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G E N E R A L I Z E D C O N V O L U T I O N A R R A Y S 

V. E. HOGGATT,JR. 
San Jose State University, San Jose, California 00192 

and 
G. E. BERGUM 

South Dakota State University, Brookings, Sooth Dakota 57006 

1. IWTRODUCTiON 

Let 

{*nfel and Kfo 
be any two sequences, then the Cauchy convolution of the two sequences is a sequence j cnI ^ whose terms are 
given by the rule 

n 
(1.1) cn = Y^ ®kbn-k+l . 

k=1 

When we convolve a sequence with itself n times we obtain a new sequence called the /?t/7 convolution sequence. 
The rectangular array whose columns are the convolution sequences is called a convolution array where the nth col-
umn of the convolution array is the (n - 1)st convolution sequence and the first column is the original sequence. 

In Figure 1, we illustrate the first four elements of the convolution array relative to the sequence iunl^=1 

" l 
U2 

"*' 
" 4 

"\ 
2uxu2 

2uxuz +u\ 
2uxu4 + 2u2ud 

u\ 
3u\u2 

3u\u2 + 3uxu\ 
3u*u4 +6ulu2u2 +u2

3 

u; 
4u\u2 

4u\ud + Bu\u\ 
4u\uA + 12ulu2u3 +4uxu\ 

Figure 1 
Throughout the remainder of this paper, we let 

(1.2) Rmn(ulrUi,-) = Rmn 

be the element in the mth row and nth column of the convolution array. 
By mathematical induction, it can be shown that 

(1.3) R1n = u? , 
(1.4) R2„ = nunf1u2, 

(1.5) R3„ = nuT1u3+ [n
2)uT2u% . 

(1.6) R4„ = nunf1u4 + 2 ( n
2 ) u12u2u3 + ( 3 ) unf3u3 , 

(1.7) R5n = nunf1u5+ ( J ) u"f2(u2
3+2u2u4) + 3 [3) u^u^S* ( "4 ) u"f4ul 

(1.8) R6n = nunf1u6 + 2(n
2) unf2(u2u5 + u3u4) + 3 ( "3 ) unf3{ulu4 + u2u§) 

+ 4("4)ur4u3
2u3+("5)ur6u5

2, 

193 



194 GENERALIZED CONVOLUTION ARRAYS [OCT. 

(1.9) 

and 
(1.10) 

R7n = nunf1u7 + i n
2 \ unf2(ul + 2u3u5 + 2u2u6) +\ 3 ) unf3(u% + 3u2u5 + 6u2u3u4) 

+ ("4) u"f4(4u3u4 + 6u2u2) + 5 ( £ ) u°f5u4
2u3 + ( £ ) u ^ i / f , 

R8n = nunf1u8 + 2 ( n
2 j unf2(u2u7 + u3u6 + u4u5) + 3 ( J ) unf3(u%u6 + 2u2u3u5 + u2u% + u§u4) 

+ 4[n4) unf4(u3
2u5 + 3u2

2u3u4 + u2u
3

3)+5 f £ ) unf5(u4
2u4+2u3

2ul) 

+ 6("J)ur6u5
2u3+(

n
7)ur7u7

2 . 

The purpose of this article is to examine the general expression for Rmn and to find a formula for the generating 
function for any row of the convolution array. 

2. PARTITIONS OF m AND Rmn 

A partition of a nonnegative integer m is a representation of m as a sum of positive integers called parts of the par-
tition. The function n(m) denotes the number of partitions of m. 

The partitions of the integers one through seven are given in Table 1. 
Table 1 

Partitions of m 

1 
2,1 + 1 
3,1+2,1 + 1+1 
4, 2 + 2, 1 + 3, 1 + 1 + 2, 1 + 1 + 1 + 1 
5, 2 + 3, 1 + 4, 1 + 1 + 3, 1 + 2 + 2, 1 + 1 + 1 + 2,1 + 1 + 1 + 1 + 1 
6, 3 + 3, 2 + 4, 1 + 5, 2 + 2 + 2,1 + 1 + 4, 1 + 2 + 3, 1 + 1 + 1 + 3, 

1 + 1+2 + 2,1 + 1 + 1 + 1+2, 1 + 1 + 1 + 1 + 1 + 1 
7, 1 + 6, 2 + 5, 3 + 4, 1 + 1 + 5, 1 + 2 + 4, 1 + 3 + 3, 2 + 2 + 3, 

1 + 1 + 1 + 4 , 1 + 1 + 2 +3, 1 + 2 + 2 + 2, 1 + 1 + 1 + 1+3, 
1 + 1 + 1 + 2 + 2, 1 + 1 + 1+1 + 1+2, 1 + 1 + 1 + 1 + 1 + 1 + 1 

-n(m) 

2 
3 
4 
7 

11 

15 

Comparing the partitions of m, for m = 7 through m = 7, with the expressions for Rmn it appears as if the follow-
ing are true. 

1. The number of terms in Rmn is equal to ir(m - 11 
2. The number of expressions whose coefficient is ( j ), for/= 7,2, —, m - 7, is the number of partitions of 

m - 1 into / parts. * ' 
3. The power of ut+i in an expression is the same as the number of times t occurs in the partition of m - 7. 
4. The numerical coefficient of an expression involving f n. J, for/^ 7, 2, 3, - , m - 7, is equal to the product 

of the factorials of the exponents of the terms of the sequence 

\Un\n=1 
in the expression divided into/factorial. The exponent for ux is not included in the product. 

In [4], it is shown that these are in fact true statements. That is, 
A77-7 

Rmn(uu U2, -) = J2 ( £ ) uTkpmk(ui, "2, ~'h (2.1) 

where 

(2.2) Pmk(Ui,u2,u*,-) 

k=1 

k! 
a2!ch-f "'<>>m-fl 

ua*ua* ...u
am u2 u3 um ' k = OLj +a3 + — + an 

it(m-1) 

3. SOME FINITE DIFFERENCES 
The first difference of a function f(x) is defined as 
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(3.1) Af(x) = f(x+1)-f(x). 

In an analogous fashion, we define recursively the nth difference Anf(x) of f(x) as 
(3.2) Anf(x) = A(An'1f(x». 

In [3 ] , we find 
m-1 

(3.3) Y. (~1>X \ x 1 ) fM = (-Vm~1&m~1f(0)-
x=0 * 

Using mathematical induction, it is easy to show the following. 
Theorem 3.1. \\f(x) = l r - * + s j thenA'VM = (-1)n (r~xj!_~n \ 

Theorem 3.Z \if(x) = ( r + x
}
+s \ then Anf(x) = [rJO.** ) -

Applying (3.3), we then have 
Theorem 3J. If fix) = (r'xi's ) then 

m-1 

E /fix f m - 7 \ / r- x + s\ Jr + s — m + 1\ 
{ " \ x ) \ 1 -[ l-m+1 ) 

, x=0 
and 

Theorem 3A. tf f(x)= [r + *+s \ then 
m-1 

x=0 

4. THE SVIAIN THEOREM 
Combining (2.1) with Theorem 3.3., we see that, whenever^ = 1, we then have 

m-1 m-1 m-1 
( n-k+1\ ^ 

^mj E ^ ( m ; ' ) v ^ - E '-"* ( V ) £ ("T?) p» 
k'~0 k=0 M 

m-1 m-1 m-1 

E %• E <-»* (m*f)("T') - L *w( ; - n )- *w-» • 
Now, the only way to partition m - 1 into m - 1 parts is to let every part of the partition equal one. Hence, by 

(2.2), we have 
Pm,m-1 = u2 

so that 
m-1 

(4.1) E '-"*( V ) »«K**H 'IF'-
k=0 

From (4.1), it is easy to see that the generating function gm(x) for the sequence | Rm,n+i\ ^=Q > where*// = 1, 
is of the form 

oo 

(4.2) gmM = JlmLxL=Yf Rm,n+1*n • 
(1-x)m 

n=0 

In order to determine the generating function gm(x) for the mth row of the convolution array, it is necessary to 
determine what is commonly called "Pascal's attic." That is, we need to know the values for the columns correspond-
ing to the negative integers and zero subject to the condition of (4.1). With this in mind, we develop the next two 
theorems. 
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Th0awn4.l If m > 2 and ux = 1 then Rmf0 = 0. 

Proof. Letting/7 =/7? -2\n (4.1), we have 
m-2 m-1 

£=0 Ar=7 

/n-/ 
+ I/JT' -

*«/ 
By (2.1), using/as the variable of summation, and Theorem 3.4 with r = s = 0, we obtain 

m-1 m-1 

m-1 _ \~^ / 1 im+k I m - 1 \ p , ,.m-1 U2 = 2^ (~1) [ k )Rmk+u2 

and the theorem is proved. 

k=1 j=1 

m-1 m-1 

- (-Dm E *w E '-"* (m,V)( J ) +u?1 

1=1 k=0 M 

Z-f r™J \ j-m + 1 j 
0 

Theorem4.2. If n > l,m >2m&u1 = 1 then 

rmk 
k=1 

Proof. We shall use the strong form of mathematical induction. 
Replacing n by m - 3 in (4.1) and following the argument of Theorem 4.1 where we let r = 0 and s = - 1 in Theo-

rem 3.4, we have 
m-2 m-1 

m-1 
{-ir'Rm.-l = E ^k+1[mV)R™,m-k-2+ur1 - E <-1>m+k[ m~k1 Wjk-^2 

k=0 k=1 

m-1 m-1 

= (-rr E %• E <-"k(V){k7?) +"2~1 

j=1 k=1 

m-1 m-1 m-1 . . 

= <-Dm E >w E '-"* ( m k 1 ) ( * 7 ' ) - (~1>m E 'w ( 7 H r 7 
/=? fc-0 ' / = / 

/77- f /77- 1 

EM/-^/W-/ rEM7K~'. 1=1 1=1 
Recalling that 

if/? > 1, and/7? > Oand f _ ^ ) = $for all /7 provided m > 1, we have 

{-D^Rm^ = ~Pm,m-1-(-1)m £ (-1)JPmj + u$~1 

so that 
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m-1 
Rm,-1 = E (-V'PmJ 

1=1 
and the theorem is true for/7 = 1. 

We now assume that the theorem is true for al! positive integers less than or equal to t Replacing n by m - t-3 
in (4.1), we see that 

m-2 

f - / r V / ) = E <-1>k+1 (m~k
1) R™>™-t-k~2+u2 

k=0 
m-1 

k=1 

m-1 m-1 

m-1 

£ Mr%,x ; (-Dk ( V ) ( '-**') ^ r ' 
7=7 / f=/ 

m-7 

where the last equation is obtained by the induction hypothesis. 
Multiplying by (-1)m~1 and introducing k = 0, one has 

m-1 m-1 m~1 . x 

7=7 £=0 '' /=* 
m-1 m-1 

= £ ^ / _ , M 7 - ^ 7 )*£ '-«/(7/)'W+^^', 
m-1 

= £ M ; ' ( < ; ' ) / W , 
/=/ 

where the second equation is obtained by use of Theorem 3.3 with r= t and s = j and the theorem is proved. 
We are now in a position to calculate the generating function for the /??t/7 row of a convolution array when*// = 1. 
When m = 1, we see that /?///7 = 1 for all n > 0 so that 

oo 

<4-3> 91M = E *" = 7T7 ' 

By (4.1), we have 
m-1 

R™,n+i-E '-"**' ( V J w ^ / ^ r ' 
A:=7 

so that when m > 2, we can use (4.2) to obtain 
<* m-1 °° m-1 

/7=0 fc=7 /?=$ k=1 

m-l\ m-1 / /r-7 \ itm-1 

M--£M^(VKU^£ 
n=0 / k=1 \ n=1 

oo ,,m-1\ m-i / /c-/ \ m-7 

E / W W ^ ^ j - £ M^'(»•;') W^w + £ ^-nx-"-' U ^ - . 
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Hence, 
m-1 k-1 

(4.4) gm(x) = JzLJEl / m > 2 . 
(1-x)m 

For special sequences 

with u-i = 1, the polynomial in the numerator of gm(x), m > 1, is predictable from the convolution array of the se-
quence. This matter will be covered by the authors in another paper which will appear in the very near future. 
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******* 

LETTER TO THE EDITOR 

February 20,1975 

Dear Mr. Hoggatt: 
I'm afraid there was an error in the February issue of The Fibonacci Quarterly. Mr. Shallit's proof that phi is ir-

rational is correct up to the point where he claims that 1/0 can't be an integer. He has no basis for making that 
claim, as 0 was defined as a rational number, not an integer. 

The proof can, however, be salvaged after the point where p is shown to equal 1. Going back to the equation 
p2 - pq = q2, we can add pq to each side, and factor out a q from the right: p2 = q(q + p). Using analysis simi-
lar to Mr. Shallit's, we find that q must also equal 1. Therefore, (p-p/q = 1/1 - /. However, 0 2 - 0 - / = - / / ^ 7 ; 
thus, our assumption was false, and 0 is irrational. 

Sincerely, 
s/David Ross, Student, 

Swarthmore College 

******* 



A RECURSIVELY DEFINED DIVISOR FUNCTION 

MICHAEL D.MILLER 
University of California, Los Angeles, California 90024 

li\fTR0DUCTI0W 
In this paper, we shall investigate the properties of a recursively defined number-theoretic function y, paying special 

attention to its fixed points. An elementary acquaintance with number theory and linear recurrence relations is all 
that is required of the reader. 

Throughout the discussion, p, q,r, s, t, plf p%, — will denote prime numbers. 
THE FUNCTION 7 

We define a function 7 on the positive integers by setting 7(1) = 1, and for /I/ > 1, 

d\N,d<N 
Example 1: 

(1) If/7 is prime, y(p) = 1. 
(2) 7(4) = 7(D+7<2) = 2. 
(3) 7(12) =7(D +7(2) +7(31+7(4) +7(6) = 7(1) + 7(2) + 70) + [7(1) + 7(2)1 + [7(1) +7(2) +7(3)1 = 8. 
The following theorem clearly follows from the definition of 7. 
Theorem 2. y(/\l) depends only on the structure of the prime factorization of N. 
That is, if N = pfl -pf2 -p^h,y(N) is independent of the particular primes /?/, and depends only on the set 

G^OJ , -,% of exponents. For example, 7(12) = 7(20) = 7(75) since 12, 20, and 75 are each of the form p2q. 
By actually determining the divisors of N, we obtain the following results: 

N 

P 
P2 

pq 

P3 

P2Q 
pqr 

y(N) 

1 
2 
3 
4 
8 

13 

N 

P4 

p3q 

PV 
p2qr 
pqrs 

P5 

y(N) 

8 
20 
26 
44 
75 
16 

N 

ifq 

P3Q2 

P3qr 

P2q2r 

p2qrs 

pqrst 

y(N) 

48 
76 

132 
176 
308 
541 

If N = p®1 -pf1 Ph , we define the exponent of N to be 
h 

i=1 

We now derive expressions for 7/W in a few simple cases, and then proceed to determine the general form. 
Theorem 2. y(pn) = 2n'1. ^ 
Proof. For n = 1, the theorem clearly holds. Assume it true for n = k. Thus y(p ) = 2 . Now, 

y(pk+1) = y(1) + y(p) + ~- + y(pk) = 2y(pk) = 2k, 
since , , , . / k-1 . , k, 

y(1) + y(p) + - + y(pK 7) = y(pK). 
199 
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Theorem 3. y(pnq) = (n + 2)-2n~1. 

Proof. y(pnq) = y(1) + y(p) + - + y(pn-1) + y(q) + y(pq) + - + y(pn-1q) + y(pn) = 2y(pn~7q)+y(pn). 
Letan = y(pnql Then 

an-2an„1 = y(pn) = 2n~1. 

We solve this linear recurrence (using the fact that a0 = 1) to obtain the desired result. 
Before proceeding, it will be valuable to make the following observation. If N = p®1 «/?f2 p^h, then 

y(N) = £ y(d) 
d\N,d<N 

is a sum involving two types of terms: those involving divisors of N which have/7^1 as a factor, and those which do 
not. The sum of all terms of the latter type we recognize as 2y(p?r 1 -p^ p%h). Each of the remaining terms 
is of the form y(pnd), where d properly divides p?2 p%h. Moreover, in each case, d has lower exponent than 
that of N/p^K 

This observation leads us to a proof by induction on the exponent of N in order to find an expression for y/W. 
We first look at the following example. 
Examples y(pnq2) = 2y(p"-1 q2 ) + y(pn)+ y(pnq). 

Using Theorems 2 and 3, and letting an = y(pnq ) , we rewrite this equation as 

an-2a„-i = 2n~1 + (n+2)2n'1. 

Noting that a0 = y(q2) = 2, we solve to find an = (n2 + 7n + 8)2n~2. 

Using this example and observation as motivation, we now derive the general form of y(N) for any N. 

Theorem 4. Let 
A„=P?-P^ Pth. 

where a2 ,a3, —, a^ are fixed. Then 
y{An) = P(nh2n. 

where P(n) is a polynomial in n of degree e = a2 + — + a^ with positive leading coefficient. 
Proof. We shall use induction on a For e = 0, we have 

An = p? and y(An) = 2n'1 = 1/2-2
n 

by Theorem 2. Now assume the theorem true for e < k, and look at Bn = p"-C, where C is of exponent A> and/?x 

does not divide C. By an earlier observation, 
m 

y(Bn)-2y(Bn.1) = Y< ^ / A 
i=i 

where du d2, —, dm are the proper divisors of C. Now each such proper divisor^// of C in the summation is of ex-
ponent less than k. Thus, by the inductive hypothesis, we can rewrite the right-hand side as 

m 

J^ Pi<n)-2n = P*(n)-2n, 
i=1 

where P/(n) is a polynomial of degree the exponent of d\, and P*(n) is a polynomial of degree k - 1 with positive 
leading coefficient. 

Now let a,, = y(Bn). We thus have a non-homogeneous linear recurrence an - 2an-i = P*(n)-2n. We try a particu-
lar solution of the form an = Q(n)-2n, where Q(n) is a polynomial of degree k. Hence we need 

Q(n)-2n-2Q(n-1)'2n-1 = PHn)-2n, 

or Q(n) - Q(n - 1) = P*(n). This will always have a solution Q(n), of degree k, with positive leading coefficient. 
Thus Q(n)-2n is indeed a particular solution to the above recurrence relation. The general solution is therefore 
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an = c-2n + Q(n).2n = 2n(c + Q(n», 

where c is a constant. The theorem is proved. 
This theorem, although giving much information about the nature of the function 7, does not explicitly give us a 

formula from which we can calculate y(N) for various values of N. However, it does tell us that once we kno\Nj(pnd) 
for d with exponent less than k, we can find y(pnd*) with d*of exponent k by solving a relatively simple (yet most 
times tedious) difference equation. 

Doing this for a few simple cases, we obtain the following results: 

N y(N) 

pn 2n-1 

pnq (n+2)-2n~1 

nn„2 n2 +7n +8 0n-1 p q2 ,2 

pn3 n3 + 15n2 +56n+48 , 2
n~1 

6 
pnqr (n2 +6n+6)>2n~1 

pn 2f n3 + 13n2 +42n + 32 2
n~1 

pnqrs (n3 + 12n2 + 36n + 26)°2n~1 

Theorem 5. y(N) is odd if and only if N is a product of distinct primes. 
Proof. Recall the definitcon of 7: 7(1) = 1, and 

l(N> = Yl y(d) 
d\N,d<N 

for N > 1. We cannot directly apply the Mobius inversion formula to 7, since the latter equation does not hold for/I/ 
= 1. We thus introduce an auxiliary function r/ defined as follows: 

„ /«, . = j 1 \\N= 1 
vuv/ I 0 otherwise . 

Then, for all positive integers N, we have 

y(M = Y, 7<d)+ nWh or 2[y(N) - n(N)J =2 £ y(d) = ] T y(d) - r\(N). 
d\N,d<N d\N,d<N d\N 

Let F(N) = 2y(N) - ri(N). We can now apply the Mobius inversion formula to F(N) to find that 

y(N) = J2 V(N/d)F(d) = 2 ^ V.(N/dft(d) - £ \i(N/d)r\(d) = 2y(N)+2 J^ v(N/d)y(d) - \i(N). 
d\N d\N d\N d\N,d<N 

From this, we deduce that 

y(N) = i±(N) -2 Yl v(Mdh(d). 
d\N,d<N 

Clearly, y(N) is odd if and only if ji(/\f) ^0, that is, if and only if N is a product of distinct primes. 

SUPER-PERFECT NUMBERS 

We will call a positive integer N > 1 super-perfect if y(N) = N. 

Theorem 6. pn is never super-perfect. 
Proof. In order for pn to be super-perfect, we would need pn = 2n~1, by Theorem 2. This forces p = 2, and thus 

a contradiction. 
The following theorem assures us of the existence of infinitely many super-perfect numbers. 
Theorem 7. pnq is super-perfect if and only if p = 2 and n +2 = 2q. 
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Proof. By Theorem 3, forpnq to be super-perfect, we need (n + 2)2n~1 = pn q. If n > 2, we must then have/7 = 2, 
and after cancellation, we get/7 +2- 2q, as required. For/7 = 0 ,1 , or 2, the equation leads to a contradiction. 

