.13) we get
(4.3) gink} = qkz[n—i+7]_qn+fk—-1}= l‘_n;/_(; i'J (h>4 k>2) .

As for the excluded values, it is clear that

(4.4) dng) =1, gnt)=q[7]  (n>1).
Also it is easily verified that -
9(3k) = 0 (k=2),

so that (4.3) holds for all 7 > 7. Itis convenient to define

{4.5) 9(0,0) = 1, glok) = 0 (k>0).
Now put
(4.6) oln) = D glnkl.
2k<n+1
Then by (3.2) and (4.3) we have
(4.7) gln} = fin}—q"Fln -4},
where
v "‘ +2)* —k+
(4.8) fin) = 2, q'%*? I:” k ’_] .
2k<n+1
it is easily verified that
(4.9) Fin)=fln—-1) = ¢"" ¥ ln-2) .
We now define
{4.10) Lofg) = Fhiolq) —q" F;_o(q) in=2),
@11 Freqlg) = fln—1), Folg) = 0.
We have
(4.12) Frerlg) = Filg) = ¢" T Fp_4(q) ;

this recurrence should be compared with (3.4).
The first few values of Z,(g/ are
Lofg) = 1+q+q%  Lslg) = 1+g+¢%+q% .

Lalg) = 1+q+q2+q3+29% 445,

Lslg) = 1+q+q2+q5+20% +20° +q®+q7 +q% .
It follows from (4.8) that

(4.13) S Frealaix® =3 g%k fxdss
n=0 k=0

The first few values of Fj,(g) are
1(9) = g, Folg) = g, F3lq) = g +47, Falg) = g +q%+4°,

Fslg) = g+q*(1+q+¢%)+q°  Filg) = q+q*(1+q+q%+q%) +q%(1 +q +42).
Thus, for example
Lalg) = Fglg)—q?Falg) = (1+q+q%+q°+2¢% +q%+46) -4,

Lslg) = F7lg) —q®F3lq) = (1+q+q2 +q3+2¢% + 205+ 2q5 +¢7 +q8 +4%) - 4%1q + %),

in agreement with the values previously found.
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It would be of interest to find a simple combinatorial interpretation of F,(g).
5. By means of the recurrence (3.4) we can define F,(g) for negative n. Put

(5.1 Fnlg) = (—7)”"F_,,(q) .
Then (3.4) becomes _ _ _
(5.2) Fnolg) = q"(Fp-1(q) + F,_2(q)) (n>2).
where _ _
Folg) = G, Fqq) = q.
Put
(5.3) Dlx) = Y Folg)x" .
Then n=0
®(x) = qx+ Y q"(Fp1lg) + Fp2l)x"
n=2
so that
(5.4) D(x) = gx +qx(1+qx)Plgx) .
Thus

D(x) = gx +qx(1+qx) { @Px +q%x(1 +¢%x) (g% x) }

= qx +q°x2(1 +qx) +q32 (1 +qx)(1 +q%x)D(%x) .
At the next stage we get

Dlx) = gx +q3x2(1 +qx) +qCx3(1 + gx)(1 +¢%x) +qOx3 (1 +gx)( 1+ g°xN1 + g3 x)D(q°x) .

The general formula is evidently

(5.5) Bfx) = 3 g#kHIOI2 K17 1 0x)(1 +9%x) - (1+Kx).
k=0
Since
k afe .
(1+a0)(1+q%) - (1+4%) = 3 [ K]0,

(5.5) becomes _ =0

oo k , oo .

_ Wlk+1)(k+2) k+1 K\ %il+1) j _ +1 n =l %ili+1)+%(n~j+1) (n-+2)
fI)(x)—Zq e E[/J"“ x—Zx” E[IJq .
k=0 j=0 n=0 2i<n
Comparison with (5.3) gives
(5.6) Frigla) = Z [nl—- jJ g Blnt 1) n+2)=njti(j-1)
2i<n

The first few values of F,(q) are
Folg) =q°  Fslg) = q*1+4°),  Fulg) = ¢”(1+q+4°),
Fsla) = °(1+q2+q% +q%+40),  Felg) = q"3(1+q+q2 +q%+q% +q®+45 +4%) .
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P-Q M-CYCLES, A GENERALIZED NUMBER PROBLEM

WARREN PAGE
City University of New York (New York City Community College), Brooklyn, New York 11201

In this note all letters will denote non-negative integers. A number
N = nge10K+05:1057 4 o +0p_g070+ 0y

(abbreviated NV =nyno--ng) will be calleda p-g m-cvcle whenaver

Plkapre 1+ Niem=2 + *+s M=k N7 Do) = Q0702 ng) .

Since four parameters { p,q,m,k ¥ are involved, some rather interesting questions and conjectures arise naturally.
The problem of Trigg [3], for example, yielded 428571, a distinct (i.e., the digits are distinct) 3+ 3-cycle when
k=6, and 7-7 m-cycles which are n-linked were considered in [2]. Klamkin [1] recently characterized the smal-
lest 7-6 T-cycles.. Here we extend some of these concepts, show how to generate various p-g m-cycles, and actually
produce the smallest 7-¢ 7-cycles (g =17,2, -, 9) together with some of their properties. As a special case of our
more generalized results, we present a much faster method than Wlodarski [4] for obtaining the smallest 7-g
T-cycles with ng =gq .

For notation, ny-no means n; times ny, whereas n7ny will denote the two-digit number 70n7 +np. Fora
number r-s=nyzno, we shall use (r-s);o=ny and (r-s);=ny.

1. 7.g 7-CYCLES

We first note that for each ¢ (g=17,2, -, 9) and each n; <9/, there exists a smallest (unique non-repeating)
1.q 1-cycle

Nglny) = nynz - ng(n, )

(kq(n,}, the number of digits in Ng(n;) will depend on g and ny7). Indeed, assume that kqlnq) is not fixed and
note that Mkg(n,) =911 #0 when ng#0. Then Ng(ny) isreadily obtained by the following simple multiplication:

ny Ng-2 Ng-1 Nk
N=n - [qeng—1 +(q-ni) 101, (q-ni ), gen
ghl = gen - {q-nk_2+ lgeng_yq +(q-nk)m]m§7 [q-nk_1+/q-nk),o]1 (q-ng),

EXAMPLE 1. 025641 and 205128 are 1-4 1-cycles, whereas 742857 isa 1-5 7-cycle. These numbers
were obtained from

ny Nky(2) 1 k(1)
N=20512 8 N =14285 7
N =82051 2 = (4.8); 3 =71428 5=(5-7),

For n; =1, the above procedure yields the following 7-g 7-cycles /Vq(I). (Note that by simply placing ny =17
after ng, (7), one obtains the corresponding 7-g 7-cycles Ny(0) = Onzng -q1).

323
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q Ng(1) kq(1)
1 uu whereu=012 -.,9 2
2 105263157894736842 18
3 1034482758620689655172413793 28
4 102564 6
5 102040816326530612244897959183673469387755 42
6 101694915254237288135593220338983050847457627 1186440677966 58
7 1014492753623188405797 22
8 1012658227848 13
9 10112359550561797752808988764044943820224719 44

We note here that there does not exist a largest 7-g 7-c
cycle for each 7-g 7-cycle Ngfng).

EXAMPLE 2. The smallest (nonzero) 7.g 7-cycles are given by
Nq(1), Ng(0) forg=23456,7.38239

vele Nglng) > 1 since ngny ngnyny —-ng isa 1-q 1-

Indeed,
Nol4) > No(3) > Naf2) > Nof1)

N3l(3) > N3(2) and N4l2) = 205128 > N4(7) > Ny4(0).

For g > 5, the only nonrepeating 7-q 7-cyclesare Ny(0) and N4(7).
We conclude this section by mentioning that the smallest 7.g 7-cycles whose last term Mkgln,) =4q are precisely
the numbers Ng(7) in the above table.

2. p-q 1-CYCLES
Each 7-¢ 7-cycleisa p-p-g T-cycle for every integer p, and every p-g 7-cycle is clearly a

p_,_9
(pa) (p.q)

T-cycle. To obtain p-g 7-cycles N = nyno -+ ng in general, let
N = ngng- ng_g .
Then pN’=gN requires that ng <ny; when p>gq and ng>ny for p <g, and since

(p-ng-1), = (q-ng)
we use /14 as a sieve for a generalization of the multiplication given in Section 1. Thus, keeping

(p-ng-1) = (q-n) , lp-ng-2+(p-n-g1) I, = lq-ng-1+(q-n) I,

1071 1071

etc., we proceed until the mth position (denoted by a vertical line preceeding the nk_mth digit of V), where the
sequence of digits begin to repeat anew in the m + 75t position.

N = ng Ng-2 N1
P lp-ng-2+(p-ng-1), ] (pni-g),
P A lg-n-g +lqeni) 1 (q-mi),

N =nq -1 ng

EXAMPLE 3. (i) 162 isa 3-4 7-cycle.
(i) 21 isa7-4 T-cycle.

(i) There does not exista 5-8 7-cycle.
(i) Since

{3°”k'7)x = (4-/7/(}1 ,
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and since ng > ny, consider ny =2 (therefore ng_; = 6). Then the above multiplication yields

2 1 N2 N3 = Nge3 Ng-2 6

W=
3N = 8
4 = 4 8
N =1 na n3z Ny Ng-2 6 2
Since
(3!7/(_2"’ 7}1 =4 =>n =1
and
(3nk-3) = 6 = k3 = 2,
3N =32 1n3ng |21 6)
648
648

AN = 4(1 nonz ng |16 2)
from which it readily follows that 762 isa 3-4 7-cycle.
(ii) (7ng-1)7 = (4ny); is satisfied by the pairs ng_s, ng
n 1234567889
nk_724b'80246'8

Using the first pair yields
7( 1 ny np - 72}
84
84

4{”1 ng ng - 21 .

The numbers 42, 63 and 84 are also 7-4 7-cycles.
{iii) None of.the pairs of values satisfying
(Enk_ﬂ, = (3/7/(}7

yield 5/ = 8NN
3. P.Q M-CYCLES

The procedure of Section 2, appropriately modified, also applies to p-g m-cycles in general. We demonstrate this in
EXAMPLE 4, Find a distinct 3-4 3-cycle for k=6.

For
(4ng); = (3ng_3)4

which is satisfied by numerous values, first consider ng =7 and ng_3=28 Then

1 nyno - Ngg Ngs Ni-q 8/
4

4
8 nk_o ng_7 1)

3(ngw2 N1

4ny no nzng ng -

yields



326 P.Q M-CYCLES, A GENERALIZED NUMBER PROBLEM DEC.1974

ko nkg Tnyny— 571428)
7142814
714284
4ny  no ngngng - 42857 1)

so that 428571 is a solution to our problem.
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THE APOLLONIUS PROBLEM

CHARLES W. TRIGG
San Diego, California 92109

Problem 29 on page 216 of E.W. Hobson’s A Treatise on Plane Trigonometry,” Cambridge University Press(1918)
reads: “Three circles, whose radii are a, b, ¢, touch each other externally; prove that the radii of the two circles
which ean be drawn to touch the three are

abc/[(bc +ca +ab) « 2\fabcla +b +c)].”

Horner [1] states “The formula...is due to Col. Beard” [2]. That the formula is incorrect is evident upon putting
a=b =c¢, whereupon the radii become a/3 + 2\/3), so that one of them is negative. Horner recognized this when
he stated, ‘“The negative sign gives A (absolute value)...”.

The correct formula has been shown [3] to be:

abc/[2\/abcla +b +c) + (ab +bc +ca)].
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SOME PROPERTIES OF A FUNDAMENTAL RECURSIVE
SEQUENCE OF ARBITRARY ORDER

A. G.SHANNON
The New South Wales Institute of Technology, Broadway, Australia

1. INTRODUCTION

In this paper, three properties of a fundamental recursive sequence of arbitrary order are examined by analyzing
and recombining the zeros of the associated auxiliary equation. The three properties in question are Simson’s relation
(Sections 2, 3, 4), a Lucas identity discussed by Jarden (Section 5), and Horadam's Pythagorean triples (Section 6).

We define a fundamental /% order linear recursive sequence { u,,’) } in terms of the linear recurrence relation
{

i
u,g") = Z P,-,u,(,i_}, n>0,
r=1

1.1 i
(.1) ,(,’} =17 n=0,

in which the P;, are arbitrary integers.
The “fundamental” character of this sequence has been shown elsewhere by the present writer [7].
Assaciated with the recurrence relation in (1.1) is the auxiliary equation
i
(1.2) f,'(X} = II (x—-a,-,} =0
r=1

in which it is assumed that the complex numbers a;, are distinct. We shall restrict ourselves to this non-degenerate
case, but the basic arguments survive when the zeros of (1.2) are not distinct. In-the degenerate case the order of the
i-related sequence described below may be reduced.

We define an “‘j-related sequence of order /" { x,g’}} , as one which satisfies the /'th order recurrence relation

j .
xP - Z(—Hrﬂairxlg/—)r n>0,
r=1

(1.3) _
=1 a0 = (4) .
x,gj) =0 n<o,
with an auxiliary equation '
i
(1.4) gilx) = I (x-a;a;,) =0,
r=1
r<m

in which the @;, are integers and where the a;,a;,, are the zeros of (1.2). For example, when /=3, j=3, and
falx) = (x —ags)ix — az2)x — az3)
gg(X} = (x— CL37(L32}(X - a3,a33/(X - CL32(133/ = X'g - Ea37a32x2 + Ea§7a32a33x - /a31a32a33/2.

We choose the symbol Q;, rather than Q;. because the @;. can be expressed in terms of the a;. as we show in

Equation (4.7). .
327
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2. SIMSON'S RELATION

For the fundamental sequence of Lucas [4], { u,fz’} , (in our notation), Simson’s relation takes the form

(2.1) (wf?)? ~ () )u!Z) = (az1a20)" = x5V
since ( 5) =1.
More generally we assert that
22) WP -l i) = 5 i = ()
To prove this we use the fact that
) i
(2.3) uli) = Z Ayal

wherein the A;. are determined by the initial values of u(’} n=40,1,,i—1. Thus the left-hand side of (2.2)
becomes, after cancellation of terms,

- Z AjrAim(air — a-im}2(airaim)n—7 = Z Bjsﬁ/g
r<m r<m
in which
Bis = airaim, and Bisdis = ~AirAim X (air"aim)z-

Note that j = ( é since there are /a;, to be taken two at a time. Note further that A;.4;,, contains (a;, — a,-miz
in its denominator; see Jarden {3, p. 107]. )

The result (2.2) does not tell us much about the specific terms of x,ﬁ” } We can find the initial terms by substi-
tuting successively the first j + 7 values of { uy } in (2.2). For example, the first three terms can be found as follows:

(i P = yal?) = 1 = xY

i) .2
Wi’V ~1uf W) = Py —Ph~Piz = ¥ @i,
r<m
G _ )

= Qj1 = Qj1xp = x7
(w§! P =i W) = PG - PPz = 0x ) 0px ) = £
One can examine the nature of { x,(,” ’» by the use of the multinomial expression for u,g” , namely,
i
24 uff = T ZML gl
Zr\=n 17028 Bl r=1

and we shall do that in Section 4. We first consider the auxiliary equation for {x,(,’)} and the coefficient, Q;,,
of the recurrence relation separately.

Equation (2.4) follows if we adapt Macmahon [5, pp. 2—4], because u(’) is in fact the homogeneous product sum
of weight n of the quantities a;. Itis the sum of a number of symmetric functions formed from a partition of the
number n. The first three cases are

“w =Py=2 0.

M = Z a5y Z 12,

(i) -
”3,} P/1+2P/7P/2+P/3 = Z Q7 Z 1a/2+ Za/1a12al3

- A\ DY
u'gl)z Z 171 2 = E I airr

2 A=n 2A=n r=1

In general,
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It is of interest to note that another formula for u,g") can be given by

i
{2.5) ul? - Z a#””/H (a; —ag) .
=1 %

From Jarden [3, p. 107] we have that

i

(2.6) ul? =3 dfto,m

r=1
where [ is the Vandermonde of the roots given by

i
{2.7) 0= Z a};’ I (a,-t—a,-s) =1I (CL,-,.—CL,'S) Il (a;t—a;s}
r=1 r#EsEt r>s s<t
s<t

and [, isthe determinant of order / obtained from O on replacing its ™ column by the initial terms of { u,gi)},
n=012 -,i— 1 Itthus remainsto prove that

(2.8) c=alkl M (a;—ai) = DaFT /T (a;,—a;).
r¥s¥#t 4 r>s
s<t
We use the method of the contrapositive. If
DI’ +* a,;;1 H (ait—a/‘s)/
r#s+t

s<t
then

b= Z D, (from (2.6) with n=20)

# 3o ak! T (a;-a)
=1 r#s¥+t
s<t

which contradicts (2.7). This proves (2.8) and we have established that

i i i
; o itn-1 -1 i+n-1
u! =32 ofD,/0 = 37 @i 0,/0aly = 37 air ™/ U (o - ajg),
r>s
r=1 r=1

r=1
as required.
3. AUXILIARY EQUATIONS

van der Poorten [6] has proved that if #(x/) is a polynomial with complex coefficients, and { U,,}, { vy } de-
note sequences of elements of £, and if
i

O (-alU, =0 AE)V, = 0,
r=7
then
HEU,V, = 4, n=0,

where £ is the operator on sequences which performs the action
EU, = Vper, EV, = V,-,+7,... n=0,

and H(x) denotes the monic polynomial which is the least commen multiple of the polynomials
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fix/aq), fix/az), -, fix/a;),

-, a; are non-zero and distinct.

in which it is assumed that ay, aﬁ, -
uff) =0 in place of both TI(E — a,JU, and f(E)V,,. Then it follows from above that

We now consider II(E — a;,)

(3.1) wEN?) =0,
where Hfx) is the l.c.m. of

i

s,r=1
which can be re-written as P’ Il(x — a;.a;;) since
i
Pij= T ajs.
s=1
Thus the zeros of fh(x) are a;;, -, a;; taken 2 at a time.
In (3.1) we have established that the sequence

i) 2
{2}
satisfies a linear recurrence relation of order ( ’; ! ) with auxiliary equation
(3.2) Fijlx) = T (x-djyid),
A, +A,=2

where j = (é) as before since

27)- (1) ()

Note that r may equal m in (3.2), and so

i
Fivjle) = 1L (x - af) M (x—apma).
=

m<s
If we let
u 2
(3.3) Fifx) = 11 (x—af),
r=1 )
which is the auxiliary equation associated with the sequence { sé’,{ } , then we have proved
(3.4) g/‘(X) = Fi./.j(X}/F;(X} .

The auxiliary equation for { x,(,” ’l can also be represented in terms of the coefficients of the corresponding recur-
rence relation by

i .
(3.5) gjlx) = xi+z (-1)7Q;x"" .
r=1

We now seek an expression for the @;, in terms of the zeros of the auxiliary equation of the fundamental sequence.

4. RECURRENCE RELATION COEFFICIENTS
From (1.3) and (1.4), we see that { x,(,”} is the product sum of weight j of the quantities a;.a;, (r <m). Thus

(a.1) x =) E a,?‘,‘ a,g’ .= E a,.)‘,1 a,?;’ —— E a,.};‘ a,.};? = Z 1 a,-};’
ASH £A=2n ASn ga=2n "~
For example, when /=3, j=3, and
X;‘?) = 2(137(132
x5 = Badab + Zad 050055

(3 _ w3 3 3 2 2 2 2
X3 = Z0a37035 + 20303503, + 203,035033 .

Furthermore, by analogy with (2.4)
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(8.2) PRI S A L rrf‘%‘: i a)
Zrig=n rtz r=1
the first few terms of which are
x(j} =1
)
x{’ =0y

X = 0,3, 20,,0,2+a,3 ,
i) _
xq = ‘Qn —3070;5+20;,0;3+ 0% - 0y

Write o
(4.3) I (7~ 6mx) = D Qjpl~x)"
rom=1 =0
r<m

and then put

oo

(4.4) D Kinx" = / O jnl—x)".

n=0 n=0
Thus

-

n _ n.n .n
Z.JKI'I)X = 0 E:a/ra/mx
n=0

r<m =0

n

i A A2 i A
Z 2o (apa) M aas)™ - (ar0) T (a0 (a0 22 w00 x
n—0 ZA=2n

Z‘L Hax”,

n=0 ZA,~rn r=1
in which
=S A 2 e
m+v=r
so that
oy i Ap
(4.5) Kin= 3. 1 q
- r=1
TA=2n

)

in other words, K, is the product sum of weight n of the quantities a;a;, (r<m), andso K;, = x;”.

If we write —x for x in {4.4) we get
20,-,,)(” = I/EK/”{—X)H ,

which can also be obtained by leaving x unchanged in (4.4) and simply interchanging the symbols 2 and K.
We next expand the right-hand side of (4.4) by the multinomial theorem to obtain

o =K = +2 (Zul [ ™
(4.6) W= Kin= 25 (FOTEE na’

Zrp=n
An interchange of symbols yields
@.7) Q= 3 (-ymEe (2l (x,’f’)”’
S ren Mplpa! = Ml =

which is an expression for Q;, in terms of @, since from (4.5),

331



332 SOME PROPERTIES OF A FUNDAMENTAL RECURSIVE SEQUENCE OF ARBITRARY ORDER [DEC.

sa=2n ™1
where )
=r
-~
22 Mmst 20 A
mts=r w=1
For example, 3
Q37 = x77 = Zagrazp .,

2
Q32 =2 + x5 = (2031 agp + 2203 032033) + (203, 0Fy + DaFya59055) = ~ZaF;azp055 .
Q;,, can aiso be expressed in terms of u,g'} from (4.1), and u,gi) can be expressed in terms of P;, in (2.4), so that Q;,
can be expressed in terms of P;,, if desired. This has already been illustrated for (2.2).
Another formula for x,J” can be given by analogy with (2.5). Since

(/) Z III a;r
and

= Y Iia,r ,

sA=n "
then

(/) j+2n~
Z al " I (a'ir - ais} .
r>s
which is somewhat surprising since it is exptressed en1|rely in terms of the zeros of #;(x) rather than y,-(x).

