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A FAREY SEQUENCE OF FIBONACCI NUMBERS

KRISHNASWAMI ALLADI
Vivekananda College, Madras—600004, India

The Farey sequence is an old and famous set of fractions associated with the integers. We here show that if we
form a Farey sequence of Fibonacci Numbers, the properties of the Farey sequence are remarkably preserved (see
[2]). In fact we find that with the new sequence we are able to observe and identify ““points of symmetry,” “inter-
vals,” "“generating fractions” and “stages.”” The paper is divided into three parts. In Part 1, we define “points of
symmetry,” “intervals” and “generating fractions” and discuss general properties of the Farey sequence of Fibon-
acci numbers. In Part 2, we define conjugate fractions and deal with properties associated with intervals, Part 3 con-
siders the Farey sequence of Fihonacci numbers as having been divided into stages and contains properties associated
with “corresponding fractions” and “corresponding stages.” A generalization of the Farey seguence of Fibonacci
numbers is given at the end of the third part.

The Farey sequence of Fibonacci numbers of order F,, (where F, stands for the n™ term of the Fibonacci se-
quence) is the set of all possible fractions F;/F;, i=0,1,2 3,,n—1, j=1,2,3, -, n (i <j} arranged in ascend-
ingorder of magnitude. The last term is 7/7, i.e., Fy /Fo. The first term is 0/F,.;. We set Fp =0 so that Fp +F;
=F2, F;I=F2= 1.

For convenience we dencte a Farey sequence of Fibonacci numbers by 7-f, that of order F,, by 77, and the
' term in the new Farey sequence of order £, by f(,),.

PART 1

DEFINITION 1.1. Besides 7/7 we define an f(,, to be a point of symmetry if f(+7), and f/_7), have tha
same denominator. We have shown in an appendix the Farey sequence of all Fibonacci numbers up to 34,

DEFINITION 1.2. We define an interval to be set of all 7-7, fractions between two consecutive points of sym-
metry. The interval may be closed or open depending upon the inclusion or omission of the points of symmetry. A
closed interval is denoted by [] and an open interval by ().

DEFINITION 1.3. The distance between f/x and f(g), isequal to Ir—k|.

Theorem 1.1. It f(., is a point of symmetry then it is of the form 7/F; Moreover f(.+4), and f(_g), have
the same denominator if they do not pass beyond the next point of symmetry an either side. The converse is also
true.

Proof. in the 7-f sequence the terms are arranged in the following fashion. The terms in the last interval are of
the form F;_; /F;. The terms in the interval prior to that last are of the form F;_ /F; . If there are two frac-
tions Fi7/Fj-7 and Fi_p/Fj_o then their mediant® F;/F; lies in between them. That is,

. Fi-1 Fio Fi-1 Fi Fi2
if _— < == then = < < ==
Fiq Fi2 Fi_q Fj Fi-2
i L2 o B then Fra  _ Fi Pt
Fj-2  Fj-1 Fiz = F  Fja

*If ab <c/d, then (a +c)/fb + d) is the mediant fraction to those two fractions.
1



2 A FAREY SEQUENCE OF FIBONACCI NUMBERS [FEB,

This inequality can easily be established dealing with the two cases separately.
We shall adopt induction as the method of proof. Our surmise has worked for all 7-f sequences up to 34. Let us
treat 34 as F,,_;. Forthe next f-f sequence, i.e., of order F,,, fractions to be introduced are:
Fe fs B ., fnt

Fnl Fn .""li-_n' ’ e Fn

F;/ Fp, will fall in between

Fi—‘ . and Firz

Fn-1 Fn-2 ’
First assume that F;_; /F,7 < Fj.2 /F,-2. Since our assumption is valid for 34, Fi.;7./F,_; lies just before
Fi2/Fp-2. Fi-3/F,-2 will occur just after F;_5/F,_; from our assumption regarding points of symmetry. But
F;_1 /F, liesin between these two fractions. The distance of F;_;/F, from the point of symmetry, say 7/F;, is
equal to the distance F;/F,, from that point of symmetry. Hence this is valid for 55. Similarly it can be made to hold
good for 89, ---. Hence the theorem.

Theorem 1.2. Whenever we have an interval [7/F;, 1/F;_7] the denominator of term nextto 7/F; is Fizo,
and the denominator of the next term is F;+4, then Fj.g --. We have this until we reach the maximum for that
f-f,, sequence, i.e., so long as F;ro, does notexceed F,. Then the denominator of the term after F;.o¢ will be
the maximum possible term not greater than F,,, but not equal to any of the terms formed, i.e., it's either Firor+7
or Fitok-1, say Fj. The denominator of the terms after F; will be Fj_p, Fj_4, - till we reach 1/Fi_q. (As an
example let us take [7/3, 1/2] inthe f-f sequence for 55. Then the denominator of the terms in order are 3, 8,21,
55, 34, 13, 5, 2). '

Bfooﬁ The proof of Theorem 1.2 will follow by induction on Theorem 1.1.

Theorem 1.3. (a) It h/k, h'/k’, h™/k” are three consecutive fractions of an f-f sequence then
h +hll _ hl

k + k// kl

~

if h’/k” is nota point of symmetry.
(b) If A7/k’ is a point of symmetry, say 1/F;, then
Fioh+Fi_1h”
Fiok+Fi_1k”
Proof. Case 1. (From Theorem 1.2) We see that
h_Fi2ap _Fi n”

kK Fa 'K R

%
k-

)
N

i+

3
N

In this case
FiratFia _ *3-Fi _ Fi pr
Fiz2tFj2  3F; Fi~ k-
(*Fp42+ Fr_2 = 3F,, isa property of the Fibonacci sequence. See Hoggatt [1].)
Case 2.

h - 5,2& Fia g 22 Firt

7 I:j F/_2 kll F/’+7
(from Theorem 1.2). Then

Firr*Fip _2Fi _Fi _h”
Fiert b2 26 F K
similarly.
Case 3.
t‘L’-: F__L_ Il = F______i—z ll’—’: F._..i”
K F "k Fo ' k7 Fig

(from Theorem 1.2). Therefore
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Fi-1tFia _ Fi_n’
Fi-1#Fp2  Fj K7
Hence the result.
Proof of 1.3b. Let h*’/k’=1/F;. From Theorem 1.2 it follows that h"/k”=3/F .o and h/k=2/F;s5.
Therefore

Figh+Fiqh” 2Fi2+3Fiy _ Fira _ 1

Fi-2k + Fj1k” FiFit2 FiFir2  Fj
Hence the theorem.

Theorem 1.4. 1§ h/k, and h’/k’ are two consecutive fractions of an f-f, sequence then
h—h"
k—Kk

Proof. Since f(,), is of the form F;/F;, if Theorem 1.4 is to hold, then it is necessary that |h — | be equal to
Fi and |k— k’| beequal to F;. Since h/k and h’/k” are members also,

/I=F,'l ’ /7'=Fi2 1] k=F/1 v

€ f-f, (k—k'#0).

k"= F; .

2
Further

|F/'1 —Fle = Fl and |F,'l —F,'2| = F,' .

But from the Fibonacci recurrence relation £, = F,_; + F,,_2 we see that the condition for this is |/;—/>|< 2and
li1—Jj2] < 2 (but not zero) which follows from Theorem 1.2. Actually
h—h’
k—k’
are the fractions of the same interval arranged in descending order of magnitude for increasing values of /4/k.

Definition 1.4. We now introduce a term “Generating Fraction.” If we have a fraction F; /F; (i < jl. We
split F; /Fj into

Fir1#Fi2

Fj-1#Fj2
We form from this two fractions F;_; / Fj_7 and Fi_p/Fjo suchthat F;/F; isthe mediant of the fractions
formed. We continue this process and split the fractions obtained till we reach a state where the numerator is 1. F;/F;
then amounts to the Generating fraction of the others. We call F;/F; as the Generating Fraction of an Interval (G.F.L.)
if through this process we are able to get from the G.F.l. all the other fractions of “‘that” closed interval. We can
ciearly see a 7-f sequence for Fy, Fa, ™, Fp, F,'/Fn will be a G.F.l. (We also note that F,/F/, F,'_j/Fj_7 .
Fi2/Fj-2, - belong to the same interval because the difference in the suffix of the numerator and denominator is
j —i). Hence the sequence G.F.l.'sis F; /F,,F2/F,,F3/F,, -, Fo1/F,. We now see some properties con-
cerning G.F.L's.

Theorem 1.5. 1f we form a sequence of the distance between two consecutive G.F.l.'s such a sequence runs thus:

22 4,4,.6,6 8.8, -,i..,alternate G,F.L"s are symmetrically placed about a G.F.l.

Theorem 1.6. If we take the first G.F.1., say f(g, )n. then fig 17)p and f(g _7)p, have the same denominator.
For fg,)n thesecond G.F.l. fig 12y, and f(y _2), have the same denominator. In general for f(g, ), the kth
G.F.L fig, +k)n and f(g, _k)n have the same denominator.

The proofs of theorems 1.5 and 1.6 follow from 1.2.

(NOTE: We can verify that for alternate G.F.1.'s g(g,)n. f(g,)n . flg In . =+ F(gtk)n a0 f(g, k)n have the same
denominator for k is even and the sequence of distance shown above is 2,2, 4, 4, 6,6,8, 8, ).

PART 2
Definition 2.1. We now define Fj_» to be the “factor of the interval”

A
Fr Fieq



4 A FAREY SEQUENCE OF FIBONACCI NUMBERS [FEB.

More precisely the factor of a closed interval is that terms F, where z is suffix of denominator minus suffix of the
numerator, of each fraction of that interval. it can be easily seen (Part 1) that z is a constant.

Lenmma 2,1, W j;~i;=j2~iz>0, then
\Fj,Fi, = i Fi,| = \Fi, = Fi, W\Fj, = Fi | = AFg, — F LR, = Fi |
Proof. We apply Binet's formula that

n n
Fn=a -5

a-b ’
where
g = 7+)£5’ b= 7“ 5
2 2

Then the left-hand side (L.H.S.) of the expression and the right-hand side {R.H.S.} of the expression reduce as follows.
To prove
ajx’in - bjf’.) .
a—-b

ajz"j1 - bjz"il
a—=b

al b gl pin gh_pls g _ph |
a—>b a—b a—b a—b

because f7 —iy >0, F'j:"‘i1 is positive and hence can be put within the | | sign.
To prove

Vaix ._bjx}(aiz _b‘iz) - (aiz _bjz)(ai1 — bii)‘ = I(ajz'ix _biz‘i1}(aj1'i1 _bj1‘i1}|
the LLH.S. reduces to
iailﬁz _aixbiz +bj1+i2 _bjlaiz _ajz+i1 +ajzbi1 +bjzaix _b/2+i1‘
= |_aj1biz _aizbit +ajz[]i1 +bjzaiz| .

The R.H.S. reduces to

lajz"'i1 _ajz'jlbjl"i1 +[7j2“i1 _bjz’ilajl'ixl N
This may be simplified further using ab=—7 and j; — iy =j2—iz. The R.H.S. is then

o' %2 +bl1a"s — gl2phs —ijaiil .
We see that L.H.S. = R.H.S. Hence the Lemma.

) Corollmy. From this we may deduce that if F;, /Fj, and F,-2/Fj2 belong te the same interval, i.e., j; —i7 =
jo—io, then
FirFia=FizgFiz = Fiisiy\Figmiz = FlipisiFig-ig
Fil/Fjl < Fiz/Fj2 '
Hence
\Fii Fi, = F1,F, |

will be an integral multiple of f; _; or F; _; (the factor of that interval) which is the term obtained by the dif-
ference in suffixes of the numerator and denominator of each fraction of that interval.

Definition 2.2 We now introduce the term “conjugate fractions.” Two fractions 4/k and h”/k’, h/k and h'/k’

are conjugate in an interval .
7 1
Fi"Fiq

if the distance of #/k from 7/F; equals the distance of A”/k” from 1/F,_; (h/k # h'/k’).
Corollmy. Two consecutive points of symmetry are conjugate with distance zero.
Theorem 2.2, |f h/k and h’/k’ are conjugate [1/F;, 1/Fi;] then kh"—kh’ = Fio.
Proof.' IFrom Part 1, we can easily see that if #/k is of the form
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F; Fi,-
T then h7/k" is it (*)
Fi1 ”:/'7—7

1/F;, and 1/F;_; are conjugate. This agrees with (*) since Fz=F;=1. Since the term after 7/F; is Fyq/ Fis2
and the term before 7/F;_; is 2/ Fj+7, we see it agrees with the statement (*) above. Proceeding in su¢ch a fash—
ion we obtain the result (*). Of course we assume here that there exist at least two terms in

1 1
Fi " Fir |

Hence we can see that any two conjugate to fractions in

11|
Fi " Fiq

Fici+2 Fj-it1
Fp " Fr1 o

are given by

We are required to show |F;Fj_7+7 — Fj_1Fj-j+2|= Fi-2. This will inmediately follow from Lemma 2.1.

Theorem 2.3. (a) If h/k and h*’/k’ are two consecutive fractions in an 7-f,, sequence, which belongto [7/F;,
1/Fi-7], then kh"~hk" = Fi_5.
(b) If h/k and h’/k” are conjugate in an interval [1/F;, 1/Fj.7] kh" = hk’= F;_5.
Proof Theorem 2.3a and 2.3b can be proved using Lemma and Theorem 1.2.
Definition 2.3. It

h 1 _1
k< \FFq)
we define the couplet for A/k as the ordered pair

=4 (25)

Theorem 2.4. \n the case of couplets we find that
(Fih) - k = FyFi 2
and
k—=Fi1h = Fp+1Fi-2 .
where Fp, is some Fibonacci number.
Proof. Let h/k be

Fi-i+2
. . Fi-
Then (F;h) —k is
(1 FiFj-it2—Fj = FpFi2
and let k— F,_gh is
(2) Fi—Fi-1Fj-1+2 = Fp+1Fi2 -

Adding (1) and (2) we have

Fi-2Fj-142 = Fp+2Fi-2 -
Therefore Fj_j12 = Fpi2 OF f—i=p ie.,
(3) FiFj-it2— F;j = Fi_iFi.2 .

We can establish (3) using Lemma 2.1. Hence the proof.

Definition 2.4. We defi —
ition e define [(FZ—%) (%;{7)]
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and ( 1 >( h, _7_>
FI ’ kl kl Fi"1
to be conjugate couplets if 4#/k and A"/ k’ are conjugate fractions of the closed interval

(L _1_)
Fi " Fiq

Theorem 2.5. In the case of conjugate couplets if
F,'/I —k = FpFi—Z and k—-F,'.jh = Fp+7F,'_2 ,

then
Fih'— k" = Fp_1F,'_.2 and k—=Fi_4h” = FpF,'_Q .
Proof. We note that (j — i) in the previous proof is the difference in the suffixes of Fi and F;. If now
F/.

then p =j—i Butsince h”/k” is conjugate with h/k,

ke = Fiit
Fi-1
Therefore the constant factor, say Fg in the equation for h”/k", F;h’—k = FgF;_ issuch that
g=f—-1-i=(—-i]-1=p-1.
Therefore F;h"— k"= F_1Fi_o. Hence k — F;_1h”= F, F;_p since it follows from Theorem 2.4.

Theorem 2.6. Since we have seen that if h/k and h”/k” are conjugate then the difference in suffixes of their num-
erators or denominators equals 1, we find

htn' o (1 1 h=h'|c |1 _1_
Kk S [F,- ’ F,-_,] and = |€ [F, ’ F,-.,il
if
’ 4 7 7
h/k, h'/k’ € | =—, =—
Fi " Fi-g
Moreover
hth’
k+k”
are the fractions of the latter half of the interval arranged in descending order while
h—h’
k—k’
are the fractions of the first half arranged in ascending order, for increasing values of h/k.
PART 3

We now give a generalized result concerning “‘sequence of distances.”
Theorem 3. 1a. Points of symmetry if they are of the form f(r)n then
rec2,35281217 ;.
Or the sequence of distance between two consecutive points of symmetry will be
1,2,345,6, -,
an Arithmetic progression with common difference 1.
Theorem 3.1b. The sequence of distance for fractions with common numerator Fo,_; or Fo, is

2n—1,2n2n+1,--.
Proof. To prove Theorem 3.1a we have to show that if there are n terms in an interval then there are (n + 7)
terms in the next.
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Let there be p terms of the form  F; /F;. It is evident that there are p + 7 terms of the form Fzq /Fj. But these
fp + 1) terms ot the form Fiw7/F; arein an interval next to that in which the p terms of the form Fi/F; lie. So
the sequence is an AP with common difference 1. Moreover, the second term is always 7/F, (evident). Hence the
result, (Note: j— 7 is assumed constant,)

If we fix the numerator to be 2 and take the sequence

2 _2 2 .2
Fn' Fpe1” Fp2” 73
then the sequence of distance between two consecutive such fractionsis 3,4, 5, ---.
From Theorem 1.2 (Part 1) it follows that 2/F; lies just before a point of symmetry, say 7/F;. Since we have seen
the sequence of distances concerning points of symmetry it will follow that here too the common difference is 1. The
first term is 3 for there are two terms between 2/F, and 2/F,_;. The inequality

2 7 3 2
- < =— < — <
Fn Fn—2 Fn Fn—1

can be established. Hence the resuit.
In a similar fashion we find that the sequence of distance for numerator3is 3,4, 5, ---.
We shall give a table and the generalization

Numerator Sequence of Distance
F1 or F2 1,2,3,45,
Fz o Fu 34,56

fs or Fg 56,78 -

Fon,_7 of Fo, 2n—1,2n,2n+1,2n+2, .

