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FIBONACCI NOTES 
4: ^-FIBONACCI POLYNOMIALS 

L C A R L I T Z * 
Duke University, Durham, North Carolina 27706 

1. We shall make use of the notation of [1 ] . In addition we define 

(1.1) feW - 4>n(M) = E [n~k
k~ ' ~}qk2an~2k-1 (n > 1). 

2k<n 
Since 

[ \ - * ] - r "£ ' , ] -^ i : , , *V ] -
it is clear that 

rh / . I ^ / 0 i _ V lrn-k-\ rn - k - 1i \ „k2 n-2k \ ^ nn-2k r n - k - 1 -i nk
2 n-2k 

4>„+lM-a<l>nM ~ Ij [I k ] " l k 2jg a = 2^ V L * - / J * * 
2k <n 0<2k<n 

= dn~1 E [n-k_-1]q(k-1l'an-2k = qn-1yE, [ " " 1 "2^^2k'2 . 
0<2k<n 2k<n-1 

Hence 
(1.2) <t>n+l(a)-a<t>n(a) = qn'1 <t>n-l(a) (n > 1). 

The first few values of <t>n(a) are easily computed by means of (1.1) or (1.2). 
<S>l(a) = 1, <t>2(a) = a, (/)3(a) = a2 + q, <t>4(a) = a3 + q(1+q)a, 

<p5(a) = a4 + q(1+q+q2)a2 + q4, Ma) = a5 + q( 1+q+q2+ q2)a3 + q4(1+q + q2)a . 

<t>7(a) = a6 + q(1+q + q2 + q3 + q4)a4 + q4(1+q+q2)(1+q2)a2 + q9 . 

If we put (j)0(a) = 0 then (1.2) holds for all n > I By means of (1.2) we can define(pn(a) for all integral n. It is 
convenient to put __ 
(1.3) <t>n(a) = <t>n(a,q) = (-Un~1<l>-„(a). 
Then (1„2) becomes 
(1.4) Qn(a) = qn(a$n„1(a) + $n^2(a)) (n>2), 
where 
(1.5) $0(a) = 0, fjM = q . 

The next few values of (f>n (a) are 
$2M = q3*, $3(a) * q4(1+q2a2), $4(a) = q7((1 + q)a+q3a3), 

$5M = q9a + (q2 + q3 + q4)a2+q6a4), 

$6<a> = q13((1 + q+q2)a + (q3 + q4 + q5 + q6 )a3 + q8 a5). 

"Supported in part by NSF grant BP-17031. 
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98 FIBONACCI NOTES [APR. 

Put 

(1.6) 

Then by (1.4) and (1.5), 

so that 
(1.7) 
Thus 

<$>(a,x) = Yl <Pn(a)xn . 
n=0 

®(a,x) = qx + Yj qn(a$n-l(a) + $n-2(a))xn , 
n=2 

&(a,x) = qx + qx(a + qx)&(a, qx). 

<&(a,x) = qx + qx(a + qx) \ q2x + q2x(a + q2x)$(a, q2x) \ 

= qx + q3x2(a + qx) + q3 x2 (a + qx)(a + q2x)®(a,q2x). 

Continuing in this way we get 

(1.8) 

Since 

(1.8) becomes 

WW* = Z qm+1)(k+2)xk+1(a+qx)<a+q2x)...(a+qkx). 
k=0 

k 
(a + qx)(a2 + qx)-(a2 + qkx) = £ [ * > % Y y > V " V , 

1=0 

k 
®(a>x> = E qm+1)(k+2)xk+1 YLj¥/2j0H)ak~J'xJ 

k=0 j=0 

It follows that 

(1.9) 

Since 

it is clear that 

that is, 
(1.10) 

2. It is evident that 
(2.1) 
Also it follows from 

that 
(2.2) 

= y xn+1 Y* [n~J'l qY2i{i+1)+y2{n"s+1^n'"l+2)an'2i 

n=0 2/<n 

$n+rM= Z [n-i-jq
y*<n+1>ln+2>-nM<i-1>a2n-i . 

2j<n 

W ^ = E [nJJ]fPan-2i, 
2/<n 

j>nH(a) = qn+1<t>n(q
ln+1>/2a), 

QnM = qn<j>n(q
n/2a) . 

Fn(q) = 4>JU)-

2k<n 

F'n(q) = qn<pn(q-1,q). 
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We have defined [1] the q-Lucas number 

(2-3) Ln(qJ = Fn+2(q)-qnF'n„2(q). 
Hence, by (2.1) and (2.2), 
(2-4) Ln(q) = <pn+2(W-q2<Pn-2(q~7,q)-

In the next place put 
(2.5) Ma) = ^(a,q) = <Pn(a,q~11 
When q is replaced by q~1, it is easily verified that 

99 

Hence 
rh (* n~1 J - Y ^ r n ~ k 1 „k2-nk n-2k 
<Pn+i(a,q / - Z^ I k JQ a 

2k<n 
so that 
(2.6) qn2/2<t>?,+i(a,q) = <t>n+1(aq"n/2

f q). 
In particular we have 
(2.7) qn2/2Fn+1(q'1) = (j>n+i(q~n/2, q) 
and 
(2.8) c,y>("Hl)F>n<q-

1) = <Pn(g'A(nH>,q). 

3. Returning to the recurrence (1.2), we have 

(3.1) a(j)n(a) = (t>n+1(a)-qn'1(!)n.1(a). 
Thus 

a2(Pn(a) = <t>n+2(a)-(1+q)qn~1<i>n(a)+q2n~3<t>n-2(a) 
and 

a3cpn(a) = (pn+3(a) - (1+q+q2)qn'7 c/)nH(a) + (1+q+q2)q2n~2(pn-1(a) - q3n'6(/)n^3(a). 

This suggests the general formula 

(3.2) akd>n(a) = £ (-V [*yn-m+1)4>„Hc-yM , 

where k >Obu\n is an arbitrary integer. 
Clearly (3.2) holds for k = 0, 1,2,3. Assuming that it holds up to and including the value A, we have, by (3.1) 

°k+1*nM = E ( - D ' t f y n - W { <Pn+k-2j+i(a)-qn+k-2H<l>n+k-2H(a)\ 
1=0 

= ib (-»ji*y^m+i)<i>nHc-*«M 
j=0 

k+1 
+ E '-1)iii~ll qin-~m+1)+k'M<t>n+k-2i+l(a) 

i=i 

•1 

T, <-'>'{ [ / * ] * [ / - / ] qH+1}qin'V3J(M)(t>n+k-2i+l(a) 

i=i 

k+1 

1=0 

k+1 

1=0 

This completes the proof of (3.2). 
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Special cases of interest are obtained by taking n = k, -k, 0, 1 in (3.2). We get 

(3.3) ak4>kM = £ (-1)1 [ *] q^M+Vfa-ZlM, 
j=0 

(3.4) ak^k(a) = £ (-V [ *]g^'W^M, * 
M 

(3.5) ^\EM^;]^n^, 
'ro 

(3.6) ak -~E t-1)l[k,yM-1}*k-2i+ita) • 

Note that in approximately half the terms on the right of (3.6) the subscript k-2j+1 is positive but is negative in the 
remaining terms. Also, if we prefer, we may eliminate negative subscripts in (3.4), (3.5), and (3.6) by making use of 
(1.10). 

It is clear from (1.1) that we may put 

(3.7) ak = Y, <-VJQJCkj<l>k-v+iM , 
2j<k 

where the coefficients Ckj are independent of a. This formula is of course not the same as (3.6). To determine Ckj 
we multiply both sides of (3.6) by a and then apply (3.1). We get 

ak+1 == E (-VJQJCkj {<t>k-2j+2<a)-qk-2i<l>k-2j(a)\ 
2j<k 

= X (-v'qJCkj<l>k-?/+2M+ E (-i)jqk~i+1ck,H<t>k-2j+2(a)-
2j<k 2j<k+1 

It follows that 
(3.8) Ck+U = CkJ + qk-2i+1Ck/H (2j<k). 

The first few values of Ckj are easily computed by means of (3.8). 

' / 7 \ 

0 

1 

2 

3 

4 

5 

6 

7 

0 1 

1 

1+q 

1 + q + q2 

1 + q+q2 + q3 

1 + q + q2+q3 +q* 

1 +q +q2 +q3 + q4 + qs 

2 

1+q 

1 +2q+q2 + q3 

1 +2q+2q2+2q3+q*+q5 

1+2q+2q2+3q3 + 2q4 +2q5 + q6+q1 

3 

1+2q+q2+q3 

1 + 3q+3q2 + 3q3+2q4 + q5+q6 j 
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It is evident from (3.8) that Ckj is a polynomial in q with nonnegative coefficients and that 
(3.9) ' Ckf0 = 1 (k = 0, 1,2,-), 

(3.10) CkJ = 0 (2j > k). 
Also it is easily seen that 

(3.11) Ck1 = ~ ^ ~ (k > 1) . 
1 -q 

To get Ck/2 we take/ = 2 in (3.8). Thus 
r r nk~3r _ „k-3 1 - qk~1 

Lk+1,2-Ck,2 ~ Q Ck,1 ~ Q ~ j2_ , 
which holds for k > 3. Hence 

which reduces to 
(3.12) Ck+h2= [ * J 2 ] +« [ ^ J ' ] • 

In the next place, taking/ = 3 in (3.8), 
Ck+1.3 = Ck,3 = qk~5Ckf2 (k>5). 

We find that 
(3.i3) <*+r,3 = *- ; [ * j 2 ;KV;H- ' - ' -

By means of (3.8) it can be proved that 
(3.14) deg£*,/ = jk - 1/2j(3j + 1). 

The proof is by induction on k. The second term on the right of (3.8) is of higher degree than the first term, so that 
deg Ck+hj = k-2j+1 + te% Ck/H = (k- 2j + 1) + (j- 1)k - %(j - 1)(3j - 2) = j(k + 1)- 1/2j(3j + 1). 

It would be of interest to find a simple explicit formula for Ckj. The problem is equivalent to inverting 

(3.15) un = J^ [ " * * ] qk\n-2k (n = 0, 1,2, »J . 
2k<n 

In this connection the following two inversion theorems may be mentioned: 

if and only if 

ur = Z [ s ] ^ {r= 0,1.2,-.) 
2s<r 

vr - Z (-1)*q
y*<s-1> - L ^ - [ ' , - ] vr_2s (r = 0, 1,2, •••). 

u - - S ( [ ; ] - [ S - / ] ( ^ (r-0.1.2.-) 
2s<r 

if and only if 

*r = E (-D'q™8*" [ r 7 S ] ^ - 2 s (r = 0, 1,2, . . J . 
2s<r 

For proof of these and some related inversion theorems see [2]. 
4. Returning to the recurrence (1.2) we now construct a second solution \pn(a)= \jjn(a,q) such that 

(4.1) i>o(a)'= I ViM = a 



102 FIBONACCI NOTES APR. 1975 

and of course 
(4.2) $n+lM = a\pn(a)+ qn"7 \pn.jfa) (n > 1). 

Put 

(4.3) ^(a,x) = Y, ^n<a)xn . 
n=0 

Then 

so that 

^(a,x) = l+ax + Y <a^n.1(a) + qn'2^n.2(a))xn = 1+ax^(a,x)+x2^(a,qx), 
n=2 

(4.4) ^(a,x) = j - ? — + -^— *(a,qx). 
1 -ax 1 -ax 

Iteration of (4.4) yields 

r=0 <ax>r+1 

Hence 
O O , OO OO 

*(vc) = E qr<r-1,*2r E [ ' ? * ] a V = E x" E [ n 7 r ] Qr(r~1>Bn-2r. 
r=0 s=0 n=0 2r<s 

which implies 

(4.6) *nM = £ [n-r-]qr(r-1)an'2r . 
2r<n 

We have therefore n 

<4-7> 124>„M = <l>n+i(ciy2a)-
Finally we mention the following continued fraction formula. 

(4 8) a + JLd....9l = ^n+2(a) = Y V""**1! ak\n~2k+1 /Vs I " " - * ! nk(k+1)n-2k 
*4"8' a+ a+ a n/2 y ^ L k J * * / 2* L * J * a ' 

q <Pn + llq a) 2k^n + 1 / 2k<n 
An equivalent result has been obtained by Hirschhorn [ 3 ] , 

REFERENCES 
1. L Carlitz, "Fibonacci Notes-3: g-Fibonacci Numbers," The Fibonacci Quarterly, Vol. 12, No. 7 (December, 

1974), pp. 317-322. 
2. L. Carlitz, "Some Inversion Formulas," Rendiconto del Circolo Mathematico diPalermo, Series 2, Vol. 12 (1963) 

pp. 183-199. 
3. M.D. Hirschhorn, "Partitions and Raimanujan's Continued Fraction,"Duke Mathematical Journal, Vol. 39 (1972), 

pp. 789-791. 
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A G E N E R A L I D E N T I T Y FOR MULTISECTING G E N E R A T I N G FUNCTIONS 

PAULS. BRUCKIVIAiy 
University of Illinois, Chicago, Illinois 60880 

Consider the general power series: 

(1) fM = £ an*n 

n=0 

(de f inedfor some radius of convergence /?, whenever |x| < R). 
I t is desired t o f i nd an expression, preferably in terms of f(x), fo r the so-called mul t isect ing generating f u n c t i o n , def in-

ed as f o l l ows : 
oo 

(2) g(r.S,x) = Yi anr+s*nr+S 

n=0 

(where r and s are integers sat isfying 0 < s < r ) . 
We shall suppose that f(x), and therefore g(rfs,x) satisfy appropr iate convergence requirements, so tha t the fo l l ow ing 

development may have va l id i ty . 
The prob lem indicated above has been solved by various investigators, f o r certain special cases. For example, Gould [ 1 ] 

has obtained the fo l l ow ing results, f o r the case where a n = Fn ( the /7 f / ? Fibonacci number ) : 

F Xs + (-1)sF xr+s 

(3) fM - Y, Fn*" - — ^ ; 9<r, s. x) - £ W " * " ' ' ™ 
n=0 1-x-x2

 n=0 1-Lrx
r + (-1)rx2r 

Also, Hoggatt and Anaya, in a recent j o i n t paper [ 2 ] , derived a comparable relat ion fo r the co lumn generators of 
Pascal's lef t - just i f ied tr iangle. Ac tua l l y , the de f in i t i on of the mul t isect ing generating f unc t i on of fix) used by these 
wr i ters was the f o l l o w i n g : 

<4> h(r,s,x) = J2 anr+sx
n -

n=0 

The modification of the latter definition given by (2) is slight, sinceg(r,s,x) andh(r,s,x) are related as follows: 
(5) g(r,s,x). = xsh(r,s,xr) . 

For the purposes of this paper, Eq. (2) is a more convenient definition. 

~ | / if n =. 
g(r,s,x) = 2^ anQ(n,r,s)xn, where Q(n,r,s) = < Q o tner 

n=0 i 

= s (mod r) 
(6) g(r,s,x) = 2 ^ anQ(n,r,s)xn, where 6(n,r,s) = \ Q otherwise 

n=0 

This is evident from the definition of g(r, s, x) in (2). Another evident relation is: 
r-1 

<7> fM = lL9<r<s>x}' 
s=0 

103 
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What is needed is an explicit expression for Q(n,r,s). Such an expression is conveniently provided by the following 
function: 

1 £L / io, -/ Q(n-s)2kTrl 1 

(8) 0(n,r,s) = 1~Y e("^^kin/r = e - 7 (provided njksfmodr) ) . 
k=0 r 

i e (n~s)2kiri/r _ A 

If n = s + mr, for some integer m, then e
fn's^2k7T,/r = e2mkm = ^ | n t h j s event, 0//7, r, sj = r/r = . I On the other 

hand, if n £s (mod r), the numerator of the second expression in (8) vanishes, but the denominator does not; i.e., 
0(n, r, s) = Q. Thus, d(n,r,s) as defined in (8) has the desired properties we are seeking for this function. Accordingly, 

g(rfs,x) = £ anx
n i £ e(ns)2k«i/r 

n=0 k=0 

J2 an{e
2k"i/rx}n = IJ2 e-2Mf(e2k*i/rx). [ V 0-2skm/r V a i 02kw/rv\n = f_\^ 0-2skiri/rffa2km/rv 

r-7 oo r-1 

e~ 

k=0 n=0 k=0 

We may make a further simplification, by letting w(r,k) = e2k7T//r, the (k+1)th rth root of unity. We note that 

w(r,k) = Jivfr, 1)\k; 

if we let wr denote w(r,1), then our relation takes the following form: 
r-1 

(9) gfr,s,x) = 1
TY.w^SkMx) . 

k=0 
This is the general expression we are seeking. Any further simplification will depend on the particular values of r 

and 5, and on the specific form of f(x). Indicated below are several special cases of (9) for the first few values of r 
and $, but for perfectly general fix): 

g(hO,x) = f(x), g{2,0,x) = %\f(x) + H-x)}, g(2,1,x) = % {ffx) -f(-x)) . 

g(3,0,x) = t{f(x) + f(ux) + f(u2x)} {where u = %(-1 + is/3')), g(3, 1,x) = 1-{f(x)+ u2f(ux)+ uf(u2x)\ , 

(10) g(i2,x) = 1 { f(x) + uf(ux) +• u2f(u2x) } , g(4, 0,x) = 1- { ffx) + f(ix) + f(-x) + f(-ix)} , 

g(4, 1,x) = L\f(x)>~if(ix)-f(~x) + if(-ix)} , g(4,2,x) = J- { ffx) - f(ix) + ff-x) - f(-ix) } , 

g(4,3, x) = 1-\ ffx) + If fix) - ff-x) - iff-ix)} . 

Note that the coefficients w~r are themselves rth roots of unity, in permuted order (but with unity itself always 
first). If we sum g(r, $, x) over s, keeping k fixed, the sum of these coefficients vanishes, except for k = 0, where it is 
unity. This is in accordance with our expected result in (7). 

Many interesting special cases of (9) exist, and have been extensively studied, for specific functions ffx). For exam-
pie, if ffx) = ex', Eq. (9) yields the following: 

(ID ^^-E^-fZ^^ • 
n=0 k=0 

This may be further simplified and expressed as a strictly real function, involving trigonometric terms, but we will 
not do this here. It will suffice to say that the general form of (9) possesses an intrinsic symmetry which further 
manipulation tends to eliminate. For example, using identity (11), 

g(3,0,x) = L{e* + eu* + if2*) , 
where u is as defined in (10); however, we may also express g(3, 0, x) in real form: 

g(3,0,x) = 1j{ex + 2e^1/2X cos(1/2Xsj3)} , 

which is not as elegant a result as (11). Similarly, many special cases of (9) may be verified by the interested reader; 
it is the writer's opinion, nevertheless, that (9) possesses a special elegance just as it stands, limited though its practi-
cal usefulness may be. 
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A FORMULA FOR .4* fa) 

PAULS. BRUCKIV1AN 
University of Illinois, Chicago, Illinois 60680 

This paper is a follow-up of [1 ] , which dealt with certain combinatorial coefficients denoted by the symbol An(x). 
We begin by recalling the definition oiAn(x), which was given in [1 ] : 

oo n 

(1) (1-ur1(1 + u)x = ] T An(x)if; therefore, An(x) = £ ( / * ) , 
h=0 i=0 

which is a polynomial in x. In [1 ] , the writer indicated that he had found the first few terms in the combinatorial 
expansion tor A2(x), but was unable to obtain the general expansion. Formula (78) in [1] gave the first few terms 
of the expression, derived by direct expansion: 

«> *<*>- U")ju)*^(2/-,) * ( ^ f ^ ) ( 2n-2y-\ • 
The problem of obtaining the general term of the polynomial A2(x) has now been resolved. However, the expres-

sion is in the form of an iterated summation, which is indicated below: 
n 2n n j+n-i 

(3) ^ - E ^ h E ( ; ) E ( ; ) E ( i ) fn~ 1.2,3..-) 
i=0 i=n+1 ' j=i-n k=0 

Perhaps some interested reader can reduce this expression to a simpler one, involving only two (or possibly one) 
summation variables. If we denote the coefficient of I * j as 0,-, relation (3) above yields the following values: 

e2n ={2
n"); e2n.f - <*LZM n(n+2); e2n.2 - J ^ f y^+2n2+3n_4) 

(these last three values may be compared with those in (2)); 

e2n-3-^^yn4
 + n3-i-8n2

 + 2n-24); 

also, en+1 = 3n+1-2.2n+1 + 1n+1; Qn+2 = 3n+2-2-2n-h2+1n+2-(n+2)(2n+2-1) + (n+2)2 . 

In attempting to discover the law of formation of 0; for/ > /?, it is clear that increasing difficulty is encountered as 
one recedes from either end of the second (iterated) summation in the right member of (3). Possibly, 0/ may be con-
cisely expressed in terms of a finite difference operator, but this approach has not yet been fully explored. 

A proof of (3) follows. The proof hinges on a formula due to Riordan, indicated as formula (6.44) in [2 ] . This 
formula is as follows: 

«*» i{n
k)(

m:-;k){m/n-*)= U ) m -
k=0 

A slightly more convenient form of (4) is obtained by the substitution i = m + n - k, also observing that the upper 
limit in (4) need only equal min (m,n), since subsequent terms vanish. Then (4) takes the following form: 

m+n m+n 

» ( ; ) ( ; ) - S ,(7)U)('=")- S (;)(:)(-"-) • 
j=max (m,n) i=max (m,n) 
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Now 
n n n n j+h 

* - E ( ; ] Z ( ; ) = E E T. (",){',)(,•-„) 
1=0 x h=0 ' j=0 h=0 i=rnax(j,h) X ' ' 

(applying the result in (5)), 
n j+n rn 

- E E ( ? ) ( ; ) E ( / . 
j=0 H h=H 

where m = min(i,n). Now let h = i' —j + k. Then 
0 "£%/ W N ' W ' / • \ 2n m m-i+j 

*--ss(j)(;)£U.)-£(?)£(;)S-(i)-
Distinguishing between the cases where / < n and / > n, this expression may be simplified as follows: 

E ( ; ) E ( ; ) t ( J ) * z ( 7 ) z ; ( j ) ^ ( i ) -
i=0 X ' j=0 X f k=0 ' i=n+1 X ' J=i-n V ' k=0 X ' 

Comparing this with the right member of (3), we see that the only thing left to prove is that 

'-E^EU)-
j=0 k=0 

But this is an easy consequence of the binomial theorem, applied twice, since 

J2{i) = n+7,J = 2J> and Z I ( / YsU+2)is3'• 
k=0 j=0 

Hence (3) is proved. Obviously, the expression for 0/ given by (3), for / > /7, is not unique. By various substitutions 
and/or translations, a wide variety of expressions for 0: may be derived from the basic relationship in (3). For ex-
ample, the following alternative formula is given, without proof: 

n 2j-i i j+n-i 

» E ; ) E '»*')- E ; )£(;)-"<• «>•> 
j=[1A(1H)J k^O j=2i~2n k=i-n 

(where [u] represents the integral part of u). 
Attempts by the writer to obtain a generating function for the An (x)'$, in closed form, were unsuccessful. Can 

anyone help? 
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In this paper we consider the generalized Fibonacci second-order recurrence relation 

(D Uk+2 = xUk+1 + yUk , 
with x and y variables. Then for certain x and y in (1) we introduce the following new theorems: 

Theorem 1. If ( / p _ / = 0 (modp ) , then p>3 kalways m odd prime. 

Corollary 1. If Up + 1 ̂  0 (modp) then p > 3 is always an odd prime. 

Corollary!. \tUp+ 1 ̂ 0 (mod p2) or (mod p3)thm(p - 1)! + 1=0 respectively (mod p2) or (mod p3). 

In the Addenda of this paper we also prove: If 
Fn = k1Fn-.1+k2Fn„2 , 

(where k-j and k2 are arbitrary constant numbers), then the following relation always holds 

F2
n-Fn+1Fn.1 = {-1)nkn

2 , 
where 

F0 = h F1 = ku F2 = k2
1 + k2,-~ • 

NOTE. This paper was presented in person and in full at meeting No. 703 of The American Mathematical Society, 
New York, April 18-21, 1973. An abstract also appeared in the Notices of the American Mathematical Society, Vol. 
20, No. 3, April 1973, issue No. 145, p. A-361, under 703-A22. 

For clarity we write (1) as 
(2) Uk = xkUk.1 + ykUk^2 , 

where k>3 is a positive integer, and the xk,yk are arbitrary variables. 

Uk =xkUk-i+ykUk-2. k>2. 

\ixk=2k- 1 and yk = -(k- 1)2, then (2) becomes 

(3) Uk+1 = (2k+1)Uk-k
2Uk^ . 

What we want to show next is that if in addition to (3) we let 

(3b) Uk = kU^ + tk-l)!, 
then 

Uk+1 = (k+1)Uk + kl. 
To see this, 

Uk+i = (2k + 1)(kUk-i + (k- 1)1) - k2Uk,7 = 2k2Uk^ + kUk^ - k2u^1 + (2k + D(k - D! 

= k2Uk- / + kUk. 1 + 2k! + (k- 1)1 = (k + 1)(kUk. j + (k- 1)1) + k! = (k + 1)Uk + k!, 

which is (3b) with k replaced by k + 1. The proof is complete by induction. We then conclude that Eq. (3) may 
be written in the following two ways: 
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(4) Uk+1 = (2k + 1)Uk - k2Uk-i = (k + 1)Uk + kl, 

where k>2, U1 = 1, U2 = 3, U3 = 11, - . 
H. Gupta has noticed that the sequence /, 3, 11,50, - , Uk+i = (k+1)Uk + k! is really the second column of the 

array of STIRLING NUMBERS OF THE FIRST KIND. See Riordan [4 ] , pp. 33 and 48. Of course, in the table the 
signs are alternating. 

From page 33 of [4] we find 
(A) s(k +1,n) = s(k, n - 1) - ks(k, n) 
so that we note that if n =2, we get 

s(k+1,2) = s(k,1)-ks(k,2) 

and, from the table on page 48 of [4 ] , we note 
s(k,1) = (~1)k+1(k-1)l. 

Now let 
Vk(-1)k+1 = s(k+1,2), 

then (A) becomes 
Vk(-1)k+1 = (-Dk+Uk-1)/-kVk_7(-1)k 

or equivaiently 
Vk+1 = kVk + k! 

which agrees with (4) for k + 1. O.E.D. 
It is of course evident that 

(5) m(m-2)!/m! = 1/(m-1), 
and also that 
(6) U = 21(1)+11 
(by (4)). Then, since LJ3 = 3U2 + 2!, we combine this equation with (5, with m = 3) and (6), which leads to U3 = 31(1 
+ 1/2) +21, and in the exact way we get 

(7) U4 = 41(1+1/2+1/3) +31. 

Then in the exact way we derived (7), step-by-step (with added induction we prove that 

(8) Uk = kl(1 + 1/2+1/3+ -+1/(k-1)) + (k-1) = k! j J2 1/r ) < 

for k= 1,2,3, —. (It may be interesting to emphasize the fact that we have found the explicit formula 

k 

£ 1/r = Uk/k/J 

Now, using the well known fact that 

k 

(9) <t>(k -1) =J£ j/r = 0 (mod k2) , 
r=1 

if and only if k > 3 is an odd prime (see 1), we are in a position to prove the following theorems: 
(10) ThearemlAi Up-i^Q (modp ) , then/? > 3 is always an odd prime. The proof is immediate by combin-

ing (8, with k = p - 1) with (9) whichJeads to the congruence Up^1 = (p - 1)!(p(p - 1)^0 (modp2). 
(10a) Corollary I. Sf Up+ 1 = 0 (mod p), then p > 3 is always an odd prime. 

The proof of Corollary 1 is immediate by combining (3b, with k replaced by some odd prime number p > 3) with 
Wilson's theorem (Wilson's theorem: (p - 1)f + 1 ^0 (mod p), if and only if p is a prime number), since 

(10b) Up+1 s pUp.1 + (p- 1)1+1 = 0 (mod p). 

(10c) Corollary 2, If Up+ 1 ^0 (mod p2) or (mod p3), then (p - 1)! + 1 =0 respectively (mod p2) or (mod p3). 

We easily prove (10c) by combining (10b) with (10). Since this leads to 
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(10d) Up+1 = (p-1)1+1 (modp3) . 

ADDENDA 

1. We write the following familiar congruence (see 2): 

(11) If p >3 is a prime then (p - 1)!=pBp-i -p (modp*-), 

where B is a Bernoulli number. Mow, combining (11) with (10d) we have 

(12) Up - pBp-t -p (modp2) . 

(13) 2. N. Neilsen (see 3) proved that: \\p=2n + 1, P= 1*3*5 ~(2n - 1), and/? > 3 is a prime, then 

P = (-1)n22nn! (modp2) . 

Now, combining (10d) with the results in (13) leads to 

(14) U2n+1 = (-Dn24n(n!)2 (modp2), where 2n + 1=p is a prime >3. 

It is easy to prove that 

(15) (Ik - I)!)2 = U2
k + Uk^Uk - Uk.7Uk+7 = F(k - 1) . 

Proof. In (3c) we have Uk - kUk-i = (k - 1)!, we then put (Uk - kLl^)2 = F(k - 1), and this leads to 

(15a) Uk+1 = (2k+1)~k2Uk^ , 

where, since (15a) is identical with (4), we have proved that (15) holds. Now, in (15) we let/? = k- 1, so that 

(nl)2 = U2
H + UnUn+1 - UnUn+2 = F(n), 

and combining this identity with (14), we have: 

(16) U2n+1 = (~Dn24n(F(n)) (modp2), 

where 2n + 1 = p is a prime >3. 
3. A generalized version of (4) may be derived in the following way: Put 

(17) Uk = Uk^xk + (k-D! 

(where the* are arbitrary variables). Then, multiplying (17) through by k, we have 

(17a) kUk = kUk-ixk + k!, 

but in (17) it is evident that 

(17b) Uk+1 = Ukxk+1 + k!, 

and subtracting (17a) from this equation we get 

(18) Uk+1 = (k+xk+1)Uk-kxkUk„1 . 

