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A FAREY SEQUENCE OF FIBONACCI NUMBERS 

KRISHWASWASV1I ALLADI 
Vlvekananda College, Madras-600004, India 

The Farey sequence is an old and famous set of fractions associated with the integers. We here show that if we 
form a Farey sequence of Fibonacci Numbers, the properties of the Farey sequence are remarkably preserved (see 
[2]). In fact we find that with the new sequence we are able to observe and identify "points of symmetry/' "inter-
vals," "generating fractions" and "stages." The paper is divided into three parts. In Part 1, we define "points of 
symmetry," "intervals" and "generating fractions" and discuss general properties of the Farey sequence of Fibon-
acci numbers. In Part 2, we define conjugate fractions and deal with properties associated with intervals. Part 3 con-
siders the Farey sequence of Fibonacci numbers as having been divided into stages and contains properties associated 
with "corresponding fractions" and "corresponding stages." A generalization of the Farey sequence of Fibonacci 
numbers is given at the end of the third part. 

The Farey sequence of Fibonacci numbers of order Fn (where Fn stands for the nth term of the Fibonacci se-
quence) is the set of all possible fractions Fj/Fj, l=Q, 1, Z 3, —, n - 1, j = 1, 2, 3, —, n (i <j) arranged in ascend-
ing order of magnitude. The last term is 1/1, i.e., Fj /F2. The first term is 0/Fn^j. We set FQ = O so that FQ +Ff 

= F2,F1 = F2=1. 

For convenience we denote a Farey sequence of Fibonacci numbers by f-f, that of order Fn by f-fn and the 
rth term in the new Farey sequence of order Fn by f(r)n . 

PART 1 
DEFINITION 1.1. Besides 1/1 we define an f(rjn to be a point of symmetry if f(r+i)n

 ar|d f(r-Dn have ths 
same denominator. We have shown in an appendix the Farey sequence of all Fibonacci numbers up to 34. 

DEFINITION 1.2. We define an interval to be set of all f-fn fractions between two consecutive points of sym-
metry,. The interval may be closed or open depending upon the inclusion or omission of the points of symmetry. A 
closed interval is denoted by [ ] and an open interval by ( ) . 

DEFINITION 1.3. The distance between f(r)k and f(k)n is equal to \r-k\. 

Theorem 1.1. If f(r)n is a point of symmetry then it is of the form 1/F,% Moreover f(r+k)n an^ Ur-k)n n a v e 

the same denominator if they do not pass beyond the next point of symmetry on either side. The converse is also 
true. 

Proof. In the f-f sequence the terms are arranged in the following fashion. The terms in the last interval are of 
the form F/_? /Fj. The terms in the interval prior to that last are of the form Fj^/Fj —. If there are two frac-
tions FM/FJ-1 and Fj_2/Fj-2 then their mediant* Fj/Fj lies in between them. That is, 

Fj-1 F,„2 .. Fj-1 . Fj Fj-2 
if -z— < - — then —— < — < -— 

Fj-1 Fj_2 Fj„-j Fj Fh2 

i f [LI K F_hl t h e n ^±2 Fj < F M 
Pj-2 Fh1 Fj_2

 < Fj Fh1 

*lf a/b < c/d, then (a + c)/(b + d) is the mediant fraction to those two fractions. 
1 
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This inequality can easily be established dealing with the two cases separately. 
We shall adopt induction as the method of proof. Our surmise has worked for all f-f sequences up to 34. Let us 

treat 34 as Fn-v For the next f-f sequence, i.e., of order Fn> fractions to be introduced are: 

rn rn rn rn 

Fj/Fn will fall in between 
5 * . and J « . . 
Fn-1 Fn-2 

First assume that F:/_/ /F"n-i < F"^2 ft~n-2• Since our assumption is valid for 34, Fj*iVFn-i lies just before 
Fj-2/Fn-2- Fi-3/Fn-2 W l " occurjust after F,_2/Fn-i from our assumption regarding points of symmetry. But 
F,-f/Fn lies in between these two fractions. The distance of F,-_f/Fn from the point of symmetry, say 1/Fj, is 
equal to the distance F;/Fn from that point of symmetry. Hence this is valid for 55. Similarly it can be made to hold 
good for 89, — . Hence the theorem, 

Theorem 1.2. Whenever we have an interval [1/Fj, 1/F/^jJ the denominator of term next to 1/Fj is Fj+2, 
and the denominator of the next term is F/+4, then F,+Q — . We have this until we reach the maximum for that 
f'fn sequence, i.e., so long as F/+2k does not exceed Fn. Then the denominator of the term after F/+2k wilt be 
the maximum possible term not greater than Fn, but not equal to any of the terms formed, i.e., it's either Fj+2k+i 
or Fj+2k~i, say Fj. The denominator of the terms after Fj will be Fj-2'Fi-4»"m till we reach 7/f/_/. (As an 
example let us take [1/3, 1/2] in the f>f sequence for 55. Then the denominator of the terms in order are 3, 8,21, 
55,34,13,5,2). 
Proof. The proof of Theorem 1.2 will follow by induction on Theorem 1.1. 
Theorem 1.3. (a) If h/k, h'/k', h**/k" are three consecutive fractions of an f>f sequence then 

h + h" , If 
k + k" k' 

if h'/k' is not a point of symmetry. 
(b) If h'/k' is a point of symmetry, say //F;,then 

Fh2h + Fh1h" _h< 
Fh2k + Fh1k" k' ' 

Proof. Case 1. (From Theorem 1.2) We see that 
h_= [jz2lf= Fj h" . Fj+2 
k Fh2 'k' FJ ' k" F'l+2 ' 

In this case 
Fi+2 + Fi-2_ *3'Fi„ ^=lf_ 
FJ+2 + FJ-2 3>Fj Fj k> ' 

(*Fn+2 + Fn_2 - 3Fn is a property of the Fibonacci sequence. See Hoggatt [1].) 
Case 2. 

hL=
FJ. L^^tl and hl=FJ±l 

k' Fj'k Fh2 k" FM 

(fram Theorem 1.2). Then 

Fj+1 + Fh2 _2Fj _Fj _h-

Fi+1 + Fh2 2Fj Fj k' 
similarly. 

Case 3. 

hL=F± h_=Ft2 *?' - FM 
k' Fj ' k Fh2 ' k" FH 

(from Theorem 1.2). Therefore 



1975] A FAREY SEQUENCE OF FIBONACCI MUMBERS 3 

h-1 
Fj-1 

+ 1-1-2 _ Fi _h' 
+ Fh2 Fj~ k' • 

Hence the result. 
Proof of 13b. Let h'/k'= 1/Fh From Theorem 1.2 it follows that h"/k"=3/Fj+2 and* 

Fh2h + F^h" _ 2Fh2 + 3Fh1 Fi+2 _ 7 
Fh2k + Fhlk" F,Fi+2 F,Fi+2 F; " 

Hence the theorem. 
Theorem 1.4. If h/k, and h'/k' are two consecutive fractions of an f-fn sequence then 

h-h' 
k-k' 

e f-fn (k-k'tO). 

Proof Since f(r)n is of the form F;/Fj, if Theorem 1.4 is to hold, then it is necessary that \h - h'\ be equal to 
Fj and \k-k'\ be equal to Fj. Since h/k and h'/k' are members also, 

h ; 

Further 
Fh 

= F, 

k' 

and \Fh-F;2\ = F;. 

But from the Fibonacci recurrence relation Fn=\Fn„i + Fn_2 we see that the condition for this is |// — /^ l < ^and 
\h ~h\ < 2 (but not zero) which follows from Theorem 1.2. Actually 

h-h'\ 
k-k' 

are the fractions of the same interval arranged in descending order of magnitude for increasing values of h/k. 

Definition 1.4. We now introduce a term "Generating Fraction." If we have a fraction Fj /Fj (i < jl We 
split Fj /Fj into 

Fh1 + Fj-2 
Fh1 + Fh2 ' 

We form from this two fractions F/,/ /Fj „ f and / r / - 2 / ^ / - 2 such that Fj/Fj is the mediant of the fractions 
formed. We continue this process and split the fractions obtained till we reach a state where the numerator is 1. Fj/Fj 
then amounts to the Generating fraction of the others. We call Fj/Fj as the Generating Fraction of an Interval (G.FJ.) 
if through this process we are able to get from the G.F.I, all the other fractions of "that" closed interval. We can 
clearly see a f-f sequence for Fv F2,"'*

 Fn- Ff/Fn will be a G.FJ. (We also note that Fj/Fj, Fh1/F^1f 

Fj„2 /Fi-2>"" belong to the same interval because the difference in the suffix of the numerator and denominator is 
j-i). Hence the sequence G.F.L's is Fj /'Fn,F2/'Fn ,F3/

fFn ,-,Fn-j /'Fn. We now see some properties con-
cerning G.F.I.'s. 

Theorem 1.5. If we form a sequence of the distance between two consecutive G.F.I.'s such a sequence runs thus: 
2,2, 4,4,6,6, 8,8, ••, i.e., alternate G.F.I.'s are symmetrically placed about a G.FJ. 

Theorem 1.6. If we take the first G.FJ., say f(g ) n , then f(gi+Dn and f(9l-i)n, have the same denominator. 
For f(g ) n the second G.FJ. f(g2+2)n^ a n d f(g2-2)n have the same denominator J n general for f(9k)n the kf 

G.FJ. f(gk+k)n a n d f(gk-k)n have t n e s a m e denominator. 
The proofs of theorems 1.5 and 1.6 follow from 1.2. 
(NOTE:: We can verify that for alternate G.F.I.'s g(g2)n, Ugjn > f(g6)n * "> ffak+kjn a n d f(gk-k)n have the same 

denominator for k is even and the sequence of distance shown above is 2, 2, 4, 4, 6,.6, 8, 8, —). 

PART 2 

Definition 2.1. We now define Fj„2 to be the "factor of the interval" 

Fi 'FhJ 
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More precisely the factor of a closed interval is that terms Fz where z is suffix of denominator minus suffix of the 
numerator, of each fraction of that interval, it can be easily seen (Part 1) that z is a constant. 

Lemma 2.1. If / / - ij =J2 - h > 0, then 

Proof. We apply Binet's formula that 
a-b 

where 

1 + J5 
2 ' b = L^L 

Then the left-hand side (LH.S.) of the expression and the right-hand side (R.H.S.) of the expression reduce as follows. 
To prove 

ah - h ' h a'2 -b1'2 a'* -bJ* a'1 -h'1 

a-b a-h a- b a -b 
3/W1 _ y W i 

a-b a-b 

because / / - / / > 0, Fj «,; is positive and hence can be put within the | I sign. 
To prove 

\(a'i -bJ>)(a''* -bt*)-(j* -b'^Ha^ -b^)\ = \(aJ*-J* -b^^Ha1^'^ -bJ'r'\)\ 

the LH.S. reduces to 

|a/i*'2 -Jib'* +b^+i* -bJia'2 -a*'2*1'1 +aJ*bli + hJ2a'1 -bi2+'^\ 

= \-aJ*b'2 -a'2bJ* +aJ*b'* +bj2a''\ • 

The R.H.S. reduces to 

la/Wi - ^ W i ^ W i +bj*~'* -bJ2"^aJl~fl\ . 

This may be simplified further using ab = -1 and / / - / / =J2 - h • The R.H.S. is then 

\a^h'2 + bJia'2 -aJ'2b^ -b'*a'*\ . 

We see that LH.S. = R.H.S. Hence the Lemma. 
Corollary. From this we may deduce that if FfJ /Fj1 and Fi2/Fj2 belong to the same interval, i.e., / ; - ij = 

J2-h / t n e n 

FjlFi2~~ FJ2Fi1 = F\i2-Ji\FJ2-i2 = F\f2~Ji\FJ'l-if 

Fj /Fj < Fj /Fj • 

will be an integral multiple of Fj w- or Fj _/ (the factor of that interval) which is the term obtained by the dif-
ference in suffixes of the numerator and denominator of each fraction of that interval. 

Definition 2.2 We now introduce the term "conjugate fractions." Two fractions h/k and h'/k',h/k and h'/k' 
are conjugate in an interval 

JL _J_ 
Fi'Ti-1 

if the distance of h/k from 1/Fj equals the distance of h'/k' from 1/Fh1 (h/k £ h'/k'). 

Corollary. Two consecutive points of symmetry are conjugate with distance zero. 

Theorem2.2. If h/k and h'/k' are conjugate [1/F1f 1/Fh1] then kh'-kh' = Fh2-

Proof. 'From Part 1, we can easily see that if h/k is of the form 

Hence 
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-=P- then h'/k' is J^J- (*) 

1/F„ and 1/F/,j are conjugate. This agrees with (*) since F2 = Fj = 1. Since the term after 1/F; is F4/ Fj+2 
and the term before 1/Fj_i is 2/Fj+1, we see it agrees with the statement (*) above. Proceeding in such a fash-
ion we obtain the result (*). Of course we assume here that there exist at least two terms in 

J_ _L 
Hence we can see that any two conjugate to fractions in 

/ / 

are given by 
Fi ' Fi-1 

Fj-i+2 Fj.j+1 

Fj • Fj-l ' 

We are required to show \FjFj-i+i - Fj-iFj-j+2\ = F-^2- This will immediately follow from Lemma 2.1. 

Theorem 2.3. (a) If h/k and h'/k' are two consecutive fractions in an f-fn sequence, which belong to [1/Fj, 
1/FM], then kh'-hk' = Fh2-

(b) Wh/k and h'/k'are conjugate in an interval [1/Fh UFh1] kh'~hk'= Fh2-

Proof. Theorem 2.3a and 2.3b can be proved using Lemma and Theorem 1.2. 

Definition 2.3. If 

^ e ± JL\ 
k^ WFM) ' 

we define the couplet for h/k as the ordered pair \ ' 

[li'k] ' (k'F^I 
Theorem 2.4. In the case of couplets we find that 

and 

where Fp is some Fibonacci number. 

Proof. Let h/k be 

Then (F,h) - k is 

(1) 

and let k- Fh1h is 

(2) 
Adding (1) and (2) we have 

(Fjh)-k = FpFh2 

k- Fh1h = Fp+1Fh2 , 

Fj-i+2 
Fi ' 

F/Fj-i+2 ~ Fj = FpFj_2 

Fj - F/_ / Fj^ 1+2 = Fp+1 Fh2 

Fi-2Fj-1+2 ~ Fp+2Fi-2 • 

Therefore Fj-1+2 = Fp+2 or / - / = p; i.e., 

(3) FiFj-i+2-Fj = FHFh2. 

We can establish (3) using Lemma 2.1. Hence the proof. 

Definition 2A. We define r , # . I# . ' 
J ! J_ lL\ h_ M 

\Fi'k) \k'FMl 
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I± (Did! _i_ 
\F; ' k' l\kf' Fh1 

to be conjugate couplets if h/k and h'/k' are conjugate fractions of the closed interval 

Theorem 2.5. In the case of conjugate couplets if 

Fjh - k = FpFh2 and k-F^h = Fp+1Fh2 , 
then 

F-,h'-k'= Fp.iFf.2 and k-FMh' = FpFf.2 

Proof. We note that (j — i) in the previous proof is the difference in the suffixes of Fj and F,-. If now 

h/k 
Fhi+2 

then p=j~-L But since hf/k' is conjugate with h/k, 

h'/k' = Ft!±l 
Fj-1 

Therefore the constant factor, say Fq in the equation for h'/k', Fjh'- k = FqF,^2 's s u c n t n a t 

q = j - 1 - i = (/-/')- 1 = p-1. 

Therefore Fjh'- k'= Fp„fF,-„2- Hence k - F,_ih'= FpF^2 since it follows from Theorem 2.4. 

Theorem 2.6. Since we have seen that if h/k and h'/k' are conjugate then the difference in suffixes of their num-
erators or denominators equals 1r we find 

h + h' 
k + k' 

1 _J_ and h-h' 
k-k' 

e / 1 

if 

Moreover 
m,m^ ( i ^ ) 

h+h' 
k + k' 

are the fractions of the latter half of the interval arranged in descending order while 
h-h' 
k-k' 

are the fractions of the first half arranged in ascending order, for increasing values of h/k. 

PART 3 
We now give a generalized result concerning "sequence of distances." 

Theorem 3.1a. Points of symmetry if they are of the form f(r)n then 

r G 12,3,5, 8, 12, 17, ••• 1. 
Or the sequence of distance between two consecutive points of symmetry will be 

1,2,3,4,5,6,-, 

an Arithmetic progression with common difference 1. 

Theorem 3.1b. The sequence of distance for fractions with common numerator F2n-1
 o r ^\2n ,s 

2n-1,2n,2n + 1,-. 
Proof. To prove Theorem 3.1a we have to show that if there are n terms in an interval then there are (n + 1) 

terms in the next. 
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Let there be p terms of the form Fj/Fj. It is evident that there are p + 1 terms of the form Fj+1 /Fj. But these 
(p + 1) terms of the form Fj+1/Fj are in an interval next to that in which the p terms of the form Fj/Fj lie. So 
the sequence is an AP with common difference 1. Moreover, the second term is always 1/Fn (evident). Hence the 
result. (Note: / - / is assumed constant.) 

If we fix the numerator to be 2 and take the sequence 

Fn'Tn -1 rn„2 

I 
'3 

then the sequence of distance between two consecutive such fractions is 3,4, 5, —. 
From Theorem 1.2 (Part 1) it follows that 2/Fj lies just before a point of symmetry, say 1/Fj. Since we have seen 

the sequence of distances concerning points of symmetry it will follow that here too the common difference is 1. The 
first term is 3 for there are two terms between 2/Fn and 2/Fn_i. The inequality 

2 ^ 1 ^ 3 ^ 2 

Pn-2 
< 

^n-l 

can be established. Hence the result. 
In a similar fashion we find that the sequence of distance for numerator 3 is 3,4, ft - . 
We shall give a table and the generalization 

Numerator Sequence of Distance 
12, 3, 4, ft -
44,5 , ft-
ft ft 7, ft ••• 

2n- 1,2n,2n + 1,2n+2,-. 

Definition 3.1. Just as we defined an interval, we now define a "stage" as the set of f-f fractions lying between 
two consecutive G.F.I.'s. The stage may be closed or open depending upon the inclusion or omission of the G.F.I.'s. 

F1 

F3 
p5 

F2n-1 

or 
or 
or 
or 

F2 

F4 

F6 

F2n 

Since the sequence of distance of G.F.I.'s is 2,2, 4, 4, ft ft 
equal numbers of terms. We define two stages: 

Fi~1 Fi ' and 

it is possible for two consecutive "stages" to have 

Fi Fk i+1 

to be conjugate stages if the distance of Fj/Fn from Fj„-[/Fn equals the distance of Fj+1/Fn from Ft/Fn. That 
is the number of terms in two conjugate stages are equal. We call a stage comparison of both these stages as a "com-
plex stage." Let us now investigate properties concerning stages. If we have complex stage 

Fi-1 Fj_ Fj+j 
rn rn rn 

then we define two fractions h/k and h'/k' to be "corresponding" if 

k \Fn 'Fj 
and 

k' 
(Fj Fj+7\ 

\Fn' Fn I 

and if the distance of h/k from Fj^/Fn is equal to the distance of h'/k' from Fj/Fn. 

Theorem 3.2. Two corresponding fractions have the same numerator. If h/k and h'/k' are corresponding frac-
tions then h = h'. 

Proof. This will follow from 1.2 (part 1). 
Let /--;_./ /Fn be the maximum reached in its interval so that F/_/ /Fn„i will be the maximum for the interval 

in which F,/Fn belongs, (where by maximum we mean the term with denominator f/+2Ar!n the sense of Theorem 
1.2). The term next to Fj^/Fn is Fj.2/Fn--j. Similarly the term next to Fj/Fn is Fj_2/Fn-2- But these frac-
tions are corresponding in such a fashion that we obtain the result. 
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Now Fj„i /Fn has necessarily to be the maximum in its interval. Since we have considered conjugate stages / is 
odd. Using Theorem 1.2 it can be established that alternate G.F.I.'s are maximum in their interval and that too, when 
suffix of numerator is even (i — 1 is even). 

Definition 3.2. Since the number of terms in a stage is odd, we define h/k to be the middle point of a stage 

[Fn 'Fn\ 

if it is equidistant from both G.F.I.'s. We can deduce from this that h/k is a point of symmetry since F/_; /Fn,3ncl 
Fj/Fn have the same denominator. So the middle point of a stpge is a point of symmetry. 

Corollary. If two conjugate stages are taken then their middle points are corresponding. (This follows from the def-
inition). But their numerators should be equal. This is so, for the middle points are points of symmetry whose num-
erator is 1. This agrees with the result proved. 

Definition 33. Two fractions h/k and h'/k' are conjugate in a complex stage if the distance of h/k from 
F,„<i /Fn equals the distance of h'/k' from Fj+i /Fn, h/k < h'/k' and the complex stage being 

Fj-1 Fj_ Fj+A 

I Fn Fn Fn J 
Taking their middle points 

[— — I [ Fp' Fp+1 J 
we can see that fractions conjugate in this interval are conjugate in the complex stage. Further we saw that for con-
jugate fractions of the interval, h/k, h'/k', 

h+h' 
k + k' 

re fractions of the latter half of the interval arranged in descending order, and 

\ k-k'\ 
l t 

are fractions of the first half arranged in ascending order for increasing values of h/k. 

Theorem 3.3. For conjugate fractions h/k and h'/k' lying in the outer half of the stage we see that 

h+h' 
k + k' 

are fractions of the latter half of the interval in ascending order while 

I h-h'\ 
\k-k'\ 

are fractions of the first half in descending order for increasing values of h/k. We here only give a proof to show that 

IT**- and !=£ 
k + k' k-k 

are in the interval but do not prove the order of arrangement. 
Proof. For h/k, h'/k', in the inner half the proof has been given (previous part). The middle point of 

\Fhl 5.1 
is 1/Fn„j+2- Similarly the middle point of 

lF" ' F" J 
is 1/Fn-j+2„ That two conjugate fractions of the outer half of a conjugate stage differ in suffix by 1 can be establish-
ed. That is,to say, if 
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then 

where / is the interval [1/FD 

L 
k 

jf_= Fj-(n.j) 

k'~ FH 

1/Fp+il and 

h-h' 

tj-(n-i)-1 

b+h' = F/-(n-i)+1 
k + kf Fj+1 

k-k' 
Fj-(n-ih2 

Fh2 
e / 

Hence the proof. 
Definition 3.4. !nan f°f sequence of order Fn, [F, /Fn, Fj+1 /'Fn] represents a stage. Let us take an f-f se-

quence of order Fn+f. If there we take a stage [Fj /Fn+j, Fj+f /Fn+i], then we say the two stages are corres-
ponding stages. More generally in an f*f sequence of order Fn and an f-f sequence of order Fn+fc, 

Fi Ft i+1 
Fi Fi+1 

Fn+k ' Fn+k 

are corresponding stages. We stage here properties of corresponding stages. These can be proved using Theorem 1.2. 

Theorem 3.4a. If 
Fj Fj+1 and 

hi+l 

Fn+k' ' Fn+k 

are corresponding stages then the number of terms in both are equal. 
Theorem 3Ah. There exists a one-one correspondence between the denominators of these stages. If the denom-

inator of the qth term of [Fj / Fn, Fj+1 /Fn] is Fj then the denominator of the qth term of 
Fi Fi+1

n 

rn+k ' / \ n+k is FJ+k. 
We can extend this idea further and produce a one-one correspondence between 

Fi F, i+m and 
Fj Fj+m where [i-i] Fp+k Fn+j< 

stands for the set of fractions between a/b and c/d inclusive of both. A further extension would give that given 
two f»f sequences, one of order Fn, and the other of order Fn+k. 

Theorem 3.5a. The numerator of therth term of the first sequence equals the numerator of the rth term of the second. 
Theorem 3.5h. If the denominator of the rth term of the first sequence is Fj, then the denominator of the / 

term of the second series is Fj+]. Precisely 
(a) the numerator of f(r)n is equal to the numerator of f(r)n+k 

(b) if the denominator of f(r)n = Fj, the denominator of f(r)n+k = Fj+k 
This can be proved using 1.2. We can arrive at the same result by defining corresponding intervals. 

Definition 3.5. Two intervals, [1/ Fjf 1/Fj+^J in an f-f sequence of order Fn and [1/Fj+k, 1/Fj+kJ in an f-f 
sequence of order Fn+k are defined to be corresponding intervals. 

The same one-one correspondence as in the case of corresponding stages exists for corresponding intervals. We can 
extend this correspondence in a similar manner to the entire f - f sequence and prove that 

(a) the numerator of f(r)n is equal to the numerator of f(r)n+k * 
(b) if the denominator of f(r)n = Fj , the denominator of f(r)n+k = Fj+k • 
(c) GENERALIZED f - f SEQUENCE. We defined the f«f sequence in the interval [0,1]. We now define it in the in-

terval [O,oo], 
Definition 3.6. The f°f sequence of order Fn is the set of all functions Fj/ Fj, j <n arranged in ascending order 

of magnitude i,j > 0. If / < / then the f°f sequence is in the interval [0,1]. The basic properties of the f-f sequence 
for [O/l] are retained with suitable alterations 

Theorem 3.6.1. f(r)n is a point of symmetry if f{r+i)n and f(r-i)n
 h a v e t n e s a m e numerator (beyond / /1) . If 

f(r)n is a point of symmetry then f(r+k)n m^ f(r-k)n n a v e t n e s a m e numerator, -if each fraction does not pass beyond 
the next G.F.I. in either side (beyond 1/1). 
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Theorem3.6.2. A G.F.I, is a fraction with denominator Fn . 

Theorem 3.6.3. A point of symmetry has either numerator or denominator 1. 

Theorem 3.6.4. Beyond 1/7, any interval is given by [Fn-j / 1, Fn/1]. The factor of this interval is again Fn_2-

Theorem 3.6.5. The two basic properties 

(a) !L±J£= OL 
k + k" k' 

and 
(b) kh-hk'=Fn_2 

are retained. 
Theorem 3.6.6. If (a) is not good for h'/k' being a point of symmetry then 

bL= Fn-1h,"+Fn-2h .f h_< lf_, hi. hl_= [R 
k' Fn_1k"+Fn„2k k k' k'" k' 1 

For a pertinent article by this author entitled "Approximation of Irrationals using Farey Fibonacci Fractions," see 
later issues. 

/•/Sequence of Order 5 
0_ I I I I I I I 
3' 5' 3' 5' 2' 5' 3' 1 

/•/Sequence of Order 8 

0. L L l L l l L l l l L 
5' 8* 5' 8' 3' 8' 5' 2' 5' 8' 3' 1 

/•/Sequence of Order 13 

( L J L L A L A I L I A I L I A 5 . I L 
8' 13 ' 8' 13 ' 5' 13 ' 8' 3' 8' 13 ' 5 ' 2 ' 5 ' 13 e 8 ' 3 ' 1 

/•/Sequence of Order 21 
1 1 J_ A I _3_ J_ 1 _3_ A1111LAIL1JL!3_!LIL 
13' 21 ' 13 ' 21 ' 8' 21 ' 13 ' 5' 13 ' 21 ' 8' 3 ' 8 ' 21 ' 13 ' 5' 2' 5' 13 ' 21' 8' 3' 1 ' 

ff Sequence of Order 34 

A JL J_ A A 1 i 1 1 1 . 1 1 1 
21 ' 34 ' 21 ' 34 ' 13 ' 34 ' 21 * 8 ' 21 ' 34 ' 13 ' 5 ' 13 ' 

A A I I I A A A I L I A H A I I L 
34 ' 21 ' 8 ' 3 ' 8 f 2f ' 34 ' 13 ' 5 ' 2 ' 5 ' 13 ' 34 ' 21 ' 8 ' 3 ' 1 ' 

REFERENCES 
1. Verner E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin, 1969. 
2. WJ. LeVeque, Topics in Number Theory, Vol. 1, Addison-Wesley, Reading, Mass., 1958, pp. 141-190. 