Definition 3.1. Just as we defined an interval, we now define a “stage” as the set of f-f fractions lying between
two consecutive G.F.L.'s. The stage may be closed or open depending upon the inclusion or omission of the G.F.l.%.

Since the sequence of distance of G.F.l.'sis 2,2, 4, 4, 6, 6, ---, it is possible for two consecutive “'stages” to have
equal numbers of terms. We define two stages:

Fig Fi Fi Firg
-, = and —_, =
l:Fn Fn Fn" Fn

to be conjugate stages if the distance of F; /F,, from F;_;/F, equals the distance of Fj.; /F, from F;/F,. That
is the number of terms in two conjugate stages are equal. We call a stage comparison of both these stages as a “com-
plex stage.” Let us now investigate properties concerning stages. If we have complex stage

Fip Fi Fier
Fn IF"’ Fn

then we define two fractions #/k and A’/ k" to be “corresponding’ if

and
ne (f F_+z)
U
and if the distance of A/k from F._; /F, isequal to the distance of #7/k” from F;/F,.

Theorem 3.2. Two correspdnding fractions have the same numerator, If A/k .and h”/k’ are corresponding frac-
tions then A=H"

Proof. This will tollow from 1.2 (part 1).

Let F;_; /F, bethe maximum reached in its interval so that F;_y /F,-; will be the maximum for the interval
in which F;/F,, belongs. (where by maximum we mean the term with denominator Fj.o in the sense of Theorem
1.2). The term nextto F;_; /F, is Fioo/Fp,_;. Similarly the term next 10 F; /F, is Fi_o/Fp-2. But these frac-
tions are corresponding in such a fashion that we obtain the result.
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Now F;_; /F, hasnecessarily to be the maximum in its interval. Since we have considered conjugate stages 7 is
odd. Using Theorem 1.2 it can be established that alternate G.F.l.'s are maximum in their interval and that too, when
suffix of numerator is even (i — 7 iseven).

Deﬁnition 3.2. Since the number of terms in a stage is odd, we define #/k to be the middle point of a stage

Fir Fi
F, "F,
if itis equidistant from both G.F.1."s. We can deduce from this that A/k isa point of symmetry since F;_; /F,,and
F; /F, have the same denominator. So the middle point of a stage is a point of symmetry.
Corolhzrjy. If two conjugate stages are taken then their middle points are corresponding. (This follows from the def-
inition). But their numerators should be equal. This is so, for the middle points are points of symmetry whose num-
erator is 1. This agrees with the result proved.

Definition 3.3. Two fractions #/k and h”/k” are conjugate in a complex stage if the distance of A/k from
Fi_1/F, equals the distance of A”/k” from F;r;/F,, h/k < h’/k’ and the complex stage being

Fi1 Fi Fit
F,,'F,,' Fn

Taking their middle points

q _1

Fp’ Fpt1
we can see that fractions conjugate in this interval are conjugate in the complex stage. Further we saw that for con-
jugate fractions of the interval, h/k, h"/k’,

h+h’
k+k’

re fractions of the latter half of the interval arranged in descending order, and
h=h
k—k’
are fractions of the first half arranged in ascending order for increasing values of #/k.
Theorem 3.3. For conjugate fractions #/k and h”/k’ lying in the outer half of the stage we see that

h+h’
k+k’
are fractions of the latter half of the interval in ascending order while
h—h’
k—k’
are fractions of the first half in descending order for increasing values of //k. We here only give a proof to show that
h+h’ h—h’
Iy Ay

are in the interval but do not prove the order of arrangement.
Proof. For h/k, h’/k’, in the inner half the proof has been given (previous part). The middle point of

Fip F
Fn ' Fp

Fi Firg
Fn' Fn

is 7/Fp_j+2. That two conjugate fractions of the outer half of a conjugate stage differ in suffix by 1 can be establish-
ed, That is,to say, if

is 1/ Fp.i+2. Similarly the middle point of
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= I_:j—(n—i)-7
/__/.

R

then
0" _ Fi-tn-i) h+h’ _ Fifn-i)+1
k” f‘}'__] k+k’ FI'_,L1
where / is the interval [7/F,, 1/Fot1] and
h=h" _ Fi-fn-i)-2
k_kl Fj.g e /.

el,

Hence the proof.

Definition 3.4. In an f-f sequence of order F,,, [F;/F,, Fir7/F,] representsastage. Let us take an 7-f se-
quence of order Fp.y. If there we take astage [F;/Fp+7, Fi+7/Fp+7], thenwesay the twao stages are corres-
ponding stages. More generally in an /-7 sequence of order £, andan 7-f sequence of order Fp44,

Fi Firg Fi Fin
Fﬁ ’ Fn

B Fn+k ’ Fn+k
are corresponding stages. We stage here properties of corresponding stages. These can be proved using Theorem 1.2.
Theorem 3.4a. I ) i
and ———Fi , ﬂﬂ-—
Fotie " Frtk

are corresponding stages then the number of terms in both are equal.

Fi Fi
Fn, FI7 |

Theorem 3.4b. There exists a one-one correspondence hetween the denominators of these stages. If the denom-
inator of the ¢*" term of [F;/F,,, Fisry /Fp] s F; then the denominator of the g™ term of

_Fi Fig
Frie ~ Fork
is Fipk. et
We can extend this idea further and produce a one-one correspondence between
- . -
Fi Fitm Fi  Firm a ¢
o and - ) where [ <, —]
|_ F,” F, 'Fn+k F,,+k_ b’ d |

stands for the set of fractions between a/b and ¢/d inclusive of both. A further extension would give that given
two f-f sequences, one of order F,, and the other of order Fj 4.

Theorem 3.5a. The numerator of the /™" term of the first sequence equals the numerator of the ™ term of the second.
Theorem 3.5b. I the denominator of the /7" term of the first sequence is £;, then the denominator of the A
term of the second series is Fj+7 . Precisely
(a) the numerator of f(,), is equal to the numerator of 7,4
(b) if the denominator of f(,), = F;, the denominator of f(,j,4k = Fjtk
This can be proved using 1.2, We can arrive at the same result by defining corresponding intervals.
Definition 3.5. Two intervals, [1/F;, 1/ Fiz1] inan f-f sequence of order Fp, and [7/ Fiu, 1/ Fjag] inan fof
sequence of order £, are defined to be corresponding intervals.
The same one-one correspondence as in the case of corresponding stages exists for corresponding intervals. We can
extend this correspondence in a similar manner to the entire /-7 sequence and prove that
(a) the numerator of f(,),, is equal to the numerator of f1)n4«
(b) if the denominator of £/, = F; , the denominator of F(.)p+4 = Fjrs -
(c) GENERALIZED f-f SEQUENCE. We defined the 7-f sequence in the interval [0, 7/. We now define it in the in-
terval [0, ].
Definition 3.6, The f-f sequence of order F,, is the set of all functions F; /F;, j <n arranged in ascending ordér
of magnitude ij > 0. If / </ then the 7-f sequence is in the interval /0, 7/. The basic properties of the 7-f sequence
for /0,7] are retained with suitable alterations

Theorem 3.6.1. f(,), is a point of symmetry if #/.+7),, and 7(,_7),, have the same numerator (beyond 7/7. If
f(rjn is @ point of symmetry then 7,4, and f(,_x;, have the same numerator, if each fraction does not pass beyond
the next G.F.l. in either side (beyond 7/ 7).
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Theorem 3.6.2. A G.F.l.is a fraction with denominator £,
Theorem 3.6.3. A point of symmetry has either numerator or denominator 1.
Theorem 3.6.4. Beyond 1/1, any interval is given by /F,,_; / 1, F, /1]. The factor of this interval is again F,_5.
Theorem 3.6.5. The two basic properties
% .
and
(b) kh —hk’ = Fp_p
are retained.
Theorem 3.6.6. If (a) is nat good for A7/ k” being a point of symmetry then
h' _ En-1h”+ Fpoh if h h” _h”  h Fn
K F, 1k +F, ok P

For a pertinent article by this author entitled “Approximation of Irrationals using Farey Fibonacci Fractions,”
later issues.

see

f-f Sequence of Order 5

g 1.1 21 3 21
375737525731
f-f Sequence of Order 8
6 11213 2135 21
5°8°578"3"8"5"2"5"8"3"1
f-f Sequence of Order 13
g 112 1 3 213 5 213 8 5 21
871378713513 °8"3°8"13"5°2"5"13"8"3"1
f-f Sequence of Order 21
_Q_.L_7£112_1352733121-2i11221
1372171372 8’ 21 3 13 7217873787217 1357 2"5"13°21"8"3" 1
f-f Sequence of Order 34
ﬁiiiiiilli_&li
21 734 " 21734 13" 3421 °8°21 34" 135" 13"
_«ij.£7i_3;_3_5£1~1.¢9_2_71~?_£21_
34 2183821 °34"13°565"2"5"13"34°21"8"3"1
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THE NUMBER OF ORDERINGS OF n CANDIDATES
WHEN TIES ARE PERMITTED*

1.J. GOGD
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

In a competition it is customary to rank the candidates permitting ties and it is an interesting elementary combina-
torial problem to find the number w(n) of such orderings when there are n7 labelled candidates. c(n) has curious
properties.

Theorem 1.  w(n)is equal to n! times the coefficient of x” in the expansion of (2 — &)™, thatis,

ik 1
(1) Zo‘*’n'f,"-
-

2—e*

if w(0) is defined as 1.
By multiplying by 2 — e and equating coefficients we obtain the recurrence relation

n—1

(2) wln) = 8§+ (7) wlr),
r=0

where 8= 17and 84=0ifn #0 (“Kronecker's delta”).

| mentioned (1) without proof in an appendix to Mayer and Good (1973). [It may be compared with Proposition
XXIV in Whitworth (1901/1951) which states that the number of ways in which n different things can be distributed
into not more than n indifferent parcels is 7/ times the coefficient of x™ in the expansion of exp (e*)/e.]

Proof Let r denote the number of distinct positions in an ordering of » candidates; for example, if among five
candidates two tied for the first place, one was “third,” and the other two were “fourth and fifth equal” we would
say that the number of distinct positions is 3. We shall prove that the number g(n,r) of orderings of n candidates
having just r distinct “positions” is equal to n/ times the coefficient of x" in (e — 7). (This is Whitworth’s Proposi-
tion XXII whose proof is different.) Equation (1) then follows from the identity

2-e¥)" =3 -1
r=0

When there are just 7 “positions” for the n candidates, let us adopt the unconventional terminology of calling these
positions first, second, -, " and let us imagine that, for a specific ordering, there are n¢ candidates who are first,
n2 who are second, ---, and n, who are ' where necessarily

nyg =1 np=1-,n>1 ng+na+-+n, = n.

The sequence of numbers n7,n, -, n, can be regarded as defining the structure of an ordering that has just r “posi-
tions.” The number of orderings having just this structure (which incidentally is clearly a multiple of r/) is equal to
the number of ways of throwing n7 labelled objects into r pigeon holes in such a way that there are ny in the first
pigeon hole, no in the second one, and so on. But this is equal to the multinomial coefficient n/ /(nqsf - n,!)
Hence g(n,r) is equal to n/ times the coefficient of x7 in

*For some overlooked references, see Sloan (1973), p. 109.
Received by Editors in final form July, 1973.

1
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x2,x3 x2, x3 x2,x3
(3) (X+27+§?+...) (X+Z7+ﬁ+ ) (X+ZI_+‘?_!_+...)'

where there are r factors. The reason for putting in the x’s here is that they automatically take care of the constraint
ny +-+n,=n. Equation (1) then follows immediately.

Theorem 2.
o i
(4) wln) = Z r+i
r=0
Proof. We have
- i rx
- =27 (il < foge2)
— 2F
=
and the result follows at once from Theorem 1.
Theorem 3.
n n
(5) win) =3 nSi =%~ A"
r=0 r=0
n
©) = A= () - (B) =2 e 170"}

where Sf,’) is a Stirling integer (number) of the second kind defined, for example, by Abramowitz and Stegun (1964,
p. 824) or David and Barton (1962, p. 294), and tabulated in these two books on pages 835 and 294, respectively,
and more completely in Fisher and Yates (1953, p. 78). Another notation for Sf,’) is S(n,r), e.g. Riordan (1958).
We could define S/ by

(7) nSr = Argn
(Note the conventions 0% =1, S,{,o) =0ifn>1, Sf,O) =1)

Proof. It follows either from the proof of Theorem 1, or from Whitworth’s Proposition XXII, that the term cor-
responding to a given value of r is equal to the contribution to w(n) arising from those orderings of the n candidates
having just r “positions.” Equations (5) and (6) then follow at once. The “incidental” remark in the proof of Theo-
rem 1 shows that S,,(’ is an integer.

An alternative proof of Theorem 3 follows from Theorem 2 by using the relationship between ordinary powers
and factorial powers,

n
(8) M o= E Sl(lm)r(r—;’)---(r~m+7),
m=0
combined with the binomial theorem for negative integral powers.

Theorem 3 provides one way of computing w (n/, given tables ofS,(,’). The calculations can be partly checked by
the special case of (8),

n n

) 3o =0SE =3 (-1)7ATe" = (-1)"
r=0 r=1

Theorem 4.

(10) win) = Y {nsge 3, —L——1

e (10gg 2+ 2im)™* "
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o cos [(n+1)0,,]
(11) win) =148 = L {—T—0 +2 . S
(loge 2)" o= [lloge 2)? +4nPm?2] (171172
(12) = nlflogoe)™"! { %+ Z cos™ 10, cos [(n +1)8,,] } ,
m=1
where

Om = tan™" (2mm logoe)
and the sum in (8) is a Cauchy principal value when n = 0.
Corollary.
(13) wf(n} ~ nl(logoe)"" /2
when n tends to infinity.
This asymptotic formula gives the answer to the nearest integer (and hence exactly) when n < 76 (see Table 1). It

is curious that n/ (logo )" 1/2 is within 1/ 50 of an odd integer, namely w(n), when 2 < n < 13. We can obtain
w(n) exactly by taking the series of Theorem 4 as far as the first term for which m > n/(2me).

Proof of Theorem 4. By, say Titchmarch (1932, p. 113),

m a

SR D
M—roo "z +2mmi
m=—M

(1-e2)"

where z is a real or complex number, not a multiple of 271/, Put z = v — x and we can deduce that the coefficient of

X in the power series expansion of (7 —e*™¥ )" at x = 0 (when Re(u) > o) is
Zm 7
N
(14) %80‘/' lim ——-——n:; .

Moo " m (u+2mTi)
Theorem 4 follows on putting v =/og, 2.