5. JARDEN'S QUERY

Corresponding to the “fundamental’’ sequence (’) } and by analogy with Lucas' second-order “primordial”’ se-
quence [4], we define an i order primordial seque'nce by

i
; ~
v,(,’} = ZJ Pl n>0,

(5.1) vl = n=0,
v,(,” =0 n<a,

i
(i) _ Z all
r=1
Jarden [3, p. 88] suggests that it would be interesting to determine (in our notation)
(5.2) ulf) —uf?vl?

since

I
~

so that

(2 2) (2
o8 - uf2

n
is of great importance in the arithmetic of second-order sequences. We have already seen the ‘auxiliary equation for
{ u% } in (3.3). Thus

i

(i) (i), (i) ()
u In‘unl nl 2 : A ra/r - 2 , Ajray - 2 : (Air+ Aislajrais)" = 2 ijﬁj?m = an ,
m&=7 r,s=1 m
r<s

where iy, =aja;, r<s, and Cjy=—(A;+A;). Note thatsince
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. i
”(.{7,) =1= Z Ajr
r=1
i
= Cjm =23 Ay =2
m =1

Furthermore, the zeros of the auxiliary equations of
{} ()
are the same, namely §3;.. The (3;- also come into other properties of recurrence relations such as the quadratic forms
of divisors of vz(i determined by Lucas [4, p. 43].
The mention of these examples is made to point out that though we have restricted our study of these “/-related
sequences of order / to expressions for auxiliary equations (3.4) and (3.5) and for recurrence relation coefficients
(4.3), (4.5) and (4.7), they can be used in other situations.

6. HORADAM'S PYTHAGOREAN TRIPLES

This basic approach of analyzing and recombining the zeros of the auxiliary equation might be the only fruitful one
in studying other properties of recurrence relations of arbitrary order. For instance, Shannon and Horadam [8]

proved a general Pythagorean theorem for )
i

£ = > 1

r=1
with suitable initial values. It was shown that

and that all Pythagorean triples can be formed from such recurrence triples. The case /=2 is the situation studied
first by Horadam [2].

The proof of (6.1) cannot be extended to a similar expression for { up } because of the presence of the coef-
ficients P;, in the recurrence relation for { uy } An essential feature of the proof of (6.1) was the result

2f (I) (i) = f,()’} 3

n+i = Tn+i+1
This suggests that we consider

i
(6.2) ufli—ufllies = 2 Z Apaf = 37 AgalT

which follows from (2.3).
The right-hand side of (6.2) becomes

Z Ai2at — a1 = Z Air Z Pisal (2~ az)

i i

L a) nti-s nti-s
= 2_J Z AirPisay "2 — aje) = Z Pis Z Airl2 - aj)aj;
r=1 s=1
i /'
nti-s
Z Pis Irall' ,
s=1 r—7

where we have set
Bj = Ajp(2—a;.).
Suppose further that
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i
A - 3 By
r=1

so that z,g"’ } satisfies the same recurrence relation as { u,gi) } but has different initial conditions (which give
rise to the B;.) Then

i
A < 3 ekl
Proof: r=1

i
zt(/—)r Z Bisajs” .
s=1
i i i i i i i i
Z Pirznllr = E Pir Z Bjsajs ' = Zu Pir Z (245075 " _Aisag.ﬂ-” =2 Z Pir”r(;l—lr'_ Z Pir”r(rl—)r+7
r=1 r=1 s=1 r=1 s=71 r=7 =1

i i i i
" . ~ + % i,
= 2uf! —uflly = 37 24500 - Ajpal)’T - > Airl2-ajal = > Bial = A7,
r=T1 r=1 r=1 r=1

as required. So

i i i
Do Ps | D Bpal ) =3 Pzl = 2} .
s=1 =1 s=1
Thus we have proved
(6.3) 20l —ulil,, = 21,
from which it follows immediately that
2”2%*"1%;4,7 = qufll;— A1
Thus we have
(2ulfli— ufilis N 2ulti+ ulfling) = 2fitaulili— 2f1)
which becomes - y . . .
Hulllir? — (wfflinr)? = 2itaultl; - 2 .
This can be rearranged as
(u,(,’l,',m“z = (Z,(#,'lz + 4u,%(u,€’1,— - Z,’,!l,') .
Multiply each side of this equation by (z,/,';{;lz and
(2fuliling 12 = (2l® + a0 P ulitulil - 2
Add
(ZU,(,’:{,'(U,{,’Z.,- - z,(,’l,-llz

to each side to get
(6.4) (z,(,’l,-u,(,’.,)u,-q.;)zv‘ (2u,§i4}.,- (U,gij-/ - Z,(,I;{,'/)Z = ((Z,{#,')Z + Zu,';{)ltf(ll,(,ij-i - Z,g'l,'})z .
Equation (6.4) may be considered as an extension of (6.1) and a generalization of Horadam’s Pythagorean theorem,
since (6.4) reduces to (6.1) when P;, = 7 (r=1,2, -, i/ because z{//; = u then (from (6.3) above and Eq. 9 of [7]).

Thus we have shown how three properties of a fundamental recursive sequence of arbitrary order can be general-
ized by analyzing and recombining the zeros of the auxiliary equation so that the essential features of the properties
are revealed.

It is worth noting that Marshall Hall [1] looked at the divisibility properties of a third-crder sequence with auxiliary

equation roots a?, aé a,a, formed from a second-order sequence with auxiliary equation roots a; and a5.

Thanks are due to Professor A.F. Horadam of the University of New England, New South Wales, for his comments
on a draft of this paper.
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LETTER TO THE EDITOR
January 1, 1973
Dear Prof. Hoggatt:
HAPPY NEW YEAR. Here is a problem:
Let p7,po, -+, ps be given primes and let a; <ao < - be the integers composed of the primes py, po, --p,.
Put
Ag = lag,az, -, arl

(least common multiple), then
>4
A
k=1 k
is irrational. (Conjecture) This is undoubtedly true, but | cannot prove it. All | can show is that
>
A
k=1 k
is irrational, where in 2’ the summation is extended only over the distinct Ag's (i.e., if
lag, ., ak] = [ag, -, ag+1] .

then we count only one of the 7//aq, -, arJ ).
Regards to all,

Paul Erdos



LATTICE PATHS AND FIBONACCI AND LUCAS NUMBERS

C.A.CHURCH, JR.
University of North Carolina, Greenshero, North Carolina 27412

Several papers have been presented in this quarterly relating lattice paths and Fibonacci numbers: [1], [5], and
[6]. In [1] Greenwood remarked about a certain artificialness in his approach. Here we present what we believe is
a more natural approach which gives direct derivations of the formulae. We alsc obtain the Lucas numbers and some
generalizations.

1. INTRODUCTION

By a lattice point in the plane is meant a peint with integral coordinates, Unless otherwise stated we take these to
be non-negative integers. By a path (or lattice path) is meant a minimal path via lattice peints taking unit horizon-
tal and unit vertical steps.

It is well known [2, p. 167] that the number of paths from (0,0) to (p,g) is
1) ( p+q )

P

If we associate a plus sign with each horizontal step and a minus sign with each vertical step, there is a ore-to-one
correspondence between the paths from (0,0) to (p,g) and the arrangements of p plusesand ¢ minuses onafine.
Another well known result [2, p. 127] is that the number of paths from (0,0) to (p,q), p =g, which touch but
do not cross the line y =x is
(2) p—q+1 (p+q)
pt1 q
In other words (2) gives the number of paths from (0,0) to (p,g) such that at any stage the number of vertical steps
never exceeds the number of horizontal steps.
For p=q, (2) gives
1 120 )
p+1 \\ P ’
the Catalan numbers. These have a number of combinatorial applications [3, p, 192].
Note that if (1) is summed over all g + g =n, we get the number of paths from (0,0) to the line x +y =n. In
this case we get

n
> (5)-2
P .
p=0
If each of these paths is reflected in the line x +y =n, we have all the symmetric paths from (0,0) to (n,n).

If (2) is summed in the same way, we get the paths fram (0,0) to x +y =n which may touch but not crass y = x.
Reflect each of these to get the symmetric paths from (0,0) to (n,n) which do notcross y =x. This is a larger
collection than Greenwood's.

2. FIBONACCI NUMBERS

The following problem appears in [4, p. 14]. In how many ways can p pluses and g minuses be placed on a line
so that no two minuses are together? In our problem we shall also require an initial plus sign to keep the path from
crossing y =x.

First, we solve the more general problem of finding the number of arrangements of p plusesand g minuses on a
line so that before the first minus and between any two minuses there are at least b pluses, b >0, p > bg.

336
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Arrange the ¢ minuses and bg of the pluses on aline with & pluses befare the first minus and 5 pluses between
each pair of minuses. Distribute the remaining p — hg pluses in the g + 7 cells determined by the ¢ minuses. This
can be done in
(3) (p—(b——l)q)

q
ways [4, p. 92].

For the original problem put 6 =7 to get

D
() ( o ) .
Summed over p+g=n, p >q, (4) gives, with g replaced by k, that there are

-

o
(5) F,,+,=Z("7( )

k=0
paths with the stated conditions from {0/ to x +y =n. These paths begin with a horizontal step and can have no
two cansecutive vertical steps, so they cannot cross y =x. Now reflect each path in x +y =n to get the symmetric
paths from (0,0) to (n,n).

Here we have replaced each diagonal step of Greenwood with a horizontal step followed by a vertical step. Thus
each of our paths crosses x +y =n on a lattice point. As indicated by Stocks [8, p. 83], this accounts for the fact
that we have F,.; such paths where Greenwood gets F,.o. Thatis, of the Afn/ paths of Greenwood on-
ly hfn — 1) cross x +y =n on a lattice point.

Similarly, (3) summed over p +q =n, p = bg, gives

L5%7]
(6) , Freglod = 3 (772 )
k=0

which has the analogous interpretation with respect to the line by = x. These numbers have a Fibonacci character,
for it is easy to show that 0
7, <n<b,
Foerlb) =\ E ) +Fo ob), n>b+1

For the enumeration of paths without subpaths [5, p. 143] we note that in Greenwood’s terminology these are
simply those paths which begin with a diagonal step, and the paths to be deleted are those that begin with a horizen-
tal step. By his proof of the recurrence this is precisely #Afn) — hifn — 1) =h{n — 2. in our terminclagy the paths
without subpaths are those that begin with one horizontal step foliowed by a vertical step, i.e., paths from (1,1).
Thus directly by (5) or a recurrence argument similar to Greenwood’s we find that these are £,_; in number.

Analogous results can be gotten for the paths enumerated in {6).

3. LUCAS NUMBERS

Again consider the problem in Riordan [4, p. 14] of arranging p pluses and g minuses on a line with no two
minuses together. There are

7) (727

q

such arrangements. These are the paths from (0,0) to (p,q/ which do neteross y =x + 7. That s, a path may start
with a vertical step, but there will be no two in succession.

Now look at the paths as enumerated in {7), but with the added restriction that if the first and last steps are hoth
vertical, we consider them as being consecutive. We thus have two mutually exclusive cases. In the first case, the paths
start with a vertical step and must end with a horizontal step. These are the paths from (7,7} to {p — 7.¢4). By (7)
there are

(521) 5
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of these. In the second case, the paths start with a horizontal step and end with either. These are the paths from
(1,0) to (p,q). By (7), there are

P
(9) ( o )
of these. Note that the second case is really only (4).
Add (8) and (9) to get the solution

(10) -"%‘L(g)

Summed over p +g =n, with k=g, (10) gives

B
2,
= n n—k
(1) = 3 2—("¢%)
_ k=0

Reflect each of these paths in x +y =n to get the symmetric paths from (0,0) to (n,n).

Again it is easy to see that the number of paths without subpathsis L,_>.

In analogy with (3), these results can also be generalized for arbitrary b > 0. In fact, (7) becomes

(‘p—(b— Mg—1)+1
q

(10) becomes

ptq (p+q—bq)
p+q—bg q !

[57]
Lafb) = 3 n_”bk(”‘k"")
k=0

and (11) becomes

Again parallel results follow with respect to theline y=x +b.

REFERENCES

1. R.E. Greenwood, “Lattice Paths and Fibonacci Numbers,” The Fibonacci Quarterly, Vol. 2, No. 1 (February)

1974), pp. 13-14.

P.A. MacMahon, Combinatory Analysis, Vol. |, Cambridge, 1915. Chelsea reprint, New York, 1960.

E. Netto, Lehrbuch der Kombinarorik, Leipzig.and Berlin, 1927. Chelsea reprint, New York, n.d.

J. Riordan, An Introduction to Combinatorial Analysis, New York, 1958.

D.R. Stocks, Jr., “Concerning Lattice Paths and Fibonacci Numbers,” The Fibonacci Quarterly, Vol. 3, No. 2

(April, 1965), pp. 143—145.

6. D.R. Stocks, Jr., “Relations Involving Lattice Paths and Certain Sequences of Integers,” The Fibonacci Quar-
terly, Vol. 5, No. 1 (February, 1967), pp. 81-86.

;S eLN

Yook



ON THE PARTITION OF HORADAM’'S GENERALIZED SEQUENCES INTO
GENERALIZED FIBONACCI AND GENERALIZED LUCAS SEQUENCES

A J.W. HILTON
The University of Reading, Reading, England

1. INTRODUCTION

If p,g are integers, p‘? +4g# 0, let w = w(p,q) be the set of those second-order integer sequences
(W) = (Wo, Wy, W3, -~}

satisfying the relationship

Wy = pWn1+qWp2 (n > 2)
which are not also first-order sequences; i.e., they do not satisfy W,, = cl,,_; (¥ ,) for some ¢. In Horadam’s papers
(I31, [4], [5], [6]) our W, is denoted by W,(a,b; p,—g). In this paper we show that w can be partitioned natur-
ally into a set F' of generalized Fibonacci sequences and a set L of generalized Lucas sequences; to each F< F'
there corresponds one L € L and vice-versa. We also indicate how very many of the well-known identities may be
generalized in a simple way.

2. THE PARTITION OF w(pqg/

If a,f are the roots of %2 —px —gq =10 d=+/p* + 4g then ihe following relationships are true:
=P +d =P = d
a 5 B="55=,
a+f=p, ap = ~q, a-B=4d,
n_ ppn
(1) Wn = A_Cl(,l___——ﬁgﬁ s
where A=W; ~WpB B=W; - W,a. Since (W,) is not a first-order sequence it follows that a= 0, -0 A #
0, B+ 0 When W, isrepresented as in (1) we say that i/, is in Fibonacci form. On the other hand, with differ—
ent constants € and O, W, could be represented as
W, = ca”+0B" .
In this case, we say that W, isin Lucas form.
When ¥, is in Fibonacci form (1) we may perform an operation { ') to obtain a number W, where
Wy, = Ad" +BB" .
We say that the sequence (IW/;,/ is derived from the sequence (/). The sequence (/) is a sequence of integers
since

(2) Wo=A+B =W;—Wpp+W;—Wpa = 2W;—W0(ll+ﬁ) = 2W;—pWgo
and
(3) W3 = Aa+Bj3 = lW,—WgB)a+{'W7-—W0a)B = W,u’a+B)—2W0a6 = pWq,+2qWp.

W;, may now be expressed in Fibonacci form. In that case

w, - [Ala=p)]a" - [-Bla - 8)1 87

a—@

If we perform the operation { '} on W/}, we obtain
wy = [Ala —B)]a” + [(-B)(a — B)] B"

o (A=

= d’w, .
839
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We have proved
Theorem 1. wy = d?w,  forall  n >0

It is not hard to verify that the equation W, = W, (*,) cannat be true if (W/,,) is not a first-order sequence.
Throughout this paper let (X,/), (Y,) € wip,g), let X, =Y, (n=0,1,2, ) andlet Xg=a, X; = h
Then, from (2} and (3),
Yo = 2b - ap, Y; = pb+2qga.
By theorem 1, therefore, or directly, it follows that

ad? = 2Y1-pYo, bd? = pY1+2¢Yp .
The following theorem now follows easily:
Theorem 2. (i)
(4) a?| 2y, —pYy-7 and a’zle,,+2qY -7 foral n>7.
(i} 1f (W,) e wipg), u’2[2W7-pW0 and  d?|pW; + 2qWp then (W,)=(X;,) for some
(Xp)e wlp,gl
Proof of (ii). If
2W 4 — pW, W+ 2qW,
Xo = ——’;——o, X7 = p_;_z_q_o and  (X,)ewipyg),
then ) d . d /
W+ 2qW, W — pW, ‘ + -
xp=2| PWit2Wo \ _ [ Wi=pWo ) _y ang xy=p| PH1E2W0 ), 5 [ ViAW ) _ )y
d2 d2 L‘/2 d2

which proves part (ii).
The basic linear relationships connecting (X,,) and (Y, ) are described in the following theorem.

Theorem 3. The following are equivalent:

(i) (Xp) = (Yn),
(i) Y, = 2Xpe1—pX, foral n=0,
(iii) Ypiyr = pXpe1 +29X, foral nz=0,
(iv) Yo = Xpe1+GXp-q forall n=1,
2 -
(v) X, = 2Ynt1=PYn forall n>0,
d2
(vi) Xpeg = PYnt1*24Yn forall n>0,
d
(vii) x, = Yot 8t g psi.
d2

NOTE: For each of {ii), -, {vii} we need only require that the expression is true for two adjacent values of n,

Proof. ()= (il f (X;)=(Y,), thenfrom (2)and (3), Yp=2X; —pX, and Y;=pX;+q2Xp=2X2—pX;
since Xo=pX;+gXg. Let m>2 and assume (ii} is true for 0 <n <m. Then

Yin = PYm-1tqYm-2 = p(2Xim = 0 X1} + 02X i1 — pX 2] = 2Xppe1 = 0 X -

The result now follows by induction.
(i) @ (iii) < .--< (vii). This follows easily using

X7 = pXn*0Xpg and  Yory = pYptqYny (n=1).

Ii), (i), - {vii)] = i). Since
_2Yi=pYo

Y+
and X;=p—7 27Y0

Xo
d? d?

it follows from (2) and (3) that
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Xp=2 BY1+29Y0 —-p Y1 =pYo =Yg
a? \ 42
and similarly X7=7Y;. Hence (X;)=(Y,). This completes the proof of Theorem 3,
We now describe the partition of w(p,q) previously referred to:
i (W,)cwipg) and d + 1 let W,=d?" w, forall n >0, where m> 0 isaninteger, {w,) € w and
a2y ), foratleastone n >0 Then

W,)e L i d?|2w;-pwy and d?lpw; +2qwy ,
(W,) e F ifeither a’ZXZw, —pwg or d‘?*pco7+2qwg .
if (Wy)ewlpg) and d=17 let
W, e L it W;—Wpa<0,
W,) e F it Wy—Wpa > 0.

The assignment of (WW,,) to L or F is natural in the case d #7, butif d =17, although the partition itself is nat-
ural, it is not true to say that a sequence is "like” the Lucas sequence rather than the Fibonacci sequence or vice-
versa. In view of Theorem 3if (,) is a member of F (or L) then any “tail” of (W,) is also a member of F (or
L, respectively).

Theorem 4. (X,) € F ifandonlyif (¥, e L

Proof. Casel. d=1 (X,)eF

= X, = Aa” - BB", where B <0
« Y, = Ad" +Bg"
= (Y, e L.
Case 2. d #1. (i} If (X, ) e F suppose that X,,=a’2mx,, forall n =0 where m >0 is an integer,
(x,) € F and d2lx,, for atleastone n > 0. Clearly d2)xgy or d?fx;. By Theorem 3, Yg=2X;~pXp and
Y;=pX;+2qXg. Let ¥, =d°My, foral n>0. Then yg = 2¢7 —px, and y, =px;+2qx, . Since (x,) <
E either d2*2x7 —pxg or u’21"px7 +2qxg. Therefore either a’z%/yo or o *y;. But it is easy to verify that
Zv1-pyo=d’xg and py;+2a0 = d%xy.
Therefore fy,/ e L andso (Y,)eL.
(ii) If {Y,;) € L suppose that Y,=d?"y, forall n>0, where m >0 is an integer,
fv,) € L and a’zll/yn for atleast one n > @, Clearly d2*y0 or dz*yf. By Theorem 3,
X, = pY1+2qYp
d? d?

Xo:{)ﬁ*ﬂyo’

Let X, =d?7x, forall n >0 Then
yi—py py1t2qv0
)(0=—————~——720, X7=—-—————2—.
d d

Since v,/ €L, 5 5
d?|2y1—pyo and dlpy;+2qy0 .
so xg and x; are integers, s¢ (x,/ € w: But

2xy—pxg = yp and pxy;t2gxg = yq.
and since dZ}’yO or n’zj/y1 it follpws that either a’z/fZ)(, —pxg OF d2*p)(7 +2gxg. Therefore (x,)€F and
so (X,) € F. This completes the proof of Theorem 4.
Here are some examples of members of F alongside the corresponding member of L,

0,11235813 2,1,347,13 -
G1,pp°+q, 2.p,p2+2q, -
01,3715 ..,2"—-4 .. 2365817 ...,27+17, -.
61,2812 29, - 226,14, -

{Peil’s sequences)
a, b, qa, gb, 9%, g%, - 2b, 2qa, 2qb, 242, 29°b, -
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3. BINOMIAL IDENTITIES

Many identities involving Fibonacci and Lucas numbers are readily derived from the binomial theorem; for exam-
ple see [1], [2] or [8]. They can nearly always be generalized to become identities involving generalized Fibonacci
and Lucas numbers.