Since p and q are distinct, the first q and n for which n + 2 = 2q are # = 3 and n = 4, which gives 2* -3 = 48 as the 
first super-perfect number of this form. As it turns out, it is the only super-perfect number less than 1000. 

q n N = pnq (p = 2) 

3 4 48 
5 8 1280 
7 12 28672 
11 20 11534336 

Theorem 8. N = pnq2 is never super-perfect. 
Proof. From Example 2, we know that 

j(pnq2) = (n2 +7n+8)-2n~2 . 
Assume that 

pnq2 = <n2+7n+8)-2n'2. 

For n > 4, this forcesp = 2, which leads to (2q)2 = n2 + 7n + 8. However,we clearly have the inequality 

(n+3)2 < n2 + 7n+8 < (n+4)2 for n > 4. 

Thus no solution exists in this case. If n = 0 ,1 , 2, 3, or 4, we get pnq2 = 2, 8, 26, 76, 208, respectively, none of 
which are possible. 

The following theorems are stated without proof, for the proofs follow the same patterns as above. 
Theorem9. N = pnq3 is never super-perfect 
Theorem 10. N = pnqr is super-perfect if and only if p = 2, and 2qr=n2 +6n + 6. 

q r n N = pnqr (p = 2) 

13 
37 
13 
73 

3 
3 
11 
3 

6 
12 
14 
18 

2496 
454656 
2342912 

57409536 

In all cases, we are faced with trying to find values for n which make a given polynomial in n have a certain prime 
factorization structure. This is, in general, a very difficult, and in most cases, an unsolved problem. 

ODD SUPER-PERFECT NUMBERS 

Recall from Theorem 5 that y(N) is odd only when N is a product of distinct primes. We now use various combina-
torial methods to prove: 

Theorem 11. There are no odd super-perfect numbers. 
Proof. Suppose that/7x, p2, — are distinct primes. Let a0 = 1 and a; = y(p1p2 p,), i= 1, 2, —. Using Theorem 1 

to consolidate terms, we find that 

i=0 
Then 

Let 

n-1 
an %r* - a; / ^ i!(n-i)! n! 

1=0 

n n! 

We thus have 

and b(x) = bjx'. 

i=0 
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tM..* - ± t^.f. bo +± n %*>>=bo+±(£ ^ + 6„\ ,„ __ 2bM_K 
1=0 j=0 n=1 j+j==n • n = 1 \ j = 0 • i 

But a0 = b0 = 1, so we solve to find that 

bM = _ J _ = % (1+ e* + e f l + °Jl+...]. 
2~e" [ 2 4 8 J 

We now expand each term in the infinite sum in powers of x, and then collect coefficients to obtain 
oo oo 

bw= ^ E E 7- ^ (°°= v • 
n=0 i=0 2'n! 

Thus 
oo oo 

i=0 2'nl to 2' 

In order to proceed, we need the following lemma. 
lemma. For fixed k, 

oo 

fkM = £ nkxn 

n=0 
converges for |x| < 1, and is equal to 

PkM 

<1-x)k+1' 
where Pk(x) is a monic polynomial of degree k with non-negative coefficients. 
Proof. The convergence part of the lemma follows immediately from the ratio test. For k = 0, we have 

£*"-£f 
n=$ 

so the lemma holds. Assume it true for k = s. Thus 

Now 

x / , - / , V« s+1 n x(1-x)$+1P-s(x)+x(s+1)Ps(x)(1-x)s x(1-x)P'sM+x(s+1)PsM 
fs+1M = xfs(x) = 2^> n x = 5^5 = ri5 • 

It is straightforward to verify that the numerator is indeed a monic polynomial of degree s+1 with non-negative 
coefficients. The lemma follows. 

Puttingx = 16 in the lemma, we find that 

^0 2n mk+1 

Using the fact that P0(x)= 1 = 01, we can show (via a simple induction argument) that the sum of the coefficients 
of Pk(x) is ki Since Pk(h) < Pk (1), we clearly have ak <2kkL 

Comparing 2 k! with the product k 

n pi 
i=1 
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of the first k odd primes, we see that k = 1 is the lowest k for which 

2kk! < n Pi . 

But once this inequality holds for one k, it holds for all larger k. For by multiplying each side by 2(k + 1), we get 

u+i k k+1 

2k+1(k + Di < n Pr2(k+v< n ph 
i=1 i=1 

smzspk+i > 2(k + 1). 
Therefore, for all k, 

k 
ak < I I pi , 

i=1 
and in particular, a^ is less than any product of k distinct odd primes. We conclude that no product of distinct odd 
primes can be super-perfect, and the theorem follows. 

SIGNIFICANCE OF EVEN-ODDNESS OF A PRIME'S PENULTIMATE DIGIT 

WILLIAM RAYMOND GRIFFIN 
Dallas, Texas 

By elementary algebra one may prove a remarkable relationship between a prime number's penultimate (next-to-last) 
digit's even-oddness property and whether or not the prime, p, is of the form 4n + 1, orp = 1 (mod 4), or of the form 
4n + 3, or/? = 3 (mod 4), where n is some positive integer. 

The relationships are as follows: 

A. Primes == 1 (mod 4) 
(1) If the prime, p, is of the form 10/:+ \,k being some positive integer, then the penultimate digit isei/e/?. 
(2) If/? is of the form 10£ + 3, then the penultimate digit \%odd. 

B. Primes-3 (mod 4) 
(1) If/? is of the form 1Qk+ 1, then the penultimate digit is odd. 

(2) If p is of the form 10/r + 3, then the penultimate digit is even. 

The beauty of these relationships is that, by inspection alone, one may instantly observe whether or not a prime 
number is = 1, or = 3 (mod 4). These relationships are especially valuable for very large prime numbers-such as the 
larger Mersenne primes. 

Thus, it is seen from inspection of the penultimate digits of the Mersenne primes, as given in [1 ] , that all of the given 
primes are = 3 (mod 4). This holds true for all Mersenne primes, however large they may be, for, by adding and sub-
tracting 4 from Mp= 2P - 1 and re-arranging, we have 

Mp - 2P - 1+4-4 = 2P -4 + 3 - 4(2P"2- 1)+3 - 3 (mod 4). 

[Continued on Page 208.] 



ANOTHER PROPERTY OF MAGIC SQUARES 

H.S.HAHW 
West Georgia College, Cerrollton, Georgia 30117 

i+1 

1. IWTRODUCTiOi 
Consider nxn matrices >4 = [a,-j] with complex number entries satisfying 

/ / / / 
Definition. CaSM (multiplicatively) balanced if 

(2) Ena;y = X)na'y' 
i ' / ' 

and completely balanced if 

(3) Y.TV(au + z = y\n(a,i+z) -
i ' i J 

for all complex number z. 
These two properties are explored for n = 3, 4 and 5. Note that magic squares are our main object and there are 

millions of them which satisfy (1), of order 5 alone, 
2. THEOREM 

These squares of order 3 are all completely balanced. 
Proof. It is well known (see [2]) that (1) implies 

r k+a k-a-h k+h 
[ajj] = \ k-a+h k k+a • 

L k-b k+a+h k-
where k, a, b are arbitrary parameters. 

A direct computation can show (2). An easy way to see this is to change (2) into a determinant as follows: 

:;•] 

£na,y-X;na,y = *11 
S 2 3 

^32 

5 2 2 

*31 

* 1 3 

^ 3 3 

^ 2 

* 2 1 

= 
k+a k k-a 

k+a-h k-h k-a-b 
k + a+b k + h k-a+b 

= 0 

because the first row is the average of the other two rows. 
However, the majority of magic squares of order n(> 3) are not balanced. For example, the famous Diirer's magic 

square (Fig. 1) is not balanced and the second one (Fig. 2) is balanced and also completely. 
An nxn matrix A to be completely balanced,all the coefficients of the polynomial in z, say 

XV 
obtained from (3) have to be 0. Equation (2) is merely cQ =0. If c0 = 0, I.e., A is balanced, to determine whether A 

205 
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6 
5 
9 
4 

3 
10 
6 

15 

2 
11 
7 

14 

13 
8 

12 
1 _ 

c.p.s. = 8,984 
r.p.s. = 11,024 
c.p.s. for column-product sum 

Figure 1 

1 14 7 12 
15 4 9 6 
10 5 16 3 

L 8 11 2 13 
p.s. = 9,104 

Figure 2 

is further completely balanced it is sufficient to show, by the fundamental theorem of algebra, that the above poly-
nomial is satisfied by any n different values of z, In fact, checking for n - 4 (n > 3) values of z is enough. For: 
cn = n - n = 0, 

^•lE'rll'ri 
I * i J 

Cn-2 = E Z *//**/-££ *ll*lk =\\ E E ^ ^ E E ^ * 1 
/ /<* j i<k L / ¥k j &k J 

= 1 E a» E a» ~Eai' E aJk 1 = J | E V * ~ aij) - £ */i(S ~ aji) 1 
LhJ kti j,j k# j l,-j u J 

L hi hi hi hi 

where S is the row (or column) sum, and 

cn-3 = JLt I E aitajtakt~ E atfatjatk 
t Li<i<k i<j<k 

| E Y,.*it*it(S-ait-*lt) 
t Lw 

- 2 ^ atiatj(S - ati - atj) 

= £E 5 52a**ft-2 Y*4ait-S Y*atiatj+2 J^afaj 
t L w w w #/ J 

= £ £ j* E fe/f** - **> v - * E */?# - a*}+2 E **ff - *"; 
f L ¥j i i J 

(the first sum is 0 as in cn~2) 

s Y,<a?i-4> + Y,(4-4> = i 
3 hi t,i J 
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The above fact implies the following. 
Theorem Any balanced square of order 4 is completely balanced. 
For n(> 4) we are unable to show cn„4 = 0„ An obstruction is the appearance of the sum 

in cn-4. Since 

Z(Z44-Za'4) 

a sufficient condition for cn-4 
may be stated by 

(4) 

2 L,aitaTt 
m 

0 or a condition that any balanced square of order 5 to be completely balanced 

?(?**)'-?HJ 
Incidentally, Eq. (4) is the condition easily satisfied by any doubly magic square, a magic square [a-,j] such that [a-] 
is also a magic square. Summarizing the above argument we state a theorem. 

Theorem. If a balanced square of order 5 satisfies the condition (4), then it is completely balanced. 
In the theorem (4) is a sufficient condition and we do not know whether it is necessary. All the balanced magic 

squares of order 5 that we have been able to check turned out to be also completely balanced and they do satisfy 
(4). Thus, we make a conjecture. 

Conjecture. A balanced magic square of order 5 is completely balanced. 

1/ CONSTRUCTION OF BALANCED SQUARES 

Some magic squares of order 4 or 5 constructed by adding two orthogonal Latin squares seem balanced (also 
completely). For example: 

a J b c \ 
da c b \ 
c b d a I 
be a d J 

+ 

+ 8 
u V X 

x y u 
v u y 
y x v 

0 5 10 20~ 
10 20 0 5 
5 0 20 10 

20 10 5 0 

= 

1 

14 
8 

22 

p.s. = 19,646 
«=* *. 

a b o d e 
d e a b c 
b c d e a 
e ah c d 
c d e a b 

+ 

y 1A 

1 + 

\ x y s t 
I S t ¥ X 
\ v x y s 
\ y s t v 
\ t v x y 

~ 0 5 10 15 20 ~ 
10 15 20 0 5 
20 0 5 10 15 

5 10 15 20 0 
15 20 0 5 10 

607J25 

= 

dk 

y \ 
¥ I 
X I 
U J 

_ 
" / 4 2 

4 
3 

1 3 2 
3 2 4 1 
2 3 14 

9 12 23" 
21 3 7 

2 24 11 
13 6 4 

«»» »™ 
V 

y 
t 
X 

s 

= 

\ 1 2 3 
\ 4 5 1 
\ 2 3 4 
\ 5 1 2 
\ 3 4 5 

" 1 7 13 19 
14 20 21 2 
22 3 9 15 
10 11 17 23 
18 24 5 6 

igor lal / is. = : 59 

4 5m 

2 3 
5 1 
3 4 
1 2 

25 1 
8 

16 
4 

12 

9,399 
Figure 3 
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REMARKS 

1. We do not know any nontrivia! (all different entries) balanced square of order greater than 5. We constructed 
a magic square of order 10 from the famous pair of orthogonal Latin squares of that order, but we found it not 
balanced. 

2. We do not know an example of a balanced magic square which is not completely balanced. 
3. Magic squares of order 6, 7 and 8 appearing in Andrews* book [1] are not balanced. 
4. We did not encounter yet a balanced square whose two-way diagonal product sums are equal to the row prod-

uct sum (really diabolic one) but at least two diagonal product sums alone can be equal as in Fig. 3. 

REFERENCES 

1. W.S. Andrews, Magic Squares and Cubes, Dover, 1960. 
2. Jack Chernick, "Solution of the General Magic Square," Math. Monthly, March 1938, pp. 172-175. 

*kkkkkk 

[Continued from Page 204.] 

Likewise, it is obvious by inspection of a table of Fibonacci primes (> 5) that they are = 1 (mod 4) and thus expres-
sable as the sum of the square of two smaller integers; specifically, it is well known that 

UP * u(p-D/2 + u(p-i) 
2 

where Up is a Fibonacci prime {> 5). 
Thus, it is perceived that the Mersenne and Fibonacci primes (> 5) form two mutually exclusive sets; i.e., no primes 

(> 5) can be both a Mersenne and a Fibonacci prime. 
REFERENCE 

1. William Raymond Griffin, "Mersenne Primes-The Last Three Digits," J. Recreational Math, 5 (1), p. 53, Jan., 
1972. 



ON HALSEY'S FIBONACCI FUNCTION 

M.W. BUWDER 
The University of Wollongong, Wollongong, N.S.W., Australia 

Halsey in [1] defined a Fibonacci function by 

(1) 
k=Q L 

(u-ufx^-Ul-x)' 

n - 7 

dx 

where m is the integer in the range (u/2) - 1 <m < (u/2). 
This definition was criticized by Parker [2] for (a) being restricted to rational u'% and (b) destroying the relation 

(2) Fu+1 = Fu + Fu-<, . 

Neither of these criticizms are quite fair. Firstly, there is nothing in Haisey's paper to prevent (1) from defining 
Fu for all real u and secondly (2) is still satisfied for approximately half of the real values of u and it is generalized 
in the other cases. This we show below. 

Firstly, we express Fu in the more convenient form given implicitly by Halsey: 
m 

<3> ^ - z ( - r ? ) •. 
where (u/2) - 1 <m < (u/2) and m is an integer. 

Now if (u/2) -1/2<m< (u/2), then 

u+1 

k=0 

, < m < f < ^ 
so that 

with the same m. 
Also, 

so that 

m 

k=0 

*f+-1 <m-1<u--Ku-fL 

m-1 

k=0 

also with the same m. 

Now 
209 
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m m 
F - F = V <u ~k,! (u-k- 1)! = V ^ (u-k- 1)1 

u+1 u ZJ (U - 2k)!k! (u-2k- 1)!k! ^ (u - 2k)!(k - 1)1 
k=i k=l 

m-1 

' L , fiT=T^-"W . where q = k-1 

q=0 

m-1 

z;(u-r-?)-f"-' 

q=0 

m-1 
/ ' * # _ • # _ , « _ * \ i -

\ q i 
q~0 

If on the other hand (u/2) - 1 <m< (u/2) - 1/2, then 
U^^T Ku_<m + 1 <u_j_1_ 

so that 
m+1 

Fu+1 
k=0 

where we are still using m as in (3). 
Now 

m-t-i 

= Y,{u+1-k
k-1)> 

) m 
+ V ("-M - (u-k- VI 

^(u-2k)!k! (u-2k-1)!k! k=1 

m-1 

-("^r^SC-T-') as before 
\ q i 

q=0 

= l u - m - l \ _ ( u - 1 - m - l \ F __ F (u-m- 1)1 (u-m- 2)1 
\ m+1 I \ m I ru~1 ~ ru-l (u-2m-2)!(m + D! (u-2m-2)lm! 

= F ,+ (u-m-2)1 _F (u-m-2) 
hu'1 (u-2m-3)!(m + D! Fu'1 \ m + 1 ] ' 

Thus we have for 2m <u <2m + / that (2) applies and for 2m + 1 <u <2m +2 

•»5) FU+1 = Fu + Fu-1+(
u-m

m
+;

2) , 

where m is an integer. 
Equation (5) also reduces to (2) when u is an integer and is also verified by Halsey's tables for Fu. 

REFERENCES 

1. Eric Halsey, "The Fibonacci Number Fu where u is not an Integer," The Fibonacci Quarterly, Vol. 2, No. 2 
(April 1965), pp. 147-152. 

2. Francis D. Parker, "A Fibonacci Function," The Fibonacci Quarterly, Vol. 6, No. 1 (Feb. 1968), pp. 1-2. 



FIBONACCI MULTI-MULTIGRADES 

DOMALD C.CROSS 
St Luke's College, Exeter, England 

Readers of The Fibonacci Quarterly will probably be familiar with multigrades. Here are two examples; 
(1) 1m + 6m+8m = 2m + 4m+9m (m=1,2) 
and 
(2) 1m + 5m+8m + 12m = 2m + 3m+Wm+11m (m = 1,2,3). 

The first example is called a second-order multigrade; the second example, a third-order multigrade. 
Adding, subtracting, multiplying and dividing do not affect the equality of a multigrade, provided we perform the 

same operation or operations on each element in i t For example, Eq„ (1) above becomes 
2m + 7m + 9m = 3m + 5m + Wm, 

where m = 1,2, if we add 1 to each element; Eq. (2) becomes 
2m +10m + Wm+24m = 4m + 6m +20m+22m, 

where m = 1,2, 3, if we multiply each element by 2. 
This note is concerned with what I call second-order Fibonacci multi-multigrades. (I define [1] a multi-multigrade 

as a multigrade having three or more "components" as compared with the normal two "components" in a multigrade 
as in (1) and (2) above.) 

Here are some examples of Fibonacci multi-multigrades: 
(3) Om + (3-3)m + (3»3)m = (3- 12)m + (3-12 ) m + (3-22)m = - = -
(4) Om + (3-7)m + (3>7)m = (3- 12)m + (3-22)m + (3-32)m = (7- 12)m + (7-12 ) m + (7-22)m 

= (12}m + (42}m + (s2 }m 

(5) Om + (3- 19)m + (3- 19)m = (3-22)m + (3-32)m + (3>52)m = (19- 12)m + (19-12 ) m + (19-22)m 

= (12)m + (72)m + (82)m 

(6) Om + (3-49)m + (3-49)m = (3-32 ) m + (3-52)m + (3-82)m 

= (49-12)m + (49-12)m + (49-22)m = (22 )m+ (112 ) m + (132)m 

Om + [3(F2n+4 - Fn-Fn+1)]
m + [3(F2n+4 - Fn-Fn+1)]

m = [3F2
+1]

m + [3F2
n+2]

m + [3F2
+3]

m 

= t(F2n+4 - Fn-Fn+1)F
2]m + [(F2n+4 - Fn-FnH)F2]m + [(F2nf4 - Fn-FnH)F2]m 

= [F2]m + [(Fn+5 - Fn)
2]m + [F2+5]

m (m = 1,2). 

Clearly, we can expand our multigrades by a simple process, if we multiply (4) by 19 x 49, (5) by 7 x 49 and (6) 
by 7 x 19, we get 
0m + (3-7- 19>49)m + (3-7 -19-49)m = [(3-1949) 12]m + [(3- 19>49)22]m + 1(3-19*49) 32]m 

= 1(7- 19-49)12]m + [(7- 19-49)12]m+1(7-19 -49)22]m = f(19-49)12]m + [(19-49)42]m + [(19-49)52]m 

= [(3-7-49)22]m + [(3-7-49)32]m + [(3-7-49)52]m = - = [(7-49)12 ]m + [(749 )72]m + [(7-49 )82]m 

= [(3-7-19)32]m + [(3-7-19)52]m + [(3-?-19)82]m = •• = [(7-19)22]m + l(7-19)112]m + [(7-19)132]m, 
wnere m = 1,2. 
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It is possible to obtain multigrades of higher and higher powers by using the traditional method summarized by 
J.A.H. Hunter and myself in an article several years ago [2]. 

I give here, by way of example, the following which I recently derived: 
(F^r^[(F^4-Fn)

2]m + f3F^2 + 2Fn^n+4-F^m^fF^ + 3F^2-F^Jm 

= (3F2
n+1}

m + (2Fn • Fn+4)
m + (3F2

n+3)
m + (3F2+3 + 2Fn-Fn+4 - 3F2

+1)
m , 

where m = 1,2, 3, 
Om + (Fn+5)

m + (Fn+5 + Fn)
m + (2Fn+5 + Fn)

m = (Fn+2)
m + (Fn+3)

m + (Fn+6 + Fn)
m + (Fn+6 + Fn+2)

m, 

where m = 1,2,3*. 