TABLE 1
Fractional part of a, o (denoted by {a, o } ), and the values of a, 7,a,, o, and a,, 3, where a,, ;,, denotes the terms
of formula (11). The sum column gives the total to be added to the integral part ofa, o.

n { an,0 } an,1 an,2 an,3 Sum
1 .0406844905 —0.0244239291 —0.0062750652 ~0.0028030856 .007
2 .0027807072 —0.0025628988 —0.0001650968 —0.0000327956 000020
5 .0015185164 —0.0014866887 —0.0000285616 -0.0000026000 .00000067
10 .0052710420 —0.0052693807 —0.0000016476 —0.0000000133 .0000000004
16 5130767435 0.4869198735 0.0000033805 0.0000000025 1.0000000000
20 5284857660 27.4714964238 0.0000178075 0.0000000028 28.0000000000
25 4328539621 22480.5672001073 —0.0000540633 —0.0000000061 22481.0000000000
Theorem 5. (i) If n=n’ (mod p — 1), where n>1, n”> 1, we have
(15) win) = w(in’) (modp),
where p isany prime. (i) If n=0 (mod p — 1), where n > 1, then
(16) w(n) =0 (modp),

where p is any odd prime.
COMMENT. If we had defined «w (0) = 0, Part (ii) would have been a special case of Part (i), but unfortunately the
convention w(n) =1 is more convenient for Theorems 2 and 3.
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Proof. To prove Theorem 5 we first give the following properties of the differences of powers at zero.
Lemma.

(17) (i) AP =0 if a>b (ab=1223-)
(18) (ii) ATO" = AT0" (modp) if n=n’ (mod p—1), n>1, n" > 1
(19) i)~ A"0" = (=1)"" (modp) ¥ n=0 (modp—1), r#0, n#0.

Equation (17) is a special case of the fact that the a'" difference of a polynomial of degree b is zero ifa <b,
To prove (18) we first note that

M- (’1 (r=1)" 4t r(—1)"11" (r>0n>0)
(20) A0" =30 (r=0 n>0
7 (r=n=20).

But, by Fermat's theorem,

a" =a"  (mod pl,

so that (18) follows at once from (20). f n=0(mod p — 1), n #0, r #1, it follows from (20) and Fermat's theorem
that
A" = 71— (’7 ) #ot ( L 7) (~1)"" (mod p)
and this gives (19) by the binomial theorem.
To deduce Theorem 5, we now see from Eq. (5) that

n n
wfln) = Z ATQ" =~Z AT0" (mod p)
=0 r=0
by (18). Hence, by (5), with n replaced by n’,

n
wiln) = wln)+ Z ATO" = w(n’)
r=n’+1

by (17). To prove Part (ii), where n=0 (mod p — 1), n #0, we have

n n
w(n) = Z ATO" = Z (—1)1
r=0 r=1

by (19), and this vanishes because n is even when p is odd.
SOME DEDUCTIONS FROM THEOREM 5

(a) Taking p=2 in Part (i) we see that c(n) is always odd.

(b) Given any odd prime p, there are an infinity of values for n for which p divides c (n).

(c) When n is even, 3 divides w(n).

(d) 59 divides w (69) and 78803 divides o (78813). (See the factorization of < (11) in Table 2.)
te) 2'72%3 _ 1 divides w (217273 _ 2), but the division will never be done!

() wisp)=wi(s)(modp) (s=1,2 3, ). [Here, and in (f), ---, (k), p isany prime number.]
(9) w(p)=1 (mod p). (Also deducible easily from (2).)

(h) wlpX)=1 (modp) (k=1,2,3, ).

() w(2p*)=3 (modp) (k=1,2,3, ).

(k) w(3p%)=13 (modp) (k=1,2,3, ).

In Table 2, some prime factorizations of w (n) are shown, and (g) is also exemplified. Large primes seem to have &
propensity to appear as factors of cw(n).

Conjecture 1. Part (i) of Theorem 5 shows that the sequence w(7), w(2), w(3), -+ has period p — 7 when p
is a prime. It may be conjectured that it never has a shorter period (properly dividing p — 7). If this is true then the
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converse of Part (ii) would be true; that is p could divide w (n) only if n =0 (mod p — 7). | have verified the con-
jecture for all primes less than 73, but | do not regard this as strang evidence. In fact | estimate that the probability
that the conjecture would have survived the tests, if it is false, is about 0.18.

If this conjecture is true then we can deduce that w (n) is never a multiple of n, for any integer n greater than 1.
Since w (n) is always odd we need consider only odd values of n. Suppose then that n divides co(n) and letp be a
prime factor of n. Let the highest power of p that divides n be p™. By repeated application of (f) we have w(n) =
w(n/p™) (mod p), and therefore by the converse of Part (i) of Theorem 5 (which is true if the conjecture is) we
see that n/p™ is a multiple of p — 7 and is therefore even. But n is odd by assumption and we have arrived at a con-
tradiction. So the conjecture implies that n cannot divide w (n).

Conjecture 2. Modulo 2, 4, 8, 16,32, 64, 128, 256, 512, - the sequence {w(n} } runs into cycles of lengths
1,2,2,2,2,4,8,16,32, ---. That is the period modulo 2k appears to be 254 when k > 5 and, fork=1,2,3,4is
1,2, 2, and 2. This conjecture would follow from the following one.

Comnjecture 3. If w(n) is expressed in the binary system as
ano*2ap1 +223n2+233n3 *oey

then the sequence of 7™/ |east significant digits,ay,, a2, a3y, - runs into a cycle whose lengths, forr=0, 7,2, 3, 4, -
are respectively 1, 2, 2, 1, 2, 4, 8, 16, ---. That is, the period is 23 %orr>3and forr= 0,1,2is1,2, and 2. This
conjecture is formulated on the basis of the columns of Table 3.

Conjecture 4. |f w(n) is expressed in the scale of p, where p is an odd prime,
w(n) = bpo*pbpy +p2b,,2 * o

then the sequence b7,, bo,, b3, , - runs into a cycle of length p”(p — 7). This has been verified empirically forp"*!
=9, 27, and 25 (and n < 36). For r =0 we know the result is true by Theorem 5, as we said before. A feasible con-
jecture is that the periods are never less than the ones stated.

Conjecture 5. Modulo p”, where p is an odd prime, and r > 7, the sequence {w(n}} runs into a cycle of
length p""(p — 1) and no less. This would follow from Conjecture 4. It generalizes Conjecture 1.

From Conjectures 2 and 5, if they are true, we can deduce that, modulo m =2k_pf(1p;<2 -+, the sequence {w(n) }
runs into a cycle of length

ofm) it k=0,10r 2

o(ml)/2 it k=3

olm)/4 it k=4

o(m)/8 it k=85,
where ¢ denotes Euler’s arithmetic function.

Conjecture 6.  Parts of Conjectures 2 to 5 could perhaps be proved inductively, by using Eq. (2) combined with
the use of m™” roots of unity.

Conjecture 7.  For each n, w(n) and w (n + 7) have no common factor, and the highest common factor of
w(n)—Tand w(ln+1)—1 is 2. This follows from Conjecture 1.

GENERALIZATION OF SOME OF THE RESULTS

The proof of Theorem 4 suggests correctly that several formulae that we have mentioned can be generalized by
replacing /og, 2 by v. By making this change we see that, in addition to (14), we have:
The coefficient of x” in (7 — e*™“)™" (where Re(u) > 0) is equal to

(21) 1 (— —”—) "1
n! du 1Y
hod 2m-n-1
= ysn o (=1)" Boamu (u < 2m)
22) G 2m(2m —n — 1)1

m=[n+1/2]
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TABLE 3

The Ten Least Significant Binary Digits a,,, of w(n) (n

-,36)
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_ 1 n_-ru
(23) =52, e (Re(u) > 0)
r=0
7 d (i
- u 'm) u -m-1
(24) =-Te E S mle" - 1)
m=0
1 n
- 1 ju u_ q)-m-1mpn
(25) —re Z (e¥—1) A0
m=0
= -1
(26) = B0+ cos [(n +1) tan”" (2nm/u)]
mgw (u2+4172m2) (n+1)/2
For example,
o 7
LY e = £33 te— 1) am0 = 1.00000023
©or=0 " m=0

and the coefficients of 7, x,x2, x3, wein (71— ex'7)'1 are respectively

1.58,0.92, 0.9962, 1.0011, 1.00014, 0.999982, 0.9999957, 1.00000023, ---

tending rapidly to 1.
Formula (26) is always very effective for summing the series

numerically when |z| is close to 1.
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1. ACOMBINATORIAL APPROACH

In [3], the nonzero coefficients of the Chebyshev polynomials T,(x/ = cos nf, cos 8 = x, which satisfy the recur-
rence relation 7,,+7(x)=2xT,(x) — T-1(x) since cos (n+1)0 +cos (n— 1)0 =2 cos 0 cosnf, are arranged in
left-adjusted triangular form. The first seven rows of the array are

-1
-3
-8 1
-20 5
-48 18 -1

3

mmhww—o/‘\
o
-
N
@

NOOO BN — =

1
3

Furthermore, letting a,  be the elementin the n?" rowand k% column, it is shown in [3] that

_ kK n n—k\ on-2k-1
(1.1) ank = (1) ,,—f,:( k )2
and
(1.2) ank = 2an-1,k —3n-2k-1 -

In this section, we discuss several linear recurrences which arise as a result of a careful examination of the triangu-
lar array. The validity of these linear recurrences is established by means of common combinatorial identities.

Summing along the rising diagonals, we obtain the sequence 7, 7, 2, 3, 5, 8, 13, ---, which appears to be the sequence
of Fibonacci numbers. To show that this is in fact the case, we first observe that the sum of the nth rising diagonal
is given by

.n=1o2
3 f « !
(1.3) n = gan_k_,,k, M:['%],,,>3,

We now verify that f, = f,_;+ f,_2 for n >3.
In [2], we find the following combinatorial identities

(1.4) (;)=(";7)+(Z:;)
and
19
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(5) (k) (meE ) e ()

Using (1.1) together with (1.3) and applying (1.5) and then (1.4) twice, we have,

fn=Z{(“ gk n=—k=1 (n—2/:<—1) on-3k-2

n—2k=1
k=0

M
- k n—-2k 2 n—2k—2" n-3k-2
—2(1)[ )+2( 2 )]2
k=0

EM (__”k[(n—Zlf—2) . (n—;(Zi(;—.?)] n-3k-3

+Z (— ”an—zkk 3/+4( 2/<7 2>J on-3k-3
(1.6) ;

e B () (5

+£ (_Hkl’( n—2lf—4) +3(n7(2_k7—2 )] on-3k-4

M
= fog+fy ot Z (—1)k [(n—2:—4) +8 ( n~2k7 2\} 2n-3k-4
k=0 )
Since the first and last terms cancel for successive integral values in the last sum, and because
n—4 <n—-1<3M impliesthat n-2M-4 < M,
the last sum has value zero so that
(1.7) fn = foo1+fp2, n=3.

The sequence of the sums of the rising diagonals in absolute value, denoted by { up } : is 7,1,2,5,11,24,53,---

=71
and it appears to satisfy the recurrence relation
(1.8) up =us =1, uz=2 2upq+up.3=u,, n=4.
By the definition of u,, , (1.1), and (1.3), we see for 7 >4, following an argument similar to that of (1.6), that,

m M
_ n—k—=1{n—-2k—-1)\ ,n-3k-2 _ T'fn—2k—-2 n—2k—2 n-3k-2
u”_zn—Zk—I< £ )2 'Z‘( k )+2( K—1 )]2

k=0 k=0

M” \ .
o) =2k§0|.(n—2;—2) (n 2K - 3” on-3k-3, zl (n -2k - 2/ (n-kz_ki-s)J 9n-3k-2
=2un_7+,l§[2(”—2z(-4) _(n-2l:<-5):‘ n-3k-5 =2Un—1+E M’ ,,_2kk_4>

k=0 i k=0

+ ( n ;3k7—5)J on-3k-5 _ QUp-1+Up-3
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and (1.8) is proved.
Let w,, be the sum of the terms along the nth falling diagonal. The terms of { Wp },,:7 appear to be given by

(1.10) w, =4 -n=1
0, n=2

To show thatw, =0 for n >2 we observe that

Lanv‘klk Z (—7}kl_("—7> (’l::?)] on-k-2

k=0

(1.11) _/22(_7) (n—l)zn—kl /2( 7)k(n— >2n—k—2

Y Y |
2 2

and (1.10) is proved.
Letting g, be the sum of the absolute value of the terms along the nth falling diagonal, we see that the terms of
{q,, f —; are 1,2, 6,18, 54, 162, 486, --- and it appears as if we have

) n=1
1.12 = ’ .
(112 n { 2.3"2 552
By the definition of g,, and (1.11), we have
n-2
E ‘an+k 1k|" /2 Z (ﬂ;’) 2n—k-7+% Z (n;Z}Zn—k-Z
(1.13) k=0 k=0

e +Zu"* WCEYTiRprs

so that (1.12) is true.

It is easy to determine the row sum r,, because, as is pointed out in [3], the sums are all one since cos n0 = 1. The
last sequence of this section, denoted by 4 p, =1 , deals with the sums of the absolute values of the terms of the
rows, and the first few terms of the sequence are’ 7, 7,3, 7, 17,41, 91, ---. It appears as if we have

(1.14) pPr=p2=1 pp=2Pp-1+pPp-2, N=>3,
which is a generalized Pell sequence where the Pell numbers P,, are given by the recurrence relation
(1.15) Py =1, Pr=2 P,=2P, 1+Pp2, n=>3.

The first few terms of the sequence are 7,2, 5, 12,29, 70, 169, ---. Letting P_; = 1 and Pp = 0, it is easy to establish
by mathematical induction that

(1.16) Pn = Ppg+Pp2=Pp—Ppy
and

n
(1.17) Pn= pn

=1

To verify (1.14), we use (1.2) and observe that
(1.18) lank| = 2|an-1,k|* |an-2,k-1
so that with // = [n/2], we have

N N-1
(1.19) Pn = 2 lan k| =2 Z |an- 7k|+2 |an-2.4-1] = 2p-1 +Z lan-2.] -
k=0 k=0 k=0

However, |a,-2 n/| = 0 because n — 2 < n <2N implies thatn —2 — N < . Hence,
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(1.20) Pn = 2p-1+Pp-2 .
2. GENERATING FUNCTIONS

In a personal correspondence, V.E. Hoggatt, Jr., pointed out that the relationships of Section 1could be estab-
lished by means of generating functions.

Let Gyfx) be the generating function for the k™ column. Following standard techniques, it is easy to show that
- I—x
(2.1) Golx) r—
and, with the aid of (1.2) that
_ —Gg-1lx)
(2.2) Gk()() = 7—Jx
Employing mathematical induction together with (2.1) and (2.2), we have
_ [ =1 ) k ( 1-x
(2.3) Get) = (775 ) (1=5). k>0,
Adding along the rising diagonals is equivalent to
Zm: 3k - 1—x ) 3 “
et = 35 (F750) (775 )
k=0 k=0
A
() (175 )
1-2x |~ 7—-2x
=(1-x —x2)_1
Since i
(1—x—x?)

is the generating function for the Fibonacci sequence, we have an alternate proof of (1.7).
Letting

* = 1—x 7 k
(25) Gt = (175 ) (5 )
we see that adding along rising diagonals with all signs positive is equivalent to
oo ' 3
(2.6) > kG = | 1= )—( 7- X ) =_T=x
-0 ( 1—2x 1-2x 7—2)(—‘)(3
which verifies (1.8) since (7 — x)(7 — 2x —Xg)_I is the generating function for {un};‘;, .
To verify {(1.10) and (1.12), we recognize that
. kp - T—x . X -
(2.7) };ox Get) = (1= )+ (1422} =1,
where 1 is the generating function for { Wp };‘;7 while
kper) = 7——X);(__ X _1-x
(2.8) lngk(x} (=) (1-72) = %
where (7 — x)(1 - 3x)" is the generating function for {qn}m_
. n=1
Since
ok _( 1-x ). x2>=_—7
(29) gx Gt = (1= )+ (147550 ) = 1-0

we have an alternate proof that the row sums are all one. Furthermore,
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(2.10) g‘z x%¥Gx(x) =( I=x )+ (, x? ) . _1—x _ )

1-2x 7—2x T —Zx—x

-1, . . oo
where (7 —x)(1 - 2x — x?)™" is the generating function for { 2n }n=7' Hence, we have an alternate proof of {1.14).
In conclusion, we note that

PRI P M L e =t < S, SEN LS S
0 ,; 1-2x-x%2 1-2x-x% 1-2x-x? ,72:;)

and we have a generating function proof of (1.16).
3. ANOTHER ARRAY

If we let sin no
(2,,()() = m, X = C’USG,
and use
sin (n+1)8 +sin(n—1)8 = 2cos 8 sinnb ,
we see that