Example of 3. We easily prove (4) with (17b) and (18), if we let 

*k = K *k+l = k+1, -,xk+j = k+j (j = 0, 1,2,-). 

4. In conclusion, it may be interesting to note: If 

(19) Fn = k1Fn-1 + k2Fn-2. 

(where k7 and k2 are arbitrary constants) then the following relation always holds: 

(19a) F2-Fn+1Fn^ = (~1)nkn
2 , 

2 
where FQ = 1, Ff = kf, F2 = k1 + k2, 
Proof. In (19) we may write Fn+] = k7Fn + k2Fn„t, and combining this with (19a), we have 

(20) k1FnFn.1-hk2F^1 = F2+(-1)n+1k2 . 

Now, we multiply both sides of (20) by k2 and then add 
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to both sides of the result which leads to 

(20a) k2F2+2k1k2FnFn^+k2F2_.1 = k2F2-i- k2F
2+ k7k2FnFn„7 + (-1)n+1kn

2
+1 . 

It is easily seen that 

Fn+2 = k7Fn+7 + k2Fn = k2
7Fn + k7k2Fn-.7 + k2Fn , 

and combining this equation with (20a), we have 

(20b) (kiFn + k2Fn„7)
2 = F2

n+1 = Fn+2Fn + (-1)n+1kn
2
+1 . 

In the same way we found (20b), we proceed step-by-step (with added induction) and prove that the identities in 
(19) and (19a) are correct. 
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PYTHAGOREAN TRIANGLES 
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ABSTRACT 
The first section of "Pythagorean Triangles" is primarily a portion of the history of Pythagorean triangles and re-

lated problems. However, some new results and some new proofs of old results are presented in this section. For 
example, Fermat's Theorem is used to prove: 

Levy's Theorem, If (x,y,z) is a Pythagorean triangle such that (7,x) = (7,y) = 1, then 7 divides x + y orx ~y. 
The historical discussion makes it reasonable to define pseudo-Sierpinski triangles as primitive Pythagorean trian-

gles with the property that x = z - 1, where z is the hypotenuse and x is the even leg. Whether the set of pseudo-
Sierpinski triangles is finite or infinite is an open question. Some elementary, but new, results are presented in the 
discussion of this question. 

An instructor of a course in Number Theory could use the material in the second section to present a coherent 
study of Fermat's Last Theorem and Fermat's method of infinite descent. These two results are used to prove the 
following familiar results. 

(1 A) No pythagorean triangle has an area which is a perfect square. 
(2A) No pythagorean triangle has both legs simultaneously equal to perfect squares. 
(3 A) It is impossible that any combination of two or more sides of a pythagorean triangle be simultaneously per-

fect squares. 
If 2 is viewed as a natural number for which Fermat's Last Theorem is true, then the following are obvious gener-

alizations of 1A, 2A, and 3A. 
(1B) If k is an integer for which Fermat's Last Theorem holds, then there is no primitive pythagorean triangle 

whose area is a kth power of some integer. 
(2B) If k is some integer for which Fermat's Last Theorem is true, then there is no pythagorean triangle with the 

legs both equal to k powers of natural numbers 

[Continued on Page 120.] 



RELATIONS BETWEEN EULER AND LUCAS NUMBERS 

PAULF. BYRD 
San Jose State University, San Jose, California 95192 

1. IMTRODUCTIOM 

(3) &} = ̂  K^bt)m]t=0 

In a previous article [1 ] , the author presented a class of relations between Fibonacci-Lucas sequences and the gen-
eralized number sequences of Bernoulli. The same simple techniques can be used to obtain such identities involving 
other classical numbers. 

The purpose of the present paper is to give explicit new relations and identities that involve Lucas numbers to-
gether with the famous numbers of Euler. 

2. PRELIMINARIES 
EULER NUMBERS 

The generalizedEulernumbers E„ of the/7?t/7o/"(/er a re defined by the generating function (see, for example [3]), 
oo 

(D ^ _ m _ _- (sech ,,« _- £ fW Cr |,| < v/2 . 
te +e ) n=0 

If m = 1, one writes E'n ' = En, and has the more familiar Euler number sequence of the first order: 1, 0, - 1 , 0, 5, 
0, - 6 1 , 0, 1385, 0, -50521, —. The generalized numbers satisfy the partial difference equation 

(2) mEir+V-Effi-mE™ = 0. 
Moreover, 

P(m) _ 
dtn 

so one obtains the sequence 
(4) E(

0
m) = 1, E(

7
m) = 0, E(

2
m) = -m, E(

3
m} = 0, E(

4
m} = m(3m+2), »., 

with £ ^ ; = 0 for * > 1 . 
If m is a negative integer, i.e., when m = -p, p > 1, the relation 

(5) E(-p} = -^ [(cosh t)p]t=0 

yields the explicit formula 

<6) E2f = iI2[j)(P-2J}2k< k>®' 
2 j=0 

Euler and Bernoulli numbers of the first kind (m = 1) are related by the two equations 

4 (4 - 1) I=Q k=Q 
(See [2].) 
LUCAS AND FIBONACCI NUMBERS 

If 
(8) a = (f + y/5)/'2 and b = (1->j5)/2, 
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then the Fibonacci and Lucas numbers are defined respectively by the generating formulas 

(9) eat-ebt 

s/5 £ '»& •"*•*-£'»£< 
or explicitly by the equations 

(10) 

n=0 

an-bn 
L = an+br 

n=0 

n > 0 n a-b ' 

1 SOME IDENTITIES 

With the above background preliminaries, we are in immediate position to obtain three identities. As in the pre-
vious article [1 ] , we shall use inventive series manipulation as the fundamental method. 
EXAMPLE 1 

Note that 

(11) e^ + ebt = et/2(ect + e-ct)= J2 Ln £ , 
n=0 

where the quantity c, which will occur frequently in subsequent equations, is 

(12) c = y/5/2. 

We also have 
A/2 7 

eat + ebt ~ ect+e + -ct d-j n
 nj 

or 

(13) eat + ebt 2e 

n=0 

t/2 

n=0 "j 

where we have made use of Eq. (1) with m = 1. Thus, 

f (14) y cnE £ | £-• ° tn n! 
Ln=0 

£*•& 
s=0 

ze 2^ „_, n! 
n=0 * 

Application of Cauchy's rule for multiplying power series now yields 

(15) j^(n
k)z

kEkLn^^21'n n>Q. 
k=0 

Since £2m-/ = Ofor/77 > 1, and $inc& c = s/5 /2, we have the identity* 
[n/2] 

del £U)(f)w"-2* = ^ " 
k=0 

involving Euler numbers of the first order and the Lucas numbers. This identity holds for all n > 0. 
EXAMPLE 2 

Now 

or, in view of Eq. (1), 

(17) 

(8*t+ebt}2 = et{ect + e-ct}2 ^ 

ef
 = / = % y* cnE(2) £ 

(e°t + ebt)2 (ect + e~ct)2 ^ " n! 

*This particular identity is also found in [4] . 
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(2) 
where En are Euler numbers of the second order. But it is also seen, using the second generating function in rela-
tions (9), that 

(18) (eat + ebtf = [e2at + e2bt]+2et = £ [2nLn+2] £ 

So, with (17) and (18), one has 
n=0 

n! 

Y cnE(2} tl 
Ln=0 

T,(2sLs+2)$ 
s=0 

*** = * T'-l 
n=0 

or the identity 

£ ) [nk)c
kE(

k
2)[2n-kLn„k+2] =4 

k=0 

Since the odd Euler numbers are zero, this can be written as 

[n/2] 

(19) 
n=0 

EXAMPLE 3 
Again, we have 

(20) 

E [*S) ^ t2n-2kLn-2k-2] ^4, n>0. 

(e*< + eK)2
 = 4e<il+ft)2 

= 4 

:(-2). 

E *-
L s=0 

Y c"F(-2> tl 

where E„ are Euler numbers of negative second order. Once more we note that 
oo 

(2D (eat + ebt)2 = E f2nLn+2] ljr 

and then equate this to the expression on the right in (20). Thus 

furnishing the identity 

(22) Ln = 2 1-n 

[2nLn+2] =4 £ ( ? W " 2 ' > 
k=0 

[n/2] , 

-»«s U)(i)**" k=0 

4 GENERALIZATION 

n > Q. 

The procedure just illustrated can easily be extended to furnish a whole new class of similar identities involving 
Lucas numbers and Euler numbers of higher order. 

GENERAL CASE WHEN m iS AN ARBITRARY NEGATIVE INTEGER 

We take m = -p, with/7 being a positive integer > 1. From Eq. (1) it is seen that 

(23) ^ | l ^ - - ( c o s h ^ - - E ^ ^ 
n=0 

where E(
n~

p} are Euler numbers of the (~p)th order. We also note that 
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p-1 

i: 
r=1 

(24) (eat + ebt) = [epat + epbt] * £ ( P )e[p^(b-a)r]t = ^ p»Ln * £ ( P ypa + (b - a)r]
n j g 

and that 
n=0 

P-1 

r=1 

(25) 
-ctiP 

(eat + ebtf = 2pept/2 fe +e } = 2P 

2P 2(1)-5 
s=0 

2^ c tn nj 

n=0 

Equating (24) and (25) now yields 

(26) p"Ln +£ f P ) [pa + (b -a)r]" = 2<> £ ( £ ) ( | ) " ^ C * £ ^ , 

or the identity 
r=1 

p-1 

k=0 

[n/2] 

(27) Ln-p-»\-Y,(p)b» + (t-M*+2> £ U ) ( f ) (f)**# 
This identity holds for each p > 2, and it furnishes an infinite number of identities. In the special case when 
p = 1, we have 

[n/2] f 

(28) L„=2'-" £ ( £ - ) 5 * £ # > , * > 0 . 
Ar=0 

Equation (27) is remarkable in that it embodies explicit formulas for expressing any Lucas number in a finite sum 
involving any particular Euler sequence of negative order that one may choose. 

GENERAL CASE WHEN m IS A POSITIVE INTEGER 

Different types of identities are obtained when m is positive, but the technique of deriving them is the same. We 
present the result without showing the detailed development. It is as follows: 

[n/2] . i m-1 ) 

<29> E U ) ( f ) &' \^*Ln-2k + E (?)[«>'+ (b-aM" \ = 2™-"m" 
k=0 f r=1 > 

which reduces to (16) when m = 1, and to (19) when m = 2. The identity (29) holds for all positive m, and represents 
a one-parameter family of identities that are valid for all n > 0. 

B. REMARKS 

By using the first equation given in (1), other identities, involving Fibonacci numbers and Euler numbers, can be 
found if &2k in terms of Euler numbers is inserted in the identities obtained in [1] . 

Since 
(30) Fn = I [Ln+7 + Ln.7], n > 1 

Equation (27) can easily be used to explicitly express any Fibonacci number in terms that involve any Euler sequence 
of negative order. 

It may interest the reader to extend our identities and to investigate how such relations may be applied. The author 
(as every Fibonacci-number enthusiast should do after recording his formulas) is turning his attention to the question 
of what might be done with them. 
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4. R. P. Kelisky, "On Formulas Involving Both the Bernoulli and Fibonacci Numbers," Scripta Mathematica, 23 

( 1 9 5 7 ) ' p p - 2 7 - 3 5 - * * * * * * * 



SUIV1S AND PRODUCTS FOR RECURRING SEQUENCES 

G.E. BERGUM 
South Dakota State University, Brookings, South Dakota 07006 

and 
V. E.HOGGATT,JR. 

San Jose State University, San Jose, California 95192 

In [1 ] , we find many well known formulas which involve the sums of Fibonacci and Lucas numbers. For example, 
we have 

n 

(1) X Fi = Fn+2-l n > 1; 

i=l 

n 

(2) X Li= Ln+2-3, n > 1; 
i=1 

<3> £ F*-1 = f2"< n > 1; 

i=1 

n 

(4) Y. L*-1 = L2n~2< n > U 
i=1 

Hence, it is natural to ask if there exist summation formulas for other lists of Fibonacci and Lucas numbers. If 
such formulas exist it is then natural to ask if the formulas can be extended to other recurring sequences. The pur-
pose of this paper is to show that both of these questions can be answered in the affirmative. To do this, we first re-
call the following [1 , p. 59] 
(5) Fn+k + Fn„k = FnLk, k even; 

(6) Fn+k + Fn„k = LnFk, k odd; 

(7) Fn+k-Fn-k = FnLk, k odd; 

(8) Fn+k-Fn„k = LnFk, k even. 

Using Ln = an + j5n where a and 0 are the roots of x2 - x - / = 0 with a= (1 + y/s)/2, P = (1 - s/5 )/2 it is easy to 
show that 
(9) Ln+k + Ln-k = LnLk, k even; 

(10) 
l~n+k + l-n-k ~ 5FnFk, k odd; 

(11) Ln+k-Ln-k = LnLk, k odd; 
(12) Ln+k~Ln„k = 5FnFk, k even. 

Observing that a sum involv ing^ terms, by combining pairs, reduces to a sum of 2P~ terms, we were able to show 
Theorem 1. If k> 7 then ,-

(13) V Fn+4ki = F •, U L . . 
L^j , n-t-m, n+(2j-1)2k j=1 28k 
j=0 ' l 

115 



116 SUMS AMD PRODUCTS FOB RECURRING SEQUENCES [APR. 

Proof. \ij= /then 

' i 
y\ Fn+4ki = Fn + Fn+4k = L2kFn+2k = Fn+(2l-D2k n h'k 

and the theorem is true. 
Assume the proposition is true fo r / Using (5), we have 

2^-1 2'-i 

/ J Fn+4ki = L2k /2 Fn+2k+8ki 
1=0 1=0 

i 
= L2kFn+2k+(2J-1)4k n L

2
i+1k 

1+1 
- F , j+1 , n L i 

and the theorem is proved. 

Using (9) and an argument like that of Theorem 1, we have 
2''-, / 

(14) ST Ln+4ki = L •. , n I / , Ar > / . 
^j n+«Ki n+(2j-1)2k i=1 2'k 
i=0 ' 

Using (8) and (14) with / - 7 in place of j, n+2k in place of n and 2k in place of kf one has 

(15) Z <-^Fn+4ki - ^ ^ f f / _ f / a t n ^ , * > , 
1=0 ' * 

Similarly, with the aid of (12) and Theorem 1, one obtains 
2''-i j 

(16) £ <-Vi+1Ln+4ki - 5F2kFnH2j H t , * > , . 
i=0 ' * 

From (9) and (14), we have 

2J-1 j-1 

(17) £ W / - / M - Ln+(2hKij2k UQ L2jk, k even 

while Theorem 1 with the aid of (12) gives 

(18) ± (-Vi+1LnH2h1)k « 5FkF H H ^ * even. 
1=0 ' ' 

Theorem 1 together with (5) can be used! to show 

2j-i j-1 

(19) E Fn+(2i-l)k = F
n+(2H„1)2k J Li k even 

/=0 ' u 

while (8) with (14) yields 

2J'-1 j-1 

(20) E <-1>'+1 FnH2i-Dk = FkL , f-1 t n L j , k even. 
*-* IZI ,/K K h+(2j -1}2k 2sk 
1=0 1=1 

Since we have used (5) and (8) as well as (9) and (12) on several occasions, it seems natural to ask if formulas exist 
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using (6) and (7) as we!! as (10) and (11). With this in mind, we developed the next four formulas. 
By use of (10) and (11), respectively with Theorem 1, we have 

2j-1 j-1 

(2D E L^H2M)k - SFkF M U L ^ .A: odd 
i=0 l ' 

and 

(22) £ (-^FnHV-m - FnH2H.1j2k '1 L^. k odd. 

Finally, if we apply (6) and (7) respectively with (14) we are able to show that 

(23) t Fn«2i-m = FkLn+(2h1_mk n L2,k, k odd 
1=0 ' 

and 

(24) Z <-1>i+1LnH2<-l>k = Ln+(2h1_im n L ^ , k odd. 

To Sift the results above to the generalized Fibonacci sequence which is defined recursively by 

(25) H0 = q, H1 = p, Hn = / / „ _ , + Hn_2, n > 2 

it is necessary and sufficient to examine formulas comparable to (5) through (12). To do this, we first define a gen-
eralized Lucas sequence by 
(26) Gn = Hn+1+Hn-1 -

In Horadam [3 ] , it is shown that 
(27) Hn = (ran-s$n)/2^/5 , 

where r = 2(p -q$),s = 2(p - qa) and a, |3 are the usual roots of x2 - x - 1 = 0, Furthermore, he shows that 

(28) Hn+k = Hn^Fk + HnFk+1 , 

where the Fk are the Fibonacci numbers. 
Using (27) and Binet's formula for Fk, a straightforward argument shows that 

(29) HnFk-l-Hn-lFk = (-VkHn.k . 

By (28) and (29) with the aid of Lk = Fk+1 + Fk^i, we have 

(30) Hjl+k+Hn„k = HnLkf k even 
and 
(31) Hn+k-Hn„k = HnLk, Arodd. 

If we use (25), (28), and (29) together with the fact that Fk = Fk+1 - Fk-l > w e n a v e 

(32) Hn+k + Hn„k = GnFk, k odd 
and 
(33) Hn+k-Hn„k = GnFk, k even. 

Replacing n by n + k in (26) and using (28), we have 

(34) Gn+k = Hn-jLk + HnLk+i 

while replacing n by n - k in (26) and applying (29) gives 

(35) Gn-k = (-1)k(Hn^Lk-HnLk^). 

Applying (34) and (35) as we did (28) and (29), we obtain 
(36) Gn+k + Gn„k = GnLk, k even; 

(37) Gn+k + Gn-k = 5HnFk, k odd; 
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(38) Gn+k-Gn-k = GnLk/ k odd; 
(39) Gn+k - Gn„k = 5HnFk, k even. 

Examining (30) through (33) and (36) through (39) with H replaced by Fand G replaced by L, we obtain proper-
ties (5) thorugh (12). Hence, it is clear that identities (13) through (24) can be lifted to the generalized Fibonacci 
and Lucas sequences and in fact are 

(40) s ' w - v , ! , ; , ^ *>'•• 
i=0 ' 

(41> £ *«**' = GnH2>-mk £ V*' * > 1; 

i=0 

(42) 

(48) 

2>-1 

£ M / " / w - F2kGn+(2U)2k n v k > , . 
/=0 

2'-? / 
(43) £ f - W w , - ^2kHnH2Lim n ^ * > 7; 

2^1 j-1 

(44) £ W - / * - Gn+(2h1_i)2k U L^, k even; 

2j-i / - / 

W5) £ (-Vi+1GnH2i-1)k = 5FkH
n+(2H„1)2k

 E L
2'k' keyen; 

i=0 ' 1 

2s-1 j-1 

(46) £ Hn«2i-m = "nH2i-1_1)2k .n L2ik. k even ; 

(47) £ <-'>»'»nH2,-M - ^ < w - / _ „ 2 , 'ny V*^ * •»"; 

E W/-/;* = 5F^nH2n,1)2k £ V*- * odd; 

i=0 

2J'-1 j-1 

(49) £ ' - " / + / > W ^ - "**• /_ , ,» n V*- *o d d ; 
/«0 

n+(2J~'-1)2k j=o 2'k 

2*-1 
( 50 ) 2-r ' W w * = fkG j-1 n / , .Ar o d d ; 

i=0 i=1 2 k 

(51) £ M / " W f * = ^ / - / . ^ £ LJk. k odd. 

The infinite sequence \xn J- ^L ; is called a recurring sequence if, from a certain point on, every term can be rep-
resented as a linear combination of the preceding terms of the sequence. Hence, the sequence j Un(x,y)\ ^=/ 
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defined recursively by 

(52) U0(x,y) = 0, Ui(x,y) = 7, Un(x,y) = xUn-i(x,y).+ yUn-2(x,y}r n > 2. 

where Un (x,y) e F[x,y], F any field is a recurring sequence. 
If we let \ and \ be the roots of the equation X2 -x\-y = 0, where we assume X1 = (x + %Jx2 + 4y)/2, y{Qf 

and x2 + 4y is a nonperfect square different from zero, then it is easy to show that 

(53) ua0,y) - £ ^ f • 
Furthermore, if we let 

(54) Vn(x,y) = \" +\n2 

then 
(55) Vn(x,y) = yUn^(xfy +Un+1(x,y). 

Because of the y coefficient, the formulas (5) through (12) do not follow the same pattern for this recurring se-
quence. However, it can be shown using (53) through (55) together with the facts \ \ =-y m&\ *\2 =x tha t 

(56) Un+k (x,y) + yk Un-k (x,yi = Un (x,y)Vk (x,y), k even ; 

(57) Un+k(x,y)+ykUn„k(x,y) = Vn{x,y)Uk(x,y), k odd ; 

(58) Un+k (x,y) - yk Un-k (x,y) = Un (x,y)Vk (x,y), k odd ; 

(59) Un+k(xty).- ykUn„k(xfy) = Vn(x,y)Uk(x,y), k even 

(60) Vn+k (x,y) + yk Vn„k (x,y) = Vn (x,y)Vk (x,y), k even 

(61) Vn+k(x,y)+ykV„-k(x,y) = (x2+ 4y)Un(x,y)Uk(x,y), k odd; 

(62) Vn+k{x,y)-ykVn-k(x,y) = Vn(x,y)Vk(x,y), k odd; 
(63) Vn+k (x,y) -yk Vn„k (x,y) = (x2 + 4y)Un(x,y)Uk (x,y), k even. 

Because of the y , it is quite obvious that formulas (13) through (24) do not have the same form for the recurring 
sequences \un(x,y) | and j Vn(x,y)\. If we let the coefficients of Un^2(xfy) in (52) be y = 1 then the se-
quences \Un(x,y) \ and \ S/n(x,y) {• are sequences of polynomials in x. In fact, they are respectively the se-
quences of Fibonacci and Lucas polynomials. With y=1,\X is easy to see that formulas (56) through (63) are of the 
same nature as (5) through (12) with F in place of U and L in place of V. Hence, the formulas (13) through (24) can 
be lifted to the sequences i Un (x,y) \ and ] Vn (xfy) \ if y = 7 by replacing Fn by Un (x, 1) and Ln by Vn (x, 1). 
Of course, we have* + 4 in palce of 5 in formulas (16), (18), and (21). 

In conclusion, we will examine whiat happens if we consider the recurring sequence J Hn (x,y)\ J= / where 

( . H0(x,y) = f(x,y), H<,(x,y) = g(x,y), 

Hn(x,y) = xHn-j(x,y) +yHn-2(x,y), n > 2. 

By using properties of difference equations, it is easy to show that 

(65) Hn (x,y) = (r(x,y)>? - s(xtyT^)/2^xTT'4^ 

where \ and \ are as before, r(x,y) = 2(g(x,y) - f(x,y)\), and $(x,y) = 2(g(x,y) - f(x,y)\). 
If we let 

(66) Gn (x,y) = (r0c,y)7$ + s(x,y)7£)/2 
then 
(67) Gn (xfy) = yHn„ 1 (x,y) + Hn+1 (xfy). 

Using (53) and (65), a direct calculation will show that 

(68) Hn (x,y)Uk+; (x,y) + yHn„ 1 (xfy)Uk (x,y) = Hn+k (x,y) 
and 
(69) Hn(x,y)Uk-.](x,y)- Hn^(x/V)Uk(xry) = (-1)kyk'7Hn„k(x,y). 

If we use (57) with (67) and (68) and remember that Ui(x,yt = 1, we obtain 
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(70) Gn+k(x,y) = yHn^(x,y)Vk(x,y) + Hn(x,y)Vk+1(x,y). 

Using (55) with (69) and (67), it can be shown that 

(71) Hn^(x,y)Vk(x,y)- Hn(x,y)Vk„7(x,y) = (-1)kyk~1 Gn-k(x,y). 

Letting k be odd or even in (68) through (71), we have 

(72) Hn+k(x,y) + ykHn„k(x,y) = Hn(x,y)Vk(x,y), k even ; 

(73) Hn+k(x,y) + ykHn„k(x,y) = Gn(x,y)Uk(x,y), k odd ; 

(74) Hn+k(x,y)-ykHn-k(x,y) = Hn(x,y)Vk(x,y), k odd ; 

(75) Hn+k(xfy)-ykHn..k(x,y) = Gn(x,y)Uk(x,y), k even; 

(76) Gn+k(x,y)+ykGn„k(x,y) = Gn(x,y)Vk(x,y), k even ; 

(77) Gn+k(x,y) + ykGn„k (x,y) = (x2 + 4y)Hn(x,y)Uk(x,y), k odd ; 

(78) Gn+k(x,y)-ykGn„k(x,y) = Gn(x,y)Vk(x,y), k odd ; 

(79) Gn+k(x,y)-ykGn-k(x,y) = (x2+ 4y)Hn(x,y)Uk(x,y), k even. 

Observe that if we replace H by U and G by V then Eqs. (72) through (79) yield Eqs. (56) through (63). 
If we let y = 1 in (64) then Eqs. (72) through (79) are those of (30) through (33) and (36) through (39) where we 

replace Vn(x,y) by Ln, Hn(x,y) by Hn, Gn(x,y) by Gn, and Un(x,y) by Fn. The same substitutions in (40) through 
(51) will give us the summation-product relations relative to the sequences \Hn(x,y)\ and \Gn(x,y)\ i f y = I 

In conclusion, we observe several other results which are a direct consequence of the formulas of this paper [2; p. 19]. 
If we replace n by k + 1 in (5) through (8) we have Fk, Lk, Fk+1,m& Lk+1 are relatively prime to F2k+1 for A-

> 1. If we let/? = £* ,? in (5) through (8), we have Fk, Lk, Fk+2, and Lk+2 are all relatively prime to F2k+2^k> 
1. Letting n = k + / i n (9) through (12), we see that Fk, Lk, Fk+f,and Lk+1 are all relatively prime to I~2k+1-

If we let n = k + 1 in (56) through (59) with y= / we see that the Fibonacci polynomials U2k+i(x,1) + 1 are fac-
torable for/r > 2. \$n = k\N\thy= 1 in (56) through (59) then U2k(x,l) is factorable for k > 2. 
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[Continued from Page 110.] 

(3B) Ifkis an integer for which Fermat's Last Theorem is true, then there is no Pythagorean triangle with the 
hypotenuse and one of the legs equal to kth powers of natural numbers. 

Proofs of 1B and 2B are provided in the complete text, but 3B remains an open question. 
The authors have attempted to compile a complete bibliography related to Pythagorean triangles. Included in the 

bibliography are 111 references to journal articles, 66 references to problems (with solutions) in Amer. Math Monthly, 
17 references to notes in Math. Gaz., and 12 references to notes in Math. Mag. Since it is impossible to compile such 
a bibliography without some omissions, the authors would appreciate receiving any references not already included 
in the bibliography. 

The complete report of which this article is a summary consists of 23 pages. It may be obtained for $1.50 by writ-
ing the Managing Editor, Brother Alfred Frousseau, St. Mary's College, Moraga, California 94575. 

******* 



SOiVIE IDENTITIES OF BRUCKIVIAN 

L CARLiTZ* 
Duke University, Durham, i o r th Carolina 27706 

S. Bruckman [1] defined a sequence of numbers -j An I by means of 

(1.1) (1 -zrUl+zF* = £ Anz
n , 

n=0 
so that 

(1.2) An = £ (-Dk2'2k ( 2k
k ) . 

)k=0 
He proved the striking result 

HO\ V 1 o2n n!n! A2 V2n+1 _ arctan x 
{1'6) l * 2 WTlJiAnX ' v r ^ ' 

n=0 
which is equivalent to 

( u ) A2 __ 2-2n ( * , ) £ (_1)n-k2-2k ( * ) _ ^ _ L . 
k=0 

Gould [4] has discussed Bruckman's results in some detail and indicated their relationship to earlier results. He re-
marks that "a direct proof of (1.4) by squaring (1.2) is by no means trivial." However, he does not give a proof of 
the formula. 

The purpose of this note is to show that (1.3) is a very special case of a much more general result involving hyper-
geometric polynomials. We also show how a generalized version of (1.3) can be obtained using a little calculus. 

2. In the standard notation put 
Mn(b)n 

n! (c)n 

(a)n = a(a + //••• (a + n - 1), (a)0 = I 

F(a,b;c;z) - £ ^ z " 
ti "!(C,n 

where 

Weisner [6] has proved the formula 

(2.1) £ — ^ Fn (-n, a; c;x)F(-n, h; c; y) 

n=0 

= (1 - z)a+b~c(1 + (x- 1)z)~a (1 + (y- DzFb F(a,h; c; J ) . 
where 
(2 2) t = ^^~ 

(] + (x- 1)z)(1 + (y- Vz) 
This result had indeed been proved earlier by Meixner [5 ] . For an elementary proof of (2.1) see [3] . 

Replacing x, y by 1 —x, 1 -yf respectively, Eq. (2.1) becomes 

*Supported in part by NSF Grant GP-37924 
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(c)nz
n 

n=0 

(2.3) J2 (^n7- Fn (-*. V c; 1 - x)Fn(-n,b; c; 1 - y) 

= d - Z)a+b-c(i - xzr
a(1 ~ yzrbF(a,b; c; V, 

where 
(2 4) F = JLzxllLzJdk 
UA} S (l-xz)d-yzj' 

In particular, for c = a + bf Eq. (2.3) reduces to 
(a+b)nz

n 

n=0 

Consider 

(2.5) Yl -JT~ Fn(~nfa;a +b; 1-x)F(-n,b;a +b; 1-y) 
n=0 

= (f - xzFa(1 - yzFbF(afb; c; H. 
3nsider 5 

E (c)n c, , n V 1 (c)nz" V * (-n)k(a)k f jk 

-^F(-n,a;c;1-x)z" - ^ —^ L, i m r " ' ^ 
n=0 n=0 k=0 

k=0 n=k 

OO 

L^i n! 
i=0 

V i ^ 2 F(-n,a;c; l-x)zn = (l-z)a~c(1 - xzFa . 

k=0 

where we have used 

(a)n , f i 

n=0 

It follows that 

Mn 

n=0 

Thus, for c = a + b, we have 

(a+b)n 

n=0 

(2.6) £ — ^ T " ^ " ^ a + b ; 1 - x ) = (1- zFb(1 -xzFa . 