In this section we could derive along list of such identities; but this seems unnecessary in view of the proofs in [2]
and [8], and also it would take up a lot of space, as the constant multipliers which have to be introduced seem to
make the generalized formulae up to twice as long as the formulae in [2] and [8]. Instead we derive one set of iden-
tities as an example and show how further identities may be derived.

There often seem to be two very similar identities, one featuring Fibonacci numbers, the other Lucas numbers.
When there are two such identities they may often be derived from one identity by using the fact that 1 and /5 are
linearly independent over the rationals, although this is not the procedure adopted in [2] or [8]. With generalized
Fibonacci and Lucas numbers such a process would not be appropriate, but, as the examples show, the method of
proof which is natural does lead to a single identity, from which the two identities may be obtained by specialization.

For this section (F,,) and (L,) denote a pair of sequences such that (F,)€F, (L,) € L and (F,)’=(L,). Also,
C=F1—FOB, D=F1—Fga.

The natural method of proof is firstly to derive a single identity involving (X,) and (Y, ). Then either of the
following sets of substitutions may be made:

I Xn = Fnir

Yn = Lo+
A = X1=XoB = Fre1~FB = Ca’
B=Xi—Xoa=Frpr—Fra=08".
(The third of these follows since

£, = CaT 0™ _ (Ca’~ DB')B— Ca’B+Ca’™”
a-f a-p
and the fourth follows similarly.)
Or
1. Xn = Ln+,-

Ypn= dZFn+r
A=X;=XoB= Lrsy—Lp = Cda"
B=X;~Xpa= Lppy—Lea= —DdB" .
Then each of these sets of substitutions leads to one of the two derived identities mentioned above.
EXAMPLES OF BINOMIAL IDENTITIES

= F,g+Cd |

EXAMPLE 1. Since

g = Ym* @Xm gm = Ym—9Xm
247 28
it follows that
n . - . n . - - -
a™ = (24)7" Y A XY ( 7), and B = (28)" )" (-1)'d" X}, Y,';,"( ;’)
=0 =0

Therefore,
n .. 3 \ n .. .
Yoo+ Xy = (24)777 DA XY ( 7). and Yy —dXpm, = (28) S =1 XY ( ,n>
=0 =0
Therefore,

n ,
X = 207" 3 (dxm)")/,',’;"(;’) [AT" —(-1)BT "] .
=0
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A similar formula may be derived for Y, .
Making the first set of substitutions, we obtain

Frontr = 27 Z (dFm+r)iI-rr;1_ir ( 7) (lca’] - {_”i[DBr] I-H} -

=0
But ’ -
1-n r-rn _ ¢ q4jipl-npr-rn _ p7-n [ Lr-rn +dFr-rn ) _ (-1)'D _n(Lr—rn - dFr-rn)
¢’ "a (-1)ip™" c ( o 7
= [-r;rn ( q _ (—1)iL _/_dFr-rn A
\ cl’ DI‘ 2 cn Dn
Therefore )

n
an+r = Z.n_7d_1 V‘ {dFm+r)’I-nm_j“f( 7 ) [‘f-rﬂ (_% - (_”I 7" )+0’F,-_,.n( —L" +(~7)’_]—'; ) ’
pird c D c D

Making the second set of substitutions we obtain

n
Lomtr = 2707 3 (L) (0 F o)™ ( 7 ) (600’17~ (~1)' =D ] ")
=0

n ) ) _
= 2 Y W e L ) (00T = (=10 =1) T 10T
=0

= 27 3 W L7 ) (10071 1) 10T
=0
But

i - " L - H ;i
c7—nar_rn+(_])’[]7 ”Br rn . -r-rn ( __7_ +(_])’_7 ) +dFr—r ( _7 _(_7)’_.7_ ) R
Therefore

" .
R i nei 7 i 1 1 gy L
Lty = 27" g (dF ) LT (7);[_r_m ( c_”+(_7)l?7)+dl:r_m( on ( ”ID" )g

EXAMPLE 2. Since
—(2B8™ - Yp,)

dXy = 2Adm - Y, and dXpm
it follows that

n n i .
adn Xy = 3 (V)24 (7) @ and A" = (<1)7 (= Yi)128)™ (7) g,

=0 ' i=0
Therefore

n o
kanX,';, +Xkdn+1Xg] = (—Ym}i{ZA)n—I/ n (Ymn—mi+k+den~mi+k)
\ 7
=0
and

n
Vied" X = Xd ™ Xy = (=1)" 35 (=Y (260" ] )( Ymn-mithk = IXmn-mitk) -
=0
Therefore
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n
XXy = =L 30 =1V} 2 T (1) Yot A7 = (=118 7) # X AT+ (=1)8 )]
24" 135

and

1

n
ViXi = o 3o (=12 () Y i (A" # (1078 X i (A" = (1)),
=0

Making the first set of substitutions we obtain

n
FkF,’;,' = _.._7_ Z (_ I)IL,/nzn—I< I’I ) [Lmn-—mi-l'k(c”_i _ {_ 7}nDﬂ—i} +dan—mi+k(Cn—i+ (_I)DDH-I.)]

20" !
and
n - . - - . . -
LkFr,;7 = ZdL" Z (_7)ILII712’H (7 ) [Lmn—mi+k(c”_l +(-1)"0"") +dan-mi+k(cn-l = (=1)"D")] .
i=0
Making the second set of substitutions we obtain
n

d2F, Ll = Z;F S (~1)(d%F )27 ( 7) [82F oy et (A" € (= 1) (=1) " g™~ pi)

=0

+ 0L it (d"C T — (=1)7 (1) g=i pn=i )]
so that .

n
Fell = 2_; D (dFp) 2™ ( ? )[dFm,,_,,,,-+k(u""+(—r/fc""l— Lon-misk(D™ = (=1)'¢" )]
=0

and
n - . . . . . . .
I.kL,’;; - ’77_'_7 Z (___ 7}I(d2Fm)12n—/ ( 7 ) [szmn—mi+k(dn_lcn_l _ (_ 7}"(_ ”n-/dn-/Dn—/}
2d =0
+ dLmn-—mi+k (dn-icn-—i + (_ 7}”{_ ”n—idn—iﬂn-i}]
so that

n
Lip =23 (dF,,,)"z"-"( 7)[L,,,,,_,,,,-+km"-f+(— 1€ ) = dF ik (0" = (=1)76" )]
=0
Further three term identities from which binomial identities may be derived in the way described are
dX, = Aa" - BB" ,
Y, = Aa" +Bg3" ,

(5) AT = X a™ T +g X, ga”
(6) Bﬁm-fn = Xmﬂn+1+l]X _7Bn )
a? = patq,
6% = pB+q,
(7) Y2 = d?XZ+4AB(~q) ,

Ad®™ = Y, 0™ - B(-g)" ,
Ad®™ = dX,a™ + Bl-q)™
BB?™ = ¥YB™ — Al~g)™ . BB2" = —dX,,87 + Al—g)™ .
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Most of these identities are obvious, or nearly so. ldentity (5) may be proved as follows:

AQ™ = BY Xy = Xy + 29X g +dX ) = X,,,( P;d) + X1 = Xon@F G Xt
and identity (6) is proved similarly. Identity (7) is proved as follows:

n 2
Y2= (Ad"+BB")? = (Ad" — BE") + 4AB(af)" = (a— )2 ( @a%gﬁ) +4AB(—q)" = d2X2 +4AB(—q)".
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ERRATA

Please make the following corrections to “Fibonacci Sequences Modulo M, appearing in the February 1974 (Vol.
12, No. 1) issue of The Fibonacci Quarterly, pp. 51—64.
On page 52, last line, last sentence, change “If 2/f(p),” to read “If 2)f(p).”

On page 53, change the fourth line of the third paragraph from “which (a,6,0¢) = 1,” to: “which (a,b,p%) #1.”

On page 56, third paragraph of proof, tenth line should read:
“ s given by 5% — 5262 _ 4.526-2 - 4. 52e-1

On page 61, change the second displayed equation to read:
2t
alk) = .0_/(:._7 .
Line 7 from the bottom should read:

“for i=t, -,e—1 "
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Theorem

.i+_i+_7+_7_+_7 + . =Z_:;£5:
Proof

17,1 7 1

— e vie e = —

Fi1 Fa2 F4 F , 3 F2n-1/F2n

is easily proved by induction using Binet's formula, and the theorem follows by letting 7 — = . The result resembles
the formula

V,—_fm—ﬁan m—1( 1, 1

= ~n W=11 1 4y_1 4.

43/7—7 2 Bn Bn+7 '
where
m>1 a;=2 %i—’, Ane1 = a2 =2, B0 =1, Bn=azaz—a,.

(Reference 1.
Some curious properties of Fibonacci numbers appeared in [2] ; for example,

A§85Fn = 5FI7+96_2-5FH+48+5FH

is a multiple of 2723573 = 341,397,504 for n=1,2,3, .

REFERENCES

1. LJ. Good and T.N. Gover, “Addition to The Generalized Serial Test and the Binary Expansion of /2, ”Journal
of the Royal Statistical Saciety, Ser. A, 131 (1968), p. 434.

2. 1.J. Good and R.A. Gaskins, ““Some Relationships Satisfied by Additive and Multiplicative Congruential Se-
quences, with Implications for Pseudo-random Number Generation,” Computers in Number Theary : Praceedings
of the Science Research Council Atlas Symposium No. 2 at Oxford, 18—23 August 1969 (Academic Press, Aug.
1971, eds. A.0.L. Atkin and B.J. Birch), 125—136.

Sofcholoolok

This work was supported in part by the Grant H.E.W. ROIGMI8770-02.
Received by the Editors May, 1972. See H-237, Oct. 1974 Fibonacci Quarterly, p. 309.

346



POWER SERIES AND CYCLIC DECIMALS

NORRIS GOODWIN
Santa Cruz, California 95060

There is an interesting relation between series based on the powers of an integer, and infinitely repeating decimal
recipracals whereby the sum of the powers of a single integer give not one, but two reciprocals. Figures 1 and 2ilfus~
trate this in the case of the two integers 3 and 19, which yield respectively the decimal reciprocals 7/29, 71/7; and
1/189, 1/81. The left-hand member in each instance starts at the decimal point and develops (in reverse) to the left.
Although it is obviously not a decimal, it is purely cyclic, and has the repetend of its decimal version. Since shifting
the decimal by a suitable divisor rectifies this, and for the sake of simplicity, it is treated here as a decimal.

If M isany integer having & digits, the following equations apply:

oo

(1 miom—1) =y m™ x10"7
n=1

and

(2 1105 —m) = Y, M x107"
n=1

Equation (1) is limited by the expression (70M — 1) to a fraction having a denominator with the last digit 9, and
will thus be odd and yield a cyclic decimal fraction having a repetend with the terminal digit 7. Equation (2) is lim-
ited by the expression (10X — M) to a denominator which is the complement of // and will thus be odd, or even,
and will not be limited as to type of repeating decimal. In the preparation of Figs. 1 and 2, zeros not contributing to
the relations shown have been omitted.

L6721
48507
1782 i
1584323 3™ x10™!
531441
177147
59049
19683
6561
2187
729
243
81
27
9
3
T0688655172413783 1)1
9 n-1xlo-n
27 3
81
243
729
2787
6561
19683
59049
177147
531441
1594323
478296.
Fiqure 1 143489
igure 14285714 ........
<~ 1/7 e

347
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321
6859
361
19
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012345679 ......
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Figure 2
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ON GENERATING FUNCTIONS FOR POWERS
OF A GENERALIZED SEQUENCE OF NUMBERS

A. F. HORADAM
University of New England, Armidale, Australia

GENERATING FUNCTIONS

For the record, some results are presented here which arose many years ago (1965) in connection with the author’s
paper [3]. Familiarity with the notation and results of Carlitz [1], Riordan [6], and the author [2], [3] and (4],
are assumed in the interests of brevity. Note, however, that /,, in [3] has been replaced by #,, to avoid ambiguity.
Our results and techniques parallel those of Riordan.

Calculations yield

HE=3HZ 1 +HE 5 = 2(-1)"e
Hy = 4H5 1~ H3 2 = 3(=1)"eH, .
Hy=THE 1+ H 5 = 267 +8(-1)"eHZ 4 le=r"-rs-s%)
Hy = 11HZ  — Hy 3 = 8e2H,, g + 15(~1)"eH;; .

(1)

and so on. Corresponding generating functions for the Kt power of H,,
[Continued on page 350.]



A LOWER BOUND FOR THE PERIOD OF THE FIBONACCI SERIES MODULO M

PAUL A. CATLIN
Qhio State University, Columbus, Dhie 43210

in this note we shall determine a nontrivial lower bound for the period of the Fibonacci series module m. This prob-
lem was posed by D, D. Wail {2], p. 529.
Let afm) denote the subscript of the first term of the Fibonacei series

(1) Friz = Fpegt Fpy, fo=20 Fr=1,
which is divisible by m. Let k{m/ denote the period of g Fn } modulo m. Define the sequence { L, } so that
(2) L,-,+2 = Ln+7+L,-,, Lg =2 Ly =1.

Then our main resuit is the following theorem:

Theorem. Let t be any natural number such that L, <m, where m >2 Then kfm} > 2t, withequality if and

only if L,=m and ¢ is odd.

Wail posed the question for prime values of m. [t is not known whether or not there are infinitely many prime m
such that L;=m when ¢ is odd.

For the proof of the theorem we need some preliminary results. The following theorem is proved in [1] {Th. 3).

Vinson’s Theorem. Let m be any integer greater than 2. If afm) is odd, then k{m}=4afm); if 8'm and
alp) =2 (mod 4) for all odd prime divisars of m, then kfm/) = afm); in any other case, k(m)=2alm}.

In addition to well known identities, the following is useful:

(3) Fi = ~(=1) Fimy-i (mod m) .
Equation (3) follows by induction on i using (1), Fo="Fr(m)=0, and F1=Fr(mjeg=1 (mod m).

Lemma. k(L,)}=4n when n iseven; k(L,)=2n when n isodd.

Proof: afL,)=2n isknown, and may be proved using Fo,=FrL,, Fr<Lp, for t<n+1, andthe fact that
subscripts n for which m|U,, form an ideal. The lemma follows by an application of Vinson's theorem.

Proof of Theorem: 1tisknown [2] that k(m) is even. Using the identities (3) and

(4) Ly = Fpeg ¥ Fpar s

we see that if kfm)=2t then Fo=—(—1)'F, {mod m}, so t isodd or F,=0 {mod m). If t isodd then by (3) we
have Fip7=~—Fs_y (mod m) implying {by (4)) that

(5) Ly = Frg+Feqg =0 (mod m).
Otherwise, if Fp=0 {mod m) then by (1),
(6 Fes7—Frg = 0 (mod m}.

Clearly, if t <n then
(7) 0 < Frag+Feg < FpagtFpg =Ly <m,
by the hypothesis of the theorem. By {4)
Froag = Frog = 2Fpeg — Ly,
and since m = L; > Fppy when £ <n, we have
(8) Feig—Feq < m.
349
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Now, (5) and (7) imply that =5 and L,=m, and (6) and (8) are never simultaneously true. Thus t > n, with
equality only if L, = m. By the lemma,
kfm) = 2t = 2n

if and only if n and ¢ are odd and L, =m. The conclusion of the theorem follows.
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[Continued from page 348.]

oo

Hilx) = 3 HAX"  (Hil0) = (Ho)* = %),

n=0

where
Holx) = folx) = 3, x" = (1—x/)7"
n=0

and >

Hilx) = (r+sx)(1 = x —x2)
are

(1—3x +x2JHolx) = r? = s% = ZexHol~x)

@ (1—4x —x?JH3(x) = 1+ s3x — 3exH 1(~x)

(1= 7x +x2)H40x) = r% = s%% + 262xH g(x) — 8exH o(—x)
\ (1-171x —x?)Hs(x) = r®+$%x + 5e%xH 1 (x) — 15exH3(~x) .
The general expression for the generating function is (see [3])
[k/2] i )
(3) (1—agx+(- 152 Hielx) = kK = (=s)kx + kx 2 (:-Il & agjHi-zil(~1)'x) ,
=1
where
(1-x-x2)7 = Z aijk'zi ,
k=2j
that is, ax; are generated by the jth power of the generating function for Fibonacci numbers £,. Note the occur-
rence in (3) of the Lucas numbers a,,.
FUNCTIONS ASSOCIATED WITH THE GENERATING FUNCTIONS
In the process of obtaining (3), we use

[k/2]
@) dlx) = B Hilx) = Z; (% )eFegt-1hn)  (Fol) = Hot))
j:
where > 7
Felx) = [ir—sbla]X(1—a*x)"" + [(sa — rIb] (1 — b¥x) k=1223-)
and

a=]L2£, b=7—25 (a,b rootsof x2—x—1=0),

leading to the general inverse

[Continued on page 354.]
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1. INTRODUCTION

The first congruence in this paper arose in an effort to extend a result of Collings [1] and the second congruence
is merely an elaboration of part of a theorem of Wall [5]. in the final section we look at some congruences modulo

m

Some of the symbols invelved are: O(m), the period of divisibility modulo m {or rank of apparition of m or entry
point of m), the smallest positive integer z such that £, =0 (mod m/ (see Daykin and Dresel [2]); Cfm/, the
period of cycle modulo m, the smallest positive integer & Fre, =F, (modm), n>0; T{m), the smallest positive

integer . F§+7 =1 (mod m). Infact, z2 = k. (See Wyler [6].)
Collings’ resuit was than when m is prime, 2 is even,

(1.1} Frt Fyoper = 0 (mod m),
where
Fn = Fn-7+Fn-2 {n >3}, F7 = F2 =17.
We show that m can be composite if F/25 = —7 (mod m).
2. LEMMAS

Lemma 2.1: (see Vinson [5].)

Far m > 2 D(m) is odd implies that 7fm) =4 and O(m) is even implies that 7{m} =17 or 2.

Proof: Simson’s relation can be expressed as
Fzz+1 = FproFzt (“’”z+2
=(-1)*"? since F,=0 (mod m),
7 {med m) i z=D(m) iseven,
=—7 fmod m) i z=D0(m isodd..

1

When
F2.; =1 (mod m),
T(m) =2 it FZ+7 == 7 (de m/,
Tim) =1 if Fyeg =1 (mod m).
When
F22+7 = -7 (mod m/,
Fy=1 (mod m) it m>2
50
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Fop7 = 21 (mod m).

F2?+1 = FZ1Fzer = —Fz7  (mod m);
Fie1 = [F24]% = 1 (mod m),
and
T(m) = 4
Lemma 2.2: Fxk-7 =1 {(mod m).
PI‘OOf.' Fr-1 = Fre1— Fg F1-0 (mod m)

mm

7 (mod m).

3. THEOREMS
Theorem 3.1: |f o#1 and FZ% = -1 (mod m), then
FrtFyozer =0 (mod m) forall r> 0.

Proof: ¢ = T(m) which takes only the values 7,2, 4 (Lemma 2.1). But ¢ # 7 (given). Therefore ¢ is even.
Therefare, Fz’/iQ, exists and is unique. Mareover,
Fugzir = FLa7F, (mod m) (see Eq. (8) of [4])
—F, (mod m) as FZY = -1
o Fo#Fygper =0 (mod m).

NOTE. (i) Conversely, if for ¢ #7 we are given that
FrtFygorr =0 (mod m),
for all r, this congruence must hold for r=1.

il

1= F1 = -F/2Q2+1 (de m}
—F +7F1 (mod m)
= _Fz+1

Hl

On the other hand, it is possible for
F * Fr0z+r
to be congruent to zero for some particular r without Fz+1 being congruentto —7. Thus, when m = 72,
Fio=144 =0 (mod 72) and 2z = 12
Foeg = Fi3=233=5 (mod 12)
Le=2
Fz+1 Fiz % —1 (mod 72) .

Despite this,
F3+Fyoze3 = F3+F15=2+610=612=0 (mod 12).

(i) When ¢ =7 the situation is very untidy. If z is odd, Fyq,+ does not exist. Even when z is even,
we have trouble with Fz+7 As ¢ = 1, Fz+7 =1 (mod m). Therefore

z+7 \/Fz+7 = \/7

(and possibly other values as well). —7 is always a possible value for Fz+7, but never the exclusive value.
(iii) Although —7 is always'a possible value for Fz %7 (e=1), itis not necessarily true that

Frt+Fyoer =0 (mod m) forall r>0.

Thus, when m = 4, z = 6.
ZFyg=1 (modm), :=e=1.

2 FtFyun=Fo+Fs=6=2 (mad 4).
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Theorem 3.2: Fo+(—1)"Fr., =0 (mod m).
Proof: ~Fr=0=Fg and Firy;=1=F; (mod m) by Lemma 2.2
~Fg2=—Fx+Fpq =Fg+F; =Fy (mod m).
It follows by induction on & that
(=1) " Fpep = (= 1) Frcpi # (~1) Fperag
=F,p+F_7 (mod m)

=F, (mod m/,
which gives the required result.
4. CONGRUENCES MODULO m?

Here we use the results (see Hoggatt [3])

(4.1) Frre1 = Fio-1)rFr* Fin-1)r+1Fre1
and
(4.2) Fone1 = FE+FPeg

If a(mod m)=F,.;=>5b(mod m?), then b is of the form Bm +a, forsome B. For example, F5=0(mod 5),
3(mod 5)=Fg=8(mod 52), and 8 = 1x 5+3
Using F, =0 (mod m) and (4.1) and (4.2) we find

Fo,e7 = FZr7 (mod m?) = b2 (mod m?),
and
F3z41 = Foye1Fyey (mod m?) = b3 (mod m?),

which, by the use of (4.1), can be generalized to
(4.3) Fppe7 = 5" (mod m?).
Furthermore, since F, = Am forsome A, then

Fooy =b—Am (mod m?)
and
Faz = FauqFyrt FzFzug
= (b — Am)Am +Amb (mod m?)
= 26Am (mod m?).
Also,

F3, = Foy_1Fy+ Fo,Fpyq  (from (4.1))
(b2 = 2bAm)Am +2bAm - b (mod m?)
= 36%Am  (mod m?) .