Om + (Fn+5 + Fn)
m + (Fn+5 + Fn+2)

m + (Fn+5 + Fn+3)
m + (Fn+7 + Fn)

m + (Fn+7 + Fn+2)
m 

= (Fn+2)m + (Fn+3)m + (2Fn+5r+(3Fn+5 + Fn)
m + (Fn+6 + Fn)

m + (Fn+6 + F^^^^^ , 

where n= 1,2,3,4** 

REFERENCES 

1 Donald Cross, "Second- and Third-Order Multi-multigrades," Journal of Recreational Math., Vol. 7, No. 1, Winter 
1974, pp. 41-44. 

2. D.C. Cross, "Multigrades," Recreational Mathematics Magazine, No. 13, Feb. 1963, pp. 7-9. 
3. D.C. Cross, "The Magic of Squares/' Mathematical Gazette, Vol. XLV, No. 353, October 1961, pp. 224-227 and 

Vol. L, No. 372, May 1966, pp. 173-174. 

*lf we add Fn+f to each term, the multigrade reads 
(Fn+1)

m + (Fn+1 + Fn+S)m + (Fn+2 + Fn+5)
m + (Fn+2 + 2Fn+5)

m = (Fn+3)
m + (Fn+1 + Fn+3)

m 

+ (Fn+2 + Fn+6)
m + (Fn+3 + Fn+6)m, 

where m = 1,2,3. 

**!fweadd Fn+1 to each term, the multigrade reads 

(Fn+i)
m + (Fn+2 + Fn*)

mHFn+3+Fn^)m + {Fn+1 + Fn+3 + Fn 

= (Fn+3)
m + (Fn+1 + Fn+3)

m + (Fn+1 +2Fn+5)
m + (Fn+2 + 3Fn+5)

m + (Fn+2 + Fn+6)
m + (Fn+3 + Fn+6)

m. 

where m = 1, 2, 3, 4. 



ON FIBONACCI NUMBERS OF THE FORIVI k2 + 1 

H.C.WILLIAMS 
University of Manitoba, Winnipeg, Manitoba, Canada 

Consider the Diophantine equation 
(1) (X-Y)7 = X5-Y5, 

where X, Y are to be integers. We have an infinitude of trivial solutions of (1) given by X = m, Y = m, where m is an 
integer parameter. We shall concern ourselves here with solutions (X,Y) of (1) for which X£ Y. There is no loss of 
generality in assuming that X> Y. 

Using an idea of Rotkiewicz (cf. Sierpihski [5]), we let d = (X,Y) and X=dx, Y = dy. Substituting this in (1)and 
rearranging terms, we get 

d2(x - y)6 = (x - y)4 + 5xy(x - y)2 + 5x2y2 . 

Since (x,y) = 1, x > y, and (x - y) must divide 5x2y2
f we must havex - y- 1. Hence 

(2) d2 = 5y4 + 10y3 + Wy2 + 5y + 1. 

We rewrite (2) as 
16d2 = 5[(2y+1)2+1]2-4. 

Putting 
v = 2d and u = l(2y•+ 1)2' + 1}72, 

we have the familiar equation 
(3) v2-5u2 = -1. 

Now it is well known that if (v,u) is any solution of (3), there exists an integer m such that 

u = (F6m+3)/2, 

where the Fibonacci numbers Fn (\n \ = 0, 1,2, - / a r e defined by the recurrence relation 

Fn+1 = Fn + Fn-1 (\n\ = 0, 1,2,..») 

together with the initial conditions FQ = Qf Ft = I Thus, in order for (1) to have a solution, we must have an integer 
m such that 

F6m+3= (2y+1)2+1. 

In Gryte eta/. [3] it was shown, by means of a computer search, that the more general equation 
(4) Fn = k2+1 

has no solution for any n such that 5 < n < W6. In this note we will show that all solutions of (4) are given by n= 
±1,2, 43, ±5. Hence, the only solutions of (1) such that X> Kare (1,0) and (0,-1) . 

We first note that since 3\Fn if and only \i4\n, (4) has no solution \\4\n. From Lucas' [4] identities (52), we see 
that 

F2m+1~ 1 = FmLm+i when 2\m, 
F2m+1 - 1 = Fm+iLm when 2\m, 

F2m- 1 = Fm„1Lm+1 when 2\m. 
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Here Ln (\n\ = 0, 1,2, - J are the Lucas numbers defined by 

Ln+i = Ln + Ln-.<i (\n\ = 0,1,2,-) 

together with LQ-2, Lf = 1. We also have 
2Lm+1 = Lm + 5Fm = 3Lm-<i+5FrTI„1, 

2Fm+i = Lm + Fm. 

If p is any prime divisor of Fm and Lm+i, then p is a prime divisor of Lm. Since (Fm, Lm) - 1,2, we see/lhat 
p must be 2. From the fact that l\(L 

rn* L-m+1 A it follows that (Fm, Lm+i) - 1- Using similar reasoning, it is not 
difficult to show that (Fm+i,Lm) = I Finally, if p\(Lm+i,Fm„i) and2J(m, then p\3Lm„]. In this case it is possible 
for/? = 3. \ip^3, then p \(Lm^, Fm^) and p = 2, but, since 2\(Lm, Lm+1), this is not possible. \i9\(LmHtFm^1)t 

then 3\Lm„i, which is also impossible; consequently, (Lm+1, Fm^1)= 1 or 3. 
In order to solve (4) we consider two cases. 
Case (i). n odd. 

Here we have 
k2 = F(n^)/2L(n+1)/2 or k2 = F(n+7)/2L(„-r)/2 • 

In either event, we must have some integer r = (n ± 1)/2 such that \Fr | is an integer square. The only possible values 
for r are ±1, 0, ±2, ±12 (see Wyler [6] or Cohn [1]) ; hence, it is a simple matter to discover that the only solutions 
of (4) for odd naren = ±1, ±3, ±5. 

Case (si), n even. 
In this case 4jfn and 

k2 = Fn/2-lLn/2-1 > 

If (Fn/2-u Ln/2+l)= I we have 
Fn/2~1 = *2 and n/2 - 1 = ±1,0,2,12. 

The only possible value of n such that (4) is satisfied \sn=2. If (Fn/2-i, Ln/2+i) = 3, we have Fn/2-f ~ 3s for 
some integers. Putting r= Ln/2~1 and noting that n/2 - 1 is even, we see from the identity 

L2
i-5F2

) = 4(-1)m 

that 
(5) r2-45s4 = 4. 

Since the Diophantine equation 
x2 - 45y2 = 4 

has the fundamental solution x = 7,y= 1 and the equation 

x2 - 45y2 = -4 

has no integer solution, we see from Cohn [2] that the only possible solutions of (5) are given by 

s2 = 0, u1f u2, us , 

where Uj= 1, U2 = 7,1/3 = 48. That is, the only solutions of (5) are (±2,0), (±7,±1). It follows that Fn/2-i = 0,3 and 
the only possible even value of n such that (4) is satisfied is n = 2. 
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THE FIBONACCI LATTICE* 

RICHARD P. STAWLEY 
Department of IVI at hematics, University of California, Berkeley, California 94720 

1. DISTRIBUTIVE LATTICES 

Our object is to investigate a certain distributive lattice Fi closely related to the Fibonacci numbers. First we will 
review some basic properties of distributive lattices and discuss some general combinatorial problems associated with 
them. Thus this paper can be regarded as a semi-expository survey of some combinatorial aspects of distributive 
lattices. 

In order that the combinatorial invariants we will be considering are finite, we need to restrict ourselves to dis-
tributive lattices L satisfying the following property: 

(W) L is locally finite with a unique minimal element 0, and only finitely many elements of any given rank (or 
height). 

By locally finite, we mean that every segment [x,y] = | z\x < z < y I of £ is finite. The rank k of an element 
x e L is the length of the longest chain between 0 and x. In any distributive lattice, if the length k of the longest 
chain between two elements x and y is finite, then the length of any saturated (or unrefinable) chain betweenx and 
y is also k. A distributive lattice satisfying property (W) will be called a W-distributive lattice. 

Recall that an order idealof a partially ordered set P is a subset / c Psuch that if x e / a n d y <x, then y e / . By a 
fundamental theorem of Garrett Birkhoff [2, Ch. I l l , §3] , corresponding to every ^/-distributive lattice L is a par-
tially ordered set P, uniquely determined up to isomorphism, satisfying the following three properties: 

(i) Every element of P is contained in a finite order ideal of Pf 

(ii) P has only finitely many order ideals of any given finite cardinality k, 
(iii) L is isomorphic to the set of finite order ideals of P, ordered by inclusion. 
Conversely, given any partially ordered set P satisfying (i) and (ii), the lattice of finite order ideals of P (ordered 

by inclusion) is a ^/-distributive lattice. A partially ordered set satisfying (i) and (ii) is called a W-orderedset. The 
correspondence between MZ-ordered sets P and ^-distributive lattices L is denoted L = J(P). P is isomorphic to the 
sub-ordered set of L consisting of all the join-irreducible elements of L If / is a finite order ideal of/3, then the car-
dinality j / | of / is equal to the rank of / in J (Pi 

If P is a ̂ /-ordered set, then we define a P-partition ofn [18] to be an order-reversing map a : P-AO, 7, 2, — j 
satisfying 

^o(x) = n. 

xeP 

(In particular, only finitely many elements x of P satisfy o(x) > 0.) The statement that a is order-reversing means 
that if x < y in P, then o(x) > o(y). The parts of oare the non-zero values o(x) (counting multiplicities). Leta(m,n) 
denote the number of /^-partitions of n with largest part < m. Since P is a W-ordered set, it follows easily that a(m,n) 
is finite. St can be shown that a(m,n) is the number of order ideals of cardinality n in the direct product P x m, 
where m denotes an /77-element chain, 

rn = { 12, . » , / ? i | . 

*Supported by the Air Force Office of Scientific Research AF 44620-70-C-0079, at M.I.T. 
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Furthermore, let a(n) denote the total number of/'-partitions of n. Hence 

Mm a(m,n) = a(n), 

and a(n) is the number of order ideals of cardinality/? in the partially ordered setPxN, wherej\l denotes the natural 
numbers, 

In particular, a(1,n) is equal to the number of order ideals of cardinality n in P (equivalent^, the number of ele-
ments of rank n in J(P)), since PXJL^ P. In fact, there is a one-to-one correspondence o «* KG) between order-
reversing maps o : P -> j 0,11 satisfying 

] j j o(x) = n, 
xGP 

and order ideals KG) of P of cardinality n, viz., 

KG) = {X\G(X) = / J . 

The number a(1,n) is denoted jn(P) or simply/^. If P is finite, then the total number of order ideals of P is denoted 
j(P), so j(P)=\/(P)\. 

If L = J(P) is a /^-distributive lattice and / e L, then define e(l) to be the number of saturated chains between 0 
and /. (This number is obviously finite.) It is not difficult to see that e(l) is equal to the number of order-preserving 
bijectionsa: / - * £ , where \l\ = k. In fact, such a bijection a corresponds to the saturated chain 

(1) 0 c G'Ul) c o~1(2) c ... c o'Uk). 

Thus a saturated chain between 0 and / corresponds to a permutation cr1 (1), o-l(2), —, oml(k) of the elements of /. 
This provides a systematic basis for studying relationships between sequences and lattice paths which occur fre-
quently in combinatorial theory and probability theory. 

2. EXAMPLES 

By now the reader may be overwhelmed by a plethora of definitions and anxious to see the point of them. We will 
give several examples, some of which will be used later, to illustrate the significance of the above concepts. 

Example 1. Let P = N, the natural numbers with their usual ordering. Then a /'-partition of n with largest part < m 
is just an ordinary partition of n with largest part < m [8, Ch. 19]. As is well-known, 

Y, a(m,n)xn = I I (1-x'F1 . 
n=0 M 

Similarly a(n) is equal to the total number of partitions of /? (usually denoted p(n)), with the corresponding gen-
erating function 

E a(n)xn = 5 (1 -x1)-

n=0 

To tie in with subsequent results, we state the trivial formulas 

(2) E o(0 = I E e(l)2 = I 
\i\=k | / | « * 

where the sum is over all order ideals / of]\[ of cardinality k. 
Example 2. Let/3 be the disjoint union of two copies of JJr denoted P-N + N = 2N. Thus J(P) is isomorphic to the 

direct product/j/x/1/ =J\f . Here the numbers a (m,n) are not so significant (in particular, 
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£ a(m,n)xn = 0 (1-x'F2) . 
n=0 '~1 

We will rather discuss the numbers e(l), I <EJ(P). For any MZ-ordered set P and l^J(P), let /x, /2/ - , lr be the ele-
ments of J(P) which / covers, i.e., // < / and no l'^J(P) satisfies // < / ' < / . It follows that 
(3) e(l) = e(l1) + e(l2) + - + e(lrl 

For the lattice N under consideration, (3) is precisely the "addition formula" for constructing Pascal's triangle. 

The numbers e(l) are just the binomial coefficients, and in analogy to (2) we have the well-known formulas 

More precisely, for any I <EJ(P) the segment [OJ] has the form 
\ + b\ 
b ) 

a_±j_ x b + 1, and e(l) 

Uo\Na_±J x /? + 1 = J(a+b). Thus from (1), we have that 
/ a+h 
\ b 

is equal to the number of order-preserving bijections o : §_ + b -• a + b. The map a is determined by the image of a_ 
(o rM , so we get the usual combinatorial interpretation of 

( • : • ) 
as the number of combinations ofa + b things taken b at a time. 

The above discussion motivates defining a generalized Pascal triangle to be a ^/-distributive lattice together with 
the function e. The entries ell) of a generalized Pascal triangle have three features in common with the ordinary bi-
nomial coefficients: 

(a) They can be obtained by an additive recursion, 
(b) They can be interpreted as counting certain types of permutations or sequences. 
(c) They can be interpreted as counting certain types of lattice paths in Euclidean space, since every finite dis-

tributive lattice can be "imbedded" in a Cartesian grid of sufficiently high dimension. 
To illustrate the lattice path interpretation (c), consider the well-known problem of counting the number of lat-

tice paths in an (n+ 1)x (n + 1) array of lattice points from a fixed corner to the opposite corner, such that the path 
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never goes below the diagonal. For instance, in 
the4x4 case we have as one path the following: 

The total number in the 4x4 case is the number 
of maximal chains in the following distributive 
lattice L: 

Here L = J(2xH In the general (n + 1) K 
(n + 1) case, the appropriate distributive lattice 
is L = J(2xn). The number of maximal chains 
m J(2xn) is known to be the Catalan number 

1 
n + 1 (?)• 

Many other known lattice path problems can 
be formulated in a similar context We give a 
further example, arising from a lattice path 
problem considered by Frankel [6 ] . Here if we 
take/3to look like 
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then the generalized Pascal triangle corresponding 
to JfP) looks like 

The entries e(l) are all Fibonacci numbers. 
Example 1 Let P = N2. Then the lattice J(P) is denoted fand is called Young's lattice (cf. Kreweras [11]). fcan 

also be regarded as the lattice of all decreasing sequences X= (Xu \ , — ) (with \ > \ > —>0) of non-negative 
integers X;, all but finitely many equal to 0, ordered coordinatewise. Hence X may be regarded as a partition of |X| = 
EX/. Thus if X = fXj, \ , - } e Fand ji= (i±u jit,, - ) e 7̂  t n e n ^ < M if and only if X; < jit/ for all / = 7,J?;-. 
From this it follows that j^(T) = plk), the number of partitions of k The lattice T is intimately connected with the 
theory of plane partitions and the representation theory of the symmetric group (cf. Stanley [19], and the refer-
ences cited there). We will merely state some of the remarkable properties of the lattice T. 

First, we have the beautiful formulas, originally due to MacMahon [13, Sect 495], 

aMxn = n d-x'r Y, a(mfn)xn = n (1-x*)-'»ln<ltm)t ^ 
n=0 '~1 n=0 

If X e T and |X| = k, then the number e(X) is traditionally denoted fx and is equal to the degree of the irreducible 
representation of the symmetric group Sj< corresponding to the partition X. By either group-theoretic or combina-
torial means, the following formulas can be proved: 

(4) tk, 
|\|=Ar 

k! 
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Here t^ is the number of elements TT eS^ satisfying IT2 = I It is most easily computed from the recursion 

to = ti = I tk+1 s tk+ktk-i, k > I 

The generalized Pascal triangle associated with T looks as follows: 
l 5 9 5 10 16 10 5 9 5 

Let us consider the problem of computing the 
individual efkj's, X e T. The element X = (ku 

\ , — ) of T is represented schematically as an 
array of left-justified squares, with A; squares in 
the ith row. This array is called the graph of X 
For instance, if X = (4,3,2,2,0,0, .»•), then the 
graph of X is 

A maximal chain from 0 to X in T corresponds 
to filling in the squares of the graph.of X with 
the integers 1, 2, —, |X|, such that these integers 
are increasing in every row and column. Such an 
array is called a Young tableau of shape X For 
instance, one of the Young tableaux of shape 
(4,3,2,2) is 

1 

z 

6 

7 

3 

b 

9 

11 

4 

8 

10 
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With each square S of the graph of a partition 
X, we associate an integer h(S)f defined to be the 
number of squares directly to the right or di-
rectly below S, counting S itself exactly once. 
This number h(S) is called the hook length of S. 
The hook lengths for X = (4,3,2,2) are given by 

A basic result of Frame, Robinson, and Thrall [5] states that 
efX) = k!/h(SJh(S2)-h(Sk), 

where |X| = k and £ / , —, S^ are the squares in the graph of X-
Formulas (4) can be stated in terms of Young tableaux as follows: 
(i) The number of Young tableaux with k squares is t^. 

(is) The number of ordered pairs of Young tableaux of the same shape and with k squares is kl 
123 12 13 1 

For instance, when k = 3, we have the follow- 3 2 2 
ing t3 = 4 Young tableaux: 3 

123 123 12 12 12 13 1 1 13 12 13 13 
We also have the following 3! = 6 pairs: 3 3 3 2 2 2 2 3 2 2 

3 3 
In view of (i) and (ii), it is natural to ask for an explicit one-to-one correspondence n-+ (P,Q) between permuta-

tions 77 of 1, 2, —, k and ordered pairs (P,Q) of Young tableaux of the same shape and with k squares, such that if 
7T -> (P,Q), then ir1-* (Q,P) (so that TT2 = 1 if and only if TT-> (P,P) for some P). Such a correspondence was discov-
ered in a rather vague form by Robinson [14] and later more explicitly by Schensted [16]. Further aspects of this 
correspondence were considered by Schutzenberger [17] and Knuth [9 ] , [10, §5.2.4]. We refer the reader to these 
sources for the details. 

It is natural to try to extend the results about T = J(N2) to the lattices J(l\[l'), r>2. Unfortunately, all the "ex-
pected" results turn out to be false, and very little is known about the numbers a(m,n) and e(I). 

Example 4. Our final example in this section is when P is the universal binary tree T_2. This partially ordered set is 
characterized by the property that it is a ^/-ordered set with 0 such that every element is covered by two elements, 
and every element except 0 covers one element. # 

7 

5 

3 

I 2 

6 

4 

2 

1 

3 

1 

1 
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A finite order ideal of T2 (or an element of J(T2)) is a plane binary tree. The number/^ of order ideals of T2 of 
cardinality k is the Catalan number 

k+1 \ k } -
We thus have two order-theoretic interpretations of the Catalan numbers: (a) as the number of maximal chains in 
J(2_ x k), and (b) as the number of elements of rank k in J(T2). We state a third interpretation, viz., (c) 

-J-(2k \ k+1 \ k } 
is the total number of elements in J(S(k - 1)1 where S(P) denotes the set of segments (or intervals) of P, ordered 
by inclusion*. Thus the Hasse diagram for S(k- 1) looks like the "top half" of the distributive lattice k-1 x k-l 
For instance, when k = 4 we have S(3] and J(S(3J) as follows: 

S ( 3 ) 

J ( S ( _ 3 ) ) 
We leave as an exercise for the reader the result that the number of maximal chains in J(S(k_)) is 

(2k ~ 1)(2k-3)2(2k-5)3-3k-11k 

There is an interesting way to see that the number of maximal chains in J(2_ x k) is equal to the number of order 
ideals of S(k - 1). Draw the Hasse diagram of J(2_ x k), pick a maximal chain C, and rotate the Hasse diagram 90° 
so there is one vertex on top and k- 1 on the bottom. Remove the "bottom zigzag" of this rotated Hasse diagram. 
Then the resulting diagram H is the Hasse diagrams of S(k - 1). Let / be the smallest order ideal of / /which con-
tains all the elements in the intersection C n H. It is easily seen that this correspondence C -> / between maximal 
chains C in J(2_ x k) and order ideals / of H s S(k- 1) as a bijection. As an example, we take k = 5 and C as shown 
at the top of the following page (indicated by wiggly lines). 

The corresponding order ideal of S(4) con-
sists of the labeled elements on the right. 

*There are two other lattices associated with the Catalan numbers, due to D. Tamari [21] (first published in [ 7 ] ) 
and G. Kreweras [ 1 2 ] , but since these lattices are not distributive we wi l l not discuss them here. 