St follows that 

(2.7) f f - /7, c?;a * 6/ / - * j = x 'W- /? , 6 ; a ^ ; / -x~1). 

3. We now specialize (25) by taking 

(3.1) a = V2f b = 1, c = 3/2. 

Then (2.5) becomes 

( 3-2 ) H ^ ~ f - Fn(-n,y2;3/2;1-~x)F(-n,1;3/2;]-y) = (1 - xzFVs!(1 - yzF1 F(V2,1; 3/2; ) . 
n=0 

In view of (2.7) this may be replaced by 

(3.3) Y L ( ^ ^ - ~ Fn(-n,Y2;3/2; 1 -x}F(-n,%;3/2; 1 -y~1) = (1-xzF*(1-yzF1F(X,l;3/2; ) . 
n=0 

We define the polynomial An(x) by means of 
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oo 

(3.4) £ An(x)zn = (1-zr1(1-xzF* . 

n=0 
This is equivalent to 

(3.5) A„(x) = T 2~2k { 2k )xk . 
k=0. 

Comparing (3.4) with (1.1) or (3.5) with (1.2), it is evident that 

(3.6) An - An(-1) . 

It will also be convenient to define 

(3.7) An(x) = xnAn(x~1) = £ 2"2k ( 2k )xn~k . 

Comparing (3.4) with (2.6), we get 

(3.8) An (x) = ^ ^ F(-n, %; 3/2; 1-x). 
n! 

Thus (3.3) becomes 

(3.9) V - ^ J - AnMAn(y) = (1-xzrV2(1-yzr1F(y2,l;3/2; ) . 
*-* (3/2ln n=0 

Since 
(1/21 = P'2n n- -IJUJn ' (2 Vf 

and 

zF(V2,1;3/2;-z2) = V (-Dn f r r = arctanz, 

(3.9) may be replaced by 

(3.10) £ <-1)"22" ^j!k!friZ2n+'Anfx)An(y) 

n=0 

= j (j _ ^ 7 _ K t f / + y z 2 ; } "Cretan z ( -JhiMLud- \ J * 
( \l1+xz2)(1 + yi?)}\ 

For x = y = -1, it is evident from (3.6) and (3.7) that 

(3.11) V ^ 2 n
 7 ^ T 7 ^ V " + / = Kf 7 - z ^ a r c t a n - ^ 

^^ (2n +1)! * 
n=0 

For y=x, the right-hand side of (3.10) becomes 

% 

(2n + V! n " ' \ 72 
n=0 ] - z 

a-xrUi+xz2r\mm <L=iL* = £ (~1)k {^2^^(^xz2r2k-{3^ 
1+XZ k=Q 

±(-,fi(±*j^±(-V> (*+> + *)* 
2n+1 k==0 J'=0 

Comparing coefficients of z we get 

(3.12) 2»AnMAnM = ̂ ^ E (*-/** )4^1y 
1=0 

The corresponding formula for An(x)An(y) is more complicated and will be omitted. 

2n-2j 
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For* = - 1 , (3.12) reduces to 

(3 13) A2 = (2n + 1)! V (i\"-i I 2n-j + y2 \ 2~2j 

U'U) An n!n! ^ ( V [ 1 I 2n - 2j + 1 ' 

which may be compared with (1.4). 
Formulas (3.11) and (1.3) are equivalent. This is a consequence of 

arctan — ^ — = i>arctanz. 
1-z2 

We remark that in a recent paper [2] Bruckman has considered a different generalization of An. 

4. We can also prove (3.10) in the following way. To begin with, take 

77 __z)k+(3/2) 
(i-zr1d-xzr1/2 = a-zr(3/2) ( i + !±f*>i) = V (-^2'2k (ik \-U^*£*K 

k=0 

= E <-»kr2k (2k) (i-x)k*k E {k+\+% y • 
k=0 j=0 

It then follows from (3.4) that 

(4.1) AnM - t i-VFr* ( * )( - * ) ft-*," - **» ^±M ± <-Vk[ I ) (±g 
k=0 k=0 

Since 

0 k=0 

it follows that 

(4.2) AnM = 2-2n®L±M f (1-{1-x)t2)ndt 
n! n! J 

. 0 
and 
(4.3) An (x) = 2-

2n <M±1}L { (x + (1- x)t2)ndt. 
n!n! J 

Thus 
oo oo / 

tn02n n!n! A f„a t..u2n+1 _ \T* / *i/? A /„i~2n + ] t /..,/<, ..u2\ndt S (-1)"22" ( i M l An^n(y)z2n+1 = D (-V"AnMz2"+1 f (y + (1-Y)t2)nt 

n=0 0 

z J | 1 + {y + (1-y)t2)z2T | 1+x(y + (1-y)t2)z2Y'dt 

Jia 

(4.4) f 

/7=0 /?-0 

J 

6 
We shall make use of the formula 

" y2 

-& " 7 arctan * ' ab'~*'b 

(a' + b't2)(a+bt2)V2 (a'tab''-aW% \a'(a + bx2) I 
where , 0 0 

\a = 1+xyzz
t b = x(1-y)zd 

\a' = 1 + yz2, b' = (1-y)z2 , 

ah' = a'b = (1-x)(1 - y)z2, a + b = 1 +xz2 . 

We therefore get 
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oo 

n=0 . i 

= {(1-xHl-y)(1+xz2)\-'A*riXan \z {-ZL-xM-Y^ \ \ * 

which is identical with (3.10). ' \(1+xz2)(1+yz2) )\ 

APPENDIX 
5. We shall prove the following identity. 

n=0 r=0 s=0 

OO 

where I c„ K I dn \ are sequences of arbitrary complex numbers and 

v w - £ O^L Cn+r^ y DniXyiZ) __ ̂  <±pidn+s{ ft-
r=0 s=0 

We may think of (4.1) as an identity between formal power series. 
PROOF OF (5.1). The left-hand side of (4.1) is equal to 

(5.2) £ (-^crdsxY±(±jn("r)("s)z». 
r,s=0 n=0 

The right-hand side of (5.1) is equal to 
oo 

~2n-r-s 
—j— un+s\-yt/ \s -£/ 

n=0 r=0 s=0 
d-*rX £ ~f(^ni: -y^On+A-xzfY. % - dn+s(-yz)^-zF 

n=0 ' r=0 ' s=0 

- d-*rx £ £ (-vr+s %f^j^cn+rdn+s/'
+ry^zn^(i-zr2n-r-s 

n=0 r,s=0 

min (r,s) 
r+s-n 

= a-zf- E M ^ A V X ^ W - ^ E W-n),(s-n)imn " 
r,s=Q n=0 

Comparing this with (5.2), it is evident that it suffices to show that 
00

 n . , , , . min(r,s) r+s„n 

6-3) E^(;(s"j^-^xy/-zr— E i^i^imn-
n=0 n=0 

If we multiply both sides of (5.3) by xrys, and sum over r, s, we get 
00 t\\ °° r s mln(r<s) r+s-n 

E ^ f ^ f ^ ^ - " - ^ E W H - ^ E flirafcjTC 
= tt_7r* V ^ frK^r V (X + n,rfa + n}s (xzflvzf - (i_7r

x V ( M L f / z ' Z^ „/ 2„ Z-r r;5; r*s
 f / £! La n! 

n=0 (I ~z* r,s=0 U-Z) n=0 

. -Oazilf /__^_ f ^ f i-je^y1™ = (i-z)x(i-(i+x)zrx(i-a+v)z) 
(1 _z)2n \ 1~Z j \ 1-z) 
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Thus (5.3) is equivalent to 
[1 - (1 + x)(1 +ykFX = (1 - z)X \[1-(1 +x)z][1 - (1+y)z] -xyz \'X 

and so to 
(1-z)[1 - (1 +x)(1+y)z] = [1-(1 +x)z][1 - (1+y)z] -xyz. 

This equation is easily verified. 
This completes the proof of (5.1). 
The identity (5.1) contains numerous interesting special cases. In particular, taking 

(5.1) becomes °n~ (C)n'
 dn~(d)n 

n=0 r=0 s=0 

~0 "'• (1-Z)2n 

where now 

(5.7) 

Cn(x,z) = £ (\ + n)r(a)n+r 1 -xz 
r!lc)n+f \1-Z 

r=0 •-

(\ + n)s(h)n+s 
U^<J ^ 5i(d)n+s { i-z) 

s=0 

This result was proved in an entirely different way by Meixner [5 ] . 
We now specialize (5.6) further by taking \= c = d. Thus (5.7) reduces to 

Cntv) = E ~ T ( f T J T = Mn (l + J^J y3'" - (a)n(1-z)a+n(1-(1-x)zr 

Dn (y,z) = (b)n (1 - z)b+n (1-(1- y)zFb-n 

Therefore (5.6) reduces to 

n=0 r=0 s=0 
oo 

= d _ z)
a+b-ca _ // _ x)zra(i -a- v)zrb Y —n- ( &?- )n 

ii z) u U x)z) (/ (i yjzj ^ nf \ ( 1 _ ( 1 _ x ) z j ( 1 _ ( 1 „ )z) -
# v n = 0 

This is the same as (2.1). 
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FORMAL PROOF OF EQUIVALENCE OF TWO SOLUTIONS 
OF THE GENERAL PASCAL RECURRENCE 

HEWRY W.GOULD 
West Virginia University, H/lorgantowsi, West Virginia 26506 

There have been numerous studies of the general Pascal recurrence relation 
(1) f(x + 1,y+1)- f(x,y +1)- f(x,y) = 0, 
Defining 

&xf(*,y> = f(* +hy)- f(x,y), Ayf(x,y) = f(x, y+D- f(x,y), 
Exf(x,y) = fix + I yh Eyf(x,.y) = f(x, y+1), 

Milne-Thomson [8] notes that Eq. (1) may be recast in the form of the partial difference equation with constant 
coefficients 
(2) Eybxf(x,y).-f{x,y) = 0 
for which one may write down the formal solution 
(3) f(x,y) = (1 + Ey1 ) x <p(y), 
where $(y) is an arbitrary function. Hence Milne-Thomson finds the classical formal solution (finite series when x is 
a positive integer) 

oo 

<4> f(*>y) = £ U )*(y-k)' 
k=0 

There is then also an alternative way to write such a formal series solution: 
oo 

(5) f(x,y) = J^ ( * ) My-x + k). 
k=0 

These are old and well-known results, easily found in other treatises on the calculus of finite differences. The method 
of generating functions is used in [8] also and the results agree with the two possible series solutions we have quoted 
above. 

As for getting a nice, elegant, explicit formula for the general solution to such partial difference equations (and of 
higher order), we would be remiss if we did not mention the two valuable papers of Carlitz [3] and [4 ] . Anyone 
working with arrays of numbers ought to consult these papers for a close-hand study of the interesting way Carlitz 
handles the equations. These papers deal with formulas for sums of powers of the natural numbers and the formulas 
involve Bernoulli and Stirling numbers as well as expansions of differential operators. 

Most recently, Eq. (1) has arisen in some interesting new work on partitions [1 ] , [5 ] . Carlitz's solution of a recur-
rence in [5] has now attracted Hansraj Gupta [7] who has announced the following result: 

Theorem. Let c(n + /, k) = c(n,k) + cln, k - 1), with c(n,0) = a(n), c(1,k) = b(k), n,k > 1, where a(n) and h(k) 
are arbitrary functions of n and k, respectively. Then, explicitly, 

(6) '<»*> = l L { I ' - ] ) *(n--r) + ± ( " ; 1 ) b < k - r ) , k>1. 
r~k r^O 

This generalizes the solutions and formulas given in [1] and [5 ] . What we propose to do here is to show the equiva-
lence of Gupta's formula (6) and the well-known formal series solution (4). We show that the one implies the other. 
A simple combinatorial identity listed in [6] equivalent to the Vandermonde convolution (addition formula) is used 
in the discussion. 

We first need to reformulate Gupta's result in the notation of the present paper. In our notation, formula (6) becomes 
x y-1 

(7) f(x,yj = £ ( ; i \ ) f(*-r,0)+Y. ( *r )MY-r). 
r=y r=0 
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OF THE GENERAL PASCAL RECURRENCE 
for integersx,y ^ 1. 

In the steps below we need at one spot formula (3.4) from [6 ] : 

We find then that assuming (4) 
x x 

r=a 

j=0 1=0 r=y 

so 

r=y 

that we 

oo 

¥-i) 
x'1 / 

E 
r=y-1 

j=0 

have shown in fact 

r=y 

M' 
oo 

)-E(; 
r=y 

j=0 r=y-1 

r=y r=y 
Upon adding the trivial relation (clear from (4)) 

£(Xr)f(0,y-r)=VJ2{*)Hv-r) 
r=0 r=0 

to both sides of (9), we find that we have proved (7). Conversely, it is easy to see how to follow the steps in reverse 
so that series (4) can be broken into two parts as specified in (7). Solving (1) in terms of an arbitrary function 0 is 
equivalent to setting up the two sequences f(x - r, 0) and HO, y - r). We leave aside the discussion of convergence 
questions. 

As a final observation, Cadogan [2] has shown how to solve the slight extension of (1): f(k,n) = pf(k, n - 1) + 
qf(k- 1,n - 1), wherep,q are arbitrary fixed constants. He interprets the resulting arrays in terms of arithmetic and 
geometric sequences for certain choices of parameters. There is nothing hew in this, but his paper is a worthwhile 
pedagogical survey written at an elementary level. Similarly, there is nothing "new" in the present paper, but we have 
spelled out the manipulations of our proof to show how one actually does the verification of equivalence. In a similar 
way the reader may write out the same argument using (5) instead of (4). Of course, the equivalence of these with 
Gupta's (6) has been shown here only when x,y are integers, and the reader must bear in mind that (4) and (5) are 
more general than (6) because they hold in cases whereby are not integers. The series manipulations leading to (9) 
are easily justified because the series are really finite series, I x J = 0 for example, when r > x, x being a non-negative 
integer. ^ 
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NOTE ON SOME GENERATING FUNCTIONS 

L. CARLITZ* 
Duke University, Durham, Worth Carolina 27706 

1. In a recent paper in this Quarterly, Bruckman [2] defined a sequence of positive integers Bk by means of 

(1.1) (1-xr1(1+xr* = Y*Bk~i; 
k=0 2k*k! 

This is equivalent to the recurrence 

(1.2) Bk = Bk-f + (2k - 1)(2k-2}Bk-2 (k > 2), B0 = B1 = 1 

Making use of (1.2) he showed that 

.u. s» f .*>» • ± * g£„ 
0 k=0 

and 

«-4) (1-x2f1 arctanx = £ B2
k ^ ~ . 

k=0 
Bateman [1] has discussed the polynomialgn(y,z) defined by 

(1.5) (1+x)V+z{1-xFY = J2 xngn(y,z); 

n=0 

see also [3 ] . On the other hand the Jacobi polynomial [6, Ch. 16] 

d.6) ^^-E(n)(^")(^-?)V-f1)'" 
k=0 

satisfies 

d.7) f ; ptn'*-n)(x)zn = ( / +x-^z)a (/ +^-z 
n=0 

and in particular, f o r * = 0, 

(1.8) X Pt~n'^n) (o)zn = (i + y2z)a(i-y2zf . 
n=0 

It follows from (1.1) and (1.8) that 

(1.9) -1 Bk = 22kPt*-k>-'-k>(0) = (-Vk22kpt1-k'-1/2-k)(Ol • 
k! 

We shall show that both (1.3) and (1.4) can be generalized considerably. We also obtain the following congruence 
f o r £ „ ; 

*Supported in part by NSF Grant No. GP-17031. 
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(1.10) 
r 

£ (-V™ ( s ) Bn+smB(r-s)m - 0 (mod r! mr )> 
s=0 

where m and r are arbitrary positive integers. 
It would be of interest to find a combinatorial interpretation of B^ . 
2. The writer [4] has obtained the following bilinear generating function: 

(2-1) Z rr(x~1>n(y • i)nwnp(
n
a-n'-a-y-n} ( j ^ | ) ptn^7'n) ( * ^ | ) 

r?=a 

where as usual 

F{z,b;c;z) = ] £ jffcT z" a n d W " = a(a + 1)-(a+n - 1), (a)0 = 1 . 
n=0 

In particular, f o r * = / = - / and 7 = - a - (3, Eq. (2.1) reduces to 
00 r 

(2.2) X ; / — S ^ j - 4nwnPtnM~n>(0)Ptn'a'n>(0) = a + wF+H - a , - 0 ; - a - 0 ; - * * _ " | . 
„=0 ' " a - ^ " L r /+^2 j 

It is convenient to replace a, 0 by - a , —(3, so that (2.2) becomes 

( 2 - 3 ) £ n f t " ^ V ^ ^ r t ^ ^ V w - f / + ^ f [ n ( i ; o + / l ; - ^ l . „=0 'a + <"" L /7 + wJ2J 
Specializing further, we take (3= a+ /i, so that 

oo 

(2.4) V 7 - ^ ™ » 4nwnp(-a-n,-*-y2-n)(Q)pM^-a-n)(Q) 

= (1+wr2a~*F | a,a+%;2a+%, 

(1 + wf 1 Next in formula (2) of [6, p. 66], 

take a = 2a,b=1/2. We get 

(2.5) F 

Hence (2.4) becomes 

= (1+wr2aV2F\a/a+y2;2a+y2,^^-l\ . 
] L (1 + w)2] 

V2a, 1/2a + 1/2;a-b + 1; —^— "\ = (1 +z)aF[a,b;a -b + 1;z] 
(1+z)2 J 

+z;2 J a,a + %;2a+%; (1+zrFf2a,,A;2a+,A;zJ. 

•*—' (2a + %)r, 
n=0 

Since 
Pt'0>M = (~1)nPlf'a)(-x), 

(2.6) may be written in the form 
CO 

<2-7> L (2aTW 4"wn i P!!-
a-n'-a-'A'n) (0)\2 * (1- wr'AF[2a, %;2a+ X; -w]. 

n=0 

In particular, for a = %, it follows from (2.7) and (1.9) that 
CO 

/7-0 
^£ti'<'-»r*Fn.*;3/2;^J. 
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Replacing w by z , this becomes 

(2.8) 

Since 
n=0 

£ JttuBl = z<1-*r*F[1.%;3/2;-z2] . 

zF(1,V,;3/2;-z2] = f ) (-V (^f-z2n+1 = f ] M/1 ^ - = arctanz 
rt=0 " A7^0 

it is evident that (2.8) is the same as (1.4). 
3. In (2.1)takex = -7 , y = 0, j= -a-/}. Since, by (1.6), 

p(V-n,*-n)(_v = j a 
it is clear that (2.1) reduces to 

n=0 *"* 
Replacing a,j3 by - a , —]3f this becomes 

(3.1) 

In particular, for /3= 14 we get 
oo 

'3-2> Z ^ 7 2nznP(na-n<-y2-n)(0) = (1 - z)'aF 

J2 (_Vn Mn2
nwnPta-n'-P-n)(0) = (1 + wraF\ a, P;a + P; j ^ - 1 -

*—' (a + (3)n I 7 ^ J 
/7=0 

/7=0 

Fora= 1, Eq. (3.2) becomes 

a, 1/2;a+1/2; -2z 
1 -z 

(3.3) 1L — ** = (1-zr1F\1,%;3/2;- ^~ 
^02

n(3/2)n L ' - * 
This is not the same as (1.3). 

The right-hand side of (3.2) is equal to 

r=0 

(a)r(y2)r , 9 , j r v ^ (a + r)s ^ S ^ '-*"'-"--E-^& «>T r!(a+Y2)r * ~" *-* s! 
r=0 5=0 

n=0 r=0 

2-r J^T H" {U} L* Z l^ { Z) r!(n-r)!(a+1/2)r ^ r!(a+1/2)r ^ (n-r)l 
n — n —n r=0 n=r 

Hence (3.2) implies 
oo oo /7 

2"zn
 p(-OL-n,-%-n) /n\ _ V * ,fi \ " ^ / n\r (%)r 

n=0 n=0 r=0 

so that 

(3.4) ^ hJWn n ( } ^ r!(a+y2)r 
n=0 r=0 

For a= 1, Eq. (3.4) reduces to (1.3) 
4. Put 

(4.1) 
n=0 
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Then 
oo 

5 2 cm(a,$)cn(a,$)xmyn = (1-x)a(1 -y)a(1 +xf(1+yf = (1 +xy-x-y)a(1 +xy +x + yf 

m,n=0 a 

00 k 
QL+$-k 

k=*0 s=0 ' r=0 Ec*^EUr^Er* ry 

It follows that 

m,n=0 s+t=m 
k-s+t=n 

mm (m,n) 

r *v E ; rT* Wa^ 

(4.2) cm(aMn(a.V = £ ( " ^ l ' 2 ' ) ( a + " - ? ' " " + 2 t ) cm+n^(«M 

The proof follows Kaluza [6 ] ; see also [3] . 
Comparing (4.1) with (1.1), we have 

(4.3) Bk = 2k.k!ck(-1,-1/2). 

Thus (4.2) implies 
m/n(m,n) « 

(4.4) BmBn = ] £ f - ^ ' ( 7 ) ( ? ) f / n (2m+2n-2t-2j+1)Bm+n-2t • 

For /77 = 1, Eq. (4.4) reduces to (1.2). It is not difficult to prove (4.4) by induction. 
The writer has proved the following result [5 ] . 
Let f(n), gin) denote polynomials In n with integral coefficients. Define un by means of 

(4.5) un+1 = f(n)un+g(n)un..i In > 1), 
where 
(4.6) u0 = I u7 = f(Q), g(0) = 0. 

Then un satisfies the following congruence: 

(4.7) A2run = A2r"1un - 0 (modmr), 

for all m > 1, n > 0, r> 1, where 

^ U n = 12 (-1>r~S\ s )un+smU(r-s)m • 
s=0 

Comparing (4.5) with 

Bn+l = Bn+2n(2n + l)Bn_1 , 

it is clear that (4.6) holds. We have therefore 
r 

(4.8) E M r " \ s )Bn+smB(r-s)m - 0 (mod m[(r+1}/2] ) . 
s=0 

However a better result can be obtained. By (4.4) we have 
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L (-U™ (;) Bn+smB(r_s)m = £ i-m(; ) £ t-w (n +t
m)lfr-;lm W. n' 

s=0 s=0 ' t - / \ I j-0 

• (2n + 2rm - 2t - 2j + 1hBn+rm.2t = Y, (- V* 2-. Bn+m.2t U (2n + 2rm - 2t - 2j + 1) 
t i=0 

where 
f(s) = (n+sm-t+ 1)t((r-s)m - t + 1)t . 

Clearly 
f(s) = ao + aism + — + a2t(sm) r , 

where the a-, are integers. Then 
r , 2t 

X ( ~ i r S ( s ) f(s) = Z ^2''ArO'' - 0 (modr!mr). 
s=0 i=r 

Since 
?f f -7 
~ n (2n+2rm-2t-2j+1) 
t! j=0 

is integral, it follows at once that 
r 

£ (-1TS ( £ ) Bn+smB(r„s)m ^ 0 (modr!mr). 

s=0 
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A GENERALIZED PASCAL'S TRIANGLE 

C. K, WONG*tatid T. W. MADDOCKS** 
University of Illinois, Urbana, Illinois 61801 

1. INTRODUCTION 

In the study of a combinatorial minimization problem related to multimodule computer memory organizations [5 ] , 
a triangle of numbers is constructed, which enjoys many of the pleasant properties of Pascal's triangle [1,2]. These 
numbers originate from counting a set of points in the /r-dimensional Euclidean space. 

In this paper we only list some of the properties which are similar to those associated with Pascal's triangle. Other 
properties will be the subject of further investigation. 

2. f-SPHERES IN RECTILINEAR METRIC 
Let k ) 

U(
r
k) = \(x1,x2,',xk)\xi integers, / = 1,2, - A and ]|T) \x,-\ < r >. 

The aim of this section is to obtain a formula for the cardinality \Ur | of the set Ur . 

Lemma 1. Let 

(xi,X2,",xk)\xj integers, / = 1,2, •, k and ] P \xs\ = j > , 

then 

\S 

h i = o, 
>(k), _ J k-1 x 

i=0 

Proof. Notethat the number of waysto place/ nondistinct objects into k distinct cells is f k+
k~1

1 )• (See [3].) 
Consequently, the number of ways to place/nondistinct objects into k distinct cells such that none of them is empty 
is ( k~-\ '* ' n ^J ' '* vv6 group together all points (xl,x2,—^(f() whicti have the same number of zero coordinates, 
the result follows. 

Theorem 1. 

\U<rk>\ = h [ k
i ) { k L i ) 2 k - i . 

i=0 

Proof. It follows from 

\u<k)\=i+±\sr>\ and ±(i)= ( - ; ) . 

*On leave f rom IBM T.J. Watson Research Center, York town Heights, N.Y. Supported in part by NSF GJ 31222. 
**NSF Academic Year Institute University of Illinois Fellow in Mathematics, 1972-73. 
tCurrent address: I.B.M. T.J. Watson Research Center, Yorktown Heights, N.Y. 10598. 
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The numbers \sj | and \Ur\ have the following geometric interpretation: 
It suffices to mention the case k = 2. Partition the Euclidean plane into unit squares. Fix any square as the origin, 

nth which will be called the 0 sphere. All squares which have at least one edge in common with the origin form the / 
sphere. All those with at least one edge in common with a square in the 1st sphere form the 2nd sphere, and so on. 

st 

3 
3 
2 
3 

3 
2 
1 
2 
3 

3 
2 
1 
0 
1 
2 
3 

3 
2 
1 
2 
3 

3 
2 
3 

3 

Figure 1 
(2) i The numbers in Fig. 1 indicate what spheres the squares are in. \Sj | is then the number of squares comprising 

thefh sphere, i.e. its "surface area," and \Ur• | is the number of squares constituting the rth sphere and its interior, 
i.e., its "volume." 

The generalization to k> 2 is clear. 

3. A GENERALIZED PASCAL'S TRIANGLE 

For simplicity, let us write Mkj for |U(
r
k)\. We then have the following observations: 

Theorem 2. (i) Mkff = Mrfk 

r-1 

('•> Mk+1,r = 2 ^ Mkj + Mkfr 

1=0 
(iii) Mk+hr+1 = Mk+1tr + Mktr+i+Mkfr 

Proof. (i) If k > r, then 

^-E(n(-/)^/ =2:(/--)f-/)^-s(; 
i=k-r 

Similarly for the case k < r. 

(ii) 

1=0 

r-1 k 

1=0 
r-j 

?M = Mr,k-

r-1 

1=0 

^ E ^ - E ( f ) ( * / i - / ) ^ w 

l=o i=o 

/=/ 1=0 

( f c r ) ( / + ; )^ , + ?[(?) + ( /^)] (*/r- / )^ W -;^/) (5i^ 
k+1 

sCDU/-/)^"-"**^ i=0 

(iii) It follows directly from (ii). 

Theorem 3. For k = 0, 1, 2, - , let 
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Sk 

Then 

(k-D/2 
H Mk-2i,h 

k/2 
X ) Mk~2i,i, 
i=0 

if k is odd, 

if k is even. 

, , n < 0
 Sk+3 = $k+Sk+1+Sk+2 

for k = 0, 1,2, - . 
In other words, they form a Tribonacci sequence. 

Proof. St follows from (iii) of Theorem 2. 
We can now construct a triangle of the numbers | MkA, k,r = 0, 1, 2, —. The nth row consists of the numbers 

| Mn-jj \ in the order of i = 0, 1,2, —,n from left to right. The left diagonals thus consist of numbers with fixed A; 

and the right diagonals numbers with fixed k. 
By (iii) of Theorem 2, each number in the n row is the sum of the three adjacent numbers in the (n - 1) and 

(n - 2)nd rows. For example, the number 25 in the 5 t h row is the sum of its three adjacent numbers 5, 7,13 in the 
3rc! and 4 t h rows. Therefore, instead of using the formula in Theorem 1, we can fill in a row by adding appropriate 
numbers in the two preceding rows. Finally, by Theorem 3, the sums of the more gently sloping diagonals form the 
Tribonacci sequence, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, •••. 

The first 10 rows of this generalized Pascal's triangle is displayed below. 
r=0 

*1 
Rows 

0 

1 

2 

3 

4 

5 

6 

7 

Tribonacci 
Sequence 
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and 
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1. INTRODUCTION 

F2+F2+mmm + F2 
One way to easily establish the validity of 

~)-rr2-. - . , n 

is by use of a nice geometric argument as in Brother Alfred [1] . Thus by starting with two unit squares one can add a 
whirling array of squares (see Fig. 1) with Fibonacci number sides since the area as in Fig. 1 is 

5x8 = F^ + Fi + F% + Fi + F\ •2 _ We. 
More generally, the rectangle has area FnFn+<i. 
This result is classic, but a new twist was added by H. L Holden [2] . The centers of the outwardly spirally squares 

lie on two straight lines which are orthogonal. These two straight lines intersect in a point P, and the distances of the 
centers of the squares from P sequentially are proportional to the Lucas numbers. Holden also contains an extension 
to the generalized Fibonacci sequence with / / / = 1 and H2 = p with Hn+2 = Hn+i + Hn. This results in 

H1 + H2 + H3 + — + Hn = HnHn+] - Ho . 

In another paper, we will discuss the situation with inwindsng spirals. 

2. THE FIRST GENERALIZATION 
Our method here is different than that used by Holden [2 ] , but ours offers a neater way to get the centers of the 

squares, and we proceed principally by generating functions. (See Fig. 2.) We first discuss the geometry. 