Qp+1lx) = 2xQy(x) — Qp-1(x)

and @,(x/ is a polynomial in x,
The first eight rows of the nonzero coefficients of the polynomials @,,(x/ in left-adjusted triangular form are

k
n g 7 2 3
1 1
2 2
3 4 -1
4 8 -4
5 16 -12 1
6 32 -32 6
7 84 -80 24 -1
8 128 -192 80 -8
Letting &, x be the element in the n™" row and 7 column, it can be shown, as in [3], that
{3.1) bak = Zbp-1,k —bp-2k-1
and
(3.2) b = (~1)K (MK gt
The six linear recurrences of Section 1, relative to the @, (x/ array, are
(3.3) Fr =1, Fo=2 Fyp=FpqtFpoa+tl, n=z3
(3.4) Up=1, Us=2 Uz=4 U,=2Up1+Up3, n=4
{3.5) Wp=1 n=1
(3.8) Q,=3"", n>1
(3.7) Rp=n n>1,
and
(3.8) Py =1, Py=2 P,=2P,1+Ph2, n=3

which is the sequence of Pell numbers given in (1.15).
The preceding six linear recurrences can be verified by using combinatorial arguments like those of Section 1 or by
means of generating functions as in Section 2 where the column generators of the @, (x/ table are given by

-1 ~1 3k
(3.9) Hit) = 75 (725 ) k>0

and
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(3.10) Hilx) = —1 ( L
' KT T 20k 7—2)()' -

if we want all positive values. Hence, the details are omitted.
4. CONCLUDING REMARKS

Equations (1.16) and (1.17) relate the sequences of (1.14) and (3.8). Similar relationships, which can be proved
by mathematical induction, also hold for the other five recurrences. That is,

n
a.1) fo = Fp—Fpg and Fp =9 f
=1
n
4.2) Up = Up—Upg and Uy =2 u
=1
n
(@.3) Wp = Wp—Wn_g and W, =) w
=1
n
(4.4) Un = Qp—Qpeg and Qp = g
=1
n
(4.5) fn = Rp—Rp-y and R, = Z re
i=1

Since Eq. (3.9) is (7 — x)77 times Eqg. (2.3), it can be shown that the entries in the @, (x/ table are partial sums
of the column entries of the 7, (x/ table. Hence,
n—1

(4.6) bptokk = Z aj+2k,k
—0
which gives rise to the combinatorial identity !
n
nl n+k\ _ J+2k \ [ j+k\ oj-1
(@.7) (k) =3 (R (k) 2T

j=0
An interesting consequence of (4.6) since the b, 4 and a,, « are respectively the coefficients of the polynomials
Q,(x) and T,(x) is the identity

n
~ n-j .0 _ sin(n+1)0
(4.8) 2_5 cos"70 cos jO R A
=
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OF ODD PERFECT NUMBERS OF THE FORM p®M2F
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ABSTRACT

It is shown here that if n is an odd number of the form p®M1°, p®M2*, p®M>3*, p*M*® or p®M***, where M is
square-free and p is a prime which does not divide M, then n is not perfect.

1. INTRODUCTION

Euler (see page 19 in [1]) proved that if n is odd and perfect (that is, if n has the property that its positive divisor
sum o(n) is equal to 2n) then n = p*N'? where p/V and p =a = 7 (mod 4). In considering the still unanswered ques-
tion as to whether or not an odd perfect number exists, several investigators have focused their attention on the con-
ditions which must be satisfied by the exponents in the prime decomposition of A, If M/ is square-free and S is a
natural number then it is known that n = p¥ *Bis not perfect if 8 has any of the following values: 1 (Steuerwald in
[81), 2 (Kanold in [3]), 3 (Hagis and McDaniel in [2]), 3k + 7 where k is a non-negative integer (McDaniel in [5]).
Our purpose here is to show that n is not perfect for five additional values of 8. Thus, we shall prove the following
result.

Theorem. Let n = p®M*® where M is an odd square-free number, pAM, and p = a= 1 (mod 4). Then n is not per-
fectif (A) =5, (B) B=1720r62, (C) =24, (D) B=17.

2. SOME PRELIMINARY RESULTS AND REMARKS

For the reader’s convenience we list several well-known facts concerning the sigma function, cyclotomic polynom-
ials, and odd perfect numbers which will be needed. If g is a prime the notation g€l K means that gC|K but gC*7/K.
(1) If P isaprime, then

o(PS) = TLF (P},
m

where Fp,(x/) is the m™ cyclotomic polynomial and m ranges over the positive divisors other than 1 of s + 7. (See
Chapter 8 in [7].) If n is odd and perfect and g is an odd prime then it is immediate, since ofn) = 2n, that g|n if and
only if g|Fp(P) where P* is a prime power such that PSlnand mifs + 1),

(2) 1¥m = g€ where g is a prime then g |F,,,(P) if and only if =7 (mod g). Furthermore, if ¢|F,,(P)and m > 2,
then g || Fp, (P). (See Theorem 95 in [6].)

(3) If g|Fy,(P) and gfm, then g =1 (mod m). (See Theorem 94 in [6].)

(4) 1fn= po‘p?‘31 -~-pfﬁt is odd and perfect then the fourth power (at least) of any common divisor of the.num-
bers2B;+1(i=1,2, -, t) divides n. (See Section IIlin [3].)

(5) If n isan odd perfect number then n is divisible by (p + 7)/2.
We shall also require the following lemma which, to the best of our knowledge, is new.

Lemma. Let n = p®M*® be an odd perfect number with M square-free. If 28+ 7 = RQ? where @ isa prime dif-
ferent from p and QfAR, then at most 28/ distinct prime factors of A/ are congruent to 7 modulo Q.

25
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Proof. Since 0%in, by (4), and @ #p we have @28|n. If P is a prime factor of A/ then from (1) we see that
Foj(P} In for j=1,2, -, a

Thus, if P= 1 (mod @) then @%|n, by (2). It now follows that if M/ is divisible by € distinct primes, each congruent
to 7 modulo @, then @%C|n. Since @2fln, ¢ <28/a.

We are now prepared to prove our theorem. Our proof utilizes the principle of reductio ad absurdum with
Kanold's result (4) furnishing a starting point and our lemma providing a convenient “target” for contradiction. The
prime factors of the cyclotomic polynomials encountered in the sequel were obtained using the CDC 6400 at the
Temple University Computing Center. For the most part only those prime factors of £, (P) were sought which did
not exceed 70°.

3. THE PROOF OF (A)
We begin by noting that
F14(199) = 11R; and F;4(463) = 11.23-5479R> ,
where every prime which divides A ;A2 exceeds 10° . Since
R1/Rz = (8.899-10%") /(3.273-10%0) = 27.2
we see that A y R ; from which it follows that £7 A5 has at least two distinct prime divisors P; and P, both greater
than 70%, By (3), P; =P2=1(mod 11). We also remark that if
P3 = 1806713 and P4 = 3937230404603 = F1,(23)/11

then it can be verified that neither of the primes P3 or P4 divides either 7 or R>.
Now assume that n = p®#*® is perfect. From (4) we see that 77%|n and, therefore, that

Fqy4(11) = 15797- 1806113 |n.
We now consider three possibilities.
CASE 1. p=15797. By (5), 3-2633 |n. 1t was found that

2113|F11(2633), 683-7459|F;,(2113), 23-99859|F;,(683), and 3719-8999|F;,(99859).
Also, ‘
463|F;1(3719) and  199|F;;(1806113).

It follows from (1) that » is divisible by each of the following eleven primes, all congruent te 7 madulo 77:
23, 199, 463, 683, 2113, 3719, 7459, 8999, 99859, P3, P4 .
But this is impossible since, according to our lemma, M has at most 10 prime divisors congruent to 7 modulo 77.
CASE 2. p = 1806113. By (8), 3-17-17707|n. 1013|Fy;(17707) and 199|F;;(1013); while
463|F;1(15797), 23-5479|F;1(463), and 1277-18701|F;;(5479).
From (1) and the discussion in the first paragraph of this section we see that each of the eleven primes
23, 199, 463, 1013, 1277, 5479, 15797, 18701, P;, Py, P4

divides n. Our lemma has been contradicted again.
CASE 3. p # 15797 and p # 1806113. Since 199 |F;(1806113) and 463 |F ;1(15797) we see from the discussion
thus far that n is divisible by the following eleven primes:

23, 199, 463, 1277, 5479, 15797, 18701, P;, Pa, P3, Py.

If p = 18701 then 3|n and, therefore, 3857 (a factor of F;;(3)) divides n. If p # 18701 then n is divisible by 34607,
a factor of F;7(78701). In either case n is divisible by twelve primes, each congruent to 7 modulo 77, at most one
of which is p. This contradiction to our lemma completes the proof of (A).

4. THE PROOF OF (B)

If we assume that 7 = p°M2F is perfect, where =12 or 62, then 5*|n by (4). If p =2 (mod 3) then from (5) we
have 3|n, and since F5(3) = 172 it follows from (1) that 3-52-77|n. But this contradicts a well known result of Kan-
old’s ((2) Hilfssatz in [4]). We conclude, since p = 7 (mod 4), that p = 7 (mod 12).

Since 54|n we have 524||n (or 5724||n), and from (1) we see that



1975} OF 0DD PERFECT NUMBERS OF THE FORM p*12° 27

Fs(5) = 11-71 and  Fop(5) = 101-251-401-9384251

both divide 7.
Proceeding as in the proof of (A) and referring to Table 1 we see that n is divisible by at least 43 different primes
congruent to 1 modulo 5. (Here, and in our other tables, the presence of an asterisk indicates that the prime might

be p.) Since at most one of these primes can be p, and since our lemma implies that M has at most 12 (or 41) prime
factors congruent to 1 modulo 5, we have a contradiction.

TABLE 1
Selected Prime Factors of F5(g) and Fo5(g)
q Fs(q) Fas(q)
5 11,71 101, 251, 401, 9384251
1 3221 3001%, 24151
Al o211, 2221*
101 31,491, 1381*
401 1231
9384251 181%, 191 1051, 70051
3221 151, 601%, 1301, 1601
211 1361
31 17351 4951
1231 3491 55351
191 1871, 13001 5101*,10151, 38351
1051 241* 2351, 19751
1301 61* 701, 6451
13001 1801*, 5431, 17981, 32491

5. THE PROGF OF (C)

Assume that n = p®M#*® is perfect. Then 743In by (4),and if p =2 (mod 3) then 3*%iin by (5). (We note that p # 29
since otherwise 3-5-7|n which is impossible.) According to Table 2, in which the upper half is applicable if p =2
(mod 3) and the bottom half if p = 7 (mod 3), we see that n is divisible by at least 26 primes congruent to 1 modulo
7, at most one of which can be p. This is a contradiction since, by our lemma. M is divisible by at most 24 such
primes.

6. THE PROOF OF (D)
We shall prove a more general result which includes (D) as a special case. Thus, suppose that

n = p%2P .. p2Pt and that 35|(26;+1) for i=12 -t

If n is perfect then 35%n by (4). As in the proof of (B}, p = 7 (mod 72), and from (1) we see that F (5) = 17- 77
and F,(7)=29-4733 each divides n. Referring to Table 3 and noting that either 181 or 86353 is not p we see that n
is divisible by the primes
57 11,29,31,41,43,61% 71,101,113, 127, 131, 151, 191, 197,211, 241* 251,271, 281, 491, 911.
If m is the product of the primes in this list which are not congruent to 1 medule 12, then
alnlin > ol61:241m*)/(61-241m*) > 2.
This contradiction shows that » is not perfect.
7. CONCLUDING REMARKS

From the results obtained to date we see that if n = p"‘MzB is perfect then either 26+ 7 =g > 13 where g is
a prime, or 28+ 1 = m > 55 where m is compaosite. Thus, it seems reasonable to conjecture that an odd number of
the form p"‘MZﬁ, M square-free, cannot be perfect. It is clear, however, that the proof must await the development
of a new approach: the magnitude of the numbers encountered for which factors must be found makes the attack of
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TABLE 2
Selected Prime Factorsof F,(g) and F,,(g/ TABLE 3
7 F.lg) Fusla) Selected Prime Factorsof F_(g)and F,(g)
7| 29,4733 3529 7| Fula) F.(a)
3| 1083 491, 4019, 8233, 51157, 131713 T
29| 88009573 197* 7 29,4733
e B e e
491 617*, 1051 4733} 41,101 70001
131713| 43,239 8527 1| 297681
88009573| 71,22807 4999 70381 63{1* ‘:9811*
16759| 701* 6959 6763 '
7| 29,4733 3599* 292661| 191, 241*
29| 88009573* 197 191 1871 127,197
4733 70001 83203 a1l 181 o1
197(97847,2957767| 1373 127 43, 86353*
;ggg ; 503592‘3263621 i 86;2; - ”»
2957767 127 151 1499
53222 7218,11'069539* 16759 ég; f;} )
43| 5839 491
16759| 701, 6959 883, 6763 13| 251

the present paper impractical for “large” deficient values of 28+ 7 (m is deficient of ofm/) < Zm), even with the aid
of a high-speed computer. Six is perhaps the only value of 3 for which 23+ 7 is a prime power within reach at pres-
ent. If, on the other hand, 28+ 7 = m is abundant (that is, ofm) > 2m) then it is trivial that n = p®#2" cannot be

perfect; for by (4), min and this implies that ofn)/n > ofm)/m > 2.
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AN INTERESTING SEQUENCE OF FIBONACCI SEQUENCE GENERATORS

JOSEPH J. HEED
Norwich University, Northfield, Vermont 05663
and
LUCILLE KELLY
Vermont Coliege, Montpelier, Vermont 05666

An observation that certain sequences of power residues modulo some primes were generalized Fibonacci sequences
led to the investigation of the positive sequence with general term n“ — n — 7. This sequence was found to have
some interesting properties.

For example,

3k = k-1 4 352 (154 5), 4% = 457 1452 (;mod 11),

{5’(} is similarly defined mod 19, etc. If we take as initial values 7, n, and define a Fibonacci sequence based on
these values, the r*/ term is given by nf,.7 + f..2, where £, is the ™ Fibonacci number. It is then a simple matter
to show that n? — n — 7 divides n” — nf,.; — f,.5. Thus,

% = n* 1+ 0%2 (mod n2-n—1).
THE SEQUENCE {ng— n—1 }

1. Let mfn)=n2—n—1 Let p beprime,and let p|m(N). Then there is a unique partition of p, p=a+b,
such that p|m(N + kp) and p|m(N + kp +a).

i. That p|m(N + kp) is easily verified

ii. p|m(N+kp+a)

miN +kp+a) = N2+ 2Nkp + 2Na + k?p? + 2kpa +a° — N —kp —a—1 .

This is divisible by p if p|2V+a— 1.

There is some smallest value of a for which this is true, and this value of a is independent of V. Forlet pim(n}
n#N, Then p|m(N + kp +a’) for a’ such that p|Zn+a’— 1.

Thus,

pk’ = a—1+2N, pk” =a =1+2n.

Subtracting and adding:

pk” = (a"—a)+2(n—N) and pk* = ata’ +2(N+n—1).
Since
p[/VZ-—/V—I and p[nz—n—I,
then
p|{/V2—/V— 1)—(n2-n-1),
thatis, p|(N - n)(N+n—1).
Either p|N —n or p|N+n— 1.
In the former instance it follows that p|a”— a, and since both are less than p, a =a’. In the latter case p|a + a’ and
a+a’=p, thatis, a’=bh.
2, If p|m(N), then p|m(N — b).
m(N —b) = m(N)+b(b—2N+1).
But
b—2N+1=p—a—-2N+1=p—(a—1+2N), and plla—1+2N).
3. Ifaprime p appears as a factor in the sequence it does appear at these regular intervals of @ and 5, and only
then. For let
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p|m(N), p|m(N+a) and p|lm(N+a+x), a+x <p.
m(N+a+x) = m(N+a)+x(2N +a— 1)+ (a+x).
Since p|m(N +a) and p|2N +a — 1, p must divide a +x. But this is possible only if p = a +x, and x = b.
4, Let
m(/V} = p{lp:2 pgt ,
p; prime, t > 1. We have N2> m(N)> (N - 1)2 Nop =N, for if m(N) = p-Q with p = N, we have

=N-71--1
Q=N-1-5,

which is impossible. Thus some p < /. But in that event N — p > 0 and p |m(N — p), yielding: if p|m(N), then

p = m(N) or p|mln)
forsome n <N.

5. All factors of m(/N) terminate in 7, 5 or 9. The period for m(N) modulo 10is 1, 5, 1, 9, 9. The product of such
elements terminates in 7, 5 or 9. Since N2> m(N), at most one p can exceed /V, and by (4) at most one prime factor
new to the sequence can be introduced per term. |f we assume for n < k all factors terminate in 7, 5 or 9,and if
m(N) = p-Q for N > k, with p a new factor, then since @ terminates in 7, 5 or 9 so must p.