THE NUMBER OF ORDERINGS OF n CANDIDATES 
WHEN TIES ARE PERMITTED* 

1.1 GOOD 
Virginia Polytechnic Institute and State University, Biacksburg, Virginia 24061 

In a competition it is customary to rank the candidates permitting ties and it is an interesting elementary combina-
torial problem to find the number co(n) of such orderings when there are n labelled candidates. co(n) has curious 
properties. 

Theorem 1. co(n) is equal to n! times the coefficient of xn in the expansion of (2 - ex)~~1, that is, 

«D E 6 ^ 
2-ex 

co(n)xn
 = 7 

n=0 

if (JO(O) is defined as 1. 
By multiplying by 2 - ex and equating coefficients we obtain the recurrence relation 

n-1 

r=0 ^ ' 

where 5g= 7 and 5%=0 if n ?0 ("Kronecker's delta"). 
I mentioned (1) without proof in an appendix to Mayer and Good (1973). [It may be compared with Proposition 

XXIV in Whitworth (1901/1951) which states that the number of ways in which n different things can be distributed 
into not more than n indifferent parcels is n! times the coefficient of xn in the expansion of exp (ex)/ej 

If oof. Let r denote the number of distinct positions in an ordering of/? candidates; for example, if among five 
candidates two tied for the first place, one was "third," and the other two were "fourth and fifth equal" we would 
say that the number of distinct positions is 3. We shall prove that the number g(n,r) of orderings of n candidates 
having just r distinct "positions" is equal to n! times the coefficient of xn in (ex - l)r. (This is Whitworth's Proposi-
tion XXII whose proof is different.) Equation (1) then follows from the identity 

(2-ex)^ =Y, tex~/ir. 
=0 

When there are just r "positions" for the n candidates, let us adopt the unconventional terminology of calling these 
positions first, second, -, rth and let us imagine that, for a specific ordering, there are/?f candidates who are first, 
/72 who are second, —, and nr who are rth, where necessarily 

n-j > 1, n2 > 1,—,nr>1, /?/ + n2+ — + nr = n. 

The sequence of numbers n /, /?2, —, nr can be regarded as defining the structure of an ordering that has just r "posi-
tions." The number of orderings having just this structure (which incidentally is clearly a multiple of r!) is equal to 
the number of ways of throwing n labelled objects into r pigeon holes in such a way that there are /?? in the first 
pigeon hole, n2 in the second one, and so on. But this is equal to the multinomial coefficient n! / (ntf — nr! ) 
Hence g(n,r) is equal to n! times the coefficient of xn in 

*For some overlooked references, see Sloan (1973), p. 109. 
Received by Editors in final form July, 1973. 
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(3) (x+xl+x3+m.\ (x+x2+x3+\ ... [x+x2+x3 + „.\ 
\X 2! 31 ) \ X 2! 3! ) V 2! 31 ) ' 

where there are r factors. The reason for putting in thex's here is that they automatically take care of the constraint 
nj + — + nr = n. Equation (1) then follows immediately. 

Theorem 2. 

(4) a(„) = £ " ^ . 
r=0 2 

Proof. We have 

(2-exf1 = 2~1 Y, — (\*\ </oge2) 
r=0 z 

and the result follows at once from Theorem 1. 

Theorem 3. 
n n 

(5) °"(n) = J2 r/Sn) = J2 Ar°" 
r=0 r=0 

n 

(6) =J2 {/-"- (r,) (r-1)n+ lrA (r-2)n-~+(-1)rOn) , 
r=0 

where S„ is a Stirling integer (number) of the second kind defined, for example, by Abramowitz and Stegun (1964, 
p. 824) or David and Barton (1962, p. 294), and tabulated in these two books on pages 835 and 294, respectively, 
and more completely in Fisher and Yates (1953, p. 78). Another notation f o r S „ \$S(n,r), e.g. Riordan (1958), 
We could define S(

n
r) by 

(7) r!S(
n

r) « ArOn . 
(Mote the conventions 0° = 7, S(

n
0) =0 if n>1, S$} = h) 

Proof. St follows either from the proof of Theorem 1, or from Whitworth's Proposition XXII, that the term cor-
responding to a given value of r is equal to the contribution to GO(n) arising from those orderings of the n candidates 
having just r "positions." Equations (5) and (6) then follow at once. The "incidental" remark in the proof of Theo-
rem 1 shows that S„ is an integer. 

An alternative proof of Theorem 3 follows from Theorem 2 by using the relationship between ordinary powers 
and factorial powers, 

n 

(8) ^ ' J2 S(™}r(r-1)>"(r-m+7j, 
m=0 

combined with the binomial theorem for negative integral powers. 
Theorem 3 provides one way of computing OJ(n), given tables of SJ, . The calculations can be partly checked by 

the special case of (8), 

r=0 r=1 
(9) ] £ (-Vrr/S(

n
r) « £ (~VrArOn = (~1)n 

Theorem 4. 

(10) wW = "f { %S%+ Y. 71 \ 
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(11) oj(n) %bn
0 f\ nj 

2 (loge 2) n+1 "£ COs[(n+1)6m] 

- , [(loge2)2 + 4iiim2l(n+1)/2 \ 

(12) 

where 

= n!(Iog2e)n+1 \ V2+ YJ cosn+1 dmcos [(n + 1)6m] } 

m=1 

0m = tan" (2Tim log2®) 

and the sum in (8) is a Cauchy principal value when n = 0. 

Corollary. 
(13) oo(n) ~ nl(log2e)n+1/2 

when n tends to infinity. 
This asymptotic formula gives the answer to the nearest integer (and hence exactly) when/7 < W (see Table 1). It 

is curious that n! (log2 e)n+ /2 is within 1/ 50 of an odd integer, namely 00(11), when 2 <n < 13. We can obtain 
oj(n) exactly by taking the series of Theorem 4 as far as the first term for which m > n/(2ire). 

Proof of Theorem 4. By, say Titchmarch (1932, p. 113), 
m 

(1 -e~z) = V2+ Urn _/ 
z+2\ 

m=-M 
2mw 

where z is a real or complex number, not a multiple of 2ni. Put z = u - x and we can deduce that the coefficient of 
xn in the power series expansion o f f / -ex~"u ) ~ 1 dXx = 0 (when Re(u) > 0) is 

(14) U0 + lim E / 
M-*°° m=„M (u+2mm) :\n+1 

Theorem 4 follows on putting u = loge2. 

TABLE 1 
Fractional part of ano (denoted by lan,o \), a»d t n e values of anr i,ant2, and an3, where anffn denotes the terms 
of formula (11). The sum column gives the total to he added to the integral part of an Q . 

n 

1 
2 
5 
10 
16 
20 
25 

i*W 
.0406844905 
.0027807072 
.0015185164 
.0052710420 
.5130767435 
.5284857660 
.4328539621 

an,1 

-0.0244239291 
-0.0025628988 
-0.0014866887 
-0.0052693807 

0.4869198735 
27.4714964238 

22480.5672001073 

an,2 

-0.0062750652 
-0.0001650968 
-0.0000285616 
-0.0000016476 
0.0000033805 
0.0000178075 

-0.0000540633 

an,3 

-0.0028030856 
-0.0000327956 
-0.0000026000 
-0.0000000133 
0.0000000025 
0.0000000028 

-0.0000000061 

bum 

.007 

.000020 

.00000067 

.0000000004 
1.0000000000 

28.0000000000 
22481.0000000000 

Theorems, (i) Sf n=n' (modp - 1), where n>1, nf> 1, we have 

(15) 00 (n) = oo(n') (mod p), 

where p is any prime, (ii) Sf n =0 (mod p - 1), where n>1, then 

(16) w f / i j = 0 (modp), 

where p is any odd prime. 
COMMENT. If we had defined co(0) = 0, Part (ii) would have been a special case of Part (i), but unfortunately the 

convention oj(n)=1 is more convenient for Theorems 2 and 3. 
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Proof. To prove Theorem 5 we first give the following properties of the differences of powers at zero. 

Lemma. 
(17) (i) AaOb = 0 if a>h (a,b = 1,2,3, -) 

(18) (ii) ArOn s ArOn' (modp) if n^n' (mod p - 1), n>1, n'> 1 

(19) (iii) Ar0n = (-1)r~1 (modp) if n^O (modp - 1), r ? 0, n?0. 

Equation (17) is a special case of the fact that \\wath difference of a polynomial of degree/? is zero \ia <b, 
To prove (18) we first note that 

I ? - ( / ) (r-1)n + '~ + r(-1)r-11n (r>0,n>0) 
(20) ArOn =\0 (r ='o, n > 0) 

( 1 (r = n = 0) . 

But, by Fermat's theorem, 
an = an' (mod p), 

so that (18) follows at once from (20). If n = 0 (mod p - 1),n£0,r?1, it follows from (20) and Fermat's theorem 
that 

ArOn
 s / - ( r

7 ) t » . + ( r _ r
; ) (-1T1 (mod p) 

and this gives (19) by the binomial theorem. 
To deduce Theorem 5, we now see from Eq. (5) that 

n n 
03M = 2 Ar°n s £ Ar°n' (mod p) 

r=0 r=0 

by (18). Hence, by (5), with n replaced by n', 

n 

CJM = u(n') + ] T Af°n' = <*("') 
r=n'+l 

by (17). To prove Part (ii), where n=0 (modp - 1), n ̂ 0, we have 

n n 

°°(n> = S Ar°n s Z ) <~1>r~1 

r=0 r=1 

by (19), and this vanishes becausen is even when/? is odd. 

SOME DEDUCTIONS FROM THEOREM 5 

(a) Taking p= 2 in Part (i) we see that oo(n) is always odd. 
(b) Given any odd prime p, there are an infinity of values for n for which p divides co (n). 
(c) When n is even, 3 divides oo(n). 
(d) 59 divides co (69) and 78803 divides co (78813). (See the factorization of co(11) in Table 2.) 
(e) 2 1 1 2 1 3 - 1 divides co ( 2 1 1 2 1 3 - 2 ) , but the division will never be done! 
(f) GO($P)^GO($) (modp) (s= 1,2,3, •••). [Here,and in (f), - , (k), p is any prime number.] 
(g) co(p)^1 (modp). (Also deducible easily from (2).) 
(h) co(pk)^1 (modp) (k= 1,2,3,-). 
(i) co(2pk)^3 (modp) (k=1,2,3,-). 
(k) u(3pk)^13 (modp) (k= 1,2,3,-). 

In Table 2, some prime factorizations of cofn) are shown, and (g) is also exemplified. Large primes seem to have a; 

propensity to appear as factors of co (n). 

Conjecture 1. Part (i) of Theorem 5 shows that the sequence oo(1), oo(2), co(3), ---has periodp - 1 when/7 
is a prime. It may be conjectured that it never has a shorter period (properly dividing/? - 1). If this is true then the 
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LO C 5 LO * — P-. 
CO OO CD CO 
*—CO OO CO 

co CM r-* 

CD r-

CD CD CD r*» CM 
LO *— I*"- «5t OO 
OO CO l-O LO LO 

CDOO^r-h, 

•sd" CD CO «̂ j- LO 

C M i— co r*- p*̂  
OO "sd- CO CD '=d-

«?t ̂ J-«- • - ° o 
CM <>t LO CM CO 
^— C O " * * - " * 
^ ~ «5t OO CD LO 
co r- co P*>» co 

LO«=d" CM CO 

CM LO co r— 

oo r-*. p** CM CD 

^j- CM CO CO *— 
CM CD 00 CO "Si-
CD «3- «— CD CO 
«s3- CM LO OO "Si-
COCO OO O CM 
CD CM CO CM «sr 

*- co o o r-
"Si- T — CO CD CO 
•sf CM CO CD OO 
O O C D O CO "Si-
CD CO CD CO CD 
LO T — LO CSI OO 
Is*. CD CD CD OO 
LO CO «sj- CO «— 

Is*. "Sj- CD "?t CD 
CD f— CD CD «ST 
«5d- r~* co «— LO 
CM CO CD CD OO 
CD CD CM CO CD 

*— CD CD CD CO 
^ - CD CD CD CD 
OO «sr CM CO LO 
O *d- • * OOCD 
CO OO CD CO * — 

"Sf- * - «sj- CO CM 
OO CD Is*. CD O 
CO "Si- CO CM *— 
CO CD CM «5t CO 
CD CO OO CM CD 

CD 
O 

5 

3 

L O C D 
CD CD 
CM CD 

CD 
y— 

CM C D C D 
CM I s - CD 
CM Is* . CM 
O CD CO 
O CO LO 

^ t LO r** 
L O C D 
, r - CM 

C D 

C D r ~ 
CM O 
L O «ST 
O O C D 
co r** 

OO OO 
Is* . CO 
"ST L O 
CO CO 
c o o 

C D 
CSJ 
«sr 
r** L O 

C D 
CO 
CD 
OO 
o 

C D C D CO CO 
OO CM OO CO 
- ^ C D ' S ] - CSI 
CO L O OO C D 
I s * . C D CO O 

L O C O L O C D 
C O O M O 
C D CM OO Csl 
«si- CM r-*. C D 
L O «SJ- I s* . CO 

C D 
CO 
oo 
CM 
CO 

C D 
C D 
<sr 
L O 
L O 

O * — Is*. CD CM 
O LO CD "SJ- LO 

LO LO CD CD CD 
CO CD «sj- LO 

CM CM OO CM 
^ » C D ^T 
*— «̂t- CO 

LO S**. 

. *•— CM CO -«S]" LO CO Is*. OO CD CD *— CM CO <ST LO 
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converse of Part (is) would be true; that is/? could divide co(n) only if n ^0(modp - 1). \ have verified the con-
jecture for all primes less than 73, but I do not regard this as strong evidence. Sn fact I estimate that the probability 
that the conjecture would have survived the tests, if it is false, is about 0.18. 

If this conjecture is true then we can deduce that oo(n) is never a multiple of/?, for any integer/? greater than 1. 
Since co (n) is always odd we need consider only odd values of n. Suppose then that/? divides oo(n) and let/? be a 
prime factor of /?. Let the highest power of p that divides n bepm. By repeated application of (f) we have co(n) = 
co(n/pm) (mod p), and therefore by the converse of Part (ii) of Theorem 5 (which is true if the conjecture is) we 
see that n/pm is a multiple of/? - / and is therefore even. But/? is odd by assumption and we have arrived at a con-
tradiction. So the conjecture implies that/? cannot divide.coM. 

Conjecture 2. Modulo 2,4, 8,16,32, 64,128, 256, 512, - the sequence | co (n) J» runs into cycles of lengths 
1, 2, 2, 2, 2,4, 8,16, 32, - . That is the period modulo 2k appears to be 2k~4 when k>5, and, for k = 1, 2, 3,4 is 
1, 2, 2, and 2. This conjecture would follow from the following one. 

Conjecture J . If oo (n) is expressed in the binary system as 

an0 + 2®n1+ 22an2 + 23an3 +-, 

then the sequence of rth least significant digits,a fr, a2r, ajn '"ryns m t 0 a CVC'8 whose lengths, for r = 0, 1,2,3, 4, — 
are respectively 1, 2, 2, 1, 2, 4, 8, 16, - . That is, the period i s ^ ^ f o r r ^ 3 and for r = #, /,-?is 1,2, and 2. This 
conjecture is formulated on the basis of the columns of Table 3. 

Conjecture 4. If co(n) is expressed in the scale of/?, where p is an odd prime, 

03 (n) = bn0 + pbn1+p2bn2+~-

then the sequence b<ir,b2r,h3r, —runs into a cycle of length pr(p - 1). This has been verified empirically fmpr+7 

= 9, 27, and 25 (and n < 361 For r = 0\Ne know the result is true by Theorem 5, as we said before. A feasible con-
jecture is that the periods are never less than the ones stated. 

Conjecture 5. IVSodulo pr, where p is an odd prime, and r > /, the sequence runs into a cycle of 
length pr~ (p - 1) and no less. This would follow from Conjecture 4. It generalizes Conjecture 1. 

From Conjectures 2 and 5, if they are true, we can deduce that, modulo m = 2kpklpk* —, the sequence | oo(n) X 
runs into a cycle of length 

(p(m) if k = Q, 1, or 2 

<t>(m)/2 if k = 3 

<t>(m)/4 if k = 4 

(p(m)/8 if k > 5 , 

where 0 denotes Euier's arithmetic function. 
Conjecture 6. Parts of Conjectures 2 to 5 could perhaps be proved inductively, by using Eq. (2) combined with 

the use of mth roots of unity. 

Conjecture 7. For each /?, a? (n) and GO (n + 1) have no common factor, and the highest common factor of 
oj(n) - 1 and oj(n+ 1) - 1 is 2. This follows from Conjecture 1. 

GENERALIZATION OF SOIVtE OF THE RESULTS 

The proof of Theorem 4 suggests correctly that several formulae that we have mentioned can be generalized by 
replacing loge 2 by u. By making this change we see that, in addition to (14), we have:-

The coefficient of xn in (1 - ex~u')~1 (where Re(u) > 0) is equal to 

(21) ' i u \ 1 
n! 
L LJL\n-
n! \ du ) Jm 

/ «\n «^» Q ,,2m-n-1 
(22) =ji8" + (=!l2 Y _£2mu (U<2TT) 
1 1 ° n! A j . , . 2m(2m - n - 1)! 

m=[n+1/2] 
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TABLES 
The Ten Least Significant Binary Digits anr of co (n) (n = 1,2, -,36) 

Period 

Antiperiod 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 

1 

1 
0 
0 
0 
0 

0 
0 
1 
1 
0 

0 
1 
0 
0 
0 

0 
0 
1 
0 
1 

1 
1 
0 
1 
0 

0 
0 
0 
1 
0 

0 

0 

0 
0 
0 
0 
0 

0 
1 
1 
0 
1 

1 
0 
0 
1 
1 

0 
1 
0 
1 
1 

1 
1 
0 
0 
1 

0 
0 
1 
1 
0 

0 

32 

16 

0 

0 
1 
0 
1 
1 

0 
1 
0 
0 
0 

1 
0 
0 
1 
0 

1 
1 
1 
0 
1 

1 
0 
1 
0 
0 

0 
1 
0 
0 
1 

0 

16 

8 

1 
0 

1 
0 
0 
0 
0 

1 
1 
1 
1 
0 

0 
0 
0 
1 
1 

1 
1 
0 
0 
0 

0 
1 
1 
1 
1 

0 
0 
0 
0 
1 

1 

8 

4 

0 
0 

0 
1 
1 
0 
0 

1 
1 
0 
0 
1 

1 
0 
0 
1 
1 

0 
0 
1 
1 
0 

0 
1 
1 
0 
0 

1 
1 
0 
0 
1 

1 

4 

2 

0 
1 

0 
1 
0 
1 
0 

1 
0 
1 
0 
1 

0 
1 
0 
1 
0 

1 
0 
1 
0 
1 

0 
1 
0 
1 
0 

1 
0 
1 
0 
1 

0 

2 

1 

1 
1 
1 
1 
1 

1 
1 
1 
1 
1 

_ 

1 
0 
1 

0 
1 
0 
1 
0 

1 
0 
1 
0 
1 

0 
1 
0 
1 
0 

1 
0 
1 
0 
1 

0 
1 
0 
1 
0 

1 
0 
1 
0 
1 

0 

2 

1 

1 1 
0 1 
1 1 
0 1 

1 1 
0 1 
1 1 
0 1 
1 1 

0 1 
1 1 
0 1 
1 1 
0 1 

1 1 
0 1 
1 1 
0 1 
1 1 

0 1 
1 1 
0 1 
1 1 
0 1 

1 1 
0 1 
1 1 
0 1 
1 1 

0 1 
1 1 
0 1 
1 1 
0 1 

1 1 

2 1 

1 
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(23) = ̂ rlL r"e'rU (Mu)>0) 
r=0 

n 

(24) =±-eu Y S(
r
m)m!(eu-irm-1 

n! d~~i r 
m=0 

(25) =jLeu £ (eu-irm-1AmOn 

m=0 

(26) = Vhn+ V cos ̂ n + ^ ^n~1 (2itm/u)] 

For example, 
7 

Jf J2 r?e"r = JfH (e~1)~m~1Am07 = 7.00000023 
r=0 m=0 

and the coefficients of 1,x,x2,x , - i n (1 -e*~1 ) ~ 1 are respectively 

158, 0.92f 0.9962, 1.0011, 1.00014, 0.999982, 0.9999957, 1.00000023, - , 

tending rapidly to 1. 
Formula (26) is always very effective for summing the series 

r=0 

numerically when \z\ is close to 1. 
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1. A COMBINATORIAL APPROACH 

In [3 ] , the nonzero coefficients of the Chebyshev polynomials Tn{x):=cosndr cos0=x, which satisfy the recur-
rence relation Tn+i(x) = 2xTn(x)-Tn..i(x) since cos(n+ 1)Q + cos(n - 1)6-2cosQcosnQ, are arranged in 
left-adjusted triangular form. The first seven rows of the array are 

N * 
n N y 

0 ~~ 
1 
2 
3 
4 
5 
6 

0 

r~ 1 
2 
4 
8 

16 
32 

1 

-1 
-3 
-8 

-20 
-48 

2 

1 
5 

18 

3 

-1 

Furthermore, letting an^ be the element in the nth row and kth column, it is shown in [3] that 

an,k (~ir n-k 
k 

7n-2k-1 (1.1) 

and 

0-2) anfk
 = 2an~1fk~an-2fk-1 • 

In this section, we discuss several linear recurrences which arise as a result of a careful examination of the triangu-
lar array. The validity of these linear recurrences is established by means of common combinatorial identities. 

Summing along the rising diagonals, we obtain the sequence 1, 1,2, 3, 5, 8, 13, •••, which appears to be the sequence 
of Fibonacci numbers. To show that this is in fact the case, we first observe that the sum of the nth rising diagonal 
is given by 

/, n = 1 or 2 
M 

/] an-k-1,k. 
k=0 

(1.3) M [4-'' n>3 . 

We now verify that fn = fn-j + fn-2 for n > 3. 
In [2 ] , we find the following combinatorial identities 

(1.4) 
( : ) - ( " . - ' ) • ( : : 

and 
19 
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Using (1.1) together with (1.3) and applying (1.5) and then (1.4) twice, we have, 

M 
f _ V % / nk n - k- 1 I n-2k-1 \ 9n-3k-2 

k=0 

M 

= E(-»k[(n-2r2)+2{n-k
2*72)] 2n 

k^Q 

M 

= Y,<-i>ki(n-2r2) + [n-k
2k73)]2n 

3k~3 

•-" L I k r \ k-i n < 
k=0 

M 
+ y (-1)k \[ n~2k~3 ) +4! n-2k-2\l 2n-3k-3 E^|("-2r3)^("-/-V2)] 

(1.6) k=0 -J 

M 
n -2k -4 \\ 9n-3k-4 

k=0 

M 

k=0 

M 

fn-^fn-2+j: (-1)k[[n-2k
k-

4) ^ ( " ^ r
2 ) j 2"~ n-3k-4 

! _ / / I I k j -u\ k-1 j\ < 
k=0 

Since the first and last terms cancel for successive integral values in the last sum, and because 

n-4 < n- 1 < 3M implies that n -2M-4 < M, 

the last sum has value zero so that 

(1-7) fn = fn-1 + fn-2. n>3. 

The sequence of the sums of the rising diagonals in absolute value, denoted by j un I °°=1, is 1,1^,5,11,24,53, • 
and it appears to satisfy the recurrence relation 

(1.8) u1=u2=h u3 = 2, 2un-1 + un-3 = un, n>4. 

By the definition of un , (1.1), and (1.3), we see for n >4, following an argument similar to that of (1.6), that, 
M M 

,, - V n-k-1 I n-2k-l\ 9n-3k-2 _ V * I I n - 2k - 2 ) ,9/n-2k-2\l 9n-3k-2 
un~ 2^ n_2k-1 \ k ) Z = ^ L \ * J k-1 JJ • 

k=0 k=0 

M M 
= ? V M I n~2k-2\ I n-2k-3\\ Pn-3k~3,\^\ 7 ( n-2k -2) _ I n-2k -3 )] 9n-3k-2 

d.9) h[[ k M *-f ^ h)~ ( *-' r[ k'1 n 

M-1 _ M 

-*>n.1 + T.\2[n-*-4) -{"-2
k
k-5)]2"-3k-5=2un-1 + Y:\[n-2

k
k-4) 

k=0 " k=0 

n -2k -5 VI nn~3k-5 _ 9ll , ,, 
k^7 J J 2 ~ 2un-i+un-3 
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and (1.8) is proved. 
Let wn be the sum of the terms along the nth falling diagonal. The terms of 1 wn \°^=1 appear to be given by 

(1.10) wn = i ;- n==1 . 
\ 0, n>2 

To show that wn = 0 for n > 2, we observe that 

»n - S *n*-1M - £ (-»'\( -k ') * ( JI? )] *"** 
/?-/ n-2 

(LID -»23 /r-/^*(" *'W"-*-' - * j ^ (-Dk(n-2)2n-k-2 

k=0 k=0 ' 

(2_j)n-1 (2-7)"-2 

2 2 ° 
and (1.10) is proved. 

Letting qn be the sum of the absolute value of the terms along the ntn falling diagonal, we see that the terms of 
iqn l™=1 are /, 2, 6, 18, 54, 162, 486, — and it appears as if we have 

(1.12) Hi>-2^7-
By the definition of qn and (1.11), we have 

n-1 n-1 n-2 
n-1) 9n-k-1 , y V * [ n-2 \ 0n-k-2 

(1J3) &=0 k=0 k=0 

_ (2+1)n~1 J2+Dn"2
 = 9 nn-2 

- 2 2 1-J 

so that (1.12) is true. 
It is easy to determine the row sum rn because, as is pointed out in [3 ] , the sums are all one since cos nO = 1. The 

last sequence of this section, denoted by j pn I °° - , deals with the sums of the absolute values of the terms of the 
rows, and the first few terms of the sequence are 1, 1, 3, 7, 17,41,91, - . It appears as if we have 

(1.14) P1=P2=I Pn = 2pn-.1+pn-2, ">3, 

which is a generalized Pell sequence where the Pell numbers Pn are given by the recurrence relation 

(1.15) P1 = 1, P2 = 2, Pn = 2Pn-1+Pn-2, n>3. 

The first few terms of the sequence are 1,2, 5, 12,29, 70, 169, - . Letting P_/ = 7 and PQ = 0, it is easy to establish 
by mathematical induction that 
(1-16) pn = Pn-1

+Pn-2 = Pn-Pn-1 
and 

n 

< 1 - 1 7 > Pn = £ Pn • 
!=1 

To verify (1.14), we use (1.2) and observe that 

(1.18) \anrk\ = 2\an-1tk\ + \an-2,k-i\ 
so that with N = [n/2], we have 

N N N N-1 
( U 9 ) Pn = 1 C \a"*\ = 2 J ] \an-1,k\ + J2 \an-2,k-l\ = 2Pn-1+J2 \a"-2,k\' 

k=0 k=0 k=0 k=Q 

However, \an-2fN | = 0 because n - 2 < n < 2N implies that n - 2 - N <N. Hence, 
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(1.20) Pn=2Pn-1+Pn-2' 
2. GENERATING FUNCTIONS 

In a personal correspondence, V.E. Hoggatt, Jr., pointed out that the relationships of Section 1 could be estab-
lished by means of generating functions. 

Let GfcM be the generating function for the kth column. Following standard techniques, it is easy to show that 

(2.1) Gofx) = ±f± 

and, with the aid of (1.2) that 

(2.2) GkM = Z^M 

Employing mathematical induction together with (2.1) and (2.2), we have 

(2.3) ff,W-(_zi_)*(i££), k>0. 

Adding along the rising diagonals is equivalent to 

£*»«.w-z:(£*)(7^'' 
k=0 k=0 

{2A) - ( t - x \ . t 1 + ** 

= (1-x-x2)'1 . 