2 
1 
1 

3 
5 

\P3(-x-
p • . . . I l l 1 1 

. : y 

-x3,-V 
. , 

(0,0) I 
PQ(0, -1) | 
i__ 1 

iPl (x,0) 
iu, —it 

Figure 1 Figure 2 
Start out with a unit square and make x copies. Then above that, make* copies of x-x squares. It is not difficult 

to see that the edges are 1,x,x2+ 1,x3 + 2xf - , fn(x), where fn+2<x) = *fn+i(x> + fn(
xh which are the Fibonacci 

polynomials. 
If we consider the matrix 

as in Holden and V7 = (x, 11 V2=(-1,x), V3=(-x,-1), V4 = (1, -x) with 

then 
Theorem 1. 

To 1 1 

Vn+1 ~ Vn \_-1 0 J ' 

Pn = Pn-1 + Vnfn(x). 
*Fibonacci Scholar, Summer, 1974. 

137 
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If oof. The proof proceeds in four parts. 

Scheme 1 : 
pn 

I 
Scheme 2: 

ii 

Pn f 

^nM 

1 

Scheme 3: 
'n+1 

: 1 

T 
xfn+2 

i JL 

Scheme 4: 
P 

£o±2 

n+3 

t 
^n+3 

1 
fn 

n-1 
j 8 * - * W l | ^ — 'n+2 ^ 

n+2 N~" ^ n + 3 ~ H 
n̂ ^ V l f (' UK* ^n+1 = ^ n + <-*,- / ; / n + 1 P n + 2 - ^ n + 1 * (1,-*)f n+2 ^n+3 = ^n+2 * />, ^ n + 3 

These are the four critical turns in'the sequence of expanding the outward spiralling of squares. 
As a consequence of Theorem 1, one can prove 
Theorem 2. 

Proof. 

Assume 

Pn = PO+J2 VifiM • 
i=1 

Pi = (0.-1) + (x,1h1 = (x,0). 

n-~1 n 

Pn = Pn-1 + Vnfn = P0 + J2 Vifi+Vnfn = P0 + Y, V'f' 
i=1 1=1 

We are now ready to get on with the general theorem by means of generating functions. 

1 SOME NECESSARY IDENTITIES 
oo 

Ax 
Lemma 1. 

1-\2(x2+2) + \ 4
 n=0 

= £ f2nM\2n+1 

Lemma 2. 

Lemma 3. 

2n 

1-X2(x2 + 2) + \4 Z^0 

1 -\2(x2 + 2) + \ 4
 n=0 

Since these are straightforward, the proofs will be omitted. 
We may now give a generating function for the ̂ -components of the corners, where Pnx denotes the x-coordinate 

of the point Pn. 
Theorem 3. 

Proof. Fron 
1=0 ''* 1+\2(x2 + 2) + \ 4 f~] 

i=1 
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J2 P^X" = (Q+xf-jX- f2X2 -xf3X3 +f4X4 +xf5X5 + .~)/(l -X) 
n=0 

= fx(fj\- f3X3 + %X5 - >») - (f2X2 - f4X4 + fe*6- -)J/(1 - Xj 
= Xx+x(X + X3) 1_ 

1 + X2(x2 + 2) + X4 1~X 

Since Pn and Pn-i are opposite corners of square r\f the ̂ -coordinates of the centers Cn are given by 

(Pn,x+Pn~1,x>/2 = Cn,x . 

V xn(P +p i 1/2 = f + x xfk-X2 + x3) s y ^ r . A/ 
n=1 1=1 

and 

/?=/ 

where 

V / r r A " + * - (1 + ^)2[x(X~X2 + X3)] ^X X2* 
2(l + X2(x2+2) + X4) Z Z 

= -^3x(x2 + 2)/2 - X4x(x2 + 1 + X2)/2 
1 + X2(x2+2) + X4 

C1/X = x/2 and C2fX = x/2 . 

There are two further things to do. These differences clearly alternate in sign. To convert to regular differences all 
the same sign, we change the minus sign to a plus in front of the even powered term and then replace X by - X . 
This results in the following theorem: 

Theorem 4. 
Gx fcX; - ~ X ^ ^ 2 + 2)/2 + X4x(x2 + 1 - X2)/2 

l-X2(x2 + 2) + X4 

Theorem 5. The generating function for the /-differences between alternate corners is 

X3x(x/2) + X4(x2+1- X2)[(x2 + 2)/2] 

1-X2(x2 + 2) + X4 

Proof, For the /-differences one begins with 

and 
1=0 

i=i 

1 + \2(x2 + 2) + \ 4 

_X+ X + \2x2 + \ 3 

1+\2(x2 + 2) + \4 

M M I !- 1+\2(x2+2) + \4] 

± -X + X2(x2 +1)- \3(x2 + 3) + \ 4 - 2\5 

+ _ J _ j" x + 'X + 'X2x2 + \ 3 1 

2(1 - \) 1 + \2(x2+2j + \ 4 

Now to directly form the /-differences: 
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i=1 i=1 

But, C1fY = -% and C2tY = x/2. Thus, 

2t„2_ \3/%,2_ 
E fr r IV - 1 + ^ - X + \z(xd +1)- \^(x2 + 3) + Kf- 2ti 

1=1 1 + X2(x2 + 2) + \4 

. \Jx2 -\4(x4 + 3x* +2)-{x2 + 2Jkb 

2(1 + \2(x2+2) + \4) 

From the diagrams it is clear that these differences are associated with odds and evens and on their respective lines 
they alternate in sign. We wish the initial values to be positive. 

] T \Ci+2ty-Cj,y\X ~ -
i=1 

(-X2)Xx2 + (-\)2(x4 + 3x2+2) + (x2+2)(-\2)3 "I 
1-\2(x2+2) + \ 4 

X3x(x/2) + \4(x2+1- \2)[(x2+2)/2] 

1-\2(x2+2) + \ 4 

j E ^ w ^ ' ^ - f J2 f2"«M* 2n 

n=0 n=0 

Recall that thex-differences 

E (-inci+2,x-cLx\v = -x—^- 22 f2n(xfh2n+i+£ 21 hn+3M* 
i=1 n=0 n=0 

Thus, uniformly we see that the slopes of the lines through the centers are 

Cn+2,y - Cn,y = x/2 _ -X 

2n 

£n+2,x - CntX _fx2 + 2)/2 x
2 +2* 

Cn+2,y " Cn,y = (x2+2)/2 = X2 + 2 
Cn+2,x~CritK (x/2) X ' 

odd n, 

even n 

Thus, the centers lie on two straight lines which are orthogonal since the product of their slopes is - 1 . This con-
cludes the proof. 

Theorem 6. The centers C2j+i he on a line with slope -x/(x +2) and the centers C2s lie on a line with slope 
(x + 2)/x. These lines are orthogonal and intersect at the point (u,v), where 

x nnri ., _ -2 

x2 + 4 
and 

x2 + 4 

Proof. It is easy to show that the lines through £7 and C3, and through C2 and C4, respectively, do meet in the 
point (u,v) specified. 

Theorem 7. If Q is the point / x 
I x -2 \ 

x2+4 x2+4 

then the center Cn is Dn units from Q, where 
ln(x)\/x* +5x2 +4 

2(x2 + 4) 
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and in (x) is the nth Lucas polynomial, i1(x)=x, t2to=x2 + Z and in+i(x) = xinM + ln-lM-' 

Proof. Given that C1 = (x/2, -1/2) and C2 = (x/2, x2/2)f one can compute 

D2 =[ - * - - x ) 2 + l -=l~ + 1\2 -X2(x2 + 2)2+x4 _x6 + 5x4 + 4x2 

\ x2+4 2 I \ x2 + 4 2 I [2(x2 + 4)]2 [2(x2 + 4)]2 

0 = x^x* +5x2 +4 

It is also easy to verify that 
2(x2 + 4) 

D = (*2+2)<Jx4 +5x2 +4 

2(x2 + 4) 

Now consider the centers Cn+2 and Cn. The points lie on a line through 
x -2 

x2 + 4 x2+4 
which separates them. The x and y differences from Cn+2 and Cn are 

2 
~—p-fnM and *fnM, 

respectively, for one line or 
ffnM and *-±L fn(x)/ 

respectively, for the second line. Thus the distance 

\On+2 - Cn | = yJxA + 5x2 + 4 fn+1 (x)/2 

in any case. 
There is an identity for Lucas polynomials (see [3], p. 82) 

ln+l(x) + in-i(xt = (x2 + 4)fn(x). 

Now, suppose 

_ <WfrAA4 + 5x2 +4 
un - -

2(x2+4) 
Then 

\Cn+2~ Cn\~ Dn = Dn+2 

fn+1(x)sjx4 +5x2 +4 __ £„frA/*4 +5x2 +4 = in+2M>Jx* +5x2 +4 
2 2(x2 + 4) 2(x2 + 4) 

This concludes the proof of Theorem 7. 
1 THE SECOND GENERALIZATION 

In the last section we considered the rectangle whose edges were fn (x) and xfn (x)f where 

fn+2 to = xfn+1 to + fn M 
with 

f0M = 0 and ff(x) = 1; 

that is, the Fibonacci polynomials. Here we consider the sequence of polynomials such that 

Uj(x) = I U2to = P, and Un+2M - xUn+1(x) + UnM, 
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the generalized Fibonacci polynomials. We shall prove the following theorem. 
Theorem 8. Sf one starts with a 1xp rectangle and adds counter-clockwise rectangles/7 by/?*, —, Un(x) by xUn(x), 

then such squares in the whirling array have their centers on two straight lines with slopes -(x2 + 2)/x andx/(x2 + 2), 
which are orthogonal. 

P3<0,x(xp + 1)) 

PQ(0,0) 

• - — — — ' -1 

x(xp + 1) by (xp + 1) 

I ; I 

L_< 

P 
xp 

ih,-,—.,..,.,,„•., „„ — . , J 

P2(xp + 1,0) 

Pl(l-p) 

Figure 3 
Proof. To establish that the centers lie on two perpendicular straight lines we shall have to find the coordinates of 

the vertices Pn. As before, we consider the rotation matrix 

and the sequence of vectors 
I/? = (I -x), l/J = (x,1), 

0 11 

l/f = (-1x1 V2 = (-x,-n, 
where V* = V^ when n^m (mod41 

We shall also need the following identities for Fibonacci and Lucas polynomials (see [3]) : 

fn+2kM~fn-2kM = LnM
f2kM 

fn+2k(x) + fn-2k(x> = fnM^2kM 

fn+2k+1M + fn-2k-1M = £n M f2k+1 M 

fn+2k+lM~fn-2k-lM = fnMl2k+lM • 

It is then easy to establish, on lines similar to Theorem 1, that 

(1) Pn-l + VnUn(x), 

where the ! Un } is the sequence of polynomials 

(2) UjM = I U2(x) = pf U„(x) = xUn^U) + Un-2M. 

One also recognizes from (2) that the Un obey 

(3) Un+1(x) = pfnM+fn-rfx) , 

where the fn(x) are the standard Fibonacci polynomials. 
If Pnx and / ^ y denote the A-- and/-coordinates of Pn, one can establish from (1) that 

P2n+1,x = (U1-U3+U5-.-. + (-7)%2n+1)+(-x)(-U2 + U4---- + (-1)nU2n) 

= (-1)nfn+1(x)Un+1(x) + (-1)n+1xfn(x)Un+1(x) = (-1)nUn+1(x)fn^(x) 

from which one can easily deduce that 
/ ? - / / P2n+3,x = (-ir'Un+2MfnM, P2n~7,x = (-1)""'Un(x)fn-2(x) 

We also have 



1975] GENERALIZED FIBONACCI TILING 143 

P2n,x = [U1M-U3M + U5M--+(-1)n-1U2n_1(x)] 

-x[-U2(x) + U4(x)- ••• + (-1)nU2n(x)] 

= (-1)n-1fn(x)UnM + (-1)n+1xfn(x)Un+1(x) 

= (-1)n-1fn(x)Un+2(x) 

which implies that 

P2n+2,x = (-1)nfn+lMUn+3M, 

P2n-2,x = <-Dnfn-l(x)Un+i(x). 

Now, because the Cn are the centers of the squares, we get 

C„ = (Pn+Pn-1>/2 

and so we get 
C2n+3,x - C2n+l,x = (P2n+3,x + P2n+2,x ~ P2n+1,x - p2n,x^2 

= %[(-1)n+1Un+2(x)fn(x) + (-1)nfn+1(x)Un+3M 

+ (-1)n+1Un+1Mf„-iM + (-Dnfn(x)Un+2(x)J 

= {-=lf- Hpfn+2 M + fn+i (x))fn+1 (x) - (pfn (x) + f„_ j (x))fn. j Ml 

= i=l£- lp(fn+2(x)fn+1(x) - f„(x)fn-i (x» + f2n+1(x) - f2.-, (x)] 

= (-^f-[pxf2n+1(x)+xf2nM] = (—^ xU2n+2(x). 

We have also 
C2n+2,x - C2n,x = (P2n+2,x + P2n+1,x ~ P2n,x ~ P2n-1,x>/2 

= 1/2[(-1)nfn+1(x)Un+3(x) + (~1)nUn+1(x)fn-1(x) 

+ (- 1)nfn (x)Un+2(x) + (- 1)nUn Mfn-2(x)l 

= {^f- [(pfn+2(x) + fn+1(x))fn+1(x) + (pfn(x)+fn.1(x))fn.1(x) 

+ (pfn+1 (x) + fn (x)jfn (x) + (pfn-1 (x) + fn.2 M)f„-2 (x)] 

= {^f- lpfn+i(xHfn+2M + fnM)+pfn-iM(fnM + 1n-2M) 

+ f2n,2M + f*_,M + f2n(x) + f2n+1(x)l 

= {-=*f- [pf2n+2 M + Phn-2 M + f2n+1 M + hn-3 MJ 

= {^f- [pl2(x)f2n(x) + S.2(x)f2n-l(x)] = {^f- l2(x)U2n+1(x). 

Now we shift our attention to the y-coordinates. From (Dweget 

P2n+1.y = (-xHUl ~ U3 + - + (-DnU2n+1) 

- (-u2 + u4-u6 + - + (-vnu2n) 
= (-1)n+1xfn+1(x)Un+i(x) + (-1)n+1fn(xjUn+i(x) 

= (-1)n+1Un+1(x)fn+2(x). 
and 

P2n+3,y = (-VnUn+2(x)fn+3M, 

P2n-1,y = (-VnUn(x)fnH(x) . 
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We also have 
P2n,y = <-x)[U1(x)-U3M+- + (-1)n-1U2„-iM] 

- l-u2M + U4M- - + (-Dnu2nMl 

= (- J)nxfn M Un (x) + (- Vn+1fn (x)Un+1 (x) 

= (-1)n+1fnMUn-i(x) 
and 

p2n+2,y = l-V"fn+1MUnM, 

P2n-2,y ' (- Vf„-1 MUn-2M. 

From the above calculations, we find 
C2n+3,y ~ C2n+1,y = (p2n+3,y + P2n+2,y ~ P2n+1,y ~ P2n,y>/2 

C2n+3,y ~ C2n+1,y = %[(-DnUn+2(x)fn+3(x) + (- 1)nfn+1 (x)Un(X) 

+ (-1)nUn+1Mfn+2(x) + (-J)nf„(x)Un.1(x)J 

= ~^- [<pfn+l(x)+fn(x»fn+3<x) 

+ (pfn. 7 (x) + fn,2 M)fn+1 (x) + (pf„ (x) + fn.! (x))fn+2 (x) 

+ (pfn-2(x) + fn.3M)fnM] 

= (^f- [pf„+lM(fn+3M+fn-l(x)) 

+ pfn (x)(fn+2(xj + fn.2M) + fn (x)(fn+3(x) + fn.3M) 

+ fn-2(x)f„+l(x)+fn-1<x)f„+2(x)] 

(-=jf- lpf2n+1Mi2M + pf2nMi2M 

+ fn Min (xjf3(x) + f2n Ml 

= (JZJ^ l2(x)U2n+2(x) • 

Our final step is to find 

C2n+2,y-C2n,y = (p2n+2,y + P2n+1,y ~ P2n,y ~ P2n-1,y)/2 = H[(-Dnf„+iMU„M 

+ (-Dn+1Un+1(x)fn+2(x) + (-1)nfn(x)Un.1(x) + (-1)n+1Un(x)fn+i(x)] 

[(pfn(x) + fn.j (x))fn+2(x) - (pfn-2M + fn-2<x»f„Ml (-1)n+1 

= (~7>2 [pfn(x)<fn+2M-fn-2M) + fn+2(x)fn-lM<-fnMfn-3(x)J 

i t\n+1 I i\n+1 
= ^ [pfn(x)Ln(x)f2(x)+xf2n-l(x)l = ^ xU2nHM. 

So, from the above results, we have 
C2n+3.y-C2n+1iV = (-1)ni2MU2n+2(x)-2 = L2ix}_ 

C2n+3lx-C2n+1,x 2-U2n+tM-x(-J)n x 

which tells us that the Cn for odd n lie on a line with slope (x2 +2)/2. We also find 
C2n+2.v - C2n,v = (-1)n+1xU2n+1M-2 = _ 

C2n+2,x ~ C2rl,x 2- (- 1)n l2 (x)U2n+1 M £ 2 M 
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which tells us that the Cn for even n lie on a line with slope -x/(x2+2). Further, since the products of the slopes is 
- 1 , these lines are perpendicular. This proves Theorem 8. 

From the above result it follows almost trivially that 

Theorem 9. If Dn is the distance of Cn from the point of intersection of the two lines of centers, then 

n _ tfiMy/x4 +5x2 +4 
un _ . — f 

2(x2 + 4) 
where the ifj(x) are the generalized Lucas polynomials 

£? = P, £J = xp+2, and L*+2(X) = xi*+1(x) + i*(x). 
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A LEAST INTEGER SEQUENCE INVESTIGATION 

BROTHER ALFRED BROUSSEAU 
St. Mary's College, California 94575 

In the fall semester of 1964, four students, Robert Lera, Ron Staszkow, Rod Arriaga, and Robert Martel began an 
investigation along with their teacher, Brother Alfred Brousseau, of a problem that arose in connection with a Putnam 
examination question. The problem was to prove that if 

Pn+1 = [Pn+Pn-1+Pn-2l/Pn-3 

produced an endless sequence of integers while the quantities/?/ remained less in absolute value than an upper bound 
A, then the sequence must be periodic. The divergent idea that led to the research was this: How can one insure an 
infinite sequence of integers from such a recursion formula? One quick answer was to use the greatest integer function. 

Initially an investigation was begun on: 

an+7 = — — — . L an-2 J 
where the square brackets mean: "take the greatest integer less than or equal to the quantity enclosed within the 
brackets." Very quickly, zero entered into the sequence with the result that there were mathematical complications 
once it arrived at the denominator. 

To avoid this problem, it was decided to try using "the least integer function" instead of the greatest integer func-
tion. The notation adopted was: 

M* = n, 
where n is the least integer greater than or equal to x. With this approach starting with three positive integers the 
function: 

$n+1 

gives terms that are always > 1. 
an-2 

The problem was enlarged by introducing two parameters, p and q, defining: 



146 A LEAST INTEGER SEQUENCE INVESTIGATION [APR. 

^n+l = [(pan+qan-i]/an-2J*. 
For any given pair (p,q) we have a set of sequences determined by assigning any three initial positive integers 
($1,32* a3)- We shall speak of these as the sequences belonging to (p,ql 

Our least integer function representation is actually equivalent to two inequality relations. Thus if 
[A]* = B 

the equivalent inequality statements are: 
A < B and A > B-1, 

where B is an integer. 
A GENERAL PERSPECTIVE 

Early in the work with sequences, when examining such cases as (1,1), (1,2), (2,1), (2,2), (2,3), (3,4), it was noted 
that when p > q, only periodic sequences are found, whereas when p <q, there were also non-periodic sequences as 
well. This became one of the general topics of the research. One theorem along these lines can be stated immediately. 

Theorem. Every set of sequences (p,q) has at least one periodic sequence. 
Proof. Consider the sequence determined by the three quantities p + qf p+q, p+q. The fourth term calculates 

out asp +q. Thus this sequence will continue indefinitely with the single quantity p +q. 

SEQUENCES OF TYPE (1,1) 
The general recursion relation for this type of sequence is: 

*n+1 = [fen + an-1 )/an-2l * • 
To explore this case it was found convenient to set up a table of the quantities a / , <?£, 33 for all values a,- < 6, (i = 1,2,3). 
Starting with 1,1,1, for example, one obtains: 1,1,1,2,3,5,4,3,2,2,2,— . This was called a £ sequence, the period being 
of length one and consisting of the single number 2. 

Four distinct periods were found: 
A - 4,2,2,1,2,2,4,3 (Length 8) B - 2 (Length 1) 
C •• 1,3,1,4,2,6,2,4 (Length 8) D ••• 2,3 (Length 2) . 

It was demonstrated that these are the only four periods among sequences of type (1,1), the argument following 
along these lines. 

(1) Only a finite number of sequences all of whose elements are less than or equal to 6 lead to D. 
(2) Any sequence involving an element 1 leads to one of the periods/!, B, or C. 
(3) For a sequence determined by three elements none of which is 1 and at least one of which is greater than 6, 

an element 1 will eventually appear in the sequence. 
SEQUENCES OF TYPE (3,1) 

Using starting numbers up to six, five periods were found: 
A: 1,1,1,4,13,43,36,12,2,1,1,2,7,23,38,20,5. (Length 17) 
B: 2,2,2,4,7,13,12,7,3,2,2,3,6,11,13,9,4. (Length 17) 
C: 3,3,3,4,5,7,7,6,4. (Length 9) 
D: 5,4. (Length 2) 
E: 4. (Length 1). 

We arrived at no proof that these were all the periods in this case. 
SEQUENCES OF PERIOD TWO IN (p,p)f (p, p + 1), and (p + 1, p) 

An extensive investigation was made of the number of sequences of period two for these sets of sequences (21 pages). 
In all these cases it was possible to arrive at a formula of some complexity for determining the number of such 
sequences. 

IMPOSSIBILITY OF VARIOUS PERIODS 
Regardless of the values of p and q, it was shown by a detailed consideration of inequalities that it was impossible 

to have a period of length three. Similarly, it was proved that there are no periods of length four or five. With six, the 
work became quite complicated and as a result there was no demonstration of the impossibility of this case. 

[Continued on Page 173.] 



IDENTITIES RELATING THE NUMBER OF PARTITIONS 
INTO AN EVEN AND ODD. NUMBER OF PARTS 

H.L. ALDER 
University of California, Davisr California 95616 

and 
AMIN A.IVIUWAFi 

American University of Beirut 

1. INTRODUCTION 
If / > 0 and n > 1, let qf (n) denote the number of partitions of/? into an even number of parts, where each part 

occurs at most / times and Set qf(n) denote the number of partitions of n into an odd number of parts, where each 
part occurs at most/times. \ii>0, \etqf(0)= 1 andqf(0) = 0. For/ >Oandn > 0, \v\Aj(n) = qJ(n)-q°(n). 

For/= 1, it is well known [1] that , 
A (n) = I (~1,J i f n = Jif3f ^ forsome j = 0, 1,2,-, 

1 I 0 otherwise. 
For 1 = 3, Dean R. Hickerson [2] has proved that 

_ l(-Dn if n = %(j2+j) forsome j=0,1,2,-, 
L3(") = \ Q otherwise. 

For/an even number, Hickerson [2] has proved that 
Af(n) = (-1)np?(n), 

where pf(n) is the number of partitions of n into distinct odd parts which are not divisible b y / * / ar\dp?(0) = 7. 
In this paper, we obtain formulae for A^-fn) for i = 5 and 7 in terms of the number of partitions into distinct parts 

taken from certain sets. These formulae, like those above, will allow rapid calculation of A-Jn) even for large values 
of n without the need to determine either qf(n) or q°(n). They will also allow verification of a conjecture by Hick-
erson [3] that, for /' = 5 and 7, A/(n) is nonnegative if/? is even and nonpositive if n is odd. 

2. THEOREMS 
oo 

Theorem I As(n) = (- Dn J2 lifh ~ ®2 ±2^ t < 
i=o 

where q^gdi) denotes the number of partitions of/? into distinct parts each of which is congruent to 3 (modulo 6), 
q^6(0)= 1, and where the sum extends overall integers/for which the arguments of the partition function are non-
negative. 
Proof. The generating function for A ; is given by 

5 2 Af(n)xn = (1-x+x2~- + (-1)ixi)(1-x2 + x4-- + (-1)ix2iHl-x3+x6+- + (-l)'^ 

n=0 
(1) 

n n-xJ+x2J-... + (-iyxV= n l±hll!*!™ 
j=1 1=1 1+Xj 

Therefore, 

147 
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(2) J2 A5(n)x" = n ^ 4 = n d-*6')*'-*1)* 5 d-x6h(i-x2'-1) 
j% i=i 1+x' M i-x2) 1-1 

= n (i-x6i+1)(i-x6'+5)(i-x6i+6) n d-x6i+3). 
1=0 j=0 

Applying Jacobi's identity 

0) n d - x2k'+k^m -x2k>+k+*m -x2k'+2k> = £ (-i)Jxk'2+&>' 

with k = 3, c = 2f to the triple product in (2), we obtain 
oo oo 

(4) £ A5(n)xn = £ (-1)ix
3?+2i S (1-x6i+3> -

n=o / - - ' ;=0 

Since 

we can write (3) as 
' = 0 k=0 

E ^ ^ n - 1 E MA***') ( Z (-ft'iUte* \ 
n=0 \j=0 / \k=0 J 

n=0 I /=0 I 

- E J E <-irt3^>qyn-(3i2±w\xn . 
n=0 I /=0 ) 

But3f2-j±2j = 0 (mod2). Hence 
oo / oo I 

E A5to" = E j E (-Dngi6(n-(3j2±2i))\xn . 
n=0 n=0 | y=0 ) 

Equating coefficients on both sides, we obtain the theorem. 
To illustrate that Theorem 1 allows very rapid calculation of A5(n), we consider the case n =20, for which we have 

^5(20) = 1 2^ qa3,6(2Q-(3jz±2j) 1 = qa
36(15) + qd

36(12) = 2 , ' { E 4e(2° ~ (3i2 ±2i> | = vie'15}+ 

all other terms in the sum being 0. This checks with 
q%(20) - q§(20) = 236 - 234 = 2 , 

obtained by computer. 
Theorem 2. 

oo 

A7(nJ - (~1)n ] [ ; qd
4(n - (2j2±j)) , 

ho 
where qd(n) denotes the number of partitions of n into distinct parts, each of which is divisible by 4, qd

4(0) = 1, and 
where the sum extends over all integers/for which the arguments of the partition function are nonnegative. 
Proof. Using (1), we have 
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n=0 j=1 'i±XJ j=1 1±XJ 

(5) 
- 5 (i-x4^1Hi~x4j+3Hi-x4^4) n n+x4I+4). 

j=0 l=Q 
Applying Jacobi's identity (3) with k = 2f c = 1, to the triple product in (5), we obtain 

oo oo / °° \ / °° \ 

E A/̂ x- = E M,V^' Fi r/+^; - [ E M / ^ ] (E ***** ] 
(6) oo | oo i 

Equating coefficients on both sides, we obtain 
oo 

Ay(n) =J^ (~Diqd
4(n-(2j2±j)). 

Now for/? =5 (mod 4)f 0 <a <,3f and observing that q4(n) = Sunless A7 is divisible by 4, we have 

A 7 ^ = E (-lhi(n-(2j2±})) 
j<0 

2j2±JEEa(mod 4) 

= (- Va Z qd
4(n - (2j2 ±j)) = (- if ] T qd

4(n - f2/2 f f )) . 
j>0 j=0 

2j2±j^a(mod 4) 

The formulae of Theorems 1 and 2 show that A,-(n) for / = 5 and 7 is nonnegative if n is even and nonpositive if n is 
odd. 
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FIBONACCI AND RELATED SEQUENCES 
IN PERIODIC TRIDIAGONAL MATRICES 

D. H. LEHMER 
University of California, Berkeley, California 04720 

1. INTRODUCTION 

Tridiagonal matrices are matrices like 

b1 

a2 

0 
0 
0 
0 

C1 
b2 

33 
0 
0 
0 

0 
C2 

h3 

H 
0 
0 

0 
0 

03 
b4 

35 
0 

0 
0 
0 

c4 

h5 

36 

°1 
0 
0 
0 

C5 

b6 J 
and are made up of three diagonal sequences \a,-}, \bj\, \c,'f of real or complex numbers. They are of much use 
in the numerical analysis of matrices. They also have interesting arithmetical properties being connected with the 
theories of continued fractions, recurring sequences of the second order, and, in special cases, permutations, graph 
theory, and partitions. We shall be considering two functions of such matrices, the determinant and the permanent. 

By the permanent of the matrix 
A = M„x* is meant the sum 

extending over all permutations 

per A = Y^al,n(Da2,-n(2) -3t n,n(n) 

n: 
( 1, 2,-, n \ 
\ ir(1), n(2), - , irfn) ) 

Thus the definition of the permanent is simpler than the corresponding definition of the determinant in that no 
distinction is made between odd and even permutations. In spite of this apparent simplicity, permanents are usually 
much more difficult than determinants in their computation and manipulation. For tridiagonal matrices, however, 
determinants and permanents are not very different. In fact we see that 

per 
and 

per 
b1 

32 
0 

cj 
b2 

33 

0 

C2 

h3 

\b1 c, "1 

] • 

= hih2+32Ci 

b 1 b2b3 + a2b3C / + a 3b 1 c2 

and, in general, the permanent of the tridiagonal matrix based on | a, I, < b; \, | c, I \s equal to the determinant 
of the matrix based on { - a / f , \bj\f | Cj\. Thus it is sufficient and simpler to consider the permanent function 
of tridiagonal matrices. In fact we shall need only the method of expansion by minors in developing what follows. 