6. Further, itis true that every prime of the form 70n £7 is a member of the sequence.

i. First we establish that 5 is a quadratic residue of every prime of the form 70n 7. If p is an odd prime (p #5),

then by the Law of Quadratic Reciprocity,
5-1 p-1

5\(e ) -2 2 .
( p ) ( 5) =1 *1-
Thus (p/ 5) = (5/p), and if 5 is a quadratic residue of p, p is also a quadratic residue of 5, that is, 5|x2 — p for some
x. It is easily verified thatp =£7 mod 10.

ii. There are two incongruent solutions to x
andlet N=(z+17)/2

2_5= 0 mod p, z and p — z. One is odd, the othereven..Let z be odd,

N2 —N-1=%4z2-5. p|l2-5 -pN2-N-1.

7. An examination of the sequence reveals an unexpected number of terms which are prime. However, this situa-
tion cannot be expected to continue. It is known that primes of the form 70 n +7 and 70n £3 are equinumerous[1],
and that 2 7/p, p prime, diverges.

E 12 —n-1

n=2

converges, as must the subseries consisting of terms which are prime. The implication being, terms, n2-n- 1,
which are prime must become rarer as 77 increases.

SOME TERMS OF m(n) =n?—n—1

min) | n| min) | n| mia)l n| min) |n | _min)yn| _min)| n| _min) | n|_min}| n| min)

1 12| 131 |22| 461 |32| 991 |42| 1721 |52 11-241{62| 19-199 72| 19-269 |8229-229 |92 11-761
5 113| 5-31 |23|5-101|33|5.211 | 43| 5-19%|53|5-19-29/63|5-11-71] 73| 5-1051 |83 |5-1361 [ 93 |5-29-59
11 14| 181 |24/ 19-29(34|19.59 | 44| 31-61|54| 2861 |64| 29-139] 74| 11-491 | 84| 6971 |94 | 8741
19 |15 11-19]25| 599 |35|29.41 |45| 1979(55| 2969 |65| 4159 | 75| 31-179 |85/|112-59 | 95| 8929

239 26| 11-59|36| 1259 |46| 2069 |56| 3079 |66| 4289 | 76| 41-139 | 86| 7309 | 96(11-829
41 171 271 (27| 701 |37] 11® |47| 2161|57| 3191 (67| 4421{77| 5851 |87| 7481 |97| 9311
5.11/18| 5-61|28/5-151|38|5.281 | 48| 5-11-41|58| 5-66168| 5-911 | 78| 5-1201 | 88(5-1531] 98(5-1901
71 19| 11-31]29| 811 {39| 1481 |49| 2351{59| 11-311{69| 4691 | 79| 61-101 | 89(41-191] 99(89-109
89 (20| 379 |[30{11-79|a0| 1559 |50| 31-79|60| 3539 |70| 11-439] 80| 71-89 | 90| 8009 {100{19-521
109{21| 419 |31| 929 |[41/11-149]51| 2549{61| 3659 |71| 4969 | 81/ 11-19-31| 91/19-431

—_O0OWoe~NOOITH_RWN
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A RAPID METHOD TO FORM FAREY FIBONACCI FRACTIONS

KRISHNASWAMI ALLADI
Vivekananda College, Madras 600004, i ndia

One question that might be asked after discussing the properties of Farey Fibonacci fractions [1] is the following:
Is there any rough and ready method of forming the Farey sequence of Fibonacci numbers of order F, ,
given 1, however large? The answer is in the affirmative, and in this note we discuss the method. To form a standard
Farey sequence of arbitrary arder is no easy job, for the exact distribution of numbers coprime to an arbitrary integer
cannot be given. The advantage of the Farey sequence of Fibonacci numbers is that one has a regular method of
forming f- f, without knowledge of f- £,, for m < n. We demonstrate our method with Fg= 34 that is, we
form f-fg.

STEP 1: Write down in ascending order the points of symmetry—fractions with numerator 7. (We use Theorem 1.1

here.
! 11 1 1 1 1 11 .
34721 137 8’ 5§37 2" 1
STEP 2: Take and interval (7/2, 1/7). Write down successively as demonstrated the alternate members of the Fibonac-
ci sequence in increasing magnitude beginning with 2, less than or equal to F,,, for a prescribed 7-,,. This will give a

sequence of denominators
7

2 57 13’ 34
STEP 3: Choose the maximum number of the Fibonacci sequence <F, not written in Step 2, and with this num-
ber as starting point write down successively the alternate numbers of the Fibonacci sequence in descending order of
magnitude until 7.
_ _ 1
217 87 37 1°
STEP 4: Put these two sequences together, the latter written later. (Theorem 1.2 has been used.)

r _ _ _ _ _ _ 1
2" 5’ 137 34’ 21" 8" 37 1°
STEP 5: Use the fact that f(.+x)n, f(r-k)n have same denominators (Theorem 1.1) to get the sequence of denom-
inators in all other intervals.
17 1 7

r_ 1 _
21734°21°34°13°34° 21" 8" 21" 34" 13" 57 13" 34*

N
-~
N
S1)
2
W
4
®
~
N
~N
w
]
-
<@
4
o
N
N
\
«
-~
W
2
R
X
N
~-
y
5
d
W
4
~

STEP 6: Use the concept of factor of an interval to form numerators. The numerators of (7/2, 1/7) will differ
in suffix one from the corresponding denominators. The numerators of (7/3, 7/1) will differ by suffix 2 from the
corresponding denominators, - . Use the above to form numerators and hence the Farey sequence in /0,7].The
first fraction is 0/F,_; .

o r 121 3 2 135 2 13 8 5
21°34°21"34° 1334721 8 °21" 34" 13" 513" 34" 21’

2138 13 52
8

*3°8°21°34°13' 5

3 8 21 13

13 8 2113 5 21
'2°5°13"°34°21°8°3"1°

’
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To form the fractions in the intervals (7,2),(2,3), (3,5), ---, write the reciprocals in reverse order of the fractions
in (1/2,1) in f-furq, of (1/3,1/2) in f-fpep, -+, respectively. This gives 7- f,, as far as we want it,

In fact, one of the purposes of investigating the symmetries of Farey Fibonacci sequences was to develop easy
methods to form them.

REFERENCE
1. Krishnaswami Alladi, “A Farey Sequence of Fibonacci Numbers,” The Fibonacci Quarterly, Vol. 13, No. 1 (Feb.
1975), pp.

A SIMPLE PROOF THAT PHI IS IRRATIONAL

JEFFREY SHALLIT
Student, Lower Merion High School, Ardmore, Pennsylvania 19003

Most proofs of the irrationality of phi, the golden ratio, involve the concepts of number fields and the irrational-
ity of «/5. This proof invelves only very simple algebraic concepts.

Denoting the golden ratio as ¢, we have
> —p-1=0.
Assume ¢ = p/g, where p and g are integers with no common factors except 1. For if p and g had a common factor,
we could divide it out to get a new set of numbers, p”and g”.
Then
(p/a)?-plg—1=0
(0/g)? —ply = 1
02 —pg = ¢?
(1) plp—gq) = q?
Equation (1) implies that p divides q2, and therefore, p and g have a common factor. But we already know that p

and ¢ have no common factor other than 1, and p cannot equal 1 because this would imply g = 7/¢, which is not an
integer. Therefore, our original assumption that ¢ = p/g is false and ¢ is irrational.
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SYMMETRIC SEQUENCES

BROTHER ALFRED BROUSSEAU
St. Mary’s College, California 94575

This paper deals with integer sequences governed by linear recursion relations. To avoid useless duplication, se-
quences with terms having a common factor greater than one will be considered equivalent to the sequence with the
greatest common factor of the terms eliminated. The recursion relation governing a sequence will be taken as the
recursion relation of lowest order which it obeys.

Symmetric sequences are of two types:

A. Sequences with an Unmatched Zero Term

(1) wT_3,T—2,T—1,7T0,T7,T2,7T3, "
with
Th=T-p
B. Sequences with All Matched Terms
() T-3,T—2,T—1,T1,7T2,73,

FIRST-ORDER SEQUENCES
The recursion relation of the first order is:
(3) Tht1 = alp

which will have all terms integers only if a =#7. The only sequences governed by such relations subject to the initial
restrictions given above are:
D 11,1,

L A

These sequences and the sequence -0, 0, 0, 0, --- will be eliminated from consideration in the work that follows.

SECOND-ORDER SEQUENCES

For a recursion relation
Tpe1 = alp+bT g

to have all integer terms, the quantity b must be +7 or —7. The same applies to sequences of higher order. These will
be denoted Case | (+7) and Case Il (—7).
Case |. Tpt1 = alp+ Thog

A. Zero Term
To=Tp—aly,  T_;=Ts—alp=T;—alTa+a’T; =Ty,  alaT;—T3) = 0.
Thus either a=0 or Tp=0. a =0 leads to sequences such as:
-2,32,32323,
If Tp=10,
T_2=T2=Tp—al-; = —aly .

Hence 7o = aT; and T2 = —aT; with the result that a=0.

33
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B. No Zero Term

T-1=To—al; =Ty, (a+1)T; = T, T-2=Ty=T7—al_; = (1-a)T;.
Therefare a77 = 0. I1f T7 = 0, all the terms are zero. Ifa = 0, we have the type of sequence given above for this value.
Case I1. Th1 = alp—Th-1.

A. Zero Term

To=al;—To, T.1=Ty=alg—T; =a°T;—aTo—T;
(a2 -2)T;—aTp = 0, To=To=al-;—Tg=al-;—aT;+To=Ts .
If symmetry holds up to 7,,, then

@)

Top1=al-p=T_pt1 = alp—Tpo1 = Tpey
and hence the entire sequence will be symmetrical.
EXAMPLES

For any value of a, select 77 and 75 to satisfy (4) in order to generate a symmetric sequence. Thus fora=3, 7T =
3T 2, giving the sequence:
--47,18,7,3,2,3,7, 18,47, ---

governed by
T,-,-{-j = 3Tn— Tn_j .

Fora=8, 62T;=8T>, giving the sequence:
--1921,244,31,4, 1,4, 31,244, 1921, -

governed by Tp,+7,=8T, — Tph_7 .
8. No Zero Term

The relations
T_;=Ty=al;-T2 and Tp=al_;1—-Ty
both lead to
(a—1)T; =T>.
If T_,=T, holdsup to n, then
Top-1 =alon=T_pt1 = aTp=Tpo1 = Tpsr

and the symmetry will be maintained throughout the sequence.
For a=5, To=4T; giving a sequence
--19,4,1,1,4,19, 91,436, -
governed by
The1 = 5T —Thy .

THIRD-ORDER SEQUENCES
Case I. Ther1 =alp+bTp_1+Tpho.
A. Zero Term
Tn2 = Tner—aln—bTp_q, To=Tz—ala—bTq,
T.1=T1=Ty—al;—bTg = To—aT;—hTg+abTo+b°T;

(5) (b2 —a—1)T;+(ab+1)Tp = bT3 .
Also
Tp=To=Ty—aTg—bT-1 = Ty—alg+a’To+abT; —bT;
from which
(6) (ab—b+1)T;+(a%— 1)Tp = aT3

T.3=T3=Tp—al-;—bT-p = T3—aTo—bT;—al;—bT>
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so that

(7) fa+bT;+T2) = 0.
Equation (7) will hold if 6 = —a which makes (5) and (6):

(5") (a2 —a—1)T;+(1—a°)Ty = —aT3
(6" (—82‘/‘3'/'7)7-7'/'(32-— s = als

which are the same relation,  Since
Tg =alz3—bTo2+T; and T _4=T_7—-al_o—bT_3=T;—alo+al3 =Ty

the symmetry persists up to this point. An entirely similar argument shows that it holds in general.
EXAMPLE. For a given value of 4, many symmetric sequences can be determined. For 4= 5,

19T — 24T = =573
from which one may derive any number of symmetric sequences obeying the relation
Tat1 = 8T = 5Tp-1+Th-o.

Examples are:
- 1350, 361,96, 25,6, 1,0, 1, 6, 25, 96, 361, 1350, -

--363,98,27,8,3,2,3,8,27,98, 363, -, -362,97,26,7,2,1,2,7,26,97, 362, -
B. No Zero Term
Ther = alp +an_1+Tn__2, Th-2 = T,,.,.,—aT,,—bT,,..;, T_1=T7=T3—alp—bTy

(8) (b+1)T;+aTo = T3
T o=To=Tz—alT;—5bT_4
(9) (a+b)T; =0

which is satisfied if 5= —a
T_g = T3 = T; ~aT_7 -—bT_2

(10) T3 =(1-alT;+aTy

which agrees with (8) when b = —a.
If the symmetry holds to 7, =7_,, then

Topet = Topio—alpe1taTon = Tnoo—aTp-1+aTp = They

so that all corresponding pairs are equal.
EXAMPLES. For a=4, T3 = 475 — 3T; yields many sequences governed by

Tner = 4Ty —4Tp-1+Tp-2
--233,89,34,13,5,2,1,1,2,5,13, 34, 89,233, -
--177,67,25,9,3,1,1,3,9,25,67,177, -
--265,100,37,13,4,1,1,4, 13, 37, 100, 265, ---

Case I1. Tpt1 = alp+bTp_1—Th2. Th-2 = alpn+bT 71— They
A. Zero Term
To=aTa#hTy—Tg, Togy=Ty = aT;+bTg—To = aT;+baTo+b%T; —bhT3— T
(11) (a+h?—1)T;+(ba—1)To—bT3 = 0
To=Ty=alg—-bT_4-T4 = 327'—2'/'3[77-7 —alz+bT.41—Ty
(12) (ab+b—1)T;+(a°—1)To~aT3 = 0
T.3=T3=aly+bTo—alo—bT1+73
(13) (a—b)T;~Ta) =0

so that b = a satisfies this relation.
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Equations (11) and (12) both become for b =a:

(14)

(a+a—1)T;+(a2—1)To—aT3 = 0.

For a=2, 2T3=5T; + 3T vyields an infinity of sequences satisfying

(15)

(16)

Thi1 = 2T+ 2Tp-1.— Th-2
--64,25,9,4,1,1,0,1,1,4,9,25,64, -
--129,49,19,7,3,1,1,1,3,7, 19,49, 129, ---
--194,73,29,10,5,1,2,1,5,10,29,73, 194, -
--259,97,39,13,7,1,3,1,7,13, 39,97, 259, -
B. No Zero Term
Th-2 = Tpt1—alp—bTp1, T_y =T3z—alz—bT;
(b+1)T;+aTo = T3
T_o=Tgp=To—al7;—-bT_;
(a+h)T; =0 .

Equation (15) becomes 73 = (1 —a)T;+alo for b=—a Now, T_3=T3=T;—al_;—bT>

(17)

T3 =(1-a)T;+al»

in agreement with (15) if b = —a.

whereas

T_4=T_71—al_a+al_.3 = alz—ala>+T;

Tqg=al3—alo—Ty

sothat 7;=0 if T_4=Ty4.
Similarly setting 7_5 = T5 makes 72 =0, etc. Hence this case yields nothing more than the trivial result ---0,0,0,0,0, .

Case I.

(18)

(19)

(20)

(21)

FOURTH-ORDER SEQUENCES
Tpt1 = alp+bTp1+cTp-2+Tp3
A. Zero Term
Th-3 = Tpe1—alp—0bTp-1—¢cTp-2, To=T4—alz—bTo—cTy
T.1 =Ty =Ts—alo—bT;—cTg = T3—aTo—bT;—cTy+acTz+bcTo+c%T;
(c2—b—1)T;+(bc—a)To+(ac+1)T3—cT4 = 0
To=To=To—al;—bTg—cT-7 =To—al;—bTy +abT3+b2T2+b[:T7—cT7
(bc—c—a)T; +b%To+abT3—bT4 = 0
T.3=T3=T7—alg—bT_1—cT_2 = T,—aT4+aZT3+asz+acT1 —bT;—cT2
(ac—b+1)T;+(ab—c)To+(a% - 1)T3—aT4 = 0
To—al-;—bT-p—cT.3 = Tg—aT3—bTo—cT;—al;—bTo—cT3
(a+c)T;+2bTo+(a+c)T3 = 0.

]

T4 =1T4

[FEB.