Since , 
(1-x-x2) 

is the generating function for the Fibonacci sequence, we have an alternate proof of (1.7). 
Letting 

*» • xmw • 
we see that adding along rising diagonals with ail signs positive is equivalent to 

*3 1-x 

which verifies (1.8) since (1 -x)(1 ~2x - x3) is the generating function for I un\°°:s1 

To verify (1.10) and (1.12), we recognize that 

(2-7) ^ ^ - - ( i ^ ) ^ , , - ^ ) - - , 
k=0 

where 1 is the generating function for | wn J-~ while 

E"*«««-(££)'('-7d! (2 8) ^ ^ »K^*f~\ - / i—x \ . i 1 x \ _ 1—x 
2x ) 1 -3x ' 

k=0 

where (1 -x)(1 -3x)~1 is the generating function for |<7nr~ = ; • 
Since 

k=0 

we have an alternate proof that the row sums are ail one. Furthermore, 
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(2.10) £*»«f«-(£*M'-r? 
k=0 

2x 
1-x 

1-2x-x* 

where (1 -x)(l - 2 x -x2) is the generating function for | Pn\^=r Hence, we have an alternate proof of (1.14). 
Sn conclusion, we note that 

(2.1D £ /> „_ , * "+£ />" 
n=0 n=0 

1-2x 

1-2x-x2 1-2x-x2 1-2x-x* 
-Z> 'n+1* 

n=0 

and we have a generating function proof of (1.16). 
3. AWOTHER ARRAY 

If we let 

and use 

we see that 

Q„M = M , x = cosd, 
sin 6 

sin (n + 1)6 + sin (n - 1)6 = 2 cos 6 sin n6 

Qn+1 (x) = 2xQn (x) - Qn.; (x) 

and Qn(x) is a polynomial in x. 
The first eight rows of the nonzero coefficients of the polynomials Qn(x) in left-adjusted triangular form are 

k 
0 1 2 3 

1 
2 
3 
4 
5 
6 
7 
8 

1 
2 
4 
8 

16 
32 
64 

128 

-1 
-4 

-12 
-32 
-80 

-192 

1 
6 

24 
80 

-1 
-8 

Letting hn^ be the element in the nth row and k column, it can be shown, as in [3], that 

bn,k = 2bn-1,k-bn-2,k~1 (3.1) 
and 
(3.2) b„ik = (-1)k{j,-k

k-
1)2n-2k-1 . 

The six linear recurrences of Section 1, relative to the Qn(x) array, are 
(3.3) F1 = 1, F2 = 2, Fn = Fn-t + Fn-2+1, n>3 

(3.4) U1 = 1, U2 = 2, U3 = 4, Un= 2Un„1 + Un.3f n>4 

(3.5) Wn = I n > 1 

(3.6) Qn = 3n-1, n>1 

(3.7) Rn
 = n, n> 1, 

and 
(3.8) Pj = 1, P2 = 2f Pn= 2Pn„1+Pn„2, n>3 

which is the sequence of Pell numbers given in (1.15k 
The preceding six linear recurrences can be verified by using combinatorial arguments like those of Section 1 or by 

means of generating functions as in Section 2 where the column generators of the Qn(x) table are given by 

(3.9) 

and 

Hk(x) = 1 -1 
1 ~2x \ 1-2x 

k>0 
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(3.10) *.w._J_(_f_1*. k>0 

if we want all positive values. Hence, the details are omitted. 
4. CONCLUDING REMARKS 

Equations (1.16) and (1.17) relate the sequences of (1.14) and (3.8). Similar relationships, which can be proved 
by mathematical induction, also hold for the other five recurrences. That is, 

n 

(4.1) fn = Fn-Fn-l and Fn = Yifi 
i=1 

n 

(4.2) Un=un-Un_7 and Un = J^ Uj 

i=1 

n 

(4.3) wn = Wn-Wn-j and Wn = £ ] ws 

i=1 

n 

(4.4) qn = Qn-Qn„7 and Qn = ] T </, 
i=1 

n 

(4.5) rn = Rn-Rn^ and Rn = ] T r, • 
i=l 

Since Eq. (3.9) is (1 - x)~1 times Eq. (2.3), it can be shown that the entries in the Qn(x) table are partial sums 
of the column entries of the Tn(x) table. Hence, 

W-6> bn+2k,k = Z^ aj+2k,k 
i=o 

which gives rise to the combinatorial identity 

J=0 

An interesting consequence of (4.6) since the bn ̂  and an ̂  are respectively the coefficients of the polynomials 
Qn(x) andTn(x) is the identity 

(4.8) T cosn-i6cosje = sin(n+J)d . 
L^d sm Q 
ro 
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ABSTRACT 
It is shown here that if n is an odd number of the form paM10', paM24, paM34, paM48 or paM124, where M is 

square-free and p is a prime which does not divide M, then n is not perfect. 

1. INTRODUCTION 

Euier (see page 19 in [1]) proved that if/? is odd and perfect (that is, if n has the property that its positive divisor 
sum a(n) is equal to 2n) then/? = p^N2 where pKN and /? = a = / (mod 4). In considering the still unanswered ques-
tion as to whether or not an odd perfect number exists, several investigators have focused their attention on the con-
ditions which must be satisfied by the exponents in the prime decomposition of N. If M is square-free and ]3 is a 
natural number then it is known that/? = p0LM1^ is not perfect if j3 has any of the following values: 1 (Steuerwald in 
[8]), 2 (Kanold in [3]), 3 (Hagis and McDaniel in [2]),3k+ 1 wherek is a non-negative integer (McDaniel in [5]). 
Our purpose here is to show that n is not perfect for five additional values of /3. Thus, we shall prove the following 
result. 

Theorem. Let n = paM2^ where M is an odd square-free number,/?^, and/? =a= 1 (mod4). Then n is not per-
fect if (A) p = 5, (B) 0=12 or 62, ( 0 $ = 24, (D) 0=17. 

2. S0IV1E PRELIMINARY RESULTS AI\tD REIVIARKS 

For the reader's convenience we list several well-known facts concerning the sigma function, cyclotomic polynom-
ials, and odd perfect numbers which will be needed. If q is a prime the notation qcl K means that qc\K but qc+1)(K. 

(1) If P is a prime, then 

o(Ps) = EFm(P) , 
m 

where Fm(x) is the mth cyclotomic polynomial and m ranges over the positive divisors other than 1 o f s * /. (See 
Chapter 8 in [7].) If/? is odd and perfect and q is an odd prime then it is immediate, since o(n) = 2n, that#|/? if and 
only if q\Fm(P) where/75 is a prime power such thatP5!/? m&m\(s+ 1). 

(2) If m = qc where q is a prime then q\Fm(P) if and only \\P= 1 (modq). Furthermore, if q\Fm(P)md m >2, 
then q\\Fm(P). (See Theorem 95 in [6].) 

(3) If q\Fm(P) and qjfm,theng = 7 (modm). (See Theorem 94 in [6].) 

(4) If n = pap^1 —P^x is odd and perfect then the fourth power (at least) of any common divisor of thejijum-, 
bers-?/3/+ / (i = 1,2, ••>, t) divides n. (See Section III in [3].) 

(5) If n is an odd perfect number then /? is divisible by (p + 1)/2. 
We shall also require the following lemma which, to the best of our knowledge, is new. 

Lemma. Let n = paM2® be an odd perfect number with M square-free. \\2$+ 1 = RQ3 where Q is a prime dif-
ferent from/? and QlfR, then at most 2$/a distinct prime factors of M are congruent to / modulo Q. 

25 
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Proof. Since (2*\n, by (4), and Q £p we have Q2^\\n. If P is a prime factor of M then from (1) we see that 
F j(P)\n for j= 1,2,-, a. 

Thus, if P = 1 (mod Q) then Qa \n, by (2). It now follows that if M is divisible by C distinct primes, each congruent 
to / modulo Q, then QaC\n. Since Q2(5\\n, C<2$/a. 

We are now prepared to prove our theorem. Our proof utilizes the principle of reductio ad ahsurdum with 
Kanold's result (4) furnishing a starting point and our lemma providing a convenient "target" for contradiction. The 
prime factors of the cyclotomic polynomials encountered in the sequel were obtained using the CDC 6400 at the 
Temple University Computing Center. For the most part only those prime factors of Fm(P) were sought which did 
not exceed 105» 

3. THE PROOF OF (A) 

We begin by noting that 

F77(199) = 11R7 and F11(463) = 11>23-5479R2 . 

where every prime which divides R7R2 exceeds 105. Since 

R7/R2 = (8.899-1021)/(3.273-1Q20)''= 27.2 

we see that R2 IfRj from which it follows that R 7 R2 has at least two distinct prime divisors/3/ mdP2t both greater 
than tO5. By (3), P1 = P2=1 (mod 11). We also remark that if 

P3 = 1806113 and P4 = 3937230404603 = F11(23)/11 

then it can be verified that neither of the primes P3 orP4 divides either R7 or R2. 
Wow assume that n = paM10 is perfect From (4) we see that 1P \n and, therefore, that 

F71(11) = 15797* 1806113\n. 
We now consider three possibilities. 

CASE 1. p = 15797. By (5), 3-2633\n. St was found that 

2113\F71(2633), 683°7459\F71(2113), 23-99859 \F7i (683), and 3719-8999 \Ff1 (99859). 
Also, 

463\Ff1(3719) and 199\F77(1806113). 

St follows from (1) that n is divisible by each of the following eleven primes, all congruent to / modulo 7 /: 

23, 199, 463, 683, 2113, 3719, 7459, 8999, 99859, P2, P4 . 

But this is impossible since, according to our lemma, M has at most 10 prime divisors congruent to / modulo 11. 

CASE 2. p= 1806113. By (5), 3.17>177Q7\n. 1013\F17(17707) and 199\F17(1013); while 

463\F17 (15797), 23>5479\F17(463), and 1277-18701 \F77(5479). 

From (1) and the discussion in the first paragraph of this section we see that each of the eleven primes 

23, 199, 463, 1013, 1277, 5479, 15797, 18701, P7, P2, P4 

divides n. Our lemma has been contradicted again. 
CASE 3. p ? 15797 and/7 ? 1806113. Since 199\F17(1806113) and 463\F71 (15797) we see from the discussion 

thus far that n is divisible by the following eleven primes: 

23, 199, 463, 1277, 5479, 15797, 18701, P7, P2, P3, P4. 

If p = 18701 then 3 \n and, therefore, 3851 (a factor of F77(3» divides /?. If p f 18701 then n is divisible by 34607, 
a factor of F77(18701). In either case n is divisible by twelve primes, each congruent to / modulo 11, at most one 
of which is p. This contradiction to our lemma completes the proof of (A). 

4, THE PROOF OF (B) 

If we assume that n = paM2(3 is perfect, where j3= 12 or 62, then 54 \n by (4). lip ^2 (mod3) then from (5) we 
have 3\n, and since FQ(3)= H2 it follows from (1) that 3-52°11\n. But this contradicts a well known result of Kan-
old's ((2) Hilfssatz in [4]). We conclude, since/? = / (mod4), that/7 = 7 (mod 12). 

Since 54\n we have 524\\n (or 5124\\n), and from (1) we see that 
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F5(5) = 1h71 and F25(5) = 101-251-401-9384251 

both divide /?. 
Proceeding as in the proof of (A) and referring to Table 1 we see that/7 is divisible by at least 43 different primes 

congruent to 1 modulo 5. (Here, and in our other tables, the presence of an asterisk indicates that the prime might 
be/?.) Since at most one of these primes can be/?, and since our lemma implies that M has at most 12 (or 41) prime 
factors congruent to 1 modulo 5, we have a contradiction. 

TABLE 1 
Selected Prime Factors of Fg(q) and F2s(q) 

q 

5 

11 
71 
101 
401 

9384251 

3221 
211 
31 

1231 
191 

1051 

1301 
13001 

F5(q) 

IT, 71 

3221 
211,2221* 

'31,491,1381* 
1231 

181*, 191 

1361 
17351 
3491 

1871,13001 
241* 

61* 
1801*,5431,17981,32491 

F25(q) 

101,251,401,9384251 

3001*, 24151 

1051,70051 

151,601*, 1301,1601 

4951 
55351 

5101*, 10151,38351 
2351,19751 

701,6451 

5. THE PROOF OF (C) 
Assume that/? =/?a/T8 is perfect. Then 748ll/? by (4),and if/? ^2 (mod 3) then 348\\n by (5). (We note that p $ 29 

since otherwise 3-5-7\n which is impossible.) According to Table 2, in which the upper half is applicable if p=2 
(mod3) and the bottom half if /? = / (mod3), we see that/? is divisible by at least 26 primes congruent to 1 modulo 
7, at most one of which can be/?. This is a contradiction since, by our lemma. M is divisible by at most 24 such 
primes. 

6. THE PROOF OF (D) 
We shall prove a more general result which includes (D) as a special case. Thus, suppose that 

n = papfi - p^ and that 35\(2fr + 1) for / = 1,2, - , t 

If n is perfect then 354\n by (4). As in the proof of (B), p = 1 (mod 12), and from (1) we see that FJ5) = 11- 71 
and Fn(7) = 29-4733 each divides/?. Referring to Table 3 and noting that either 181 or 86353 is notp we see that n 
is divisible by the primes 

5,7, 11,29,31,41,43,61*,71, 101, 113, 127, 131, 151, 191, 197,211,241*,251,271,281,491,911. 

If m is the product of the primes in this list which are not congruent to 1 modulo 12, then 

a(n)/n > o(61-241m4)/(81 -241m4) > 2. 

This contradiction shows that /? is not perfect. 

7. COiCLUDIWG REMARKS 

From the results obtained to date we see that if n = paM2@ is perfect then either2@+ 1 = q > 13 where q is 
a prime, or 2j3 + 1 = m > 55 where m is composite. Thus, it seems reasonable to conjecture that an odd number of 
the fornn paMz®, M square-free, cannot be perfect. It is clear, however, that the proof must await the development 
of a new approach: the magnitude of the numbers encountered for which factors must be found makes the attack of 
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TABLE 2 

Selected Prime Factors of Fn (q) and F49 (q) 

q 

i 
3 

29 
3529 
1093 
491 

131713 

88009573 
16759 

7 

29 
4733 

197 
70001 
83203 

2957767 
1373 

50359 
43 

16759 

Fn(q) 

29,4733* 
1093 

88009573 
7883 
14939 

617*, 1051 
43, 239 

71,22807 
701*6959 

29,4733 

88009573* 
70001 

97847,2957767 
50359, 263621 

43 

127 
281,659 
71,1093* 
5839 

701,6959 

Fjq) 

3529 
491,4019,8233,51157,131713 

197* 
16759 
883 

8i27 

4999 
6763 

3529* 

197 
83203 

1373 

83497* 

16759 
491 

883,6763 

TABLE 3 

Selected Prime Factors of Fs (q) and F7 (q) 

q 

5 
7 

71 
4733 

211 
101 

70001 

292061 

191. 

1871 
127 

181* 
86353* 

151 

281 
1499 

113 

Fjq) 

11,71 

211 
41,101 

292661 
31,491 
61*, 181* 

191,241* 

1871 

151 

281 

271 
131 

251 

Fjq) 

29,4733 

70001 

127,197 

911 
43,86353* 

281 

1499 

113 

the present paper impractical for "large" deficient values of 2$ + 1 (m is deficient of o(m) <2m), even with the aid 
of a high-speed computer. Six is perhaps the only value of j3for which 2$+ 1 is a prime power within reach at pres-
ent. Sf, on the other hand, 2$+ 1 = m is abundant (that is, o(m) >2m) then it is trivial that n = paM2® cannot be 
perfect; for by (4), m\n and this implies that o(n)/n > o(m)/m > 2. 
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An observation that certain sequences of power residues modulo some primes were generalized Fibonacci sequences 
led to the investigation of the positive sequence with general term n4" - n - 1. This sequence was found to have 
some interesting properties. 

For example, 
3k *3 3k'1 + 3k~2 (mod 51 4k = 4k'1 +4k~2 (mod 11), 

\5k\ is similarly defined mod 19, etc. If we take as initial values 7, n, and define a Fibonacci sequence based on 
these values, the rth term is given by nfr^ + ffa.2, where fr is the rth Fibonacci number. It is then a simple matter 
to show that n2- n - 7 divides nr- nfr^ - fr„2* Thus, 

nk ^nk-1 + nk~2 (mod n2-n-1). 

THE SEQUENCE | / ? 2 - / ? - 7 | 

1. Let m(n) = n — n — 1. Let p be prime, and let p\m(N). Then there is a unique partition of p, p = a + b, 
such that p\m(N + kp) and p\m(N + kp + a). 

i. That p \m(N + kp) is easily verified 
ii. p\m(N + kp + a) 

m(N + kp+a) = N2 + 2Nkp +2Na +k2p2 + 2kpa +a2 ~ N - kp - a - 1 . 

This is divisible by p if p \2N + a - 1. 
There is some smallest value of a for which this is true, and this value of a is independent of N. For let p\m(n) 

n^N„ Then p\m(N + kp + a') for a' such that p\2n + a'~ 7. 
Thus, 

pkf = a- 1+2N, pk1* = ae = 1 + 2n. 

Subtracting and adding: 

pk" = (a'-a) + 2(n-N) and pk* - a + a'+2(N + n - 1). 
Since 

p\N2-N-1 and p\n2- n - 1 , 
then 

p\(N2-N~ 1)-(n2-n- 1) , 
that is, p\(N-n)(N + n- 1). 

Either p\N- n or p\N + n - 1. 
In the former instance it follows that/? \a'- a, and since both are less than /?, a = a'. In the latter case p\a + a',and 

a+a'=pf that is, a' = b. 
2. If p\m(N), then p\m(N-b). 

m(N-b) = m(N) + h(h-2N+1). 
But 

b-2N+1=p-a-2N+1=p~(a- 1 + 2N), and p\(a - 1+2N), 

3. If a prime p appears as a factor in the sequence it does appear at these regular intervals of a and b, and only 
then. For let 
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p\m(N)e p\m(N + a) and p\m(N + a+x), a+x<p. 

m(N + a+x) = m(N + a)+x(2N + a- 1) + fa+x). 

$mwp\m(N + a) andp\21\/ + a- 1, p must divide a+x. But this is possible only if p = a + x, m&x = b. 
4. Let 

m(N) = prffy -pr
tt , 

Pi prime, t > 1. We have N2 > m(N) > (N - I)2. Uop = /\f, for if m(N) =p*Q with /? = /!/, we have 

N- 7 - - 1 
N 

which is impossible. Thus some/? <N. But in that event N -p > Q mdp\m(N - p), yielding: \\p\m(N), then 

p = m(N) or p\m(fl) 
for some n <N. 

5. All factors of m(N) terminate in 7, 5 or 9. The period for m(N) modulo 10 is 7, 5, 7,9, 9. The product of such 
elements terminates in 1, 5 or 9. Since N2 > mfN), at most one/7 can exceed N, and by (4) at most one prime factor 
new to the sequence can be introduced per term. If we assume for n < k all factors terminate in 7, 5 or 9,and if 
m(N) = P'Q for N > k, with/7 a new factor, then since Q terminates in 7, 5 or9 so must p. 

6. Further, it is true that every prime of the form 10n±1 is a member of the sequence. 
i. First we establish that 5 is a quadratic residue of every prime of the form Wn ±1 If p is an odd prime (p ? 5), 

then by the Law of Quadratic Reciprocity, 

( f ) (1)- <-v - =«. 
Thus (p/5) = (5/pi and if 5 is a quadratic residue of/7, p is also a quadratic residue of 5, that is, 5\x2 - p for some 
x. It is easily verified that/7 = £ 7 mod 10. 

ii. There are two incongruent solutions to x2 - 5 = 0 modp,z and p - z. One is odd, the other even..Let z be odd, 
and let N=(z+1)/2. 

N2-N- 1 = V4z2-5l p\z2-5 :.p\N2-N-1. 

7. An examination of the sequence reveals an unexpected number of terms which are prime. However, this situa-
tion cannot be expected to continue. It is known that primes of the form 10n±1 and 10n ±3 are equinumerous [ 1 ] , 
and that 2,1/p, P prime, diverges. 

5-1 p-l 
2 ' 2 

] T 1/n2-n-1 
n=2 

converges, as must the subseries consisting of terms which are prime. The implication being, terms, n2- n - 1, 
which are prime must become rarer as n increases. 

SOME TERIV1S OF mfn) = n2 - n - 1 

d 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

mfn) 

1 
5 
11 
19 
29 
41 

5-11 
71 
89 
109 

; n 

12" 
13 
14 
15 
16 
17 
18 
19 
20 
21 

mfn) 

131 
5-31 
181 

11-19 
239 
271 
5.61 
11-31 
379 
419 

n_ 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

mfn) 

461 
5-101 
19-29 
599 
11-59 
701 
5-151 
811 
11-79 
929 

n 

32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

mfn) 

991 
5-211 
19-59 
2941 
1259 
113 

5-281 
1481 
1559 
11-149 

n\ 

42 
43 
44 
45 
46 
47 
48 
49 
50 
151 

mfn) I 

1721 
5-192 

31-61 
1979 
2069 
2161 

5-11-41 
2351 
31-79 
2549 

n 

52 
53 
(54 
!55 
56 
57 
58 
59 
60 
,61 

mfn) 

11-241 
5-19-29 
2861 
2969 
3079 
3191 
5-661 
11-311 
3539 
3659 

n 

62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

mfn) 

19-199 
5-11-71 
29-139 
4159 
4289 
4421 
5-911 
4691 

11-439! 
4969 i 

mfn) 

19-269 
5-1051 
11-491 
31-179 
41-139 
5851 
5-1201 
61-101 
71-89 

11-19-31 

n 

82 
83 
84 
85 
86 
87 
88 
89 
90 
91 

mfn) 

29-229 
5-1361 
6971 
1P-59 
7309 
7481 
5-1531 
41-191 
8009 
19-431 

\ — 
92 
I 93 
94 
95 
96 
97 
98 
99 
100 

mfn) 

11-761 
5-29-5S 
8741 
8929 
11-829 
9311 
5-1901 
89-109 
19-521 
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A RAPID METHOD TO FORH FAREY FIBONACCI FRACTIONS 
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One question that might be asked after discussing the properties of Farey Fibonacci fractions [1] is the following: 
Is there any rough and ready method of forming the Farey sequence of Fibonacci numbers of order Fn , 
given n, however large? The answer is in the affirmative, and in this note we discuss the method. To form a standard 
Farey sequence of arbitrary order is no easy job, for the exact distribution of numbers coprime to an arbitrary integer 
cannot be given. The advantage of the Farey sequence of Fibonacci numbers is that one has a regular method of 
forming f* fn without knowledge of f* fm for m < n. We demonstrate our method with Fg = 34; that is, we 
form f'fg. 

STEP 1: Write down in ascending order the points of symmetry-fractions with numerator 1. (We use Theorem 1.1 
here.) 

A L 1 1 1 L I L > 
34 ' 21' 13' 8' 5 ' 3f 2f 1 

STEP 2: Take and interval (1/2,1/1). Write down successively as demonstrated the alternate members of the Fibonac-
ci sequence in increasing magnitude beginning with 2, less than or equal to Fn, for a prescribed f-fn. This will give a 
sequence of denominators 

I _ _ _ 
2f 5' 13' 34' 

STEP 3: Choose the maximum number of the Fibonacci sequence <Fn not written in Step 2, and with this num-
ber as starting point write down successively the alternate numbers of the Fibonacci sequence in descending order of 
magnitude until /. 

I 
21' 8' 3' 1' 

STEP 4: Put these two sequences together, the latter written later. (Theorem 1.2 has been used.). 

2' 5' 13' 34' 21' 8' 3' 1 ' 

STEP 5: Use the fact that f(r+k)n^ Ur-k)n have same denominators (Theorem 1.1) to get the sequence of denom-
inators in all other intervals. 

— 1 1 — 1 ? 1 — /
 ra ^ _ _ _ / _ „ _ _ _ f 

21' 34' 21' 34' 13' 34'21' 8' 21' 34' 13' 5' 13' 34' 21' 8' 3' 8' 21' 34' 13' 5'2'5' 13' 34' 21'8'3'1 

STEP 6: Use the concept of factor of an interval to form numerators. The numerators of (1/2, 1/1) will differ 
in suffix one from the corresponding denominators. The numerators of (1/3, 1/1) will differ by suffix ^ from the 
corresponding denominators, — . Use the above to form numerators and hence the Farey sequence in [0,1].The 
first fraction is 0/Fn_i. 

A 1 A A A A A 1 A A A 1 A A A 
21' 34' 21' 34' 13' 34 '21' 8 '21' 34' 13' 5 '13' 34' 21' 

I I I A M A I I I A il i3_ s_ i i 
8 '3 '8 '21' 34' 13' 5 '2 '5 '13' 34' 21' 8' 3' 1 ' 

31 
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To form the fractions in the intervals (1,2), (2,3), (3,5), •••, write the reciprocals in reverse order of the fractions 
in (1/2, 1) in f*fn+1, of (1/3, 1/2) in f*fn+2,-, respectively. This gives f* fn as far as we want i t 

in fact, one of the purposes of investigating the symmetries of Farey Fibonacci sequences was to develop easy 
methods to form them. 
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A SIMPLE PROOF THAT PHI IS IRRATIONAL 

JEFFREY SHALLIT 
Stydent, Lower IVSerion High School, Ardniore, Pennsylvania 19003 

Most proofs of the irrationality of phi, the golden ratio, involve the concepts of number fields and the irrational-
sty of s/5. This proof involves only very simple algebraic concepts. 

Denoting the golden ratio as 0 , we have 
0 2 _ 0 - / = 0 . 

Assume (j> = p/q, where/? and q are integers with no common factors except 1. For if /? and q had a common factor, 
we could divide it out to get a new set of numbers,p' and q'. 

Then 
(p/q)2-p/q-1 = 0 

(p/q)2-p/q = 1 
2 2 

p^-pq = q 
(1) p(p-q) = q2 

Equation (1) implies that/? divides q2, and therefore,/? and q have a common factor. But we already know that/? 
and q have no common factor other than 1, and p cannot equal 1 because this would imply q = 1/<j>, which is not an 
integer. Therefore, our original assumption that </) = p/q is false and 0 is irrational. 
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This paper deals with integer sequences governed by linear recursion relations. To avoid useless duplication, se-
quences with terms having a common factor greater than one will be considered equivalent to the sequence with the 
greatest common factor of the terms eliminated. The recursion relation governing a sequence will be taken as the 
recursion relation of lowest order which it obeys. 

Symmetric sequences are of two types: 
A. Sequences with an Unmatched Zero Term 

(D - 3 T - 3 , T-2, T-u T0. TUT2. T3.~ 
with 

Tn = T-n 

B. Sequences with All Matched Terms 

(2) ^T„3fT„2,T-1fTuT2,T3, -

FIRST-ORDER SEQUENCES 

The recursion relation of the first order is: 

(3) Tn+1 = aTn 

which will have all terms integers only if a = ±1. The only sequences governed by such relations subject to the initial 
restrictions given above are: 

- 1 1 1 1 1 1 -if if if if if if 

if if if if if if 

These sequences and the sequence — Of Of Or Qf — will be eliminated from consideration in the work that follows. 

SECOiD-ORDER SEQUENCES 

For a recursion relation 
Tn+1 = aTn+hTn^ 

to have ail integer terms, the quantity h must be +1 or - 7. The same applies to sequences of higher order. These will 
be denoted Case I (+1) and Case II (-11 

Case I. Tn+1 = aTn+ Tn^ 

A. Zero Term 

To = T2~aTjf 7"_7 = Tf-aTo = T]-aT2 + a Tj = Tj , a(aT^-T2) = 0. 
Thus either a = 0 or TQ = 0. a = 0 leads to sequences such as: 

-2f3f2f3f2f3f2f3f-

If T0 = Of 
T-2 = T2 = To-aT-<i = -aT-i . 

Hence 7~2 = aTi and T2 = -aTj with the result that a = 0. 