2. STANDARDIZATION OF TRIDIAGONAL MATRICES 
For our present purposes we make the assumption that the elements/? on the main diagonal are all different from 

zero. It is therefore possible to divide the elements in each row by its main diagonal element. Thus we obtain a 
matrix of the form 

150 
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r ; 
A2 

0 
0 
0 

L o 

Ci 
1 
A3 

0 
0 
0 

0 

c2 
7 
A4 

0 
0 

0 
0 

c3 7 
A5 

0 

0 
0 
0 

c4 
1 
A6 

0 
0 
0 
0 

c5 
1 

(2) 

whose permanent (or determinant) is related to that of the original matrix (1) by the factor hfb2 — OQ. Our next 
step towards standardization is to observe that the permanent of (2) is not a function of A2 and C? but only of their 
product A2C1. To see this, we expand the permanent by minors in the first column obtaining 

per 

7 
A3 
0 
0 
0 

c2 
1 
A4 
0 
0 

0 
03 
1 
A5 
0 

0 0 
0 0 
c4 0 
1 c5 

A6 1 

+ A2C1 per 

/ 
A4 
0 
0 

C3 
7 
A5 
0 

0 

c4 
7 
A6 

0 
0 

c5 
1 

which is a function of A2Cj. By induction, therefore, the permanent of such a matrix as (2) will depend only on 

A2C1,A3C2,-~,AnCn„1 . 

Hence, without loss of generality, we may assume that the C's are all equal to 1 and by an obvious change in nota-
tion define the standard tridiagonal matrix by 

r / / 
ai i 
O a2 

0 0 

0 0 » 
/ 0 •• 
/ / » 
a3 7 .» 

loo 0 0 -
10 0 0 0 ... 

) = per Mn(a1/a2f 

. 0 0 
• 0 0 

0 0 
0 0 

/ 7 
&n~1 1 

M = Mn = Mn(a1f a2/ - , an^) 

We denote the permanent of this matrix M by 

A = An = An(a1ra2/-,an^) 
We also adopt the conventions 
(3) A0 = 1 and A.y = 0 . 

1 BASIC PROPERTIES 

We begin with the basic recurrence for An. 

Theorem 1. If n > 7, 
Anfc / / - / a f l . / j = An^(av-fan^2) + an^An.2(a1t-fa^3l 

Proof. This follows at once by expanding An by minors of the elements of the last column of Mn(aj, —, an^l 
This recurrence is an efficient way of calculating successive A's when the a'% are given. It is clear from (4) that A,, 
is linear in each of its independent variables 0,7, —, a „ _ ; . For future use we give Table 1 of A,,. We observe from 
this table that An is unaltered when its arguments are reversed. In general we have 

Theorem2. &n(ai> a
2> "> an-i) = An(an.1f an-2/ ••-, a-f). 

Proof. The theorem holds trivially for n = 0, 7, 2. If true for n - 7 amd n - 2, (4) becomes 

An(a1,a2,-,an-i) = A „ _ / (an-2, ~-.*i) + <*n-i&n-2(a>n-3, - , ai>-

But the right-hand side is the result of expanding the permanent of Mn(an-i, an-2/ —, a-j) by minors of elements 
of its first row. Hence the theorem is true for n and the induction is complete. 
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n 

-1 

0 

1 

2 

3 

4 

5 

6 

Table 1 

An(a7,a2,~',an„1) 

0 ~~ " ' ~ ~ 
/ 
/ 
1 + CL-] 

7 + df+a2 

1 + a / + &2 + &3 + & J Q>3 

1 + a i + (i2 + &j + 0L4 + a-j0,3 + &2Pi>4 + CL1CL4 

5 

a-, + Of 0,3 + &2CL4 + CL3&5 + &1GL4 + a<2a5 + &1OL5 + GLj CL3GL5 

f=1 

Since An is linear in each variable ay one can ask what are the functions Gj and Hj in 

(1 < j < n). 

an-3>-

(5) An(a7/ •••„ a^f) = Gj + Hjdj 

It is clear from (4) that when j = n - 1 

Gn-1 = &n-l(ah"'*a>n-2h Hn-1 = An-2^p 

The general theorem is 

Theorems. In (5), 
Gj = An-j(aj+i, - , an„i)Aj(ai, - , aH) 

Hj = An-H(ai+1, - , an^)AH(a1t - , ah2) • 

Proof. This can be proved by expanding An by minors of the elements of \Xsjth column and using Laplacian de-
velopment of these minors. However, a simpler proof is afforded by the introduction of the following generalized 
permanents A ^ r defined for K < r by 

(6) AK/r = AKj(a1t a2t -) = AK(ar-.K+1f ar„K+2, - , aM) = AK(ar-i, ar„2, - , ar^K+1). 

In particular we have 

Theorem 1 applied to these two equivalent definitions gives us the following useful relations. 

(7) &K,r = &K-1,r + ar-K+1&K-2,r 

(8) AKtr = A/c- / / r -7 +ar-1&K-2,r-2-

We claim now that for 0 < K < n 

(9) A „ = AK/n An„K + an„KAK„ hn An_K„ y . 

In fact this is trivial when K = 0 by (3) and! (6) and when K= 1 it is a restatement of Theorem 1. To proceed induc-
tively for K to K + 1 we note that 

&n-K = &n-(K+1) + a>n~(K+1)&n~1-(K+1) 
by Theorem 1. Substituting this into our induction hypothesis (9) we obtain 

An = &n-(K+1)\&Ktn
+<ln-K&K-1,n\ +an-(K+7)AK,nAn-7-(K+1) • 

But by (7) the quantity in the braces in A^+^n. Hence our induction is complete. If now we put K= n - / a n d r = /7 
in (6) and (9) the theorem follows. 

As a corollary we have 
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da- = AH(al> a2< '"> ah2)&n-H(aj+2* '"< an-l>-

4. CONNECTION WITH CONTINUED FRACTIONS 

The ratio of two A's is the convergent of a continued fraction. More precisely we have 

Theorem 4. 
1+*^!}+ ?*) +...+ an--i\ - An(aj,a2,-,an„1) 

1 \ J \ 1 An,1(a2, a3, -,an-i) 
Proof. By Theorems 2 and 1 we may write 

&n(ai,~',a>n-l) = &„(a„-i,-*ai) 
&n-l(a<2> "'* 0>n-l) &n-l(<>>n-V '"> a2^ 

__ An^(an^1f -ra2) + aiAn.2(a>n-L -*<t>3) _ 1+
 al 

A^fan-i, - , a2) An^ /An„2 

Iterating this identity until we reach A / / A # = 1, we obtain the theorem. 
As an example, in case all the a's are equal to 1 we get the Fibonacci irrational 

e = xn+y/5)= z + ^ l + jiU... 
whose successive convergents 

1,2/1,3/2,5/3,8/5,-
are the ratios of consecutive Fibonacci numbers Fn+i/Fn. Hence 

(10) An(1, 1, / , - V 1) = Fn+1 

a fact which follows at once from (4). Conversely as soon as we have developed other formulas like (10) we can 
evaluate other continued fractions of Ramanujan type given in Theorem 4. 

5. PERIVIANENTS WITH PERIODIC ELEMENTS 

We are now prepared to consider the case in which the elements a of A are periodic of period p so that a,+p = a-,. 
We shall find that the permanents 

As, As+p, As+2p, •-

constitute in this case a recurring series of the second order with constant coefficients depending only on/7 and the 
values of a 7, a 2 , —, CLP but not depending on s. From this it will follow that A „ is a linear combination of two Lu-
cas functions Un and Un+i, where h = [n/p] whose coefficients now depend on s = n - hp. More precisely 

Uh = U„(P,Q) = (ah-bh)/(a-b), 
where 

P = a + b, Q = ab 
and 
(11) U0 = 0, U1 = 1, U2 = P 
and 
(12) Uh = PU^-dUn . 

We denote the nxn permanent based on the periodic a's by 

An(ai,Q>2,->api 
so that (10) becomes 

An(1) = Fn+1 . 
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6. THE CASEp= 1 
In this simple case we have 

Theorem 5. 
(13) An(ai) = Un+1(i,-ai). 

Proof. By (12), 
Un+1(1,-ai) = Un(l,-a1) + a1Un..1(l,-a1) . 

But by (4), 
An(a7) = An-i(ai) + aiAn-2(cij) 

since an„i =aj for all n. 
Hence both An and Un+/ satisfy the same recurrence. They also have the same starting values for n = -1 and n = 

0. Hence the two functions coincide. 

Corollary. An^(k) = | ft + jT+~4o,)n - (1 - sJT+lof] / (2n ^TTla). 

Proof. Referring to (13) we see that a and 6 are roots of A-2 -X - a= 0. Examples of the Corollary are 

An^(b) = 1 

&n~l(-V= ^ - sin fan/3) 

An-r(2) = \2n -(-!)"}/3. 

This last example leads, via Theorem 4, to 

as is easily verified. 

7. THE CASEp = 2 

This case is also relatively simple. We have 

Theoremd An(ai,a2> = (1 +a1 +a2>An.2(^u^2)" aia2^n-4(^v^2) • 

Proof. First suppose n is odd so that an„i = a2. Then Theorem 1 gives 

A/7 = An-1 + a>2&n-2 = &n-2 + &1^n-3 + &2^n-2-
But An.3 = An_2 - a2An„4 . 

Elimination of A„_3 gives the theorem for n odd. If n is even, we simply interchange the roles of a / and 0,2. 
The counterpart of Theorem 5 for/7 = 2 is 

Theorem!. A2n(aj,a2) = Un+i<1 + 01 +0,2, 0,10,2) - a<2Un(1 + 01 +0,2,0,10,2) 

A2n+1<aio2) = Un+i(1 +ai+a2,aia2). 

Proof Let Wn = A2n (0,1, 0,2). By Theorem 6 

Wn = (1 +ai + a2)l/f/n-i -aia2y\ln-2 
with 

W0 = 1, Wi = A2(ai/a2) = 1 + 01 . 
But 

Un+i(l + di +02, 0102) - 02Un(1 + 0,1+02, 0102) 

enjoys the same recurrence and the same initial conditions. This proves the first part of the Theorem. The second 
part is proved in the same way. 

We note that, unlike A 2/7 fa/, 02), the function A2n+i(oi, 02) is symmetric in a ; and 02. 
Examples of Theorem 7 are 
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A2n+i(b,i) = 2", A2n(b,1) = 2n~1, &2n(1,0) = 2n 

&2nH(h -V= Fn+1, A2n(j, -1) = Fn+2, A2n(-j, 1) = Fn.i 

A2n+1(u,u2) = %in(1 + (-1)n), A4n(u,u2) = (-1)" 

A2n+1(-co ,co2) = n + 1, A2n(-Co,-oo2) = 1 - nu> 

A2n-id,-i) = ^-sm(*n/3) 

A2n_l(i2> - <2^y-(2-^r_i A2n(i2) - iiijtr+u-jtr 
2\j2 *• 

Here 

The last two results easily lead to 

w = a2*i/3 = -JLtJlL 

»^M*$*~*-
Inspection of the above examples shows them to behave exponentially, linearly or periodically as n -> «.. This is a 
general fact, true of periodic a's of any period length p. 

8. THE GEWERAL PERIODIC CASE 

We now take up the complicated general case of p > 3, although the theorems we are about to obtain hold for/7 = 
1 and 2. For this purpose we enlarge the definition (6) of A^r to include the cases K > r. That is, we define for the 
periodic case 

AK/r(a1f a2, - , ap) = AK(ar-K+i, ®<r-K+2> - , ar-lh 

where the subscripts of the a's are to be interpreted modulo p. Thus if p = 4, 

&5,2(a>1> a2> &3. a4> = A5(a„2, CL-U ®>0> a1> = &5(&2' a3, °>4' &l) 

A4j(ah d2, as, CL4) = A4(a„2, CL-I, a>o) = A4/CI2, &3, a4> 
A3to(a1f a2, 03, a4) = A3(a2, as) . 

It is easily verified that 
^ 5 , 2 ^ 7 , a2, a3, a4) = A4f1+a1A3ro 

which for K = 5 and r = 2 is a particular case of (7). Formulas (7) and (8) are still true in general by Theorem 1. 

Theorem 8. For 0<s<p let 

A (p,s) = AP/ s + as Ap„2,s-; 

B(p,s) = as(APfSAp„2s-l - &p-1,s&P-1,s-l)-
Then \in^s (modp), 

An+p = A(p,s)An - B(p,s)An„p , 

where the argument in all the A's is fa 7, a2, •••, apl 

Proof, let n=ph +s. If in (9) we set K = p and use the fact that an+; = as+,- we get 

(14) Aph+S = APfSAp(h^1)+s + asAp.1fSAp(h.1)+s.1 . 

In the same way replacing n by n - p and setting K = p - /we have 

(15) &p(h-1)+s-1 = &p-1,s-1&p(h-2)+s + aS&p-2,s-1Ap(h-2)+s-1 • 

Beginning with (14) and continually applying (15) gives the following for A,, 

&Ph+s = &p,s&p(h-D+s +&P-1,S&P-U-1 ] C a * M I V 2 ; - / ) M&p(h-ii-l)+s +&p-ua!1s\ &p-2j-l \ h~1&s~l • 
11=1 
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h-1 

(16) &p-1,s&p-1,s-1 J2 ^{^p-Zs-^^&pfh-Ml+s 
\i=1 

= &ph+s - A p s &p (h- 1)+s ~ a-s^p- 1,s As- / 1 Ap-2,5- 7 f • 
Next we multiply both sides of (16) by ds&p-2,s»1 ana" a ^ 

to both sides. Sf we subtract this result from (16) when h is replaced by h + 1 we get 

&p(h+1)+s~ &p,s&ph+s = as \&p-2,s-1Aph+s ~&p,s&p-2,s-1 &p(h-1)+s 

+ &p-l,s-1&p-1,s&p(h-1)+s \ • 

Collecting the coefficients of Ap^+S and &p(h-D+s 9'ves u s t n e theorem. 
Our next goal is to show that/4fos,/ and B(p,s) depend on/? but not ons, 

Theorem 9. B(p,s) = (-1)pa1a2"-ap . 
Proof. It will suffice to show that 

(17) AP/5 Ap_2,s- 7 - Ap„ y Ap_ 1/S„ 1 = (- if as. / as-.2 • • • as-p+1 > 
where the subscripts on the a's are to be taken modulo/?, because then, by definition of B(p,s) we 

B(p,s) = (-1)pasas-i -as-p+1 = (-1)pa1d2-ap. 
To prove (17) we note that it holds for/? = 1 since the left member is — 1 and the product of a's is vacuous. Assum-
ing the result holds for/? and noting that (7) gives 

Ap+1,3 = &p,s + &s~p AP- 1,S 
and 

Ap/S-/ - Ap_^s„y = %-pAp/5Ap„2,s-/ -
We have 

&p+1,s&p-1,s-1 - Ap/SAp/S_; = -Ap/S/Ap/S-y - Ap_7/S./7 

+ as-p Ap_ 1/S Ap„ ;/S_ 7 

~ -as_p/Ap/SAp_2,s-; - &p-i,s&p-i,s-il 
= (- 1)p a5_ / as„2 •'' &s-p+1 as-p • 

Hence (17) holds for/? + 7 and the induction is complete. 

Theorem 10. A(pfs) is not a function of s. 

Proof. Using both (7) and (8) with k = p and r = s and s = 1 we have 

A(p,s) = &p,s + asAp„„2,s-1 = aS&p-2,s~1 + &p-1,s-1 + &S-1 &p-2,s-2 
= as. 7 Ap.2/S-2 + Ap,5- 1 = A (p,s - 1). 

Hence A(pfs) does not depend on s. 
We can write 

(18) A(p,s) = A(p,p) = Pp = P = Ap(af, - , ap-i) + apAp-.2(a2, - , ap-2> 
and 
(19) Qp = a = (-1)pa1a2-ap 

and restate Theorem as follows 

Theorem 11. An+P = PAn - QAn„p . 
Armed with this information we can at once evaluate An(ai, —, ap) as a linear combination of two consecutive 

members of the Lucas sequence <Um(P,G)\ as follows. 
Theorem 12. 

(20) Ahp+S = AsUh+1(PfQ) + (Ap+S- PAs)Uh(P,Q). 
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Proof. This relation holds for h = 0 and, since (JJ2(P,Q) - P for h - 1. By Theorems 11 and 12 both sides enjoy 
the same recurrence. Hence they coincide. 

9. MORE QM THE FUWCTIOWP 
The function 

P = Pp(ai,d2, '".ap) 

defined by (18) is not as simple as Q. We already know that 
P1 = 1 and P2 = 1+a-j + 0*2. 

We can tabulate Pp as follows 

p 

T 
2 
3 
4 

5 

6 

Table 2 

Pp(a7,a2, ~',ap) 

1 
/ + a 1 + 0,2 

1 + a 1 + 0,2 + a 3 

1 + a-i + a2 + a3 + a4 + a1'a3 + a2a4 
5 3 2 

1+^1 a / * iC aiai+2+^2 aiai+3 
1=1 i=1 1=1 

6 5 2 
1 +J2 a>+ 5 3 aiaj - 53 aiai+1 + 53 

i=1 i<j<6 1=1 i=1 
a,U j+2ai+4 

Further entries in this table are left to the curiosity of the reader. It will be observed that the entries cease to be 
symmetric functions of the a's with p = 4. 

10. FIBOiACCl-TYPE A'S 

The permanent of a tridiagonal matrix with periodic a's will depend on Fibonacci numbers if we can make P = 1 
and Q = -1 since 

Um(l-D = Fm. 
For/? = 3 this requires 

P3 = 1 + di +d2 + CL3 = 1, -0-3 = ai(L2(l3 = 1. 

This means that the three a's are the roots any cubic equation of the form 

(21) x3 + cx- 1 = 0. 

The simplest example is c = 0 for which 
a / = 1, 0L2 = co, a j = to 

or some other permutation of these. For this case Theorem 12 gives the examples 

&3h(l co, co 2 j = Fh+1 - co2Fn 

&3h+i(l co, co.2j = Fh+1+u2Fn 

&3h+2(i^,<^2) = 2Fh+1 . 
Another special case is that of c = -2 in which the roots of (21) are - 1 and the two Fibonacci irrationals, for 
example _ 

a1 = Q, <i2 = 6, CL3 = -1. 
For this choice we get 
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A3h(9,9,-1) = Fh+2 

A3h+1(Qj,-i) = Fh+1-0Fh 

A3h+2(d,d,-1) = (1 + MFh+1. 

The reader may wish to write such formulas for other permutations of 6,0, - 1 . 
For/7 = 4 our requirement becomes 

(22) a ; + 0,2 + 0L3 + CL4 + a^a3 + CL2CL4 - 0, a 1CL2CI3CL4 = —1. 
Examples are _ 

a ; = i, a,2 = -1, a3 = -I, a.4 = 1, a/ = GO, 0*2 = 6, a3 = co , 0,4 = 6. 

More general examples are 
a ; = V2(-t + s/t2 -4e)f a2 = %(t + y/t2 +4e), 

a3 = 1/2(-t - y/W^Te), a4 = 1/2(t - ^/FTJe), 

where t is any real or complex parameter and e = 1. In any case there are eight permutations of the four a's that 
maintain (22). These are, in cycle notation 

(1)(2)(3)(4), (1)(3) (24)f (13X2X41 (13) (24) (12) (34), (14X23), (1234), (1432). 

With any one of these choices we have for An = An (a-j, 0*2, a3, 04) 

A4h = Fh+1-~a4(1 + a2)Fh 

A4h+1 = Fh+1 -a1a4Fh 

A4h+2 = (1+al)Fh+1 ~^1^2a4Fh 

A4h+3 = (1 + a1+a2)Fh+1 . 

Instead of forcing An to involve the Fibonacci numbers we can make it a linear function of n by choosing/7 = 2 and 
Q = 1 because Un (2,1) = n. 

For/7 = 3 the conditions become 

(23) a<f +a2 + a3 = 1, aja2a3 = -1. 

One obvious solution is to choose two of the a's equal to 1 and the third - 1 . Thus we find 

A3h(1, 1, -1) = 2h + 1, A3h+1(j, 1, - / ; = 7, A3h+2(1, 1, -1) = 2h +2, A3h(1, -1, 1) = 1, 

A3h+1(1,-1,1h2h + 1, A3h+2(J,-1,1) = 2h+2, A3h(-1,1,j)=1, A3h+J (-1,1,1)= 1, A3h+2(-i,1,1) = 0. 

Another choice of a's satisfying (23) is any permutation of 

-2 cos (2TT/7), -2 cos (4-n/7), -2 cos (6TT/7). 

The most general solutions of (23) are of course the roots of 

x3 -x2 + cx+ 1 = 0 

and this leads to the linear function 

A3h+S = As+ (As+3 - As)h. 

The reader may have observed in the above that, of all the formulas for Ahp+S, the simplest is that for s = p - 1. 

The reason for this phenomenon is to be seen by substituting s = -1 in Theorem 12. We obtain simply 

Ahp^ = Ap^Up(P,Q). 



A MAXIIVIUIVI VALUE FOR THE RANK OF APPARITION 
OF INTEGERS IN RECURSIVE SEQUENCES 

H. J.A.SALLE 
Laboratory of Medical Physics, University of Amsterdam, Herengracht 196, Holland 

We define the sequence Ro ,Ri ,R2, ••• by the recursive relation 
Rn+1 = aRn+bRn-j 

in which/? = / or - / / a and the discriminant A = a2 + 4b are positive integers. In addition, we have the initial 
conditions Ro = Q and R-j may be any positive integer. We now state the following: 

Theorem. The rank of apparition of an integerM in the sequence Ro, R7, R2, -does not exceed 2M. 

Proof First we observe that #7 divides all terms of the sequence. If the theorem holds for the sequence 

*1 ' R1 ' R1 ' 

then it apparently holds for the sequence RQ, R-J , R2, —. Therefore we may suppose in what follows, that/? 7 = /. 
LetM be a positive integer 

M = Pa
x*P%*~Pkk • 

Here p 7, P2, —, Pk denote the different primes of M and aj,'a2, —, &k their powers. To each p,- (i = 1,2, —, k) we 
assign a number s,-; 

Sj = pj±1 if Pf is odd and p,J(A; 
the minus sign is to be taken if A is a quadratic residue of/?/ and plus sign if it is a nonresidue 

Sj = pj if pi is odd and /?/ |A. 

Sj = 3 if pf = 2 and A odd. 

Sj = 2 if Pi = 2 and A even . 

Let m be any common multiple of the numbers sxp®l~1 ,s2p*2~~1,-rSkpt^1 then M\Rm. In the case that m 
constitutes the least common multiple of the mentioned numbers, the proof can be found in Carmichael [1 ] . From 
the known property Rq | Rnq, n and q denote positive integers, it appears that m may be any common multiple (the 
property Rq \Rnq can be found in Bachman [2]) . 

Now suppose that/^contains only odd primes p uP2, —*Pk w i t n P1 ^ A ^ / f A , -,Pk / fA, then it is not d i f f i -
cult to verify that the product 

{1, m=2s^L-hSbL-.J±Bh— 

is a common multiple of the numberss%p^l~1
 f -,skp%k~ and therefore/^ \Rm. It is easy to verify that 

m < 4_ 
M " 3 ' 

The extension is easily made to the case where M contains also odd primes qi,q2, —,QQ. with q7 |A , •••,#£ |A and 
/or to the case where M is even. 

In the first case we form a common multiple by multiplying (1) w t t h ^ f 1 ^ 2 -q^ (the numbers ft, •••, P& con-
stitute the powers of q%,—, q& in Ml 
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Sn the second case we multiply (1) with 27 if A is even and with 3.2y~1 tf A is odd (7 is the power of 2 which is 
contained in M). We now obtain 

m < %M if A is even 
3 

m < 2M if A is odd. 
This completes the proof. 

SOME EXAMPLES 

1. The Fibonacci sequence: a = b = 1 A = 5 Rj = Fj = 1. 

If M = 21 then p7 = 3 p2 = 7 so s1 = 4 s2 = 8 and m = ^ 4 * I = 16m 

Therefore 21\FH (in fact 27\FB). 
If M= 170 = 2-5-11 then m = 3<5-2- 1-£ = 150 so 110\FISO. 
The only numbers having a rank of apparition equal to 2M are 6, 30, 150, 750, -$Q6\FI2, 30\F60, 150\F300I 

etc. 
2. The Pell numbers: 0, 1,2, 5, 12,29, 70, •» a = 2 b = 1 A = 8. 

The numbers 3,9,27, ••• constitute the only numbers having a rank of apparition equal to IrM. So 3\R4,9\ R12 , 
etc. 

In the special case/? = - / the theorem can be strengthened. We use the same notation as before. First we prove the 
following 

Lemma. Let b = -1. If /?,- is an odd prime and p,-J[A then 

Pi\RSj/2 
Proof. We suppose again / ? / = / . Next we introduce the auxiliary sequence TQ, T-J, T2, —with Tn+i=aTn - Tn-i 

and the initial conditions TQ = 2 TI = a. The following properties apply: (Proof in Bachmann [2]) 

!• Pi\RSi 

I I . Pi\TSj-2 

I I I . R2n - RnTn (n is a positive integer) 

IV. T2n = T„-2 (n is a positive integer). 
Take n = s,-/2 in III and IV. From II arid IV it follows 

Pi^sf/2-
From I and III it then follows Pj\Rs.%. This proves the lemma. Now let M be again an integer 

M = p^p^-ptk • 
Further let m be the product of the numbers 

isiPr1)/2 
respectively SjPj' (i = 1,2, —, k), where we have to choose the first number if /?; is an odd prime and p,-J(A; 
the second number if P/|A or p, = 2. By Carmichael's method it can be proved that again M\Rm. 

It is easy to verify that m < M if A is even and that m < ^M if A is odd. So we have found: 
The rank of apparition does not exceed M If b = -1 and A is even. 
The rank of apparition does not exceed ̂ M \fb = — 1 and A is odd. 

EXAMPLES 

PREAMBLE: The equation X2 - NY2 = 1 in which N constitutes a positive integer, not a square, and X and Kare 
integers, is called Pell's equation. For given N, an infinite number of pairs X and Y exist, which satisfy the equation. 
\\XX and Yx constitute the smallest positive solution, all solutions can be found from the recursive relations 

Xn+1 = 2X1Xn-Xn.7 Yn+1 = 2XjYn- Yn_t 

with initial conditionsXQ- 1, YQ = 0. 
The sequence YQ, YJ , Y2, ••• does satisfy the conditions of the strengthened theorem. 
EXAMPLE 1. le\N = 3, soX2-3Y2= 1 then X7=2, Y1 = 1,A=12. The sequence Y0, Yh Y2f - consists 
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of the numbers 0, 1,4, 15, 56,209, - .If M = 110 = 2-5-11 then m = 2-6-- 1-^-= 30 so 110\Y30. If M= 18 = 2-32 

then m=2-32= 18 so 18\Y18 . 
EXAMPLE 2. X2-2Y2=1 thenX;=J, Y7=2,A=32. 
The sequence YQ, YI, Y2, — consists of the numbers 0,2, 12, 70, — (which are Pell numbers with even subscript). 

The rank of apparition of any number M is less than M. 

REMARK 
If b £+1 the theorem will generally not be valid; e.g., on taking a = 4,b = 6,Rj=1my number M containing the 

factor 3 will not divide a member of the sequence. 
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F IBONACCI A N D LUCAS SUMS IN THE r -NOMIAL T R I A N G L E 

V.E.HOGGATTf JR., and JOHN W.PHILLIPS 
San Jose State University, San Jose, California 95192 

ABSTRACT 
Closed-form expressions not involving cn(per) are derived for 

p(r-1) 

(1) E cn(p,r)%n+jM 
n=0 

p(r-1) 

(2) £ Cn(P-^hn+jM 
n=0 

p(r-1) 

(3) £ cn(p,r)(-1)nfZ+IM 
n=0 

p(r-1) 

(4) £ cn(PSH-1>n*bn*jM* 
n=0 

\NhBvecn(p,r) is the coefficient of y'7 in the expansion of ther-nomial 
(1 + y + y2 + .~ + yr-1f, r = 2,3,4,-, p = 0, 1,2,-, 

and fn(x) and &n(x) are the Fibonacci and Lucas polynomials defined by 
fl (x) = 1, f2 (x) = x, fn (x) = xfn. 1 (x) + fn-2 M ; 

fi/W = x, z2(x) = x2 +2, zn(x)-= xzn-i(x)tzn-2M-
Fifty-four identities are derived which solve the problem for all cases except when both b amd m are odd; some 

special cases are given for that last possible case. Since fn(1)= Fn and zn(1)= Ln,thenth Fibonacci and Lucas num-
bers respectively, all of the identities derived here automatically hold for Fibonacci and Lucas numbers. Also, fn(2) 
= Pnt the nth Pell number/These results may also be extended to apply to Chebychev polynomials of the first and 
second kinds. 

The entire text of this 51-page paper is available for $2.50 by writing the Managing Editor, Brother Alfred 
Brousseau, St. Mary's College, Moraga, California 94575. 



EXPONENTIAL MODULAR IDENTITY ELEMENTS 
AND THE GENERALIZED LAST DIGIT PROBLEM 

SAIV3 LSiyOLE 
University of Kentucky, Lexington, Kentucky 40506 

INTRODUCTION 

Led intuitively by the fact that the last digit of the positive integral powers of the non-negative integers repeat 
every fourth power, we proceed to an analogous general result for the last z digits (forz a positive integer). To do 
this we need first to define and build up some theory and properties for the orders and complete classes of Exponen-
tial Modular Identity Elements (EMIE). The last section then applies these.. 

1. EXPONENTIAL MODULAR IDENTITY ELEMENTS 

Let n be a positive integer and let a be any z digit positive integer. Define: 

A(z) = \a:an = a (mod Wz), for all n } . 