If this set of four equationsin 7y, T2, T3, T4 is to have a non-zero solution, the determinant of the coefficients
must be zero.

from which

(22)

2—b—-1 bc—a ac+1 —c?

bc—c—a b2 ah —b | _ 0
ac—b+1 ab—c a2—1 -a
‘ atc 2 at+c 0
(a+bh+cl-a+b—cha?—c2+4b) = 0 .
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Before proceeding to further analysis some relations will be derived from equations (18) to (20). From (18) and (19)

(23) (c?+ac b2 —b)T;—abTo+bT3 = 0 .
From (19) and (20)

(24) (62 —b —ac —a®)T;+bcTo+bT3 = 0
and from (23) and (24)

(25) (¢ +a2 +2ac — 262)T; = bla+c)T>.

THE CONDITIONa +b +¢c=0
b = —a — ¢ substituted into (25) gives

(c? +a2+2ac - 2c% — 242 — 4ac)T; = —(a +c)2T2
so that 77 = 7. Then by (21)
(a+c)T;+2(—a—c)T1+(a+c)T3 =0
so that 73=T7y. By (18),

(c2+a+c—1-c?

—ac—atac+1)T; = cTy
so that 74 = Tq. Ifthetermsup to 7, areall equal to 77, then
Tpne1 =alg+(—a—c)T;+cT1+T7 = Ty
so that all terms of the sequence are the same.
THE CONDITION —a+b —¢c=0

b =a+c leads to
To=-T7, T3=T7, Tga=-T7.

If this alternation holds up to 7, , then
Tper = [al=1)""T +(a+c)=1)"+e(-1)" T +(=1)"]T; = (-1)"T,

so that the alternation continues.
THE CONDITION a2 = c2+4b=0

a and ¢ must be of the same parity.

EXAMPLE: a=1 b=12 ¢c¢c=7.
Using Egs. (18), (19) and (20) we obtain:
36T;+83To+8T3—7T4 = 0,  76T;+144To+12T3—12Tg = 0,  —4T;+5To+0T3—T4 = 0.

from which 77:T2:T3:T4=3:-7:18:-47.
Using the recursion relation
Tnt1 = Tpn+ 12Ty 1+ 7Th2+Th-3

and a corresponding backward recursion relation, the following terms were obtained:
--843,-322 123, -47, 18, —7,3, -2, 3, -7, 18, —47, 123, -322, 843, ---.

Second-Order Factor
If the symmetry is to continue beyond a term 7_,, , the condition for this would be:

Tope1 = Tpag = Topez—al-pio —bT_pr1—¢Tp = Tp-3—alp-2—bTp-1—cTp .
But
The1 = alp+bTp_g+¢cTp2+Tph3 .

Hence there is a relation
(a+ L‘)Tn +2bTpq+(a+c)Tho = 0.

But since 4b = (¢ — a)(c +a) we have in fact

T,-, = (a—¢)T, _1/2—Tn_2 .
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Thus if the symmetry is to continue the terms must satisfy a second-order recursion relation. That they do so can
be seen from factoring
x¥—ax® —bx—c—1=0 intofactors (xZ+Ex+1)(x2+Fx—1) =0,
where £ is (¢ —a)/2. The conditions would be:
(c—a)/2+F=-a or F=—(at+c)/2

from the coefficient of x cubed and the same value of F comes from the coefficient of x. Then the coefficient ofx2
would be: 2. 2
EF = (—¢c*+a%)/4 = —b

as required. Hence the terms obey this second-order relation and this insures the continuation of symmetry beyond
T_4. Note that this is not a proper fourth-order symmetric sequence.

B. No Zero Term
Th-3=Tpt1—alpn—bTp1—¢cTph-2, T4 =Ty =T4—al3—-bT2—cTq

(26) (c+1)T;+bTa+al3—T4 = 0
T2=Top=Tz—alp—bT7—cT_4
(27) (b+c)T;+(a+1)To-T3 =20
T.3=T3=To—al;—bT_1—-cT_2
(28) (a+b)T1+(c—1)To+T3 =0
T4=Tqg=T1—al_1—-bT_2—cT_.3
(29) (a—1)T;+bTo+cT3+T4 = 0.

To have a non-zero solution the following determinant must be zero.

c+1 b a -1
b+c a+1 -1 0
ath c¢-1 7 0
a-1 b c 7

=0

or
(30) (a+h+c)c?-a?—4b) = 0.

As in the zero case, the conditiona + b + ¢ = 0 leads to a sequence where all terms are the same. The other condition
requires that the fourth-order recursion relation have a second-order factor which the terms of the symmetric sequence
must obey. Hence this is a degenerate case also.

Case |l. Tpne1 = alp+bTp_g+cTp2—Tph-3
A. Zero Term
Tpn-3 = alp+bTp-1+cTp-2— Th+1
If the symmetry is to continue indefinitely
Top-1 = al_ps2tbT_pr1+cT_n—T-p+3
Tnt1 = alp2+bTp1+¢cTp—Tp-3 = alptbTp-1+cTp-2—Tp-3
(a—cHTpho—Ty) =0

so that a = ¢ unless there is to be a recursion relation of lower order.
Top =al3+bTo+al;—Ty, T_1=T1=ala+hTy+alg—T3

from which

(31) (a2 +b—1)T;+al(1+b)To+(a% - 1)T3 = aTy
T2=Ts=aly+b(aT3+bTo+al;~—Ty)+al-;—T2

from which

(32) a2 +b)T1+ (b2 - 2)To+abT3 = bTy4 .
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Other relations simply repeat one of the above. Eliminating 7, from (31) and (32):
(33) (62 — b —2a2)T; +alb +2)T5 — bT3 = 0
For given @ and b, a suitable selection of 7y and 72 will given an integral value for 73. Thusfora=7,46 = -5,
—68T1—21T2 = —5T3 .
Ty =1, To=2 T3=22.
Then from (31), T4 = 749. The symmetric sequence:
--38494, 6029, 946, 149,22,2, 1,2, 1, 2,22, 149, 946, 6029, 38494, ---

is governed by the recursion relation: )
Tn+7 = 7T,-, — 5Tn—1 +7Tho—Th-3.

B. No Zero Term
As before the continuation of symmetry for all terms requires that # = ¢ in the relation
Tnt1 = alp+b6Tp_1+¢Tp2—Th-3 .

Two relations are obtained from the requirement 7_; =77 and 7_p= T2, namely:

(34) fa—= 1T, +bT3+aT3 = T4
(35) (b+a)Ty+{a—1)To = T3
The relations for 7_3 and 7_4 repeat these in inverse order.
EXAMPLE: a=-2, b=295§ -3T;-3T5=T3

Ty =4, To=7 Tz=-9.

Then from (34), T4 = 41.

The symmetric sequence:

6399, —1810, 506, — 145,41, -9,7,4,4,7, -9, 41, —145, 506, ~1810, 6399, ---
obeys the recursion relation:
Tpt1 = =2Tp+5Tp 1 —2Tp2—Tp-3
FIFTH-ORDER SEQUENCES
Case |. Thne1 = alpn+bTp_g+cTpo+dlp 3+ Ty
A. Zero Term
To insure symmetry for all 7 we set:
Top-1 = Tpt1 = Toprg—aT 13— bTpi2—cTopeg —dTp = Tpg—aTp.3—bTp2—CcTpg—dTp .
Combining this with the original recursion relation:
(3 +d}{7-n + 7-[7—-3} + (b +C)(Tn_.7 + Tn-Z} =0

so that o = -a and b = -¢ are necessary conditions to prevent reduction to a lower order recurrence relation.
Using the same techniques as previously we have the relations:

(36) (a2+b — 1)T; +(ab — b)To+(~ab —a)T3+ (1 —a°)T4+aT5 = 0
(37) (ab—b+a)T;+ (2 —a—1)To+(1—b2JT3—abT4+b6T5 = 0 .
Eliminating 75 from (36) and (37) gives:

(38) (b2 —b+ab—a°)T; + (a2 +a — b2 )To+(—ab—a)T3+bT4 = 0 .

EXAMPLE: a=5, b=—-3 from which
—28T;+21To+10T3 = 3T,
which is satisfied by 7; =7, To =3, T3 =4, T4 =25. Then from (36)
21Ty — 12T+ 10T3 - 24T4 = —5T5
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which gives 75 = 174,

The sequence

- 190299, 43060, 3745, 2203, 498, 115,25, 4,3, 1, -2, 1, 3,4, 25, 115, 498, 2203, 9745, 43060, 190299, ---
is governed by the recursion relation:
Tne1 = 5T~ 3Tp1+3Tp2—5Tp3+Tn-gq .
B. No Zero Term

An entirely similar analysis leads to two relations:
(39) T5=(1—al]T;—bTo+bT3+aly
(40) Tg=(-b—alTy+(b+1)Ty +aT3

EXAMPLE. a=5, b =-3 From (40),

Ty =-2T1-2T2+5T3

which is satisfied by T7=17, To=3, T3=4, T4=12

Then by (39), Tg=—4T;+3To—3T3+5T4="53. The sequence

- 19428, 4397,995, 227,53, 12,4,3,1, 1,3, 4, 12, 53, 227, 995, 4397, 19428, ---

is governed by the recursion relation:
‘ Tpey = 5T = 3Ty 1+3Tp2—5Ty-3+Tpgq .
Case I1. Tht1 = alp+bTpg+cTp2tdTp.3-Th-g .

In this case symmetry in the sequence requires that a=4 and b =c.
A. Zero Case
The final relations obtained from the analysis are:
(41) (a2 +b — 1)T; +(ab+b)To+ (ab +a)T3+(a° = 1)T4 = aTs
(42) (ab+a+b)T;+(b2+a—1)To+ (b2 — 1)Tg+abTy = bTs
from which
(43) (62 —b —a2 —ab)T;+ (b2 —a2 +a)To+(ab+a)T3 = bT4 .

EXAMPLE. a=3, b =-7. (43) becomes
68T +43To— 18T3 = —7Ty4
which is satisfied by
T1=7, T2=3, T3=9, T4=——5.
Then from (41),
T1-28T>—18T3+8T4 = 375 gives Tg = —95.
The symmetric sequence:
2203, —191, -305, -95,-5,9,3,1,-1, 1,3, 9, -5, -95, —305, —191, 2203, ---
is governed by the recursion relation:
Tot1 = 3Tp~7Tp1—7Tp-2+3Tp-3—Tph-a
B. No Zero Term
The relations obtained are:

(44) (a—1)T;+bTo+bT3+aT4 = Tg
(45) (a+b)T;+(b—1)]To+alT3 = Ty
(46) bT;+aTp = T3

EXAMPLE. a=-5, b =7. (46) becomes 7T; — 572 = T3 which is satisfied by

Ty=1 T2=3 Tz3=-8.
Then (45)
2T1+6T2—-5T3 = Ty gives T,=260..
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Finally (44) —6T1+7To+7T3-5T4 = T5
gives a value T5=—341. The symmetric sequence:
72667, —12195, 2053, 341,60, -8, 3, 1, 1, 3, -8, 60, —341, 2053, —12195, 72667, -

is governed by the recursion relation:
Tpt1 = =T+ 7Tt +7T 20~ 5Tp3—Tpy .

CONCLUSION

From this investigation the following general approach to creating symmetric sequences of integers governed by
linear recursion relations emerges.
(1) Given a linear recursion relation of order &,

Tper = agTptazTp-g+ - +*ag-1Tpt+2+ Tnte+1
the condition of symmetry in the sequence requires that:
_— 3 = ~Ok-
and for the recursion relation:
Tpt1 = a1Tp+agTpog+ - tag-1Tpi+2~ Tn-k+1
symmetry requires that a;=a,_;.
(2) For the reduced number of parameters a;, set up a corresponding number of symmetry conditions using the
first few terms of the sequence. /
(3) Using these conditions, select values for the parameters a; and then find starting values in integers that satisfy

the given conditions.
Yotokohodokok



SOME INTERESTING NECESSARY CONDITIONS
FOR @—1)"+(b—-1)"—(c—1D" =0

JOHN W. LAYMAN
Virginia Polytechnic I nstitute and State University, Blacksburg, Virginia 24061

In the present note we obtain certain inequalities which are necessary for the equation of the title to hold for posi-
tive integral n and real 4,6, and ¢ satisfying 7 <a <b <c¢, and iliustrate with several examples. Several preliminary
lemmas are required.

Lemma 1. (a—1)%+(b— 1) = (c — 1)* vanishes at x =n if and only if

a¥X+b% =% = P_qlx)
at x=0,1,-,n, where P,_;(x) isa polynomial of degree n— 7.
Proof. Apply the n™ order difference operator A” to a* +5% — ¢* to obtain
Aa* +b% — %) = (a—1)"a* +(b—1)"6" —(c - 1)"c* ,

which vanishes at x = 0 if and only if % + 5% — ¢ behaves as a polynomial of degreen — 7 atx =0, 7, -, n.
A result in Pdlya and Szegd [1] is needed for the next lemma and may be stated as follows for present purposes:
If a<b<cand puy,us,and uz are positive, then

uya” + uzb™ — uzc™
has exactly one real simple zero. As an immediate consequence of this and other elementary considerations we have
the following result.
Lemma 2. Let
fix) = a*+b* - ¢,
where 7 <a <b <e¢ Then f(k)(x) has exactly one real simple zero, one stationary point at which ) has a positive
maximum and to the right of which £/ is monotone decreasing.

In the following we will always let f{x) and P,_;(x) be as stated in Lemmas 1 and 2.
Lemma 1 says that

Fix) = f{x) —P,_1(x)
has at least n + 7 zeros. That this is the exact number is assured by the next result.
Lemma 3. F(x)=f(x)— P,_7(x) hasat most n+ 7 zeros (counting multiplicity).

Proof. Assume that F has at least 7 +2 zeros. Then F™ has at least 2 zeros. Since P,(,’1)1 = ( thisimplies that £n
has 2 zeros in contradiction to Lemma 2.
Write
Pptlx) = c1+cox+tepx" T,
Our final preliminary result may be stated as follows.
Lemma4. ¢, > 0.
Proof. We know that
fix)—Pp_1(x) = 0
atthe n+7 points x=0, 7, -, n. Thus
1) = (n - 1)ic,
at two points which because of Lemma 2 implies that ¢,, is positive.
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Now consider the special case when n=2.
Theorem 1. \f (a— 1)2 +(b — 1)2 — (¢ — 1)2 =0 then

(1) ab/c < e¥0cT
(2) a?hP/cc > g2tb-c-1
and

3) a@ b’/ < gatbc-1

Proof. By the preceding lemmas we know that in Py(x)=c7+cox wehave co> 0, that
flx) = a* +b* - c*

is monotone decreasing for all sufficiently large x, and that f{x) — P;(x) has simple zeros at precisely x = 0, 7, 2. This
requires that 712) <P%(2) and in turn £(7) > P3(1) and #10) < P%(0). In other words, using the last of the three in-
equalities, we have /nfab/c) <co. co can be easily determined from the coincidence of f(x) and P;(x) atx =0, 1, 2
to give cp=a +b — ¢ — 1. Hence, finally, ab/c < e?"07¢=1 The inequalities (2) and (3) follow in a similar manner
from #17) >P3(1) and 712) <P3(2).

Forthe case of n = 3, the following result can be obtained by arguments similar to those used above for Theorem 1.
The proof is therefore omitted.

Theorem 2. |f (a—1)°+(b—1)° = (c - 1)3=0, then

(1) ab/c > e@tbc-1-cs

2) a®bP /e < b1t
2 g2 2 e

3) P bb /€ >Ea+b c-1+3c, ,

and s s s

(4) aa bb /c(.‘ < Ea+b—c—1+503 ,

where

c3 = Bla2+b2—c2+1-2a—2b+2c].

Inequalities of a similar nature may be found for any given value of 1, however let us proceed to a result for arbi-
trary n. By L, (a) we shall mean the partial sum of the first » — 7 terms of the formal Maclaurin series for log g, i.e.,

n-1 P
Lofa) = 3 (~1)}T &
Theorem 3. Let(a-1)"+(b~1)"-(c-1)" =0 'I{(h_ez\
(—1)"(loga+log b — logc) < (—1)" [Lpla) + L) — Ly(c)] .
Proof. Proceeding as for Theorem 1, we find that
(—1)"£10) < (=1)"Pp_1(0).

Write
n-1
Pn_7(X/ = z: L‘kX(k} R
k=0
where

x® = x(x=1)(x—n+1).

Gregory-Newton interpolation gives
cx = AR#0) /K1 .