33 
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B. No Zero Term 

r_; = T2-aT1 = T7, (a+1)T1 = T2, T-2 = T2 = T7-aT.7 = (1 -a)T7 . 

Therefore aT-i ~ 0. If T7 = 0, all the terms are zero. If a = 0, we have the type of sequence given above for this value. 

Case I I . Tn+i = aTn- Tn.7. 

A. Zero Term 

(4) T0 = aT7-T2, T-<! = T7 = aT0-T1 = a2T7-aT2-T7 

(a2 -2)T7-aT2 = 0, f_2 = T2 = aT.7 - T0 = aT„1-aT1 + T2 = T2 . 

If symmetry holds up to Tn, then 

r.^.y = aT.n - T-.n+7 = aTn - Tn„7 = Tn+7 

and hence the entire sequence will be symmetrical. 

EXAMPLES 

For any value of a, select T7 and T2 to satisfy (4) in order to generate a symmetric sequence. Thus for a = 3, 7T7 = 
3T2, giving the sequence: 

••47, 18,7,3,2,3,7, 18,47, • 
governed by 

Tn+1 = 3Tn- Tn-i . 

For a = 8, 62T7 =8T2, giving the sequence: 
- 1921,244,31,4, 1,4, 31,244, 1921, -

governed by Tn+7,= 8Tn-Tn„7 . 
8. l\So Zero Term 

The relations 
7"_7 = T7 = aT7 - T2 and T„2 = aT„7 - T7 

both lead to 
(a - 1)Tf = T2 . 

If T-n = Tn holds up to n, then 

T-.n^ = aT.n - T-n+7 = aTn - Tn„7 = Tn+7 

and the symmetry will be maintained throughout the sequence. 
For a = 5, T2 = 4T7 giving a sequence 

...19,4, 1, 1,4, 19,91,436, -
governed by 

Tn+7 = 5Tn- Tn„7 . 

THIRD-ORDER SEQUENCES 
Case I. Tn+1 = aTn+bTn,7 + Tn„2. 

A. Zero Term 
Tn-2 = Tn+1 -aTn-bTn.7, T0 = T3-aT2~bT7, 

F_7 = T7 = T2-aT7-bT0 = T2-aT7 -hT3 + abT2 + b2T7 

(5) (b2-a- 1)T7 + (ab + 1)T2 = bT3 . 
Also 

T-2 = T2 = T7-aT0-bT„7 = T7 -aT3 + a2T2 + ahT7 -bT7 

from which 
(6) (ab-b + 1)Tj + (a2 - 1)T2 = aT3 

T-3 = T3 = TQ- aT-7 -bT„2 = T3-aT2-hT7 -aT7 -hT2 



1975] SYMMETRIC SEQUENCES 35 

so that 
(7) (a+b)(T1 + T2) = 0 . 

Equation (7) will hold if b = -a which makes (5) and (6): 
(5') (a2 - a - 1)T1 + (1 - a2)T2 = -aT3 

(6') (-a2 + a+1)T1 + (a2-1)T2 = aT3 

which aire the same relation. Since 

T4 = aT3~bT2+ Tf and f „ 4 = 7~_? -aT^-hT.s = Tf -aT2 + aT3 = T4 

the symmetry persists up to this point. An entirely similar argument shows that it holds in general. 
EXAMPLE. For a given value of a, many symmetric sequences can be determined. For a = 5, 

19T1-24T2 = -5T3 

from which one may derive any number of symmetric sequences obeying the relation 

Tn+i = 5Tn - 5Tn^ + Tn..2. 

Examples are: 
- 1350,361,96,25, 6, 1, 0, 1, 6,25,96,361, 1350, -

•363,98,27, 8, 3,2, 3, 8,27,98,363, - , -362,97,26, 7,2, 1,2, 7,26,97,362, ••• 

B. No Zero Term 

Tn+1 = ^n+bTn.1 + Tn.2f Tn.2 = Tn+1-aTn-bTn„7, r_; = T1 = T3-aT2-bT1 

(8) (h+1)T1+aT2 = T3 

T-2 = ^2 = T2-aTi -hT„i 

(9) (a+b)T1 = 0 

which is satisfied if b = -a 
T-3 = T3 = Tj-aT-j-bT-2 

(10) T3 = (1-3)1-1+372 

which agrees with (8) when b = -a. 
If the symmetry holds to Tn = T„n, then 

T-n-1 - T-n+2-aT-.n+1+aT„n = T'^2 ~ aTn-i + aTn = Tn+1 

so that all corresponding pairs are equal. 
EXAMPLES. For a =4, T3 = 4T2 - 3Ti yields many sequences governed by 

Tn+1 = 4Tn-4Tn„1 + Tn-2 

•233,89, 34, 13, 5,2, 1, 1,2, 5, 13, 34, 89,233, -
.. 177, 67,25,9,3, 1, 1,3,9,25, 67, 177, -

•265, 100,37, 13,4, 1, 1,4, 13,37, 100,265, -

Case I I . Tn+1 = aTn+bTn.1 - Tn.2, Tn.2 = aTn+bTn-i -Tn+1 

A. Zero Term 
T0 = aT2 + bT1-T3, 7"_/= Tf = aT1+bT0-T2 = aT1 + baT2 + b2T1 -bT3-T2 

(11) (a+b2-1)T1 + (ba-1)T2-bT3 = 0 

T-2 = ^2 = aTo-bT-1 — Tf = a T2 + abTj -aT3 + bT„i - 7"/ 
(12) (ab+b~1)T1 + (a2-1)T2~aT3 = 0 

T-3 = T3 = aT-j +bT2~ aT2 - bT? + T3 

(13) (a~b)(T7-T2) = 0 

so that b =a satisfies this relation. 
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(a2-fa- l)Tj + (a2- 1)T2~aT3 = 0. 

Equations (11) and (12) both become for b = a: 

(14) 
For a = 2, 2T3 = 5Tj + 3T2 yields an infinity of sequences satisfying 

Tn+1 = 2Tn+2Tn„1.~ Tn-2 

•64,25,9,4, 1, 1, 0, 1, 1,4,9,25, 64, -

.. 129, 49, 19, 7, 3, 1, 1, 1, 3, 7, 19,49, 129, -

•. 194, 73,29, 10,5, 1,2, 1,5, 10,29, 73, 194, -
•259,97,39, 13, 7, 1, 3, 1, 7, 13, 39,97,259,-

B. Mo Zero Term 
Tn-2 = Tn+1-aTn-bTn.1r T^ = T3~aT2-bT1 

(15) (b + 1)T1+aT2 = T3 

T-2 - T2 = T2-aTf -bT„f 

(16) (a+htff = 0 . 
Equation (15) becomes T3 = (1 -a)T1+aT2 for b = -a. Now, T„3 = T3=Ti - aT„i -bT-2 

(17) T3 = (1~a)T1+aT2 

in agreement with (15) if b = -a. 
T-4 = 7~_/ -aT- 2 + aT-3 = aT3-aT2+Ti 

whereas 
T4 = aT3 — aT2 — 7"/ 

so that T1 = 0 if 7*_4 = T4. 
Similarly setting T„s= T5 makes T2=0, etc. Hence this case yields nothing more than the trivial result -0,0,0,0,0, ". 

FOURTH-ORDER SEQUENCES 

Case I. Tn+1 = aTn+ bTn^ + cTn„2+Tn-3 

A. Zero Term 

Tn-3 = Tn+i-aTn-bTn-i-cTn-2, T0 = T4-aT3-bT2-cT-j 

T-i = Tj = T3-aT2-bTj -CTQ = T3-aT2-bT-j - cT4 + acT3 + bcT2 + c- Tj 

(c2-b-1)T1 + (bc-a)T2 + (ac+1)T3-cT4 = 0 (18) 

(19) 

(20) 

(21) 

T-2 = T2 = T2-aT<j -bTo- cT-i = T2-aTj -bT4+abT3 + bdT2 + bcTj -cT7 

(be -c-a)T1+b2T2 + abT3-bT4 = 0 

T-3 = T3 = Tj -aTQ-bT-i - cT„2 = 7*/ - aT4 + a2T3 + ahT2 + acTi -bTi - cT2 

(ac-b + 1)T7 + (ab -c)T2 + (a2- 1)T3-aT4 = 0 

T-4 = T4 = TQ — aT^f - b T-2 - cT„3 = T4-aT3-hT2- cTj - aTf - bT2- cT3 

(a + c)T1+2bT2 + (a+c)T3 = 0 . 

if this set of four equations in T-j, T2, T3, T4 is to have a non-zero solution, the determinant of the coefficients 
must be zero. 

cr-b - 1 be-a ae+1 

be-c-a ab 
ae-b + 1 ab-c az - 1 -a 

a + c 2b a+c 

= 0 

from which 

(22) (a+b+c)(-a+h -c)(a2-c2 + 4b) = 0 
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Before proceeding to further analysis some relations will be derived from equations (18) to (20). From (18) and (19) 

(23) (c2 + ac-h2-h)T1-abT2 + bT3 = 0 . 

From (19) and (20) 

(24) (b2-b-ac-a2)T1+bcT2 + bT3 = 0 

and from (23) and (24) 

(25) (c2 + a2 + 2ac-2b2)T7 = b(a + c)T2. 

THECONDITIONa*Z>+<? = 0 
b = -a -c substituted into (25) gives 

(c2 + a2 + 2ac - 2c2 - 2a2-4ac)T1 = -(a + c)2T2 

so that Tj = T2. Then by (21) 

(a + c)T1 + 2(-a - c)T1 + (a + c)T3 = 0 

so that 73=7" / . By (18), 

(c2 + a + c- 1 -c2 -ac-a+ac + 1)T7 = cT4 

so that T4 = Tf. If the terms up to Tn are all equal to T7, then 

Tn+j = aTj + (-a - c)T7 + cT1 + T7 = 7"7 

so that all terms of the sequence are the same. 

THE CONDITION -a+b-c = 0 

b = a + c leads to 
T2 = -T1, T3 = Tf, T4 = -T-j . 

If this alternation holds up to Tn, then 

Tn+1 = [a(-1)n~1+(a + c)(-1)n + c(-1)n-1+ (-1)n]T1 = (-1)nT1 

so that the alternation continues. 
THE CONDITION a2 - c2 + 4h = 0 

a and c must be of the same parity. 
EXAMPLE: a = 1, b = 12, € = 7 . 
Using Eqs. (18), (19) and (20) we obtain: 

36T7 + 83T2 + 8T3-U4 = 0, 76T7 + 144T2 + 12T3 - 12T4 = 0, -4T7 + 5T2 + OT3-T4 = 0. 

from which T7: T2: T3: T4 = 3: -7: 18: -47. 
Using the recursion relation 

T„+1 = Tn + 12T^7 + 7Tn„2 + Tn„3 

and a corresponding backward recursion relation, the following terms were obtained: 
•843, -322\ 123, -47, 18, -7, 3, -2, 3, -7, 18, -47, 123, -322,843, ••. 

Second-Order Factor 
If the symmetry is to continue beyond a term T„n, the condition for this would be: 

T-n-t = Tn+1 = T-.n+3-aT-n+2-bT-n+1-cT-.n = Tn„3-aTn-2-bTn-7 - cTn . 
But 

Tn+1 = aTn+bTn-i+cTn-2+Tn-3 . 

Hence there is a relation 
(a + c)Tn+2bTn-1 + (a + c)Tn„2 = 0. 

But since 4b = (c - a)(c + a) we have in fact 

Tn = (a-c)Tn-j/2-Tn-2 . 
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Thus if the symmetry is to continue the terms must satisfy a second-order recursion relation. That they do so can 
be seen from factoring 

x4-ax3-bx-c-1 = 0 into factors (x2 + Ex+ 1)(x2 + Fx - 1) = 0, 
where E is (c-a)/2. The conditions would be: 

(c-a)/2 + F = -a or F = -(a+c)/2 

from the coefficient of x cubed and the same value of F comes from the coefficient of x. Then the coefficient o fx 2 

would be: 
EF = (~c2 + a2)/4 = -b 

as required. Hence the terms obey this second-order relation and this insures the continuation of symmetry beyond 
T-4. Note that this is not a proper fourth-order symmetric sequence. 

B. No Zero Term 

Tn-3 = Tn+1-aTn~bTn^-cTn.2f T.f = T7 = T4- aT2- bT2- cT1 

(26) (c+1)T1+bT2 + aT3-T4 * 0 

T-2 = T2 = T3 -aT2 -bTi - cT-i 

(27) (b+c)T7 + (a + l)T2-T3 = 0 
T-3 = T3 = T2-aT1 -bT^ -cT..2 

(28) (a + b)T7 + (c-VT2+T3 - 0 
T-4 = T4 = T] - aT-1 -bT-2 - cT-3 

(29) (a- 1)T1+hT2 + cT3+T4 = 0. 

To have a non-zero solution the following determinant must be zero. 

c+1 b a -1 
b+c a+1 -1 0\ 
a+b c-1 1 0\ 
a-1 b c 1\ 

= 0 

or 
(30) (a+b+cHc2-a2-4b) = 0 . 
As in the zero case, the condition a+ b +c = 0 leads to a sequence where all terms are the same. The other condition 
requires that the fourth-order recursion relation have a second-order factor which the terms of the symmetric sequence 
must obey. Hence this is a degenerate case also. 

Case I I . Tn+1 = aTn+bTn-<,+cTn„2-Tn-.3 

A. Zero Term 

Tn-3 = aTn+bTn-i + cTn„2- Tn+1 

If the symmetry is to continue indefinitely 

T-n„1 = aT-.n+2 + bT„n+1+cT„n- T-n+3 

Tn+1 = aTn-2 + bTn„i+cTn-Tn-3 = aTn+bTn„1 + cTn.2-Tn-3 

(a-c)(Tn„2-Tn) = 0 

so that a = c unless there is to be a recursion relation of lower order. 
TQ = aT3 + bT2 + aTf - T4, T.j = Tj = aT2 + bTj +aTQ- T3 

from which 
(31) 

from which 

(32) 

(a2 + b- 1)T1-ha(1 + b)T2 + (a2-1)T3 = aT4 

T-2 = T2 = aT1+b(aT3 + bT2 + aT1- T4)+aT^- T2 

a(2 + b)T1 + (b2-2)T2 + abT3 = bT4 . 
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Other relations simply repeat one of the above. Eliminating T4 from (31) and (32): 

(33) (b2 -b -2a2)T1+a(b+2)T2-bT3 = 0 

For given a and b, a suitable selection of 7"/ and T2 will given an integral value for T3. Thus for a = 7, b = -5, 

-68T7-21T2 = -5T3 . 
Tf = 1, T2 = 2, T3 = 22 . 

Then from (31), T4 = 149. The symmetric sequence: 

-38494, 6029,946, 149,22,2, 1,2, 1,2,22, 149,946, 6029,38494, •• 

is governed by the recursion relation: 
Tn+i = 7Tn - 5Tn„i + 7Tn„2 - Tn„3. 

B. No Zero Term 

As before the continuation of symmetry for all terms requires that a = c in the relation 

Tn+1 = aTn+bTn.1 + cTn„2-Tn-3 . 

Two relations are obtained from the requirement 717 = T7 and T-2= T2, namely: 

(34) (a-1)T1+bT2 + aT3 = T4 

(35) (b+a)T1 + (a-1)T2 = T3 

The relations for T-3 and T-.4 repeat these in inverse order. 
EXAMPLE: a = -2, b = 5, ~3T1-3T2 = T3 

T7=4, T2 = 7, T3 = -9. 
Then from (34), T4 = 41. 

The symmetric sequence: 
-6399, -1810, 506, -145,41, -9, 7,4,4, 7, -9,41, -145, 506, -1810, 6399, ••• 

obeys the recursion relation: 
Tn+1 = -2Tn+5Tn-i -2Tn.2-Tn-3 

FIFTH-ORDER SEQUENCES 

Case I. Tn+1 = aTn + bTn.7 + cTn-2 +dTn.3+Tn„4 

A. Zero Term 

To insure symmetry for all n we set: 

r_„„7 = Tn+1 = T-n+4-aT„n+3-bT„n+2-cT„n+1 -dT„n = Tn„4-aTn„3-bTn„2-cTn„7 -dTn 

Combining this with the original recursion relation: 

(a + d)(Tn + Tn„3) + (b+ c)(Tn_7 + Tn.2) = 0 

so that d = -a and b = -c are necessary conditions to prevent reduction to a lower order recurrence relation. 
Using the same techniques as previously we have the relations: 

(36) (a2 + b- 1)Ti + lab -b)T2 + (-ab -a)T3 + (1 - a2)T4 + aT5 = 0 

(37) (ab-b+atf-i + fb2 -a-1)T2 + (1 -b2)T3-abT4+bT5 = 0 . 

Eliminating T5 from (36) and (37) gives: 

(38) (b2 - b + ab - a2U-I + (a2 + a - b2)T2 + l-ab - a)T3 + bT4 = 0 . 

EXAMPLE: a = 5, b =-3 from which 

-28T1+21T2+WT3 = 3T4 

which is satisfied by T7 = 1,T2 = 3, T3 = 4,T4 = 25. Then from (36) 

21T7 - 12T2 + WT3 - 24T4 = -5T5 



40 SYMMETRIC SEQUENCES I F E B -

which gives T5 = 115. 
The sequence 

••• 190299, 43060,9745,2203,498, 115,25,4,3, 1, -2, 1, 3,4,25, 115,498,2203,9745,43060, 190299, •• 

is governed by the recursion relation: 

Tn+1 = 5Tn - 3Tn^ + 3Tn„2 - 5Tn-3 + Tn-4 . 

B. !\!o Zero Term 

An entirely similar analysis leads to two relations: 
(39) T5 = (1-a)T1-bT2 + bT3 + aT4 

(40) T4 = (-b-a)Ti + (b + 1)T2 +aT2 

EXAMPLE, a = 5, b =-3. From (40), 
T4 = ~2T1-2T2 + 5T3 

which is satisfied by T?=1, T2 = 3, T3 = 4, T4=12. 
Then by (39), T5 =-4T1+3T2-3T3 + 5T4 = 53. The sequence 

.. 19428,4397,995,227, 53, 12,4,3, 1, 1,3,4, 12, 53,227,995,4397, 19428, -

is governed by the recursion relation: 
Tn+1 = 5Tn ~ 3Tn-1 + 3Tn.2 - 5Tn-3 + Tn_4 . 

Case I I . Tn+1 = aTn+ bTn-i + cTn-2 + dTn„3- Tn.4 . 

In this case symmetry in the sequence requires that a=d and b =c. 

A. Zero Case 

The final relations obtained from the analysis are: 

(41) (a2 + b- 1)T1 + (ab+b)T2 + (ab+a)T3 + la2- 1)T4 = aT5 

(42) (ab+a+b)T1 + (b2 + a-1)T2 + (b2- 1)T3 + abT4 = bT5 

from which 
(43) (b2 -b-a2-ab)T1 + (b2-a2 + a)T2 + (ab+a)T3 = bT4 . 

EXAMPLE. a = 3, b =-7. (43) becomes 
68T1+43T2- 18T3 = -7T4 

which is satisfied by 
T1 = 1, T2 = 3, T3 = 9, T4 = -5 . 

Then from (41), 
T1 -28T2- 18T3 + 8T4 = 3T5 gives T5 = -95 . 

The symmetric sequence: 
-2203, -191, -305, -95, -5,9,3, 1, -1, 1, 3,9, -5, -95, -305, -191,2203, -

is governed by the recursion relation: 
Tn+i = 3Tn - 7Tn-.<i - 7Tn-2 + 3Tn-3 - Tn.4 

B. No Zero Term 
The relations obtained are: 

(44) (a-1)T1+bT2 + bT3 + aT4 = T5 

(45) (a+b)T7 + (b-1)T2 + aT3 = T4 

(46) bT1+aT2 = T3 

EXAMPLE, a = -5, b = 7. (46) becomes 7T7 - 5T2 = T3 which is satisfied by 

Tj = 1, T2 = 3, T3 = -8 . 
Then (45) 

2Ti + 6T2 - 5T3 = T4 gives T 4 = 60.. 
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Finally (44) -6T1 + 7T2 + 7T3 - 5T4 = T5 

gives a value 7*5= -341. The symmetric sequence: 

- 72667, -12195,2053, -341, 60, -8, 3, 1, 1, 3, -8, 60, -341,2053, -12195, 72667, ••• 

is governed by the recursion relation: 
Tn+1 = -5Tn + 7Tn.1 +7Tn_2-5Tn„3- Tn.4 . 

CONCLUSION 

From this investigation the following general approach to creating symmetric sequences of integers governed by 
linear recursion relations emerges. 

(1) Given a linear recursion relation of order k, 

Tn+1 = aiTn+32Tn-1
 + - +3k-lTn~k+2+Tn~k+i 

the condition of symmetry in the sequence requires that: 

aj = -ak„j 
and for the recursion relation: 

Tn+i = aiTn+a2Tn-i + - + ak-iTn„k+2~Tn-k+1 

symmetry requires that aj = ak-j. 
(2) For the reduced number of parameters a,-, set up a corresponding number of symmetry conditions using the 

first few terms of the sequence. ' 
(3) Using these conditions, select values for the parameters a-, and then find starting values in integers that satisfy 

the given conditions. 
-kkkkkkk 



SOIVie INTERESTING NECESSARY CONDITIONS 
FOR (a-l)"+(h-l)n -(c-l)n = 0 

jOHtyw. liXYMm 
Virginia Polytechnic Institute and State University, BSacksbyrg, Virginia 24061 

In the present note we obtain certain inequalities which are necessary for the equation of the title to hold for posi-
tive integral n and real a,bf and c satisfying 1 <a <b <c, and illustrate with several examples. Several preliminary 
lemmas are required. 

lemma 1. (a - 1)x + (b - 1)x -~(c- 1)x vanishes at x = n if and only if 

ax + bx-cx = Pn-rfx) 

at x = 0, 1, •-, n, where Pn„f(x) is a polynomial of degree n - / „ 

Proof. Apply the nth order difference operator An to ax+bx-cx to obtain 

An(ax +bx - cx) = fa- 1)nax + (h- 1)nbx - (c - 1)ncx , 

which vanishes a t * = 0 if and only if ax +bx - cx behaves as a polynomial of degree n - 1 d\x = Q, 1, ~-,n. 
A result in Po'lya and Szego [1] is needed for the next lemma and may be stated as follows for present purposes: 

\f a <b <c and \i i , \i2, and JJLJ are positive, then 

\x1ax +\x2bx-\x3cx 

has exactly one real simple zero. As an immediate consequence of this and other elementary considerations we have 
the following result. 

Lemma 2. Let 
fix) = ax+bx-cx , 

where 7 <a <b <&. Then r '(x) has exactly one real simple zero, one stationary point at which r ' has a positive 
maximum and to the right of which rk' is monotone decreasing. 

In the following we will always let f(x) and Pn„i(x) be as stated in Lemmas 1 and 2. 
Lemma 1 says that 

F(x) ss fM-P^jM 

has at least n + 1 zeros. That this is the exact number is assured by the next result. 
Lemma 3. F(x) = f(x) - Pn~i(x) has at most n + 1 zeros (counting multiplicity). 
Proof. Assume that F has at least n+2 zeros. Then FM has at least 2 zeros. Since P^ = 0 this implies that rn* 

has 2 zeros in contradiction to Lemma 2. 
Write 

P„~iM = c1+c2x + - + cnx
n~1 . 

Our final preliminary result may be stated as follows. 
Lemma 4. cn > 0. 
Proof We know that 

fM-Pn^M = 0 

at the n + 1 points x = 0, 1, - , n. Thus 

f(n-1)(x) = (n-1)!cn 

at two points which because of Lemma 2 implies thatcn is positive. 

42 
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Now consider the special case when n = 2. 

Theorem 1. If fa - 1)2 + (b- I)2 -(c-1)2 = 0 then 
(1) ah/c <e

a+b~c~\ 

(2) aahb/cc > ea+b~c-1
 f 

and 
(3) aa W 2 < ea+b~c-1 . 

Proof. By the preceding lemmas we know that in Pf(x) = cj + C2X we have C2> 0, that 

ffx) = ax+bx-cx 

is monotone decreasing for all sufficiently large*, and that ffx) -Pjfx) has simple zeros at precisely x = 0, 1,2. This 
requires that f'(2) < P'j(2) and in turn f(1) > P'jfl) and f'(0) < P*j(0). In other words, using the last of the three in-
equalities, we have ln(ah/c) <c'2- ^ 2 c a n be easily determined from the coincidence of ffx) andP7(x) atx = 0, 1,2 
to give C2 = a + b - c - 1. Hence, finally, ab/c <ea+b~c~1. The inequalities (2) and (3) follow in a similar manner 
from f'(1)>P'i(1i and f'(2) < P'](2). 

Forthecaseof n = 3, the following result can be obtained by arguments similar to those used above for Theorem 1. 
The proof is therefore omitted. 

Theorem 2. If (a - 1)3 + (h- 1)2 -fc- 1)3= 0, then 
(1) ab/c > e

a+b-c-Uc* , 
(2) aabb/cc < ea+b-c~1+c* , 
(3) aa\b"/cc2 >Ba+b-c-1+2c- , 
and 
(4) aa3bb3/c°3 < ea+b-c-1+5c, # 

where 
c2 = 1/2[a2 + h2-c2+1 -2a-2b+2c]. 

Inequalities of a similar nature may be found for any given value of/?, however let us proceed to a result for arbi-
trary n. By Ln (a) we shall mean the partial sum of the first n - 1 terms of the formal Maclaurin series for log a, i.e., 

L„(a) = i : (-Dk+1 aj. 
k=1 

Theorem 3. Let (a - 1)n + (b -1f - fc - If = Q. Then 
(-If (loga + logb-log c) < f-lf[Ln(a) + Ln(b)-Ln(c)]. 

Proof. Proceeding as for Theorem 1, we find that 
(-iffW < (-1)nP'n-7(0). 

Write 
n-1 

Pn-lM = JZ °^ik} > 
k=0 

where 
x(k) = x(x-D- (x-n + 1). 

Gregory-Newton interpolation gives 
ck = Akf(0)/k! . 

Now 
A V = (a-1)kax , 

from which it follows that 

Akf(0) = (a-1)k + (b-1)k-fc~1)k . 
Therefore, since 
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x=0 
d_y(k) 

dxX 

we have 
n-1 

(-1)n(lna+lnb-lnc) < (-1)" ^{-D™ ttj^lL [(a - 1)k+ (b - 1)k - (c - 1)k ] , 
k=1 

as desired. 
We give an indication, in the following examples, of the sharpness of the inequalities obtained above. First we take 

n = 2, a = 4, b = 5, in which case inequalities (2) and (3) of Theorem 1 yield c < 6.5 and c > 5.9, respectively, brack-
eting the known solution c = 6. This example corresponds to the well-known Pythagorean triple 3,4,5which satisfies 
32 + 42 = 52. If we now take n = 3, a = 2, b = 3, then inequalities (2) and (4) of Theorem 2 give c<3.2 and c> 
3, whereas the actual solution of 

1+23-(c-1)3 = 0 
is 

c = / + \ # " - 3.08. 

The sharpness of these results seems rather surprising when one considers that they are based on such simple consid-
erations as the relative slope of two curves at their points of intersection. 

REFERENCE 
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FIBONACCI TILES 
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1. INTRODUCTION 

The conventional method of tiling the plane uses congruent geometric figures. That is, the plane is covered with 
non-overlapping translates of a given shape or tile [1 ] . Such tilings have interesting algebraic models in which the 
centers of each tile play an important role. 

The plane can also be tiled with squares whose sides are in 1:1 correspondence with the Fibonacci numbers in the 
manner shown in Fig. 1 and such patterns can be used to demonstrate interesting algebraic properties of the Fibon-
acci numbers [2 ] . 

Similar spiral patterns can be obtained with squares whose sides are in 1:1 correspondence with similar recursive 
sequences of positive real numbers as in Fig. 2. 