Less formally, A(z) is the set of all z digit non-negative integers, each of which, when raised to any positive integral 
powers, will end in itself. Term elements of A(z) Exponential Modular Identity Elements (EMIE) of orderz. Let 

A =uA(z), 

where the union is over all z e l+ - j positive integers \. A subclass of A all of whose elements have the same last 
digit is termed a class. There are a countable infinity of orders but only four complete classes. (Complete, here, 
means the class contains elements of every order.) The first ten orders and the four complete classes are: 

z (Order) 

1 { 0 , 1 , 5 , 6 } 

2 { 00, 01,25, 7 6 } 

3 { 000,001,625,376} 

4 { 0000,0001,0625,9376} 

5 { 00000, 00001, 90625, 09376 } 

6 { 000000, 000001, 890625, 109376} 

7 { 0000000, 0000001, 2890625, 7109376 } 

8 { 00000000, 00000001, 12890625, 87109376} 

9 { 000000000, 000000001, 212890625, 787109376 } 

10 { 0000000000, 0000000001, 8212890625, 1787109376 } 

Note that order and complete class uniquely determine an EMIE. Classes 1 and 2 are totally specified. Elements of 
Class 2 are universal identity elements because any element of class 2 of t hez^ order when multiplied by any posi-
tive integer is congruent to the testz digits of that positive integer modulo 10z. Elements of all other classes are ex-
istential identities. Define ~ and r to be binary relations satisfying: a~h\\\a and h are elements of the same complete 
class; a r b iff a and b are elements of the same order. Since ~ and r satisfy the reflexive, symmetric and transitive 

c 

1 
2 
3 
4 

(Complete Class) 

{0,00,000,0000,-
{1,01,001,0001, -
{5,25,625,0625,-
{6,76,376,9376,.-. 

} 
} 
} 
} 
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properties, trrey are equivalence relations and the orders (complete classes) have union A and partition A into count-
ably infinite (4) mutually disjoint equivalence classes of cardinality 4 (aleph null). A is neither closed under addition 
nor multiplication. Complete Class 1 is trivially closed under addition and multiplication and complete Class 2 under 
multiplication only. The other complete classes and the orders are closed under neither operation. But since the clos-
ure property is necessary even for a semi-group, group theory doesn't seem to be of any use here. Our integral speci-
fications designate us to number theory. From elementary number theory: 

a2 EE a (mod Wz) => an = a (mod 10z) 

which obviously is useful since it allows us to deal only with squares, but is still quite insufficient. After introducing 
notation, I present the most useful of the properties I have developed. 

Notation: A(z,c,n) is the nth power of the EMIE of zth order and complete classc. L(a,b,n) is the last a digits 
of the nth power of b. If n = 1, we may omit the /?. Of course z, c, nf a, b are positive integers, b can equal 
0. a = a**N. /, lu l2, -"represent arbitrary positive integers. 

Property 1. L(z - 7, A(z,c)l = A(z - 7, cl 
Proof. If this were not so then the last z - 7 digits of A(zfc,2) would not equal the lastz - 7 digits of A(z,c) and 

so the last z digits of A(zfc,2) would not equal the last z digits of A(z,c). But this contradicts/I(zfc) being an ele-
ment of the zth order so the property must be true. 

Property 2. (a) L(z + k,A(z,3,(2z + 1)Wk)) = A(z + k,3) 
(b) L(z + k+ 1,A(z,3,(2z)Wk» = A(z + k+ 1,31 

wherez,%k^ I , z > k and in (a) c can be 0. 
Proof. A(z + k,3i\s EMIE, so 

A(z + k,3) = A(z + k,3,jWk) = (Wzx + A(z,3)h*jWk == 0 + 0+- +0 + A(z,3,jWk) 

= A(z,3,(2* + DWk) = L(z + k,AU,3,(2z + 1)10kH (mod Wz+k), 

where / = 29. + 7 and x is the appropriate nonnegative integer. (Note: Though x is unique for given z and k, it does 
not make any difference whether we know what it is or not as far as this particular result goes.) 

Also, 
A(z + k+1f3) = (Wzy+A(z,3)h*mWk = Wz+k (ym)(-5)+A(z,3,mWk) 

ss A(z,3(2z)10k) = L(z + k+ 1,A(z,3,(2i)10k)) (mod Wz+k+1) 

using the fact that m = 2st is even and y is the appropriate nonnegative integer. 
Therefore 

A(z + kf3) = L(z + k,A(z,3,(2z+l)Wk)) (mod Wz+k) and A(z + k + 1,3) = L(z + k+ 1fA(z,3,(29.)tOk)), 

but the first pair are both z + k digit numbers and so are equal. Likewise the second pair are both z + k + 1 digit num-
bers and so are equal. 

Property 3. (a) Hz + k,A(z,4J 10k» = A(z + k,4) 

(b) L(z + k+ 1tA(z(4f{5Si)Wk)) = A(z + k+1,4), 
where z > k. 

Proof. A(z + k,4) = A(z + k,4,j ?Ok) = (Wzx + A (z,4))**j Wk = 0 + 0 + - + 0 + A (z,4,j Wk) 

= L(z + k,A(z,4J 10k)) (mod Wz+k) 
so 

A(z + kf4) = L(z + k,A(z,4,nOk)) 
because they are both z + k digit figures. 

Also, 
A(z + k+1,4) = (Wzx+A(z,4))*M5z)Wk = 0 + 0 + - + 0 + (5z)WkWzx(-6) + A(z,4,(5si)Wk) 

= L(z + k+1),A(z,4,(5z)Wk)) . 

A(z + k+ 1f4) = L(z + k + J,A(z,4, !5z)Wk)l 
Property 4. 2jA(n,3,b) = 5J}A(n,4,b) .= 0 (mod W1), where / < / <m/n (j,n)= m. 
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Proof. 2'A (n,3,b) = 2JA (n,3) = 2j L(n,A (1,3, Wn~1 (2i + 1)». 

(Usingproperty 2(a) withz = 1, k = n~ 11 But let /? '= (2n + 1)10n"1 then this is congruent to 

L(n,2jA(1,3,b'» = L(n,1Qm (2hm 5b'~m)) = L(m,10ml) = 0 (mod 10m) = 0 (mod 10'), 

where 1 </ <m and / = 2J~m5b ~m is a positive integer. 

5JA(n,4,b) - 5jA(n,4) = 5j L(n,A(1,4,k10n"1)) = L(n,5JA(1,4,k10(n'u)) 

= L(n,3Qm5hm6b") = L(m,30mI') = L(m,10mI") = 0 (mod 10m)^ 0 (mod 10'), 

where 1 <l<m; b" = k1Un'1 - m, I" = 3mI'; I' = 5hm6b". 

:. 2jA(n,3,b) = 5jA(n,4,b) == 0 (mod 10'). 

Property 5. (a) L(z + k+j, A(z,3,d» = A(z + k+j,3) 

(b) Hz + k +j, A(z,4,d'» = A(z + k +j,4), 

where d = z2J10k, d' = 9.5j10k, 1 < /, k < zxj,k,z^l+. 

Proof. 
A(z + k+/,3) - A(z + k+i,3,d) = (102x + A(z,3))**d = [ d t 2 ) 102zx2A(z,3,d- 2) 

+ [ d - 1 ) WzxA(z,3,d- 1)+A(z,3,d) = 10k2hh(d- 1)102zx2A(z/3,d-2) 

+ 10k2j9.10zxA(z,3,d~ 1)+A(z,3,d) = 102z+kl1 + 10z+k (21 A(z,3,d - 1))l2 + A(z,3,d), 

since 2z +k >z +k+jand min (j,z) =j so by Property 4,2jA(z,3,d -1)^0 (mod 10s) therefore, 2j A(z,3,d - 1) = 
10JL Hence, 

A(z + k +j,3) = 0 + 0 + A(z,3,d) = L(z + k +/,A(z,3,d)) (mod 10z+k+i I 

Thus, A(z + k+j,3) = L(z + k +j,A(z,3,d)l 
Also, 
A(z + k+j,4) E= A(z + k+j,4,df) = (1ifx+A(z,4))**d' = 0+0+-+0+ 1JL5J*(d'-1J j0

2zx2A(z,4,d'-2) 

+ 10k5JmzxA(z,4,d'~ 1) + A(z,4,d') S 7 0 2 z ^ / * Wz+k(5*A(z,4,d'- 1))I7 + A(z,4,d') 

and by using Property 4 and -?z * /r > z * k +j get 

A(z + k+j,4) ^ A(z,4,d') = L(z + k+j,A(z,4,d')) (mod 1Qz+k+j). 

Thu$,A(z + k+j,4) = L(z + k+j,A(z,4,d')l 
Note that by placing/=0,7 in each of these yields Properties 2(a) and 3(a). Property 6 is thus an extension of the 

(a) parts of 2 and 3 made possible by using 4. [For the first part of 2 you must restrict further replacing all positive 
integers c by only the odd integers 2s. + 1.] 

Notation. T(a,b) is the ath digit from the end of the nonnegative integer b, F(b) is the first digit of b. 
Property 6. L (1,2 nx + T(z + 1,A(z,4,2n» = x, where x = F(A(z + 1,4)) and n,z e / * = T(Z + 1,A (z + 1,4)1 

Proof. A(z+ 1,4) - A(z+1,4,2n) = (10zx + A(z,4))**2n = 0 + 0 +- +0 + 2n1QzxA(z,4,2n - 1)+A(z,4,2n) 

since 2z >z + 1 = 10zxn2(-6) + A(z,4,2n) = 2xn 10z + A(z,4,2n) = L(z + 1,2xn 10z + A(z,4,2n» 

= 10z T(z + 1,2xn 10z + A (z,4,2n)) + L (z,2xn 10z + A (z,4,2n» = 10z T(z + 1,2 xn 10z + A (z,4,2n) 

+ L (z,A (z,4,2n)) = 10z T(z + 1,2 xn 10z + A (z,4,2n» + L (z,A (z,4» 

= Wz T(z + 1,2xn 10z + A (z,4,2n» + A (z,4) 

:: x = F(A(z+1,4» = T(z + 1,A(z + 1,4)) = T(z + 1,10zT(z + 1,2xnWz + A(z,4,2n) + A(z,4))J 

= T(z + 1,10z T(z + 1,2xn 10z + A (z,4,2n» + T(z + 1,A (z,4)» = T(z + 1,10z T(z + 1,2xn 10z 

+ A (z,4,2n») = T(z + 1,2xn 10z + A (z,4,2n» = T(z + 1,10z2n T(z + 1,A (z + 1,4)) + A (z,4,2n) 
= T(z + 1,T(z + 1,A(z + 1,4))10z2n + T(z + 1,A(z,4,2n») = L(2nT(z + 1,A(z + 1,4)) + T(z + 1,A(z,4,2n» 
= L(2nF(A(z + 1,4)) + T(z + 1,A(z,4,2n))) = F(A(z + 1,4)) 
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replacing k for 2 in the above argument: 
Property 6 (extended). 

L(L(6L(k))nx + T(z+ 1,A(z,4,kn)» = x, 

wherex = F(A(z + 1,4)) and 

L(6L(k» = I ;' *f k~! ' m o d 5*' l"= 0, 2, 4 (Qven) 
\.5 + i if k = i (mod5), i=1,3 (odd) 

Note: L(k) = 0, 1, 2, 3, 4,5, 6, 7, 8, or 9, L(6L(k» = 0, 6, 2, 8, 4, 0, 6,2, 8, or 4 

using /r from 1 to 9 consecutively. 
It is easy to see further that: 
Property 6 (extended further). L(L(6L(k)L(n))x + T(z + 1,A(z,4,kn)) = x, 

whwzx = F(A(z+1,4))m<\ 

L(6L(k)L(n)) = L(6L(kn» ={ '" i f kn s '" (mod5)> l = 0 ' 2 ' 4 . 
f 5 + i if kn = i (mod5), i= 1,3 

Property 6 (final). L(ax + T(z + 1,A(z,4,m)) = x, 

\N\\QrBX = F(A(z+1,4))and , , * , , „ * 
a = L(6L(ai)L(a2) - Lia^)) = L(6L(mh for m = a<ia2$3-®k 

\ i if m = / (mod 5) /"= U, 2, 4 

I 5 + i if m = i (mod5) i = 1,3 

Property 7. L(L(51 (k))nx + T(z + 1,A (z,3,kn))) = x, 

wherex = F(A(z+ 1,3)) and k,n,z e l+ and 
L(5L(k)) = 51, 

where k = i(mod2) and / = 0 o r 1 . 

Proof. 
A(z+1,3) = A(z+1,3,kn) = (10zx + A(z,3))**kn = kn(10zx)A(z,3/kn - D + A(z,3,kn) = knx10z(-5) 

+ A(z,3,kn) = 5L(k)nxWz+ A(z,3,kn) = L(5L(k))nxWz + A(z,3,kn) 

= L(z+1,L (5L (k))nx Wz + A (z,3,kn» = 10z T(z + 1,L (5L (k))nx Wz + A (z,3,kn)) 

+ L(z,L (5L (k))nx 10z + A (z,3,kn)l 

Let a = L(5L(k)l Then L(z,anxWz + A(z,3,kn)) = L(z,A(z,3,kn)) = A(z,3) so 

A (z + 1,3) = Wz T(z + 1,anx 10z + A (z,3,kn)) + A (z,3). 
Therefore 
x = F(A (z + 1,3)) = T(z + 1,A (z + 1,3)) = T(z + 1,10z T(z + 1,anx 10z + A (z,3,kn)) + A (z,3)) 

« Jd+ hWzT(z + 1,anx10z+ A(z,3,kn)) = T(z + 1,anx10z+ A(z,3,kn» = T(z+ 1,aWznF(A(z+ 1,3))+A(z,3,kn)) 
= T(z + 110zan T(z + 1,A (z + 1,3)) + A (z,3,kn)) = T(z + 1,10zan T(z + 1,A (z + 1,3)) + T(z + 1,A (z,3,kn))) 
= L(anT(z + 1,A(z + 1,3)) + T(z + 1,A(z,3,kn» = L(anF(A(z + 1,3)) + T(z + 1,A(z,3,kn» 
= Uanx + T(z + 1,A(z,3,kn») = L(L(5L(k))nx + T(z + 1,A(z,3,kn))) 

[all congruences are modulo 10z+1 ] and 
L(k) = 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9, L(5L(k» = 0, 5, 0, 5, 0, 5, 0, 5,0, or 5. 

:. L(5L(k)) = 51, where k^ (mod2) 
and / = 0 or 1 

Clearly, essentially repeating all steps for the generalized constants we have 
Property 7 (extended). L(gx + T(z + 1A{z^m))) = x = F(A(z+ 1 M 

where 
a,m,z e l+, m = aia2-$k, 3 = L(5L(aj)L(a2) -Ka^)) = L(5L(m)), 
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and 

_ j 0 if m is even ' _ / 0 if every a,- (1 < / < k) is odd 
\ 5 if m is odd j 5 if at least one a,- (1 < / < ^ is even 

Property 8 A(n,3) = A(i,3,2H m) (mod 10*), A(n,4) = A(i,4,5Hm) (mod 10j), 

A(j,3) = A(i,3,2n-''m) (mod 10j), A(j,4) = A(i,4,5^ m) (mod 10'), 

where / < / < / ? . 
Proof. Letz = i,'j = n-i, k = 0, e = /w in Property 5(a); then L(n,A(i,3,2n~' m) = A(n,3). So 

,4/77,3; EE A(i,3,2n^ m) (mod 10n) 

for all/7. In particular, >4ft# = A(i,3,2Hm) (mod 10j ) , but ^ ^ J j = 4 f c # fow</ 70y'jl Thus 

y i f e j ; = A(i,3,2Hm) (mod 10s) and / l f c # = A(i,3,2n~'m) (mod 10'), 
where 1 <j <n. 

Likewise, using Property 5(b) we qetA(n,4) = L(n,A(i,4,5n~'m). So A(n,4)^A(i,4,5n~'m) (mod 10n). Thus 

4 M J = A(i,3,5Hm) (mod 10s) and A(i,4,5n~'m) = A(j,4) (mod 10j), 
where 1 </' <n. 

Property 9. (a) 7/z * 7,/l(z + 1,3)) + T(z + 1,A (z + 1,4)) = 9 
4 

(b) 22A(z'') = 1°z+2 

i=1 
(c) A(z,3) + A(z,4) = 10z+1 

(d) A(z,3) + A(z,4) = 10z + A(z,1)+A(z,2) 

(e) A(z,3) + A(z,4) = A(z,1)+A(z,2) = 7 (mod 10z). 

Uncompleted Proof. IF we assume for the moment that 9(a) is true then it is easy to show the rest. (I know 9 (a) is 
true at least for z = 1, 2, —, 11 because of direct calculation but can't prove it in general. Can the reader?) For we 
know that L(1,A(z,3» + L(1,A(z,4» = 5 + 6= 11 and that A(z, 1) = 0 and A(z,2) = 1 for all z. So for z = 1 we have 

A(z,3)+A(z,4) = A(1,3) + A(1,4) = 5 + 6 = 11= 101 + 1 = 10z + 1. 

So (c) is true at least for z= 1. Now, assume (c) true for k- //then 

A(z,3) + A(z,4) = 10z"1 T(z,A(z,3)) + L(z - 1,A(z,3» + 10z"1 T(z,A(z,4» + L(z - 1,A(z,4» 

= 10z~1 (T(z,A(z,3» + T(z,A(z,4») + L(z - 1,A(z,3» + L(z - 1,A(z,4» 

= 10z'1 (9) +A(z - 1,3) +A(z- 1,4) = 10z~1 (9) + 10z~1 + 1 = 10z + 1 

so if (c) is true f o r z - 1 then it is true forz and so by induction we get (c): A(z,3) +A(z,4) = 10z + 1 z e l+ but, 
A(z,1) = 0 and A(z,2)=1 so 

4 

J2 A(z,i) = A(z,1)+A(z,2)+A(z,3)+A(z,4) = 0+1 + 10z+1 = 10z+2, 
i=1 

which is (b). Also since A (z,1)+A(z,2) = 1, A(z,3)+A(z,4) = 10z + 1 = 10z +A(z,1) +A(z,2) so A(z,3) + A(z,4) 
= A(z,1)+A(z,2) = 1 mod(10z), which are (d) and (e). 

The largest order I've calculated is: 

A12 = {000000000000,000000000001, 918212890625, 081787109376] . 
Note that: 

A(12,1)+A (12,2) +A(12,3)+A (12,4) = 0+1+918212890625 + 81787109376 = 1012 + 2 
and 

T(12,A(12,3» + T(12,A(12,4)) = 9 + 0 = 9 and T(i + 1,A(12,3)> + T(i+ 1,A(12,4» = 91= 1,2, >-, 11 
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which means Property 9 is true for at least order 12. (Concluding Property 9 true for the 12th order concludes it true 
for all lower orders.) 

For minimum effort in finding further orders use: 

L(z + 1,A(z,3,2)J = A(z + 1,3) and L(2x + T(z + 1,A(z,4,2)) = x = T(z + 1,A(z + 1,4)) = F(A(z + 1,4)1 

These are restrictions of Property 5 and 6, respectively. Sf I could prove Property 9, I could cut the work in half cal-
culating only the first of these. Each succeeding calculation of higher orders checks the lower ones. Further casting 
out of nine's and casting out of eleven's are enormously timesaving checks which can be used on both the total prod-
uct and the partial products. Calculate only one of Classes 3 and 4 (Classes 1 and 2 are completely determined) then 
use Property 9 and obtain easily the assumed, but unproved, value of the other. Sf the assumed value is true to the 
appropriate of the two given equations, then all lower orders are found and proved true PLUS you at the same time 
find and prove the next order of that class. You can now keep raising the order as long as you like and then repeat 
the above process saving more time the longer you wait to repeat. (That is, as long as Property 9 does continue to 
hold true-a high probability-you save. At any rate, you haven't lost anything if it doesn't work but you will have 
practically halved the time if it does-and for large digits, believe me, it helps!!!) This method to a large extent, but 
not quite, makes up for the lack of a solid proof of Property 9 for the particular problem of building up orders. 

2. APPLICATIONS OF EMIE 

Observe from the table below the repetitive sequence (listed to the left) of the last digits of a finite subset of the 
set of nonnegative integers to all positive inteqral powers. The bar means "repeated." 

1 
2,4,8,6 
3,9,7,1 

4,6 
5 
6 

7,9,3,1 
8,4,2,6 

9,1 
0 
1 

2,4,8,6 
3,9.7.1 

X 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

x2 

1 
4 
9 
16 
25 
36 
49 
64 
81 
100 
121 
144 
169 

x3 

1 
8 
27 
64 
125 
216 
343 
512 
729 
1000 
1331 
1728 
2197 

x4 

1 
16 
81 
256 
625 
1296 
2401 
4096 
6561 
10000 
14641 
20736 
28561 

x5 

1 
32 
243 
1024 
3125 
7776 
16807 
32768 
59049 
100000 
161051 
248831 
371293 

x6 

1 
64 
729 

4096 
15625 
46656 
117649 
262144 
531441 
1000000 
1771561 
2985984 
4826809 

Obviously, by knowing recursively the last digit for all xn, where X G \ 0,1,2,3,4,5,6,7,8,9} you can determine 
all the last digits of all yn, where y e l+ u { 0 | and n ELIK Noting that column 5 repeats 1, 6 repeats 2, and so 
on, it is logical to induce that the last digit of the positive integral powers of the nonnegative integers repeat every 4 
powers. 0,1,5, and 6 repeat every time with themselves because they are EMIE of order one. 4 and 9 repeat every two 
times on EMIE's of 6 and 1, respectively. 2,3,7 and 8 repeat every four times on EMIE's of 6,1,1,6, respectively. I 
shall now state and prove this induction aided by the EMIE background. Let L(1,a) = L(a). 

Last Digit Property (LDP). x4n+m = L(ym) (mod 10), 
where 

x = (10a + y); m e= { 1 , 2, 3, 4 } ; a,x,4n + m ^ 1+ and y = \ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \ . 

Proof: x5n+m = x4nxm = (10a + y)4n (10a + y)m - y4nym 

but y = 0, 1,.2,.3,.4,.5,.6,.7,.8or9, so y = 0,±1,±2,±4,5 so y4 = O, 1,6,1,6 or s e A(1l Therefore, 

y4»ym
 s y4ym

 s yL(y4ym'1) - yL(y4)L(ym~1). 
But 

yL(y4) - 0*0, 1*1, 2:6, 3-1, 4:6, 5:5, 6:6, 7*1, 8-6, 9-1 = O, 1,2,3,4,5,6,7,8,9 = y. 
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t Wn+m _ / 76 if n > 1 and m = 0 (mod 102) 

So continuing from above, 
x5n+m ss yL(ym-1) s L(y)L(ym~1) = L(ym) (mod 10). 

Having proved LDP, it is only natural that one wonder whether there exists a similar theorem for the last/ digits, 
where z is a positive integer greater than or equal to two. Consider first the case of the last two digits and the num-
ber 2. (We shall use izDPa to mean the Last/ Digit Property of powers of a.) 

I 76 if n > 1 and m = 0 
L2DP2 2

20n+m = < 52 if n> 1 and m= 1 (mod 102) 
f L(2,2m) otherwise, 

where /We 17,2, •••,20} , /?.e= / f . 

Proof. 220 = (270)2 = (1024)2 = 242 = 76 = A(2,4) (mod W2) so for n > 1, 

220n+m = (220f2
m ^76n2m ^76-2m = 75-2m +2m ^L(2,2m) (modW2), 

where/7? ?0,1; if m = 0and n > 7, 220n+m ^ 75-2° + 2° = 76; if m = 7 and n > 7, 220n+m ^75-21 +21 = 52; 
if 77 = ft 22 0 '7* '7 7 = 2™ = L(2,2m) (mod W2). 

L2DP3 j2{?A7̂ m s ^y"; ^ ^ 
Proof. 

J 2 0 = (J J r 0 = f 2 7 ^ = (29)39 = (41)(29)(9) = (41)(61) = (41)(-39) = ~(402- 1) = -402 + 1=01 (mod W2); 

:. 320n+m = (320)n(3m) =s (01)n(3m) = 3m = L(2,3m) (mod W2) 
if n > 1; obvious if /7 = 0. 

L2DP4 T = , , / n _m, 
{ L(2,4 ) otherwise. 

P r o o f 410 = 220 = 76 (modW2). 
Therefore, if n > 7, /77 7̂  ft 

4/On^/77 s 7^4m ^ 7 ^m = 75.4m +4m ^ L(2,4
m) (mod 102); 

lj P = 0/ 4Wn+m = 4m
 s ^ 2 , 4 " ^ foi<M/ 702J; 

\\ n > \ and m = 0. inn+m m n o 
410n+m = f4Wfn = ?6n s 7£ fo^ ^ 2 , 

L2DP5 5 " s L { n = \ (modW2). 
{25 n > 2 

Proof. 52 = 25; \\ n>2, 

5" = 5n~252 = (25<5)5n~3 = 25-5A?"3 ^ - = 25-5n'(n~1} = 25 (mod 102); 

\f n=1, 5n = 51 = 5 (mod W2). 
Another way: 52n = (52 f = (25)n ̂ 25; 52n+1^5-25^25 for 77 e / * ; 51W (mod W2). 

[76 if /7 > 1 and /77 = /J 
L2DP6 65n+m ^ I 56 if 77 > 1 and m=1 (mod W2) 

I L(2,6m) otherwise 

Proof. 65 ^ (16)(36) = 262-102 ^ 76; 
if 777 ^0,7 and 77 > 7, 

if 777 = 0 and 77 > 7, 

if 777= 7, 77 > 1, 

65n+m = 76n6m = jQ^m = 75.6m + 6m ^ L(2/6
m); 

65n+m ^ (76)n s 7 £ ; 

^5/7^A77 __ ̂ ^ ^ JQ^ _ ^ ; 

if 77 = ft ^ ^ s Z.^,^mA 
Since the proofs that follow immediately hereafter are completely analogous to the preceding ones, I will leave 

them to the reader and merely state the results for reference. (I present them here even though I am also going to dis-
cuss a general last two digit property because we can in general get much more information about specific bases than 
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we can about all bases. Also, it is illustrative in getting a good grasp to look back to the analogous occurrence in LDP 
and the material just preceding.) 

L2DP7 74n+m = L(2,7m) (mod W2). 

L2DP8 820n+m = I 76 i f m = Q ' n > 1 (mod W2). 
\ L(2,8m) otherwise 

L2DP9 910n+m ^ L(2,9m) (mod JO2). 

L2DIP10 „ „ „ | 10 sf n= 1 , , < n 2 , 
1 0 = \ an ,u • (mod 1 0 -

{ 00 otherwise 
L2DP11 jjlOn+m _ L(2,11m) (modW2). 

L2DP12 1220"+m
 s I ]* l f " > 1 a " d m = ° (mod W2). 

\ L(2,12m) otherwise 
L2DP13 1320n+m _ L(2,13m) (modW2). 

( 76 if m = Q, n > 1 
L2DP14 1410n+m _ fi4 j f m = 1 f f l > 1 (mod 102} 

\ L(2,14m) otherwise 
I now hazard my best guesses as to the general L2P and LzP. These guesses come from knowledge of the above 

stated results when the base is known and from the fact that having studied a moderately sized table I have found no 
contradictions as yet. I have found much affirmation at least for the concepts which lie at the heart of the property 
(that in L2P we see repetition every 20 powers and in LzP we see it every 4-5 powers). The particular side condi-
tions are more questionable. I present my guesses as an aid to those who want to research my guess and perhaps find 
a solution. I present incomplete proofs in order to illustrate where in the proof I make assumptions I cannot prove. 
Even so, I hope you will find them stimulating if only in providing the direction your approach should or could take. 

L 2 p x
20n+m = x4°5*n+m = i side conditions ( d 1Q2} 

L £ r x ) U2,ym) otherwise 
where plausible side conditions might be: 

'76 if l\x, m = 0, n>\ 
5 0 + / if 2 k 4Jfc, m=1, n>1 

and x = (WOa+y). 
m G | 1,2, 3, - , 2 0 } , a,x,2Qn+m^l+, y e j 0, 1, 2, - , 99 } = H. 

Incomplete Proof. /Fwe ignore side conditions and IF we assume/ is EMI E of order 2 for all y e | 0, 1, —, 99} . 
(We know this is true for / < 14. Anyone for computing the last 85 so we can discard this assumption? If you take 
this approach, you can get L2D but try using it for L3D where y takes on 1000 values and so on. Eventually you 
will have to stop. You will have gained some ground, but hopefully there is an easier way. I think so.) Now 

x20n+m = (WOa^y)20n+m^y20n+m = (y20)%m^fy20)ym^ L(2,y20 )ym ^ L(2,ymJ (modW2). 

The last step can be made since we know what EMIE's of order 2 are and what they do when multiplied by any of 
all possible last 2 digits configurations. This is an exercise in computation that I will not present here. 

The following property is presented on an even less sound basis than the previous one (L2P): 
4-5*-1n+m ( side conditions ,mnH m* \ 

LzP x = \ . , m. . (mod W ) 
\ L(z,y ) otherwise 

where plausible side conditions might be 
iA(zA) if m = 0,n>1 2\x 
\5-Wz~1+y if m=1,n>1 2\x,4Jfx 

and x = (Wza + y ) 
m = | 1,2, 3, . . . > 5 z - ; [ , a,x, AS*'1 n + m e l+, y e \ 0, 1, 2, 3, - , 10z - 1 \ = H'. 

incomplete Proof. /Fwe ignore side conditions, and /Fwe assume]/ is EM IE of order z for all y <E//', then 
x4*n+m

 = (Wza + yh*4.5z-1n + m^y4*5^n+m = (4-5*-1 f ym ^L(Zfy4-5*-1 )ym s L( m} (mod 1Qzk 
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AND THE GENERALIZED LAST DIGIT PROBLEM 

(The last step would have to also be shown. For any particular value of z, we can do a lot of computation as noted 
in L2P above. However, I hope there is an easier way.) 