/0\X 
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The above correspondence between order ideals and maximal chains generalizes 
straightforwardly to show that if L = J(P) is any finite planar distributive lattice 
(equivalently, P has no antichains of cardinality > 3), then the number of maximal 
chains in L is equal to the number of order ideals in the partially ordered set obtained 
by rotating the Hasse diagram of L 90° and removing the "bottom zigzag." We state 
without proof one amusing consequence of this observation, based on a problem of 
Berlekamp [22, p. 341, problem 3] (see also Carlitz, Roselle, and Scoville [4]). 
Write down the graph of some partition X. Let S be a square of this graph with coor-
dinates (ij) (i.e., S is in the Ith row and/t /? column). Then the squares (i',j') satisfying 
/ ' > j and / ' > j form the graph of a partition id (SI In the square S write the number 
of elements v of the Young lattice T satisfying v <{JL. For example, if X= (3,3,2,1), 
then we get the array shown above right. The entry 9, for instance, corresponds to 
ju = (2,2,1) with the nine partitions v < ju given by (2,2,1), (2,1,1), (2,2), (1,1,1), 
(2,1), (2), (1,1), (1), 0. Now "border" the bottom and right of this array with a rook*-
wise connected line of squares containing the integer 1. Thus for the above array, we 
get the array shown in the Sower right. For any entry in this new array, consider the 
largest square of which it is the upper left-hand corner. For instance, the entries 5 
(either one), 9, and 28 give the square arrays 

5 2 9 3 1 28 9 3 
2 1 5 2 1 14 5 2 

2 1 1 5 2 1 
Then we have the following result: The determinant of each of these square arrays is 
equal to one. 

We now return to the partially ordered setj"2. Here no simple expression for the generating function 

28 
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Is known. On the other hand, it is easy to show (we will not do so here) that 

I ] eC> = k! • 
l /Nr 

The numbers e(l) can be evaluated in a manner analogous to eM, X e T. In fact, if P is any finite rooted tree (con-
sidered as a partially ordered set) and* eP, define 

h(x) = card | y\y <~ P, y > x j. 

Then an easy induction argument shows 

e(P) = k!/h(x1)h(x2)-h(xkl 

where P = \k\ and the *;'s are the elements of P 
For example, see the array on the right So for this 
partially ordered setP, 

e(P) = 91/9.4.4.3.2-1-1-1-1 = 420. 
A discussion of these and related results may be 
found in [18, §22]. 

The lattice J(T2) is closely connected with the 
well-known problem of parenthesizing a string of k 
letters (say*^). A bibliography of this problem is 
given by Brown [3 ] , though the following lattice-theoretic interpretation appears to be new. We define an order re-
lation A2 on all finite parenthesized strings of x'$ (excluding the void string) as follows: Given two strings 5X and£2, 
then Sx < S2 if and only if S2 can be obtained from Sx by substituting for each occurrence of x in St some paren-
thesized string S (which depends on the particular* in St being substituted for). For instance, \fS1 - (xx)fx(xx)) 
and S2 = (x(xx))(((xx)x)(xx)l thenS, <S2 since we have substituted for the fiver's in St the strings*,**, (XX)X, 
x,x. The order relation A2 looks as follows: 

The basic result about A2 is that it is a distributive lattice isomorphic to J(T2). In fact, the join-irreducible ele-
ments of A2 are elements like x(((xx)x)x) which are build up f rom* by multiplying successively b y * either on the 
left or on the right. Thus for instance the following order ideal of T2 corresponds to the elements 

a6 = a4a5 = (a1a2)(a1ad) = ((xx)(x(xx)))((xx)((xx)x))) of A2 • 
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x - a , 

x2=a, 

a , a 2 = a 4 a i a 3 = Q 5 

ontrast to the difficulties involved in extending results about J(N2) to J(ff), our results on J(T2) easily gen-
eralize to J(T ) , where T is the universal r-ary tree (whose definition is evident). For instance, 

Ik k(r -ZJfTJ [kk ) - E e(l) = hr-(2r- 1)(3r- 2) -((k- 1)r~(k-2)). 
i\=k 

Moreover, the numbers e(l) can be computed \wJ(Tr) in exactly the same way as for J(T21 since / is a rooted tree. 
Finally if Ar denotes the set of all finite strings of x's parenthesized in accordance with an r-ary operation and 
ordered analogously to A2, then Ar = J(Trl 

3. COVER CHARACTERIZATIONS 
Most of the distributive lattices we have been considering have an interesting property which we call a "cover char-

acterization." A ^-distributive lattice L is said to have a cover characterization if there exists a function f(k,n) such 
that if an element x of L of rank k covers/? elements, then* is covered by f(k,n) elements. If f(k,n) is independent 
of k (in which case we simply write f(n)), then we say that L has a strong cover characterization. The function f(k,n) 
(or f(n)) is called the cover function of L 

It is easy to see (by inductively building L from the bottom up) that there can be at most one distributive lattice L 
(up to isomorphism) with a given cover function f(k,n). It is not difficult to verify that the following lattices have 
the Indicated cover function. L 

g = J(rN) 
J(N2)r = J(rN2) 

2r = J(r1) 
J(Trf = J(sTr) 

Hk.n) 
r 

n + r 
-n + r 

(r- 1)k + s 

On the other hand, the lattices JW), r > 2, do not have a cover characterization. 
An interesting problem is to determine which functions f(krn) can be the cover functions of a distributive lattice. 

For instance, given a function a(n), for what functions h(k) is f(n,k) = a(n) + b(k) a cover function? The following 
proposition is useful in ruling out various functions. The proof is left to the reader. 

Proposition 1. Let L be a W-distributive lattice such that u(ij) elements of rank / cover exactly/ elements, and 
v(ij) elements of rank /are covered by exactly/ elements. Then for all i>j> 0, 

k=0 k=0 
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(Each sum has only finitely many non-zero terms.) • 
Thus, for instance, using Proposition 1, it can be shown that if L is a W-distributive lattice with the cover function 

f(n) = an+b, then u(5,1) = -(b/3)(a + 1)(2a3 - 2a2 - 3). Hence u(5,1) < 0 if |*| > 2, so in this case L does not ex-
ist. We in fact conjecture that if L has a strong cover characterization with a non-decreas/ng cover function ffn) (i.e., 
ffi + i)> f(i)), with HO) > 0, then f(n) = a or ffn) = n+a. 

Oii@ positive result is the determination of all finite distributive lattices with a strong cover characterization. 
Proposition 2. If L is a finite distributive lattice with a strong cover characterization, then L is a boolean algebra 2^. 
Proof. Suppose L is a finite distributive lattice with a cover function ffn). Let r be the number of elements cover-

ed by the top element 1 of L Then f(r) =: 0. Let / be the meet of all elements covered by the top element 1 of L 
Then / is covered by r elements. Suppose / covers s elements, so f(s) - r. Under the assumption s>0 , we will show 
that there is an element T > / s u c h that /'covers s elements. Then / ' must be covered by r elements, which is impos-
sible since the join of these r elements would lie above 1. Hence s = 0, and L is a boolean algebra. 

Assume s > 0. Let L = J(P). If M is the set of maximal elements of P, then / is the order ideal P - M. Since s > 0, 
i £ 0. Let x e / . Then there is somexx G M satisfyingxx >x. Letx2, '-,xr be the remaining elements of M ( in any 
order). Define 1^ = M u | xu x2, —, x^ \. Then each /^ is an order ideal of Pe and the number of maximal elements 
of i/( is at most one more than the number of maximal elements of ik-1- Since/j has < s maximal elements and lr 
hasr maximal elements, some /^ has s maximal elements. This /^ is the desired /', and the proof follows. • 

Using Proposition 1, one can determine the number/^ of elements of rank k of a ^-distributive lattice L with a 
cover function f(k,n), without explicitly determining L Is there a method for computing 

£ e(l) and £ e(i)2? # 

|/|=/r \l\=k m 

There is some evidence for believing that these numbers # 

will have a relatively simple form. In particular, if f{k,n) 
= g(k) (independent of n), then it is trivial that 

X) e(l) = g(0)g(1)-g(k-1). 

4. THE FIBONACCI LATTICE 

Let Kx denote the set of ordered pairs (m,n) of inte-
gers 7 < m, 0<n < 7, under the order relation (m,n) < 
lm',n') if and only if n = 0 and m < m\ Thus Kx looks 
as is shown on the right. 

The lattice J(KX) of finite order ideals of Kx is called 
the Fibonacci lattice and is denoted F%. Thus we have 
the generalized Pascal triangle at the top of the next 
page. 

Proposition 3. The number f^ of elements of F% of 
rank k is the k Fibonacci number (f0 = fx = 1, f/< = 
fk-1 + fk-2'tik>2). 

Proof. We will give three different proofs, reflecting 
three different properties of the Fibonacci numbers. 

First proof. Clearly f0 = fx = 7. Let / be an order ideal of Kx of cardinality k > 1. If the minimal element 0 is re-
moved from Kx, there results an isolated point A- and an isomorphic copy K\ of Kx. If / contains*, then / - j 0,x I 

is an order ideal of K\ of cardinality k- 2. If /doesn't contain x, t h e n / - j # Hsan order ideal of K\ of cardinal-
i t y / : - 7. Conversely if / ' is any order ideal of K\, then / ' u j f j | and / ' u \o,x\ are order ideals of Kx. Hence fy = 
fk-1 +fk-2-

Second proof. Define xt = (i,0) e Kx. Let / be an order ideal of Kx of cardinality k. Let / be the least integer such 
that Xfr-j e /. Then xu x2, —, x^-i are in /, and the remaining / elements of / are of the form (mJf 1), j= 7, 2, ~,i, 
where the m/$ are an arbitrary /-subset of I 2, —, k-i. Hence 
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10 15 15 

h E(V) 
This sum is a well-known expression for the Fibonacci numbers. 

Third proof. There is a one-to-one correspondence between order 
ideals / of Kx of cardinality k and ordered partitions (or composi-
tions) /fj + k2 + — + kr = k of k into parts kj = 1 or 2, as follows: 
kf = 1 if (i,0) e / but (i, 1) £ I, kj = 2 if (i, 1) e /. The number ,of such. 
ordered partitions is well-known to be the kth Fibonacci number / > . • 

We will denote order ideals / of Kl (or elements of F_t) by the no-
tation kt k2 — kr, where kx + — + kr is the ordered partition defined 
above. Thus for instance the order ideal 122112 G ^ is given on the 
right. 

By modifying the second proof of Proposition 3, one can establish 
the following result. 

Proposition 4. The number of elements of F_x of rank k which cover exactly / elements is 

(T-'7')-( k-i 
/ - / 

(with a binomial coefficient equaling 0 if any entry is negative). The number of elements of F_x of rank k which are 
covered by exactly / elements is 0 if k - i is even, while if k - 1 is odd this number is 

(k+i- 1)/2 
(k-i+ 1)/2 . • 
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We now consider the problem of evaluating the sums 

E *w and E *̂ 2 
\l\=k 

Surprisingly, these sums turn out to be the same as for the Young lattice 71 Although coincidences in mathematics 
are suspect, I can offer no other explanation for this phenomenon* The evaluation of these sums for F_x is much 
easier than for T. 

Proposition 5. We have 

E *M = *k 
i/ht 

and E e(l>2 = kl > 
\l\=k 

where the sums are over all order ideals / of Kx of cardinality k, and where tk is the number of elements TX in the 
symmetric group $k satisfying TT2 = 1. 
Proof. Let 

hk and ffk = £ e("2 

I'h* 

8 

Let x be the unique maximal element of Kl which covers 0. We divide all order-preserving bijections a : I -»k_ (/ an 
order ideal of Kx) into two classes: (a) x & I, and (b) x e /. Since K1 -1 Otx I is isomorphic to Kx, the number of a 
of type (a) is hk-f. I f x e / , then o(x) can beany of 2, 3, ~>,kf so the number of o of type (b) is (k- Vhk-2- Hence 
hk = hk-1 + (k- 1)hk-2- Moreover, by inspection hQ = hx = 1, so hk ~ tk. 

Similarly the number of pairs (G,T) of order-preserving bijections of / on-
to kj for all / with x £ I, is Qk-i- If x e / , then there are (k - 1)2 ways of 
specifying a(x) and T(X), so there are (k - 1)2gk-2 Pa'rs m t n s s case- Hence 
#A: = 9k-i + (k- 1)2gk-2- Sinceg0=gx = I we have^ = £/. D 

In analogy with the definition of a Young tableau, we define a Fibonacci 
tableau (l,o) to be a finite order ideal / of Kx, together with an order-
preserving bijection o '. I -> kj where |/| = k. The order ideal / is called the 
shape of the tableau, and k is called the size of (l,o). Thus for example, 
the tableau on the right is a Fibonacci tableau of shape 212211 and size 9 

Proposition 5 can then be restated as follows: The number of Fibonacci 
tableaux of size k is tk, and the number of ordered pairs of Fibonacci tab-
leaux of size k and of the same shape is kl There is a very simple alternative 
proof that the number of Fibonacci tableaux of size khtk- we construct 
a one-to-one correspondence £2 : (lfo)^Ttbetween Fibonacci tableaux (lfo) of size /rand elements TTGS^ satisfying 
IT2 = 1. Namely, we define n by the condition n(i) = jfor/ > / if and only if some maximal elementz of Kl satisfies 
o(zj = i and the unique element y covered by z satisfies o(y) = j. Thus for the Fibonacci tableau illustrated above, 
n - (19)(2)(34)(57)(6)(8). St is easily seen that this construction establishes the desired one-to-one correspondence. 

Similarly one would like to prove the second formula of Proposition 5 by constructing a one-to-one correspond-
ence \p : (l,o,r) -* 77 between ordered pairs Ul,o), (l,r)) of Fibonacci tableaux of size k and of the same shape /,and 
elements n^Sk- The correspondence i// should satisfy the following two properties: (a) If \IJ(I,GT) = TT, then \p(f,T,o) 
= 7r~1, and (b) \p(f,o,o) = £l(l,o). This correspondence would be a "Fibonacci analogue" of Schensted's correspond-
ence for Young tableaux (see Example 3). Such a correspondence was found by E. Bender (private communication), 
as follows: Let;r= (m,n)<El, and define x' = (m, / - nl Then TT IS defined by the conditions 

nfofx)) rfxl 
r(x'), 

if x'£l 
if x'el 

We next consider the problem of evaluating the numbers e(l) themselves, where / is the shape of a Fibonacci tab-
leau. A finite order ideal / of Kx is a rooted tree, so from (5) we have 
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e(l) = k! I I h(x), 

where \l\ = k, and h(x) = card J y\y e /, y > x\. It is easily seen that the above expression fore(i) is equal to the 
product n x -n2 —nr where the /?/s are those integers such that k >nx >n2 > — >nr> 0 and (k -n\-i+ 1,1) G/. 
It follows that no two of the n,'s can be consecutive integers. Conversely, given a set of integers k > nx >n2 > — > 
nr > 0, no two consecutive, there is a unique order ideal / of Kx of cardinality k such that (m, 1)<ai if and only if m 
has the form k- n,- i + 1. We therefore obtain the following result: 

Proposition 6. The set of numbers e(l), including multiplicities, as / ranges over all order ideals of Kl of cardinality 
k is equal to the set of numbers 

II n, 
n<BS 

where S ranges over all subsets of 11, 2, —, k - 1 \ containing no two consecutive integers. • 
For instance, when k=S we have the eight sets S given by 0 , ( 1 ! ' { 2 f ? | 3 f ' { 4 } < f 1 > 3 f ' | l , 4 | , | 2,4|..Hence 

the numberse(l), |/| = 5, are given by 1, 1, 2, 3, 4, 3, 4# 8. 
Combining Propositions 5 and 6, we obtain the formulas 

E n n = fK< E n n2 = kI-
where both sums are over all subsetsS of 1 1 , 2, —, k- 1 I containing no two consecutive integers. Both these for-
mulas can be easily proved directly by induction on k. 

Let us now turn to the problem of counting the number a(m,n) of Kl-partitions of n with largest part <m. A Kx-
partition is nailed a protruded partition [18, §24]. For instance, there are six protruded partitions of 3, as follows: 

. s \ v y/ 
3 2 2 1 1 1 

Proposition 7. Let a(m,n) be the number of protruded partitions of n with largest pair < m. Then 
oo 

E a(men)xn = U (7 - x1'- xi+1 - xl+2 x2i f1 

Proof. A protruded partition of n with largest part < m can be regarded as two sequences au a2, — and bx, h2, — 
of non-negative integers satisfying 

Jjaj+l^bj = n, m > ax > a2 > az > - , aj > bj. 

Let kj be the number of a/s which are equal to L If some ay = i, then bj can be any of 0, 1, 2, —, i, so aj + bj is one of 
i,i+1,i + 2,-,2L Thus 

E a(m,n)x" = S E <*'+ **1+ " + *21) * ) = E (1 - x'- xi+1 - ••-x2i) . U 
n=0 '~1 \kj=0 j i=1 

On the following page, we give a table of a(m,n) for m,n < 10. 
Many features of the theory of ordinary partitions carry over to protruded partitions. We state one such result here. 

For a proof, see [18, §24]. A classical identity in the theory of ordinary partitions is 
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n m 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 

1 
2 
3 
5 
8 
13 
21 
34 
55 
89 

2 

I 
3 
5 
10 
17 
31 
53 
92 
156 
265 

3 

1 
3 
6 
12 
22 
42 
75 
135 
238 
416 

4 

1 
3 
6 
13 
24 
47 
86 
159 
285 
509 

5 

1 
3 
6 
13 
25 
49 
91 
170 
309 
558 

6 

1 
3 
6 
13 
25 
50 
93 
175 
320 
582 

7 

1 
3 
6 
13 
25 
SO 
94 
177 
325 
593 

8 

1 
3 
6 
13 
25 
SO 
94 
178 
327 
598 

9 

1 
3 
6 
13 
25 
50 
94 
178 
328 
600 

10 

1 
3 
6 
13 
2S 
50 
94 
178 
328 
601 

„ " (J-x)(7-xV-(7-xn) 1-0 

The corresponding identity for protruded partitions is 

n (1-qx'r1 

f^0 (1 -x-x*)(1 -x1 -x* -x*) -(1 -x" • 

oo oo 

= E(^^'rfZ ———-
i-o TO {1-xM-x*). 

,n+1 -x2n) 

xM+'V 

. (1 - xh(1 - x - x2)(1 - x - x 3 ) - ( f - x - xj+1) 

By inspection, the Fibonacci lattice F_t does not have a cover characterization. It does possess, however, a different 
type of property, viz., it is an extremal distributive lattice [20]. This means that if L is any locally finite distributive 
lattice with 0 having the same number /> of join-irreducibles of rank k as Ft (namely,/"j = 1,r2 = r3 = — = 2),then 
Jk(L) <ik(Fll In fact, Ft is precisely the distributive lattice £(1, 2, 2, 2, — ) constructed in [20]. 

Recall the result >42 ~J(T2) discussed in Example 4, where A2 is the lattice of parenthesized strings. Consider the 
related problem of parenthesizing a string of kx's subject to the commutative law (but not of course the associative 
law). For instance, when k=6 there are 6 distinct strings, viz.,x(x(x°x3)),x(x2 -x3), x2(x°x3),xz *x2 °x2,x(x(x2 -x2)), 
and x3'X3 (an expression such asx3 has an unambiguous meaning sincex(xx)= (xx)x by commutativityh The 
problem of counting the number N'k of such strings was first considered by Wedderburn [23], who obtained a recur-
sion for N'k. It is unlikely that a simple expression for N'k exists. For an historical survey of this problem, see Becker 
[11. 

Let £ j be the partially ordered set of strings of x's subject to commutativity, ordered in the same way as in A2. St 
has been conjectured (e.g., by myself and by E. Bender) that Ct ^.JlF^l The reason forthis conjecture is the fol-
lowing: It is not hard to see that the sub-ordered set P of £ j consisting of those elements which cover exactly one 
element is isomorphic to F_x. Hence if Ct were a distributive lattice, we would have £, ^J(F_J- Unfortunately, it 
turns out that C_x is not even a lattice. In particular, the elements y = (x-x3)(x3(x'X3)) andz = (x(x-x3))(x3 -x3) lie 
above exactly the same set of elements of P. If C_% were a lattice, the elements of P would be the join-irreducibles, so 
/ and z would lie above the same set of join-irreducibles, which is impossible. 

In conclusion we mention the problem of extending the lattice F_x = J(K1) to a sequence of lattices Ff=J(Kr). 
There are several possible definitions of Kr. The one which seems to work best is the following: Kr is the unique 
locally finite partially ordered set with 0 such that when 0 is removed from Kr,there results a partially ordered set 
isomorphic to a disjoint union of r_ and Kr. For example, see the following page for what K2 and Kd look like. 