Similarly, Fg, = 46°Am  (mod m?). Thus
(4.4) Fpy = nb" " Am  (mod m?).
When F,,, =0 the congruence nb"~'A =0 (mod m) reducesto nA =0 (mod m), because, from (4.3) and (4.4),
if 5 and m have any factor in common, so have F,, and F,,+7, which is impossible as adjacent Fibonacci num-
bers are always co-prime. Thus, if we solve nA =0 (mod m) for n, then Z=nz gives that Fz which is zero (mod

2
m*).

Let us apply these methads to find which Fibonacci numbers are divisible by convenient powers of 10. Instead of
workina with m = 70, we shall find the equations simpler if we write 70=mq¢-m2, where my=2, m>=25, and
100=22.52 my=2,z=3, F3=1-2 andso A=1. The equation nA =0 (mod m) reducesto n=0 (mod 2J,
which gives n =2, so that Z=2z=6. Similarly with mo=15, z=15, and we find that Z = 5z=25.

If we take m;=4, z=6, Fg =2-4 andso A=2. Thus 2n =0 (mod 4) which gives n=2 and Z=2z=12.
Similarly, with mo =25, z=25 and Fog5= 75025 = 3001-25 which yields A=17 (mod 25). So n = 25
and Z =25z = 625.

il
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Relying on the known result that the period of divisibility by msm» (my,m5 co-prime) is given by O(mmo)=
LCM(z7,z2) (see Wall [6]), we get the results:
LCM(3,5) =15, and so Fg is the first Fibonacci number to be divisible by 10. /cm (6,25) = 150, and so F 59 is
divisible by 100. LCM(12,625) = 7,500 and so F 7500 is divisible by 707
This has been an exercise in finding the z numbers. By an extension of the argument we can produce the corres-
ponding k¥ numbers—the period of recurrence of the Fibonacci numbers (mod m2}.
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[Continued from page 350.]
[k/2] b ke _
= bk = — 1)
(5) Filx) Eg (e e (K77 ) qugpll-110)
=

Write
hilx) = (1 =agx +(=1)¥x2Jgylx)
(6) ; ek = llr—sbjal® + [(sa—rib]* .
Following Riordan [6], with ag=2 and hgfx)=1— x, we eventually derive
c7+5VEx = hylx)
co—x(2e + 552) = haolx) - 2e i‘flo(—)() —(ag+az)xgol—x) }
c3+ 55 x(3e +552) = hslx) - 39{ hel—x)—(ag +a3)xy1(—x)}
7 cq— x(262 + 205%¢ + 255%) = h4lx) — 4e ; hol—x) — (as+azlxgo(—x) }
+ 292{ holx) — (aq — ap)xgo(x) }
c5—eq = hglx)— 5e { h3(-x) —(az+ a5)xg3(—x}} + 532{ hylx) — (a5 — aﬂxg;(x)}
where ey = 2% — 5r%s + 30,252 — 40r%5° + 35rs% — 105°
Substituting values of ax = ak +b6%, we have
hilx) = /5 (r+sx)
halx) = 5(r? — s%x) — 10exgo(—x) .
(8) , h3lx) = 55 (r3 +s3x) — 15exg1(—x)
halx) = 25(r% = s%x) — 40exgo(—x) + 500 %xgolx)
hslx) = 25\5 (r® +s%x) — 75exg3(—x) + 125¢°xg 1 (x) .
These functions lead back to (2).

[Continued on page 362.]



FIBONACCI NUMBERS IN TREE COUNTS FOR SECTOR AND RELATED GRAPHS
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1. INTRODUCTION

Consider a set of (n + 7) vertices of a nonoriented graph with vertices 7, 2, ---, n adjacent to vertex (n+7) and
with vertex / adjacent to vertex (i + 7) for 7 </<n— 1. The graph described is called a sector graph herein, If
the first n vertices are equi spaced in clockwise ascending order on the circumference of a circle with the (n + 7)5¢
vertex at the center, the geametry justifies the choice of name.

If the first and n" vertices were made adjacent, the result would be the well known whee/*, W,+1 described by
Harary [1]. For this reason, the lucidly descriptive terminology of WW,+; is applicable to a sector graph as well.
Vertex (n + 1) is a hub vertex with spokes radiating outward to the n rim vertices which are adjacent by virtue of
rim edges. Multiple spokes and/or rim edges are admissible.

The designation used herein for a sector graph with n rim vertices is S,, followed in parentheses by spoke and
rim edge multiplicity information. (In particular, rim edge position / is between vertices / and (7 + 7). This would
also specify the position of sector i) Thus, the designation S,(7(2), 6(3), [37(2)) would describe a sector graph
of nine vertices total having double spokes in the first spoke position, triple spokes in the sixth spoke position, and
double rim edges in the third rim edge position. A simple sector graph would only require the designation S,. The
same terminology applies to wheels after a rim vertex is designated as vertex 1. An example is given in Figure 1. The

@ Rim vertex

3 | Rim edge position
QfSeg‘for

1 Spoke position

Figure 1 Example of S,(7(2), 6(3), [3](3)}

number of trees is indicated by prefixing a 7. Thus, 7S, is the number of trees in a simple sector graph. (Unless
otherwise stated, trees will refer to spanning trees.)

*The subscript for the wheel customarily denotes the total number of vertices including the hub. The subscript n + 7
is used here to retain identification with the n rim vertices.

355
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2. THE COUNT OF 75,(7(2), n{2)) AND A BASIC DETERMINANT

If a graph has some measure of symmetry, an algebraic approach to counting of trees is often feasible. If one row
of the incidence matrix A of the graph is suppressed to obtain the reduced incidence matrix A, (of rank nJ, itis
known [2] that the number of trees is given by det (A,,A,t,}, where ¢ indicates the transpose operation. In the case
of S,(1(2), n(2)), suppressing the hub vertex row yields

3-1 0--- 0 0 0
-7 3-1--- 0 0 0
(1) det (A AL) = TS, (1(2), nf2)) = = a,
g 06 0¢.---1 3-T
g o0 0--- 0-1 3
nXn
The determinant a,, of {1) is basic to succeeding work.
The recurrence realtion from (1) is easily found to be
(2) ap = Jap-1—an-2

whese solution is [3]

a) , =_L[—(M)””_(i;ﬁ)””]
n VE L 2 2

Physically, (3) is valid for n>2 However, ag=1, a; =3 are consistent mathematically. The resulting numerical
sequence of tree counts is

) 1,38 21,55, 144, - (h=012345:-").
It is evident that (4) gives alternate numbers of the Fibonacci sequence

sl F1.F2,F3 Fq, F5 Fg, -~ 1,1,23,58 - .
Upon comparing (5) with (4), it is seen that

(6) an = TSp(1(2), n(2}) = Fopso .

This result is not surprising, of course, since it is well known [4] that electrical ladder networks have graphs of the
sector type and immittance calculations on unit element ladders involve tree-derived numerators and denominators
of Fibonacci numbers.

Application of the Z-Transform [5] to (2}, results in
_2230 +z(a7 - 3a0)

(7) Zla,) =
? 2-32+1

By dividing the numerator of (7) by the denominator, the values of a,, are found as coefficients of 7/z”. By setting
ag=1, a;=3,

@) 2] = — 2
22—3z+7

is found as the generating function in powers of 7/ of the sequence (4).
3. THE COUNT OF 75,(7(2))

Next, consider 7S, (7(2)) {by symmetry, TS,(n(2}). Det ({A,AL) is the same as that of (1) exceptthe first 3 on
the main diagonal is replaced by 2. Thus, in terms of a, and through the use of (2) and (6),

(9} TSp(1(2)) = 2ap_q—ay.2 = an—ap-1 = Fapt2—F2n = Fape1 .
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The Fibonacci numbers not in (4) satisfy the same recurrence relation (2) as those in (4). Use of new initial condi-
tions with (2), say, a,=5 for n=2 and a,=13 for n=23 vyield

(10) rspiz) = (LB (34BN (1-F ) (3-F\n _
25 2 25 2 = Fan+1 -

The resulting sequence of tree count numbers is

(1) 1,2,513,34,89, -  (n=0,122345 ),

where physical validity applies for n > 2.
By letting ag=1, a;=2 in (7), the generating function for the sequence (11} becomes

(12) 2(TS,(1(2) = 2oz
7z —-3z+1

4. THE COUNT OF 75,

In S,, the degree of rim vertices 7 and n is two. Hence, the det (A,AL) for S,, is the same as (1) except that
the 3's inthe (7,7) and (n,n) positions are replaced by 2's. There results

2-10---0 0 0V ... . .......
B RRREEEE 0 POl Sl 0000
0! I g L0 /]
i l 0 Lo
| | Vo .
(13) TS, =| 1 ap-2 : =2 an-2 N an-3 :
N v Vo
| I 70
g 0 '
I ! — :
0L .. [ B N 7 27 """""""" 3 -1
0 00---0-1 2 000 - 0 0 0-1 2
R e
nxn

=4dapp—4ap-3tap-4 = an-1 = Fap .
This means that

(14) TSp = TS, 1(1(2} n - 1(2)) = \/LEK%@) - <3;2@> ]

An index shift by one can be accomplished in (8) by multiplication by 7/z. Hence, the generating function for
7S, becomes

(15) 218,) = —%—
-3z +1

-

In terms of sectors, the simple sector graph of & sectors has the tree count given by (6) with »# replaced by &
5. EXTENSION TO THW,+;

In S,, by additionally making rim vertices 7 and n simply adjacent, the simple wheel Wy, is obtained.
Det (A,AL) is the same as (1) except that —7's replace 0’ inthe (7,n) and (n,7) positions. There results
7
]
0
(16) TWorr = an-1 v H=38a, y—2ap.0-2=ap—apo—2

0

1

3
_<3-2\/‘>n_2%9@] = Fops2=Fopo-2.
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6. COUNT OF TREES WHICH INCLUDE INDIVIDUAL SPOKES OR RIM EDGES

One way to find the number of trees which contain a particular graph edge is to coalesce the vertices of the edge
and count the trees of the vertex-reduced graph, the count being the desired number of trees in the unreduced graph
[6] containing the edge. The self loop into which the edge degenerates can be disregarded for tree counting.

If a connected graph is separable, the number of trees is equal to the product of the trees of the separable sub-
graphs. When removal of a graph edge produces two separable but connected components, the difference between
the product gee count and the number of trees of the original graph provides an additional way of finding the num-
ber of trees containing a particular graph edge. A few easily extended illustrative examples follow.

COUNT OF TREES WITH A GIVEN SPOKE. Consider the A7 spoke of S,,. By coalescing vertex A with
hub vertex, two edge-disjoint subgraphs appear so that the vertex-reduced graph is separable with the hub vertex be-
ing a cut vertex. Each subgraph is a sector graph having a double end spoke. One subgraph has (# — 7/ vertices and
the other has (7 — /1) vertices. Through use of {9) and the product rule for separable graphs, it is seen that the num-
ber of trees of S, which contain spoke /# is

{17) Th-1(102)) - Toop(1(2)) = Fop_q - Fop-2n+1. (1<h<nl -
Consider any spoke of W,. Coalescing the rim vertex to the hub vields S,,_7(7(2), n - 1(2)} which, by (6), has
(18) TS,-4(1(2), n~1(2})) = Fo,

trees. Thus, any spoke of W, isin Fo, trees.

COUNT OF TREES WITH A GIVEN RIM EDGE. Let rim edge k& be the edge of S,, which is incident with rim
vertices & and (k + 7). Removal of rim edge k reduces S,, to a separable graph having the hub vertex as the cut
vertex. The subgraphs are the sector graphs Sy and S,_x. They are

(19} TSk « TSn-k = For * Fop-2k
trees in the reduced graph. Since S, has F, trees, the number of trees of S,, in which rim edge & appears is
(20) TSn— TSk - TSp—k = Fap— For * Fon-2¢ -
if any rim section is removed from - /¥, S, resuits. Therefore, any rim selection of 1/, must be in
(21) TW,—TS, = Fopto—Fopo— Fop—2
trees.

7. GRAPHS WITH MULTIPLE SPOKES AND RIM EDGES

TREE COUNT WITH MULTIPLE SPOKES. Suppose that the number of spokes in position 4 of S, is increased
to j. Since a spoke cannot be in a tree with any other spoke in the same position (resulting loop could not be part
of a tree), the number of trees would be {with the aid of (13) and (17)},

(22) TS+ = UThog(102)) - T p(102)) = Fop+ i — 1)F2p-1 - Fon-2p+1. (T<h<n).

Correspondingly, the increase of the number of spokes in any position of W,+; results in a total of trees given by
{see (16) and (18)}

(23) W, + {f— 7}TS,~,-7(7(2}, n—1(2)) = Fopnso—Fop_2+ {j - 7}F2n -2.

TREE COUNT WITH MULTIPLE RIM EDGES. If the number of rim edges for sector & of S, is increased to j,
the number of trees would become {with the aid of (13) and (20)),
(24) JTSy~ = TSk - TSk = fFon~ 1/ — T)Fok - Fopok .

Also, if the number of rim edges for any given sector of I/, ; wereincreased to /, the number of trees becomes (see
(16) and (21))
(25) [TWyi7— (7~ 1JTS,, = j(Fopio— Fop.o— Fon—2)+Fo, .

Extensions to additional multiple edges are available only for the trying. One obvious use for the tree count formu-
las is the evaluation in general Fibonacci terms special determinants whose form fits der (A,,A};) for the multiple
edge-modified sector graph or wheel.

Examples showing numbers of trees containing various edges are given in Figure 2.



1974} FIBONACCI NUMBERS IN TREE COUNTS FOR SECTOR AND RELATED GRAPHS 359

W;
TW, =5 TW, =16 TW, 45 TWs =121
(Integers adjacert to edges indicate trees having that edge. )

Figure 2. Examples of S, and Wj,+¢

8. SOME OBSERVATIONS

From Figure 2, it can be surmised that the sum of the number of trees containing edge one, edge two, etc., of
Wy,+7. is exactly n times TW,+7. Since there are n spokesand n rim edges in W),+7, multiplication of the sum
of (18) and (21) by n does yield n times (16), which verifies the surmise.

Also, from Figure 2 it can be surmised that S, has this same property. The surmise again is true and rests eventual-
ly on the identity

n=-1

(26) Fon-2 =9 [Fan-1* Fon-2n+1~ Fafi  Fan-2n]
h=1

which is left as a search or research exercise for the reader.
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COMBINATORIAL INTERPRETATION OF AN ANALOG
OF GENERALIZED BINOMIAL COEFFICIENTS

M. J. HODEL
Duke University, Durham, North Carolina 27706

1. INTRODUCTION

Defining f; & (n; r,s) as the number of sequences of nonnegative integers

(1.1) {371‘92/ "‘,an}
such that
(1.2) —s < ajgpp—a; <r (1<i<n-1),

where r and s are arbitrary positive integers, and
(1.3) ar = j, a, = k,
the author [2] has shown that the generating function

= min { n(r+s),j+nr‘§»
Sirslxy) = D > £, itrom(n + 121,55y
n=0. m=0
can be expressed in terms of generalized binomial coefficients ¢,.+s/n,k/ defined by
n

rfs oo
(1.4) Z: x" = Z eraslnh)x® .
h=0 k=0

For the cases r=17 or s=17 we have explicit formulas for fj,k(n,' r,s), namely

J s-1

(1.8) fipln+1; 7,s)=2 cs+1l(-t-1,7-1t) [cﬁ,(n +t,n +t—k}-E th+Tcgeqln+t,n+t-k-h —2}}
=0 - h=0

and

k : r-1
(1.6) fixln+ 7,'67)=Z Crap(~t—1, k=1t { crerln+t,n+t—j)— E (h+1)epeqln+t,n+t—j—h —.2}].
=0 - =0
These formulas generalize a result of Carlitz {1] for r=5=1.,
We now define an analog of ¢/ k), n >0, by

n/ rts nlr+s)
(1.7) I ( t,y/"h}jxh = Z c,-+s(n,k,'qlxk )
=1\ h=0 k=0
Letting fxfm,n; r,s) denote the number of sequences of integers
(1.8) {ar,a2, -, an }
satisfying
(1.9) —$ < ajpp—a;<r {(1<ign-1),

where 7 and s are nonnegative integers,
(1.10) aj =0 a, =k

and
360
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n
(11” Z a; =m,
i=1

we show in this paper that

361

(1.12) creslnk g) = Z Fortclm, n+1;15)g™

From (1.12) we obtain a partition identity. m

2. COMBINATORIAL INTERPRETATION OF c,.1s(n,k q)
From the definition of f«(m,n;r,s) it follows that

(2.1) felm,1;1,5) = 84 0Bm,0
and
rts
(2.2) felmn +1;rs) = Z fess-nlm—k,n;rs) .
h=0
Now (2.1) had (2.2) imply respectively
(2.3) Z fe(m,1;1,5)g™ = 84 o
and
rts
(2.4) Z felmn +1; 1,s)g™ = Z Z fets-n(mn; r,s)gm .
m h=0 m
Let
o nfrt+s)
dxy q) = Z Z Z Foptic(m,n + 1;1,5)gMxky"
n=0 k=0 m

Using (2.3) and (2.4) we get
rts o (n+1)(r+s) r+s

Syl =14y 3 Z 3o 3 farknlmn + 1rs)g Ay < 14y Z g otxa ya'za).
h=0 n=0 k=0 m

By iteration

r+s o nfrts)

$lxy;q) = E Z gy = 3T sl gxky
n=0 1 ’ n=0 k=0

Equating coefficients we have

(2.5) creslnk; g) = Z Frrtlmn +1;15)g™

m
3. APPLICATION TO PARTITIONS
Assuming the parts of a partition to be written in ascending order, let u,(k,m,n) denote the number of partitions
of m into at most n parts with the minimum part at most r, the maximum part k and the difference between
consecutive parts at most . Define v,.(k,m,n) to be the number of partitions of m into k parts with each part at
most n and each part occurring at most r times. We show that

(3.1) ulkmn) = v .(k,mn) (r=1).
Proof. tis easy to see that
(3.2) ulkmn) = fe(mn+1;1,0) .

By (2.5) and (1.7) we have

n

Zka(m/HI r,0)gmxk = Zc,(nnr—k gl = H< Z g"ix"
h=0

k=0 m k=0 =1
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Thus the generating function for u,.(k,m,n) is

r
(3.3 f'I Z ghixh
j=1 -0

But it is well known (see for example [3, p. 10] for r=17) that the generating function for v.(k,m,n) is also (3.3).
Hence we have (3.1). This identity is also evident from the Ferrers graph.

To illustrate (3.1) and (3.2) let m=7, n=4, k=3 and r=2. The sequences enumerated by 73(7,5; 2,0/ are

00133 , 00223 and 01,123 . The function uy(3,74) counts the corresponding partitions, name—
ly 732: 223 and 72'23. The partitions which v2(3,7,4) enumerates are 223, 132 and 724, Fromthe graphs

we observe that 732 is the conjugate of 223, 223 is the conjugate of 132 and 7223 is the conjugate of 724.
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[Continued from page 354.]
SPECIAL CASES

Putting = 7, s =0, we obtain the generating function for the Fibonacci sequence (see [3] and Riordan [6]). Put-
ting r=2, s =—1, we obtain the generating function for the Lucas sequence (see [3] and Carlitz [1]).

Other results in Riordan [6] carry over to the H-sequence. The H-sequence (and the Fibonacci and Lucas se-
quences), and the generalized Fibonacci and Lucas sequences are all special cases of the //sequence studied by the
author in [4]. More particularly,

{H,, } = % wplr, r+s;1, —7)}

and so
{ta} =Awalr,1:1,-0},  {an}={wa21:1,-1)} .
Interested readers might consult the article by Kolodner [5] which contains material somewhat similar to that in
[3], though the methods of treatment are very different.
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ON THE SET OF DIVISORS OF A NUMBER

MURRAY HOCHBERG
Broakiyn College (CUNY), Brooklyn, New York 11210

If z isa natural number and if 2z =p)1‘1 pzﬁ ~-=pl-7\j is its factorization into primes, then the sum Ay + Ag + -+ 7\j
will be called the degree of z Llet m be a squarefree natural number of degree 1, i.e., m is the product of n dif-
ferent primes. Let the set of all divisors of m of degree & be denoted by D, k=0, 1, -, n; clearly, the cardinality
of Dy isequal to Cfnk), where C(nk) denotes the binomial coefficient, n//fk!fn — k}I]. Two natural numbers
& and ¢ are said to differ in exactly one factor if 6 =rpy and ¢=rpo, where py and po are prime numbers, with
p1#p2. Let a be a natural number that is a divisor of m. A natural number § is said to be an extension of a if § is
a divisor of m, a is a divisor of 8 and the degree of § is one more than the degree of a- A natural number <y is said
to be a restriction of a if <y isadivisor of m, 7 isa divisor of @ and the degree of 7 is one less than the degree of
a.lf A isanon-empty set of divisors of m, we shall denote by A the set of all extensions of the divisors in A, if
A = ¢, we define A = ¢. The cardinality of any set A will be denoted by |A| and we use the superscript “¢” to
denote complementation.