I leave you at this open-ended point. I feel there is a lot of room for more research in both theory and applications 
of EMIE. I append some numerical examples. 

APPENDIX 
EXAMPLES 

228 = 26.4+4 ^24^6 (mQd w) 

12101 s 225-4+l ^ 21 = 2 (mod 10) 

36,487,69736<766'542 ^ 7^1635(4)+2 s y2 s g (m(jd JQ) 

2485137653 ss 5137653 = 5 (mod 10) 

1921 ^95'4+1 = 91 = 9 (mod 10) 

2148 = 236'4+4 = 24 = 6 (mod 10) 

31081 s 320(54)H s 31 s Q3 (mod102) 

4851085 s 85100(10)+85 s 8§85 s 22542.85 _ 62521,85 _ ft^.^ s ^ ^ ^ 

TO1 0 ' 0 

2 t 0 ~376 (modIO3) 

^081787109376 (modW12) 

^A(WW10 + 1,4) /imM/10<1O1olo+1>) 

545 = 0625 (mod 104) 

= 918212890625 (modIO12) 

^A(2(56l)-1,3) (mod102(56l~1)). 
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LETTER TO THE EDITOR 
February 15, 1974 

Dear Dr. Hoggatt: 
I have discovered the theorem below and was advised to forward it to you as being the most suitable publisher, 

should it turn out to be original, 
Consider the function 

._2nH-1)(n+1)-3 

We make the convention that Fx(1) = 1 for all x. 
It is easily established that for all c the coefficient of (n) added to the coefficient of x in Fx(n+1) 

gives the coefficient of xx in Fx(n +2), and thus we have: 

xFx(n) + Fx(n + 1) = Fx(n + 2) , 

Ff(n) is the Fibonacci series. 
Theorem Any prime factor of FX(P), where P is prime,is congruent to ± 1 or 0 (mod P). (We assume P^2 since 

if P = 2 the theorem is trivial.) 
Lemma I For any 2, 

(s. + 1)(i+2) ... (2st) = (2)(6) - (4s. - 2). 

This is easily proved by induction. 
Lemma 2. The coefficient of x e in Fx(p) is congruent to the coefficient of x c in the binomial expansion of 

Ell 
2 + {^T)] (mod pi. 

where p is prime, and p #2. 
Since p$2, p is odd and Fx(p) is of order 

ilLthlELzl -AlLzl , jn x 

From Lemma 1 we have 

(i+1)(s.+2)- (29.) = (2)(6)- (42-2) 
S! £/ 

(p-(z+1))(p-(*+2)).~(p-2*) s (2p-2)(2p-6)~.(2p-(4n-2)L 4* \ 2 J \ 2 1 \ 2 l u 1 
e/ s! s! 

(mod p). But 

and by Fermat's Theorem 

4» = (&±L\™(matp) 

4- 1 \ (P-D 
+ l J = 1 (mod pi 

171 
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moreover 

since 

would imply 

or 

P-1 

£±1 j 2 ^ 1 (mod p) 

(Pzl) 

(&±1 f 2 j =-1 (modp) 

( 1 ) = 4 ^ 2 ' s -1 (mod p) 

(>-m,., (mod p), 

applying Fermat's theorem again, and this gives 

2(P-V s _ / (mod p) 

which is absurd since p ?2. Thus 

4^ ^ IE±ly 2 ' (mod p), 

and so: 

(p-U + 1)(p-fa+2))-(p-2z) s / gj± \ ( ^ s 2
/ ' " \ T " ) ( 2JJ~ ~ g ) \ ^ T ~ -U~1)) 

/7??0£/ p) which is equivalent to the lemma. 
Lemma 3. Fx(p) = ±1 or 0 (mod p), where p is prime and p ^2. 
From Lemma 2, it follows that 

FX(P) - (x+^j1) 2 (mod p). 

Thus by Fermat's theorem, either 
x = - f ^ p J mod p 

in which case Fx(p)^0 (rnodp), or 

{FX(P)\2-1 = 0 (mod p) 

in which case Fx(p) =±1 (mod p). 

Lemma 4. { Fx(n) \2 - j Fx(n -V\{ Fx(n + D] = -xir>~1) for all /?. 
This is easily proved by induction on n using the relationship 

xFx(n) + Fx(n + 1) = Fx(n +2). 
Lemma 5. When x£0(modp), at least one of Fx(p), Fx(p - 1), Fx(p + 1) is congruent to 0 (mod p), 

where p is prime and p $2. 
It follows from Lemma 4, using Fermat's theorem, that 

{ Fx(p)\2-\ Fx(p - 1) } > J Fx(p + 1))=1 (mod pi 

Thus if Fx(p) £0 (mod p), by Lemma 3, 
\Fx(p)\2 = 1 (mod p) 

in which case 
\Fx(p-1)\\Fx(p + V\=0 (rnodp), 

and the lemma follows. c ' { ' 
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Now if x=0 (modpi Fx(n)=1 (mod p) for all n, by the definition of Fx(n). 
lix£0(modpl from Lemma 5 there exists a number a such that Fx(a) = O (mod p), we assume that a is the 

least such number, and a > 1 since Fx(1) = 7 for a l l * . It can be shown inductively that Fx(n +a)^sFx(n) (mod p) 
for all/?, where s = Fx(a+ 1) (mod pi and s ^ 0 since s = 0 would imply Fx(a- 1) = 0(mod p). Then if Fx(r)= 0 
(modpi there exists r' such that 

r' = r(modal 0 < /*' < a, and Fx(r') = 0 (modpi 

By the definition of a, /• '< a is absurd, therefore r'= a. 
Let P be prime and p a prime factor of Fx(Pl Then 

FX(P) = 0 (modp) and x £0 (modp) 
since, if x= 0 (modpi Fx(n) = 1 (modp) for all n. 

Thus P = 0 (mod a) and since P is prime, P = a. Let p' be either p,p - 1, or p + 1f such that 

Fx(p1 = 0 (mod p) 

(from Lemma 3). Then p' is an integral multiple of P and the theorem follows. 
I mentioned this result to Dr. P.M. Lee of York University and he has pointed out to me that Lemma 3 can be de-

rived from H. Siebeck's work on recurring series (L.E. Dickson, History of the Theory of Numbers, p. 394f). A col-
league of his has also discovered a non-elementary proof of the above theorem. 

I am myself only an amateur mathematician, so I would ask you to excuse any resulting awkwardnesses in my pre-
sentation of this theorem and proof. 

Yours faithfully, 
Alexander G. Abercrombie 

[Continued from Page 146.] ^kkkk^k 

There is room for considerable work regarding possible lengths of periods. For various values of p and q we found 
periods of lengths: 1, 2, 8, 9, 17, 25, 33, 35, 42, 43, 61, 69. 

GENERALIZED PERIODS 
For various sequence types, it is possible to arrive at generalized periods. Some examples are the following. 

(p,p - 1): 2p -2,2p- 3, 2p - 3, 2p - 2, 2p, 2p +2, 2p +3, 2p +2, 2pf where/? is large enough to make all quan-
tities positive. 

fa;p): 2p, 2p +2, 2p, 2p + 1,2p- 7, 2p, 2p - 7, 2p + 7, where p>2. 

2p - 1,2p + 7, 2p - 1, 2p +2, 2p, 2p + 3, 2p, 2p +2, where p>2, and many others. 
(p + lp): 2p- 1,2p,2p+2,2p+4,2p+5,2p+4,2p. + 2,2p,2p- 7 fpr /?>3. (Period of length 9) 

2p( 2p + I 2p+5, 2p+5, 2p+5, 2p + 7, 2p, 2p ~3f2p~ 1, 2p - I 2p+4, 2p +4, 2p + 7, 2p+3f 

2p +2, 2p -3f2p- 2, 2p - 3, 2p +2, 2p+3f 2p+8t 2p + 7, 2p +4, 2p+4t 2p -1,2p- 7,2p - 3, 
for p>24 (period of length 26), and many others. 

A schematic method was used which made the work of arriving at these results somewhat less laborious. 
NON-PERIODIC SEQUENCES 

Sn studying the sequences (3,4), non-periodic sequences of a quasi-periodic type were found. They have the pecul-
iar property that alternate terms form a regular pattern in groups of four, while the intermediate terms between these 
pattern terms become unbounded. This situation arises in sequences (p,q) for which q is greater than p. 

As an example of such a non-periodic sequence in the case (4,7) the sequence beginning with 1,3,4, follows: 
1, 3, 4, 37, 59, 124, 25, 17, 2, 6, 3, 27, 22, 93, 20, 34, 3, 13, 3, 35, 13, 99, 14, 58, 4, 31, 3, 58, 9, 148, 12, 121, 4, 
72, 3, 129, 8, 312, 11, 279, 4, 179, 3, 317, 8, 751, 10, 663, 4, 466, 3, 819, 8, 1922, 10, 1687, 4, 1183, 3, 2074, 8, 
4850, 10,4249,4,2976,3,5211,8, 12170, 10,.... 
Note the regular periodicidity of 3,8,10,4 with the sets of intermediate terms increasing as the sequence progresses. 

The various types of non-periodic sequence for (4,7) are: 

[Continued on Page 184.] 
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JAMES M.MANN 
Louisiana State University, New Orleans, Louisiana 70122 

INTRODUCTION 

The common type of partition problem can be stated as follows: let S c N, given /?G/I / , how many ways can we 
write n =si + S2 + — + Sk, S/<ES? For instance, S might be the squares or the cubes, k might be fixed or not 

This paper considers the question: given/?, how many ways can we write n = ao + a-\b + a2b + ••• + ambm, a,- e 
J 0, 1, -1, 2,-2, —, b - /, 7 - b i ? An algorithm is derived to answer this question. This algorithm produces for 
each n a tree, for which questions of height and width are answered. 

1. THE DECOMPOSITION ALGORITHM 

1.1 Definition. Let b > 1 be fixed. A k-decomposition of n, k > 0, is a partition of n of the form n = ao + a-jb + 
a2b

2 + - + amhm, where each a,- e | f t 7, -1,2, -2, - , b - 1,1 -b [ and 3,^0 for exactly k values of i. Ik de-
composition of n is a /r-decomposition of n for some (unspecified) k. 

The number of /r-decompositions of n will be denoted Rk(n). Clearly Rk(-n) = Rk(n), so WLOG we shall assume 
that n > 0. 

1.2 -Theorem. 
(a) /?*fe/?; = 0*fW 
(b) \fn=a (modb), a?0, and if Ar>1, then 

fl*/W = /?A:-7(n -a) + Rk-i(n-a + b) 

, . „ , . ( 7 if n = abJ for some/> 7, some 0 <a <b 
<C' Rl(n> = \ n -x. J. ui x 

| £/ if flfa/r for any /, any 3 
(d) fl*fty = 0 for all k 

(e) If 0 <<?</?, then Rk(a)=1 for all Ar. 

(a) Given any/r-decomposition of n, multiplying the expression by/? produces a /^-decomposition of bn„ So Rk(bn) 
> Rk(n). Given any /^-decomposition of bn, bn = ao + a^b + a2b

2+ — +ambm, clearly b \ao, so 3# = 0. Di-
viding the expression by b produces a ^-decomposition of n. So /fy/W > Rk(bn). 

(b) Let /7 = 3 (mod b). Consider any ^-decomposition of n, n = ao + a^b + — + ambm. n =ap (mod bl; hence a = 
a0 (modbl Thus either a = 3# or a = 30*/?. That is, the first term of the decomposition is either a or a - b. The re-
maining k -r 1 terms then are a (k- 7>decoimposition of n - a or of n - (a - b), respectively. 

(c) Immediate from the definition. 
(d) Assume false. Then for some k there is at least one Ar-decomposition of 0, Q = ao + ajb +— + ambm. Place the 

terms with a,- < 0 on the left side of the expression. Then some integer has two distinct representations in base/?-
contradiction. 

(e) Rk(a) = Rk-i(a-a) + Rk-i(a-a+b) by part (b). 
= 0 + Rk-i(\) by parts (d) and (a) 
= Rk-2(1-1) + Rk-2<1-1 + b) = 0 + Rk-2(l) 
= ... = R7(1) 
= 1 by part (c). 
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This theorem enables us quickly to find R^fn). Moreover, unwinding the algorithm, we can find the k-
decompositions. 

Example 1. Let b = 4. 

65(3) = R4(0) + R4(4) = 0 + R4(1) = R3(0) + R3(4) = R3(1) = R2(0) + R2(4) = R2(1) 
= R1(0) + R1(4) = 1, 

a result we know already. Unwinding the algorithm, 

4 = 4, 1 = -3 + 4, 4 = -12+16, 1 = -3-12+16, 4 = -12-48 + 64, 

1 = -3-12-48 + 64, 4 = -12-48- 192 +256, 

3 = -1- 12-48- 192+256 = -1-3-4- 3-42- 3-43 + h44 . 

The pattern is clear, so from now on we shall use part (e) of the theorem and stop the algorithm whenever the argu-
ment n is less than b. Moreover, because of part (a), we shall consider only n such that b does not divide n. 

Example 2. Let b = 3. 

RJ17) = R3(15) + R3(18) = R3(5) + R3(2) = R2(3) + R2(6) + RJ2) = R2(1) + R2(2) + R3(2)= 1 + 1 + 1 = 3. 

Unwinding, 
1 = -2 + 3 2 = -1+3 2 = -1-6 + 9 
3 = -6 + 9 s=-3 + 9 18 = -9-54 + 81 
5 = 2-6 + 9 5=-1-3 + 9 17 = -1 -9 - 54 + 81 

15 = 6- 18+27 15 = -3-9+27 
17 = 2 + 6- 18 + 27 17 = 2-3-9+27 

= 2 + 2-3-2-32 + 1-33 

Example 1 Let b = 2. 

R3(11) = R2(10) + R2(12) = R2(5) + R2(3) = RJ4) + RJ6) + RJ2) + RJ4) = 1 + 0+1+1 = 3. 
Unwinding, 

4=4 2=2 4=4 
5 = 1 + 4 3 = 1+2 3 = -1+4 

10 = 2 + 8 12 = 4 + 8 12 = -4+16 
11=1+2 + 8 11 = -1+4 + 8 11=-1-4+16 

1.3. Each time k decreases by one, each term Rk(*) splits into at most two terms R^-\{9). In completing the algo-
rithm, there are k - 1 such steps. Hence Rk(n) < 2k~1 < 2k for all n. We have the well known result 

Theorem. \b': i = 0, 1, 2,-\ is a Sidon set. (See [2 ] , pp. 124, 127.) 
1.4 Lemma. If n = a0 +axb +a2b

2 + — + ambm is any decomposition of n, am^O, then am > 0. 
Proof. \Um < 0 , then 

m-1 m-1 
n = S Bib!+ambm <J2 (b-1)b'-bm = bm-1-bm = -1 

i=0 i=0 
-a contradiction. 

1.5 Definition. A/r-decomposition of n Is basic if (a)am > 1, or if (b) a m _ ; > 0 (or both). 
Theorem. Let bh~1 <n <bh. Then for any basic decomposition of n, 
(a) / > h => a,- = 0 
(b) 0 < ah < 1 
(c) If ah = 0, then ah-i > 0 
(d) If ah = 1, then ah-j = 0; and if ajbJ \s the last non-zero term before ahbh, then aj < 0. 

Proof, (a) By the lemma above, if ambm is the last non-zero term, am > 0. Assume m > h. 
Case 1. am>\. Then 

m m-1 

n = J2 a/b1' > ]jT (1 - b)b! +2bm = bm + 1 > bh 

i=0 i=0 
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- a contradiction. 
Case 2. am = 1 and am„f > 0. Then 

m-2 
n > 2 (l-Mb' + Qb™-1 +bm = 1 + bm~1(b- 1) > 1+ bw'7 > 1 + bh 

i=0 

-a contradiction. 
(b) By part (a), there are no terms in the decomposition after a^bh, so ah > 0. Assume^ > 1. Then 

h-1 

n > J2 (1-b)bi + 2bh = 1+bh 

i=0 

-a contradiction. 
(c) if a/, = 0, then there are no terms after a^-/b , so a^i > 0. Assume 5/,./ = 0. Then 

h-2 

n < Y, (b-Vb1 = bh~7 - / 
i=0 

-a contradiction. 
(d) !f a/, = 1, then by the definition of a basic decomposition a^-i > 0. Assume a^-1 > 0. Then 

h-2 
n > i C (l-b)b1 +1bh~1 +1bh = 1+bh 

-a contradiction. The same reasoning shows that if the next to last non-zero coefficient is ajf j < b, then aj < 0. 
Corollary. Let b < n < b , and let k > h. Then no /r-decomposition of n is basic. 

Proof. Every basic decomposition of n ends with a^ibh~1 or with 3/7_2/?/7~2+ 0-bh~1 + l-bh. In either case 
there are at most h non-zero terms in the sum. 

1.6 Theorem. Starting with R^(a), O <a <b, the unwinding of the algorithm produces a basic decomposition of n 
iff k=1. 
Proof. Start with a /r-decomposition of a. 
Case 1. k = 1. The reverse algorithm starts:x7 = a; thenX2 = abp, p>Y, thenX3 = abp + a. 
Case 1a. a > 1 or/7 > 7. Then a'can be any integer such that O < \a'\ <b. 
Case lb. a = p= I T h e n A - j ^ +af. If a' < O, X3 <b. But the forward algorithm stops as soon as the argument is 

less than b. So a' > 0. In either case there is a basic 2-decomposition of X3. The next step is to multiply by bq for 
some q > 1. Clearly the resulting 2-decomposition is basic. Then add a"; the new 3-decomposition is still basic. Con-
tinue until a basic decomposition of n is reached. 

Case 2. k > 1. By the corollary above, since a < b7, no /r-decomposition of a is basic. That is, the reverse algorithm 
starts 

a = a0 + a1b + -+am^bm'1+bm, 

with am_7 < 0. Multiplying by bp produces a non-basic /r-decomposition. Then adding a'gives a non-basic (k+1)-
decomposition. Continue, ending with a non-basic decomposition of n. 

1.7 Definition. Let B^fn) be the number of basic /r-decompositions of n. Let 

B<n> = 1 2 Bk<n). 
k=1 

Remark. Since n <hh, k > h => B^fn) = O (corollary above), the sum is only finite. 
Theorem. If bh"1 <n<bh, k >h, then Rk(n) = Rh(n) = B(n); and B(n) < 2h~1. 
Proof If k > bf no /r-decomposition of n is basic. Thus the algorithm goes all the way: every end term is of the 

form Rs (a), O <a <b, s> 1. Once ail the a < b appear, no more decompositions can appear Each basic decomposi-
tion occurs from unwinding each R?(a), choosing k <b so that s = 1 when the 5 first appears. The inequality is from 
1.3. 
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2. THE CASE/? = 2 

From the algorithm, we see that if neither n nor n + 1 is divisible by b, then their ^-decompositions differ only in 
the first term. Therefore, for simplification we shall assume that b = 2, unless specifically stated otherwise. Of course, 
we restrict n to be odd. 

2.1 By the algorithm, Rk(n) = Rk.7(n - 1) + Rk^(n + 1). Le t /7 - 1 = 2pxm&n + 1 = 2qy,x and y odd. Mote 
that min (p,q) = 1 and that max (p,q) >2fd&n~- 1 and n + 1 are consecutive even integers. 

Definition. Given x, / o d d , if there exists an (odd) n such that Rk(n) = Rk„-}(x) + Rk„i(y), write x *y = n. If 
no such n exists, then x * y is undefined. 

Remark. By the uniqueness of the algorithm, 
(a) x *y = y *x if either exists, and 
(b) x *y = u *v =* \x,y\ = [u,v] . 

2.2 Theorem. Let y be given. If x > y, then x * y exists iff x = 2'y + 1 or x = 2'y - 1 for some / > 1. If so, then 
x*y = 2l+1y+1 or x*y = 2i+1y- 1, respectively. 

Proof. By the algorithm, if x * y is to exist, there must exist p, q > 1 such that 2px - 2qy = +2. By the note 
above, p = 1 and# >2. So x = 2q~1y ± I Let i=q - / > I x *y is the odd integer between 2x and 2qy. So 

x*y = (V2)[2x+2qy] =' (M2(2''y± 1) +2i+1y] = 2H1 ± / . 

Corollary. If GCD (x,y)> 1, then* *y does not exist. In particular, if y> 1, then y *y does not exist. 
2.3 Theorem. 3 * 1 = j 5,7 >. In all other cases, x *y is unique. 

Proof. WLOGx^y . If x *y exists, x = 2'y± I If x *y is not unique, then x must be expressible in two ways, i.e., 

x = 2py + 1 = 2qy - 1 
for some p, q>\. Then 

2Vy - 2py = 2, 2q"1y - 2P~1 y = I 

Since y divides the left side, y = I Then p = 1 and q = 2. So 

x = 21>1+1 = 3 = 22>1-1, and x *y = 22-1 + 1 = 5, x *y = 23-1 - 1 = 7. 

2.4 Theorem. Given A- >3, there exist t w o / , y <x, such thatx *y exists. 
Proof x = 2'y ± 1, so y = (x - 1)/2P and y = (x + 1)/2q

t y odd. These numbers are distinct unless (x - 1)/2P 

= (x + 1)/2q. If so, then sincex - 1, x + 1 are consecutive even numbers, both divisible by some power of 2, x = 3. 
Corollary. If a * b exists, then the integers y, y <a * b, such that (a *b) *y exists are y = a and / = b. 

Proof If 5 *b exists, WLOG a >b. Then a = 2'b± I By the theorem, if (a *b) *y exists, then 

= {a*b)+1 _ (2i+1b±1)+1 = / till 2i+1b±2 \ 
2p 2p J 2p ' 2q f 

= \b,2'b±l\ = \b,a\ . 

Remark. If a = b, by the Corollary of 2.2, a = b= 1, and so y = 1. 
2.5 Theorem. If x *y exists, then exactly one of I x , / , * * / ! is divisible by 3. 

Proof 1*1 = 3. Assume now WLOG t h a t x > / . Sox = 2ly± 1, and* *y = 2l+1y± 1. 
Case 1. Clearly if 3\y, 3 divides neitherx norx *y. 
Case 2. If 3\x, 3 cannot divide/. Assume3\x *y. Then3\(x *y -x), so 

3\(2'+1 y-2'y),3\2'y - a contradiction. 
Case 3. Assume that 3 divides neither x n.or/. To show 3\x *y. 
Case 3a. y = / (mod 3). Since 2' s (-1)' (mod 3), 

x = 2'y± 1 - (-1)' ± 1 (mod 31 

Since x £ 0 (mod 3), i f / is even, we must use the +1, and if /is odd, we must use the - 1 . Then 

x*y = 2i+1y± 1 = (~1)i+1 ± 1 (mod31 x *y = 0 (mod3) 

whether / is even or odd. 
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Case 3b. y^-1 (mod 3). Then 
x EE (-1)i+1 ± 1 (mod 3). 

If / Is even, we use the - 1 ; if / is odd, the +1. So 
x *y = (-1)i+2 ± 7 (mod3) ^ 0 (mod3) 

in both cases. 
2.6. The expression n = x *y can conveniently be expressed visually as 

A • 
x y 

If x or y > 1, it in turn can be written as a ̂ -product. Each n has in this manner associated with it a tree. For exam-
ple, for/7 = 23, the tree is as in Fig. 1. 

23 

H(23) = 5, W(23) = 7 

Figure 1 
Remark. Since x,y < x * y, the numbers decrease down the tree, and every chain ends with 1. The tree associated 

with n, without integers at the nodes, with the longer chain always to the left at every node, will be denoted T(n)., 
2.7 Definition. If the length of the longest chain in the tree is £, then the height of the tree, denoted H(n), is de-

fined by H(n) = 9. + t The number of branches of the tree (= number of times 1 appears) is the width of the tree, 
denoted by W(n). 

Lemma. Let n=x *y, x>y. Then 
(a) H(n) = 1+HM 
(b) W(n) = W(x) + W(y). 

Proof. Obvious from the definition of T(n). 
Theorem. Let2h'1 < n < 2h. Then 
(a) H(n) = h 
(b) W(n) = B(n), the number of basic decompositions 
(c) h < WW < 2h~1 

Proof, (a) If h = 7, H(l) = 1; if h = 2, H(3) = 2. Assume that for all n <2k, the statement is true. Lz\2k <n < 
2k+1. The algorithm starts: Rs(n) = Rs-j(n - 1) + Rs^(n + 1). 

Case 1. n - 7 is divisible by 4. Then n + 1 is not divisible by 4, so 2k < n + 1 < 2k+1. 2k~1 <(n + 1)/2 < 2k. 
By the inductive hypothesis, H((n + 1)/2) = k. By the lemma, H(n) = k+ I 

Case 2. n + 7 is divisible by 4. Then2k <n-1<2k+1;2k~1 < (n - 1)/2 <2k. So Hffn - 1)/2) = k; H(n) * k 
+ 1 

(b) The algorithm produces the numbers at the nodes of the tree. As soon as a 1 appears, the branch 
stops. Starting with ft? (7), following each chain upwards produces each of the basic decompositions. 

(c) The second inequality is the Theorem of 1.7. The first is obvious for n= 1,3. Assume the first inequal-
ity is true for all n <2k. Let2k <n <2k+1. n=x * / fo r some x >y,2k~1 <x <2k. By the inductive hypothe-
sis, W(x) >k. So W(n) = W(x) + W(y) >k+1. 

2.8 Lemma. Let 0 <t < 2h'1, t odd. Then T(2h'1 + t) = T(2h - t). 
Proof. If h = 2, then t = 7. 22"1 + 1 = 3 = 22 - 1; the result is automatically true. If h = 3, then t = 7 or 

3. 23~1 + 7 = 5 and 23 - 7 = 7; while 23~1 + 3 = 7 and 23 - 3 = 5. We know T(5) = T(7). 
Assume that the statement is true for all k < h. Let t be any odd number such that 0 <t <2k. If 2k + t = 2k+1 -1, 

t\\mt = 2k~1; since n's odd, t = k= I 
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Case!, t+1 is divisible by 4. Then 

2k + f = 2k+t+1 , 2k + t-1 

2P 2 

where 2P is the highest power of 2 that divides t+ 1, 2 <p <k. 

and / y / 
2k+1 _ f = 2k+1 -(t+1) x2

k+1-(t-1) = 2k-p+i t+1 \ y 2k t-1 
2P 2 \ 2P J \ 2 

By the inductive hypothesis, 

2k-p + t±l )= T( 2k'p+1 - — - \ 
2P J \ 2

p I 

and 

T[2k-'+t-f!)=T{2k-t^l 

Thus T(2k +1) and T(2k+1 - t) have the same right branch, the same left branch, and therefore are equal. 
Case 2. t - / is divisible by 4. Interchange t - 1, t + 1 in the above proof. 
Theorem. If h > 3, there are 2 " different trees of height h associated with the odd integers. 
Proof. For h = 3, T(5) = T(7), so there is one tree of height 3. Let k > 3. To each*, 2k~1 <x <2kthere exist 

Vl ^Y2r Vi <*, Sl,ch that* *y,- exists. Since H(y^)^ H(y2), T(x *yj)f^ T(x *y2l Therefore the number of trees 
of height k + 1 is at least twice the number of trees of height k. Hence the number of trees of height/? is at least 
yh-3 

Between 2h~1 and 2h there are 2h~2 odd integers. By the lemma, each tree of height /7 is associated with at least 
two integers. Hence the number of trees of height h is at most 2 " . 

2.9 Theorem. W(2h~1 + 1) = W(2h - 1) = h; the minimum possible width of a tree of height h is attained. 
Proof. \\h = 3. W(23'1 + 1) = W(5) = 3. Assu me that W(2k~1 + 1) = k. 

2k +1 = (2k~1 + 1) * l 
It follows that 

W(2k + 1) = W(2k~1 + D + W(1) = k + 1. 

Since W(n) >h \\2h~1 <n <2h, the minimum width is attained. Lastly, by the lemma above, W(2h - 1) = h. 

Theorem, (a) The maximum width of any tree of height/; is Fh+u where F; is the ith Fibonacci number. 
(b) This width is attained for 

n = (2h+1 + (-1)h)/3, h > 1, 
and for 

n = (5-2h~1 + (-1)h"1 )/3, h > 2. 
Proof For h=1, W(1)= 1. Forh = 2, W(3) = 2. For h = 3, W(5) = W(7) = 3. 
(a) For each k, the maximum width is attained by at least two values of n. Call the smallest of these values nkt 

'•e-' I nk \ = \l,3,5, 11, - | . Assume: 
(1) W(rij) = Fi+1, i = 1,2,-,k 
(2) nk = nk^ * n k „ 2 - The two inductive hypotheses are true for k = 3. By the Corollary of 2.4, nk *nk-i = 

n exists; so 
W(n) = W(nk) + W(nk.1) = Fk+1 + Fk = Fk+2, 

T(n) has as its left branch the widest tree of height k, as its right branch the widest tree of height k - 1. 
Hence Tin) is the widest tree of height k+1, and there is only one such tree. Since n is the smaller inte-
ger whose tree has this width, n = nk+-j. 