Most of the results we have obtained for F_x generalize straightforwardly to Fr = J(Kr). For instance, 

(6) Y.alm.n)xn = VL \ 1 -x 1 f rT'\x ' ' Ya(m,n)xn = S [ 1-x1 l ' * 1 ) . 
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K.2 K 

where 

(n, 
denotes the Gaussian coefficient 

(?) . 
(1-xk)(1-xk-1)-(1-xk-i+1) 

(1-xl)(1-xH)-(1-x) 
Similarly the numbers 

and 

satisfy simple recurrence relations, but they seem difficult to evaluate explicitly. 
The limiting case K^ (where K^ with 0 removed is isomorphic to a disjoint union of K^ and N) seems of some 

interest. The distributive lattice F_x = J(Ka>l is isomorphic to the set of all sequences (nu n2, —) of non-negative 
integers such that all but finitely many n; are equal to 0 and such that /?/ = 0 =»» /+/ = 0, ordered coordinatewise. 
The following formulas can be verified: 

(7) jk = 2k-1, k> 0, £ a(m,n)x" - n ( 1 
n=0 (l-xKl-x')-(l-x') I 

52 e(l) = Bk, £ e(,)* = °k-

Here B^ is a Bell number, (also called an exponential number) defined by 
k 

B, 
0 ' 0 

1< B*+1 =Ys[ki )B'" orbV £ *kx
k/kl - **'1 

15]. Similarly C^ is defined by 

k 2 <*> 
Co = I Ck+1 = H\ki) C>< o r b V E CkXk/kl* = IJ2jlj2x1/2)- 1), 
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where 
oo 

/0fej - £ z2k/22kkP 
0 

is the 0t/7-order modified Bessel function. 
Proposition 7 and Eqs. (6) and (7) are actually special cases of the following general result. Suppose/3and Q are 

^-ordered sets such that P has a 0 which when removed results in a partially ordered set isomorphic to a disjoint 
union of P and d Let a(m,n) (resp. b(m,n)) be the number of P-partitions (resp. Q-partitions) of/7with largest part 
</77. Then 

a(m,n)xn = 5 (1 - xiUj(x)f1 , 
i=1 

where 
oo 

Um(x) = J2 b(m,n)xn . 
n=0 

The proof is left to the reader. 
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COMPOSITIONS WITH ONES AND TWOS 
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A great deal of literature has been published on the compositions of integers. In this paper, we attempt to throw 
some new light by discussing compositions which lead to recurrence relations. Actually, in this article we restrict our 
attention to compositions using only ones and twos. Compositions using 1, 2, and 3, •••, or 1 and 3 will lead to more 
general recurrences, but this will form the subject of later investigations. 

Definition 1. Denote by Cn for positive integral n, the number of compositions of/? using only 1 and 2. 
We make the convention that whenever we refer to the word "composition" in this paper, we mean compqsitions 

with 1 and 2 unless specially mentioned. 
Examples: 

n Compositions of n Cn 

1 1 1 
2 2, 1 +1 2 
3 2 + 1,1+2,1 + 1 + 1 3 
4 2 + 2,2 + 1 +1,1+2 + 1,1 + 1+2,1 + 1 +1 + 1 5 
5 2 + 2 + 1,2 + 1+2,1+2 + 2,2 + 1 + 1 + 1, 8 

1+2 + 1 + 1, 1 + 1+2 +1,1 + 1+1+2, 
1 + 1 + 1 + 1 + 1 

The Fibonacci enthusiast will immediately recognize the Fibonacci number pattern in the sequence Cn. So we have 
Theorem 1. Cn = Fn+1, n = 1,2,3, - , 

where the Fn are the Fibonacci numbers, 
Fn+2 = Fn+1+Fn> F1 = F2 = I 

Proof!. St is quite clear from the table that Theorem 1 holds for n = 1,2, —, 5. Let Cm( 1) and Cm(2) denote 
the number of compositions of m that end in 1 or 2, respectively. We then have, trivially, 
(1) Cn+1 = Cn+1(1) + Cn+1(2). 

Pick a composition of (n + 1), ending in a one. If we remove the one at the end, we get a composition of n. Con-
versely, to a composition of n by adding a one at the end we get a composition for (n + 1). Therefore, 
(2) Cn+1(1) = C„. 

Now consider a composition of (n + 1) ending in a two. If we remove the two at the end, we get a composition for 
(n T- 1)- Conversely, we could get a composition for (n + 1) from (n - 1), by adding a two or two ones. The latter 
case has been counted by (2) and so we have 
(3) Cn+1(2) = C„-i . 

*Fibonacci Scholar, Summer, 1974. 
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Now, (2) and (3) together with (1) establish Theorem 1 by induction. 
Proof 2. Consider the generating function 

(4) CM ~ X+K 

1-(x+x2) 
Clearly, 

oo oo 

CM = £ (*+x2)n*1 = Y, (x+x2>n • 
n=0 n=1 

If we now collect the terms with exponent /?, we get Cn terms! This gives 
oo 

CM = £ *»*" • 
n=1 

But we also find from (4) that 
oo oo 

CM = 1 - - 1 = £ Fn*n'1 ~ 1 = E Fn+1*" = E Cn*n • 
1-(x + X2! n=1 n=1 n=1 

This proves that Cn = Fn+i, establishing Theorem 1. 
Let fx (n) and f2 (n) denote the number of ones and the number of twos in the compositions, respectively. Let pfn) 

denote the number of " + " signs that occur in the compositions of n. 
Theorem 2. 

fl(n + 1) = fi(n) + ff(n - 1) + Fn + 1, f2(n + 1) = f2(n) + f2(n - 1) + Fn . 
Proof. Split all the compositions of (n + 1) as 

Cn+1 = Cn+i(1) + Cn+i(2). 

Since Cn+j (2) = Cn-i, we have // fn - 1) ones since a "2" is not going to affect the counting of ones. We have also 
by (2) that Cn+i(1) = Cn, and we have an extra "V in each composition counted by Cn+i(1). So we have counted 
// (n) + Cn ones, proving 

fl(n + 1) = fi(n) + ff(n-1) + Fn+1. 

Now, going back to Cn+i (1) and Cn+112) and using (3) and (2), we can get by similar arguments that 
f2(n + 1) = f2(n) + f2(n-1) + Fn. 

This proves Theorem 2. 
Theorem 3. f2(n + 1) = fj(n). 
Proof One can verify Theorem 3 for n = 1,2, 3. Now, by Theorem 2, we have 

(5) f,(n) = f1(n-1) + f1(n-2) + Fn, 

(6) f2(n + 1) = f2(n)+f2(n-1) + Fn. 

Now, Eqs. (5) and (6) establish Theorem 3 by induction. 
Theorem 4. The sequence fjfn) is the Fibonacci convolution sequence. 
Proof By induction and from Theorem 2. 
Theorem 5. The sequence pfn) is the convolution sequence of Cn. 

Proof First let us find the generating functions of the sequence fx fn) and f2 fn). We have by Theorem 3 and Theo-
rem 4 that 

oo 

E flM*" = ~ T 
n=1 [1-U+X*)]2 

and 
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„tv n-(x+x*)]2 

From the definition of p(n) it trivially follows that 
(7) p(n) = f1(n) + f2(n)-Cn 

so that we have by (7) that 

V p(n)xn = x + x2 x+x2 = (x +x2) ~ (x +x2H1 ~ (* +x2H 
n=1 [1-(x+xV]2 f1-(x+x2)]2 1-(x+x2) [1-(x+x2)]2 

= 7~¥~7T = Mx)]2 

n-(x+xvj2 

proving Theorem 5. 
We next shift our attention to compositions with special properties. A composition of n is defined to be "palin-

dromic" if written in reverse order it remains unchanged. 
Examples: 1 -4-2 + 2 + 1 isa palindromic composition of 6 while 1 + 2 + 1 + 2 is not. 
Let U(n) denote the number of palindromic compositions of n, E(n,1) the number of those ending with 1,and 

E(n,2) the number of those ending with 2. Let EJn) and EJn) denote the number of ones and the number of twos 
in all the palindromic compositions of n, respectively. Let U+(n) denote the number of "+" signs in the palindromic 
compositions of n. 

Theorem 6. E(n + 1) = E(n - 1) + U(n - 3), 
and the sequence E(n) is an alternation of Fibonacci sequences 

1,2,1,3,2,5,3,8,5,13,8,-. 
To be more precise, 

H(2n + 1) = Fn, E(2n) = Fn+2. 

Proof. We can split 
(8) E(n + 1) = IIfo+ 7, 1) + E(n + 1,2). 
Since U(n + 7, 1) counts the palindromic compositions ending in a 1, by removing the 1'son both sides we geta pal-
indromic composition for (n - V. So we have 
(9) Ylfn + l 1) = E(n- 1) 
and 
(10) E(n + 1,2) = E(n-3) 
by similar arguments. Now (9), (10) and (8) together yield Theorem 6. The II-functions als*o obey 

1) 
Examples: 

n 
1 
2 
3 
4 
5 
6 

U(n+2) = E(n + 1) + (-1)nE(n). 

Palimdromic Compositions of n 
1 

2,1 + 1 
1 + 1 + 1 

2 + 2, 1+2 + 1,1+1+1+1 
2 + 1 +2,1 + 1 + 1 + 1 + 1 

2 + 2 + 2,2 + 1+1+2 ,1+2 + 2 + 1, 
1 + 1+2 + 1 + 1,1 +1+1 +1 + 1 + 1 

E(n) 
1 
2 
1 
3 
2 
5 

We now define enumerating polynomials on the above compositions. For a certain n, <pn(x) contains the term 
'ax if there are "a" compositions with "/?" + signs. The sequence of polynomials (f>n (x) is: 
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/, x + 1, x2
f x3+2x2+x, x2(x2+1), x5+x4 + 2x3 + x2, -

obeying the recurrence 
(12) < W M = x2[(l)n(x) + (l)n-2M] 

and this is quite obvious, for 
(13) , $n+2(x) = mn+2). 
Theorem 7. 

(14) U+(n+2) = Il+(n) + Il+(n -2)+2ll(n +2), 
(15) UJn+2) = UJnJ + UJn-2) + 2Ii(n), 
(16) U2(n+2) = H2(n) + Tl2(n-2)+2Yl(n-2). 

Proof. First we prove (14). From the definition of 6n(x) it is evident that 
d<j>n(x) 

dx 
By (12) we have 

d<t>n+2M 

= Tl+(n) 
atx=1 

^2[^^^^]^^w^-^' dx 

Now, using (13) and Theorem 6 we get 
Il+(n+2) - Il+(n) + Il+(n - 2) +2Il(n +2). 

We prove (15) and (16) combinatorial^. Split the compositions of (n +2) as 
Tl(n+2) = IKn+2,1} + Il(n+2,2). We know 

II(n+2, 1) = E(n), and U(n +2, 2) = Ii(n - 2). 
Now, in the compositions counted by U(n +2,2), the extra 2 does not affect the counting of 1's. Therefore, we have 
counted 11//? - 2) "ones." The compositions counted by H(n + 2, 1) contain two extra ones, compared to those 
counted by I I (n), and so we count EJn) + 2U (n) ones. This proves 

Yljn + 2) = Iljn) + UJn-2)+ 211 (n) . 
By the same arguments we find the compositions counted by U(n +2, 1) contains the same number of twos as 

those counted by H(n) and so we have counted J^tn) twos. But the compositions counted by U(ri +2,2) contain 
two extra 2's compared to those counted by H(n - 2) giving HJn -2)+2H(n - 2). Putting these together, 

I^fn+2) = U2(n) + R1(n-2)+2Il(n-2). 
Theorem 8. 

(17) Il+(n) = U+(n-1) + (-ir2Tl(n-2) + U(n), 

(18) UJn + 1) = njnl + t-D^JlJn-D + JKn), 

(19) 1\(n+2) = njn + 1) + (-1)nUJn) + (-1)nll(n). 

Proof. We know by Theorem 7 that the following hold: 
n+(n+2)-n+(n)-ll+(n-2i = 2Il(n+2) 

Il+(n+1)-n+(n-1)-Il+(n-3) = 2E(n + V 

Il+(n) -YL+(n - 2) -U+(n - 4) = 2U(n) . 
We also know that the Il-functions satisfy 

TL+(n+2) = Il+(n + 1) + (-1)nJl(n). 

If we put these together we get 
n+(n+2)-n+(n)-U+(n-2) = U+(n + 1)-n+(n-1)-tt+(n-3) + (~l)n^ 
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Assume that for a fixed n, (14) holds for n and (n - 2). This means that we get from the above the following: 

Il+(n + 2)-E+(n - 1)-(-l)n-2U+(n -h2)-E(n) - Il+(n -3)- (-1)n~4E+(n -4) - Il(n-2) 
= E+(n + 1) - Il+(n -1)- E+(n -3) + (-1)n [E+(n) - U+(n -2)- E+(n - 4)] 

which simplifies to 
E+(n+2) = E+(n + 1) + l-1)nE+(n) + E(n+2) 

establishing (17) for (n +2). Now one can verify (17) for/? = 0,1,2,-^,5, and so (17) holds by induction. 
Now, to prove (18), we observe from Theorem 7 that 

EJn +2)- EJn) - EJn - 2) = 2U(n) 
EJn + 1)- EJn -1)- EJn - 3) = 2E(n - 1) 

EJn) ~ EJn-2)-EJn-4) = 2E(n-2). 
If we again use (11) we find 

EJn +2)- EJn) - EJn - 2) = EJn + 1)- EJn -1)~ EJn - 3) + (- 1)n[EJn) - EJn - 2) - EJn - 4)J . 
Now, if we assume that for a fixed n, Eq. (18) holds for (n - 2) and n, then we have 

EJn +2)-EJn - 1)- (-1)n"2EJn -2)- EJn - 1)-EJn - 3) - (-1)nEJn - 4)-E(n - 3) 
= EJn + 1)- EJn - 1) - EJn -3) + (- 1)n[EJn) - EJn -2)- EJn - 4)] 

which simplifies to 

EJn+2) = EJn+1) + (-1)nEJn)+E(n + 1) 
establishing (18) for (n + 2). Again one can verify (18) for n = 1, 2, 3, 4, 5, and so (18) holds by induction for all 
positive integral n. 

We prove (19) with the aid of (17) and (18). From the definitions of Ei, EL,, and 0+we get 

Ujn) = E+(n) + E(n)-EJn). 
If (19) were to hold, we must have 

E+(n +2) + E(n +2)- EJn +2) = E+(n + 1) + E(n + 1)-Ex(n + 1) 
+ (-1)n[E+(n) + E(n)-EJn)] +M)nE(n). 

Since (17) and (18) holds, we have 

E+(n + 1) + (-1)nE+(n) + E(n +2) + U(n+2)- EJn + 1) - (-1)nEJn) - E(n + 1) 
= E+(n + 1) + E(n + 1) - EJn + 1) + (-l)n[E + (n) + E(n)- EJn)] + (-l)nE(n) 

which reduces to 
2E(n+2) = 2E(n + V+2(-1)nE(n), 

which we know is true. This establishes (19) and so Theorem 8. Note that we could have proved (19) in the same 
way as we did (17) and (18). 

Definitions. If in a composition of A, a 2 follows a 1, we say it is a "rise," and if a 1 follows a 2, it is a " fal l . " 
Two 1's or two 2's contribute a "straight." 

Let R(n), F(n), and Sin) denote the number of rises, falls, and straights, respectively, in the compositions of n. It 
is easy to establish that 
(20) R(n) = Fin) 
and 

p(n) = R(n) + F(n) + S(n). 
Theorem 9. 

R(n+2) = R(n+1) + R(n) + Fn 

and R(n) is the Fibonacci convolution sequence displaced. 
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Proof. Partition the compositions of fn + 2) as 
Cn+2 = On+2(1) + Cnf2(2). 

We know 
Cn+2(1) = Cn+1, and Cn+2f2) = Cn . 

The 1 at the end of the compositions counted by Cn+2(1) will not affect the counting of rises counted in the com-
positions included in Cn+j. But the 2 at the end of the compositions counted by Cn+2(2) will contribute an extra 
rise if and only if the compositions counted by Cn end in a 1. This is true for Cn(1) = Fn compositions. This proves 

(21) Rfn +2) = Rfn + 1) + Rfn) + Fn. 

The form of the recurrence in (21) and induction establishes the second part of Theorem 9. 
Theorem 10. Sfn + 1) = Sfn) + Sfn - 1) + Ln. 1, 

where Ln = Fn+i + Fn_i are Lucas numbers. Further, 

(22) Sfn) = R(n + 1) + R(n- 1). 

Proof. Partition as before 
&n+1 = Cn+i(1) + Cn+i(2). 

We know that Cn+i(1) = Cn. The extra 1 at the end, in the compositions counted by Cn+-j(1) will give an extra 
"straight" if the corresponding composition counted by Cn ends in 1. So we have Cn(1) = Fn extra "straights." 

Now, 
Cn+1 (2) = Cn-1 = Fn* 

and so the 2 at the end of the compositions counted by Cn+i(2) will contribute an extra "straight," if the corres-
ponding compositions counted by £ „_ / ena" in 2. This happens for Cn^(2) = Fn„2 compositions, and so we have 

(23) Sfn + 1) = Sfn) + Fn+S(n -1) + F^2 = Sfn) + Sfn -1) + Ln^ . 

We can establish the second part of Theorem 10 by induction on (22). Let 

Sfn) = Rfn + 1) + Rfn - 1) 

for/7 = 1,2,3,-, m. We know by (23) that 

Sfm + 1) = S(m)+S(m -1) + Lm_7 

which can be split up as 

Sfm + 1) = R(m + 1) + R(m - 1) +Rfm) + Rfm - 2) +Fm+Fm„2. 
This can be grouped as 

Sfm + 1) = Rfm + 1) + Rfm) + Fm + Rfm - 1) + Rfm -2) + Fm_2 

= Rfm+2)+Rfm) 

by Theorem 9, establishing (22) for n = m + t 
This proves the theorem. 
Theorem 11. The sequence Sfn) is a convolution of the Fibonacci and Lucas sequences. 

Proof. One could say that Theorem 11 follows by observing the form of (23). We, however, use generating func-
tions to prove Theorem 11. 

By Theorem 9 we know the "R" to be the displaced Fibonacci convolution sequence. So 
oc oo 

s s(n,x" = 2 [R(n +1> + R(n"1,lxl1 

n=1 n=1 

= X2
 + X^_ = Xfx+K3) = X m X+X2 

[1-fx+x2)]2 [1-fx+x2)]2 [1-(x+x2)]2 1-<x+x2) 1-fx+x2) 

which says that the Sfn) is the convolution of the Fibonacci and Lucas sequences shown below: 
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Lucas (with extra 1): 1,1, 3, 4, 7,11,18, 29, ••• 
Fibonacci: 1, 1,2,3,5, 8, 13 ,21, -

This completes the proof. 
We can actually state a stronger form of Theorem 10. If Sjn) and Sjn) are defined to be the number of 

"straights" counted as 1 + 1 and 2 + 2, respectively, in the compositions of n, then it is obvious that 
S(n) = Sjn) + Sjn). 

We also know 
S(n) = R(n + 1) + R(n). 

It is indeed remarkable that 
Theorem 12. R(n + 1) = Sjn) and R(n) = Sjn) . 

Tables: 

n Cn fjn) fjn) ptn) R(n) S(n) Il(n) Iljn) UJn) Ii+(n) 

1 
2 
3 
4 
5 
6 

1 
2 
3 
5 
8 
13 

1 
2 
5 
10 
20 
38 

0 
1 
2 
5 
10 
20 

0 
1 
4 
10 
22 
63 

0 
0 
1 
2 
5 
10 

0 
1 
2 
6 
12 
25 

1 
2 
1 
3 
2 
5 

1 
2 
3 
6 
6 
14 

0 
1 
0 
3 
2 
8 

0 
1 
2 
6 
6 
17 
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THE RANK OF APPARITION OF A GENERALIZED FIBONACCI SEQUENCE 

H.C. WILLIAMS 
University of Manitoba, Winnipeg, Manitoba, Canada 

1. INTRODUCTION 

In [4] Waddill and Sacks discuss a generalized Fibonacci sequence j Kn j - , where K0 - 0,KX= 7, K2 = 1, and 

^n+1 = Kn + Kn„i + Kn„2 • 

Several other properties of this sequence, often called the Tribonacci Sequence, may be easily deduced from the 
more general results of Miles [2] and Williams [5] , 

We give here the definition of the rank of apparition of an integer m in the sequence \ Kn t . 
Definition. The rank of apparition of an integer m in the sequence \KnX is the least positive integer p for which 

Kp-j = Kp s 0 (modm). 

This definition is analogous to that for the ordinary Fibonacci sequence (see, for example, Vinson [3]). In [5] it 
was shown that such a rank of apparition always exists for any integer m; the purpose of this note is to determine, 
more precisely than was done in [5 ] , the rank of apparition of any prime p. 

2. PRELIMINARY RESULTS 

We shall require a theorem of Cailler [1 ] , which we only state here. 
Theorem Let R,She given integers and let p(>3) be a prime such that (p,R)= 7. Let A =4R3 + 27S2 and put q 

equal to the value of the Legendre symbol (3 A \pl 
\\p~-q (mod 3), there is only one root in GFfpJ of 

(2.1) x3 + Rx+S s 0 (modp). 

Itp^q (mod 3), put/7? = (p -q)/3. There are three roots of (2.1) in GF[p] if 

(2.2) Um s 0 (modp). 