In this note, the author gives a relatively short and interesting proof of the following theorem:

Theorem. Let A be a collection of divisors of a squarefree natural number m such that each divisor in A has de-
gree kK, 0<k<n Then

+ o Wl k+1)
{1) '/4 | = —“'Z_?;’—-k}——— ,
and for A #¢ equality holds if and only if 14]= Cln,k).
Before proving the thesrem, we need to prove one lemma that is alse of independent interest.
Lemma. Let A be a non-empty collection of divisors of a squarefree natural number m such that each number in
A hasdegree k, 0 <k <n, and |Al < Cfn,k). Then there exists natural numbers acA and f=A° n Dy such that
a and § differ in exactly one factor.
Proof. Let v, be an arbitrary number in A Since |A| < Cfn,k), there exists a number 6 € A° with the degree of
& equal to k£ Let g be the greatest common divisor of v, and of & and let the degree of g be equal to ¢o. Then
Vo _ gl tr¢
3_ - 57-92"'5k—w' ti #SI 4
where ij = 1,2 - k~ . We now define recursively a finite sequence of numbers by setting

$; . .
v = V/I(t—j) f= 1,2k .

Plainly, ;€ D, viy and v; differ in exactly one factor and vg.¢,=9 . Since the first number in the sequence v,
V7, -, Vk-¢o 18 in A and the last number is in A€, there exist consecutive numbers z; 7, 3 such that 3 _; < A
and yj € AC: these can be taken to be, respectively, the numbers a and § of the lemma.
We now prove the previously stated theorem.
Proof. Since (1) holds trivially when either A =¢ or k=7, we may assume that A #¢ and k <n. Consider the
set of ordered pairs,
E= g (a,8/: a e A, §isanextension of ¢ }

Since each number a= A has precisely n — k extensions, |£] = 14l(n — k). If we now set

363
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F = { (a,B) :BeA¥, a isa restriction of B } ,
it is clear that £C F and |F| = (k+ 1)]A*|. Hence,
(k+1)|A*| = |Alln—k),
which is equivalent to (1).
If |A| = Cln,k), then

Clnk+1) = |A*| = Cln, k+1),

so that equality holds in (1).
Suppose conversely that A # ¢ and

= lilc—(nlﬂi} = !Al(n:_k_/
@ 47| Cln,k) k+1

We wish to prove that |A| = Cfn,k); since this is trivial for the cases k=0 and k=n, we may restrict attention
to integers k such that 0 <k <n. If |A| < C(n,k), by the lemma there are numbers acA, € A° n Dy such
that @ and @ differ in exactly one factor. Let a=rp; and B=rpo, with p;#po, and put y=rpypo. Then ye
A* and
(3 () €E°nF.
On the other hand, (2) implies that

{Fl = (k+1)|A*| = |Alln— k) = |E| .

Since £ cF, we conclude that £=F, which contradicts (3). Thus, |A|=C(n,k).

Recently, it was communicated to the author that the second part ef the theorem with m any integer and with
[Dk| in place of Cfn,k) is false. For example, if m=12, k=1, A= { 3}, then |Ok|=|Dg+1|=2, A*= {6‘}
Thus,

|A*| = (1A]|Des 1|/ 10k]  andvet
A #Dy. Nevertheless, it is the author’s conjecture that the first part of the theorem remains true if one omits the
hypathesis that m is a squarefree number and if one substitutes |D4| for Cfn,k). However, the above assertion

has not been proved completely by the author.
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ON THE MULTIPLICATION OF RECURRENCES

PAUL A. CATLIN
Ohio State University, Columbus, Ohio 43210

In this note we shall consider recurrences of the form
(1) Ap+2 = Ap+1 +Ap .

with initial values Ap and Ajy. The special case Ap=0, Ay=1 in (1) is the well known Fibonacci series (F,),
and Ag=2, Ay=1 isthe Lucasseries (L,). Theinteger NfA) =A% — A, A, is the norm (also known as the char-
acteristic number) of (1). When recurrences (A,,) and (B,,) are multiplied (the multiplication of recurrences, which
is defined below, was developed in [5]), we have that N(A)N(B) = N(AB). This multiplicative property is the justi-
fication of the use of the word norm. In this paper, we shall derive some basic properties of recurrences under mul-
tiplication. Our main result will be that recurrences can be factored uniquely (up to order and sign) into recurrences
whose norms are prime.

Let Ag=Ag, A7=Ag—A;. Therecurrence (A, ), obtained by using Ap and A7 as initial values in (1), will
be called the dual recurrence of (A,,), and the asterisk will be used to denote dual recurrences. The notion of dual
recurrences was introduced in [3]. It may be shown by induction that

(2) Ap = FpetAp— FpA7 .
t{A,) will denote the scalar product (taken term-wise) of an integer ¢ and (4,). If (Ag,Az)=t> 1, wecan
express the recurrence as a scalar product #(B,)=(A,), where tB;=A; forall i ltisonly necessary to consider

such reduced recurrences.
We define the product (A,)(B,,) of two recurrences to be the recurrence (C,,) (of the form (1)} such that

(3) C;—~aCg = (A —aAglB; —aBg).

where a is a zero of x° — x = 7, the characteristic polynomial of (1) {2 is adjoined to the integers, and (3) is an
equation in the extension). It follows (see [5]) that

4) Crmtn = AmBn+1+ Am+1Bn—AmBp .
and
() Crmtn+1 = Am+1Bn+1+AmBy .

As stated before (and in [5]), MAJN(B) = N(C).

We point out that the value of AfA) changes only in sign as the starting point Ag of the recurrence (A,) is trans-
lated one term at a time: the value of M(A/=A2 — A, A, alternates in sign. This follows from the identity
(6) (An+1}2‘AnAn+2 = (=1)"NA),

which may be proved by induction. Henceforth, we shall disregard the sign when we discuss the norm; we shall only
use its absolute value. Also, the signs of terms of (A,,) will be disregarded in the sense that (A,,) and —(A,) will
be considered equivalent. Thus, for the Fibonacei and Lucas series, we have that N(F) =17 and N(L)=5.

It has been shown (see [1]) that a recurrence other than (F,) can be translated so that J4,| > |4, |, and that
this representation is unique. For the purpaoses of this paper, however, we shall make no such assumption.

It follows from (4), (5) and the definitions of the norm and dual recurrences that

(7) (A NAn) = N(ANF,) = NATHF,).
Since (L;)=(L,), it follows from (7) that
(Lp)? = 5(F,).
365
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The sum, taken termwise, of (A, ) and (A}) is Ag(L,). Of course, ((A,)*)=(A,). Several identities involving
{A,) and its dual can be derived as special cases of general identities in [5]; among them are the following, which
are generalizations of well known identities for (F,) and (L,).

A AR +NAJFE = (—-1)"AZ
Fa,Ap = F,,(A,,'I'A;;) = AgF,L, .
Using the theory of binary quadratic forms, it may be shown that distinct recurrences of norm m (where distinct
recurrences are recurrences which are not translates or scalar multiples of each other) are in a one-one correspond-

ence with roots n of
n? =5 (mod 4m) ,

where 0 <n <2m, It follows that there are recurrences with norm m if and only if (p/5) =0 or 7 forall prime
factors p of m, and that the number of distinct recurrences of norm m is 2 where r is the number of prime
factors p of m such that (p/5) =1 li.e.,, p=10k £ 1). Also, it is not possible for 25 to divide the norm, These
results may be found in [2] and [4]. In [1] there is a table of the recurrences having a given norm for all possible
norms up to 1000.

We remark that multiplication of recurrences with a given discriminant d (d =5 in this paper) corresponds to the
composition of binary quadratic forms of the same discriminant; in fact, (4) and (5) are used in the definition of
composition of forms.

The following theorem shows that (A};) isin a sense the inverse of (A,,), since (F,,) is the multiplicative identity.

Theorem 1. X =(A}) is the only recurrence satisfying (A,,)X = M(A)(F,,).

Proof. By setting Co=0, C;=N(A), m=n=0 in (4) and (5) and solving simultaneously for By and B;, we
find that By = Ap = Ag and B; = A; — Ap=—Aj7. Thus, if signs are disregarded, (B,) = (A,), proving
the theorem.

Theorem 2, The dual map is an automorphism of the group of recurrences under multiplication.
Proof. By (1),if (A,)(B,)=(C,,) then

N(AIN(B)(Fp,) = (A J(B IARNBR) = (CINALIBRI) .
whence (A})(B)=(C;) by Theorem 1. Since the dual map is bijective, the theorem follows.

Theorem 3, Any automarphism of the multiplicative group of recurrences preserves the value of the norm.

Proof. By (1),
(A NAS) = NANF,).

Let (A,) —~(A};) be anautomorphism. Then
(AR)AL) = NMANF,) = N(ANF,) ,

since an automorphism must map the multiplicative identity onto itself. Thus, by Theorem 1, (A;;") = (A}*),s0
that N(A“) = N(A™*) = N(A*), and the theorem follows by the multiplicative property of the norm.

Let S$= { P1, P2, } be a subset of the set @ of primes which are quadratic residues of 5 and let $'=Q2 - S.
Then the function 7 mapping recurrences onto recurrences such that

(A}) if NA)eS
(A,) it NA)eS’
determines an automorphism, and any automorphism, of the multiplicative group of recurrences can be so character-
ized. The proof, which uses Theorem 3 and the Unique Factorization Theorem to be proved later, is left to the
reader.

Theorem 4. Consider recurrences (G,,) and (H,,) such that

NG) = mg, N(H) = mg, (my,ms) = 1.

T((AL)) =

Then
(G,)(H,) = mymo(F,)
if and only if
(G,) = mqy(F,) and (Hp) = ma(Fp).
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Froof. Suppose myma(F,)=(G,)(Hp). Multiplyingby (G},
mimalG) = (G HGENH,) = m2(H,) .
Thus,
malG)) = my(H,).
It follows that
m2Gf = myH;
forall i Since (my, ma)=1, then m; |G/ and mo|H;. Therefore,
msz:} = IH1(H,7} = m,mg(E,,)

for some recurrence (£,), whence

m3 = N(G) = N(G*) = NmyE) = m3N(E) ,
sothat M(E)=1. It has been shown in [2] that there is only one recurrence whose norm is 1: namely (F;) Hence,
(En) = (F,).

The converse is obvious.

Theorem 5. {Unique Facorization). Recurrences of a given norm whose terms have no commaon divisor factor
uniguely up to order and sign inte recurrences whose norms are the prime divisars.of m.

Proof. First we shall show that a recurrence (£, can be factored uniquely into recurrences whose norms are
{relatively prime) maximal prime power divisors of m. It is only necessary to prove uniqueness for m = myms with
{mq,m2) = 1, and uniqueness for prime power divisors follows.

if N(E) has only one prime power factor or if (£,) ={F, ), we are done. Otherwise, let {£,,) have at least two
relatively prime factors mz and myo, and assume that factorization is unique for recurrences whose norms are those
relatively prime factors. We shall show that (£,,) factors uniguely,

Since there are 2” recurrences with norm m ,,where r is the number of prime divisors p of m satisfying (p/5) = 7
and assuming that (5/5) = —7 for no divisors of my (see [2]), and since, under similar conditions, there are 2° re-
currences with norm ms, then the set of recurrences obtained by taking products of recurrences, one with each
norm is contained in the set of 2 recurrences of norm mym2, with equality of sets if and only if any pair of
products is distinct. Thus, we must show that if (A, )(B,) =(C,)(D,) with

N(A) = N(C) = my, N(B) = N(D) = m3, {mq,ma) = 1,
then (A,) = (Cp), (B,) = (D).
Under the conditions stated, there exists a recurrence (G,/, equal to (A;;)(C,,) such that N(G) =m? and

(ApiGL) = my(C,).

Likewise, there isan () such that
MH) = m5  and  (By)H,) = ma(D,).

Substituting these relations into

(A, )(B,) = (CoHD,)
we get

mymalApNB,) = (ApHG B HH, T,

and multiplying by {A;/(B;;) and applying (7) obtain

mymafFp) = (Gp)(H,).
Since fmy,ma) =1, we have that {G,)=m;(F,) and (H,)=mo(F,) by Theorem 4. Thus,

m,/Cn} = (A,—,)(Gn) = m,(A,,),

whence (A,} = (C,), and (B} = (D), likewise.

Next we show that each of the two recurrences of prime power norm pk factors uniquely into & recurrences
of norm p. Let (A,) be arecurrence of norm p. Then the only cther recurrence of the same norm is {4,/ and
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no recurrence (except the identity recurrence (F,)) has a norm dividing p. We shall proceed by induction.

For k =1, the theorem is obviously true. Assume truth for all exponents not greater than & Then there are two
recurrences of norm gX which factor uniquely, and since (4,/% and (A}) are factorizations of the recurrences
of norm pX they are unique factorizations. Multiplying (A,,)* and (4%)¥ by each of the recurrences of norm p
and using (7), we get the products

(A0, (ANRTI (A IR(AR) = MANALRTT,  and  (Ap)K(AL) = NHANARIKT,
and the last two products fail to satisfy the requirement that the terms have no common factor. Thus, (A,,)k” and
(A;,‘)k” are two factorizations of recurrences of norm pk+7, and they are the only two meeting the requirement
that the terms of the product have no commaon factor. Since there are two recurrences of norm pk+7 (see [2]),
(A,,)k+1 and (A},‘)kﬂ must be their factorizations. This completes the proof.
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A NOTE ON FERMAT'S LAST THEOREM

DAVID ZEITLIN
Minneapolis, Minnesota

In this note, n, m, x, y, and z are all positive integers, with x <y <z
Theorem 1. For n > 2, tte equation x” + " =27 has no solutions whenever x + ny <nz.

Corollary. For m>1 and n =2, X""+y™" =2™" has no solutions whenever x” +ny/” < nZ”.

Proof Swppose x” #y™ =77 has a solution with y =x +a, z=x + b, where b > a > 0 are integers. Then, by using
the binomial theorem, we have

n
XM=y =(x+b)" - (x+a)" = j}: (7 )x"‘i(bi—ai) =" b -a)+Qlnxbal, Q>0.
=0
Thus
X" x—nlb-a)) =0,
and so x — nfb —a) > 0 is a necessary condition for asolution. Since
b—a=(x+b)—-(x+a) =z-y, x—-nlz—y) <0

-

is the stated result.
REMARKS. Since nz < ny + x is a necessary condition for a solution and since y <z, we see that

[Continued on Page 402.]



A g-IDENTITY

L.CARLITZ*
Duke University, Durham, North Carolina 27706

1. The object of this note is to prove the following g-identity:

*) Z (- ”n-k (q)n (a}k(b} q/z(n—k}(n+k ”(ab)"'k

(2)er E (_”k[ ] Yok (k~1) lv""7

k0 1-9""a
Kk

(6)rs1 E (—1 )k’ ] Ik (k-1) a_n:;;),

L}

where
(ali = (a,g)x = (1—al(1—gqa) (1 —g*a), falg = 1,

(e = la,q)k = (1= )1 —q?) - (1-g"), (glp = 1,

[k-l (q}kZ}}:.k= [”ik:}l (0<k<n)

and g isnota " root of unity, 7 <t<n
Since each side of

- K
nl . %kik-1) __a
k] q

n n
M3 1m0 ) (g q Bt )y = ) S (1) e

k=0 (a)i k=0 - I-q

is a polynomial in & of degree <n, it will suffice to show that (1) holds for b=¢", O<r=<n.
We have

—@7%7 S (1 —g ) AT =g~ T NI =gl T ~q2) (1= g™ ) = (=1)7q %) () tg),or .
1T—qb b=q"

Thus the right-hand side of (1) reduces to

(2) (_Hn-rir n’l r] q%(n—r)(n~r—7)(_7)rq—%r/r+1)(q)r(q}n_ran—r = (_Hn(q)nq%n/n—ﬁ—nran—r )

As far the left-hand side, since
(q—r}k =(1- q—r}” _ q~r+1} (1 = q—-r+k—7) = (= ”kq-—rk+%k(k—1)” __qr}” _ qr-7} (] — qr—k+7}

_ 3 — 7)kq'rk+y2k(k'” (q), /(q) i (O<k<r)

0 (k >@"} P
we get
E (-1)"" -k (ll)n 2 kq/z(n -k ) (n+k-1), /“‘Uk -rk+%k(ke1) : (;)'.}r q -r(n-k) _{ Hn(q} qén(n 1)- nr n-r Z l J(@/kﬂ‘

*Supported in part by NSF Grant GP-37924,
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We shall now show that

(3)

[ =1 =012,
k=0 - ~
so that the left-hand side of (1) is equal to
(- ”n(q}nq%n (n- 1}—nran-r
in agreement with (2).
To prove (3) we take

X = fa) "
;Tgf | ™ 2y Z(q)

By a well known identity

Z (ale & . elx)
(q)k efax) ’

where
(4) (}_‘g‘x s T (=g
efx, ::5 o~ 0 q"x
Thus
3 x ST r-k _ elx) _
Z‘; (q), P _k_] (a)ica alax] efax) = elx)

and (3) follows at once.

This evidently completes the proof of (*).

2. The identity (*) can also be proved by making use of the g-analog of Gauss's theorem (see for example [1, p.
68]):

o (alielbli | x \* _ elxJelx/ab)
(5) kg{:) (q)k(x)k( b) elx/ale(x/b) *

where efx) is defined by (4).
Define the operator £ by means of

E"f(x) = flg"x) (n=2012-)
and A” by means of the operational formula
"= (1-ENg—E)(q" " -F).
Then it is easily verified that

2" (- ”n—r[ _’ /zr(r-HEn—r )

It follows that

Z (— Hn—r[ ] /r(r—l)q(n—r/k k — (qk— ”(qk_q} _._(qk__qn-7})/( ,
r=0
so that
0 (n > k)
(6) Axk = 1
[ (=1)kg# =TI k(o = k)

Now multiply both sides of (5) by (xJ,, and apply A”. Then divide by x” and put x = 0. In view of (6) the LHS
becomes
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", (alxlb)
Z (/(;)k k (ab)—k . (_7)n—kq/z(n—k)(n—k—7)+k(n-k) . {_”nq%nfn—f)(q)n
k=0

(7)

= (- Un /zn(n—T}L( ”n—k (q)n (a) (b} qé(n—k)(n‘f'k ”(ab}'k
k=0

As for the RHS, we have first

(x). &lxlelx/ab) _ elq"x)elx/ab)
™ elx/a)e(x/b)  elx/a)elx/b)
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Apply A", divide by x” and put x = 0. We get

n
(8 (- ”nq%n(n— 7) Z {Z :] (a}k(ab}—k(q—n/a)n_kqn(n—k) )
k=0
Since
(G fadpeie = (1= /a1 =g /o) (1= g™ o) = (—1)7Kamth gFinlnt 1)k lkct1)

(1=g T a)(1-g%*2a) - (1-q"a) ,
(8) becomes
n : (a)
q%n(n—ﬂ(ab)—n Z (_”k[ ﬂ g #nln=1)-nk+3%k (k1) ik nt1
= - 71— qka
k=0

n .
_ %nln-1) 1 - ) k[ ni wkk-1),k _(@)nt1
= (——7}"!7 nin (ﬁb} n (—7} [ZJ q b 7_——n—k—a
k=0

Comparing this with (7) it is clear that we have proved (*).
3. We have

oo

Z r[])_;% Z (-1 }”'k (Zj (a)k (b)kq%(n—k}fn‘/'k—”(ab}n—k
n=0

_ (a)k(b}k K n_%n(n-1) n
- }_, e z; (—1)"q (g% abx)
k=0 n=0

Also, since B 1
(a)ps7 = (al,,_k(I—q”' allg""a)y ,

= (a)ntt o N k0 %k(k-n_li___ k g5k - mﬁx la),, at11 n
(a)n X k. skik-1) (0" "a)
(—17)%q K (px)k
2(,,, > T

Thus (*) is equivalent to the identity
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- b —~
Z (-1)"q %nin Ii(b )0 Z {a)k‘( Jk (nX}k =y Zjn n E (- Uk Yok (k-1) (‘7( )3)k (bx )k
n=0 n=0
(9) _x (b/n o k. skik-1) (8" b}k k
 F i 5 okt e o,
where now |g| < 1.
4, The following special cases of (¥} may be noted. For 6 =g we have
n n . 1,
Z (_”n—k(a)kq%k(n—k;’(n+k+7)an—k - (‘7()/)1“1 Z (_I)kl-z‘\ qék(k‘f”
k=0 q. . 7_qn-ka
(10) ‘1) Kl %k (k-1)
- [ n n 2 -
= (1= 30 (1] [k
k=0

For a =g this reduces to

Yek(k+1)
~k Y%ln~k)(n+k+3) _ +1 k
(1) kz;(-u" ()eq*(nH)(n (1-4" )Z (-1) [ﬂﬂ_q_m
Since
rn-m‘r _ _1-g"" "n]
Lok ] 7 gkt LK
and

n .
3 (__”k[n;: 7J g T) = o) (g TInt2)

k=0
{11) becomes
(12) i (1)K (g)y g BnK)0tk+3) _ (o) g (_qyng%intT)nt2)
Somewhat more generallkyz,c:t follows from (10) that
(13) E (1) () =k mtk 1) jnok = (a)per +(~1)"g %inln+1) nt1
k=0

We shall give a direct proof of (13). The formula evidently holds for 7= 0. Assuming that it holds up to and in-
cluding the value n, we replace a by ga and multiply both sides by 7 —a. Thus

Zn: (— ”n-k(a)k+7qZ(n—klfn+k+3)an-k = (a)4p+ (_7)nq%(n+7)(n+2)an+1(7 —a).
k=0

Hence

n+1

Z (- 7}n-k+1(a}kqyz(n—k+7)(n+k+2/an—k+7 =(a)psp+ (_anZ(n+1)(n+2}an+7(7 —a)+ (=177

k=0

. q}é(n+7)(n+2}an+7= (a) ”n+7q72(n+7)(n+2)an+2 )

n+2*t (-
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THE EVALUATION OF CERTAIN ARITHMETIC SUMS

R. C. GRIMSON
Dept. of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27514

1. In this paper we evaluate certain cases of the expression

(1.1) E max(A1,A2,~--,An),
where

Ak = agq+ - +akmy

and where the sum is over all the a’s, each ranging from zero to some positive integer. We also consider analogous
sums for min. For example we obtain, from some general results which we establish, the formula
r
> maxfa+hc+d) = 22( : ) + 170( 4 \+420( A )+420( ; ) + 743(\ ; )
a,b,c,d=0
Some general properties of more general cases of (1.1) are established.