(b) Claim: nh =2nh~i + (-1)h. Statement is true for/? = 2. Assume it is true for// = /r. Then 2nk = 4nk^ + 2(-1)k. 
Using the algorithm, we can calculate nk+1 = nk *nk„i. Since 2nk and 4nk-i differ by 2, 
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nk+1 = W[2nk + 4nk-i] = l%H2nk + 2nk- 2(-1)k] = 2nk + (~1)k 

Claim proved. Assume 

By the claim, 

_, _2k+1 + (-Dk 
nk o 

nk+1 - 2[ tl^=lt ) +(-^1 - t^thUtl 
Lastly, if m^ is the larger number such that y\l(m^) = Fh+1, by the Lemma of 2.8, mn + n^ = 2h"1 + 2 . So 

Theorem. If the base is/? > 2, then W((bh - 1)/(h- 1)) = 2h~1; that is, the maximum width attained is the maxi-
mum possible. 
Proof. It is clear that W(b + 1) = W(b + 2) = 2. Assume that W(m) = W(m + 1) = 2k"1 where m = (bk - 1)/(b - 1). 

m * (m+1) = [bm+1, bm +2, •>-, bm + b - l \ 

(from the obvious definition of x *y, i x *y I has at least b - / elements.) So 

W(bm +1) = W(bm +2) = W(m) + W(m + 1) = 2k and bm + 1 = b [ b, ~J ) + 1 = b " 7 

b- 1 J b-1 " 

Remark. Comparison of the preceding two theorems shows why the special case b = 2 is more interesting than the 
general case. The trees for b = 2 are of special type: at any node the two sub-trees are always of unequal heights. 

3. THE PROBLEM OF WIDTHS 
3.1 Theorem.-?|W/^iff3|/i. 

Proof. 1/1/(1) = 1 and W(3) = 2. Assume the statement is true for all n < k. Consider W(k + 11 Let k + 1 =x * y. 
Case 1. k + 1 is divisible by 3. By the Theorem of 2.5, neitherx nory is divisible by 3. By the inductive hypothe-

sis W(x) and W(y) are odd. Hence W(k + 1) = W(x) + W(y) is even. 
Case 2. k + 1 is not divisible by 3. Then one of x,y is. So W(k + 1) = even + odd = odd. 
3.2. An interesting but unsolved question is the following: given w, find all (odd) n such that W(n) = w. 
If n > 2W, then H(n) > w, so W(n) > w (Theorem of 2.7). Thus all solutions n satisfy n < 2W. At least one pair of 

solutions always exists, because 
W(2W~1 + 1) = W(2W- 1) = w 

(first Theorem of 2.9). From the theorem above it appears that there should be fewer solutions for w even than for 
w odd. An examination of a short table of solutions, found by the algorithm, shows little regularity. 
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IDIOT'S ROULETTE REVISITED 

ADA BOOTH 
Palo Alto High School, Palo Alto, California 

The winter 1973 issue of the California Mathematics Council Bulletin carried an article under the title 'Idiot's 
Roulette." It discussed a counting-out puzzle, in which N people stand in a circle surrounding an executioner, who 
goes around and around the circle, shooting every second person as he counts. The problem is to determine the 
"safe" position, X, as a function of N. That is-which will be the last person left, according to the original number-
ing? An intuitive solution was presented, developed by looking for patterns, and the author asked for further com-
ments on possible proofs. 

The problem is a special case of a more general counting-out problem I had been playing with the previous fall, 
although in a somewhat less bloodthirsty fashion, -and the analysis which provides an iterative solution for the gen-
eral case incidentally yields a closed-form solution for the special case where the countoff spacing = 2. 

The general problem: Given /I/ places around the circle and a countoff spacing = C, such that every Cth place drops 
out, the count continuing around the circle until only one place is left, -which of the numbers 1 to N will be the 
last place L ? 

Assume the count " 1 " starts with place number 1. A different starting point simply rotates the problem around the 
circle, changing nothing essential. This seemingly trivial observation, however, provides a key to the analysis and solu-
tion of the problem. So let us consider what happens if we start the count at some other number, say atJ+1 instead 
of 1. This is equivalent to rotating the problem J places around the circle, so the game would end at L + J instead of 
L, unless! +J> N, in which case the modular nature of our numbering makes the last place L+J- N. 

Now return to the original problem. The count starts at place number 1, with countoff spacing C and N people. 
Call the solution for the last place winner L/sj. (For simplicity in the following discussion, we shall restrict ourselves 
to the case where N > C - 2. See footnote 1 for more complete analysis.) /./y is a function of C and N, Now con-
sider the problem for the same countoff spacing C, but with one more person in the circle. After our first loser is 
counted out at place C, this reduces to a circle of N places in which the count starts at C + 1. So L^+i = Lf^ + C, un-
less Z./v + C > N + /, in which case we have 

LN+1 = LN + C-(N+1). 

The table on the following page shows the situation, for example, for C = 2, and several values of N. 
I shall now introduce some terminology which will help us develop an iterative solution for the general problem. 

Noting that, for a given C, each time we add a place to the circle we add C to the old solution, write the solution in 
the form L/y = CN - l/y, since some integer //y certainly must exist which will make the statement true. (Example: 
In the table, where C = 2 and N = 4, L4 = 2(4) - 7, and l4 = 7. For N = 5,6, and 7 also, lN = 7. For N = 8, how-
ever, this is no longer true. Ig = 15.) 
-1 

If C = 1, the problem is tr iv ial , wi th £.N = N for all N. Sf C> 1, the general statement becomes: 

L N + 1 = L N +C- TN(N+ 1) and / N + 1 - / N + 7"N (N + 1), where TH = 
IM + 1 \ 
N + 1 J 

For N > C — 2, 7 N must be either 0 or 1 , and the analysis sn the article holds completely. For small A/, however, 
some of the S values generated may not actually be used, wi th the general statement being: If / ^ = S& , 

'lM+1 = Sk+T N 

For example, if C = 4, S = \3,5,7, 10, 14, 19, 26, — \ . Ix = Sx = 3; l2 = Sd = 7, since 

Similarly, for C = 7, S= I 6,8,10,12,15,18,22,26,31,37, - I 1, = St=6; l2 = S4=12;l3=S^=18;/4=S8=26;l5=S9=31. 

181 
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K 
4 
5 
6 
7 
8 
9 

LN 

1 
3 
5 
7 
1 
3 

HS/+1 

3 
5 
7 
1 
3 
5 

(C = 2) 

(7 + 2 - 8 ) 

(1) 

The problem now is to find the appropriate //y such that £/\/ = CN - //y, where / < I/y <N. 
We can restate the condition that CN - //y<N to obtain 

IN N < 
C- 1 ' 

Next look at the statements about /./v-f / = C(N + 1) - l[\i+i: If 

(2) LN + C < N+1, LN+1= LN + C = CN-IN + C = C(N+1)-IN . 

Thus, if L/y + C < N+1, lpj+1 = / /v, while if 

(3) LN + C>N+1, LN+1 = LN + C-(N+1) = C(N + 1) - (lN +N + 1) and lN+1 = IN + N+1 . 

Call S the set of distinct subtraction integers, where IN^IN+V an d ! e t M De t n e s e t °^ (N + D values at which this 
occurs. Then we can restate, from (3), S^+i = Sk + M^; and also rewrite the inequality 

LN + C = CN ~Sk + C = C(N+1)-Sk = CMk -Sk > MK , 

from which we obtain: 

(4) Mk > 
C- 1 

Similarly, rewriting (1) we have 

Mk-1 < 
Sk 

C- 1 

Combining this statement with (4), we obtain 

(5) Sk 

or 
Sk 

C- 1 

< Mk < Sk 

C-1 K C-1 

which can be solved in terms of the greatest integer function: 

Sk 

+ 1 , 

(6) Mk C- 1 
+ 1, 

(where fxj is defined as the greatest integer < x ) . 
For a circle where N = Mk places, then, our last place winner 

L = CMk-(Sk + Mk). 

Since Sk+i =Sk + Mk, we have the following iterative formula for subtraction integers: 

(7) Sk+1 ~ Sk + 
sk 

C- 1 
+ 1 

C- 1 sk + 1. 

To obtain a starting point for the set of S values, we note that, for N = 1, L/\/= 1, whatever the value of C. Hence 
1 = C - Si , and Sj = C - 1. Given a particular C, we can generate a set of subtraction integers1. For example, for 
C = 3: 

Si - 2; sk+1 -

and the set of S values is 

lsk + 1, 

| 2,4,7, 11, 17,26,40,61, - j 
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To apply the formula LN = CN - Sk, we simply choose the proper Sk so that2 

/ < LN < N. 

(Uniqueness of Sk can be shown readily from the equivalent condition that (C-1)N < Sk <C/\/J 
For the very special case of C = 2, the solution reduces neatly to a closed form, because 

- C - = 2 
C-1 ' 

an integer. We can show by mathematical induction that for C =2, 

Sk = 2k-1, 
since 

Sj = C-1 = 21 - 1 , 
and 

Sk+i = 2Sk + 1 = 2(2k -1)+1 = 2k+1 - 1. 

Therefore we can write: If 

(8) C = 2, L = 2N - (2k - 1) and / < 2N - (2k - 1) <, N . 

By rewriting the inequality in (8) we can obtain an explicit solution for k in terms of N. We have 

2k - 1 + 1 < 2N ; 

hence 2k <2N, and k < / + log2 N. We Also have 

2N < N+2k - 1 ; 

therefore N < 2k - /, and N <2k. Thus log2N<k. Combining the inequalities: 

(9) log2N < k < 1+log2N, so k= 1 + [log2N] . 

An explicit formula can therefore be written for L 

(10) L = 2N-(21+[lo^N] - 1) = 1+2(N~2 [log*N] ) 

and the roulette player can avoid the executioner if he quickly counts how many share his possible fate and uses his 
fingers to calculate powers of 2! 3 

I tried a number of computer runs to obtain M^ and S^ sets for various values of C. The resulting sequences of n u m -
bers looked hauntingly familiar, as though they ought to be expressible in some more elegant fo rm. It might be in-
teresting to fol low up on this. 
3 

This paper also provides a solution for the Population Explosion problem of Brother Alfred Brousseau, The Fibon-
acci Quarterly, Vo l . 6, No. 1 (February 1968), pp. 5 8 - 5 9 . 
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2-2-15-15 
1-2-29-15 
14-29-8 
2-3-15-10 
2-5-15-6 
3-5-10-6 

3-3-10-10 
1-15-29-2 
1-8-294 
2-10-15-3 
2-6-15-5 
3-6-10-5 

4-4-8-8 
1-3-29-10 
1-5-29-6 
24-15-8 
34-10-8 
4-5-8-6 

[Continued from Page 173.] 

1-1-29-29 
5-5-6-6 
1-10-29-3 
1-6-29-5 
2-8-154 
3-8-104 
4-6-8-5 

For any given values of p and q, it is not difficult to determine all such non-periodic sequence types. 
A MODIFIED TYPE OF SEQUENCE 

The students created another type of sequence in which the multipliers interchange their position from one step to 
the next. Thus for Tf (2,1) where the multipliers are 2 and 1 and then 1 and 2, starting with 2,5,7, the next term is 
[ ( 2 * 7 + 5)/2] * = 10; the following term is [ ( 1 *10 + 2 * 7)/5] * = 5, etc. The periods for T7 (2,1) were found to be: 

A: 3,3,2,3,3,5,4,5 E: 2,4,2,4 /; 4,2,4,3,6,4,6,3 
B: 3,3,3,3,.- F: 4,3,4,3 J: 5,1,6,3,15,6,12,2 
C: 3,2,3,3,5,5,5,3 G: 2,5,2,5 K: 5,3,5,3 
D: 2,3,2,4,3,5,3,4 H: 3,1,3,3,9,7,9,3 L: 6,1,5,2,12,6,15,3 

M: 3,4,3,4 
St should be noted that a period 3,4,3,4 in this setup is not the same as a period 4,3,4,3. Evidently this opens up 
another broad area for investigation. 

CONCLUSION 
The purpose of reporting this research is in the first instance to offer a model of cooperative effort where teacher 

and students work on a problem of unknown potential. Secondly, we feel that we have just scratched the surface and 
wish to open up the many possibilities to interested parties, especially people who have access to computer time. 

Just a few of the points for investigation may be indicated. 
(1) A major conjecture to be proved: For sequences of type (p,q), if p > q, all sequences are periodic; for se-

quences with/7 <q, some sequences are periodic and some non-periodic of the type mentioned in this summary. 
(2) Additional work on possible and non-possible period lengths. 
(3) Determining the lengths of periods for given values of/? and q. 
(4) In the case of periodic sequences, finding upper bounds for the values of terms in the periods. 
(5) Arriving at additional generalized sequences for other values of p and q than (p,p), (p + 1,p), (p, p + 1). 
(6) Modifying the work to include more terms in the numerator with a corresponding number of multipliers. 
(7) Studying the least integer functions which involve non-linear combinations of the previous terms. 

NOTE 

The complete report of which this article is a summary consists of 54 pages. It may be obtained for $2.50 by writ-
ing the Managing Editor, Brother Alfred Brousseau, St. Mary's College, Moraga, California 94575. 

******* 



ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
RAYMOND E.WHITNEY 

Lock Haven State College, Lock Haven, Pennsylvania 17745 

Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathematics 
Department, Lock Haven State College, Lock Haven, Pennsylvania 17745. This department especially welcomes 
problems believed to be new or extending old results. Proposers should submit solutions or other information that 
will assist the editor. To facilitate their consideration, solutions should be submitted on separate signed sheets within 
to months after publication of the problem. 
H-249 Proposed by F. D. Parker, St Lawrence University, Canton, New York. 

Find an explicit formula for the coefficients of the Maclaurin series for 
h0 + b1x + - + bkx

k 

1 + ox + $x2 

H-250 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that if 
A(n)Fn+1 +B(n)Fn = CM (n = 0, 1,2, -), 

where the Fn are the Fibonacci numbers and A(n), Bin), C(n) are polynomials, then 
AM = BM - CM = 0. 

H-251 Proposed by P. Bruckman, University of Illinois at Chicago, Chicago, Illinois. 

Prove the identity: 

~ La 7 -7-
n-0 IMnl2 n=0 M" ' 

where 
Mn = (1-x)(1-x2)-(1-xn), Mo = 1 

SOLUTIONS 
SOME SUM 

H-219 Proposed by Paul Bruckman, University of Illinois, Urbana, Illinois. 

Prove the identity 
n 

'-«"(j)E(;)'^-f5f-S(l!) 
1=0 i=0 

where 
x(x- 1)(x-2)-(x-i+1) 

i! 
(x) not necessarily an integer. 
Solution and generalization by H. Gould, West Virginia University, Morgantown, West Virginia. 

We shall obtain the slightly more general formula 
185 
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u) <-»nixn) E <-Dk (:)<!+<>k j E t - i [t V -
k=0 k=0^ ' 

Examination of Bruckman's formula suggests that the formula can be found fromthe partial fraction expansion 

<2> ±<-i>k{l)^T=lx+
n
n)~1 -

k-0 
which is formula (1.41) in my book, Combinatorial Identities (a standardized set of tables listing 500 binomial coef-
ficient summations, revised edition, published by the author, Morgan town, W. Va., 1972). This is a familiar and well-
known formula* Besides (2) we shall need below the formula 

(7) =M/(* -" ) . 
the binomial theorem, and simple operations on series. 

We make a straightforward attack on the left-hand side of (1) and find 

t (-»k(: y+»k j5 i= i <-»k{i y^h{k,y 
k=0 k=0 ' j=0 

n t n n n-j 

j=0 k=j j=0 k=0 ' 

i=0 k=0 

j=0 

n 

j=0 j=0 

Therefore, 

-7 

k=0 j=0 

-[Kn)["-
X

n-
1Y'£<-1>l['"X«--1r')<H ~ (X)^>n[Xn)'1t(^^H[n-,y-' 

J=0 j=0 

•±[ .:,)<" •t[;)>1 • 
M j=o 

as desired to show. Bruckman's formula (1) occurs when t = 1, and formula (2) occurs when t = 0. Thus (2) is not 
only used to prove (1) but is a special case of it. 

We may rewrite (1) in the form 

k=0 j=0 
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Recall the simple, well known Inversion pair 
n 

fM= E (-Vk[nk)9(k) 
k=0 

if and only if 
n 

ff(">= E (-1>k[nk)f(k) , 
k=0 

and we see that (3) inverts to give 

k=0 j=0 * 
Now, however, the power series expansion of (1 + t)n is unique, so that the coefficient of tJ in (4) must be precisely 

, so that we have evidently proved 

-/ 
J 

n 

«> n i E U U x - n _ n 
x-k \ J 

k=j 

for all real x. This formula is actually just a special case of (4.1) in Combinatorial Identities which occurs when we 
setz = n there and replacex byx - /. However (5) is an interesting way to express this case. 

Many other interesting sums can be found from (1). Thus by taking r derivatives we have at once the identity 

(6) [X
n)t(-i>n-k("k)[

k
r)u+t)k-r^k = ± ( ; ) ( ; )** - . 

k=r k=r 

which will express other relations in Combinatorial Identities in different ways. For t = 0, Eq. (6) yields nothing 
more than a variant of (2) again. 

[See also Paul Bruckman, Problem H-219, The Fibonacci Quarterly, Vol. 11, No. 2 (April 1973), p. 185.] 

Also solved by G. Lord, P. Tracy, L Carlitz, and the Proposer. 

ON 0. 

H-220 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 

~ kk A , / - y 2r 

Z^j (2)k+1 £»•** (z)r+1(az)r+i 

where 

Solution by the Proposer. 

It is well known that 

where 

k=0 r=0 

(z)n = (1 - z)(1 - qz) »• (1 - q"-1z), (z)0 = 1 

oo 

Uh^1 = *~t \-k+rrY • 
r=0 

f k+r 1 = Wk+r = T k+r 1 
L r J' (q)k(q)r ~ |_ k J' 

Thus 
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k=0 k=0 r=0 n=0 k=0 ' ' 

On the other hand, 

A?=0 2r+s+j=n ' ' n=0 k=0 r=0 J ' " 

Hence it remains to show that 

r-=0 

or what is the same thing 
k 

r=0 

This can be proved rapidly as follows. We recall that 
r=0 

e recall that 
n 

(l+zHl+qzl-U+q"'1!) = J^ \ " ] qMr"1>zr . 
r=0 

Then 
m+n m n 
£ j " m+n j qY2k(k-1)zk = J- \™y2r(r-1)(qnz)r ^ Y n j ^ ^ / ^ 

*=0 L J r^0 ' s=0 $ 

The coefficient of zn on the right is equal to 
n 

Y* \ m\ \ "~\ qV2r(r~1)+nr+1/2s(s~1} = V i m 1 I * " 1 Q%r(r-1)+nr+%(n-r)(n-r-1) 

r+s=n " " " r=0 • •• ~ 

r=0 
This proves (*). 

CONGRUENCE FOR Fn AND Ln 

H-221 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Let/? "=2m + 1 be an odd prime,/? £5. Show that Mm is even then 

Fm=0 (modp) [I | ) = +1 

Fm+1 ^0 (modp) ( | ) = - / 
If m is odd then 

Lm=0 (modp) (( £ ) = +1 

Lm+1=0(modp) [ ( £ ) = - / 
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where ( - ) is the Legendre symbol. 

Solution by the Proposer. 

Put 
r,n nil 

tn a__p , Ln a +p , 

wherea + jS = /, a$= - I 
Recall the identities 

,*v i 1 -S 5FmFm+l (m e v e n ) 

U L 2 m + 1 ~ 1 - j LmLm+f foQdd) 
Since Lp^1 (modpi it follows that 

/ Fm^m+1 = 0 (modp) (m even) 
\LmLn {LmLm+1 = 0 (modp) (m odd) . 

1. Let/?? be even. Since (Fm, Fm+1)= 7, it follows that either Fm or Fm+1 s o (modp) but not both. Since 

and 

we must show that 

f m = 0 (modp) Z a2m = / fow/p; 

Fm+1 = 0 f/mH/pJ 2 a2m+2 - - / f/wotfpj, 

j a ^ s / t o « / / i ; ( ( f ) - * / 

I ap+1 ^ -7 (modp) ( | ) = - / ] 

Now when f - ) =-/-/, p = Tm,
/ where TT, TT' are primes in the quadratic field Q(s/5). Since 

N(-n) = N(it') = p 
and a is a unit of the field we have 

aP~1 s 1M, ap~1 = 1M 

and therefore ap~1 = 1 (mod p). 

On the other hand if f - ] = - / , p remains a prime in (2(\f5). Since 
P oP _- ( Ltf. )P ,1 + 5**-'^ B ±Ji (modpK 

it is clear that aP =fi (modp), so that ap+1 =a|3 = - / (modp). 
2. Now Set m be odd. Since (Lm, Lm+i) = 1, it follows from (*) that either Lm or Lm+i = 0 (modp) but not both. 

Since . o„, 
Lm = 0 (modp) t a

2m ^ 1 (modp) 
and 

Lm+1 = 0 rmo£/p>/ 2 a 2 m * 2 = - / (modp), 

it suffices to show that 

j aT1
 s / foic^ ( ( | ) = +1' 

\ apH^-1 (modp) ( ( I ) = -7 

However the proof of these congruences for m even applies also when m is odd. 
This completes the proof. 
REMARK. We have incidentally proved that 

nP~1 = 1 (mnH ni I f ^ a?"' s / r/ii(M/p; (( | - ) = +7 

I apH = 7 friMM/^ j ( | ) = - / ) . 
Trie first of these congruences is immediate but the second is less obvious. 

******* 
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DEFINITIONS 
The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1 and Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-304 Proposed by Sidney Kravitz, Dover, New Jersey. 

According to W. Hope-Jones, 'The Bee and the Pentagon," The Mathematical Gazette, Vol. X, No. 150, 1921 
(Reprinted Vol. LV, No. 392, March 1971, Page 220), the female bee has two parents but the male bee has a mother 
only. Prove that if we go back n generations for a female bee she will have Fn male ancestors in that generation and 
Fn+j female ancestors, making a total of Fn+2 ancestors. 

B-305 Proposed by Frank Higgins, North Central College, Naperville, Illinois. 

Prove that 
n 

F8n = i-2n ^2 ^-2n+4k-2 • 
k=1 

B-306 Proposed by Frank Higgins, North Central College, Naperville, Illinois. 

Prove that 
n 

F8n+1- 1 = L2n 2-d L2n+4k-1 -
k=l 

B-307 Proposed by Verner E. Hoggatt, Jr., California State University, San Jose, California. 

Let 
(1 +x+x2)" = anfo + anf1x + anf2x

2+--, 

(where, of course, an^ = Ofork> 2n). Also let 
CO OO CO CO 

An = 2 - r an,4j* Bn = £_j ^nf4j+1. Cn = \ j an,4j+2< Dn = 2_j an,4j+3 • 
j=0 j=0 j=0 rO 

Find and prove the relationship of An, Bn, Cn, and Dn to each other. In; particular, show the relationships among 
these four sums for n = 333. 
B-308 Proposed by Phil Mana, Albuquerque, New Mexico. 

(a) Let cn = cos (nd) and find the integers a and/; such that cn=acn-i +bcn~2^wn =2,3, —. 
190 
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(b) Let r be a real number such that cos (m) = p/q, with p and q relatively prime positive integers and q not in 
1, 2, 4, 8, — . Prove that r is not rational. 

B-309 Corrected Version of B-284. 

Let z = xz + y and let k, m, and n be nonnegative integers. Prove that: 
(a) zn=pn(x,y)z + Qn(x,y), where pn and qn are polynomials in x and y with integer coefficients and pn has degree 

n - 1 inxfor/7 > 0. 
(b) There are polynomials r, s, and t, not all identically zero and with integer coefficients, such that 

zkr(x,y)+zms(x,y)+znt(x,y) = 0 . 

SOLUTIONS 
THE EDITOR'S DIGITS 

B-280 Proposed by Maxey Brooke; Sweeney, Texas. 

Identify A, E, G, H, J, N, 0, R, T, V as the ten distinct digits such that the following holds with the dots denoting 
some seven-digit number and 0 representing zero: 

VERNER 
x £ 

-R±±±±JR 
HOGGATT 

Solution by Paul S. Bruckman, University of Illinois, Chicago Circle Campus. 

The unique solution to the problem is the following: 
971471 

x 7 

6800297 
-1000031 

5800266 
i.e., we have: 

AEGHJNORTV 
2705348169 

Proof. Let the product VERNER x E be denoted by P in this discussion, and let the first digit of P be denoted by 
K Since Pis a 7-digit number, and VERNER is a 6-di git number, then £ > Z Since R and H are both at least 1, their 
total must be at least 3 (since R £H); hence, E > 4 and Y > 3. 

Since R + T = ER (mod 10), we initially obtain 39 possibilities for E, T, R with E > 4. Taking into account the 
possible values of J, we are left with 26 possibilities for E, T, R, 1 

Now Y < E - 1 (since V < 9); moreover, since H > /, we must have R <E -2. Taking this requirement into ac-
count, we further reduce the list to only 13 possibilities. By a slightly tedious but manageable process of elimina-
tion, we conclude the result indicated above. 

Also solved by John W. Milsom, C. B. A. Peck, Richard D. Plotz, and the Proposer. 

OWES FOR TEE 

B-281 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, Califcrnia. 

Let Tn=n(n+ 1)/2. Find a positive integer b such that for all positive integers m, Tllntml = 11 - t where the sub-
script on the left side has m 1's as the digits in base b and the right side has m 1's as the digits in base b2. 

Solution by Graham Lord, Temple University, Philadelphia, Pennsylvania. 

More will be shown to be true. Suppose the base on the right side is the positive integers, instead of/?2. The equal-
ity form = / is automatically satisfied and imm=2 is (1 + b)(2 + b)=2(1 +c), I.e.,3b +b2=2c. For m = 3 the 
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resulting equation Is 
(1+b+b2)(2 + b+b2) = 2(1+c + c2). 

These last two equations in b and c force/?2 =2h + 3 and henceb = 3 (since it is a positive integer), and c=b2 = 9. 
Finally as (3m - 1)(3m + 1) = (32m - 1) then Tllmmml,\r\ base 3f equals 11 ••• 7, in base 9,for all positive integers 
greater than 2. 

Also solved by Paul S. Bruckman, Herta T. Freitag, C.B.A. Peck, Bob Prielipp, Paul Smith, Gregory Wulczyn, and 
the Proposer. 

LUCAS RIGHT TRIANGLES 

B-282 Proposed by Herta T. Freitag, Roanoke, Virginia. 
Characterize geometrically the triangles that have 

Ln+2^n~U 2Ln+<iLn, and 2L2n + L2n+1 

as the lengths of the three sides. 
Solution by Bob Prielipp, The University of Wisconsin, Oshkosh, Wisconsin, 

Since 
L2L2n + L2n+1]

2 = [L2n + L2n+2]
2 = [Ln^Ln+1^3(-1)n + LnLn+2 + 3(-1)n+1]2 

(see the Solution to Problem B-256, p. 221, The Fibonacci Quarterly, April 1974) 

= [Ln„7Ln+7 + LnLn+2]
2 = [(Ln^^Ln)Ln+1 + L

2l2-=[L2
n+1 + L2]2 = [2Ln+1Ln]

2 + [L2
n+1-L

2]2 

= [2Ln+1Ln]
2+[(Ln+1 + Ln)(Ln+1-Ln)]

2 = [2Ln+1Ln]
2-h[Ln+2Ln.1]

2 , 
the triangles are right triangles. 

Also solved by Richard Blaze/, Paul S. Bruckman, Wray G. Brady, C.B.A. Peck, Gregory Wulczyn, and the Proposer. 

RATIONAL APPROXIMATION OF COS TT/6 AND SIN TT/6 

B-283 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Find the ordered triple (a, b, c) of positive integers with a2 + b2 = c2, a odd, c < 1000, and c/a as close to 2 as 
possible. [This approximates the sides of a 30°, 60°, 90° triangle with a Pythagorean triple.] 

Solution by Paul Smith, University of Victoria, Victoria, B.C., Canada. 

It is clearly sufficient to find a triple of the form (u2 - v2, 2uv, u2 + v2), with u, v of opposite parity. We must 
then find the minimum value for*/2 + v2 < 1000 of 

u2 + v2 u2-3v2 

ul - i r 
If \u2 -3v2\ =2 then u, v are of the same parity and a is even. Hence, if \u2 -3v2\ > 1, 

u2 - 3v21 
u£ 

•3v2\^ 3 
u2 +v2\ 1000 

451 1000 

For u2 + v2 < 1000 the Pellian equation \u2 - 3v2 \ = 1 has solutions (u,v) = (2,1), (7,4), (26, 15). The solution 
(26, 15) yields the triple (451, 780,901) which is best possible, since 

\P 9011 
I 451 I 

Also solved by Paul S. Bruckman, Gregory Wulczyn, and the Proposer. 
CORRECTED AND REINSERTED 

Problem B-284 has been corrected and reinserted as B-309 above. 
VERY SLIGHT VARIATION ON A PREVIOUS PROBLEM 

B-285 Proposed by Barry Wo Ik, University of Manitoba, Winnipeg, Manitoba, Canada. 
Show that [n/2] 

Fk(n+1)/Fk= 2 <-Vr(k~1) (n;r)^'2r. 

Solution by C.B.A. Peck, State College, Pennsylvania. 
This was H-135, Part II and was proved by induction on n in The Fibonacci Quarterly, Vol. 7, No. 5, p. 519. (The 

exponent of - 1 in that problem has + instead of - , but (-1)2r'= 1.) 
Also solved by P.S. Bruckman and the Proposer. MAMMA 
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BINDERS NOW AVAILABLE 

The Fibonacci Association is making available a binder which can be used 
to take care of one volume of the publication at a time. This binder is 
described by the company producing it as follows: 

"•••The binder is made of heavy weight virgin vinyl, electronically 
sealed over rigid board equipped with a clear label holder extending 
2%" high from the bottom of the backbone, round cornered, fitted 
with a 1W multiple mechanism and 4 heavy wires." 

The name, FIBONACCI QUARTERLY, is printed in gold on the front of 
the binder and the spine. The color of the binder is dark green. There is a 
small pocket on the spine for holding a tab giving year and volume. These 
latter will be supplied with each order if the volume or volumes to be bound 
are indicated. 

The price per binder is $3.50 which includes postage (ranging from 500 to 
800 for one binder). The tabs will be sent with the receipt or invoice. 

All orders should be sent to: Brother Alfred Eirousseau, Managing Editor, 
St. Mary's College, Moraga, California 94575. 