If (2.2) is not satisfied, there are no roots of (2.1) in GF[p]. Here Un is the Lucas Function defined by the recur-
rence relation 

U„H * PUn-QUn-j 

and the initial conditions U0 = 0,UX = I Pand Q are determined from the relations 

3d s - /? , RP - -3S (mod p). 

We also require the following 
Theorem. (Williams [5]). If Kn„i ~Kn^0 (mod m) andp is the rank of apparition of m, then p is a divisor of n. 
Finally, we need the fact [5] that 

(2.3) 

where a, /3, 7 are the three roots of 

/ a an+1 

1 fi $n+1 

1 7 ynH 

x 3 - x 2 - x - 1 = 0 

240 
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and D is the value of the Vandermonde determinant 
/ a a2 

1 & f 
1 7 y2 

3. THE MAIN RESULT 
Let F(x) be the polynomial x3 -x2 -x - I If Fix) is irreducible modulo p, let G = GF[p3] be the splitting field 

of Fix) (modp) and Set 0, <p = Qp, \p = 6p2 be the roots of 
(3.1) F(x) = 0 
in G. Then in G we have 

o^ = / = e 1+p+p2 = 0 w p a = ^ t+p+p2 „ 
From (2.3) we have 

Kpi+p = Kp2.+p+1 = 0. 
If p = 1 (mod 3), 

Q(p2+p+1)(p-1)/3 = 1 

hence 
Q(p2+p+1)/3 = ep(p2+p+1)/3 = ^(p2+p+1)/3 = ^(p2+p+1)/3 

and 
K(p2+p~2)/3 = &(p2+p+l)/3 = 0. 

If F(x) is factorable modulo p into a linear and irreducible quadratic factor, let G = GFfp ] be the splitting field 
of F(x) and let 6 e GF[p], 0, \p = 0 P be the roots of (3.1) in G. If p = 1 (mod 3), 

^(p2-1)/3Q(p-1)/3 = 1; 

thus, 
e(p*-1)/3 = ^(p2-1)/3 = ^ (p2-1)/3 

and 
(3.2) K(p*-4)/3 = K(p^1}/3 = 0. 

If p == - 1 (mod 3), we use the simple fact that 
(3.3) x2(x-1)3 = 4, 
if F(x) = 0. Hence, in G 

(02($-1)V(p2~1)/3 = 4(P2~1)/3 

and 
^(p2-1)/3 = Q(p2-1)/3 = ^(p2-1)/3 _ 

We again have (3.2). 
If F(x) is factorable modulo p into three linear factors, let 0, 0, \jj e GF[p] be the roots of (3.1). We have 

QP-1 = (j>P~1 = ^P'1 = / f/7?^/?j 
and 

^p-2 = ^ p - / = 0 (mod p). 
If p s l (mod 3), from (3.3) , , , 

g2(p-1)/3 s 4 f c - / ; / 3 s 0 2 fp -7 j /3 s ^ 2 f o - / ; / 3 to0(/pA. 
hence, we have 

and 
K(p-4)/3 = K(p-1l/3 = # frHW/pA 

Since 
(~6)3F(x) = (-6x+2)* +48(-6x+2) + 304, 

we can put together the above results and the theorems of Section 2 to obtain the following 
Theorem. (The law of apparition for the Tribonacci sequence). Let Un be defined by the linear recurrence 
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Un+1 = t9Un-M„-t 
and the initial values U0 = 0, Ux = 7. 

If p s a prime (£ 2,3,11) and p = ~(33\p) (mod 3), the rank of apparition p of p is a divisor of (p2- 1)/3. If 
p = (33\p) = 1 (mod 3), p is a divisor of (p - 1)/3 when p divides U(p^)/3; if p does not divide U(p.f)/3, p is 
a divisor of (p2 + p + 1)/3. If p = (33\p) = - 7 (mod3), p is a divisor of p— 7 when U(P+D/3 is divisible byp; if p 
does not divide U(p+i)/3, pis a divisor of p 2 * p * 7. If p = ,?, p = 4;\\p = 3, p= 73; and, i f p = 77, p = J10. 

The last results were obtained by direct calculation. 
4. TABLE 

We give here a table of values of p and p for all p < 347. 
p 

2 
3 
5 
7 
11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 

i 

P 
4 
13 
31 
16 
110 
56 
96 
120 
553 
140 
331 
469 
560 
308 
46 

P 
67 
71 
73 
79 
83 
89 
97 
101 
103 
107 
109 
113 
127 
131 
137 

P 
1519 
5113 
1776 
1040 
287 

8011 
3169 
680 
17 

1272 
330 

12883 
1792 
5720 
18907 

P 
157 
163 
167 
173 
179 
181 
191 
193 
197 
199 
211 
223 
227 
229 
233 

P 
8269 
54 

9296 
2494 

32221 
10981 
36673 
1552 
3234 
66 

1855 
16651 
17176 
17557 
9048 

P 

257 
263 
269 
271 
111 
281 
283 
293 
307 
311 
313 
317 
331 
337 
347 

P 
256 

23056 
268 

24480 
12788 
13160 
13348 
28616 
10472 
310 

32761 
100807 
36631 
5408 

40136 
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ON THE SOLUTIONS TO THE DIOPHANTINE EQUATION x2 + xy - y2 =*±D, 
OR THE NUMBER OF FIBONACCI-TYPE SEQUENCES 

WITH A GIVEN CHARACTERISTIC 

BRIAN PETERSON and V.E. HOGGATT, JR. 
San Jose State University, San Jose, California 95192 

In this paper we are concerned with a question that has already been answered, involving Fibonacci-type sequences 
and their characteristic numbers. We are only interested in primitive sequences iconsecutive pairs of terms have no 
common factors) and for these sequences we ask: What numbers can be the characteristic of a sequence, and given 
such a number, how many sequences have it? 

Thoro [1] has shown that D may be the characteristic of a sequence if and only if Z7 has prime power decomposition 
D = 5°p?ip?* -C . 

where e - 0 or 1 and /?; = 10m ±1 for all i, while Levine [2] has shown that for such D, there are exactly 2n pr imi-
tive sequences possessing it. Levine's proof involves the use of quadratic fields and rings of integers in such fields. 

Our purpose, here partly fulfilled, is to construct an elementary proof. In this paper, we show the ideas of our 
argument, and the difficulties encountered. 

In what follows, Fn and Ln are the nth Fibonacci and Lucas numbers, respectively, while Hn,H%,An,Bn, etc., 
will represent the nth term of some general Fibonacci-type sequence. It can be shown that any sequence has a "pivo-
tal" element, such that it and all of the elements after (or before) it are of the same sign, which we take positive 
when convenient, while the element before (or after) it is of the opposite sign and all the elements before it have 
alternating signs. With the exception of the Fibonacci sequence | •••, 1, 0, 1,1, 2, — j , we will always assume that 
for a sequence 

HQ is the pivotal element. Finally, if j Hn | is a sequence, then by [ Hn\ we will mean the conjugate sequence 
whose terms are given by _ 

Hn = (-VnH.n . 
Henceforth, when we say sequence, unless otherwise stated, we will mean Fibonacci-type sequence. 

We begin by stating the identity 
(D Fm+1Fn+1 + FmFn = Fm+n+1 , 

which can be proved by induction on either m or n. There are several similar identities: 
(2) Lm+iFn+1 + LmFn = Lm+n+1 

(3) Hm+-jFn+i + HmFn = Hm+n+i 

W) Lm+iLn+i + LmLn = 5Fm+n+i 

and in general, 
(5) Hm+1H%+1+HmH%= Gm+n+1 

gives the terms of a sequence \Gn\. What we have, then, is a way of combining pairs of sequences to obtain a new 
sequence, a type of multiplication of sequences. We will see shortly that this operation is commutative and associa-
tive, as may already be apparent. 

We will need to recall a few notions concerning sequences. 
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For any sequence, there is a positive number C, called the characteristic number for the sequence, such that 
(6) Hn^Hn+1-H

2
n= ±C, 

where the sign varies according as n is even or odd. 
Also, for any sequence, there is a function which generates the terms with non-negative subscripts, given by 

(7) JoltLll = ± HnXn. 
1-x-x* nsgQ 

Recall, too, that given any two sequences \ Hn > and {#/?}, we can form what is called the convolution of 
the sequences, given by the sequence 

Ml* 
which is not Fibonacci-type and which has terms given by 

C0
 = HQHQ* C% = HXHQ+ HQHU C2 = H2H* + HXH* + H0H2 

(8) 
On = HnH% + Hn_1Hi + .r + H1HZ_1+H0HZ . 

The terms of \Cn\ satisfy the recurrence 
(9) Cn+4 - 2Cn+3 - Cn+2 + 2Cn+i +Cn = 0, 

and are generated by the product of the generating functions for J / / n [ and j ^ L 

do) (H^^m^n:^ a -
(1-X-X*) n=0 

We will now see that the convolution of the sequences ] / / n [• and i H* 1 is closely related to the sequence 
| Gn 1 given by Eq. (5). 

For a Fibonacci-type sequence j An i we have 
(11) An+2-An+1-An - 0. 

The sequence j Cn \ above does not satisfy Eq. (11), but if we let 
(12) On+2-Cn+i - Cn = An 

then we observe that 

&n+2 ~ &n+1 ~ &n = (Cn+4 - Cn+3 ~ Cn+2> ~ (Cn+3 ~ Cn+2 ~ Cn+1> ~ (Cn+2 ~ Cn+1 ~ Cn) 

= Cn+4 - 2Cn+3 - Cn+2 + 2Cn+i + Cn = 0. 

So the | An y forms a Fibonacci-type sequence. Since two adjacent terms of a sequence determine the sequence, 
we have only to look at A0 and At to knowall about I A,,!.. We will see that A0 = Gl and At = G2. 

From Eq. (8) and then (5), we see that 
A0 - C2 -Cx ~CQ = (H2H- + HlH* + H0H^)-(HlH^H0Ht)-(H0Ht) 

= (H2 -Hx -HQ)HZ + (H1 -HQ)H* + H0H* = (0)H*+(H^)Ht + HQH* = GX , 
and, since 

C3
 = H3H*' + H2H*+ HXH2+ H0H*', 

Ai = C2-C2-Cx = (H9 ~H2- HJH* + (H2 -Ht~ H0)H* + {HX - H0)H^ + H0H^ 

= (0)H* + (0)H*+(H„JH* + HQH* = G2 . 
Thus, we have 
(13) Gn = Cn+1 -Cn- Cn-i , 

which can be interpreted in terms of generating functions. Using Eq. (10), we have 
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(1-X-X2) n=0 n=1 n=2 

Co + (Cx - CJx + J2 tin- C„-1 - Cn„2)x
n 

or, 

(14) / ^ ^ ^ -cHi-Ck + t Gn^ . 
1-X-X* n==2 

Thus, we see that, if we simply multiply the numerators of the generating functions for | Hn J- and | / / ^ | , we 
obtain, except for the first couple of terms, a generating function for | Gn j . 

From this, it follows immediately that our operation of multiplying sequences is commutative and associative, 
since multiplication of polynomials is commutative and associative. 

Next, we will show that, when we multiply sequences, the product of their characteristic numbers give the char-
acteristic of the product. Unfortunately, we have no neat way to show this, so we indicate the steps in the rather 
messy but elementary calculation. If we let 

{A„} = \-,a,h,a + h,- J. and \ c n ] = \ - , c, d, c + d, • • ] , 

then their product, which we denote | ACnj, has 

\ACn | = | -,bd + ac,(a + b)d + bc,(a+2b)d+(a+h)c,-\. 
Ignoring the question of sign, J An \ has characteristics2 +ab - b2, and \Cn] has characteristic c2 + cd - d2. 
We compute the characteristic of J ACn | , and find it is the product of these, as follows: 

fbd + ac] [(a + 2b)d + (a + b)c] - [(a + bid + be]2 

•= [abd2 +2b*d2 + abed' + b2cd + a2cd + 2abcd + a2c2 +abc2] - [a2d2 +b2d2 +2abd2 +b%c2 +2abcd+ 2b2cd] 
= a2c2 +a2cd-a2d2 + abc2 + abed-abd2 - b2c2 -b2cd + b2d2 = (a2 +ab-b2)(c2 +cd-d2). 

Thus, the characteristic of the product is the product of the characteristics. 
These are the tools we wish to use in our argument, which rests upon something we have so far been unable to 

show with an elementary proof. We want to show that, for a prime p = Wm ±1, exactly two sequences have/7 as 
their characteristic, and that these are conjugate to one another. Then we would like to show that these are the 
atoms from which we can build the whole universe of sequences. 

Suppose that we are successful in dealing with this basic problem of showing that exactly two sequences corres-
pond to a prime p = Wm + 1. Then, we have several lemmas that show that we can build from the sequences cor-
responding to prime characteristics. 

Lemma 1. The product of a sequence » | An \ and it$ conjugate { An \ is not primitive, unless it is the se-
quence | Fn j . 

Proof. Let a, b, c> 0 and let 
\An\= \~,-a,b,c,.»\) 

i.e., b is the pivotal element of | An J-. Then, 
\ A n \ = \-,-c,b,a, - i and A0Al +A_%A0 = ba + (~a)b = Q, 

so \AAn | has a zero. But, only a multiple of the Fibonacci sequence can have a zero. Since the characteristic of 
\AAn J- is the product of the characteristics of \An\ and j An\, which are easily seen to be the same, we 
see that j AAn I = < cFn \, where c is the characteristic of J An I. Since c ^ 1 as long as ] An i £ i Fn j-,we 
see that i AAn I is not primitive. 

Lemna 2. If we write | /4™ | for the product j ^ A ^ - / ! ^ I where A appears/?? times, then if 
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a + bx 

1-x-x2 
EAnXn 

n=0 

so that 
(a + bx)m/(1-x-x2) 

generates \ A™ j except for the first few terms, then we can write 

(a + bx)m _ n / . , (Am+Bmx)x m-1 

i Am \ 
1-x-x* 1-x-x* 

wherePm-i(x) is a polynomial of degreem - 1 and Bm, Am are consecutive terms of j A™ \ 

Proof. We delete. The idea is to expand (a +bx)m and then divide by (1 - x - x2) and get the remainder, which 
is linear. 

Lemma3. Given \ An \ and all its powers \ A™\ as above, the Am'$ and Bm's introduced there satisfy 
the following recurrences: 

Am+1 = (a+b)Am+aBm 

BmH = aAm+bBm 

Am+2 = (a+ 2b)Am+1 + cAm 

Bm+2 = (a + 2b)Bm+1 + cBm , 

where c = a2 - ab - b2 is the characteristic of j An \. 

Proof If 
(a+bx)m _ n (,jAm+Bmx)xm^ 

1 • 1 -X - X ' 

then 

l*+MmV = ( a + b x ) P m - l M + ^ ^ ^ ? l 
7 -x-x' 1 -x 

- „ ' / - i , (aAm + <bAm + aBm)x + bBmx2)xm'1 

- PmW+ -z 

p'm(x)+xr i aAm + 

1-x-x* 

((a+b)Am+aBm)x + (aAm +bBm)x2 

1 

Pm (x) f x m \ <(d + b>Am +aBm, + (aAm + bBm>x 1 
L l - x - x 2 J 

= pm (x) + 
(A m+1 + Bm+1 ix)xr 

1 -x - x' 
and 

Am+1 = (a+b)Am+aBm 

Bm+1 = aAm+bBm . 

Now, using these, we have 

Am+2 = (a+b)Am+1 +aBm„i = (a + b)Am+1 + a(aAm + bBm) 

= (a+b)Am+1+a2Am+h(aBm) = (a + b)Am+1 + a2Am+ b(Am+7 - (a + b)Am) 

= (a+2b)Am+1 + (a2 - ab - b2)Am , 
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Bm+2 = aAm+1 +bBm+1 

= alia + b)Am + aBm ) + bBm+1 

= la + b)(aAm) + a 2Bm + bBm+1 

= (a + b)(Bm+1 - bBm) + a2Bm + bBm+1 

= (a + 2b)Bm+1 + (a2 -ab-b 2 )Bm . 

Lemma 4. If a sequence is primitive, then its product with itself either is primitive or has 5 as a factor. 
Proof. We have a sequence generated by 

(a+bx)/(1-x-x2), 

where (a,b) = 1. Note that (a,b) means the greatest common divisor of a and b, and that for a sequence to be primi-
tive is to say that any pair of consecutive terms are relatively prime. Now, 

(a+bx)2
 = a2 + [(a2+2ab) + (a2+b2)x]x 

1-x-x2 1-x-x2 

so we must consider la +2ab, a +b .). We suppose that some prime p divides both a + 2ab and a + b . 
If p \a(a + 2b) and p\ (a2 + b2), then 

P\(a2+2ab~a2-b2) = 2ab - b2
t or, p\b(2a-b). 

\ip\a, then since/?|fa +b2), p\b, and \\p\b, thenp|a for the same reason. But, (a,h)= 1, sop cannot divide both 
aandb, andp\(a +2b),p\(2a -bl So, 

p\[(a+2b)+2(2a-h)] = 5a, 

andp15 because/? does not divides and/? is a prime. Then, we may conclude that (a +2ab, a +b ) is a power of 
5. But, we will show that (a2 + 2ab, a2 + h2) must divide D, the characteristic of our given primitive sequence. Since 
D contains at most one factor of 5, we will have the desired result. 

Note that D = ±(a2 -ab- b2). we suppose that d ? 1 and that d\(a2 + 2ab), d\(a2 + b2). Then, 

d\[a(a2+2ab)-(a+b)(a2+b2)] = a2b-ab2-b3 = Db 
and 

d\[h(a2 + 2ah)-a(a2 + b2)] = -a3 + a2b+ab2 = -Da. 

We let (D,d) = d'. Then d/d'\Db/d' and d/d'\Da/d', but since (d/d'f D/d') = 1, d/d'\b and d/d'\a, and since (a,b) = 1, 
d/d/= 1 or d = d'so that, since (D,d) = d, we see that d\D. 

Lemma 5. If j Hn | has starting pair b,a and (a,b) = /, then 

(a2+2ab/a
2+b2) = 5 

if and only if | Hn \ = \ H'Ln (; i.e., I Hn \ is the product of some \ H'n | with the Lucas sequence. 

Proof. The if part is easy. Let { Hn \ = | H'Ln f. Then 

| H2 }={H'LH'Ln\ = {H'2L2\ . 

But, | L2 \= { 5Fn | so 

K h \H'n
2l{5Fn\ = {5H>n

2) 
and clearly 5 divides each term, including a2 + 2ab and a2 + b2. 

Now, for the only if part. We let (a,b) = 1 and 

(a2 +2abfa2+b2) = 5. 
Since 5\ (a2 +2ab) and 5\ (a2 + b2), 

51 [(a2 + b2)-(a2 + 2ab)] = b2 - 2ab. 
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5\a(a+2h) and 5\b(b - 2a). 

If 5\a, then since 5\(a2 + h2), 5\b, and \f5\b, then 5\a for the same reason. So, 5 cannot divide both a and b, and 
5\(a + 2b) = 5M, 5\(b - 2a) = 5M'f so a = M + 2M'mti b = 2M - M'. 

Now we set up the system of equations 

a = rLk+1+$Lk 

b = rLk+sLk-f 

which we know has solutions. We will show that rand s are integers which will complete the proof of Lemma 5. We 
use Cramer's rule. 

a Lk 

h Lk-1 
M +2M' Lk 

\2M-M' Lk-i 
Lk+1 Lk 

tk Lk„i 
(-1)k+15 

(M+2M')Lk-1 + {M'-2M)Lk 

(-1)k+15 

(2Lk„<i + Lk)M'+ (Lk-i - 2Lk)M _ 5FkM
/-5Fk.1M 

(~1)k+15 <-1)k+15 

Similarly, s is found as 

= (-VkH(FkM'-Fk-7M) 

Lk+1 a 
Lk b 

s =-
ik+1 

Lk+1 Lk 

Lk Lk„f 

= (~ir!(FkM-Fk+1M')f 

so that we see both r and s are integers. 
Lemma 6. If (Ak,Bk)= 1 and (Ak+1,Bk+i) = 7, then (Ak+2,Bk+2)= 1. 

Proof. We \v\.p\Ak+2a*\dip\Bk+2,p a prime. Then, certainly p divides the characteristic of the sequence 

{~-,Bk+2,Ak+2, - J , 

and since this is just the (k + 2)nd power of the characteristic of j —, b, a, — I and p is a prime, 

p\D = a2-ab-b2 . 

Now, since 
Ak+2 = (a+2b)Ak+1+DAk 

Bk+2 = (a+2b)Bk+1+DBk 

we have that 
p\(a+2b)Ak+1 and p\(a+2b)Bk+1. 