Solutions of many problems, particularly combinatorial problems, are often expressed in terms of such sums. For
example, without going into detail, we frequently encounter sums of max and min in problems of enumerating
arrays. See H. Anand et al. [1] and Carlitz [2] for details.

In a related work, Carlitz [3] and [4] obtains, and relates to other problems, generating functions for max (ng,-..,
ni) and min(nq, -, ng). More generally, he evaluates

Z Mr(n1, ., nk)Xr;l ...sz (r: 71 ., k) ,
ny, =0
where M,(ny, -, ng) is defined by the following two properties: (a) it issymmetricin ng, -, ng,; (b) if ny < ny
< < g then
Mnq, -, ng) = n, (r=1 -,k .

He also evaluates the related series

£

n Myln,,,ng)
D K (r=1,-k.
gy, ,me=0

Roselle [6] examines the relationship between this series and the Eulerian function.

Other than [3], [4], [6] and this paper, there apparently has been very little published on problems of this nature.

A number of techniques are employed to solve various aspects of the problem and computer computation was
necessary in some instances. ‘

The main results of this paper are (3.3), (4.3), (4.7), (4.8), (4.11), (4.12), (4.13), (4.14), (4.15), (5.7), (5.9), (5.10),
(5.13), (5.14), (5.15) and (5.16).

2. Preliminary to our discussion we need some basic properties of Eulerian polynomials. The A" Eulerian poly—
nomial, a,(x), is defined, following Riordan [5], by

aplx) = (1—x)™1 E Kxk
k=0
From this definition we get
373
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anlx) = nxap-1(x) +x(1—x)Dap_1(x) ,
where D is the differential operator. Hence, the first few polynomials, which we will use later, are
aglx) = 1, azlx) = x, aslx) = x°

aslx) = x>+ 4% +x, aglx) = xX*+ 103+ 11x2 +x.

X,

A recurrence and a table for the coefficients (Eulerian numbers) of Eulerian polynomials and a generating function
for a,(x) may be found in [5; pp. 39, 215].
As for convenient notation we write
max
min
where we wish to discuss both max (a,b) and min (a,b).
Also we adopt the convention

(ab) ,

b= dp = (1=x)1=x2)(1=xp,).
3. Taking the simplest case first we evaluate the sum

oo
Z min (iq, - in) .
iy,in=0
To do this, we put
- i
3.1) Fixy, =, xa) = Y D>, min (i1,+in)X 7 X

Ty rg=0 iy, ,in=0
which becomes

oo

- L. . i
Fixg, =, xp) = 671 D minliy, ., in)xX7 - X
iy, in=0
Now since

min(i=1,+,iq=1)
min (g, ~,in) = Y 1= > 1,
j=0 ky #+1=i,
knti+1=in
it follows immediately that

co

H : i i - X1X9 X

S min (i, g} X = ¢7! L2
iy (1—x1x2-x,)
iy, in=0
Therefore,

- X1X2 X
(3.2) F(X;/, "',X,-,) =¢ 2 __A1X27%n ]
1—)(1)(2 ...Xn

Comparing the coefficients in the expansion of (3.2) with those of (3.1) gives

ry,.rp n
(3.3) S minfiz - ig) = P 10 (r;—j) .
iy, ,in=0 j<min(ry,-,rp) i=1
If ry=--=r,=r then the right side of (3.3) reduces to the familiar series
r
2"
j=0

4. Thesum
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(4.1) Z max (iq, =, ip)
iy in=0

is apparently more difficult to evaluate. If n=2 we may use (3.3) and the identity

(4.2) min (i,j) + max (i,j) = i+j
to get
s min(r,s)
(4.3) Y max(ij) = Brlr+ s+ 1) #sls+ 1)r+1)— 3 Ar=jNs—j) .
ij=0 =0

Now, considering the case of (4.1) where all the r's are equal we define

,

(4.4) Folt) = % max(iy, i) .
iy, in=0

Then by an inclusion-exclusion argument,

r r
! \
= n ; ; n ; :
Folr) =11 / Z max (iy, ---,I,,-1,r)—( 2) Z max (iq, =, in-2, 1,1
: i1z"'zin-1=0 iy sin-s=0

F ot (—7)0FT ( Z) max (r, -+ ,r) + Fplr —1)

or
n A
(4.5) Folr) =r 3y (Z) (~))K*  (r e 1)" e Fofr—1)  (r>1).
k=1
The expression
n
(4.6) > (R e
k=1
may be simplified, according to the binomial theorem, giving

(r+1)" 0"
so that (4.5) becomes
(4.7) Folr) = rlr+ 1)7 ="+ Fofr— 1) (r>1).
Applying (4.7) to F,(r— 1) we get
Folr) = lr+ 1) =/ e — 1) = (r = 1) T+ Fplr—2)

and continuing in this manner we eventually arrive at

r-1 r-1
Falt) = 32 (r=Klr+1 K" =37 (r=k)™7
k=0 k=0
r r r r n-1 o
Fal) = 3" Kk +1)" = 3" k™7 = 3 kike )"~ k") = 3" kY (7)/4 .
k=0 k=0 k=0 k=0 j=0

Now by comparing the last expression with (4.4) we have .
r r n-

(4.8) Folth = > max(iz,—ip) = 3 3 ( 7)/#'*’

iy, in=0 k=0 j=0

375
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or, in the usual notation for Bernoulli polynomials,

r n-1

(4.9) Z max (i7, =, in) = Z (7) Bj+2(r1;1)2— Bjs2(0)
iy, ,in=0 j=0

The first few special cases of F,(r), obtained from (4.7) are
Fol1) = 2" =1, Fp(2) = 2.3"=2"—1, and F,(3) = 3.4"—3™11+2.30 _ 2" _ 1.
Next we evaluate the generating function

(4.10) D Falrx" .

n=0

From (4.8), (4.10) becomes

o n-1 r

©o n ) r . oo X I"
z—% Z(y\ Z_: k,+7xn _ Z_: > (7) E k/+7xn__§; (Z) 2—‘ kn+1Xn
n=0 j=0 k=0 n=0 j=0 k=0 n=0 k=0
r e et r °°
DI DIEDIUICTED WO Ik
k=0 n=0 J= k=0 n=0
r o0 r
DI DT LR T S TRy 7
k=0 n=0 k=0
r r
= D M1k —x)TT =3 k(1 k)
k=0 k=0

,
=x Y K1tk Dx)7 (1 - k)T

k=0
We have therefore proved

o oo r r

@A) 3 Rl =D 3 max(ip, e inx” = x Y KT =tk 1) (1 k)T
n=0 n=0 i, ,in=0 k=0

From (4.11) it is easy to see that

- n,r_ _ X - kyk
2. Faltx"y 71—yl 2 (71— 1k + 1)x)1 — kx)
n,r=0 k=0

If, on the other hand, we define

Galy) = D3 Falrly"

r=0

then using the recurrence (4.7) and setting F,(—7) =0 we have

Galy) = 3 (rtr# 10" =T )y "+ 3 Fplr—1ly" =3 rte# 17 = 4y 25 Fallly”
r=0 r=0 r=0 r=0
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Then
- n -
(1=y)Galy) =3, (rir+1)"=r™7)y" = \“‘ Py (k)=
r=0 k=0 r=0

oo oo

( > Z rk+7 r Z ,,n+1yr

r=0 r=0

]
M= L

=
]
QS

(7—y)k+2 (7_y}n+2 =0 k (I_V)k+2

NIE

) ( I/Z ) ak+7/y) a,,+,7{y} . Z ( n ak+7(y)

Il
[}

where ap(x) is the p™ Eulerian polynomial introduced in Section 2.
Therefore, we have

oo r n-1
= i e r_ n M .

(4.12) G,ly) E E max (iy, =, inly" = E ( k) P

=0 iy, ,in=0 k=0 (1-y)
From (4.12) and from the list of Eulerian polynomials in Section 2 we easily arrive at the special cases

2 3 3
Goly) = J-—L Gsly) = ﬂ/—’ﬂ%}’— and  Ggly) = 1o0t8502 "2@” v
(1-y)* (1—vy) (1—y)

The expansions of each of these generating functions yield, for r >0,

r

(4.13) E max(ab}-3( ’+2)+(r'§7> .
a,b=0
r ! s \ ; )
- 7t r+3 jfr+2 fr+1
(4.14) E max (a,,c) = 71\ 4 )+ 70( 4 ) e )
a,b,c=0
and
r / \ )
(4.15) S maxlabed) = 15 124 ) +as(T53) w25 (752 ) (157
a,b,c,d=0 ' '
respectively.
In general, from (4.9) it may be seen that F,(r) isapolynomial in r of degree n+ 7.
5. In this section, we consider A(r,m,n) and B(r,m,n), where
r
(5.1) Aflr,m,n) = Z max(a;+ - +am, b+ +h,),
ay, amby ., bp=0
and
,
(5.2) B(r,m,n) = Z min (ag + - +am, by +- +b,) .

ay, ,amby e bp=0

It is convenient to let the expression a,6=0 mean ay, -, a,,, b7, -, b, =0.
Using the formula

MaX(ab) = Bla+h+ |a—bl),

min
(5.2) becomes
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(5.3)

Now
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r

B(r,m,n) = % Z (a7+-+apm+by+-+hy) =% Z la1+---+am—b,~---—bn‘
a,b=0 a,b=0
m+n
= (_’M'l’_(%"ﬂ_.__ -4 Z |81+"-+am——b1—--- _bnl
a,b=0

(5.4) Za1+ ctam—by—-—b, ~-—L(a1+ +am—b,—--~—b,,l+z:(a1+---+am—b1—----bn),

a,b=0

I

where / and // stand for

and

ag+-+apy, < by+--+b, < rmax(mn)

by+-+b, <ay+-+ay <rmax(mn).

respectively, and where it is understood that a;, b; < r.

Moreover,

Z (a,-/-...—[-am_b’_ ...._bn)

!

r max(m,n)

5D SRS SRR TS

k=0 b +tby=k a;+-tam<k
bi<r ajsr

L}

rmax (m,n) k

2 PINEDY 2 -k

=0 b+ +bn—k a,+- fam=f
bj< aj<r

[}

Now let P(a,b,c) be the number of partitions of a > 0 into at most b parts, each part <c, and let P(0,b,c) = 1.

(5.5)

rmax(m,n) k

Dlagttam—by——bp)= D3 (k=jIPlknrIPlim,r) .
/ k=0 j=0

By a similar argument we find

(5.6)

rmax(m,n) k

Z (ag+-+aym—by— - —b,) = Z Z (k —j)Plk,m,r)PGi,n,r) .
IZi k=0 j=0

By substituting (5.5) and (5.6) into (5.4) and referring to (5.3), and then by applying this same argument for .A(r,m,n)
we find that A(r,m,n) and Bfr,mn) are given by

(5.7)

a,

respectively.

_ (m+n)rlr+1)™"
) o fag+ - tam byt tby) = - 4

s, amby o b <r

rmax(m,n) k
£ % > 3 (k=) PtknrIPlim,r) + Plkm,r)Plinr)l.
k=0  j=0

Now, although (5.7) expresses our problem in terms of a difficult partition problem the formula is nevertheless very
useful in that it affords us a method of determining the generating function. Here we observe, from (5.7), that A(r,m,n)
and B(r,m,n) are polynomialsin r. Furthermore, their degrees are less than or equal to m +n + 1, for if not, then
for large values of 7, Bfr,m,n) will be negative. In fact, in view of special cases, we may conjecture that the degree of
Alr,m,n) and B(r,m,n) is precisely m+n + 1.

We may now evaluate several cases. First, we consider B(r,2,1).
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r

Blr.2,1) = E min (a+b,c) = Z (a+h)+ Z c_i NS .

a,b,c=0 ath<g atb>=c c=0 a+b=c
a,b,c<r a,b,c<r

After some manipulation it is seen that

r c
E (a+b)=22 Z k = %Z c3+3c2+2¢)
a;b<<c c=0 k=0 atb=k c=0

a,n,csr

and

3L WL

c=0 atb=c
Then we have
r min(a+b,r)
_ 1,3 - 7 2 2_
B(r,2,1) Z ( 3 k k ) + Z (r+1) r(r+ 1+ Z Z c.
c=0 atb>c ab=0 e=0
a,b,c<r

Since the degree of B(r,2,1) is at most 2+ 1 + 1, it suffices to compute B(r,2,7) for r=1,2, 3, 4. 1f we put

r  minfath,r)

so that
(5.8) B(r2.1) = 2 rlr+ 7}2——r(r+ 1) +K,

then it is easy to compute K;=3, K2=20, K3=71 and K4z=185. Then from (5.8), we have
B(1,2,1) = 3, B(22,1) = 22, B(3,21) = 81 and B(42,1) = 215.
Then we find the differences
AB(r21) =3  A2B(rn21) =16  A%Br21) =24,  A*Blr21) =

Substituting these values into Newton's expansion for the generating function we have

4

Do B2k = 3 A*Blg21) KX (3070442

k=0 k=0 (1—x)k*7 (1-x)°
Upon expanding we get

;
(5.9) B(r21) = Z minf(a+bh,c) = 3(’23> +7( ’+2) + ( ’27)
a,b,c=0
From (4.2),
r r
Z (max (a +b,c) + min (a +b,c)) = Z fa+h+c)
a,b,c=0 a,b,c=0

which, from (5.9) reduces to

,
(5.10) bZo max (a+b,¢c) = 3(’23>+7(’+2) \’27) +§r(r+7)3.
a,b,c=
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Next we put B(r,2,2) = B(r) for brevity, and consider
r

(5.11) Blr) = . minfa+h,c+d) .
ab,c=0
From (5.7) we have
2r  k
Blr) = rlr+1)% = 3 3~ (k= jPlk2rIPG2r) .
k=0 j=0

Hence B(r) isa polynomial in r of degree <5 Therefore the generating function is

o

5 .
. !
2 Blox =3 ABo) —X—
r=0 =0 (1- X)’+7
Resorting to a computer to calculate A'B(0) for i= 1,2, 3,4, 5 (5.12) becomes

oo

S ik - 10, sox? , 2006% , 25t 9n®
=0 (1-x)? (1-x)% (1-x)* (1-x)° (1-x)
Expanding for the coefficients we find

r

(5.13) > mintarbcrd) = 10(7) s a0{ ) e20( 5 Vw22 (] )2( 1)
ab,c,d=0 '
In the very same way that we obtained (5.13) we get
r . : B :
(5.14) > maxlatbcrd) = 22( 1) +170( 5 ) #a20( 5) vazo( ;) +1a8( 1),
a,b,c,d=0
r .
(5.15) > minta+brod) =7 (7| +61( ) 1m0 5)e168(5)459( 1)
a,b,c,d=0
and
r N . i .
(5.16) > maxlarbrcd) =25( ) +199( 5 |+501( 5 )+s08( ;) +181( 7).
a,b,c,d=0

6. Theauthor wishes to express hisappreciation to Prof. L. Carlitz for suggestions which resulted in simplifications
of several areas of this work and to Worden J. Updyke, Jr. for the programming and computing necessary in estab-
lishing (5.13), (5.14), (5.15), (5.16). The computations were performed on an IBM 360 model 20 at the Electronic
Computer Programming Institute, Greensboro, North Carolina. Computer time was provided by the Institute.
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MATRICES AND GENERALIZED FIBONACCI SEQUENCES

MARCELLUS E.WADDILL
Wake Forest University, Winston-Salem, North Carolina 27109

Horadam [4] has pointed out that generalizations of the Fibonacci sequence { F, } fall in either of two cate-
gories: (1) an alteration of the recurrence relation of the sequence, and (2) an alteration of the first two terms of the
sequence. He further states that these two techniques may be combined, and in this paperwe follow this suggestion
by considering the sequence J U, } defined as follows: Let Up, Uy be arbitrary integers, not both zero; let s
be non-zero integers, and let

(1) U, =rU,_;1+sU, 5, n>2

This sequence has been considered by Buschman [2], Horadam [5], and Raab [7]. If r=s =17, the sequence
U, } becomes the sequence considered by Horadam in [4]. Quite clearly, if r=s=17 and U,=0,U;=1, then
U, { becomes the Fibonacci sequence { F,¢.

King [6], Bicknell and Hoggatt [1], and others have used the @-matrix to generate, so to speak, the Fibonacci
sequetice where

- 11
2 - [, ]
It is routine to show that
n- _ Fn Fn—7 7
- Fn-1 Fn2 0

@) [Fn 1] l: ;
U, } we define the R-matrix,

In order to generate the sequence
= S
4) R=1%¢

It is also useful to define what we call the sequence { K,,(» as the special case of { U, } where Up=Kp=10,
Uy;=Kq=1, and K,=rK,_7+sK,_2. With these stipulations, it follows that

(5) Upn _lrs n-11" Uy _ Kn sKnp- U1
Up-1 10 | Vo Kp-1 sKn-
In (5) if we replace n by n+p, p >0, then
N/ ntp+1{ Uy _-rs n=1r 1Pl Uy
(6) [UHZ;':,] [; 2] [Uo] - [ 70 [ 70} { Ug
‘ Kn SK,,_; Up+7
Kn-1 sKp-2 Up

Now by equating corresponding elements in (6), we obtain

(7) Un+p K Up+1+SKn_7U
Similarly, it may be shown that for any p,g suchthat 0<g<n-—17 and 0<g <p,

[]

(8) Upntp = KntqUp-g+1+5Kn+g-1Up—q .

Using (5), (7) and (8) we derive a number of vector-matrix relations which are listed here since they will be used in
the sequel.

381
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We have

U, r—s )1 Uy - Kpn —sKp_q U
(9) =170 [ } = , ,
—Up-q -Uo ~Kn-1 sKn-2 1L —Uo
U1 1 TO£1V Up
(10) U, 17} 25 r [iU;
(11) [ Un+p _ Kp tSKp_j
+U, g 7
(12) Up 1 =} Kp 25Kp-g
+Upp 0 7
U, g 7
(13) N
[Un+p ] [Skn Kp+1

(14)

05" T sKpo sKpt
(15) [7 l’] = [ Kﬂ:—I Kﬂ .

When considering generalizations of the Fibonacci sequence, one of the natural guestions to investigate is which, if
any, of the Fibonacci identities may be generalized to identities for the generalized sequence. In many cases identi-
ties can be modified to generalized identities which, as special cases, reduce to Fibonacci identities. For example,
Horadam has shown [4] that the well known Fibonacci identity,

=
“
e L)
I
| Am—
“ N
D~
| N
3
—
S
Q\\
| A——

(16) FZ—Fp_1Fpes = (=1)"7,
becomes
(17) HZ = HpiHpeg = (=1 (H2 ~ H,Hy~ HY)

where Hgp, H; are arbitrary integers and
Hyp=Hp g+ Hpo.

Other well known Fibonacci identities have been generalized in [4] also.

in [5], Horadam has given the generalization of (16) for the I U, } sequences as well as the generalization of
several other identities. We show here a derivation and proof of these generalizations using appropriate matrices and
vectors. This method not only provides a very clear proof, but it also derives the generalized expression. This latter
task is not always easy if we have to rely on “guessing” what the generalized form should be.

If we consider the following vector dot product and use {5) and (10}, we have

7yn-1 o -1 Uy -
[U7'U0][;0] [—s r} [——3’1]
(~s)" [, Uo]i: o ] [_12,01 ] ,
[r7 [04] =07
s 0 -5 r g —s

Now if we multiply out these three matrices, we get
(18) UF = UpetUpey = (=) (U2 1010 - sUZ) .

i}

U
U,?—- Up-iUps1 = [Unl Un"7] : [:—UZ-H]

[}

since

it Us=1, Up=0, wehave
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(19) Klg_ Kn-1Kn+1 = ()7 ,

an expression independent of ~. Thus, we conclude that if s=17, the { K, } sequence satisfies (16) without alter-
ation regardless of what value r assumes.

The method above may be used to show that
(20) UZ = Up-gqUnsg = (—s)"K2UZ = 1U1Up-sUE),
21 UntpUntq = UnUniptq = (—5)" Ky Kg(UZF — rU1Up— sUZ).

These identities also appear in [5], but the method used there to derive them is quite different. Since the proof of

(20) and (21) is more involved than the proof of (18), we give the proof of (20) here. Using (12), (13), and then
(15), we have,

U
U;r?_ Un—q Un+g = [Un, Un+q] [_U”n_q]

0s il 71 sk, Ky —sKg- r—s ™9 1]
[Uo,U1][7r] [a K‘,’,’][aq 7 7][—7 a] [——U’o]
n . n-q U
Kq[Uo:Uﬂ[gi] [—rl 0s] [—Jo]
q
(—s}”'qKq[Uo,Uﬂ[l; f] [_UJO]

K sK, U
= (=s)" UK [Up U SRg-1 q 7
( 5} q[ a 7][ Kq Kq+7 —UO

If we multiply these three matrices, rearrange terms properly and observe that

[0}

Kq+7 —sK, -1 = I'Kq ,
we have 5
UZ = UpgUpsg = (~s)"TKE[UF = 1U U —sUG]T
Again if welet Ug=0, U;=1, (20) becomes
(22) KZ— Kp-gKn+q = (—$)"9 ,
an expression independent of .
Another well known Fibonacci identity is
(23) FRi1+F7 = Faner -
Matrix methods are again especially helpful in not only proving a generalization of (23) but in discovering what this
generalization ought to be.
Using (10) and (14), we have

Up+1 rs1'rr sN'T Uy
U5+7+SU,€= [Un+1,SUn][ Jn ] = [U],SUO][, 0] [ 0] UO

2n U
= /U1,$U0-][r7 5] [Z’] = [UIISUOJ[ 5n+1] = UrUzn+1 +sUgUzq .-
Hence, we have 0 2n

(24) U/?+7 +5U§ = UrlUzp+y +sUgUzp
which is again an expression independent of r. For the { K, } sequence, this becomes
(25) K211 +5KZ2 = Kopsr .