2 

3 

1 

1 

5 

Figure 1 

Figure 2 

We will show that the centers of the squares in such a pattern all lie on two perpendicular straight lines and the 
slopes of these lines are independent of the choice of f-j and /£- Furthermore, the distances of the centers from the 
intersection of these two lines also form a recursive sequence. 

2. CONSTRUCTION OF THE PATTERN 

The pattern in Fig. 2 is a counter-clockwise spiral of squares which fills the plane except for a small initial rectangle. 
The side of the ith square is denoted by fj and the f,- are defined by 

(1) fj+2 = fj+i + f; for i>1 and 0<fj<f2 . 

The side of the first square is f? and for notational convenience we define 

ff = fi+2~fj+l f o r i<0 . 
The position of successive squares in the spiral can be conveniently expressed in terms of an appropriate corner 
point of each square and a sequence of vectors which are parallel to the sides of the squares. Consider the sequence 
of vectors I// defined by . 

Vj = (W Vi+1 = Vi [_° f
0) for / > / . 

This sequence consists of four distinct vectors: 
45 

f /-f 

1 
f. 

1 

fM 
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(2) V, e { (1,0), (0,1), (-1,0), (0,-1) } 

The vestors in this sequence have the property that V,+2 = - I / / . 
If Pj denotes the lower right corner point of the first square (see Fig. 3) then successive corner points are given by 

(3) .P, = PM + fmV,. 

The center C; of the/ square is obtained from the corresponding corner point (see Fig. 4) by means of the equation 

(4) 

f4 H, 0) 

C, = P; + fi (Vi+1-V;) . 

1 

f3 

- * 

f2 

w f1 
i 

f3 (0,1) 

-i/2 fty. 

1/2 f.V.+1 

—H 

I 
I 

Figure 3 Figure 4 
We now proceed to obtain an expression for the vector between alternate centers. Some sample values for/3/ and C\ , 
are given in Tables 1 and 2. 

TABLE 1 

Pi 

1 
2 
3 
4 
5 
6 
/ 
8 
9 
10 
11 
12 

1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 

(1,-1) 
(1,2) 
(-4,2) 
(-4-6) 
(9, -6) 
(9,15) 
(-25,15) 
(-25,40) 
(64, -40) 
(64,104) 
(-169,104) 
(-169,-273) 

Ci d;y/W 

(0.5, -0.5) 
(0,1) 
(-2.5, 0.5) 
(-1.5,-3.5) 
(5, -2) 
(2.5,8.5) 
(-14.5,4.5) 
(-8, -23) 
(36.5,-12.5) 
(19.5,59.5) 
(-97, 32) 
(-52.5,-156.5) 

3 
4 
7 
11 
18 
29 
47 
76 
123 
199 
322 
521 

f-4, 2) U, 2) 

(1, -D 
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TABLE 2 

Pi Cf djyJIO 

1 
2 
3 
4 
4 
6 
7 
8 
9 

10 
11 
12 

1 
3 
4 
7 

11 
18 
29 
47 
76 

123 
199 
322 

(2, -1) 
(2,3) 
(-5,3) 
(-5. 8) 
(13,-8) 
(13,21) 
(-34,21) 
(-34, -55) 
(89, -55) 
(89,144) 
(-233,144) 
(-233, -377) 

(1.5,-0.5) 
(0.5,1.5) 
(-3,1) 
(-1.5,-4.5) 
(7.5,-2.5) 
(4,12) 
(-19.5,6.5) 
(-10.5,-31.5) 
(51,-17) 
(27.5,82.5) 
(-133.5,44.5) 
(-72,-216) 

5 
10 
15 
25 
40 
65 

105 
170 
275 
445 
720 

1165 

Lemma 1. 

(-5. 3) (2, 3) 

4 

—.— —e 

3 

——A 
1 

_ 4 
(2, -1) 

3. STRUCTURAL PROPERTIES 

Ci-ch2 = f-f (3Vi-vi+1). 

Proof. From Eq. (4), we have 
Cj = Pi+j (Vi+1-Vi) 

(5) 

Ci-2 = Pi-2 + fjy <V',-1 - Vi-2> = Pi-2 + f ± f (V,~ Vi+1) 

Ci - Ci-2 = Pi ~ Pi-2 + j (Vj+1 - VS) - fJf- (V; - Vi+1) . 

Combining Eqs. (5) and (6) and collecting terms in Vf and V-l+i we have 

d - Cj-2 = y*(2fi+ 1-fi~ fi-2) Vj + Wj-2 - fi) Vi+1 • 

Using the recursive definition of the // (see Eq. (1)), this reduces to 

W ~ W-2 ~ -J- Vi - ~f~ Vj+1 • 

Corollary 1.1. The distance between alternating centers is given by : 

\Cj-Cj-2\ y 

Proof. From the definition of the I// we have 

I//. I// = / and VrVi+1 = O 
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\C, - Ch2\
2 = (d - Ch2) -(d - CM) =94f?-l+lff?-l = f £, . 

Lemma 2. Cj,Cj+2, and C/+4 are colrnear for all / > / . 
Proof. From Lemma 1 we have 

Cl+4 ~ Ci+2 = ̂ ~ (3Vi+4 - W = - fjjf (3Vi+2 - Vi+3) = J^Jjf- (3Vi+2 - i / , - ^ = - ^ ^ ^ 2 - Cs). / / //-f 3 * Ti+3 
Hence C/̂ .4 - Cj+2 is a multiple of Cj+2 - £7 and both vectors have the point Cj+2 in common. 

Theorem 1. The C; all lie on two perpendicular straight lines. The slopes of these lines are Sand - (1 /3 ) inde-
pendent of the choice of fj and f2. 

Proof. By Lemma 2 we need only consider the slopes of C4 - C2 and C3- Cf. 

C4-c2- (-%-*) and c3-c,- (-%.<£) . 
Hence the slopes are 3 and —(1/ 3). 
Definition 1. Let / be the point of intersection for the two lines in Theorem 1, then the distance from £,- to / will 

be denoted by*/,-. That is dj=\Cj- l\. (Sample values are given in Tables 1 and 2.) 
Lemma 3. 

d, + dh2 = f-±!f±. d? +df_, = X(%,+f?2) • 

Proof By the definition of dj we have 
dj + dh2= \Ci-Cj-2\ 

and hence the first equation follows from Corollary 1.1. 
From Equation 4, we have 

CM = Ph1 + fif (Vi- V,:j) = Ph1 + ff1 (Vi+ Vi+1) 

C.-C,:, =Pi-Pg_j + fJ(v/H-Vi)-ffl (Vi+Vi+1). 

Since P-, - P;.i = fi+1 V; we have 
C,-CM = 'A(2fi+1-fi-fhi)Vi + y,(fi-fh1)Vi+1 = fJ±lVi + f-if-Vi+1 . 

\Cf - C,., f = (Cj - Ch1)(Ci - Ch1) = %(fi+i + fh2) . 

By Theorem 1 the triangle formed by the points C,, C,--j, and / is a right triangle. 
df+dlj = \Cj-Chif = %(ffn + fl2) • 

We now proceed to find an explicit expression for the dj which leads to the fact that the d; form a recursive 
sequence. 

Theorem 2. 
fi+3 + fi-3 

2JW 
di 

If oof. Let C;.2 , Cj-1, and C; be three consecutive centers 
df+dl, = %(ff+1+f,?2) 

df-i+df_2 = Wf+fh) 
(7) df- df_2 = V4(ff+1 _ ff+ff_2 _ f23> = %(f.+2fh1 + fh4fh1) 
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Also, 

<8> df- df_2 = (dg + dh2Mdi - dh2) = fi~7f° (dg - dh2) . 

Combining (7) and (8) we have 

•di-dh2 = j j = (fi+2 + fi-4) 

and from Lemma 3 

di + di-2 - j— 

Adding the last two equations we obtain 

«/. = fi+2+fi-4+ IQfj-i 
4JTo 

It is a straightforward albeit tedious exercise to verify from Equation (1) that 

fl+2 + fi-4 + 10fi-1 - 2fi+3 - 2fh3 = 0 

fi+2 + fi-4 + 10 fi-1 = 2(fi+3 + f,.3) 

_ fi+3 + fi-3 
•'• "' 2JT0 

Theorem 3. 

Proof. 
df+2 = dj+1+dj . 

di+ ,+df* -~j= (f}+4 + fj-2 + fi+3 + fh3> 

= 2JW ^fi+5+fi-1^ = d'+2 
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EMBEDDING A SEMIGROUP IN A RING 

HUGOS. SOiy 
California State University, Fresno, California 03710 

Let S be a set of arbitrary cardinality. For each element s e S , define a function as:S-*Z2 by 

ui U If s^t 
ds(t)= \ l \ i s = t ' 

Denote the set of all such functions by X(S). There is obviously a 1-1 correspondence between S and X(S) by 
mapping s-+as. 

Let f:S->S be an arbitrary map. Define a map nif.'S x S-+Z2 by 

J / if f(s) = t 

and define a map f:X(S)->X(S) by 

mf(t,s) = \ . 
J 0 otherwise 

f (as)M = ] P mf(v,u)as(u) . 

U<ES 

Clearly, 
f(as) = af(s) , 

and there is a 1-1 correspondence between Ss - the set of all functions of S into itself and 

M = {mf\f^Ss 

under the mapping f-» nrif. M is actually a semigroup if we define multiplication on M by 

n)fmg(u,v) = ^ mf(ufs)mg(s,v). 

S<ES 

This semigroup is clearly isomorphic to the semigroup Ss under composition of mappings. 
With the above considerations, we can prove the following: 
Theorem Every semigroup may be embedded in a ring. 
Proof. Let G be a semigroup. It is isomorphic to a semigroup of mappings Gx on a set S, i.e., a subsemigroup of 

Ss, hence a subsemigroup of M [ 1 , p. 20]. 
If we define + and • on z f by (i'+j}(u,v)' = i(u,v)+j(u,v), 

(i°j)(u,v) = ^ P i(u,s)j(s,v). 

s<ES 

This clearly makes Zjf a ring, and M is a subsemigroup of its multiplicative semigroup. 
REFERENCES 
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Extremely dedicated Fibonaccists might possibly recognize that this sequence can be derived by subtracting 2 from 
every other Lucas number. The purpose of this note is to describe how this rather bizarre sequence arises naturally in 
two quite disparate areas of combinatorics. For completeness, and to guarantee uniformity of notation, all basic def-
initions will be given. 

A. FIBONACCI SEQUENCES 

Any sequence u / , ^ , ^ , ••• i that satisfies xn= xn-i+ xn-2 for n > 3 will be called a Fibonacci sequence; 
such a sequence is completely determined byx / andA^- The Fibonacci sequence i Fn I with F; = F2 = 1 is the 
sequence of Fibonacci numbers; the Fibonacci sequence I Ln\ with £./ = 1, L2 = 3 is the sequence of Lucas 
numbers. For reference, the first few numbers of these two sequences are given as follows: 

12 3 4 5 6 7 8 9 10 11 12 

Fn: 112 3 5 8 13 21 34 55 89 144 

Ln: 1 3 4 7 11 18 29 .47 76 123 199 322 

There are of course many identities involving these numbers; two which will be used here are: 

Fk+2 = 3Fk - Fk„2 k > 3 . 

Lk =3Fk-2Fk„2 k>3. 

Both of these identities can be verified by a straightforward induction argument. 

B. THE FUNDAMENTAL MATRIX 

In both of the combinatorial examples to be discussed, it will be important to evaluate the determinant of the nxn 
matrix An which is defined as: 

An = 

3 
-1 

0 

0 
-1 

-1 
3 

-1 

0 
0 

0 
_/ 
3 

0 
0 

- 0 
••• 0 
- 0 

... 3 
... _ / 

- / 
0 
0 

-1 
3 

In words, An has 3's on the digaonal, -7's on the super- and sub-diagonals, -7's in the lower left and upper right-
hand corners, and O's elsewhere. This description explains why we set 

A1 = [1] and A2 U i\ • 
To facilitate the evaluation of det/t^, define Tn to be the nxn continuant with 3's on the diagonal, -7 's on the 

super- and sub-diagonals, and O's elsewhere. That is: 

3 -1 
-1 3 

-1 
1 

1 3 

SI 
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Lemma. det Tn = F2n+2 • 
Proof. The lemma is certainly true for n = 1 and n = 2f since 

T, = [3], and T2 = [_* ~\ ] . 

Thus we will assume that the lemma is true for all k<n, and expand det Tn by the first row: 

det Tn = 3 det Tn-1 - (-1) det 
- 7 : - 7 

= 3 det Tn-1 - det Tn-2 = 3F2n ~ ^2n-2 = ?2n+2 • 

We are now able to verify that the sequence \ det A / , det A2, det A3, — ] is the sequence in the title. 
Theorem. detAn = L2n-2. 

Proof. The theorem is true for A 7 and A2 as defined above; this can be easily verified. Now for n >2,we can 
expand detAn by its first row to obtain: 

(1) detAn = 3det Tn.7 - (-1) det /?„_7 + (-1)n+1(-1) detSn.7 , 

where Rn and Sn are nxn matrices defined by: 

- / . - 7 
- ; ; • • / • : ; 

Notice that / " „_ / is symmetric, so we have 

t _ 

and 

- 7 ; - 7 

- 7 : 
\Tn-1 

: - 7 
Thus: 

(2) detSn = detSf
n = (-1)n~1det Rn . 

Now, expanding det/?^ by the first column, we obtain: 

detRn = (-DdetTn-T + f-ir'f-Ddet 

Thus: 

(3) 

- 7 
3 

-1 
\ 

- ; 3 

= -detTn-i + f - l f f - l ) n+2t in-1 

det Rn -det Tn-i - 7 

We can now substitute (2) and (3) into (1), and we obtain: 

det A \n+2, \n-2, 
n - 3det Tn.7 + (-det Tn.2- 1) + (-1)n^(-1)n^(-det Tn-2~ 1) = 3detTn.1-2detTn-2-2. 

Then by using the Lemma and an identity mentioned earlier, we have: 

detAn = 3F2n-2F2n-2-2 = L2n-2. 

C. SPANNING TREES OF WHEELS 

This section begins with some very basic definitions from graph theory. The reader uninitiated in this subject is 
urged to consult one of the many texts in this field (for example, [1] or [2]). 

A graph on n vertices is a collection of n points (called vertices), some pairs of which are joined by lines (called 
edges). 

A subgraph of a graph consists of a subset of the vertices, together with some (perhaps all or none) of the edges of 
the original graph that connect pairs of vertices in the chosen subset. 

A subgraph containing all vertices of the original graph is called a spanning subgraph. 
A graph is connected if every pair of vertices is joined by a sequence of edges. 
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A cycle Is a sequence of three or more edges that goes from a vertex back to itself. 
A tree is a connected graph containing no cycles. It is easy to verify that any tree with n vertices must have exactly 

n - 1 edges. 
A spanning tree of a graph is a spanning subgraph of the graph that is in fact a tree. Two spanning trees are con-

sidered distinct if there is at least one edge not common to them both. 
Given a graph G, the complexity of the graph, denoted by k(G), is the number of distinct spanning trees of the 

graph. 
If a graph G has n vertices, number them 7,2, —, n. The adjacency matrix of G, denoted by A (G), is an nxn (0,1) 

matrix with a 7 in the (ij) position if and only if there is an edge joining vertex / to vertex/. 
For any vertex i, the degree of i, denoted by deg i, is the number of edges that are joined to /. Let D(G) be the 

nxn diagonal matrix whose (ij) entry is deg i. 
We are now able to state a quite remarkable theorem, attributed in [2] to Kirkhoff. For a proof of this theorem, 

see [1 ] , page 159, or [2 ] , page 152. 
For any graph G, k(G) is equal to the value of the determinant of any one of the n principal (n - 7j-rowed 
minors of the matrix D(G) - A(G). 
As a simple example to illustrate this theorem, consider the graph G: 

A(G) 

and thus 

0 1 1 0 
10 10 
1 1 0 1 
0 0 1 0_ 

KG)-A(G) 

' 

= 
2 

-1 
-1 

0 

DIG) = 

-1 -1 
2 -7 

-1 3 -
0 -1 

2 
0 
0 
0 

o' 
0 

-1 
1 

0 0 0 
2 0 0 
0 3 0 
0 0 1 

Each of the four principal 3-rowed minors of D(G) - A(G) has determinant 3. The 3 spanning trees of £ are 

Q> -CD 

The relevance of these ideas to the title sequence will be established after making one more definition. 
For n > 3, the /7-wheel, denoted by Wn, is a graph with n + 1 vertices;/? of these vertices lie on a cycle (the rim) 

and the (n + 1)st vertex (the hub) is connected to each rim vertex. 

Wo W> 6-

Theorem. k(Wn) = L2n-2. 

Proof Number the rim vertices 7,2f - , n; the hub vertex \%n + 7. Each rim vertex / has degree 3; it is adjacent 
to vertices/- 7 and i+1 (modn) and to vertex n+ 1. The hub vertex has degreen and is adjacent to all other verti-
ces., Thus 
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D(Wn)-A(Wn) 

-1 -1 -1 

To compute k(Wn), any /?-rowed principal minor will do. So delete row and column n + 1. Then we have, by pre-
vious results: 

k(Wn) = detAn = L2n-2. 

This result can be found in [4] and in [7 ] , but in neither instance is the number expressed explicitly in terms of 
the Lucas numbers. In [7 ] , the formula for k(Wn) is given by: 

while in [4] the result is expressed: 

kMn) = F2n+2-F2n-2-2. 

Readers familiar with Fibonacci identities will have no trouble verifying that both of these expressions are equiva-
lent to the value given in the theorem. 

D. GEPJERALIZiiG TOTAL UNIMODULARITY 

A matrix M is said to be totally unimodular if every non-singular submatrix of M has determinant +1. Since the 
individual entries are 1x1 submatrices, they must necessarily be 0, ±1. The following theorem, found in [3 ] , pro-
vides sufficient conditions for total unimodularity: 

LetM be a matrix satisfying the following four conditions: 
(1) All entries of M are 0,±1. 
(2) The rows of Mare partitioned into two disjoint sets T-j and T2. 
(3) If any column has two non-zero entries of the same sign, then one is in a row of Tj and the other in a row of T2. 
(4) If any column has two non-zero entries of opposite sign, then they are both in rows of Tj or both in rows of 

T2. 
Then M is totally unimodular. 
This result usually includes the additional condition that there be at most two non-zero entries per column; this, 

however, is actually a consequence of conditions (3) and (4). 
We are thus motivated to consider the class M of matrices which satisfy conditions (1), (2), and (3), but not (4). If 

M e M, then as an immediate consequence of (3), we see that there are at most four non-zero entries in any column 
of M; at most two non-zero entries (with opposite sign) in rows of 7"/, and at most two non-zero entries (with oppo-
site sign) in rows of T2. 

It is then natural to define the subclasses: M" c M c M, where any matrix in M'satisfies conditions (1), (2), 
and (3) and has at most three non-zero entries per column; any matrix in M"satisfies (1), (2), and (3), and has at 
most two non-zero entries per column. An obvious problem is to find the maximum determinantal value of an nxn 
matrix in any one of these three classes. This problem is completely solved only for the class M"; the following 
theorem appears in [6 ] : 

If M is any/?x/7 matrix in the class M", then detM <2^n/2. Moreover, for each/? > 1, there \s an nxn matrix in 
M" whose determinant achieves this upper bound. 

The title sequence is relevant in considering the class M l For any k > 1, let /^ be the kxk identity matrix, and 
define J^ to be the kxk matrix with Ts on the diagonal, —/'s on the super-diagonal, and a - / in the lower left-hand 
corner. That is, 

/ - / 
/ - 7 

Jk = 

-1 

Then for n even, say n=2k, we can define the nxn matrices Hn and Gn as follows: 
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Ik -Jk 
Jk Ik Gn = 

' Ik 0 ' 

-Jk >k I 

Notice first that Hn e M'. Now since det Gn = 1, we have: 

= det(lk + JlJk) . 

But the (i,j) entry of JkJk is simply the inner product of the ith and jth columns of J^ It is thus not difficult to 
verify that 

Ik + JkJk = Ak, 

where Ak is the fundamental matrix of this paper. We have thus verified the following result: 
For n even, there is an nxn matrix in M with determinant Ln-2. A comparable result for odd n is proved in [5 ] . 
For n odd, there is an nxn matrix in M with determinant 2Fn - 2. It is my present conjecture that, for any given 

n, these determinantal values are the maximum possible for an nxn matrix in the class Af', or in the class M. 
Finally, it should be noted that totally unimodular matrices occur naturally in the formulation of a problem in 

optimization theory known as the transportation problem. In [6 ] , it is shown that matrices from classM arise in a 
discussion of the two-commodity transportation problem. 
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ON NON-BASIC TRIPLES 

NORMAN WOO 
California State University, Fresno, California 93710 

Definition 1. A set of integers -J bf- >. > 1 will be called a base for the set of all integers whenever every integer 
n can be expressed uniquely in the form 

oo 

" = Yj aibi > 

where a,- = 0 or / and 
oo 

£ * # • < - • 
i=1 

Thus, a base is obtained by taking b; = +2' for each / so Song as terms of each sign are used infinitely often. Also, a 
sequence j d,-1. > 7 of odd numbers will be called basic whenever the sequence 

{di2
i~1}i>1 

is a base. If the sequence j d,-1. > 1 of odd integers is such that dj+s = dj for all /'% then the sequence is said to be 
periodic mod s and is denoted by j dj, d2, dj, »•, ds I . 

Theorem 1. A basic sequence remains basic whenever a finite number of odd numbers is added, omitted, or re-
placed by other odd numbers. 
Proof. This is proved in [1 ] . 
Theorem 2. A necessary and sufficient condition for the sequence id/l.> 7 of odd integers, which is periodic 

mod s, to be basic is that 
m 

0*22 ai2'~7d; s ° (mod2ns~1) 
i=i 

is impossible for n > 1, and a,-= 0 or / for all i> /. 
Proof. This is also proved in [1 ] . 
Theorem 3. Let a, b,c be a periodic mod 3. If a = d(23K + 1), where d is an integer and 

(1) d + 2b+4c = 0 (mod7), 
or 
(2) b+2d + 4c = 0 (mod7), 
or 
(3) c + 2d + 4b = 0 (mod 7), 
or 
(4) c + 2b+4d = 0 (mod7)f 

or 
(5) d + 2c + 4b s 0 (mod 7), 
or 
(6) b+2c + 4d = 0 (mod7), 

then a,b,c is non-basic. M 
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Proof. In case (1) holds, consider the expression 
u = a+2h+22c+.. + 23K~3a + 23K~2b+23K-h + 23K+h+23K+2 

= a(1 + 23+--+23K~3)+2b(1+23+"+26K*'3) + 22c(1+23+-+26K-3) 

= a . l + 2b-*- = ^ + 22c°2-—=-L 
23-f 23-1 23-1 

23-1 23-1 23-1 23~1 

It follows that u is divisible by 2 - 1 since, by hypothesis, 
(23-1)\(d + 2b+22c). 

Hence, by applying Theorem 2 with n = 3 and s = 2k, \a,b,c\ is not basic. 
Suppose now that (2) holds and that 1 aA^} is basic. By Theorem 1, we may interchanges with b the first 3K 

times these numbers appear in the sequence | a,b,c I and still have a basic sequence. Consider 
v = b+2a +22c + - +23K~3b +23K~2a+23K'1 c + 23K b + 23K+2c+ - + 26K~3 b + 26K~~1 c 

= b(1 +23 + - +26K~3)+2a(1+23 + - +23K~3)+22c(1 +23+ ••• +26K~3). 

As above, this reduces to 

v = (b+2d + 22c)(26K - 1) 

23 - 1 

and since (23 - 1)\(b+2d + 22c), v is divisible by 26K - 1. But then, as before I ^A^ I is not basic. 
The remaining cases are handled in the same way, with an appropriate permutation of the first few terms in the 

sequence 1 aj),c\ and so the proof is complete. 
Theorem 4. Let 

a = eJ2™^ll and b = d(2_6J^J) # 
p2K __ i p3K _ i 

where e and d are integers, K^Q, and 3/K. \$e+2d+22c is divisible by T, then | ^ A ^ | is non-basic. 
If oof Consider the expression 

w = a + 2b +22'c + ••• + 22K"3*a + 22K"2b + 22K~1c + 22K+1 b+22K+2}c + -+ 23K~2h + 23K~1 c+ - + 26K~1 c 

= a(1 + 23 + - + 22K~3) + 2b(1 + 23 + >>> + 23K~3) + 22 c(1 + 23 + -•• + 26K~3) 

= a . (22K-D + 2b . (23K-V +22QB (26K-1) 
n3 i n3 * po i 

= e . (26K-1) . (22K-1) +2d m (26K-1) m (23K-1) +22c m (26K-1) = (e+2d + 22c)(26K-1) 
22K-1 23-1 23K_1 23_1 2

3-1 23-1 

Since e+2d + 22c is divisible by 7, w is divisible by 26K - 1, and I ^ A ^ } is non-basic by Theorem 2. 
Theorem 5. Let 

where e and d are integers, 

a = e 

KfO, 

(26K-
23K _ 

3/K. If 

Jl 
• 1 

and 

e + 2d + 22c 

23K 

is divisible by 7, then i a,b,c i is non-basic. 
Proof. This time we set 



08 ON NQN-BASSC TRIPLES FEB. 1975 

v = a+2b+22c + - + 23K~3a + 23K~2b+23K~h + 23K+2c+- + 26K~1c 

= a(1 + 23 + - + 23K~3) + 2b(1 + 23 + - + 23K~3) + 22 c(1 + 23 + - + 26K~3) 

= 

= 

a.£!Li± 
23- 1 

nSK -i 
e • - -

23K- 1 

+ 2h • 

23K_ 

(e+2d + 22c)(26K 

23_ 1 

23K -
l3"-

- 1 

~1) 

-_± 
• 1 

2d 

+ 22c 

26K -

23K -

26K-1 

23-1 

-1 23K-

-1 23-

-J 
1 

+ 22c •*-— 
23 - 1 

Since 
e+2d + 22c 

is divisible by 7, v is divisible by 26K - 1 and as before J^Ac } is non-basic. In a similar way, we obtain the fol-
lowing theorem. 

Theorem 6. Let 

, . eJifH^M and „ 
22K-1 

/here e and d are integers, K^O, 3/k. If 
e + 2d + 22c 

= d(26K-1) 

22K' - 1 

is divisible by 7, then < ajb,c I is non-basic. 
Other similar interesting results may be found in another article in [2]. 
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NEW RELATIONS BETWEEN FIBONACCI AND BERNOULLI NUMBERS 

PAUL Fa BYRD 
San Jose State University, San Jose, California 95192 

1. INTRODUCTION 

There seems to be no end to the number or variety of identities involving the Fibonacci sequence and/or its rela-
tives. During the past decade, hundreds of such relations have been published in this journal alone. Those interesting 
identities, however; are mostly "pure"-containing terms within the same family; that is, not many of them are rela-
tions that involve a Fibonacci-type sequence together with some other classical sequence having different properties. 

The family of Fibonacci-like numbers, for example, satisfies simple recurrence relations with constant coefficients 
while such famous sequences as those of Bernoulli satisfy more complicated difference equations having variable co-
efficients. it is thus of interest to pursue the questions: Can these sequences nevertheless be expressed simply in 
terms of each other? What kinds of identities can one easily find that involve both of them, etc.? Some relations 
answering such questions have been developed by Gould in [6] and by Kelisky in [8 ] . 

This article gives further answers in a systematic way with the use of several simple techniques. The paper will pre-
sent various explicit relations between Fibonacci numbers and the number sequences of Bernoulli.1 Relations involv-
ing the generalized Bernoulli numbers will represent a one-parameter, infinite class of such identities. Little detailed 
discussion, however, is given of the many special properties of the Bernoulli numbers themselves, for they have been 
the object of much published research for two hundred years. 