\\p does not divide (a +2b), then p\Ak+-j mo\p\Bk+i, but (Ak+i,Bk+i)= 1, so p\(a +2b). But, we can show that 

(a+2b,D) = I 

Certainly (a,D) = 7 because anything thad divides both a and D must divide b and (a,b) = I So, 

(a + 2b,D) = Ma + 2h),D) = (a2 + 2ab, a2 - ab - b2). 
if 

then 
p\(a2+2ab) and p\(a2 - ab - b2), 

p\(3ab+b2) = b(3a+b) 

and sincep does not divide/?, we must h%MQp\(3a +b) sop\(6a + 2b). Now, sincep\(a +2b), we see thatp\5a and 



1975] WITH A GiVEi CHARACTERISTIC 249 

since/?/f^p|5, or,/? = 5. 
M5\Ak+2 a n d 5\Bk+2* then 5\Dk+2, the characteristic of | - , Bk+2fAk+2, - } . But then 5\D and 25\D2. 

Thus, Z? cannot be the characteristic of a primitive sequence (borrowing Thoro's result [1]). So, we may have had 
(a,b) = 1, but we would not have had 

(a2 + 2ah, a2 + b2) = I 

Thus, nor would we have had (Ak+1, Bk+1)= I So we see that (a+2b, D) = 1, and thus (Ak+2, Bk+2) = I 
Notice that Lemma 6 shows that if a primitive sequence is not a Lucas mixture, then all of its powers are primitive. 

Our final sequence building lemma is 
Lemma 7. If | An J has starting pair b,a with (afb) = 1, and \ Cn \ has starting pair d,c with (c,d) = 1, 

and if (DhD2) = 1, where D / = a2 - ab - b2 and D2 = c2 - cd - d2, then \ ACn } is primitive. 
Proof. \ ACn [ is generated by 

(a+bxHc + dx) _ ^n,l(ad + bc+ac) + (bd + ac)x]x 

1-x-x2 1-x-x2 

We must show that 
(ad + bc+ac,bd + ac) = I 

We letp\(ad + be + ac) andp\(bd + acl Then 

p | Idlad + bc+ ac) - c(bd + ac)] = ~a(c2 -cd-d2) = -aD2 

and 

p\lb(ad + be + ac) - a(bd + ac)J = -cla2 -ab-b2) = -cD-j . 
Also, 

p\[(ad + be + ac) - (bd + ac)] =ad-f-bc-bd/ 

so 

p |[c(ad + bc- bd) - d(bd + ac)] = b(c2 ~ cd - d2) = bD2 

and 

p\[a(ad + bc-bd)-b(bd+ac)] = d(a2- ab - b2) = dD 1. 

Thus we have that p\aD2 and p\bD2 , and since it is impossible for/? to divide both a and b, p\D2. Likewise,p\D7. 
But this cannot be, since (D^t D2)= 1. So, \ ACn \ is primitive. 

Note that, while Lemma 7 tells that, given a pair of primitive sequences with characteristics £ / and C2 relatively 
prime, we can construct a sequence with characteristic C]C2 that is also primitive, it does not say that, given two 
distinct pairs of sequences, their products are different. 

There is also the question of whether, given a sequence with characteristic C-jC2f it can be factored into a product 
of sequences with characteristics £7 and C2. This question corresponds to the problem of unique factorization in 
integral domains. In Levine's proof [2 ] , he was able to use the well-known fact that factorization is unique in a cer-
tain integral domain, the "algebraic integers" in the algebraic number field Q(a), the rational numbers extended by 
a= (1 + %/5)/2. We have so far been unable to show that we have unique factorization by means similar to those we 
have employed above. 

As for the problem of knowing that exactly two sequences correspond to any prime characteristic/? = 10m ± 1, we 
have at least shown where to look for sequences having a given characteristic. 

Lemma 8. If | Hn \ has characteristic C, then j Hn \ has a term in the interval -sjc <x <%/c. 
Proof. We suppose that | Hn f has no terms in the interval -\fc < x < sjc. Then let Hk be the first term greater 

than sjc. We ask, where does Hk+f lie? If Hk+7 < 0, then by assumption Hk+i < -\fc, and, in fact, 

Hk+1 < -(Hk+4c) 
or else Hk+2 will be in the interval -sjc < x < sjc. If Hk+1 > 0, then Hk+i > yjc and, in fact, Hk+7 >2Hkor 
else Hk_i will be less than or equal to Hk and yet non-negative. This cannot be, because if Hk^ < Hk, then 
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-sJC < Hk-j < sjc , 

and if Hk-i = Hk, then Hk~2 = 0 and 0 is in the interval. 
So, in Case 1, where Hk+i < 0, we have 

Hk+1 < ~(Hk+s/c), 

but all we will use is \Hi<+1\ > \Hk\.\Ne\et 

Hk = a, Hk+1 = -b, b > a > 0 ; 
then Hk+2 = a - b < 0. Since 

HkHk+2-H
2

k+1 = a2-ab-b2 < 0, 
we see that 

a2-ab-b2=-C, or, C = b2 + ab-a2. 

Now, since a <b, we have 
a <b 

2a < 3 b 

2a2 < Sab 

a2-2ab+b2 < b2 + ab - a2 = C 

Hk+2 < c 

or \Hk+2\ < \fc, and Hk+2 is in -s/c < x < >Jc. 
Now, in Case 2, where Hk+1 > 0, we have Hk+1 > 2Hk. We let 

Hk = a, Hk+1 = 2a + bf 

where a,b > 0. Then Hk-i = a+bf and since 

Hk.1Hk+1-Hl= (a+b)(2a+b)-a2 = a2 + 3ab+b2 > 0, 

we have 
C = a2 + 3ab+b2. 

But then H2<c because 
C-Hl= 3ab+b2 > 0, 

so |//£ | < V ^ / contrary to assumption. We are forced to conclude that j Hn f has a term in the interval —yjc <x 
< x / C . 

Lemma 8 tells us where to look. Now we only have to know what we are looking for. Finding a sequence with char-
acteristic C is the same as finding a solution to the diophantine equation 

y2 + xy-x2 = ±C, 

because then y, x, x + y will be consecutive terms of a sequence with characteristic C. We convert this equation to 
an equivalent one as follows: 

(15) y2+xy-x2 = ±C 

4y2 + 4xy-4x2 = ±4C 

4y2 + 4xy + x2 - 5x2 = +4C 

(2y+x)2-5x2 = ±4C 

(16) Y2-5X2 = ±4C 

If y and x solve (15), then 2y +x and x solve (16). If Y and X solve (16), then (Y-XJ/2 and X solve (15). (Note 
that (Y - X)/2 must be an integer since Y and X must be of the same parity to solve (16).) 

If /and x solve (15), then / = //£_ 7, x = Hk give a sequence with characteristic C. Then 

2y+x = 2HM +Hk = Hk^+Hk+1. 
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This is often called the generalized Lucas number, corresponding to the sequence j Hn I , and is written 

Hk-1+Hk+1 = i k . 

Now our problem is reduced to that of looking for solutions to (16) with 0 < X < sfc. That is, we need not con-
sider —%/c < X < 0, because the only X term in (16) is a square term. 

If we find a so lu t ion^ , it has a corresponding K0. But this Y0 may be taken to be positive or negative. Also, there 
is possibly a / * , different from K0 numerically, that also corresponds to X0. In this event, we would have that 
(X0, Y0) solves (16) for +4C, and (X0, Y*) with the -4C, or vice-versa. So, with a given XQ, there may be four Y'% 
that correspond, but no more. 

Given a solution (X0, Y0), we can obtain a sequence by letting 

Hk = X0, Hk.f = (Y0-X0}/2. 

Also, any sequence containing X0 and having characteristic C is obtainable in this way. To see this, we let Ak = X0, 
and observe that (Ak, 2Ak-i + Ak) solves (16), so that 2Ak-i + Ak was one of the (possibly four) Y'% that went 
with A^.Then we would have set 

Hk = Ak/ Hk-j = f(2Ak_i +Ak)-Ak]/2 = Ak.7. 

As for the choice of (X0, Y0) or (X0, -Y0) to construct a seuqence, we will obtain a sequence or its own conjugate. 
By taking (XQ, Y0), we obtain 

Hk = Mo* Hk-l = (Y* -X0)/2, 

so Hk+i = (Y0 +XJ/2. By taking (X0f -YJ, we obtain 

% = XQ, Hk„i = (-Y0 -X0)/2 = -Hk+i ' 

so \Hn\ is conjugate to j Hn \ . 
Similarly, if we take (~XQ, Y0) or (-X^, -Y0), we get nothing new. 
As for the choice between (X0, YJ and (X0, Y*), at this point we have to say try them both. We believe that this 

still yields the same sequence, but as yet have no proof. This corresponds to situations in which the same number 
(up to absolute value) occurs twice in a sequence; for example, —, - 7 , 5, - 2 , 3, 1,4, 5, 9, — has two 5's. 

At any rate, the problem of finding sequences with a given characteristic is reduced to that of finding solutions in 
a bounded interval to a particular diophantine equation. 
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Labeled trees with unlabeled endpoints were counted by Harary, Mowshowitz and Riordan [3 ] , Moon [5] enum-
ated connected labeled graphs with unlabeled endpoints. In the present note we examine the complementary prob-
lem of counting trees in which only the endpoints are labeled, and in so doing develop a general technique for 
counting certain classes of partially labeled graphs. 

Let G = (V,X) be a graph where V= \vu v2, ••> vp j - is the set of points, and X its set of Sines; see [2] . Apart/a/ 
labeling of G is an injection f of N = iLZ —-,n\ into I/ for /? <p. A graph G together with a partial labeling f 
will be called partially labeled. Two partially labeled graphs (G, fj and (G, f2) are identical if there is an automorph-
ism 7 of G such that f2 (i) = y(fx (i)) for ! < / < / ? . 

A partially labeled tree (TJ) will be called end-labeled if f(N) is the set of endpoints of T. Let tip) and T(p) denote 
the number of end-labeled trees and end-labeled rooted trees, respectively, having p points. 

Theorem t 
(1) tip) = Blp-2) 
and 
(2) Tip) = B(p-1), 
where 

n 
Bin) = J^ Sln,k) 

k=1 

is a Bell number, i.e., Sln,k) is a Stirling number of the second kind. 
Both (1) and (2) follow from the same line of argument so that only (1) will be proved. We will present two deriva-

tions of this simple result; the second illustrates a general principle for enumerating partially labeled graphs. 
First Proof. Let (T,f) be a/7-point end-labtfed tree with V- f(N) = \ vn+1, .», vp \, so that T may be regarded 

as a labeled tree. Consider the Prufer sequence (iu i2, - , ip„2) associated with T (see for example Moon [6] or 
Harary and Palmer [4]). Each /) (1 < / < p - 2) satisfies n +1 < / )</?, so that the sequence (iu i2, -, ip_2) may 
be regarded as a distribution of p - 2 distinct objects into p-n identical cells with no cell empty. The number of 
such distributions is of course Sip - 2, p - n), and hence 

t(P} = H S(P-ZP-n), 
n=2 

as asserted. 
The second method requires several lemmas. Let U be the set of endpoints of a tree T, and let Y=Y(T) denote 

its automorphism group. Furthermore, let us define F * = T *(T) to be the restriction of V to U. Then P i s well-
defined since U is invariant under any automorphism of T. 

*This research was supported in part by grant NRC A-7328 f rom the National Research Council of Canada and in 
part by grant 73-2502 f rom the U.S. A i r Force Office of Scientific Research. 
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Lemma 1. For any tree Tf Y(T) is isomorphic to T*(T). 
Proof. It is clear that the mapping/? defined by 7->7|( / for any y e 1777 is a homomorphism of F onto r* . 

Now let 7 be an arbitrary nontrivsa! automorphism of 7". It is easy to show (see for example Prins [5, p. 17]) that 
there exist endpoints u and v (u H) such that y(u) = v. Hence, h has a trivial kernel. 

Lemma 2. Let T be a tree with n endpoints. The number of distinct end-labeled copies of T\sn!/\T(T)\. 
Proof. Using Lemma 1, this follows from the argument which establishes the analogous result for labeled graphs 

(see for example Chao [1] or Harary and Palmer [4, p. 4] ). 
Second Proof of Theorem 1. Let t*(p,n) and t(p,n) be the number of labeled and end-labeled trees, respec-

tively, having p points/? of which end-points. It is well-known that 

(3) 'W-I^f 
and by Lemma 2, 

(4) tfp^-E^ , 
where both summations are over all p-point trees 7" with n end-points. From (3) we obtain 

substituting in (4) gives 

Hence, 

and the result follows from the fact that 

E jrT-TVl = Ti tHp'n) : 

t(p,n) = n-t-t*(p,n). 
D P! 

p-1 
t(p} = ji Z *"• 

n=2 

(p,n)f 

t*(p,n) =^rS(p-2,p-n) 
n! 

(see Moon [4] for several derivations of this formula). x 

This method of proof illustrates a general counting principle for partially labeled graphs. Let G = (V,X) be a graph 
which satisfies some given condition A; let S be a property defined on V; and S(G) the subset of V consisting of all 
points satisfying property S. Denote by C*(p,n) the number of p-point labeled graphs satisfying condition A for 
which \S(G)\ = n, and by C$(p) the number of p-point S-labeled graphs (only the points in S(G) are labeled) satisfy-
ing condition A. 

Then the next result is an immediate extension of Theorem 1, in which S(G) plays the role of the endpoints of a 
tree. 

Theorem 2. If S(G) is invariant under every automorphism of G, and for each nontrivial automorphism 7 of G, 
there exist distinct points u and v in S(G) such that y(u) = v, then 

CS(P) = ~j Ysn!C^(Pfn)f 

where the summation is taken over all n such that n = \S(G) \ for some /?-point graph G satisfying condition A. 
Note that this counting technique is useful only when the number of labeled graphs G satisfying a condition A can 

be enumerated according to the order ofS(Gl 
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[Continued from Page 278.] 

U(2n+1) = 2Tn+p(n). 

Secondly, if one places all the partition summands in a line separated by plusses, then one deletes the plus signs 
at the end of each partition, so that 

Pin) = U(n) + S(n)-p(n), 
leading to 

P(2n) = U(2n) + S(2n)-p(2n) = 2Tn + Tn-p(2n) = 3Tn-n-1, n > I 

Equivalent^, 

P(2n+2) = 3Tn+1-(n + D- 1 = ?!a±JMiJl - n - 2 

= 3(n + Dn + 3(n+1)2-2(n+2) 
2 2 

= 3Tn+2n+ I n > 0. 

More easily, we have 

P(2n+1) = U(2n + 1)+S(2n + '$)-p(2n+1) = 2Tn+ p(2n + 1) + Tn - p(2n+1) = 3Tn , 

which finishes the proof. 
We note that the generating function for each sequence given is easily written since the triangular numbers are 

involved, as 

£ Mr* + Vx" = j j ^ 
17=0 

J2 P(2n+2)x n _ 4 - X2 

(1 - xp 
n=0 



APPROXIMATION OF IRRATIONALS WITH FAREY FIBONACCI FRACTIONS 
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The author in [1 ] had defined the Farey sequence of Fibonacci Numbers as follows: 
A Farey sequence of Fibonacci Numbers of order fn is the set of all possible fractions f,-/fj j <n put in ascend-

ing order of magnitude | n, i, j > Of, are positive integers; fn denotes the nth Fibonacci Number, 0/fn~i is the 

first fraction. This set is denoted by f*fn. 
We also defined an "INTERVAL" in f-fn to consist of all fractions in f»fn between fractions of the form 

/< /? (fj-ufj) j>0 , 
\ fi ' fi-1 ) 

/ a positive integer. Two symmetry properties were established: 
(1) Leth/k,h'/k', h"/k" be three consecutive fractions in f>fn all greater than 1. Further let //_/ <h/k <h'/k'< 

h"/k"<fj. Then 
(a) h+h" _ h-
{3} k + k" k' ' 

(b) kh'-hk' = f-,-2 . 

(1*) Let h/k, h'/k', h"/k" be three consecutive fractions in f-fn all less than 1. Further let 7/f,- <h/k <h'/k'< 

h"/k"<1/fM. Then . . . „ ., 
(a) h + h = h— {a] k + k" k' 

(b) kh'-hk'= fj-2. 
Many other relations of symmetries besides these are proved in [1] . 1(a), Kb) are similar to properties which are 

preserved by the Farey Sequence also. Actually instead of arranging Fibonacci fractions, in ascending order, we had 
arranged fractions of the sequence Un = Un-i + Un„2 Uj> UQ>® integers, still some of the properties will remain. 
However, with the Fibonacci Sequence we get more symmetries. 

The problem we discuss in this paper is the approximation of irrationals with Farey Fibonacci Fractions. We prove 
some theorems on best approximations. 

Definition. Consider any f»fn. Form a new ordered set ffnj consisting of all rationals in f-fn, together with 
mediants of consecutive rationals in f-fn. Define recursively f'fn,r+l as a " t n e rationals in f-fnj together with med-
iants of consecutive rationals in f-fn r. The first rational in f«fn,r+1 's rewritten as 0/fn+r. We now define 

oo 

F-Fn = U f'fn,r -
r=1 

Propositions. F°Fn is dense in (0, <*>) in the sense that its closure gives the interval (0, °°). This implies that every 
irrational "6" can be approximated by a sequence of rationals h/k in F>Fn. Without loss of generality we consider 
only the case 8 > 0, for 6 < 0 can be approximated by -h/k where h/k belong to F>Fn. They are all quite obvious, 
and can be easily seen from (1) and (1*). 
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We now begin with a theorem on best approximation. 
Theorem 1. (a) Let 6 be an irrational > 1, say //_/ < 6 < f\. Then there exist infinitely many rationals/?//r e 

F>Fn for each "n" such that 

d- h 

(b) Let0 bean irrational < 1, say 1/fj<d < 1/f^j . Then there exist infinitely many b/k^F>Fn 

for every ' V s u c h that 

i-4.|< ±£± . 
k I y/5'k* 

Moreover the constant y/5 is the best possible in the sense that the assertion fails if y/5 is replaced by a bigger 
constant. 

Proof. We prove only Theorem 1 (a). The proof of 1 (b) is similar. In proving the theorem we follow the proof of 
Hurwitz theorem as given in Niven's book [2 ] . 

We need the well known lemma 
Lemma. It is impossible to find integersx,y such that the two inequalities simultaneously hold. 

±>-L(J-+J.\- !_>_L/_U_J_\ 
xy yj5 \ x2 y2 r x(x+y) y/s \x2 (x + y)2] 

We don't give the proof of the lemma as it is known. 
Now let "6" lie between two consecutive fractions of f»fn/f, i.e., a/h <d < c/d. It is clear that 

a+c a_ < a + c < c_ 
h b+d d 

and 
b+d 

M, 'Tnfr+1 • 

Now we shall show that at least one of these fractions, say h/k, satisfies 

0 - h 
J5k2 

Case 1. Let 

and let 

a . a + c . n , c 
b < F T d < e < d ' 

d-a-t<L> fi-2 c_ 
d~ 

fi-2 
sjld2 b+d 45(h+d)2' 

These three inequalities give rise to 

£_ 1 > It? ( JL + JL \ and °-- a+c >ftH L+ I \ 
d b sjs \ b2 d2 I d b+d ^ y/5 \ d2 (b+d)2 1 ' 

Now by properties 1 (a) and 1 (b) we get 

^ > 7 1.1 \ 
T -bd " yj5- \ b2 d2 I' d(b + d) sj5\d2 (b+d)2 I 

which is a contradiction according to the lemma. 
Proceed similarly for the case 

a_ 
b " ^ b+d ^ d 

Hence at least one of the three fractions, say b/k, gives 

*_< o <a±JL < c 

O 
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One can very esasily see that there are infinitely many of them in F-Fn f rom the Propositions given and f rom the 
very definit ion of F-Fn. 

It is easy to see that sJ5 is the best possible constant Consider the case when 

0 = LtJK m 

Now f/_2 = /, and so we have 

/ 
* JSP 

for infinitely many h/k in F>Fn. We can't obviously improve %/5. This follows from the classical theorem of Hurwitz 
[2] . 

Note. (A) The counter example (1 + \JE)/2 which Hurwitz gave is actually the 

lim *n±l . 
n*°o fn 

(B) In the interval (±,3) F>Fn provides the same approximation as do the Farey Fractions for f/_2 = /. 
In Theorem 1 the constant ^fs was seen as the best possible over the interval (0,°°). That is if yjs were replaced by 

a larger constant the theorems do not hold for all irrationals "6" > 0. Now our question is the fo l lowing: Is s/5 the 
best possible constant for every " I N T E R V A L " (fj„t ,f/)l The answer is in the affirmative in the sense that if %/5 is 
replaced by a larger constant the theorem fails to hold in ail " I N T E R V A L S " 

(fh1,fi) and ( L r - ) , i = 2,.'.,~. 
\ fi fi-1 / 

We now state and prove our final pair of theorems which are much stronger than Theorem 1. 
Tbeorem2a. Consider any " I N T E R V A L " J f / . ^ / y k Let 6 bean irrational which belongs to this interval. Then 

for any "n" there exists inf initely many 
(L <= F-F 
Hi n 

such that 

•-I < 4#-
The constant s/5 is the best possible in the sense that if \/5 are replaced by a larger constant the assertion fails for 
each "n" for some 6 belonging to this interval 

Proof. The existence has already been established in Theorem 1. We shall concentrate on the bound 

fj-2 

If we show that 

is the best possible constant when n = 1, it proves the theorem for using properties 1a, 1 *a one can show F-F^+i c 
F-F,, , where F-F£ - | x e F °Fn\x > 1 \ 

Consider the interval 
/ fj-i f± 
I / ' / 

and call "s" the set 

m) Let 
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si = I f±l fi~1+fi fi \ 
\ 1 ' 11 '11' 

Defined recursively let sr+i consist of all fractions in sr, together with the mediants of consecutive fractions in sr. 
Let 

u sr. 
r=1 

Similarly let 
I 2 \ 
r 1 J r i + v 1 sr = [ j> j ; a n d s'i 

Define s'r+1 as all fractions in s'r together with mediants of consecutive fractions \ns'r. Now let 

S' = u s'r . 