As an alternate way of writing the right side of (24), we observe in the proof that

R R T
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Substituting this expression into the above proof, we see that we may write
(26) U1U2,,+>7 + .S‘UgUzn = n-q+7Un+q+1 +SUn.q Un+q .

As a further exercise in identities we see that if we replace n by n+ 7 in (8), let p = n, and U; = K;, we have
(27) K2n+1 = Kn+q+7Kn-qr+7 +.$'Kn+qKn_q .

We may also obtain (27) as a special case of (26) by simply replacing U; by K;. However, (8) cannot be obtained
from (27).
The Fibonacei identity

(28) FReg=FRq = Fon .,
generalizes to
(29) U,?.H -—52U,€_7 = rfUyUs, +sUgUsp—1) .

We may prove (29) by using (24) or by using matrices as follows:
U2y —s2U2 1 = U2, +sUR— (sUZ+5s2U2.,)

[U1,on]!;r, 5]2”—2[[’, 3_2“‘[(7) ?]][ Z; j
rlUy, suoj[’, g]'zn_z[ re ‘[5;] = HU1Us, +5UgUszp-1).

Again, the identities (24) and (29} are found in [5] and perhaps elsewhere in the literature, although the alternate
way of expressing the right side of (24) which appears in (26) is apparently not known.

The method used in the proof of (29} may be generalized to find and prove numercus other identities for the
sequence { u, } As an illustration, we note that in the proof of (29) we needed and used the fact that

(el -s[09-[7¢] -

Using this as a clue, we can show, for example, that
rs 4_,, rs 3__52'70 =l s
10 10 01 104

U1+ 5UR s — HUpioUpsy #5UpsqUp) — s2(UZ +5U247)

2n-2f 4 3
- rs rs ros 2{10 U}
= [Uq,sUg] [, 0] [L, 0] —-l’[7 ol —°% [0 1 ][UL] ,

we concfude in the manner used above that

Therefore, since

(29) U,?+2+SU,€+1 —I’Un+2Un+1 -—I‘SUn+1U,-, —5211,2—5‘31/,?4.1 = /‘S(UjUzn +SUOU2,«,_1}.

The use of matrices adapts itself very nicely for generalizing some of the identities involving sums of Fibonacci
numbers. One such identity is

n
(30) ) L Fi= Fpe2—1 .
=1

I order to generalize this identity for the sequence { U, % , we first prove that

1
(31) $ 20 PR = Kpug—r"T
=1
The method of derivation and proof is a generalization of a method used by Hoggatt and Ruggles [3]. We first ob-
serve that for the matrix A as defined by (4) and the matrix
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- 170
- [59]
(32) Ryt * Ty = (1 TR gt 2R2 4 g1 L ROYR _ ) |

Furthermore, it is easy to show that

RZ_rR—sl =0,
or
RIR—rl) = sl .
Hence, we see that

(R—rt)" =5sTR.
If we multiply both sides of (32) by s~TB and then subtract 77/ from both sides, we obtain
(33) TR+ 2R2 4 g R g = ~T(pNt2 _np2)

Writing out the matrices in (33), we have
n-1| K, sk, |, on-2) Kk, sk | L n-3) K sko | 4] Kn SKne1 T L [ Knsr sKn
r [K1 sKO] r K, sk, | 7" K, sK, "N K, sKp-2 Kp sKp-1

= 1| Knt3 sKns2 | _ n| K3 sK2
Knt+2 sKn+1 K2 sKy |}

Now equating elements in the upper right corner of this matrix equation, we obtain (recall that Ko=r/) ,

st Ky 451" 2 Ko+ et 51K g #5Ky = Kpao—r™ T,
which is (31).
In order to generalize this identity for arbitrary Ug, Uy, we use {7) with p =0 to get
n . n
D I/EEDY r"2(U K +sUgKi_q)
=1 =1

n n
Uyqs Z I’n_i/(,"i"S2U0 Z I'n-IK,'_j

=1 i=1
\
n n+1 2
n-ip |, SUo n-(i-1) . $“Up
e e
i=1 =2

Now we use (31) on these two sums to obtain

+1 '
~ e \ o (5 petiilg U0 K = Uplhpsz -1+ Ky = )
Ul s 3 7K /"—,— > i1 | == Kn = UglKps2 =1 7 (Kn+2
=1 =2

s2Upk,,
Ty

s2UpK,

sU
= U7K,,+2—-U7r"+7+7q—(rK,,+,+sK,,—r"+7}— p

= UsKpso+sUgKpsr —r" U= sr"Up = Upep—r"Us

Hence we find that the generalized form of (30) is
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(34) § Z I’n—iU,' = Un+2—l'”U2

=7

~a e

By factoring the expression
‘/R2}n+7 _ (I’Z}n+7/

and proceeding as above, we find

n
35) S22 =5) 3 12 Kgp = (12 = 5)Kapsp# 15K 24 — 1273
=1
and
n .
(36) s(2r? —s) E P2l o 1 = (12 = $s)Kopeg + 15K gy — r272 4+ 520
=1

If we use (35) and (36) in the same manner as we did in proving (34), we get

n
(37) s(2r? —s) E r2(n=i) Us; = (r2— SWopi2+15Usp41 +52,2n Ug- r2n+2U2
=1
n = .
(38) s(2r2=5) 3 P20y 1 = (12— $JUzpeq + 15Uz + 127 (U1 — 1U2) .
=1

It is quite likely that many other well known identities can be generalized in ways similar to those usecl above. It is
not our purpose to provide an exhaustive list, but to illustrate the method and in particular the usefulness of the A—
matrix.

REFERENCES

1. Marjorie Bicknell and Verner E. Hoggatt, Jr., “Fibonacci Matrices and Lambda Functions,” The Fibonacci Quar-
terly, Vol. 1, No. 2 (April, 1963), pp. 47-52.

2, R.G.Buschman, "“Fibonacci Numbers, Chebyschev Polynomials, Generalizations and Difference Equations,” 7he
Fibonacei Quarterly, Vol. 1, No. 4 {December, 1963}, pp. 1-8.

3. Verner E, Hoggatt, Jr., and 1.D. Ruggles, A Primer for the Fibonacci Sequence—Part U1,” The Fibonacci Quar-
terly, Vol. 1, No. 3 {October, 1963), pp. 61-65.

4, A, F. Horadam, “A Generalized Fibonacci Sequence,” Amer. Math. Monthly, Vol. 68, 1961, pp. 455459,

5. A.F, Horadam, “Basic Properties of a Certain Generalized Sequence of Numbers,” The Fibonacci Quarterly, Vol.
3, No. 3 (October, 1965), pp. 161-176.

6. Charles H. King, "Some Properties of the Fibonacci Numbers,” Master's Thesis, San Jose State College, June,
1960.

7. J.A. Raab, “A Generalization of the Connection between the Fibonacci Sequence and Pascal’s Triangle,” The
Fibanacci Quarterly, Vol. 1, No. 3 {October, 1963), pp. 21-32.

Srdedolodoiok



ANTIMAGIC SQUARES DERIVED FROM THE THIRD-ORDER MAGIC SQUARE

CHARLES W. TRIGG
San Diego, California 92109

In a third-order antimagic square, the three elements along each of the eight lines—three rows, three columns, and
two unbroken diagonals—have different sums. An antimagic square, its rotations and reflections are equivalent and
count as only one square.

It is not difficult to modify the distribution of the digits around the central 5 of the unique nine-digit third-order
magic square

8 1 6

3 5 7

4 9 2
so as to convert it into the antimagic square

7 2 3

6 5 8

9 4 7

while preserving an odd-even alternation of digits around the perimeter. Nor, to set up a sequence of antimagic squares,

7 3 2 17 3 2 7 3 2 17 3 2 1 3 2 17 3 2
9 5§ 8 9 5 8 9 5 7 9 5 6 7 5 6 7 5 6
6 7 4 4 7 6 4 8 6 4 8 7 4 8 9 4 9 8

still around the central 5, in which each square results from the interchange of two digits in the previous square.
The complements of the squares in this sequence, obtained by subtracting each of the digits from 10, form the
similar sequence

9 7 8 9 7 8 9 7 ¢ 9 7 8 9 7 8 9 7 8
7 5 2 7 5 2 17 § 3 17 5 4 3 5 4 3 5 4
4 3 6 6 3 4 6 2 4 6 2 3 6 2 1 6 1 2

Of course, if a square is antimagic, its complement also is. The eight sums of the complementary square may be ob-
tained by subtracting each sum of the parent square from 30.

The question naturally arises, what is the minimum number of digits that need to change position and what is the
minimum number of moves, or interchanges, necessary in order to convert the magic square into an antimagic square?

THE CRITERIA

To convert the magic square into an antimagic square by interchanging digits, two conditions must be met:

(1) Not more than one line (sum = 15) can remain unaltered;

(2) If two or more lines contain the same single changed element, only one of those lines can be left without an~—
other change.

There are 16 distinct ways in which three markers (X) can be distributed on a nine-cell 3-by-3 array. Thus

X00 0X0 X0X X0X O0X0 XXX 000 XX0
0X0 0XG O0X0 000 X00 000 XXX X00
00X X00 000 O0X0 00X 000 000 000

X00 0X0 XX0 XX0 XX0 XX0 X0X 0x0
XX0 XX0 00X 000 000 000 000 XO0X
000 000 000 X00 0X0 00x X00 000

387
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If the x's indicate the elements to be moved by interchange, then only the first five configurations meet the first
condition, and none of those five meet the second condition. So atleast four digits must be involved in the interchange.
There are 23 distinct ways in which four markers (x) can be distributed on a nine-cell 3-by-3 array. Thus

XXX XXX X00 0X0 XX0 XX0 XX0 XX0
X00 000 XXX XXX XX0 000 000 XO0Xx
000 0XG0 000 000 000 XX0 O0XX 000

XX0 XX0 XX0 XX0 0X0 X0X X0X 0X0
X00 00X 00X O0X0O XX0 0X0 000 XO0X
00X X00 0X0 00X 00X 00X XO0X 0X0

XXX XXX XX0 XX0 XX0 XX0 X0X
0X0 000 0X0 O0XX 000 00X O0Xx0
000 X00 X00 000 X0x 00X OX0

A B c D E F G

If the x's indicate the elements to be moved in the interchanging, then only the last seven meet both conditions.
Each of the three symmetrical arrangements (A4, F and G/ can be applied to the magic square in four ways, and the
four asymmetrical configurations (B, C, 0 and £ and their mirror images can each be applied in four ways. So there
are 44 applications of change patterns to consider.

TWO INTERCHANGES

Four elements can be divided into two pairs in three distinct ways. These pairings are applied to the seven change
patterns. If both members of a pair fall on the same line, interchange of their positions does not affect the sum of the
elements of that line. Each of the patterns A, C, D and £ has one ooo line unaffected by interchange of the x's. In
any pairing of their x elements, any interchange between members of the pairs leaves the sum of the elements un-
changed in one of the lines involved. Thus two lines of the square retain their original, and hence equal, sums.

In patterns F and G interchange between members of the pairs leaves the pairs in the original lines or interchanges
the elements of a column and a row. Thus that column and row retain their original equal sums.

In the asymmetrical B, the interchange

abc cda
000 - 000
doo bhoo

leaves only one line sum unmodified. However, when applied to the nine-digit magic square in each of the eight pos-
sible ways, duplicate sums of 12, 14, 16 or 18 appear after the interchange.

Consequently, no antimagic square can be created by interchange of the members in each of two pairs of the ele-
ments of the nine-digit third-order magic square.

THREE INTERCHANGES

There are 24 permutations of the four elements M, N, £, Q. In 15 of these at least one of the elements hasnot
moved from its original position. In 3 others, there have been two interchanges of positions. The other 6 can be
attained from MNPQ by three successive interchanges, namely:

U — NPAGM : MN, MP, MQ X — PQNM : MP, NG, MN
vV — NGMP :MN, MP, PQ Y — QMNP : PQ, MQ, NM
W — PMQN : MP, NM, NG Z— QPMN : mMa, NP, NM

These six permutations, identified by the prefaced letters U, V, W, X, Y, Z can be applied to each of the seven pat-
terns A, B, C, D, E, F, G in their various orientations on the magic square. The letters M, N, P, @ may be ar-
bitrarily assigned to the four x elements of the pattern without affecting the ultimate position of the interchanged
digits.
Pattern B is asymmetrical, so it and its mirror image both are applied to the magic square in the four orientations,

proceeding clockwise around the square. Thus the magic square operated on by pattern B becomes

M N P a 1 m 8 1 @ P 1 6

3 5 7 3 5 N 3 5 7 N 5§ 7

a 9 2 4 9 P P N M M 9 a

By B> B3 By
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P N M g 1 P a 1 6 M 1 Q

3 5 7 3 5 N 3 5 7 N 5 7

4 9 Q a 9 wm M N P P 9 2
Bg Bg Bz Bg

The particular orientation of the operating pattern is indicated by the numerical subscript. This notation will be
foilowed with subsequent pattern operators.
In B4, M=8 N=1, P=6, Q=4 soforthe six permutations we have:

v-nwepam V-NamP wW-pPManN
1648 1486 6841
X-POMN Y-amnNP Z—-QPMN
6418 46816 4681

The digits in each of the permutations are placed, in sequential order, inthe M, N, P, @ positions of the square array,
B;. Not all of the permutations will yield antimagic squares. No sum of 15 remains, but other duplicate sums may
appear in the process. In 7, no antimagic squares are produced by V, /¥, and Y. Indeed, V does not produce
an antimagic square in any B;. :

When the pattern orientations are 180° apart, as in 8183, BoB4, BsB7, and BgBg, complementary antimagic
squares are produced. {The MAPQ sets are complementary.) Only one of each complementary pair is recorded be-
low in identifying the twenty antimagic squares produced by pattern B. in general, the orientation of the pattern
which has operated on the magic square can be identified by the digits which occupy the same pasition in the anti-
magic square as they did in the original magic square.

764 6 41 46 8 671 7 61 2
357 357 357 352 358
8 9 2 8§39 2 792 49 8 49 7
8§14 2 8 1 128 162 6 8 2
352 357 357 3457 357
796 496 496 498 491

Since pattern B always leaves a mid-row or mid-column undisturbed, each of these antimagic squares has a central
5. The last square is particularly noteworthy in that its sums are 10, 11, 12, 13, 14, 15, 16, and 22, where seven of
the eight are consecutive numbers. No antimagic square has all eight sums in arithmetic progression. [1,2]

In Pattern C,

MNo

ofo ,

Qoo
application of X or Z leaves the sums of the row and diagonal which have the upper right-hand element in com-
mon unchanged and hence equal. U, V, I, and Y also fail to produce an antimagic square in the eight orientations
of C.

In Pattern D,

MNo

ofQ ,

000
application of X or Z fails to produce an antimagic square in any of the eight orientations. Nor do any of the per-
mutations produce one with 05 or Jg4. As with pattern B, complementary antimagic squares are produced by pat-
tern orientations 180° apart. One of each of the eight complementary pairs resulting from pattern £ is recorded
below:

156 1776 586 7 86
37 8 385 371 3175
492 4 9 2 4 8 2 4 9 2
8 56 8§76 8§ 56 8 51
321 3172 372 6§37
4 97 4 9 5 4 91 4 9 2
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Pattern E fails to yield any antimagic squares when X and Z are used as operators, nor from £5 or £4 with
any operator. Asin B and D, the antimagic squares formed are in complementary pairs. One member of each of the
eight pairs from pattern £ follows:

1468 1726 486 2 86
357 357 3 57 357
2 98 8 9 4 291 194
8 6 2 216 716 416
3 57 3 54 352 3 5 2
179 4 8 97 8 9 4 7928
In common with the squares from B, all these squares have b as a central digit.
Pattern A, MNP
olo ,

000

being symmetrical, can be applied to the magic square in only four orientations. Of the permutations, only X fails
to produce an antimagic square from some orientation. Those formed when the pattern orientations are 180° apart are
complements. One of each of the six complementary pairs is given here:

1645 1758 6 8 5 581 568 81 5
387 367 317 367 317 372
4 9 2 4 92 4 9 2 4 9 2 4 9 2 4 9 6
The sums of the fourth square in this set are 10, 11, 12, 13, 14, 15, 18, and 23, another case where seven of the sums

are consecutive integers.

In patterns F and G, the other two symmetrical patterns, X and Z merely interchange a row and column and
leave the sums equal. The other four permutations fail to produce an antimagic square with any of the four
orientations.

SUMMARY

In order to convert the nine-digit third-order magic square into an antimagic square by interchange of digits, not
less than four digits must be moved in three successive interchanges. The four digits must fall into one of four basic
patterns (B, D, E, A) to which one of the six permutations U, V, W, X, Y, Z is applied. The 64 antimagic squares
which ¢an be produced in this manner fall into 32 complementary pairs. Complementary pairs are produced by pat-
terns 180° apart in orientation. Six of these pairs come from a symmetrical pattern. The 26 pairs that are the result
of applying asymmetrical patterns are produced in equal quantities by the patterns and their mirror images. The cen-
tral digit of 36 of the antimagic squares is 5. The frequency of occurrence of the other central digits follows each of
the following digits in parentheses: 1(4), 2(3), 3(5}, 4(2), 6(2), 7(5), 8(3), 9(4). Two of the squares have seven of
their sums in arithmetic progression, with d = 1.
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CONCERNING AN EQUIVALENCE RELATION FOR MATRICES

EMANUEL VEGH
U.S. Naval Research Laboratory, Washington, D.C., and Imperial College, London SW 7

Let each of s and n be a positive integer, p an arbitrary prine, A the field of integers modulo p and S the
set of all s by n matrices over A. Let each of A and B bein S. We say that A is equivalent to B (written
A ~ B) if and only if there is a non-singular matrix X over A and a matrix Y= fyi) in S with

Vit =Viz2 = = = Vi (mod p), =125
such that

A=XB+Y.

It is easy to show that ~ is an equivalence relation on S. Let Lp(s,n} be the smallest non-negative number not
greater than p — 7 such that each equivalence class contains a member X = (x,-/-) with the property that

0 < xjj < Lpls,n) 1<i<s, 1<j<n
We shall give an elementary proof of the
Theorem.
Lp(s,n} < 2[p(ns—t—11/(ns-t}]l n=223 -,
where
(1) t=s2if s <2l and t=[n2]°-nn/2] +ns if s > [n/2].

Here [x]/ is the greatest integer <x.
For the case s =17 the theorem gives

Lp(1,n) < 2[p (n-2)/(n-1) n=223 .
L. Redei [3] has shown, using the geometry of numbers, that
L,_-,(I,n) < 2n-1/(n-7)p (n-2)/(n-1) . n=23
Using elementary methods (a theorem of Thue [4]), Redei has also shown that
Lp(tn) < 2p""V]+1)72  n=2,3

Our theorem then generalizes the results of Redei and improves his weaker inequality, by elementary methods.
We shall make use of the following theorem which has an elementary proof.

Theorem A. (A. Brauer and R.L. Reynolds [1]). Let r and s be rational integers r <s and let f§ be positive
numbers less than m (8=1, 2, ---,s) such that

$

Il f5>m"
5=1 '

Then the system of r linear congruences

s
yp = Z ap6X6 = 0 (mgd m) (p: 7[2] ., r}
o=1

39
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has a non-trivial solution in integers x7, x5, -, x; such that
s | <15 (5=1,2 -,5) .

We note that the hypothesis of this theorem can be weakened by letting the numbers f§ (6 =1, 2, -, s) be posi-
tive numbers not greater than m. The proof is the same as in [1]. We follow, in part, the method of Redei [3], as
given when s=1.

Now let ¥'=(y;;) bea member of S. The matrix Z=(z;;), where Z=1/Y + B, | is the identity matrix and B =
(bj;) is the matrix with

bit =bjz = =bjy = ~vip  (i=1,2 5],
is equivalent to Y. Notethat z;,=0, /=12, --,s.

Let r be the rank of the matrix Z It is well known that there is a non-singular matrix € over A, such that the
matrix U = CZ has s — r zerorows and has r columns each with exactly one non-zero element (see for example
[2]). The matrix U then has at least

fir) = r2 —nr+ns, 0<r<s

zero elements. The minimum value for #(r) is given by ¢ in (1). Thus Y is equivalent to a matrix {/ that hasat
most ns — t non-zero elements.
Let uq, uop, -+, u be the non-zero elements of U. Consider the system

2) x; = au; (mod p), i=1,2, -, A

of A congruences in the A+ 7 variables a, x; (i=1,2, -, \). Setting fgp=p and f5=[p(>"”/}‘] +1 (6 =1,
2, -+, \J, we have

A _
(3 6H0 fs = pllp ™1/ + 1N s plp™T/AN = pn

Using Theorem A, the remark following it, together with (3), it follows that the system of linear congruences (2) has
a non-trivial solution a, x; (i=1, 2, -, \) with

laj<p—1 and < ™AL g1,
Since the solution is non-trivial, 2 20 (mod p); and since \ < ns —¢,
(4) il < Ip (ns—t—l}/(ns—t}jl i=12 -\,

The s by n matrix X=(x;) with entries x; (i=1,2, -, \) in the same positionas v; (i=1,2, -, ) of U,
and zero elsewhere, satisfies the equation X = AU, where A is the diagonal matrix with all diagonal entries equal to
a. Naturally, since a #0 (mod pJ, A is non-singular.