Now
Akax = (a—1)ka%
from which it follows that
AKHO) = (a—1)%+(b—1)% —(c— 1)k .

Therefore, since
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z%’(m'x:o = (=1 (k- 1)1,
we have
(~1)"na+inb—inc) < (~1)" % (1) K= DL g — 1)k o (o= 1)K — (e = 1)K,
as desired. !

We give an indication, in the following examples, of the sharpness of the inequalities obtained above. First we take
n=2 a=4, b =5, inwhich case inequalities (2) and (3) of Theorem 1 yield ¢ < 6.5 and ¢ > 5.9, respectively, brack-
eting the known solution ¢ = 6. This example corresponds to the well-known Pythagorean triple 3,4,5 which satisfies
32+42=52 tfwenow take n=3, a=2 b=3, then inequalities (2) and (4) of Theorem 2 givec < 3.2and¢c >
3, whereas the actual solution of

1+425-(c—1)3=0
is

c=1+V4 = 308
The sharpness of these results seems rather surprising when one considers that they are based on such simple consid-
erations as the relative slope of two curves at their points of intersection.

REFERENCE
1. G. Pdlyaand G. Szegd, Aufgahen und Lehrsatze aus der Analysis, Berlin, 1925.
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FIBONACCI TILES

HERBERT L. HOLDEN
Stanford Research Institute, Menlo Park, California 94025

1. INTRODUCTION

The conventional method of tiling the plane uses congruent geometric figures. That is, the plane is covered with
non-overlapping translates of a given shape or tile [1]. Such tilings have interesting algebraic models in which the
centers of each tile play an important role.

The plane can also be tiled with squares whose sides are in 1:1 correspondence with the Fibonacci numbers in the
manner shown in Fig. 1 and such patterns can be used to demonstrate interesting algebraic properties of the Fibon-
acci numbers [2].

Similar spiral patterns can be obtained with squares whose sides are in 1:1 correspondence with similar recursive
sequences of positive real numbers as in Fig. 2.

i-1

5 fir1

Figure 1

Figure 2

We will show that the centers of the squares in such a pattern all lie on two perpendicular straight lines and the
slopes of these lines are independent of the choice of 77 and 7. Furthermore, the distances of the centers from the
intersection of these two lines also form a recursive sequence.

2. CONSTRUCTION OF THE PATTERN

The patternin Fig. 2 is a counter-clockwise spiral of squares which fills the plane except for a small initial rectangle.
The side of the /%" square is denoted by f; and the 7; are defined by

(1) fitp = fipp+f; for i>1 and O0<f7<fy.
The side of the first square is 7; and for notational convenience we define
f; = ,'+2—f,‘+7 for i<@.

The position of successive squares in the spiral can be conveniently expressed in terms of an appropriate corner
point of each square and a sequence of vectors which are parallel to the sides of the squares. Consider the sequence
of vectors V; defined by
Vi = (1,00  Vieg =V (_‘,’ C’,) for i>1.

This sequence consists of four distinct vectors:

45
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(2) vi € {(1,0),(0,1), (-1,0), (0~1) }

The vestors in this sequence have the property that V.o = —V;.
If P; denotes the lower right corner point of the first square {see Fig. 3) then successive corner points are given by

(3) Pi = Pig+fisgVi.
The center C; of the /¥ square is obtained from the corresponding corner point (see Fig. 4) by means of the equation

f;
(4) 0,'=P,'+é— (V,'.;.1—Vi/.
fq (-1, 0 12 £,
P "2
39 ll
f 12 £V, Il
f
3 f3 (0,1}
R A ____5Ci
f1
Py
Figure 3 Figure 4

We now proceed to obtain an expression for the vector between alternate centers. Some sample values for P; and C;
are given in Tables 1 and 2.

1]

TABLE 1
1 f,' P,' E',- 0','\/7_
1 1 1,-1) {0.5, -0.5) 3
2 2 (1,2) 1 4
3 3 (-4,2) (2.5, 0.5) 7
4 5 (—4,-6) (~1.5,-3.5) 1
5 8 (9, —6) (5, -2) 18
6 13 (9,15) (2.5, 8.5) 29
7 21 (—25, 15) (—14.5, 4.5) 47
8 34 (-25, 40) (-8, -23) 76
9 55 (64, —40) (36.5, —12.5) 123
10 89 {64, 104) (19.5, 59.5) 199
1 144 (—169, 104) (-97, 32) 322
12 233 (—169, —273) ~ (-52.5, -156.5) 521
(-4, 2) (1, 2)

.

(1, -1)
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TABLE 2
i fi P; Ci di\/70
1 1 (2,-1) (1.5, -0.5) 5
2 3 (2,3) (0.5, 1.5) 10
3 4 (-5, 3) (-3, 1) 15
4 7 (-5. 8) (—1.5, —4.5) 25
4 1 (13, -8) (7.5, -2.5) 40
6 18 (13,21) (4,12) 65
1 29 (—34,21) {(~19.5, 6.5) 105
8 47 (—34, —h5) (-10.5, —31.5) 170
9 76 (89, —55) (51, -17) 275
10 123 (89, 144) (27.5, 82.5) 445
1 199 (—233, 144) (~133.5, 44.5) 720
12 322 (—233, =377) (~72,-216) 1165
(-5, 3) 2, 3)
3
4
" 1
2, -1)
3. STRUCTURAL PROPERTIES
Lemma 1.
fi-
Ci~Ciz= '77 (3Vi=Vie) .
Proof. From Eq. (4), we have .
Ci = Pit5 (Vieg = Vi)
fi fi-
Ci2 = /’i~2+—'2—,g (Vi-1 = Vi2) = Pi2* —'2—2— (Vi= Vit
f; fi-
(5) Ci=Ciz = Pi=Pi-zt 5 (Virs = Vi)—"'zfz—(Vi— Vitr) -

Combining Egs. (5) and (6) and collecting terms in V; and V.7 we have

Ci—Cip = Wl2firg = fi~ Fi2)Vi+ Blfiz2 = i)V
Using the recursive definition of the #; (see Eg. (1)), this reduces to

3f;. fi-
Ci—Ci2= —j—JVi—izi Virr .
Corollary 1.1. The distance between alternating centers is given by :
fiJ10
[Ci=Ci-2| = %—
Proof. From the definition of the V/; we have
V,'-V,' =1 and V,'-V,'+7 =0

47
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9
(Ci=Cieal? = (Ci=Cio2) (Ci=Ciog) = 5 R+ 5 12y = 102
Lemma 2. Ci, Ci+2, and Cj+4 are colinear forall /> 1
Proof. From Lemma 1 we have
fit. f: f:
Cira-Cix ———(3V/+4 Vits) = -—';—5 (3Vir2=Vizz) = - f'% . %£(3Vi+2" Viez) = -—~—(C7+2 Cil.
1]
Hence Cj+4 - Cjro is a multiple of C;1o ~ C; and both vectors have the point C;+2 in common.

Theorem 1. The C; all lie on two perpendicular straight lines. The slopes of these lines are 3 and —(1/ 3) inde-
pendent of the choice of f7 and 75.

Proof. By Lemma 2 we need only consider the slopesof €4 — €5 and C3—C7.

- fz 3f3 - ( 3fz fa
6'4.._02_ (._._,.._) and 03__6'1 _.._.,___.)
Hence the slopes are 3 and —(1/ 3).

Definition 1. Let/ be the point of intersection for the two lines in Theorem 1, then the distance from C; to / will
be denoted by d;. Thatis d;=|C;—/|. (Sample values are given in Tables 1 and 2.)

Lemma 3.

—1/ 10
0',-+d_2 ———L—-—\/ d2+d2 %(flgf'7+fi2—2)'

Proof. By the definition of d; we have
dit+diz2 = |C;— Ci-2]|
and hence the first equation follows from Corollary 1.1.
From Equation 4, we have

fie
Ci-1 = Pji- 7+—'—7(V Vieg) = :—1+ T (Vi Vieg)

Ci=Cig = Pi“Pi~7+5 (Vier = Vil = —5— (Vi+Virg).
Since P;— Pi_7 =1fi11V; we have
Ci—Ciiq = %l2fipq —fi— g Vi + Wi — fig Wirg = %’5—7 V,~+%£V,-+7
Ci = Cimp|? = (Ci=Cioa MCi = Cig) = Ulfisy +Fi2) .
By Theorem 1 the triangle formed by the points £;, £;-7, and / is a right triangle.
dP+dfs = |Ci—Cig|? = 4lF +125) .

We now proceed to find an explicit expression for the d; which leads to the fact that the d; form a recursive
sequence.

Theorem 2.
g = 3t fi3
! 2./70

Proof. Let €5, C;_7,and C; be three consecutive centers
2
i+ d£7 = %/fi?” + fi_22 )
2
a2y +dfp = wirP+ f23)

2
(7) dP=dPy = U2, — 12+ 125~ 125) = Hlfrunfoy +Frgfiog)
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Also,
2 ,2 fi.1/10
(8) df =dZp = 0+ dip)d; ~ diz) = F= (d;-d;5) .
Combining (7) and (8) we have
7
d;i—dip = by (fis2 + fiq)
and from Lemma 3
fi_1/70
it dyp = LT

Adding the last two equations we obtain
fivg + fi—q + 10fi_¢
/10
It is a straightforward albeit tedious exercise to verify from Equation (1) that
fiep+ fig+ 10fi_y — 2fip3 - 2f;3 = 0

d;j =

fita+ fiq+ 10fi-1 = 2fir3+fi3)

_ firz*fi3

! 210
Theorem 3 .
disz = dirg +d; .
Proof.

dirg +d; (fivq * fi2# fir3# fi-3)

S
210

= 5\/—,%— (firs+ fi-1) = diz2
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EMBEDDING A SEMIGROUP IN A RING

HUGO S. SUN
California State University, Fresno, California 93710

Let S be aset of arhitrary cardinality. For each element s S, define a function a5 : S —25 by

_ Yo if s#t
aslt) = 37 i 5=¢

Denote the set of all such functions by X(S). There is obviously a 1-1 correspondence between S and X/S) by
mapping s —ag.
Let 25— be an arbitrary map. Defineamap ms:S X §—>2Z5 by
REEICE:
mlts) = l 0 otherwise

and define a map 7 :X(S)— X(S) by

flaghtv) = Z melv,ulaglu) .
ucs
Clearly, _
flas) = ags) |
and there is a 1-1 correspondence between S° = the set of all functions of S into itself and
M ={me|fe s®
under the mapping f— ms. M is actually a semigroup if we define multiplication on / by

memg(uyv) = z melu,s)mg(sy) .
sES

This semigroup is clearly isomorphic to the semigroup S° under composition of mappings.

With the above considerations, we can prove the following:

Theorem. Every semigroup may be embedded in a ring.

B‘oof. Let G be a semigroup. It is isomorphic to a semigroup of mappings G, on a set S, i.e., a subsemigroup of
S%, hence a subsemigroup of M [1, p. 20].

If we define + and - on ngs by (i +j)uv) = iluv) +jluv),

(i-iluy) = ilus)ilsy).

SES
This clearly makes Z;}SXS aring,and M isa subsemigroup of its multiplicative semigroup.
REFERENCES
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Extremely dedicated Fibonaccists might possibly recognize that this sequence can be derived by subtracting 2 from
every other Lucas number. The purpose of this note is to describe how this rather bizarre sequence arises naturally in

two quite disparate areas of combinatorics. For completeness, and to guarantee uniformity of notation, all basic def-
initions will be given.

A. FIBONACCI SEQUENCES

Any sequence {x,, X2, X3, } that satisfies x, = x,-7 + xp-2 for n >3 will be called a Fibonacci sequence;
such a sequence is completely determined by x7 and x. The Fibonacci sequence 3 F, ¢ with F;=Fo=7 isthe
sequence of Fibonacci numbers; the Fibonacci sequence L,,} with L; =1, L2 =23 is the sequence of Lucas
numbers. For reference, the first few numbers of these two sequénces are given as follows:

n: 1234 5 6 7 68 9 10 11 12

Fp: 1123 &5 81321 34 55 89 144
Lp: 134 7 11 18 29 47 76 123 199 322
There are of course many identities involving these numbers; two which will be used here are:
Frio = 3Fk — Fi-2 k=3.

Ly =3Fk—2Fk-2 k>3.
Both of these identities can be verified by a straightforward induction argument.

B. THE FUNDAMENTAL MATRIX

In both of the combinatorial examples to be discussed, it will be important to evaluate the determinant of the nxn
matrix A, which is defined as:

"3 -1 0 .

0 -1
-1 3 -1 - 0 0
0 -1 3 .. 0 0

Ap =
g 0 0 - 3 -1
L—l g 0 - -1 3

In words, A, has 3's on the digaonal, —7's on the super- and sub-diagonals, —7's in the lower left and upper right-
hand corners, and 0's elsewhere. This description explains why we set

A7=[1], and A2= [__g }2]

To facilitate the evaluation of detA,,, define 7, to be the nxn continuant with 3’s on the diagonal, —7's on the
super- and sub-diagonals, and 0's elsewhere. That is:

3 -1
-1 3. -1
Th = _7'®7

St
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Lemma. detTp = Fopto .
Proof The lemma is certainly true for n=7and n =2, since

T;=[3], and Tp= [_f —;] .

Thus we will assume that the lemma is true for all kK <n, and expand det 7,, by the first row:
det T, = 3det T,—1 — (—1) det ['_“' ".':-' "I =3detTp_1—detTp_2 = 3Fa,— Fopn-2 = Fon+2.
2

We are now able to verify that the sequence % det Aq,det Ao, det Az, - } is the sequence in the title.
Theorem. detA, = Loy —2.

Proof. The theorem is true for A; and Ay as defined above; this can be easily verified. Now for 7 > 2, we can
expand detA,, by its first row to obtain:

(1) det A, = 3det Ty —(—1) det Rp_q+(~1)"""(=1) det Sy .
where R, and S, are nXn matrices defined by:
==l =1,
R, = ' Ty and Sy = ___;_T_,,__]
-1 ] -1 —1
Notice that 7,_7 is symmetric, so we have
-1, -1
t _ |
Sn = 7—n--75_‘7
Thus:
(2) det S, = det Sk = (-1)"" det R, .

Now, expanding det #,, by the first column, we gbtain:

-1
3
det R, = (~1) det Tpq +(=1)""(~1) det [_1,\\\ = —det Tpog +(~1)"2(=1)"" .

-1 3 —1_
Thus:
3) detR, = —detTp_1—1.
We can nowé substitute (2) and (3) into (1), and we obtain:
detA, = 3det Tp_q+(—det Tpo— 1)+ (—1)"*2(~1)"2 (~det Th2—1) = 3detT,,_;—2det Tp,.o0—2.
Then by using the Lemma and an identity mentioned earlier, we have:

det A, = 3Fop —2Fop-2—2 = Lop—2.

C. SPANNING TREES OF WHEELS

This section begins with some very basic definitions from graph theory. The reader uninitiated in this subject is
urged to consult one of the many texts in this field (for example, [1] or [2]).

A graph on n vertices is a collection of n points (called vertices), some pairs of which are joined by lines (called
edges).

A subgraph of a graph consists of a subset of the vertices, together with some (perhaps all or none) of the edges of
the original graph that connect pairs of vertices in the chosen subset.

A subgraph containing all vertices of the original graph is called a spanning subgraph.

A graph is connected if every pair of vertices is joined by a sequence of edges.
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A cycle is a sequence of three or more edges that goes from a vertex back to itself.

A tree is a connected graph containing no cycles. It is easy to verify that any tree with n vertices must have exactly
n — 1 edges.

A spanning tree of a graph is a spanning subgraph of the graph that is in fact a tree. Two spanning trees are con-
sidered distinct if there is at least one edge not common to them both.

Given a graph G, the complexity of the graph, denoted by k/G), is the number of distinct spanning trees of the
graph.

If a graph G has n vertices, number them 7,2, ---, n. The adjacency matrix of G, denoted by A(G), is an nxn (0,7}
matrix with a 7 in the (i,j) position if and only if there is an edge joining vertex / to vertex /.

For any vertex /, the degree of /, denoted by deg/, is the number of edges that are joined to /. Let 0(G) be the
nxn diagonal matrix whose (/i) entry is deg /.

We are now able to state a quite remarkable theorem, attributed in [2] to Kirkhoff. For a proof of this thearem,
see [11, page 159, or [2], page 152.

For any graph G, k(G) is equal to the value of the determinant of any one of the n principal (n — 7)-rowed

minors of the matrix 0(G) — A(G).