2a BACKGROUND PBELSIVfilPJARIES 

BERNOULLI POLYNOMIALS AND BERNOULLI NUMBERS 

We begin by reviewing some prpperties of Bernoulli numbers and polynomials that will be needed for our purpose. 
The Bernoulli polynomials Bn(x) of the n degree and first order2 may be defined by the exponential generating 
function 

e / n=0 

(See, for instance, [4] and [10].) More explicitly, these polynomials are given by the equation 

n 

(2) BnM= E (l) Ik*** -
k=0 

where B^ are the so-called Bernoulli numbers. One definition of the Bernoulli number sequence 

| 1, - 1 / 2 , 1 / 6 , 0, - 1 / 3 0 , 0 ,1 /42,0, - 1 / 30, 0, 5/ 66, } -

A subsequent paper wi l l explicit ly relate the Fibonacci and Lucas sequences to the famous numbers of Euler. 
2 

Bernoulli numbers of higher order wi l l be defined later. 
Rather than Bn(0)f some authors prefer to call bn the ordinary Bernoulli numbers,where hn = (-1)n B2 , n > 1. 

The numbers bn are essentially the absolute values of the non-zero elements in the Bn sequence. A l l the numbers are 
rational; they have applications in several branches of mathematics, appearing in the theory of numbers in the re-
markable theorem of von Staudt-Clausen. (See, for example, [ 2 ] , [ 3 ] , and [5 ] . ) 

59 
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is 
(3) Bk^Bk(0). 

Alternately, the numbers Bk may be defined by means of the generating formula 

(4) -^_=fV/fc£, m<2n-

Using combinatorial techniques given by Riordan in [11],onecan/'werf Eq. (2) to obtain 

k=0 

It can also be shown that special values of Bn(x) are 
( Bn(0) = <-1)nBn(1) = Bn, n = 0,1,2, -

(6) J Bj(O) = Bf(t)-1, B0 = 1 
\ B2n+1(0) = 0, n = 1,2, ••• 

and that Bj = -% is the only non-zero Bernoulli number with odd index. We can thus write (2) as 
[n/21 

(7) BnM = xn-n
jX"-1 + £ (2k)B2k*n-

The (2k) Bernoulli number is computed by means of the recurrence relation 

m=0 

with BQ = /, or explicitly by use of the little-known formula 
2k n 

n=0 j=0 

With this finite sum substituted into (7), it is possible to express the Bernoulli polynomials in a closed form not in-
volving the Bernoulli numbers themselves. In fact (see [7]), 

n=0 J=0 

FIBONACCI POLYNOMIALS AND FIBONACCI NUMBERS 
We recall that the Fibonacci polynomials Fn(x) of degree (n - 1) are solutions of the recurrence relation 

(10) Fk+1(x) = xFkM + Fk-1M, k>1 

wfth F-j(x) = 1 and F2M =x. More explicitly, we have 
[k/2] 

(11) F^M= E ["m")^ 
k — m \ „k-2m 

\ 
m=0 

and note that the numbers 
(12) Fk+1(1) s; Fk 

are the Fibonacci numbers. These numbers, and their closest relative, the Lucas numbers Ln,me often defined by the 
fa m i I iar generating functions 
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-at nbt 
(13) eaL -e*- -E£' ^ ' - E ^ T V5 

or, in the so-calSed Binet forms, by the formulas 

(14) p^ilziAl, L=an+bn, 
a - b 

where 
(15) a = (1 + y/E)/2, b = (1-'y/5)/2. 

3. RELATIONS BETWEEN FIBONACCI AMD BERNOULLI NUMBERS 

With the above preliminaries, an explicit relation 

2N 

(16) F2N+lM = E °k,NBkM N > 0 
k=0 

expressing the Fibonacci polynomials of even degree in terms of Bernoulli polynomials, can now be developed in 
the following simple way. Equation (11) gives 

N 
(17) F2N+1(x) = J2 

k=0 

2N-n\ x2N~2n 

so with the inversion formula (5) inserted in (17), we have 

N 2N-2si _ , . 
2N ~2n \ BkM w ^ - L (2V) E 

or, on reversing order of summation, 

* / 2N-2n-k+1 
n=0 k=0 

2N I 2 
2N-k 

(18) F2N+lM=Y,BkM £ [2Nr)[2N-k
2n) 2W^-n 

k=0 

Thus, with coefficients CkfN given by 

. . k+1 ' 
k=0 n=0 

2N-k 

n=0 

we have the desired relation 
2N 

(20) F2N+IM = ] £ CkfNBkM • 

k=0 

Similarly, for Fibonacci polynomials F2N+2M of odd degree, it is easy to show that expressed by 

2N+1 

(21) F2N+2(x) = Ys Ak,NBkM 
k=0 

with coefficients 

[*$*] 
A " V (2N+1 -n\ I 2N+1 -2n \ (22) / i . . . _ X " i zw -r 1 — n \ i ziv r 1 — zn \ 1 

(2N-2n-k + 2 ' 
n=0 
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Since Fn(1)^Fn, and 

!

Bk(V = Bk(0) = Bk, (k>2) 

B2m+l(D = B2m+1(0) s B2m+1 = 0, (m> 1) 
the equations (20) and (21) will immediately furnish explicit relations which express Fibonacci numbers in terms of 
Bernoulli numbers. From (20), with x= 1, we thus have 

N 
(24) F2N+1 = C^NB^D + Y, C2kfNB2k • 

k=0 

But, B7(7) = -B7 = V2, and 
N-1 

(25) Cw-Y, \2Nnn) =~1 + F2N+1-
n=0 

Hence, 
N 

(26) F2N+1 = -1+2 Y c2k,NB2k , 
k=0 

where 
N~k 

(27) C2kjt-Y (2Nn'n){2N2l<2n)wTjhF^n • 

With the same procedure, using (21) and (23), we find that 
N 

(28) F2N+2 = 2 Y A2k,NB2k . 
k=0 

where 
N-k 

10Q\ A \ ^ ( 2N+1 -n \\ 2N+1 -2n\ 1 
( 29 ) A2k/i - 2 . I n ( 2k ) W-2n-2k—2 ' 

n=0 

Inverse relations (expressing the Bernoulli polynomials and numbers in. terms of those of Fibonacci) are equally im-
portant. In [1 ] , the author showed how an analytic function can be expanded in polynomials associated with Fib-
onacci numbers, so the details of carrying this out in the special case of Bernoulli polynomials will be left to the 
reader. 

4w SOME NEW IDENTITIES 
With a little inventive manipulation* and the application of Cauchy's rule for multiplying power series, many new 

relations between Fibonacci and Bernoulli numbers can be easily obtained. Although these are all special examples 
of the general case presented later, there may be an advantage to many readers of this Journal to consider them in 
some detail. 

EXAMPLE 1. Starting with Eq. (13), we have 

(30) eat-ebt = ebt[e(a-b)t- 1] = Bbth^- 1] = sjs Y Fn
 f— , 

n=0 or 

(31) tebt = - t ^ _ f ) Fn
 f4- . 

^ - 1 n=0 

*Series manipulation has long been a most powerful fundamental tool for obtaining or operating wi th generating 
functions as we shall be doing throughout this article. 
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Expanding the left-hand side, and noting from (4) that 

ts/5 
(tj5)n 

- 1 n=0 

(32) -ML 

one sees that (31) becomes 
oo 

< 3 3 ) f E b" *-T = 

n=0 

If we make use of Cauchy's rule and equate coefficients, we find the identity 

E *. w ;-
s=0 

E Fn n, 
n=0 

(34) E (I) W£&*">"' 
k=o ' 

which holds for all n >0. (It may appear simpler to use 
/ 

n-k+1\ k 

This can apply to some subsequent formulas presented here.) 
EXAMPLE 2. On the other hand, if we write 

1_ i n+ 1 \ 
n+1 \ k ) 

(35) 

we get 

nat nbt B* = H,«[B-*Ji-1J.js'£Fn£.t 
n=0 

E •" Jr 
n=0 E '-w. I 

s=0 
z^'i 

n-1 

n=0 

and thus obtain, since FQ = Q, the identity 

(36) 
k=0 

EXAMPLE 3. Recalling that the Lucas numbers are given by 
(37) Lm = am+bm

e [a = (1 + y/s)/2, b = (1-y/s)/2], 
one can add equations (34) and (36) to attain the more interesting identity 

[n/2] 
rk rn-2k+1 (38) 

k=0 
L*'*Z l"2ky-^^B2k, n>0, 

which contains three different number sequences-Lucas, Fibonacci, and Bernoulli. [However, subtracting (34) from 
(36) only gives the trivial identity Fn = FnJ 

5. AN EXTENSION 
We now make a generalization involving Bernoulli numbers of higher order. Use of the same procedures just given 

will furnish a whole class of new identities. 
DEFINITION 

Generalized Bernoulli numbers* B^ of the mth order are generated by the expansion 

(40) tm _ V B(m) t" if I < 2lt 

j(m). where m is any positive or negative integer. (If m = 1, one writes B™' =Bn, omitting the superscript as we did be-
fore.) Thus, 

* A thorough discussion of the properties of these numbers is given in [9] . 
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(41) B, (m) = dn 
n 

dtn 

t 

eT-1 t=o 
and we obtain the number sequence 
(42) B^} = I B{™} - -%m, B(

2
m} = -^m(3m - 1), B(

3
m} = - I m2(m - 1), 

B (m) 4jr m(15m3 -30m2 + 5m+2),-- . 

i(m). 7(m) _ 

4 240 

The sequence satisfies the part/a/ difference equation 

(43) mB(
n

m+1} -(m-n)Bk
n

m) + mnBs
n

m\ = 0 

If m is a negative integer, i.e., m = -p,p> 1, an explicit formula for the numbers is given by 
p 

(44) 
in-t-oi! 

r=0 
SPECIAL CASE OF SECOND ORDER 

Let us first consider the case when m = 2, and quickly obtain four new identities expressed in Eqs. (47)—(50) be-
low. Note that 0 

(e°t_ebtj2 = e2bt(et-j5 _1}2 
and also, using (13) that 

^ - ^ E ^ r ( ? ) * - ^ 

(45) fy't-ebt)2 = [e2at + e2htj__2et = £ [2»Ln-2] g-
n=0 

where Ln are again the Lucas numbers. One may thus write 

(46) 

Since, from Eq. (40), 

and since 

relation (46) gives 

t2e2bt 5t* 

(e ts/5 . w 
•l£*L.-V& 

n=0 

-S^-E^».»S n=0 

e2bt = £ (2b)n t" 
~ n! 
n=0 

(2b)n '— = 
n! 

n=0 

+s-2 Z W^7 
n=0 

E &L8-21 
s=0 

We note that 2sLs - 2 = 0 for s = 0 and s = 1, and we then use Cauchy's rule. For each value oin >0, there results 
the identity 

nD(2) tn 

(47) E [l)^> 
k=0 

12 n-k+2i 
'-n-k+2 -21 

(n-k+1)(n~k+2) ft (2) _ 5(2b)n 

involving Lucas numbers and Bernoulli numbers of the second order.* 
On the other hand, taking 

(e**-ebt)2 as e2at{e'*^ - 1 ) 2 

leads to the identity 

*The Bernoulli number sequence of order 2 is | /, —/, 5/6, -1/2, 1/ 10, -1/6, ••• *• 
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(48) 
7n-k+2 

k=0 

f Eqs. (47) and (48) are added, one obtains the identity 

2 fn/2J / n \ [2n"2k+2L 
Ln = TZ7n E \2k) (n-2k+1)(n-2k+2) u D*k ' 

(49) ~Ln-2k+2-2l 5kB(2} 

5(2) k=0 

while subtraction yields the identity 

n I- 2 J , •. o 0n-2k+1. , , 
(Rfl) F - 2 V I n \ Sk2~ Ln-2k+1 R(2) 
(bU) Fn

 5(2)n jL [ 2k + l) 5 (n-2k)(n-2k + 1j B2k+1 
both relations being valid for all n > 0. 

SPECIAL CASE OF NEGATIVE ORDER 
Before discussing the most general case, let us take m = -2. Now, from (40), it is seen that 

(tsj5)-2(e^5 - 1j2 = X N5)nB(
n'

2) {— 

Thus n=0 

E <2b> 
s=0 

s! 
(eat~ebt)2 = [(ty/sPe^lUtJsr2^ -1)2] = fts/5)2 

On the other hand, in view of (13), we have 
oo 

(e«-ebt)2 = [e2at + e2bt]-2et = E [2nLn-2l g - , 

E W'^£ 
n=0 

and therefore, n=0 

n=0 
E ^ j 
s=0 

E wtf" S-
/7=0 

From this equation there immediately results the identity 

(51) Ln+2 
7n+2 

Similarly, starting with 

we are led to the identity 

2 + 5(n + 1)(n+2) J^ ( £ ) (2b)n~k(^5)kB(
k 
-2) 

k=0 

, n >0 

(52) Ln+2 

(8*t _ebt}2 = [(tyj5)2B2*t][(ts/s)-2(B-tyfS -1)2] t 

2 + 5(n + 1)(n+2) E ( * ) (^)n'k(-Dk(^/s)kBlr2) 

ryn+2 
k=0 

If Eq. (51) is subtracted from (52), one obtains the identity 

[n/2] ["-?] 
(53) 5 E ( 2k) 5kB<2fFn„2k - £ ' ( »"_, J * * ^ , ^ . , . n>t 

k=0 k=1 

which involves Fibonacci numbers, Lucas numbers, and Bernoulli numbers of negative second order. 
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GENERAL CASE WHEN m IS AN ARBITRARY NEGATIVE INTEGER 
Let m = -p with p being a positive integer. Notice that 

(54) 

and that 

(eat_ebtf = [epat+(_1)Pepbt]+^ (-1)r( P\e[pa+(b-*)r]t 

r=1 

CO 

[ePat+(_1)PePbt] = £ pnLn j£_ Up]s is even, 
n=0 

^5 E P^^W i f P lSOdd-
n=0 

It is also clear that 

(55) (eat-ebtf = [(tsjs ) p epbt ] [(t^5 Tp (e*^ - 1 ) p ] = (ty/s)p 

Equating (54) and (55) results in the following two identities: 
r=0 n=0 

(56) Ln+p-

if p is even, and 

(57) Fn+p 

P f v r=1 k=0 

when p is odd. If p = 7, the first summation does not appear, and (57) reduces to 
n 

n \ hn-k, /r-\kn(-1) 
Fn+1 = (n+1)Y,[nkl

bn~kU5>kBh 
k=0 ' 

(58) 

In all these formulas _ _ 
a = (1 + yjs)/2f b = (1 - sj5)/2, and b - a = -y/s . 

The identities (56) and (57) give new relations for each/?, and thus represent a whole class of identities. 
Another infinite class of such relations is obtained by beginning with 

(eat_ebt)P = (_7)pBpat(e-tj5 _1)P = (-1)P[(tyj5)pepat][(tj5rp(e-t^ - 1)p] 

instead of with (55). This consideration yields 

(59) 

if/7 is even, and 

(60) 

ln+p 
p)[pa + (h-a)r]n+p 

"n+p 

J |[ r=1 

+ (J5)P (jLLEli J2 ( "\(pa)"-k<-1)k(^)kBk<-A 

!

P^1 

- -L Y\ (-Dr ( p
r I [pa + (b -a)rln+P 

when/7 is odd. For/7 = /, (60) reduces to 
k=0 

{ p~1 n ) 
-^Tp l " E (~1,r[ r ) [ p a + (b'a^n+P + (^P ^ / ^ E [k ) (pb)n~k(sj5)kB(

k-
p) \ 

1 ( r=1 ' k^O ) 

!

P-1 n ] 

- -7= E (~1)r( r ) [ p a + (b~a^n+P + (y/SP1 ^ E ( I ) Wn'k(sj5)kB^p)\ 
s/5 r=1 "' k=0 ) 
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k=0 

(61) Fn+1 = (n+1) J2 (-1)k ( I ) an'k(sj5)kB(
k-

1} 

Subtracting relation (56) from (59) yields 

[n/2] 

2k 
k=0 

m (62) !•£ (2"k) f"-2t5kF^tB<2t • £ ( »"- , ) '"-2k*^k^2MB'2t, 
k=1 

while subtracting (57) from (60) gives the same thing. Thus the identity (62) holds for all non-negativep, and for 
n>1. 

GENERAL CASE WHEN m IS AN ARBITRARY POSITIVE INTEGER 
The same techniques of a little creative manipulation and the application of Cauchy's rule is used here. Without 

giving the details of the development, we shall just present the results. 
For even positive values of m, one obtains the identities 

m-1 
1 mn-k+mLn-k+m+ 2 {-1)r[ m [ma + (h-ak]n-k+m 

(63) £ ( I ) (^>k — 
k=0 

and 

n 
(64) Z (1) (-^)h 

k=0 

(n - k + m)! 

= (J5)m(mb)n, n > 0 

m-1 

(n - k)!B<k
m> 

mn-k+mLnk+m + s (_7)r , m j f m + (b _ g)rJ 

r=1 

\r ( m n-k+m 

(n-k + m)! 

= (sjsjm(ma)n , 

(n - k)!Bk' 
(m) 

Adding these two identities yields 
[n/2] 

(65) Ln 

(J5)m H E {»)* k (fi-

rm k=0 
In-2k 

r=1 

while subtraction gives 

(66) Fn = 

+ m)l 1 

+ J2 (~Vr ( m
r)t™ + (b-a)r]n~2k+m > B(

2f 

-2k+m Ln-2k+m 

m-1 
n > 0 

n+1^ 
2 } 

(J5)mmn —y 
2k- 1 

ek-1 

m-1 

(n-2k+ 1)1 \ mn-2k-
(n+2k+1 + m)i'\ 

!

R(m) 
b2k-1 

Ln-2k+1+m 

in-2k+1+m n > 1. + J2 (-1>r[ 7 )[ma + (b-a)r] 

r=1 

For odd positive values of m, there result the identities 
n ( m-1 I 

<67> £ ( * ) ( ^ ) k (n-~k?!n)/ I ^m"~k+mF«-k+™ + Yt ( ' 1 } r [mr] [™ + (b-a)r]"-k+m\B(* 
k=0 

(m) 

(^5)m (mb)n, n > 0, 

and 
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n I m-1 I 

(68) £ ( ; )(-Js)k
 ( J R ^ ) ^ m n - k + m F n k + m + Yj (-J)' [»>\[ma + (b-a)rl"-

k+'»\B<ir> 

k=0 { r=1 J 

= (sfs)m(ma)n , n > 0. 

If (67) and (68) are added or subtracted, we get, respectively, 
[n/2] , / 

, * ! rzmn-2K+mFn_2k+m (69) L„ = Z— y ; \Zk)5
k\ Jsm' 

m-1 ) 

r=1 J 
and 

\ n+1 
L 2 

k=1 \ <j5)mmn 

m-1 ) 

p*1 ) 

We note that the identities given by each of the above eight relations, involving Bernoulli numbers of positive or-
der, constitute one-parameter infinite classes since a different identity results for each value of m > 0. 

6. REMARKS 
Making a direct connection of Stirling numbers of the second kind to Bernoulli generalized numbers permits one 

to immediately utilize some of the above results in order to find explicit relations between Stirling numbers and 
those of Fibonacci or Lucas. 

Stirling numbers of the second kind S(n,j), which represent the number of ways of partitioning a set of n elements 
into/ non-empty subsets, are the coefficients in the expansion 

n 

(71) xn = ]T S(n,j)Mj , 

1=1 
where (x)j is the factorial polynomial 
(72) Mj = x(x- l)(x-2) - . (x-j+1). 

(See, for example, [11].) Since these numbers are also defined by the generating function 

(73) (ef-1)m = ml Y S(n,m) tl 

f n=m 

it is easy to show, in view of (40), that they are related to generalized Bernoulli numbers by the simple formula 
(74) ( n ^ ( n ^ B J ( - P , = ^nk++Pp]m+Prp) 

Substitution of this in to relations (56, (57), (59), (60), and (61) will immediately furnish identities involving 
Stirling numbers together with those of Fibonacci and Lucas. Although the resulting identities would essentially be 
thvsame (except for new notation or symbolism), they may nevertheless be interesting to those interested in Stirling 
numbers. 

We have developed the identities in this article in a formal way without attempting to explore their implication or 
to find applications for them. Perhaps this paper will interest some reader to do so, as well as to make simplifications 
and further extensions. However, as interesting as such formulas may seem, one should pursue the more important 
question of whether or not they imply any new arithmetical properties, or more beautiful number theoretic theo-
rems, of the various sequences involved. 
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It was pointed out by Zeitlin, a referee of this paper, that ai! the results here can be generalized to apply to se-
quences defined by 

Wn+2 = pWn+1-qWn 

(See [12] for some properties of such sequences*) 
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The greatest Common divisor property of the binomial coefficients, namely, 

<™{(z=!) - (*?r) - (\+7){ -<™{(z::) - ( * - , ) . ( v ) j 
was conjectured and named as the Star of David Property by H. Gould in 1972 [1 ] . So far, three solutions appeared 
[2, 3, 4 ] . All three proofs were based on the exponents of primes in binomial coefficients of JjjV . 

An integer matrix multiplication of the integer vectors, 
x i r 

k-n-1 -n-1 ( ! = ! ) 

( . : , ) 
( • ; ' ) 

which together with its inverse, i.e., 

; ( ; • * . ' ) 

V-.) 
(V) 

= 

k+1 

-k 

k+1 

-n 

n 

-n-1 

n-k + 1 

k-n 

-k 

k+1 

-k- 1 

n-k+1 

k-n 

n-k+1 

(V) 

also divides each number of the other side. shows that a common factor of numbers that appear on one side of 
This proves the Star of David property 5TX. 
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EULERIAN NUMBERS AND OPERATORS 

L CARLiTZ* and RICHARD SCOVILLE 
Duke University, Durham, Worth Carolina 27706 

1. INTRODUCTION 
The Eulerian numbers Ank are usually defined by means of the generating function 

oo n 

(1.1) - f ^ T - = / + E 4 E AnkYk-' 
Xy-1 „ ^ /?/ ^ " ' * 

5 -V n=1 k=1 
or equivalently 
1.2 !-^- = / f V L ^ , * 

From either generating function we can obtain the recurrence 
(1.3) An+hk = (n-k + 2)Anfk_1+kAnfk 

and the symmetry relation 
(1.4) Anrk = An^k+1 . 
For references see [5, pp. 487-491], [6], [7], [8, Ch. 8]. 

In an earlier expository paper [1] one of the writers has discussed algebraic and arithmetic properties of the 
Eulerian numbers but did not include any combinatorial properties. The simplest combinatorial interpretation is that 
Ank is the number of permutations of . 

Zn = I lZ~.,n I 
with k rises, where we agree to count a conventional rise to the left of the first element. Conversely if we define Ank 

as the number of such permutations, the recurrence (1.3) and the symmetry relation (1.4) follow almost at once but 
it is not so easy to obtain the generating function. 

The symmetry relation (1.4) is by no means obvious from either (1.1) or (1.2). This suggests the introduction of 
the following symmetrical notation: 
(1.5) A(r,s) = Ar+s+1fS+1 = Ar+s+Ur+l = Ms,r). 

It is then not difficult to verify that (1.1) implies 
oo 

from which the symmetry is obvious. Moreover there is a second generating function 

(1.7) E AM (f^JJj = (1+xF(x,y)){1+yF(x,y)), 
r,s=0 

where 
y t/ 

F(x,y) 
xey -yex 

The generating function (1.7) suggests the following generalization. 

^ S u p p o r t e d in pa r t b y NSF G r a n t G P - 1 7 0 3 1 . 

71 
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(1.8) £ ) A(r,s\a,$) ( f ^ = (1+xF(x,y))a(1 + yF(x,y))V , 

r,s=0 

where the parameters a,]3 are unrestricted. Clearly 
A(r,s\1,1) = A(r,s) 

and 
A(r,s\a,$) = A(ss\&a). 

Moreover A (r,s\a, fi) satisfies the recurrence 
(1.9) A(r,s\a,$) = (r + $)A(r,s - 1\a,$) + h +a)A(r- 1,s\a,$). 

It follows from (1.9) and A(0,Q\a,$) = 1 that A(r,s\a,(3) is a polynomial in a,j3 and that the numerical coeffic-
ients in this polynomial are positive integers. Algebraic properties of A(r,s\a,fi) corresponding to the known prop-
erties of A(r,s) have been obtained in [3 ] ; also this paper includes a number of combinatorial applications. We shall 
give a brief account of these results in the present paper. Of the combinatorial applications we mention in particular 
the following two. 

Let P(r,s,k) denote the number of permutations of Zr+S-1 with r rises, s falls and k maxima; we count a conven-
tional fall on the extreme right as well as a conventional rise on the left. We show 

(1.10) P(r+1,s+1,k+1) = (r+
r
srk

2k ) C(r + s,k), 
w h e r e ' ' • 

min(r,s) 
(1.11) A{r,s) = "£ [r + S

r:
2i)c(r + sJ); 

1=0 
£ Y r * « H s equal to the number of permutations of Zr+S+1 with r+ 1 rises, s+ /falls and s+ 1 maxima. Also we ob-
tain a generating function \oxP(r,s,k). 

The element a^ in the permutation (afa2 —an)h called a left upper record if 
a; < ak (1 < i < k); 

it is a right upper record if 
a,- > ak (k < i < n). 

Let A(r,s;t,u) denote the number of permutations with r+ 1 rises, s + 1 falls, t left and u right upper records. Then 
we show that 
(1.12) A(r,s\a,$) = ^A(rA'tfu)at'1pu'1 , 

t,u 

so that the coefficients in the polynomial A(r,s\a,$) have a simple combinatorial description. 
If we put 

An(x,y\a,$) = J2 A(r,s\a,$)xrys , 

r+s=n 
i t 

An(x,y\a,$) = [ax + $y+xy(Dx + Dy)]An-1(x,y\a,$). 

r+s=n 
it follows from the recurrence (1.9) that 

Hence 
(1.13) An(x,y\a>p) = [ax + $y + xy(Dx +Dy)1

n-h 

Thus it is of interest to expand the operator 
SlZ,(i[ajc + Py+xy(Dx + Dy)]n . 

We show that 
n 

(1.14) fi^ = Yi ° V (x>V>(xv)k(Dx + Dy)k, 
k=0 

where 

(1.15) C<nf>(x,y) = jflJ^j- (Dx + Dy)
kAn(x,y) , 
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where 
<a+ $)k= (a + pHa+P + 1) - (a+ j3 + k - 1). 

The case a +j3 equal to zero or a negative integer requires special treatment 
As an application of (1.9) we cite 

minim, n) 

(1.16) Am+n(x,y\a,$) = £ kffiJjL Mk{D* + Dy)
kAm(x,y\a,$HDx + Dy)

kAn{x,y\aM 
k=0 

For additional results see §8 below. 
2. THE N U M B E R S 4 M 

Let 
tr = (a1a2-an) 

denote an arbitrary permutation of Zn. A rise is a pair of consecutive elements a,-, a-l+i such that a\ < a/^.;; & fall 
is a pair a,-,. a,-+j such that ay >a,+ f. In addition we count a conventional rise to the left of 5; and a conventional fall 
to the right of an. If IT has r + 1 rises and 5 + 1 falls, it is clear that 
(2.1) r + s = n+1. 

Let A(r,s) denote the number of permutations of Zr+s+i with r + 1 rises and s+ 1 falls. Let 7rbe a typical permu-
tation with r + 1 rises ands-+ 1 falls and consider the effect of inserting the additional element n + 1. Sf it is inserted 
in a rise, the number of rises remains unchanged while the number of falls is increased by one; if it is inserted in a 
fall, the number of rises is increased by one while the number of falls is unchanged. This implies 
(2.2) A(r,s) = (r + 1)A(r, s-1) + (s+ 1)A(r -Is). 

Next if TX= (a ja2 — an) and we put 
bj = n-aj+1 (i = 1,2, -,n), 

then corresponding to the permutation 7rwe get the permutation 
7r' = (b1h2'"bn) 

which hasr + 1 falls ands+ 1 rises. It follows at once that 
(2.3) A(r,s) = A(s,r). 