Set t = max (x| .

iJ
If T is the s by n matrix all of whose entries are ¢, then W= (W,-,-), where W= IX + T is equivalent to X, and
(5) 0 <wj< 2[p(nst=1/lns-t) | 1 <i<s, 1<j<n.
Since Y ~ I/ we have, using (5) together with the definition of L,(s,n), proved the theorem.
REFERENCES

. A. Brauer and R.L. Reynolds, “’On a Theorem of Aubry-Thue,” Can. J. Math., Vol. 3 (1951), pp. 367-374.

S. Perlis, Theory of Matrices, Addison-Wesley, Reading, Mass., 1958.

L. Redei, “’Uber Eine Verscharfung Eines Zahlentheoretischen Satzes Von Thue,” Acta Math. Acad. Sci. Hungar,
2(1951), pp. 75-82.

4, A. Thue, “Et par antydninger til en taltheoretisk methode,” Christiania Videnskabs Selakabs Forh., 1302, Ne. 7,
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SOME SEQUENCES GENERATED BY SPIRAL SIEVING METHODS

H.W. GOULD
West Virginia University, Mergantown, West Virginia 26506

The object of this note is to point out some curious sequences which may be generated by natural number spirals
and rotating grids. The method is a combination of the spiral introduced by Ulam [2] in his studies of prime number
distribution and a well known technique employed in cryptographic work. We illustrate with Fibonacci numbers.

Ulam considers a spiral numbering of the lattice points in the plane, i.e., by starting at (0,0) and proceeding
counterclockwise in a spiral so that

(00)-1 (100-2 (1,1)-3 (01)-4 (-1,1)-5 (-10)-6, (-1,—-1}-7, (0 -1)~8,
(1,-1) -8, (2~1) 10, (20) -11, (2,1) =12, (02)- 13 (-12)-14 et
This mapping gives us the spiral below.

17 16 15 14 13
18 5 4 3| 12
) 19 6 1 2| U
20 7 8 9 10 | 27 ‘

21 22 23 2425 26 I

A nice illustration of the basic Ulam spiral makes up the front cover of the March 1964 Scientific American. In the
same issue Martin Gardner [1] gives an account of Ulam’s work. Briefly, Ulam marks the primes (7,2,3,5,7,11,--) in
the spiral and studies the visual display for patterns or almost-patterns in the prime number sequence. By use of a
computer at Los Alamos he is able to generate displays having around 65,000 points in them. It would be of interest
to try something of the same sort for the Fibonacci, Lucas, and other recurrent sequences, however the writer does
not have available such versatile equipment as that used by Ulam and his colleagues at Los Alamos, so we have little
to suggestabout possible patterns in aspiral display of Fibonacci numbers. Of course, the fact that we now know [3],
[4] that 7 and 744 are the only square Fibonacci numbers does tell us that the diagonals 7, 9,25, 49, --- and 4, 16,
36, 64, ---. will be conspicuously biank in such a display.

Now, there is a technique in cryptographic work which makes use of a rotating grid. We can best illustrate by means
of an example. Consider the message, “INTUITION LIKE A FLASH OF LIGHTNING LASTS ONLY FOR A
SECOND.” We write this in a square array

INTUI TI
ONLI KEA
FLASHOF
LIGHTNI
NGLASTS
ONLYFOR
ASECOND
393
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and then impose a prepunched grid, e.g., of the form (where an X indicates a hole)

X X X
X
X X
(2) x | x
X
X X X
X

and copy out the visible letters, which are (serially, row by row) ITTIAOHTSOLOQC. We then rotate the grid counter-
clockwise through 90° and again copy out the visible letters, which are IO LESIHINLTAN. Two more rotations gives
us UNKAFGHGSYSOD and NILHFLHNANF RE. Running these four groups together and breaking the whole up in-
to convenient blocks then gives us the enciphered message. To decipher, one merely places the grid on a sheet of pa-
per, writes in the letters serially, row by row, thirteen at a time here, rotating the grid until all four positions are used,
removes the grid and reads off the message. Here we have used a 7 by 7 grid which leaves the middle point fixed (H).
This is unsatisfactory for cryptographic work in some cases and most ordinary uses involve an even-order grid.

The effect of an odd-order grid in the case of superpasition on the natural number spiral is to partition the natural
numbers into four sets, any two of which have onlv the number 1 in common.

It is clear that the very special cryptographic grid cannot be made from the Fibonacci sequence (or the prime num-
ber sequence) without adding and/or deleting elements, since any given square annulus of the grid must be so design-
ed that one-fourth of its lattice points are punched, and in such a way that the same hole does not appear under
successive rotations of 90° until the original position is assumed. We shall not discuss how this can be effected.

We modify the rotating grid as follows. On the original natural number spiral (1) superimpose a square sheet of
paper which will just cover the first (2n — 7)> natural numbers, unity being kept at the center. Make a grid by punch-
ing the sheet wherever an element a, (k=17,2, 3, --) of a given sequence appears in the natural number spiral. We
shall call this the (counterclockwise) spiral grid of the sequence {a,}. We next rotate the spiral grid through 90°
and read off from the natural number spiral a new sequence generated by the spiral grid of our original sequence.
With any given sequence there will be associated three new sequences, and by turning the grid over (making it a clock-
wise spiral grid) we can generate four other sequences. Clearly all these eight sequences will be somehow related.

For a grid measuring 2n — 7 by 2n— 17 (n>2) there will be the natural numbers from 7 through (2n - 7)?
with the outer square annulus containing the successive natural numbers from (2n —3)*+17 to (2n —1)2. Ifan
element a, of our given sequence lies in the outer square annulus, then so will the corresponding element b‘k of any
of the associated sequences obtained by use of the grid. It is possible to work out complicated formulas relating b
to a, depending upon the position of an element in the annulus. For example, any two diagonally opposite ele-
ments in the outer annulus have numerical difference 4n.

We give below, in Table 1, a few values for the sequences generated by the counterclockwise spiral grid of the Fib-
onacci sequence (I, I1, 111, V) and also for the clockwise grid (I°, 11", I1I", IV').

Here, d = d, is the minimum positive difference between terms in the sequences, or

d = dy = min ble—b}) > 0,

7.

(with dg def. = 0)

for Counterclockwise (I — V), or for Clockwise {I" — 1V’).
In our table, ax = Fg+7, with

Frs7 = Fret Fr-q, Fp=10, Fr=1

Itis convenient to begin our sequence with F instead of making some rules abouthowto interpret 0,7, 7,2, 3, - .
(The indistinguishability of F; and F, prevents us from calling the ordinary Fibonacci sequence a subset of the
set of all natural numbers.)

There is no reason to confine our attention to spirals based on a square. Ulam's work with the sequence of primes
quite naturally fits in well with such a spiral because quadratic polynomials Ax2+ Bx +C are often so rich in
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Table 1
ag b,f b,‘? - ete.

13 17 13 17 17 13 17 13
21 25 21 25 25 21 25 21
34 40 46 28 34 40 46 28
55 63 71 79 67 75 51 A9
10 89 99 109 119 103 113 83 93 10
1" 144 156 168 132 134 146 158 122 12
12 233 249 265 281 265 281 233 249 16
13 377 397 417 437 405 425 365 385 20

k | i1 v r o u v’ d
1 1 1 1 1 1 1 1 1

2 2 2 4 3 3 2 2 3

3 3 4 6 6 5 5 4 4

4 5 5 7 8 6 7 7 6

5 8 7 9 9 8 8 9 9

6

7

8

9

oD H P === =O

primes for integral values of x (Euler’s polynomial X2 +x+41 being the most well-known example). However, to
exhibit other properties of a sequence, as well as to generate variations of a given seguence, it is natural to pass on to
figurate numbers as the basis of our spirals. That is, we may consider a polygon of m sides.

Consider, for example, a pentagonal spiral as shown below.

20
21 19
9
22 18
10 8
23 3 17
1 7
4 2
2 1 31
12 16
5 6
25 30
13 14 15
26 27 28 29

It would be of interest to examine the distribution of primes, Fibonacci numbers, etc., in an extended pentagon with
thousands of points, and of course this would require quite an elaborate computer set-up.

It is fairly easy to type out a pentagonal spiral on ordinary typing paper with 456 points and this is sufficient to
give an idea of how the pentagonal spiral grid of the Fibonacci sequence can be used to generate curious sequences.
Here, of course, we shall have in all ten sequences. The sequences are tabulated below in Table 2.

The number o tabulated in the last column is defined as before by

3) d = min (bh—bl) < g

id
(for | —V or I'—=V’), and it is not difficult to see that for any given value of & the numbers |l —V determined
by our grid will differ from the Fibonacci number a; by a multiple of the number d. The reader may find it of in-
terest to try and develop a general formula for ¢ in terms of & and m (generalizing to an m-gon).
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Table 2
ag b by - etc.
k | 1 Il v Vv I’ 1y m v v d
1 1 1 1 1 1 1 1 1 1 1 0
2 2 3 2 3 2 3 2 3 2 2 1
3 3 4 4 5 4 4 4 5 4 3 1
4 5 6 5 6 6 6 5 6 6 5 1
5 8 10 7 9 1 10 7 9 11 8 1
6 13 15 12 14 16 15 12 14 16 13 1
7 21 24 27 30 18 19 22 25 28 31 3
8 34 38 42 46 50 38 42 46 50 34 4
9 55 60 65 70 75 59 64 69 74 54 5
10 89 95 101 71 83 77 83 89 95 101 6
1" 144 152 160 168 176 156 164 172 180 148 8
12 233 243 253 263 273 241 251 261 271 231 10
13 377 389 341 353 365 371 383 335 347 359 12

[DEC.

The visual display of perfect squares in a pentagonal spiral turns out to be a simple trefoil spiral appearing some-
what as diagrammed below.

144

441 /

This is easily verified to be in accord with the fact that the three arms of the spiral are formed by squares of form
(3n)2, (3n+1)2, and (3n+2)?, respectively.

225

324
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Finally, we turn to the case of a triangular spiral grid. Because of the hexagonal rotational character in this case,

one may generate 12 sequences for a given spiral grid, 6 counterclockwise and 6 clockwise. A portion of the triangu-
lar spiral appears below.

39

26

16

9

7

3

1

10

35
13

22
6

12
2

19

50

34

21

1

The 12 sequences generated by a triangular spiral grid based on the Fibonacci numbers are tabulated in Table 3.

Table 3
| Inomov vV VI | | N 1 | W LA VAR VA d d*
1 1 1 1 1 1 1 1 1 1 1 1 0 0
2 4 3 2 2 3 3 3 2 4 2 2 1 1
3 6 4 8 4 6 4 8 4 6 3 6 1 2
5 8 7 10 6 10 6 10 5 10 7 8 1 2
8 15 10 18 9 12 9 16 8§ 19 10 13 1 3
13 22 16 26 19 30 15 29 18 21 12 25 3 4
21 23 25 27 29 3 27 30 31 22 23 26 4 4
34 35 39 40 44 45 40 44 45 34 35 39 5 5§
b5 57 61 63 49 51 51 55 57 61 63 49 6 6
89 70 97 77 105 84 99 81 107 67 91 74 8 7
Here, d is based on either | — Il =V or I'—I1I"' = V' while d* ishased on Il = IV —=VI or II'= V' =VI'.

This is because 11, IV, and VI arise from the hexagonal effect. Thus it seems of interest to list & as based on both

triangular pattern and hexagonal.

With this much as an introduction to the notion of a spiral grid for generating variations of a given sequence, we
shall close this account. Our purpose has been mainly to exhibit the results of some calculations and suggest possible
avenues of research. Various questions could be posed. For example: What can be said about divisibility properties
of the new sequences? What can be said about when such sequences will satisfy simple recurrence relations? Does
any of this shed light on when a Fibonacci number may be a figurate number? Can simple formulas be written for
the various derived sequences? What is a simple formula for the number we have called o?

REFERENCES

(1964), March, No. 3, 120 et seq.
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Martin Gardner, ‘“Mathematical Games, The Remarkable Lore of the Prime Numbers,” Scientific American, 210

M.L. Stein, S.M. Ulam, and M.B. Wells, “’A Visual Display of Some Properties of the Distribution of Primes,”
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H-239 Proposed by D. Finkel, Brooklyn, New York.

n
If a Fermat number 22 +1 isa product of precisely two primes, then it is well known that each prime is of the
form 4m + 7 and each has a unique expression as the sum of two integer squares. Let the smaller prime be a2+bz,
a > b, and the larger prime be (:2+d2, ¢ > d. Prove that

cd<1

d bl ~ 700"

Also, given that
2% 11 = (274, 177)(67, 280, 421, 310, 721),
and that
274,177 = 5162 + 892,

express the 14-digit prime as a sum of two squares.

H-240 Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Let
min{n,p) mi+{n-i){p~i)
S(mn,p) = (g),(q), Z 7%77‘,7707—.- .
e 7 1 n-i p-i
where

(a); = (1—ql1—q2%) ~(1-¢/),  (g)y = 1.
Show that S{m,n,p) is symmetricin m,n,p.

H-241 Proposed by R. Garfield, College of Insurance, New York, New York.

Prove that
1 1 X 7
7_Xn = IT Z: ’ 2k7T
k=0 n
71— xe
SOLUTIONS
GEE!

H-207 Proposed by C. Bridger, Springfield, Illinois
Define Gi(x) by the relation 398
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1 5 P
= E Grlx)s™ ,
1-x?+1)s2-xs° 2

where x is independent of s. (1) Find a recurrence formula connecting the Gy (x). (2) Put x =17 and find Gx(7) in
terms of Fibonacci numbers. (3) Also with x = 7, show that the sum of any four consecutive G numbers is a Lucas
number.

Solution by the Proposer.
After carrying out the indicated division, we find

Golx) = 1, Gy(x) = 0, Galx) = x°+1, G3lx) = x, Galx) = (x°+1)?,
etc.
(1) Assume the recursion formula of the type
Gr+3(x) = pGrsolx) +qGrr1(x) +rGr(x),

and put k=0 k=1, and k=2. Thesolution of the resulting equations gives p =0, g =x2+ 7, and r=x. So the
recursion formula is
G+3(x) = (x2 +1)Gyr1(x) +xGylx).

(2) Put x =17 to obtain
G+3 = 2G+1 + Gy -

This has the characteristic equation 2_27-1= 0, whose roots are

a:M’ b:7_ 5, c=-1.
2 2
Now,
ak — bk

—— = Fe,  so Gel1) = Fe+(-1)%.
(3) Use Frsg+ Fr1=Lg and Fypo+ Fix=Li+q, replace F by G and add to obtain
Gr+2# G+1+ G+ Gp-1 = Li+2 .
Also solved by G. Wulczyn, P. Tracy, P. Bruckman.
BOUNDS FOR A SUM
H-208 Proposed by P. Erdds, Budapest, Hungary.
Assume

n!

— (a;j=2 1<i<kl,
arlas!l-ap! !

is an integer, Show that the

k
maxE aj < g—n ,
=1

where the maximum is to be taken with respect to all choices of the a;s and k.

Solution by 0.P. Lossers, Technological University Eindhaven, the Netherlands.
From the well known fact that the number ¢, (m) of prime factors p in m! equals

_Im m m
wm - [3]4] 2]+ 5]
P p
([x] denotes greatest integer in x/, it follows that

col(2) = ¢co(3) = 1, —'22 <cofm) <m (m=>4) c3lm) < %m (m = 2).
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Now writing
aplagl—agl = (21)%(31)%b 41 bo! ,

where b; =>4 (i=1, - 2) lower bounds for the number of factors 2 and 3 in a7/ --ar/ and a fortiori for cofn) and
c3fn) are found tobe a+ B+ %Zh; and (3, respectively. So

Za; = 2a+3B +Zb; < Zcpln) +c3(n) < m+ln=2%4 .

2

N

Also solved by V. E. Hoggatt, Jr.

SEARCH!
H-209 (Carrected). Proposed by L. Carlitz, Duke University, Durham, North Carolina.
Put , y
nt n
uy =% =B
a-0
where a+f = aff = z determine the coefficients C(n,k) such that
n
Z" = 3 ClnkUp g (n>1).
k=1
Solution by the Proposer.
It is easily verified that
Z = Uy
2= uztuyq
23 = uz+2uz+2uq
2% = ug+3uz+5us+5uy
2% = ug+4ug+5uz+14us+ 14uy .
Put
n
2" = Z Cinklupe+1
k=1
Since
k+1 k+1 k+2 k+2 k k
(Cl'f'B)Uk = (a+{3) a a:g =2 a:{f +af aa:g = Ug+1 +(a+ﬁ)uk_1 ,
it follows that
(a+Blug = ug+up+ - +ugysq .
Hence
n n n-k+2 n+1 n—j+2 n+1 1
—
2" = Z Cinkia+Blunpper = E Cln,k) Z uj = uj Z Clnk) = Z Up-j+2 ‘Z_‘ Cink) .
k=1 k=1 j=1 j=1 k=1 j=1 k=1
It follows that Cfn,k) satisfies the recurrence
k
b
Cin+1,kl = Z clnk) .
=1
The first few values are easily computed (7 < k < n < 5}
1
11
122
173 5
1749 14 14
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Thus Cfn,k) can be identified with the number of sequences of positive integers (a7, a5, -, a,,) such that
{87<32<---<an
U a<i =120,

It is known (see for example L. Carlitz and J. Riordan, “Two Element Lattice Permutation Numbers and Their g-
Generalization,” Duke Math. Journal, Vol. 31 (1964), pp. 371-388) that

cini) = ("ek52) - ("4 32)

LUCAS CONDITION
H-210 Proposed by G. Wlczyn, Bucknell University, Lewisburg, Pennsylvania.
Show that a paositive integer » is a Lucas number if and only if 5n2+20 or 5n?-20 isa square.

Solution by the Proposer.
I.(@) Let n=Lop+t
512420 = 5@ 1 g2mt1)% 4 g = 5igdm*2 — 2(aB)?™H! 4 392 = 253 ., .
(b) Let n=1Lop, ‘
50220 = 5(a®™ + ;32'")2 —20 = 5[a®™ - 2(aB)?™ +B*M] = 25F3 .
. s% = sn?+20.

(a) One solution chain is given by the rational part (for s/ and the irrational part (for n) of
(5+5N9+45)°, t=012
with the irrational part also identical to Lgz+7. Let

(5+\/E)(9+4\/E)t= 5t+L6‘t+7\/§, 31?:' 5Lg‘t+7+20.
(5+JEN9+4/5)TT = G5, +20Lges1+ /5 (ILgers +45¢) .

IL g1 #4514 +20 = ILgprg +4-/5(a8t1 — g6t+1)° = 9l gy, g + 20Fgreq

Lopey = aB7 + 8617 _ qBt*1 (9.1 4 /5 ) + 86T (9 _ 4./5)
= Lgt+1* 20Fge+1 .
(b) A second solution chain is given by the rational part (for s/ and the irrational part (for n) of
(10+45)(9+4./5)", t=012 -

The proof that the rational part of
(10+4/5)(9+4/5)"

is identically Lgg+3 is similar to that used in [l (a).
(c) A third solution chain is given by the rational part (for s/ and the irrational part (for n) of
(25+ 115 )9 +4/5)°, t=2012-
The proof that the irrational part of
(25+115)9+45)"

is identically Lger5 is similar to that used in 11 (a).
. s = 5n2-20.
(a) One solution chain is given by the rational part (for s/ and the irrational part (for n) of

(5+35)(9+45)¢, t=012 .
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Assume
(5+3JENI+AY5)E = 5.+ Lgoh, ~ sZ = 5L2..0-20.
(5+3BENG+45 )T = s, + 20L grrop *+ B 9L grr2 +45¢)
9Lgrr2+ 45t = ILgpr2 +4/5[08%%2 +8142)* — 4] = 9] 51,9+ 20F grep
Lgrg = a6t+8 _,_56t+8 = (9+4d§}a6ﬁ2+(9-4ﬁ}56t+2
= 9Lgrr2 + 20F 6r+2
(b) A second solution chain is given by the rational part (for s/ and the irrational part (for n) of
(15+76N9+45), =012 .
The proof that the irrational part of

(15+7/51(9+45 )"
is identical to Lgp+4 is similar to that used in 111 (a).
(c) A third solution chain is given by the rational part {for s/ and the irrational part {for n) of

(40+ 185 /(9 +45)¢, t=012-.

The proof that the irrational part of
(40+ 185 (9 +4/5)°

is identical to Lg; is similar to that used in H1-(a).

Also solved by P. Bruckman, P. Tracy, and J. lvie.

[Continued from Page 368.]

y+1 <z < y+{xi)

is a necessary condition for a solution. Thus, we see that there can be no solution for integer x, 7 < x < n; a well
known result (see [1, p. 744] ). Again, if y = n, there is no solution for 7 < x <n, a well known result {see [1, p. 744] ).
Our proof can also be used to establish the following general result.

Theorem 2. For n>m > 2 and integers A > 1, B > 1, the equation

Ax" + By™ = g7/
has no solution whenever Ax" "7 + Bmy < Bmz.
REMARK. Theorem 2 gives Theorem 1 forA =8 and n=m.
REFERENCE

1. L.E. Dickson, History of the Theory of Numbers, Val. 2, Diophantine Analysis, Carnegie Institute of Washington,

1919, Reprint by Chelsea, 1952.
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DEFINITIONS

The Fibonacci numbers £, and the Lucas numbers L, satisfy
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