As a simple example to illustrate this theorem, consider the graph G:

01 1 0] 2 0 0 0
_ |17 0 1 0 _ o 2 0 o0
AlG) = 171 0 1 D(G)'ooso .
0 0 1 0 0 0 0 1
and thus

2 -1 -1 0
_ |-17 2 =1 o0
D(6)-AlG) = |=; 5 T3 _3
o o0 -1 1

Each of the four principal 3-rowed minors of 0(G) — A(G) has determinant 3. The 3 spanning trees of G are:

® @ @ @ I :
©, 0 @ ® ¢ ®

The relevance of these ideas to the title sequence will be established after making one more definition.
For n > 3, the n-wheel, denoted by W,,, is a graph with n + 7 vertices; n of these vertices lie on a cycle (the rim)
and the (n + 7)°¢ vertex (the hub) is connected to each rim vertex.

Theorem. ktW,) = Lap—2.

Proof. Number the rim vertices 7, 2, -, n,; the hub vertex is» + 7. Each rim vertex / has degree 3; it is adjacent
to vertices/ — 7 and / + 7 (mod n) and to vertex n + 7. The hub vertex has degree n and is adjacent to all other verti-
ces. Thus
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—1
ow,) - Aw,) = Ap :

—1

iy ARt ey | “n

To compute k(I,,), any n-rowed principal minor will do. So delete row and column »n + 7. Then we have, by pre-
vious results:
kiW,) = detAp, = Lop—2.

This result can be found in [4] and in [7], but in neither instance is the number expressed explicitly in terms of
the Lucas numbers. In [7], the formula for k(WW,,) is given by:
n n
- (15 ) (1)
while in [4] the result is expressed:

k(Wp) = Fapso—Fap2—2 .

Readers familiar with Fibonacci identities will have no trouble verifying that both of these expressions are equiva-
lent to the value given in the theorem.

D. GENERALIZING TOTAL UNIMODULARITY

A matrix M is said to be totally unimodular if every non-singular submatrix of M/ has determinant +7. Since the
individual entries are 7X 7 submatrices, they must necessarily be 0, #7. The following theorem, found in [3], pro-
vides sufficient conditions for total unimodularity:

Let M be a matrix satisfying the following four conditions:

(1) All entries of M are 0, +1.

(2) The rows of M are partitioned into two disjoint sets 77 and 7.

(3) 1fany column has two non-zero entries of the same sign, then one is in a row of 77 and the otherinarow of 72,

(4) If any column has two non-zero entries of oppaosite sign, then they are both in rows of 77 or both in rows of

To.

Then M is totally unimedular.

This result usually includes the additional condition that there be at mast two non-zero entries per column; this,
however, is actually a consequence of conditions (3) and (4).

We are thus motivated to consider the class M. of matrices which satisfy conditions (1), (2), and (3), but not (4). If
M € M, then as an immediate consequence of (3), we see that there are at most four non-zero entries in any column
of M; at most two non-zero entries (with opposite sign) in rows of 77, and at most two non-zero entries (with oppo-
site sign) in rows of 75.

It is then natural to define the subclasses: M” ¢ M’ c M, where any matrix in M’ satisfies conditions (1), (2),
and (3) and has at most three non-zero entries per column; any matrix in M” satisfies (1), (2), and (3), and has at
most two non-zero entries per column. An obvious problem is to find the maximum determinantal value of an nxn
matrix in any one of these three classes. This problem is completely solved only for the class M”; the following
theorem appears in [6]:

If M is any nxn matrix in the class M”, then det M < 2["/2]. Moreover, for each n > 7, there is an nxn matrix in
M” whose determinant achieves this upper bound.

The title sequence is relevant in considering the class M”. For any k > 7, let /; be the kx k identity matrix, and
define Jy to be the AX4& matrix with 7's on the diagonal, —7's on the super-diagonal, and a —7 in the lower left-hand

corner. That is,
7 -1
1 —\7

= \_7

-7 7

Then for n even, say n = 2k, we can define the nxn matrices 4,, and G,, as follows:
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I k0
Hn = (Jk g Gn = —Jr g

Notice first that H,, € M’ Now since det G, =1, we have:

Ie +Jfde —JF

= det(l,+JLJ, ) .
0 /k} etllc+ S

det H, = det (H,G,) = det [
But the (i) entry of J,ka is simply the inner product of the it and/th columns of J. It is thus not difficultto

verify that
Ik + Jkdk = Ak,

where Ay is the fundamental matrix of this paper. We have thus verified the following result:
For nn even, there is an nxn matrix in M’ with determinant L,, — 2, A comparable result for odd » is proved in [5].
For n odd, there is an nxn matrix in M’ with determinant 2F, — 2. It is my present conjecture that, for any given
n, these determinantal values are the maximum possible for an nxn matrix in the class M’, or in the class M.
Finally, it should be noted that totally unimodular matrices occur naturally in the formulation of a problem in
optimization theory known as the transportation problem. In [B8], it is shown that matrices from class M arise in a
discussion of the two-commodity transportation problem.
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ON NON—BASIC TRIPLES

NORMAN W00
California State University, Fresno, California 93710

Definition 1. A set of integers { bj }I. > 7 will be called a base for the set of all integers whenever every integer
n can be expressed uniquely in the form '

oo
4
n =37 abi,

-
~

where a;=0 or 1 and
Z a; < o .
i=1

Thus, a base is obtained by taking b; = fZ’i for each 7 so long as terms of each sign are used infinitely often. Also, a
sequence { d; }i > 1 of odd numbers will be called basic whenever the sequence

{0277} i > 1
is a base. If the sequence {d; } ; = 1 of odd integers is such that dj,;=d/ for all /s, then the sequence is said to be
periodic mod s and is denoted by { dy,ds,ds, -, dg } .

Theorem 1. A basic sequence remains basic whenever a finite number of odd numbers is added, omitted, or re-
placed by other odd numbers.

Proof. This is proved in [1].

Theorem 2. A necessary and sufficient condition for the sequence { d; }/.> 7 of odd integers, which is periodic
mod s, to be basic is that

m
0#Y 2;27d; =0 (mod 2" - 1)
=1
is impossible forn > 7, anda;=0or 7 forall i > 1.
Proof. Thisis also proved in [1].
Theorem 3. Let a, b, ¢ be a periodic mod 3. If a=d(23K + 1), where d is an integer and

(1) d+2b+4c = 0 (mod7),
((sz) | b+2d+4c = 0 (mod7),
((]I;) c+2d+4b = 0 (mod 7),
?4") c+2b+4d = 0 (mod 7),
?5r) d+2c+4b = 0 (mod7),
?(;) b+2c+4d = 0 (mod7),

then a,b,c  is non-basic. 56
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Proof In case (1) holds, consider the expression
u=a+b +226'+ '-~+23K-33+23K-2b +23K—1c+23K+7b+23K+20+ +26K—2b+26K—ic
= 3{7 +23+ +23K’3) +Zb(7 +23+ +26K.3)+22C(7 +23+ +26K—3)
3K=1 6K- 6K
231 2351 259

=a

6k
= d(23K+7).23K— 1,0p.2 '7+225.26k"7 _ (d+2b+22c)(25K — 1)
23.1 231 221 251

It follows that v is divisible by 26K _ 1 since, by hypothesis,
(23— 1)1 (d+2b+2%).

Hence, by applying Theorem 2 withn=3 and s =2k, {a,b,c} is not basic.
Suppose now that (2) holds and that { a,b,e} is basic. By Theorem 1, we may interchange a with 4 the first 3K
times these numbers appear in the sequence { a,b,c} and still have a basic sequence. Consider

v == +Za+22c+ +23K—3b +23K—23+23K—16+23Kb +23K+2L'+ +26'K-3b +26’K—7c
= b(1+2% 4. +20K3) 1 21+ 2% # . + 29K=3) 4 220(1 + 25 4 .. + 26K=3),
As above, this reduces to
, = (b+2d+226)(25K — 1)
2351
and since (2% — 1) | (b +2d +22¢), visdivisible by 26K — 7, But then, as before {ab,c} is not basic.

The remaining cases are handled in the same way, with an appropriate permutation of the first few terms in the
sequence {a,b,c} and so the proof is complete.

Theorem 4. Let

goe2%—1 2%
22K_ 7 23K___ 7
where ¢ and ¢ are integers, K #0, and 3/ K. Ife +2d +22; is divisible by 7, then {a,b,c} is non-basic.
Proof. Consider the expression
w=a+2h +22(.‘+ -~-+22K—33+22K—2b +22K—70+22K+7b+22/<+2(,‘+---+23K.2b +23K—1c+ "'+26K-70
= a(1+2% 44 22K3) 1 op(1+ 2% 4 .+ 29K73) 1 220(1 4 2% + ...+ 26K73)

c g (2K 1) gy 25— 1) 52, (25K 1)
231 2351 22-1

=e- (29K 1) (22K~ 1) +2d - (25K 1) (2%~ 1) +22c. (26K~ 1) _ (e+2d+22c)(26K — 1)
2K_1 23 29K_7  23_y 23-1 251

Since e +2d + 22¢ is divisible by 7, w is divisible by 26K _ 7, and {a,b,c } is non-basic by Theorem 2.
Theorem 5. Let

6K 6K
a=e-—————(2 = 1) and b=d-(‘-————2 =1) ,
29K 1 25K 1
where e and d are integers, K #0, 3/K. If
e+2d +2%¢

is divisible by 7, then {a,b,c } is non-basic.
Proof. This time we set
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v = a+2b+22[:+---+23K—3a+23K_2b+23K-7[.‘+23K+2L‘+---+26K—7L‘
a(1+23+..+2%K3) L op(1 423+ .4+ 29K=3) £ 220(1 + 23 + ...+ 26K-3)

3K 3K 6K
K1 . 25K 1,52, 251

:a.

25-1 21 221

6K 3K 6K 3K 6K
2o 21 2Ky 2K 2K 52, 2K

22K_1 237 22K_1 28_q 221
_ (e+2d +2°c)(2°% — 1)

251

Since
e+2d+220

is divisible by 7, v is divisible by 29K _ 1 and as before {a,b,c} is non-basic. In a similar way, we obtain the fol-
lowing theorem.

Theorem 6, Let

6K 6K
a2 -1 g pod2%-1)
22K _q 22K _q
where e and d are integers, K# 0, 3/k. If
e+2d+2%¢

is divisible by 7, then a,b,c} is non-basic.
Other similar interesting results may be found in another article in [2].
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NEW RELATIONS BETWEEN FIBONACCI AND BERNOULLI NUMBERS

PAUL F. BYRD
San Jose State University, San Jose, California 95192

1. INTRODUCTION

There seems to be no end to the number or variety of identities involving the Fibonacci sequence and/or its rela-
tives. During the past decade, hundreds of such relations have been published in this journal alone. Those interesting
identities, however, are mostly “pure”’—containing terms within the same family; that is, not many of them are rela-
tions that involve a Fibonacci-type sequence together with some otfer classical sequence having different properties.

The family of Fibonacci-like numbers, for example, satisfies simple recurrence relations with constant coefficients
while such famous sequences as those of Bernoulli satisfy more complicated difference equations having variable co-
efficients. It is thus of interest to pursue the questions: Can these sequences nevertheless be expressed simply in
terms of each other? What kinds of identities can one easily find that involve both of them, etc.? Some relations
answering such questions have been developed by Gould in [6] and by Kelisky in [8].

This article gives further answers in a systematic way with the use of several simple techniques. The paper will pre-
sent various explicit relations between Fibonacci numbers and the number sequences of Bernoulli.! Relations involv-
ing the generalized Bernoulli numbers will represent a one-parameter, infinite class of such identities. Little detailed
discussion, however, is given of the many special properties of the Bernoulli numbers themselves, for they have been
the object of much published research for two hundred years.

2. BACKGROUND PRELIMINARIES
BERNOULLI POLYNOMIALS AND BERNOULLI NUMBERS

We begin by reviewing some prpperties of Bernoulli numbers and polynomials that will be needed for our purpose.
The Bernoulli polynomials B,(x) of the nth degree and first order? may be defined by the exponential generating
function

-]
Xt M
(1) ;‘_—7 = Z Bn(X) aT it < 2m .
n=0
(See, for instance, [4] and [10].) More explicitly, these polynomials are given by the equation

n
(2) Bufx) = Z (Z) ka"'k 3
k=0

where By are the so-called Bernoulli numbers. One definition of the Bernoulli number sequence3

{1,-1/2,1/6,0,-1/30,0,1/42,0,~1/30,0,5/ 66, } -

1A subsequent paper will explicitly relate the Fibonacci and Lucas sequences to the famous numbers of Euler.
2Bernoulli numbers of higher order will be defined later.

3Rather than B,(0), some authors prefer to call b, the ordinary Bernoulli numbers, where b, =(-1) , n>1.
The numbers b, are essentially the absolute values of the non-zero elements in the B, sequence. All the numbers are
rational; they have applications in several branches of mathematics, appearing in the theory of numbers in the re-
markable theorem of von Staudt-Clausen. (See, for example, [2], [3], and [5].)

59

n+7B



60 NEW RELATIONS BETWEEN FIBONACCI AND BERNOULLI NUMBERS [FEB.

is

(3) By = B(0).
Alternately, the numbers B, may be defined by means of the generating formula
4) L= i B t« itl < 2m -

t K ks

e —1 k=0
Using combinatorial techniques given by Riordan in [11], one can invert Eq. (2) to obtain

- Byix)
n _ n k

(5) X _g(k>n———k+7'

It can also be shown that special values of B,,(x) are
Bn(0) = (=1)"B,(1) = B,, n=0,1,2, -
(6) By(0) = B4(1)—1, Bg =1
Bop+1(0) =0, n=1,2, -
and that By = —% is the only non-zero Bernoulli number with odd index. We can thus write (2) as

[n/2]
(7 B,(x) = x"—-g—x”” + Z ( 2’;() szx”"z" .
k=1
The (2k)th Bernoulli number is computed by means of the recurrence relation
; ; k-1
- 2k + 1
m=0
with Bg = 1, or explicitly by use of the little-known formula
2k ; n
_ g1 [ n )2k
9) 32/‘*2”_.}72(”(/’)/’ k=0.
n=0 j=0

With this finite sum substituted into (7), it is possible to express the Bernoulli polynomials in a closed form not in-
volving the Bernoulli numbers themselves. In fact (see [7]),

k n
- 7 e j/n) -k
Bilx) = 3 7 _)_j/ ZARI Sy
n=0 /=0
FIBONACCI POLYNOMIALS AND FIBONACCI NUMBERS

We recall that the Fibonacci palynomials F,(x) of degree (n — 1) are solutions of the recurrence relation

(10) Fr+1(x) = xFilx) + Fr_qlx), k=1
with F7(x) =1 and Fa(x)=x. More explicitly, we have
[k/2]
(1) Freale) = 3 (";}"’) xk-2m
m=0

and note that the numbers
(12) Fr+1(1) = Fg

are the Fibonacci numbers. These numbers, and their closest relative, the Lucas numbers L ,,,are often defined by the
familiar generating functions
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g _gbt = at, bt _ & ¢
(13) \/g _Zoh'!'/ et +e =20Lnl'7‘!",
n=0 =
or, in the so-called Binet forms, by the formulas
(14) F=i:—:£—", L=a"+h",
where .
(15) a=(1+5)/2, b=1(1-5)/2

3. RELATIONS BETWEEN FIBONACCI AND BERNOULL! NUMBERS
With the above preliminaries, an explicit relation

2N
(16) Fon+1lx) = Z Ck NBi(x) N =0

k=0
expressing the Fibonacci polynomials of even degree in terms of Bernoulli polynomials, can now be developed in
the following simple way. Equation (11) gives

N
(n Foneifx) = 3 (2Nn-">x2N'2” ,
k=0

so with the inversion formula (5) inserted in (17), we have

N _ 2N-2n Be(x)
_ 2N —n 2N —2n k
Fanerl) = 35 (2N ) 2 ( k ) IN=2n—k+1 ’
n=0 k=0
or, on reversing order of summation,
[2N-k
. 2N 2 .
(18) Fonerlx) = 3 Bld) 3 (ZN,,_") (ZNZZ") W —on—k+1 "
k=0 n=0
Thus, with coefficients C iven i
us, with coefficients Cy , giv nn]/ZN_k1
2
_ ’ 2N —n 2N — 2n 7
(19) Cemw = 2 ( n )( K ) 2N=2n—k+1 ~
n=0
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