Another recurrence that is convenient for obtaining a generating function is 

(2.4) A(r,s) = A(r,s-1)+A(r-1,s) + Y,Ys [ jr++
k
s
+1) AW(r-j- 1,s-k-1). 

j<r k<s 

This recurrence is obtained by deleting the element r + s + 1 from a typical permutation with r + 1 rises and s+1 falls. 
Now put 

J^L Yr s7r+s+l 

(2.5) FM - Z A^ Vrfiw • 
r,s=0 

By (2.4) 

r,s=0 r,s=0 rs=Q 

J ^ vL,kJ+k+1 J ^ yr+1 s+17r+s+1 

j,k=0 r,s=0 
This implies 
(2.6) F'(z) = 1 + (x + y)F + xfF2 . 

Since F(O) = 1, it is easily verified that the differential equation (2.6) has the solution 

P
xz -PYZ 

F(z) = - 2 e— . 
xeyz-yexz 
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Hence, taking z = 1, we get the generating function 

(2.7) 

It is convenient to put 

(2.8) 

It is easily verified that 
(2.9) 
(2.10) 
where Dx = d/ax, Dy = 3/3/ . 

It is evident from (2.7) that 

ex - ev . y A( • xrys 

xe - ye rs=Q 

F = F(x,y) = J ^ ^ L . 
xev - yex 

(Dx + Dy)F = F2 , 

(1+xDx + yDy)F = (1+xF)(1+yF)l 

(1+xDx + yDy)F = £ A(r's) (7^! • 
r,s=Q 

We therefore have the second generating function 
CO 

(2.11) (1+xF(x,y))(l+yF(x,y)) = ] T A(r,s) ^ ^ . 
r,s=0 

We note that iteration of (2.9) gives 
(2.12) (Dx + Dy)

kF = k!Fk+1 . 

3. GENERALIZED EULERIAN NUMBERS 
Put 

(3.1) ^ = * * A W = (1+xF(x,y))a(1+yF(x,y))V 

and define A(r,s\a,$) by means of 
CO 

(3.2) * ^ = £ M'Aa-V jr£j! • 
r,s=Q 

Then we have 
A(rj\1,1) = A(r,s) , 

Airfi11,0) = A(r-1, s), A(r,s\Or1) = A(r,s-1) , 
(3.3) A(v\a>P) = A(s,r\$,a), 
also 
(3.4) A(r,o\a,&) = ar, A(o,s\a,$) = j35 . 

It is easily verified that 
(3.5) (Dx + V ^ / J = (a> + P)F&a,p 
and generally 
(3.6) (Dk + Dy)k$>ar& = (a + $)kFk$>a£ , 
where 

fa*/V* = (a + f})(a + {}+1)- (a + P+k- 1). 
In the next place we have 

(xDx + yDy)&^ = a(1 +xF)a-1(1 + yFft(x + x2Dx +xyDv)F + $(1 + xF)0L(1+yF)&'1 (y+xyDx + y2Dy)F 

= [ax + $y + (a + $)xtF]<$>a£ . 
Hence by (3.5) 
(3.7) (xDx + yDy)&aj = fax + $y+xy(Dx + Dy)] ^ . 
This yields the recurrence 
(3.8) A(r,s\a,$) = (r + $)A(r,s-1\a,$) + (s + a)A(r-l,s\a,$) . 
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We can also show, after some manipulation, that 
r 

(3.9, A^a^i'^^'VY^i^Atr-^tM. 

If we take s = 0 and make use of (3.4) we get 

(3.10) (a + k)'(a+(* + *-') ^ ( ^ r ^ f e r - f M J . 
t=o 

If a-^/3 is a positive integer, Eq. (3.10) becomes 

(3.11) <a+X>'[ «J5 Jf 7 ')-±[ «+
a%X

+V-l') Abr-WJ . 
t=0 

Fora = |3 = 1, Eq. (3.11) reduces to the known formula 

(3.12) (x+V"' - £ (*;+T) *«-'-*> = £,{X+riVWl,t+1 • 
t=0 t=0 

In order to get an explicit expression iox A(r,s\a,$) we take 

Then , , * * K e 

1+xF = MFihlr 1+yF=I^i)el 
™y-yex

 xey-ye 

$ „ = (x-vi^e**™ = f w \ a + V ^ _ f * (a+Vk xk
 (1_ey-x)k

e&(Y-x> 

* * (Xey-ye«r \x-y-x(1-ey-x}j £ ~ M * 

Ar=0 ' * - / ' j=0 n=0 k=0 ^X'Y) j=0 

= tifi ^ E ^ ' ( " 7 * ) ^-f^+fE M/( ; )«W 
oo ^ r~f~s 

- E £&• E <->>««+>•>"Zw*fe ( " 7 * ) • 
r,s=0 y=0 fc-y 

The sum on the extreme right is equal to 
/ a+$+j- 1 \ { a+(3 + r + s\ 

so that 

**> -ijf^jrt (-i>«[a+*f'-1) (o+/_y+') w s . 
r,s=0 1=0 

Therefore 

ir-y / a + $+j-1 \ f a + $ + r + s \ fR + nr+s 

\r+s 

(3.13) A(v\a.fU « £ t^H ( a ^ / / ~ 7 ) ( a+f*f + s J (P+jT 
j=0 

In view of (3.3) we have also 
S 

(3.14) A(r,s\a,$) = £ M ^ ( " * * / ' - ; ) ( a+^[ + s) (a+i)' 
1=0 

For a = |8 = /, Eq. (3.14) reduces to 
s s+1 

(3-15) ^M ^E^^C's -y 2 ) ff+W*5*' =^(-VHH (si't2,)/"**1 

l=o ri 
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in agreement with a known formula f o r / l n ^ . 
Returning to the recurrence (3.8), iteration gives 

A(r,s\a,P) = (r + P)2A(r,s~2\a,p)+[(r + $)(s + a- D + (s + a)(r + $- 1)]A(r- 1,s-1\a,$) 

+ (s + a)2A(r-2,s\a,$). 
This suggests a formula of the type 

k 
(3.16) A(r,s\a,$) = J^Bgk -j)A(r-j,s - k+j\a,$) (0<k<r + s), 

j=0 

where B(j,k-j) depends also on r, s,a,$ and is homogeneous of degree k in r, s, a, j3.-Applying (3.8) to (3.11) we get 
B(j,k-j+1) = (r-j + (i)B(j,k-j) + (s-k+j + a-1)B(j-1,k-j+1). 

Replacing k by / + k - 1 this reduces to 
(3.17) B(jjc) = (r-j + $)B(j,k-1) + (s-k + $)B(j-1,k). 
If we put 

B(j,k) = (-Vj+kB(i,k), 
(3.17) becomes _ _ _ 
(3.18) B(j, k) = (j - r - (j)B(j, k-1) + (k-s- ajB(j -1,k). 
Since, by (3.17), 

it follows that 

Hence 

and (3.16) becomes 

B(j,0) = (r + $)j, B(o,k) = (s + a)k , 

B(j, o) = f-r - $)J, B(o, k) = (~s - a)k . 

1(1 k) = A(j,k\-s-a,-r-P) 

(3.19) A(r,s\a,$) = (~1)k J^ A(j,k-j\-s - a,-r - $)A(r - j,s - k+j\a,$) (0<k<r + s). 
i=0 

For k = r + $ Eq. (3.19) reduces to 
(3.20) A(r,s\a,P) = (-D1**A(r,s\s -a, -r-0) 

which can also be proved by using (3.13). Substituting from (3.20) in (3.19) we get 
k^ 

(3.21) -A(r,s\a,P) =}^ Allk-j\s - k +j + a,r-j + p)A(r-j',s-k +j\a,&) (o<k<r + s) . 

j=0 

We remark that (3.21) is equivalent to 
(3.22) $a,p ^x(7 + z), y(l + z) | = ^ \ x + xyzF(xz, yz), y + xyzF(xzf yz) | ^ f r z , yz) . 

4. THE SYMMETRIC CASE 
When a=j3 we define 

(4.1) A(r,s\a) = A(r,s\a,a) = A(r,s\a,a) 
and 

®a(x,y) = &a,afcy) = ®dV,*) • 
Since ®a(x, y) is symmetric in x, y we may put 

(4.2) *a(x,y) = £) £ C(nJ\a) (Mlz^L . 
h=0 2j<n 

Since 
{xDx+yDy)$a = a(x + y)<§>a+xy(Dx + DY)$a 

and 

w>**wy*a- E Jy(nj\a)^l^yj"'2i 
n=1 2/<n 
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1/1-2/ 

n=1 2j<n 

it follows that 
(4.3) 

The special case 

(4.4) 

n=1 2j<n n=1 2j<n 

C(n,J\a) = 2(n-2j + 1)C(n- 1,j- 1\a) + (a+j)C(n - 1,j\a) . 

n-2J 

n=0 2n<j 

C(n,j) = C(n,i\1). 

F(X,V)=Y: E C(nJ) (MliOLlll 

is of interest. It is easily seen that 
(4.5) 

In the next place it follows from (4.2) that 
min(r,s) 

(4.6) A(r,s\aJ = £ ( r*S_]2J) C(r + s,j\aJ 
1=0 

and in particular, fo ra = /, 
min(r,s) 

R 7 ) A(r,s) = Y, ( f r - 7 2 / ) M + sJ). 

1=0 
To invert (4.7) we use the identity 

*n+vn = X (~vJ -^r ( n J ' ) (xy}j(x+v)n~2j 

2j'<n 

We find that 

C(n,k\a) = YJ (~1>k~r i 
n - 2r n — k — r A(r,n - r\a) 

•k~r \ k - r 

(4.8) I r~° (nt2k), 
J k-1 

C(2k,k\a) =2 J2(-Hk'r^2k-r\aJ+A(k,k\a) . 
r=0 

To get a generating function for C(n,j\a) put u=x + y, v = xy in (4.2). We get after some manipulation 

(4.9) £ C(n+2U\aJ J^JJJ = j cost, XjF=W - u ^ ^ ^ *'** 
n,j=0 

The following values of A(r,$), C(n,j) are easily computed. 
A(r,s) 

1 
1 1 
1 4 1 
1 11 11 1 
1 26 66 26 1 
1 57 302 302 57 1 

C(n,j) 

22 16 
52 136 

5. ENUMERATION BY RISES, FALLS AMD MAXIMA 
We consider first the enumeration of permutations by number of maxima. Let M(n,k) denote the number of per-

mutations of Zn with k maxima. Since we count a conventional fall on the right there is no ambiguity in counting the 
number of maxima. For example the permutation (1243) has one maxima while (3241) has two. 

Let 7r denote an arbitrary permutation of Zn with k maxima. If the element/? + 1 is inserted immediately to the 
left or right of a maximum the number of maxima does not change. If however it is inserted in any other position, 
the number of maxima becomes k+h Therefore we have 
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(5.1) M(n +1,k) = (n-2k + 3)M(n, k-l)+ 2kM(nf k). 
If we put _ 

M(n,k) = 2n~2k+1M(n,k), 
(5.1) becomes _ _ _ 
(5.2) M(n + 1,k) = 2(n-2k + 3)M(n,k-1) + kM(n,k) (1 < k < n) . 

If we take a = 1 in (4.3) we get 
(5.3) C(n,j) = 2(n-2j+1)C(n-l,j-1) + (j+1)C(n-1,j) (0 < j < n) . 
St follows that __ 

M(n + 1,k+1) = C(n,k), 
so that 
(5.4) M(n + 1,k+1) = 2n~2kC(n, k). 

Thus (4.9) yields the generating function 
oo 

(5.5) J] M(n +2j+ 1,j + 1) (
J~4TI = \ cosh^JlF^ -—^—sinh^F^V \ ~2 . 

n,j=0 

This result may be compared with [4 ] . 
We now consider the enumeration of permutations by rises, falls and maxima. Let P(r, s, k) denote the number of 

permutations with r rises, s falls and k maxima, subject to the usual conventions. Let 7fbe an arbitrary permutation 
with r rises, s falls and k maxima and consider the effect of inserting the additional element r + s. There are four pos-
sibilities depending on the location of the new element. 

(i) immediately to the right of a maximum: 
r-+r+1, s -+s, k-+k; 

(ii) Immediately to the left of a maximum: 
r-+r, s-+s+1, k-+k; 

(iii) in any other rise: 
r-+r, s-+s+1, k-^k+1; 

(iv) in any other fall: 
r-+r + 1, s-+s, k-+k+ 1 . 

We accordingly get the recurrence 
(5.6) P(r, s, k) = kP(r - 7, s, k) + kP(r, s-1,k) + (r-k+ 1)P(r, s - 1,k - 1) +($ - k+ 1)P(r -1,s,k-1). 

It is convenient to put 
(5.7) P(r,s,k) = ( r+

r
s_-2k)B(rfs/kj. 

Then (5.6) becomes 
(5.8) B(r,s,k) = k(r ~ kJ B(r-1,s,k)+ k[s~kl B(r,s-1,k) 

r + s -2k r + s -2k 
+ (r + s-2k+ 1)(B(r- 1,s, k- 1)+B(r,s- 1,k)). 

We then show by induction that 
B(r,s,k) = <t>(r + s,k), 

that is, B(r, s, k) is a function of r + s and k. Indeed we show that 
(5.9) B(r+1,s+1,k+1) = C(r + s,k), 

where C(r + $, k) has the same meaning as in (5.3). 
Substituting from (5.9) in (5.7) we get 

(5.10) Ptr+1,s+1,k+1) = ir+r
s_7k

2k) C{r + s,k). 

It follows from (5.10) that 

M(n+1,k+1)= X P(r+hs+1,k+1) = £ ( r+
r*Sk

2k) C(r + s,k) = 2n~2kC(nt k) 

r+s=n r+s=n 

in agreement with (5.4) 
We remark that for r = s = k 

(5.11) P(k+1,k+1,k+1) = C(2k,k) = A(2k+1), 
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the number of down-up (or up-down) permutations of Z2k+1 • It is well known that 

= tan x. 
nr-^ V2k+T 

(5.12) 22A(2k+7) X 
(2 k + 1)1 

0 
Generating functions for P(r, s,k) are furnished by 

00 mm (r,s) , 
(5-13) Z E Hr+1's+1-k+1) (?+

Ys+w = F<U>V>> 
r,s=0 k*0 

and 
°° min(r,s) r s k 

(5.14) YJ ] T P(r+1,s+1,k+ 1) p^z .= (7 + UF(U, V»(1 + VFOJ, V)) 
r,s=0 k=0 

where 

(5.15) 

and 

U = 1/2(x + y + sj(x + y)2 - 4xyz) 

V = 1Mx + y - sj(x + y)2 - 4xyz) 

F(U, V) = e--e 

Uev-Veu 

6. fa,/3ASEQUENCES 
Let a,|3 be fixed positive integers. We shall generalize rises, falls and maxima in the following way. In addition to 

the "real" elements 1, 2, —,n we introduce two kinds of "virtual" elements which will be denoted by the symbols 0, 
0'. There are a symbols 0 and /? symbols 0'. To begin wrth (n = 1) we have 
(6.1) SzJL1 Z-^JL 
We then insert the symbols 2, 3, —, n in ail possible ways subject to the requirement that there is at least one 0 on 
the extreme left and at least one 0' on the extreme right The resulting sequence is called an (a,/^-sequence. A rise is 
defined as a pair of consecutive elements a, b with a < b; here a may be 0. A fall is as a pair of consecutive elements 
a, b with a >Z?;nowZ? may be 0'. The element/? is a maximum If a, b,c are consecutive and afb is a rise while/?, c is 
a fall. For example in 

02301540'0'60' 
we have 

a = 2, 0 - 3, r = 4, s =• 3, k = 7. 
Let P(r, s, k|a, $) denote the number of fa,/̂ -sequences with r rises, s falls and k maxima. Then we have the 

recurrence 
(6.2) P(r,s,k\a,&) = (k + -1)P{r- 1,s, k\a,$) + (k + -1)P(r,s- 1,k\a,&) 

+ (r-k+ 1)P(r, s-1,k-1 \a,0) + (s~k + 1)P(r -1,s,k- 1\a,$). 

In the special casea = j3we put 
(6.3) P(r, s,k\a) = P(r, s, k\a,a). 
We also put , \ 
(6.4) P(r,s,k\a) = [r +

r
s~k

2k ) Q(r,s,k\a). 

Now let M(n, k\a,$) denote the number fa,j3Asequences with /? real elements and k maxima. Then we have the 
recurrence 
(6.5) M(n + 1,k\a,&) = (2k + a + $-2)M(n, k\a,&) 

+ (n-2k + 3)M(n,k-1\a,$). 
In particular, for 

M(n,k\a) = M(n,k\a,a), 
(6.5) reduces to 
(6.6) M(n+1,k\a) = 2(k + a- 1)M(n, k\a) + (n - 2k + 3)M(n, k - 1\a). 
We find that 
(6.7) M(n+1,k+1 \a) = 2n~2kC(n,k\a) , 
and 
(6.8) Q(r+1,s+1,k+1\a) = C(r + s,k\a). 
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Hence, by (6.4) and (6.8), , , 
(6.9) P(r+hs+1,k+1\a) = ( f

S.72k ) C(r + s,k\a). 

A generating function forP(r + 1,s+1,k+1\a) is given bv 
°° min(r,s) f g k 

(6.10) X ) £ P(r+1,s+1,k+1\a) ^f^j- = (1 + UF(U,V))a(1 + VF(U,V)f , 

r,s=0 k=0 
where U, V are given by (5.15). 

For a generating function for P(r + 1,s+ 1, k+ 1\a,@) see [3 ] . 
7. UPPER RECORDS 

Returning to ordinary permutations, let IT = (a-j a2 -an) be a permutation of Zn. The element^ is called a left 
upper record if 

a-, < a^ (1 < / < k); 
it is called a right upper record if 

a*- > a, f/r < / < n). 

Let Air, s; tf u) denote the number of permutations with r+1 rises, s + 1 falls, t left and £/ right upper records. We 
make the usual conventions about rises andjalls. Also let Air, s; t) denote the number of permutations with r+ 1 
rises, s + /falls and t left upper records; let A(r,s, u) denoti e number of permutations with r+1 rises, s+ 1 falls 
and u right upper records. 

To begin with we have 
r-1 s-1 

(7.1) A(r,s;t+1) = ^ X ! ( j + k + 1 )&(!, k;t)A(r-j - 1,s - k - 1) + Air - 1,s;t) it > 0) 
j=0 k=0 

and 
(7.2) A(r,s;1) =A(r,s~1) is > 1). 

Put 

r,s=0 
Then,for t > 0 , 

^ yr+1.s7r+s+1 ~ JtfkJ+k+1 ^ vr+1 s+1 r+s+1 

r,s=0 j,k=0 r,s=Q 

so that 
(7.3) F't+1(z) = Ft(z)(x+xyF(z)), 
where 

Fiz) 
xey

z-yexz 

Also, by (7.2), 
(7.4) F'rfz) = 1+yFiz). 

If we put 

it follows from (7.3) and (7.4) that 

Giz) = J^ * W 

Giz) = XG(z)(x + xyF(z)) + \( 1 + y.F(z)). 

The solution of this differential equation is 
(7.5) Giz) = l^(i-hxF(z))x-l} . 

Similarly if we put x 

FuM = £ A(r,s;u) */+*+ J}/ , Giz) = £ Fu(z)\u 

r,s=0 ' u=1 
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we have _ 
(7.6) G(z) = 1-\(1 + yF(z))x-l\ . 

We now consider the genera! case. It follows from the definition that 

(7.7) Atr,s;t+1,u+1) =Y^[i + kll) A(jf k;t)A(r~i- 1fs - k - 1;u) 
i,k 

and f 

(t > Q, u > 0) 

Now put 

Then 

Therefore, by (7.5) and (7.6), 

A(r, s; hu+1) = Air. s - 1; u) (s > 0, u > 0) 
A(r,s;t+1, 1) = Air- 1,s;t) (r > 0, t > 0) 

r,s=0 

F't+l,u+l(z> = xyFt(z)Fu(z) (t > 0, u > 0) 

F'l.u+lM = V~Fu(z) (u > 0) 

F't+h1(z) = xFt(z) (t > 0) 

F'ii(z) = / 

YJ at$U X Mr.s;t,u) ffi*7/;/ = afi + afi[(1 + xF(z))a - 1] +a&[(1 + yF(z)f - 1] 

+ a&[(1 +xFlz))0i - h[[(1 +yF(z))P-1] = a$(1 +xF(z))a(1 + yF(z))K 

A(r,s;t,u) -
t,u=1 r,s=0 

Taking z= 1 we get 
oo oo 

(7.8) Y, at$U E Mr,$;t,u) jf^j- = a&(1 + xF(x,y))a(1 +yF(x,y))$ , 
t,u™1 t,s=0 

where 

It follows that 

(7.9) 

F(xfy) 
xeY -ye' 

t-1 nU-1 A(r,s\a,$) ='^A(rfs;t/u)at'1^ 

Thus the generalized Eulerian number/4/r, s\a,$) has the explicit polynomial expansion (7.9). 
If we put 

R(n + 1; t, u) = £ ) A(r, s; t, u) 
r+s=n+1 

it is evident that R(n + 1;t, u) is the number of permutations of Zn+<i with t left and u right upper records. By tak-
ing y=x in (7.8) we find that / * 
(7.10) R(n + 1;t+1,u+1) = ( t+

t
u ) S<j(n,t +u), 

where S; (n, t + u) denotes a Stirling number of the first kind. 
In particular, if we put 

R(n + 1;t) = Yl A(r^;t)f R(n+1;t) = ] T A(r,s;t), 
r+s=n r+s=n 

we get 
(7.11) 
It is easy to give a direct proof of (7.11). 

Put 
(8.1) 

R(n;t) = R(n;t) = S7(n,t). 

8. EULERiAW OPERATORS 

An(x,y) = ] £ A(rj)xrys . 
r+s=n 
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It follows from recurrence (2.2) that 
(8.2) An(x,y) = (x + y+ xy(Dx + Dy))An„1 (x, y). 
Iteration of (8.2) gives 
(8.3) An(x,y) = (x + y+xy(Dx + DY))n>l. 

It is accordingly of interest to consider the expansion of the operator 
(8.4) nn = [x + y + xy(Dx + Dy)]

 n . 
We find that 

n 

(8.5) n n = J2 CnM(xfy)(xy)k(Dx + Dy)
k , 

k=0 

where 
(8.6) CnM(x. y) = m i j j j (Dx + Dy)

kAn(x, y). 
More generally if we put 

(8.7) An(x,y\a,fl) = £ A(r,s\a,(i}xry8 , 
r+s=n 

it follows from (3.8) that 
(8.8) An(x,y\a,$) = [ax + $y+xy(Dx + Dy)]An-1(x,y\a,$). 
Thus 
(8.9) An(x,y\a,P) = fax + &y + xy(Dx +Dy)]

n-1, 

so that it is of interest to expand the operator 
(8.10) ttgj EE [ax+py + xy(Dx + Dy)J

n . 
We find that 

n 

(8.1 D ns,,, = X cffifc y)Mk(°x + oy)
k, 

k=0 
where 
(8.12) C^Ux,y) = m^jfk (Dx + Dy)

kAn<x,y\a,$) 

provided a + j3 is not equal to zero or a negative integer. Note that 
fl = « / , / , CnM(x,y) = C(

n]k
1)(x,y). 

As an application of (8.8) and (8.11) we have 
min(m,n) 

(8.13) Am+n(x,y\a,$) = £ —(^jj-{xy)k(Dx + Dy)
kAm(x,y\a,p)-(Dx + Dy)

k-An(x,y\a,p), 

where again a + |3 is not equal to zero or a negative integer. 
Whena=/3 = 0, (8.11) becomes 

(8.14) (xy(Dx + DY))n = £ cj%" (x. y)(xy)k(Dx + Dy)
k (n > 1) . c(0.0), 

k=1 
We find that 
(8.15) C(

n°f(x,y) = ̂ ^jjj (Dx + Dy)
k-1An^(xfy) (1 < k < n). 

The formula 

(8.16) Cffifoy) = m ^ w £ ( l)(Dx + Dy)
k^AM(xfy^An.r(xfy\a^) (1< k < n) 

l=k 
holds for arbitrary a,j3. When a = 0 =0, (8.16) reduces to (8.15). 

In the next place we consider the inverse of (8.11), that is, 
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(8.17) (xy)n(Dx + Dy)
n = £ B(«f (x, y ) ^ . 

k=0 
We find that 
(8.18) (Dx + Dy)BJ«kV(x,y) = n(a + $ + n- W** k (x, y) 
and 

(8-19) E £E *$"<w* - ̂ * = e - ™>~a~v<1 - y ^ + v 

n=0 k=0 

In the special case a = 0 = 0 we put 
'8-2°) . bnfk^7-LTrB<°f(x.y) (n>J). Then we have 
(8.21) bn1 =^=^ 

(n-t)l °"'k 

bn,1 x-y 
n 

(8.22) 

and generally 

(8.23) 

bn+1,2 = J2 1 °j°n-j+1 

Jn+ hk ~ ] C Jbj,k-1 °n-j+1 • 

This may also be written in the form 
n 

(8-24) *>n+k,k = z J j + k- 1 b/+k-1,k-1°n-f+1 • 
Thus for example J 

bn+3,n = J^ (i+l](j + 2) °i+1GH+1°n-j+1 
0<i<j<n 

bn+4,n = E (i+1)(j+
1

2){k + 3) Gi+1°H+1°H+1°n-k+1 
0<J<j<k<n 

and so on. 
For proof of the formulas in this section the reader is referred to [2 ] . 
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D10PHANT1NE REPRESENTATION OF THE FIBONACCI NUMBERS 
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In the year 1202, the Italian mathematician Leonardo of Pisano, or Fibonacci as he is known today, gave the 
sequence /, /, 2,3,5, 8, 13,21, - , in his book Liber AhaccL The numbers occurred in connection with a problem 
concerning the number of offspring of a pair of rabbits. The sequence has many interesting properties, and has fasci-
nated mathematicians for over 700 years. It is usually defined recursively by means of the equations 

0 ; = /, 02 = 1, and Pn+2 = Pn+1 
Jh These equations permit us to obtain the n Fibonacci number, 0 „ , by computing all smaller Fibonacci num-

bers. Many formulas are known which permit calculation of the nth Fibonacci number directly from /?. J.P.SVL Binet 
found [1] the well known formula 

<l>n = - U 

E. Lucas [6] noticed that the Fibonacci numbers were the sums of the binomial coefficients on the "rising diagon-
als" of Pascal's triangle. 

1 + ^f5 
2 

n 1-j5 
2 

n 

n- 1 
0 

n-2 
1 ) - ( • 

-3 
2 

We shall prove here that the set of Fibonacci numbers is identical with the set of positive values of a polynomial of 
the fifth degree in two variables: 

(1) 2y4x + y3x2-2y2x3-y5-yx4+2y. 

To construct the polynomial (1), we shall need three lemmas. These lemmas assert that pairs of adjacent Fibonacci 
numbers, and only these, are to be found among the points with integer coordinates on the hyperbolas 

y2 ~ yx - x2 = ±1. 

(L.EB Dickson [4] credits E. Lucas [7] and J. Wasteels [13] with this observation.) 
Lemma 1. For any positive integer i, 

0f+/-0 i+ivr = (-1)'1 . 

Proof, By induction on i. Plainly, the statement is true i f / = I Suppose it holds for/. Then 

0 ^ 2 0 ^ - 0 ^ 7 = (<t>j + <t>j+1)
2 -(<t>j + <t>j+1)<i>i+1-<l>^+i <t>f+2-

•^y-0/+/0#-0f; -(-1)'' = (-D i+i 

This completes the proof of the lemma. 
Lemma 2. For any positive integers x and y, if y2 - yx - x2 = 1 then it is possible to find a positive integer 

/ such that x = <j>2j and y = fei+i • 
Proof. By induction on* . I f x = 1 then necessarily y = 2. In this case we may take/ = 1. 
Suppose that x and y are numbers satisfying the equation of the lemma and that / <x. Then 2 < y„ Assume that 

the statement of the lemma holds for all pairs, (xg,yo), of positive integers for which XQ<X. Let m%2tXQ = 2x - y, 
and yg = y - x. Since 2 <y, 

(x + 1)2 = x2 + 2x + 1 < x2 + yx+1 = y2, 

84 
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hencey>x And since / <x, 

y2 = yx+x2+ 1 < yx+x2 + x = yx + (x+ 1)x < yx + yx = 2yx, 
hence y <2xB Therefore 
(2) 0 < XQ < x, and 0 < yg, 

Furthermore, 

(3) yo-VoxO~xO= (y-x)2-(y-x)(2x-y)-(2x-y)2 = y2-yx-x2 = 1 . 
The induction hypothesis, together with (2) and (3) implies that it is possible to find a positive integer / such that 

x0=<j)2j and y0 = <p2j+i. Then 

x = x0 + y0= <S>2i + $2i+l = 4>2(i+D and / = Vo + x = <l>2i+i + <t>2i+2 = $2(i+l)+l • 

This completes the proof of the lemma. 
Lemma 3. For any positive integers x and y, if, 

y2 -yx-x2 = -1, 
then it is possible to find a positive integer / such that x = <t>2h1 m^ V = 02/ • 
Proof, Let x and y be numbers satisfying the conditions of the lemma. Then 

(x+y)2 ~(x+y)(y)-y2 = x2 + 2xy+y2 ~ xy -y2 -y2 = -(y2 -xy-x2) = -(-7) = 1. 
According to Lemma 2 it is possible to find a positive integer / such that 

y = (f>2i and x + y = <§>2i+i • 
Hence 

* = 02/>7 ~ 02/ = 02/- / a n d Y = §2i • 
This completes the proof of the lemma. 

Lemmas 1, 2 and 3 imply that the set of all Fibonacci numbers has a very simple Diophantine defining equation. 
[A relation in positive integers is said to be Diophantine if it is equal to the set of values of parameters for which a 
polynomial equation is solvable in positive integers.] 

Theorem 1. For any positive integer y, in order that y be a Fibonacci number, it is necessary and sufficient that 
there exist a positive integer x such that 
(4) (y2 -yx-x2) = 1 . 
Proof We have only to use Lemmas 1, 2, and 3. 

Lemma 4. If x and y are positive integers, then y -yx-x ? 0. 

Proof Multiplying by 4 and completing the square, we find that 

4y2 - 4yx - 4x2 = (2y - x)2 - 5x2 . 
If the right side of this expression were zero, for positive integers x and y, then ^fs would be a rational number. 

The lemma is proved. 

Theorem 2. The set of all Fibonacci numbers is identical with the set of positive values of the polynomial 

(1) y(2-{y2-yx-x2)2) 
for (x=1,2,-,y=1,2,-). 

Proof. According to Theorem 1, if y is a Fibonacci number then a positive integers may be found to satisfy equa-
tion (4). For such an x, (1) assumes the value y. Therefore all Fibonacci numbers are values of the polynomial (1). 

To see that only Fibonacci numbers are assumed as values of (1), suppose that*, y and w are positive integers and 
that 

(5) w = y(2 - (y - yx - x ) ) . 

Then, since y and w are positive, we see that 

(6) 0 < (y2-yx-x2)2 < 2, 
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using Lemma 4, to obtain the lower inequality. 
Since x and y are integers, (6) implies that equation (4) must hold. According to Theorem 1, y must be a Fibonacci 

number. Equations (4) and (5) imply that w = y. Therefore w is a Fibonacci number. 
This completes the proof of the theorem. (Putnam's method [10] would produce a polynomial of degree 9.) 
The polynomial (1), which represents the set of Fibonacci numbers, assumes in addition certain negative values 

such as -28 (x = 2, y = 21 The appearance of non-Fibonacci numbers cannot be prevented,for we can prove 

Theorem 3. The set of Fibonacci numbers is not the exact range of any polynomial. 
Proof. We shall show that a polynomial P(xi,X2, -,xk) which assumes only Fibonacci number values must be 

constant. The proof will be carried out by induction on the number k of variables. 
If k= 0, there is nothing to prove, Let us assume that the result holds for k and consider a polynomial 

P(x1ex2f'"fxkfxk+1) 
in k + 1 variables. If this polynomial is not identically zero then we may write 

P(*1,*2, •;xk,xk+1) = 2^ Pj(x1,x2, ~,xk)x'k+1, Pm(xvx2' ~,xk) £° -
i=0 

If m = 0, then P(xi,X2,—,xk,xk+i)\s a polynomial \nxi,X2,~;xk only. If not we may find positive integers 
a-/, a2, ~, 3k for which the polynomial 

Q(x) = P(a1r a2, •, ak, x) 
is not constant. In this event we must have one or the other of two cases: 

(i) lim (2(x) = +oo, or (ii) lim Q(x) = - ~ . 

Assuming there are no negative Fibonacci numbers (see remark following), we have only case (i) to deal with. Since 
Q(x) is a polynomial, a positive integer/? may be found such that 

(7) Q(b) < Q(b + 1) < Q(h+2) < Q(b+3) < »• . 
By assumption, Q(x) assumes only Fibonacci number values. Choose a positive integers such that (pc= (2(b). Con-

dition (7) implies that for each positive integer/ 

(8) (j)c+y < Q(b+y). 

The formula of Binet may be used to prove that for each positive integer/?, 

(9) 1 
2 

1 

Conditions (8) and (9) imply that for each positive integer/ 

(c+y) 
(10) 7 

s/5 
1 + J5 

2 
< Q(b+y)+1-

Inequality (10) implies that the polynomial Q(b +y) + % grows exponentially, which is, of course, impossible. 
This completes the proof of the theorem. 
REMARK. The sequence of Fibonacci numbers is sometimes continued into the negative: 

- , -55, 34, -21, 13, -8, 5, -3,2, -1, 1, 0, 1, 1, 2,3,5, 8, 13,21, 34, 55, - . 
The assertion of Theorem 3 remains correct for this enlarged set. We need only modify the proof to deal with case 

(ii) as was done with case (i). Also, it is not difficult to see that the number of variables in the polynomial (1) cannot 
be further decreased. Thus Theorem 2 is best possible. 

THE RELATION v = <j)u 

In 1970 Ju. V. Matijasevicmade ingenious use of the Fibonacci numbers to solve Hilbert's tenth problem. In his 
famous address of 1900 [5 ] , David Hilbert posed the problem of finding an algorithm to decide of an arbitrary poly-
nomial equation, in several variables, with integer coefficients, whether or not the equation was solvable in integers. 
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MatijaseviS [8 ] , [9] showed that no such algorithm exists. He proved this by proving that every recursively enumer-
able set is Diophantine. 

The Fibonacci numbers were important in MatijaseviFs proof, because the sequence of Fibonacci numbers grows 
exponentially. Martin Davis, Julia Robinson and Hilary Putnam [3] had nearly solved Hilbert's tenth problem in 
1961, when they succeeded in proving that the stated result would follow from the existence of a single Diophantine 
predicate with exponential growth. Matijasevic completed the solution of Hilberfs tenth problem by proving that 
the relation v=$2u is Diophantine. 

In [8 ] , [9 ] , Matijasevic gives an explicit system of ten Diophantine equations such that, for any given positive in-
tegers (/ and v, the equations are solvable in the other variables if and only if v = (j>2U. Of course it follows from 
the central result of [8 ] , [9] that the relation i/ = 04/Js also Diophantine, However, an explicit system of equations 
for this relation is not written out in [9 ] . 

We shall give here an explicit system of Diophantine equations for the relation v = (pu. Our equations may con-
veniently be based upon Lemmas 1 and 2 and the equations of Matijasevic [9 ] . 

Theorem 4, For any positive integers t and w, in order that w=<j)tt it is necessary and sufficient that there exist 
positive integers a, b, c, d, e, g, h, I, m, p, rf u, v, x, yf z such that 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) ((2u- -t)2 + (w-

u + a = / , 
v+b = i , 

l2-lz-z2 = 1 , 

g2-gh-h2 = 1, 

l2c = g , 
Id = m-2 , 

(2h +gk = m-3 , 

x2-mxy+y2 = 7 , 
l(p -1) = x-u , 

(2h+g)(r-1) = x-v 

-v)2)((2u+f-t)2+(w2-i> 

Proof* For the proof we refer the reader to [9 ] , proof of Theorem 1. There it is shown that equations (11)—(20) 
are solvable in positive integers if and only \fv = <p2w " n t n e necessity part of this proof we find that J <m and also 
u <v<x, so that conditions (40), (41), (43) and (44) there, may be replaced by equations (16), (17), (19) and (20) 
above.) When v*= (p2U , Lemma 2 implies that the condition w2 - wv - v2 = 1 is equivalent to w = (j>2U+i. Thus 
equation (21) holds if and only if 

t = 2u and w = (j)2u, or t = 2u + 1 and w = <p2u+7 

Thus equations (11 )-(21) are solvable if and only if w = (pt. 
Theorem 4 makes it possible to give a polynomial formula for the tth Fibonacci number, 0 f . We shall prove 
Theorems. There exists a polynomial P(t,xle -,xn), of degree 13, with the property that, for any positive in-

tegersfands, 4>t = s^ (3xu -,xn)[P(t,xlf -,x12) = s] . 
Proof. The variables/, & m and x are easily eliminated from the system (11)—(21) by means of Eqs. (11), (15), 

(16) and (19). Also, the variables 6 and c may be replaced by a single variable. (We need only use the fact that when 
aand]3are positive integers, and y is any integer, a|/3 and 0< y is equivalent to (3\)[a@y = P + \a]J If we now 
transpose all terms in the equations to the left side and sum the squares of the equations, we obtain the polynomial 
Q(t, w, a, - , z jwi th the property that 0 f = w if and only if Q(t,w,a, -,z) = 0 for some positive integers a, -,z. 
Q will be a polynomial of the 12th degree. For/3 we may take the polynomial w(1 - Q(t,wfa, -~,z)). 

REFERENCES 

1. J.P.M. Binet, Comptes Rendus, Paris, 17 (1843), p. 563. 
2. Martin Davis, "Hilbert's Tenth Problem is Unsolvable,",4/??e/-. Math. Monthly, 80 (1973), pp. 233-269-
3. Martin Davis, Hilary Putnam and Julia Robinson, "The Decision Problem for Exponential Diophantine equa-

tions," Ann. of Math,, 74 (1961), pp8 425-436. 



88 DIOPHANTINE REPRESENTATION OF THE FIBONACCI NUMBERS [FEB. 

4. Leonard E. Dickson, History of the Theory of Numbers, Vol. 1, Carnegie Institution of Washington, Washing-
ton. D.C.. 1919. 

5. David Hifbert, Mathematische Probleme, Vortrag, gehalten auf dem internationalen Mathematiker-Kongress zu 
Paris, 1900, Nachrichten Akad. Wiss. Gdttingen, Math.-Phys. KL, (1900), pp. 253-297. English translation: 
Bull. Amer. Math. Soc, 8 (1901-1902), pp. 437-479. 

6. E. Lucas, Comptes Rendus Paris, 82 (1876), pp. 165-167. 
7. E. Lucas, Nouv. Corresp. Math., 2, 1876, pp. 201-206. 
8. YuriMatijasevic, "Enumerable Sets are Diophantine," Doklady Akademii Nauk SSSR, 191 (1970), pp. 279-

282. English translation: Soviet Math., Doklady, 11 (1970), pp. 354-358. 
9. Yuri Matijasevic, "Diophantine Representation of Enumerable Predicates," Izvestija Akademii Nauk SSSTF.Serija 

Mathematiceskaja, 35 (1971), pp. 3-30. English translation: Mathematics of the USSR - Izvestija 5 (1971), 
pp. 1-28. 

10. Hilary Putnam, "An Unsolvable Problem in Number Theory," Journal of Symbolic Logic, 25 (1960), pp, 
220-232. 

11. Julia Robinson, "Hilbert's Tenth Problem," Proc. Sympos. Pure Math., 20 (1971), pp. 191-194. 
12. UM. Vorob'ev, Fibonacci Numbers, Pergamon Press, Oxford, 1961. (Translation of Chisla fibonachchi, Moscow-

Leningrad, Gostekhteoretizdat, 1951.) 
13. J. msteels, Mathesis, (3), 2,1902, pp. 60-62. 



ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
RAYMOND E.WHITNEY 

Look Haven State College, Lock Haven, Pennsylvania 17745 

Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathematics 
Department, Lock Haven State College, Lock Haven, Pennsylvania 17745. This department especially welcomes 
problems believed to be new or extending old results. Proposers should submit solutions or other information that 
will assist the editor. To facilitate their consideration, solutions should be submitted on separate signed sheets within 
two months after publication of the problem. 

H-245 Proposed by P. Bruckman, University of Illinois, Chicago Circle, Illinois. 

Prove the identity 

" x<M*k-V
 2 " ^ ! (1+Xf) 

> * = _ r ~ 7 n = 1 2 — 
£-> MkMn.k M„ ' ''z' ' 
k=0 

where 
Mn = (]-x)(1-x2)(1 -x3) - (1 ~xn), n = 1,2, •••; (x)0 = 1 . 

H-246 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Put 
m n 

F(m,n) = 2^ 2^ Fj+jFm-j+jFj+ll„jFmmj+n-.j 
i=0 j=o 

m n 

1=0 to 
Show that 

L(m,n)-25F(m,n) = 8Lm+nFm+1Fn+1 . 

H-247 Proposed by G. Wulczyn, Buckneli University, Lewisburg, Pennsylvania. 

Show that for each Fibonacci number Fr, there exist an infinite number of positive nonsquare integers, D, such 
that 

F%s-F?0=1. 

H-248 Proposed by F.D. Parker, St. Lawrence University, New York. 

A well known identity for the Fibonacci numbers is 

and a less well known identity for the Lucas numbers is 

Ln- Ln„1Ln+1 = 5(-1)n . 

89 
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More generally, if a sequence | yg, y^, — t satisfies the equation 

Yn = Yn-1 +Yn-2 . 

and if yQ and / / are integers, then there exists an integer N such that 

Yn-Yn-lYn+1 = N(-1)n . 
Prove this statement and show that N cannot be of the form 4k+2, and show that 4N terminates in 0,4, or i 

SOLUTIONS 

SUIVf SEQUENCE 

H-216 Proposed by GuyA.R. Guillotte, Cowansville, Quebec, Canada. 

Let Gm be a set of rational integers such that 
oo I / <x 

Find a formula for 
n=1 \m=0 ^0 MHF2nH)mj 

_ 7T 

4 

'm> 

Solution by L Car/itz, Duke University, Durham, North Carolina. 

Put 

Then, by differentiation 

oo 

narctan x V ^ n Xm r - r - i 
e = zLr Gm -^(< G0 ~ G7 - 7 

m=0 m=0 

oo 

.arctan x _ / f , v 2 i \~^ r 
~ " X ' 2-J

 Gm+1 

m=0 

X^_ 

mi 

so that 
®m = Gm+i+m(m - i)Gm„i (m 

It follows that the Gm are rational integers. 
Consider 

> 1) . 

S^y"/og 
n=1 

um 

Since 

lm=0 m!F2n+1 

1 
arctan ~— 

n=1 

exp [ arctan — ] 
\ F2n+1 I 

= }£ arctan -= 
~ F2n+1 
n=1 

it follows that 

' -arctan ~ L - = arctan I / ^ ' ^ \ , m m 1 
f'2n r2n+2 \^2nr2n+1 + i l l~2n+1 

OO 

E arctan - = arctan — = arctan 1 = % . 
F2n+1 F2 4 

n— i 

Hence S = n/4. 
To get an explicit formula for Gm we proceed as follows. Put 

x = tanu = L - — = f- — 
I in —In I Oil I eiu + e-'u 

that is, 

e-iu _ j e2iu_j ^ _ 1 + ix 

e-iu i B2iu+1' 1-ix ' 
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21 arctan x 1 + ix 
1-ix • 

Thus 

earctanx . ( / ± | [ ) ' * ' ' _ (i+W™(1 - ix} *» 

-t{-?)M't (7) HW'- E/-V" £ M;« (-f)(f) 
It follows that 

£ '-"s (T) (?) 
r+s=m 

(-1)m J ] ( ^ ) (%i)(%i+1)-(%i + r-1)(%i)(%i-1) •••(%!-s+1). 

r+s=m 

A simpler formula for ^ m would be desirable. 

Also partially solved by P. Bruck man. 

PRIIVIE ASSUMPTION 

H-217 (corrected) Proposed by S. Krishnan, Orissa, India. 

(a) Show that 

04n-4x-4 i2;:?) - (V-?r?) (™d4n+D, 
where /? is a positive integer and -1 <x <2n - 1, x is an integer, and 4n + 1 is prime. 

(b) Show that 

24n-4x-6 I2x^4y i4n-Jx-2^ ^Q (mod 4n + 3) , 

where /? is a positive integer, -2 <x <2n - /, x is an integer, and 4n + 3 is prime. 

Solution by P. Bruckman, University of Illinois at Chicago, Chicago, Illinois. 

Assertions (a) and (b) are false for general n; we may make them true assertions by adding the hypothesis that 
4n + 1 is prime, for part (a), and 4n + 3h prime, for part (b). We may combine the two assertions as follows: 

If p is a positive odd prime and x is an integer with Q <x <1Mp - 1), then 

**-'-*(?) =^MP-1) fe^x) <««">• 
The following lemma is useful in the proof: 

Lemma. If p is an odd prime, then 

iy.f-1 I P-1 \ _ 1-3-5 -(p -2) _ ( j,x(p-t) ( d i 
w" \%(p - 1)) 2-4-6 -(p -1)~' ' ' PJ ' 

Pi-oof. 
1-3-(p-2) = 1232-(p-2)2

 = 1.3.-(p-2)(-2)(-4)...(1-p) , d , 
2-4-(p-1) (p-1)! ~ (p-1)! <m°a P> 

m (_1tH(p-n j j ^ / (md pj m (_1}%(p-n (md ph 

as asserted. 
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Now, let 
/ / = oP-1-4x I2x\ v = I p-1 -2x\ 
U Z \x) ' V \%(p-1)-x) > 

where p and x are as stated above. Thus, 
u = 9P-1-2X ( h3-(2x- 1) I y = 9p-l~2x l h3-(p-2-2x) I 
U Z I 2-4-~(2x) * ' I 2*4-(p-1-2x)f 

Therefore, 
v = 2P-1-2X C (-2x-2)(-2x-4)~(-p + 1) I ( d , = 2p-U2x | (2x + 2)(2x + 4)..-(p-H > ( d . 
v - ' \(-2x-1)(-2x-3):.(-p+2) \ { m o a V - z \ (2x+1)(2x + 3)-(p-2)Sim0a P)-

Since all the factors in the last expression are relatively prime to p, V^O (mod p); therefore, V~1 exists, and 

UV1 = 2P'1'2X J 1-3.~(2x-J)(2x+1)(2x + 3)...(p-2) ) ( d . 
U ~ 2p-t-2x I 2-4 -(2x)(2x + 2)(2x + 4) .» (p-1) f (m°a Pi ' 

Thus, 

UV'1 = $Z((P
pZ

2/) (mod p) s (-V1/2(p~7) (mod p) , 

by the lemma. Therefore, 

U = (-1)*(P-1}V (mod p) , 

which is equivalent to our assertion. 

Also solved by P. Tracy. 

STAGGERING PASCAL 
H-218 Proposed by V.E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Let 

riXn 

represent the matrix which corresponds to the staggered Pascal Triangle and 

7 / 1 1 .» 
12 3 4 -
1 3 6 10 ••• 

nXn 

represent the matrix which corresponds to the Pascal Binomial Array. 
Finally let 

' 1 1 1 1 
12 3 4 -

c ~ I 2 5 9 14 

nXn 

represent the matrix corresponding to the Fibonacci Convolution Array. Prove A -B = C. 
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Solution by P. Bruckman, University of Illinois at Chicago, Chicago, Illinois. 

Presumably, the matrix A should look as follows: 
f1 0 0 0 ...N 
0 10 0 
0 110 
0 0 2 1 -

By inspection, or otherwise, we obtain the formulas 

(1) a,j = ttzj) > f o r i<i<2j-1; a,j = 0 otherwise 

Let D =AB. Then, 

««- E (f-/)(^72) • 
k=1+[%i] 

For convenience, let / - 1 = r and / - 1 = a; also, Set rn-i-k. Then, 

' * - » « - E {r-m
m) {r+7m) 

m=0 

Now, let 
oo oo 

'/M - E V ^ ' E *"*'' 
i=1 r=0 

then fj(x) is the generating function for the j t h column of D. 
Thus, 

[%r] 

' A ' - E ' E (r-m
m) (r+

r--m
m) = E * 2 m E ( / r ) [r+A+

m
m)*r 

r=0 m=0 m=0 r=0 
oo oo oo oo 

- E ^ E ( s r ) {r+sr)xr-E (-s-1) <-*2>mi: (•*-?-') <-*>r 

m=0 r=0 m=0 r=0 

m=0 

i.e., 
fj(x) = (1-x-x2fJ . 

Since 
fj(x) = (1-x-x2r , 

the familiar generating function for the Fibonacci numbers, fj(x) is the column generator for the Fibonacci convolu-
tion matrix, i.e., C. Thus, D = AB = C. 

Also solved by the Proposer. 
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DEFINITIONS 
The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1 and Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1. 

PROBLEMS PROPOSED IN THIS ISSUE 
B-298 Proposed by Richard Blazej, Queens Village, New York. 

Show that 
5F2n+3'F2n-3 = L4n+18. 

B-299 Proposed by Verner E. Hoggatt, Jr., California State University, San Jose, California. 

Establish a simple closed form for 
n 

F2n+3~J2 (n+2-k)F2k-
k=1 

B-300 Proposed by Verner E. Hoggatt, Jr., California State University, San Jose, California. 

Establish a simple closed form for 
n 

i2n+2 ~ ]C (n + 3~ k)F2k • 
k=1 

B-301 Proposed by Phil Mana, Albuquerque, New Mexico. 

Let [x] denote the greatest integer \nx, i.e., the integer m with m <x <m+ 1. Also Set 
A(n) = (n2 + 6n + 12)/12 and B(n) = (n2 + 7n+ 12)/6 . 

Does 
[Atn)] + [A(n+1)l = IBM] 

for all integers n? Explain. 

B-302 Proposed by Verner E. Hoggatt, Jr., California State University, San Jose, California. 

Prove that Fn - 1 is a composite integer for n > 7 and that Fn+ 1 is composite for n > 4. 
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8-303 Proposed by David Singmaster, Polytechnic of the South Bank, London, England. 

In B-260, it was shown that 
o(mn) > o(m) + o(n) , 

where o(n) is the sum of the positive integral divisors of n. What relation holds between o(mn) and o(m)o(n)? 

SOLUTIONS 

3SYMBOL GOLDEN IVfEAN 

B-274 Proposed by C.B.A. Peck, State College, Pennsylvania. 

Approximate (^/5 - 1)/2 to within 0.002 using at most three distinct familiar symbols. (Each symbol may repre-
sent a number or an operation and may be repeated in the expression.) 

/. Solution by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

We may use the well-known continued fraction expansion for 

d = y2(sj5-i): e = i/i+i/i+i/+-y 

with convergents: 
0/1, 1/1, 1/2, 2/3, 3/5, 5/8, 8/13, 13/21,-. 

Clearly, any such expression satisfies the conditions of the problem, since it uses only the three symbols " / / " < / - " 
and "/" (or "__/' for the last symbol, representing division). To obtain any desired degree of accuracy, we may use 
the inequality: 

\0~Pn/Qn\ < ^/QnQn+1 * 

\Nherepn/qn \$\henth convergent of the continued fraction. For this problem, we desire 1/qnqn+] to be less than 
.002,\.B.,qnqn+i must exceed 500. Now 

13-21 = 273 < 500, while 21-34 = 714 > 500 , 

so we may take the continued fraction expression for 13/21 as one solution (the simplest solution), although the 
corresponding expression for any higher convergent is also a solution. 

//. The Proposer gave the solution in I and also noted that 

(y/5 - D/2 ~ -n2/22 ~ 0.6169 

is easily obtained from 

given in P. Poulet, C'estEncore it, Sphinx, Vol. 6, No. 12, Dec. 1936, pp. 208-212. 

TWO IN ONE 

B-275 Proposed by Warren Cheves, Littleton, North Carolina. 

Show that 
Fmn = LmFm(n„1) + (~1)m+ fm(n-2) • 

Solution by Graham Lord, Temple University, Philadelphia, Pennsylvania. 

The required equation is a condensation into one identity of the two identities (I21) and (I23) on page 59 of 
Hoggatt's book, Fibonacci and Lucas Numbers, viz., 

Fn+P + Fn-p = FnLp , p even, 
Fn+p~Fn-p = FnLp, p odd. 

In these two equations, replace n by mn - m and p by m. 

Also solved by Paul S. Bruckman, Wray G. Brady, Herta T. Freitag, John W. Milsom, C.B.A. Peck, A.G. Shannon 
(New South Wales), and the Proposer. 
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ONLY TWO SOLUTIONS 

B-276 Proposed by Graham Lord, Temple University, Philadelphia, Pennsylvania. 

Find all the triples of positive integers/??, n, and x such that 

Fh = xm, where h = 2n and m > 1. 

Solution by Phil Tracy, Lexington, Massachusetts. 

It has only the trivial solutions n = 0 and n= 1 since F2n is an integral multiple of 3 but not of 9 whenn > 1. 
One can see this as follows. Modulo 9, the Fibonacci numbers repeat in blocks of 24. Examining the block, one finds 
3\Fm if and only if 4\m while 9\Fm if and only if 12 \m. Finally, 2n is an integral multiple of 4 but not of 12,. 
when n > I. 

Also solved by Paul S. B ruck man, Herta T. Freitag, and the Proposer. 

A LUCAS-FIBONACCI CONGRUENCE 

B-277 Proposed by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

Prove that L2n(2k+1) = L2n (mod F2n) • 

Solution by David Zeitlin, Minneapolis, Minnesota. 

Using the Binet formulas 

Fn = (an-bn)/(a-b) and Ln=an+bn , 

one easily shows that 

(1) Lm+p - Lm-p = 5FmFp, p even . 

Set m=2n(k+ 1) and p = 2nk in (1) to obtain 
L2n(2k+1) - ^2n = ^2n(k+1)^2nk -

Since F2n \ F2nk, t n e r e s u ^ follows. 
REMARK. Since F2n\F2n(k+l) f the result can be stronger, i.e., 

L-2n(2k+1) = L2n (mod F%n) . 

Also solved by Gregory Wulczyn and the Proposer. 

ANOTHER LUCAS-FIBONACCI CONGRUENCE 
B-278 Proposed by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

Prove that L(2n+U(4k+1) = L2n+1 (mod F2n+1). 

Solution by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

M\ i , ,, , / - J2n+1)(4k+1) h(2n+1)(4k+1) h2n+1 
(1) L(2n+1)(4k+1)-L2n+7 - a -b -b 
The quotient of (1) by 

a2n+1_b2n+1 

s/5 
= 5 

34n+2_b4n+2 g2(4n+2) __b2(4n+2) g4k(2n+1) _ b4k(2n+1) 

y/5 s/5 sj5 

- 5(F4n+2 + F4(2n+1) + •~ + F4k(2n+1)) 

an integer. 

Also solved by David Zeitlin and the Proposer. 
CORRECTED AND REINSERTED 

Due to the typographical error in the original statement of B-279, the deadline for receipt of solutions has been ex-
tended. The error was corrected and the correct problem solved by Paul S. Bruckman, Charles Chouteau, Edwin T. 
Hoefer, and the Proposer. The error was also noted by Wray G. Brady. The corrected version is: 
B-279 Find a closed form for the coefficient of xn in the Maclaurin series expansion of (x + 2x2 )/(1 - x - x2) . 

*kkkkkk 
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