What we are interested here is Sand not F-Fn. If we compare the setssr, andsp, the following can easily be seen. 
(i) A one-one onto map can be established between sr and s'r as follows. 
Map 

V1+U-2 ^ v_h-j+}rf± 
V-1+ll'l V'1-r[X-1 ' 

We call two such numbers corresponding numbers. 
(ii) The map says that to every (p/q) e sr there exists a unique fa'/g^e^ and conversely 
(iii) The distance between the consecutive numbers in sr is //_2 times the distance between consecutive numbers 

\ns'r. 
Now let 

6Q=l±f. and dl=L!j£-1. 
Clearly 

fh1+fh2Bi = $' 

is in sr. Now if there exist infinitely many hr/kr in S with 

fi-2 
<—0,

 a> ^ 
akf 

1,2, -

that (i), (ii), (iii) would imply that there exists infinitely many corresponding numbers h'r/kr in S'with 

_J_ 
ak? 

with a > s/5 , 

which is a contradiction according to Huirwitz theorem. Hence the theorem fails for 0 ' if s/5 is replaced by a 
bigger constant. 

Theorem 2b. Consider any interval 

[ fi'fi-i 
Let 

9 e (fffTt ) 
be an irrational. Then there exists infinitely many h/k in F>Fn for all n > i such that 

fj-2 
s/5k2 
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The constant here again in the best possible in the same sense as Theorem 2a. 
Proof. The existence is already known. We just prove the converse for F>F,\ It automatically follows for the other 

cases. Now let 
JL-L 

W fi-i 
Let 

S1~ [ fi'fi-T+tj'fi-1 I ' 

Define recursively s"+i as all fractions in ^'together with mediants of consecutive fractions in s'f. Now 

u sy 
r=1 

Clearly a one-one onto map exists between 5"and S. 
Map 

k h 

Consider the irrational 7/0' = Q". Let there exist infinately many 
h • e F-Fi 

with 

Now if 
kr 

f±2 
ak} 

then |5 | < 1/a, Now this gives that 

hr 

kr ak} 

fi-2 

a{hr + 8-^ }(hrl 

for infinitely many kr/hr in S. Now choose any |3 > 5 with sj5 < (3 < a. Then we get 

for infinitely many kr/hr in S, i.e., for all r > rg ($ > \/5). 
This is a contradiction according to Theorem 2a and so Theorem 2b is proved. 
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A GREATEST INTEGER THEOREM FOR FIBONACCI SPACES 
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Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87544 

1. INTRODUCTION 

115= | sj I is any integer sequence of a Fibonacci space [2] based on a polynomial 

fix) = ~-a0~~>-anm1x
n~f +xn = (x-rrf'-fx-rn), 

a-,^Z, r-j real, /y distinct, |/y| < 1 f o r / > 2, then 

frisz + F] = sk+z 

with any fixed k, and F on (0,1), for all c sufficiently large. This is a broad generalization, in an asymptotic sense, 
of a conjecture by D. Zeitlin [3] concerning the case 

fix) = -1-Mx+x2, M > 1, F = M/(M+1), and S=\o,1M'~], 

defined by u% + MUQ+J = u^+2- The latter is shown to be true in all cases but one, and in slightly revised form in the 
remaining case. 

Z A GENERAL ASYMPTOTIC THEOREM 

With the polynomial 
fix) = -ag-a-jX an.fx

n"1 +xn = (x - rj) -(x - rn), 

a,- integers, r-j real, /y distinct, |/y| < 1 for / > 2, we associate the /7-space C(f) of all (complex) sequences S =is0,sif—J 
in which SQ, —, sn-i are arbitrary, but having 

aoSj + '-' + an-fSj+n-i = s1+n; j > 0. 
The n geometric sequences 

/?/= \i,n,r?,-\ 
form a basis for the space C(f), in terms of which an arbitrary integral sequence S may be expressed in the form 

S = ciRi + - + cnRn, i.e., s% = c-frf + - +cnr^; fi> 0. 

Since |/y| < /, / > 2, we may write 

(1) SQ = cir-j +e%; e% -» 0. 

These results may be found in [2 ] . That cj (and hence e%) are real is shown in an Appendix. As an immediate con-
sequence, we have the asymptotic 

Theorem 1. Let F be an arbitrary constant on the open interval (0,1), and S= j sj I an integral sequence of 
the space C(f). Then for fixed k > 0, one has the greatest integer 

[tfsQ + FJ = sk+% 
for all c sufficiently large. 
Proof. Using (1), we have only to prove 

cir^+e/c+z < rffcirj+ezJ + F < c^f*+ ek+i+1 
for large fi, i.e., 

ek+z-rfez < F < ek+2-r*ez + 1 

and this is obvious sincere -» 0 and 0 < F < 1. 
This research was performed under the auspices of the U.S. Atomic Energy Commission. 
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3. THE ZEiTLIM CONJECTURE 
ForthemtegerM^ 1, Set 

f(x)=1 -Mx+x2 = (x-aHx-h), a > b, and F = M/(M+1). 
The roots a,b have the properties 

a > M, b < 0, \b\ = (p-M)/2 < 7, ab = -1, a-b = p; p = (M2 + 4)% . 

The sequence U = \u0, uj, ••• I is defined recursively by 

HQ = 0, u-j = 1, u% + Mu%+i = usi+2; c > 0» 

and is well known [2 ] , p. 103, to be related to the roots by 
i / 2 = p-Ua^-b*); fi > 0. 

From this we find 
a u% - p (a — b J — p b (a — b J, 

or 
(2) akuz = uk+z-b*uk. 

Theorem 2. For the sequence U, one has the greatest integer 

[akusi + F] = uk+p 

iorz>2,k = 1, and for e > k > 2 except possibly in the case c odd > k odd > 3 when M > 2. 

Proof. We only sketch the argument, which closely follows that in [1 ] . In all cases, the final verification consists 
in the laborious comparison of two polynomials in M, f o rM > 1. The required relation 

Uk+Si < akuz + F < uk+% + 1 
is seen from (2) to be equivalent to 

-1/(M+ 1) < b%k < M/(M+1). 
Case \.z>2,k=1. For c even, it suffices to prove b2 < M/(M + 1). For £ odd, \b f < 1/(M + 1) suffices. These are 

found to hold upon replacing \b | by its value (p - M)/2 and rationalizing. 
Case \\mz>k >2. For z,k even, it suffices to show bkuk < M/(M + 11 But 

bkuk = bkp~1(ak-hk) = p-1(1-b2k) < M/(M+1) 

will hold for all k iff p"1 < M/(M + 1), which is verified as before. 
For £ even ^ k odd > 2, bk+7uk < M/(M + 1) suffices. Now, 

bk+1uk = \b\p~1(1+b2k) 

by an ananogous step, so we need only show that 

\b\p~1(1+h6) < M/(M+1). 

This is the most laborious verification. 
For c odd > k even > 2, it suffices to prove -bk+1uk < 1/(M + V. Here we find 

-hk+1 p"1 (ak ~hk) = \b\p~1(1-b2k) < 1/(M+1). 

since in the limit, \b\p~1 < 1/(M + 1). This is easy. 
Finally, suppose c odd > k odd > 2, and M = 1. It suffices to prove 

-bkuk = p~1(1+h2k) < 1/(M+ 1), k > 3, 

and this is true since p~1 (1 +b6) < 1/(M+ 1) is verifiable when M= 1 (and only then). 
The relation of Theorem 2 may fail in the remaining case, as is easily seen from the example M = 2,SL = k = 3, where 

[a3u2 + F] = 71 = 1 + u6. 

Indeed it always fails for M > 2, fi = k odd > 3, as appears in the final 
Theorem 3. For the sequence U, with M >2, e odd > k odd > 2, the value of [akuz + F] is either uk+% or uk+% 

+ 1, according as \bfuk < 1/(M+ 1) or 1/(M + 1)< \hfuk, the latter always obtaining for c = /r. 
Proof. Using (2), the relations of the theorem are found to be equivalent, respectively, to 
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-M/(M+1) < \by-uk < 1/(M+1) and 1/(M+1) < \b\uk < (M + 2)/(M + 1). 

We note first that \bfuk is always between -M/(M + 1) and (M+2)/(M + 1). The first is obvious. For the second, 
it suffices to prove \b\kuk < (M+2)/(M + 1), k odd > 3. But 

u2k, 

holds provided 
\b\kuk = p~1(1+bZK) < (M + 2)/(M+1) 

p~1(1+h6) < (M + 2)/(M+1), 

which may be verified as in Theorem 2, Case IS, second part. 
Hence for fixed k, we consider the relation of \bfuk to 1/(M + 1) as c increases from k. Mow if at the start we had 

\b\kuk = p~1(1+b2k) < 1/(M+1), 

this would imply p~1 < 1/(M + 1), which is false for all M > 2. The theorem follows. 
APPENDIX 

Reality of ci,e% 
From [2] we write 

(3) 

where 

Rx 1 ' , 

/ r„ 

„n-1 

rn-1 

Un 

Un-1 

Un-1 rn-1,1 - rn-1fn 

r/k = (-1)j+kBkJ/A, 

= \s0 ~-sn-t\-\r//e\ 

U0 = { 1, 0, •••, 0, a0, ••• f , ., Un-<i = | 0, Q, - , 1, an-u - [ 
is an obvious basis, and the matrix determinant A is that of Vandermonde. Inversion gives 

r01 '" fOn 
(4) 

where 

and Rkj is the £,/-minor of the matrix in (3). Since 

S = \s0 -sn„] 

we see that 
ct = s0roi + - + sn-trn-ifi, 

involving the first column of the inverse in (4). But each rjj involves the quotient Rfj/A. The latter is real, since 
any complex roots/-/ occur in pairs of conjugates. 
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PRIMITIVE PYTHAGOREAN TRIPLES 
WITH SUM OR DIFFERENCE OF LEGS EQUAL TO A PRIME* 
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1. 1WTR0DUCTI0W 

A pythagorean triple is a triple of natural numbers (x,y,z) such that*2 +y2 -z2. Such a triple is called a primitive 
Pythagorean triple if the components are relatively prime in pairs. It is well known [5, pp. 4-6 ] that all primitive 
Pythagorean triples are given, without duplication, by: 

(1.1) x = 2mne y = m2-n2, z = m2+n2. 

where m and n are relatively prime natural numbers which are of opposite parity and satisfy m > n. Conversely, if m 
and n (m > n) are relatively prime natural numbers of opposite parity, then they generate a primitive pythagorean 
triple according to (1.1). 

In this paper I will adhere to the following conventions: 
(a) The first entry of a pythagorean triple will be the even leg of the triple. 
(b) The second entry of a pythagorean triple will be the odd leg of the triple. 
(c) The third entry of a pythagorean triple will be the hypotenuse and will never be called a leg of the triple. 
(d) The natural numbersm and/7 in Eq. (1.1) will be called the generators of the triple (x,y,z). 
Since every prime of the form 4k + 1 can be written as the sum of two relatively prime natural numbers [6, p. 351] 

it follows that there are infinitely many primitive pythagorean triples with the hypotenuse equal to a prime. It is also 
easy to see that there are infinitely many primitive pythagorean triples with the odd leg equal to a prime, by noting 
that for any odd prime p, m = (p + 1)/2 and n = (p - 1)/2 generate a primitive pythagorean triple with the odd leg 
equal to p. It is completely trivial to show that the even leg is never a prime. Thus it is an easy problem to determine 
whether there are an infinite number of primitive pythagorean triples with any one of its components equal to a 
prime. However, the problem changes drastically if we try to determine whether there are an infinite number of 
primitive pythagorean triples with more than one component or some linear combination of the components equal 
to a prime. For example Waclaw Sierpinski [5, p. 6 ] , [7, p. 94] raised the following question: 

SIERPINSKI'S PROBLEM: Are there an infinite number of primitive pythagorean triples with both the hypoten-
use and the odd leg equal to a prime? 
This problem is equivalent to asking for an infinite number of solutions, in primes, to the Diophantine equation 

q2 = 2p - 1. This equivalence is easily proved by noting that if (t,q,p) is a primitive pythagorean triple withp and q 
both prime, then 

q2 = p2-t2 = (p- t)(p + tl 

Since q is prime and p + t > p - t > 0, it follows that q2 = p + t andp -t=h Hence q2 = 2p - 1. Conversely, if 
q2 = 2p - 1, then (p - /, q, p) is a primitive pythagorean triple. Other than this simple transformation, it seems that 
no progress has been made toward a solution to Sierpinski's problem. 

As a result of his involvement with Sierpinski's Problem, Professor LA. Barnett was quite naturally led to the fol-
lowing similar questions. 

*The research for this paper was supported in part by Ohio University Research Grant number OUR 252. 
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QUESTION A: Are there an infinite number of primitive pythagorean triples for which the sum of the legs is a 
prime? 

QUESTION B: Are there an infinite number of primitive pythagorean triples for which the absolute value of the 
difference of the legs is a prime? 

QUESTION C: Are there an infinite number of primitive pythagorean triples for which both the sum of the legs 
and the absolute value of the difference of the legs are prime? 

Questions A and B are both answered in the affirmative [8 ] . In this paper we present a complete characterization 
of those triples which have either the sum or the difference of the legs equal to a prime. Question C is much more 
difficult and is discussed in some detail in this author's Ph.D. dissertation. The results related to Question C will be 
the subject of a future paper. 

A few basic facts about the integral domain 
Zfs/2] = ^a+bsj2\a,h e z\ 

andaboutthe Pell equation*/2 - 2v2 = p, where/? is a prime, will facilitate the discussion of Questions A and B. The 
facts about the integral domain Zf\/2j will simply be stated with references to the proofs. However, the discussion 
of u2 - 2v2 = p in Section 3 will be more detailed because it is quite elementary and is significantly different from 
the usual discussions of this particular Pell equation. 

2. THE INTEGRAL DOMAIN Zfy/2] 

For the remainder of this article, I will follow the usual custom of referring to elements of Z[%j2] as integers and 
elements of Zas rational integers and I will use the following notation: 

If 
a = a+h^/2, 

then 
a = a - hs/2 

is called the conjugate of a . 
N(a) = aa 

is called the norm of a . 
R(a) = a 

is called the rational part of a. 
1(a) « b 

is called the irrational part of a. 
e = 1 + y/2 

is called the fundamental unit in Zl\[2l. 

e-1 - -1+y/2 
is called the inverse of e. 

As usual, a unit of Zfs/2] is defined to be a non-zero element of Z[s/2] which has an inverse in Z[sf2], or equi-
valent^, an element ofZfs/2] whose norm is +1. The set of units of Z[sf2] is precisely the set of 

[4, p. 235], [2, p. 209] and for this reason e is called the fundamental unit ofZfs/2]. 

If a and 8 are integers and there is a unit 7such that a- 8y, then a is called an associate of 5. A non-zero element 
of Z[y/2], which is not a unit, is a prime if and only if it is divisible only by units and associates of itself. It is easily 
shown that if a and 8 are associates, then 

N(a) - +N(6 I 

but the converse is in general not true. However, if a and 8 are both primes and N(a) = ±N(8)$\ma\§ m associate 
of either 5 or 5\ The primes of Z[>j2] are all associates of: 

(1) s/2 
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(2) All rational primes of the form 8k ±3. These are frequently called prime of the second degree. 
(3) All conjugate factors of rational primes of the form 8k + 1. These are frequently called primes of the first degree. 

This result is found in any discussion of the integral domain Z[sj2]f for example [4, p. 240], [2, p. 221]. 
Each of the properties, listed below, in Lemma 2.1, is an elementary consequence of the definitions of the sym-

bols involved. Consequently, they are listed without proof. 
Lemma 2.1: If a and ]3 are integers, then 

a+a = 2R(a) 
a-a = 2^/21(a) 

R(a@) = R(a)R($) + 2l(a)l($) 
Kofi) = l{a)R@} + R(a)W 

R(a$) = R.(a)R(P)-2l(a)l(P) 

1(6$) = Rffflfat ~ fUaMW 

R(ae) = R(a) +21(a) 
l(ae) = R(a) + 1(a) 

1 THE PELL-TYPE EQUATION u2 - 2\/2 = p 
Most number theory books have some discussion of the Pell equation and Pell-type equations. A particularly good 

discussion is to be found in Chapter VI of [3] and a very detailed history is found in Chapter XII of [1 ] . In this pa-
per we only need consider the very special Pell-type equation 

(3.1) u2 -2v2 = p, 
where p is a rational prime. 

As usual, any two rational integers u = a, \f = h will be called a solution of Eq. (3.1) if a2 - 2b2 = p. It follows 
from the previous section that u = a, v = b is a solution if and only if 

N(a+b<sj2) = p. 

From the discussion of primes in Z[y/2], it is clear that Eq. (3.1) has a solution if and only if the rational prime p 

is of the form 8k +1. 

If 
N(a+bsj2) = p, . 

then the four solutions 

u = a, v = b; u = a, t/ = -b; u = ~a, u - b; u = ~a, v = -b 

are said to be the solutions obtained from a + bsj2. Notice that the same four solutions are obtained from each of 

a + bs/2, a+bs/2, -(a + by/2) and -(a + by/2 , 

It is easily shown [4, p. 242] that if a= a + b^2 and N(a) = p, then all solutions of Eq. (1.2) are obtained from 

\ae2t\t^z\ 
and conversely, every element of 

\ae2t\tez} 
yields a solution of Eq. (3.1). 

The equation 
u2 ~2v2 = p 
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may easily be transformed to the equation 

= 7, 

which is the standard equation of a hyperbola. Thus integer solutions of Eq. (3.1) are easily associated with lattice 
points on the above hyperbola. Figure 1 is a graph of this hyperbola. Reference to Fig. 1 makes it clear that if u = a 

> 0 and v = b > 0 is a solution of Eq. (3.1), and then 

\fp < a < s/2p and 0 < b < yjp/2 

are equivalent The remainder of this section will show that there is exactly one solution which satisfies these 
conditions. 

Figure 1 

If p is a rational prime of the form 8k + 1, then the set 

S = | (u,v) \u e Z,v e Z,u > 0,v > 0, u2 - 2\/2 = p X 

is infinite and contains an element (a,b) with minimal first component. Since 

(a + bs/2)e~2 = (3a - 4b) + (3b - 2a)^/2 

it follows that 
u = 3a~4b and v = 3b-2a 

satisfy 
u2 -2v2 = p. 
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Mote that 
a2 - 2b2 = p > 0 

implies that b < a/y/2. Thus 

3a-4b > 3a- 4asj2 = a(3 - 2y/2) > 0. 
Hence either 

(3a - 4b, 3b -2a) or (3a - 4h, 2a - 3b) 

is in 5. In either case we have 
a < 3a-4bf 

which implies that 
4b2 < a2 = p+2b2, 

and this in turn implies that b < sJp/2 . Hence there is at least one solution u = a,v = b of t/2 - 2v2 = p with 
V P < a < s/2p and 0 < b < s/p/2 . 

To show that there is only one solution of (3.1) which satisfies the above inequalities it is helpful to observe that: 
For every 0 e Z[y/2], 

R($e2) = 3R($)+4l($) 

me2) = 2R(P) + 3/@) 

R($e~2) = 3R0) - 41(0) 

I (fie-2) = 3l(p)-2R($). 

It follows from these equalities that if R((3) > 0 and l($) > 0, then 

R($e-2) < R((3e2) and R($e2t) < R($e2t+2) 

for all t > 0. Note also that if R(fi) > 0, then /($) < 0 implies that 

R(fie'2t) < R($e~2t~2) 
for all f > 0. 

Let a = a+b<sf2 with 
s[i> < a < \[2p and O < b < yJp/2 

and let u = a, v = b be a solution of (3.1). Then 
ae2 = (3a+4b) + (2a + 3b)^2 

and 
ae"2 = (3a - 4b) + (3b - 2a)s]2 . 

Clearly 
3a-4b < 3a+4b 

and from the previous remarks it follows that the rational parts oiae2t, t>Q, form a strictly increasing sequence. 
If we assume that 3b- 2a > 0, then 9b2 > 4a2 and hence 

-4p+b2 = -4(a2-2b2) + b2 > O. 

But then b2 >4pand 

b > 2sJ$ > (1/s/2)sjp = sfel2 . 
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This contradiction shows that 3b - 2a < 0 and from the previous remarks it follows that the rational parts of ae~2t, 

t>\, form an increasing sequence. 
If we assume 3a - 4b < a, then a2 < 4b2 and hence 

p - 2b2 = a2 - 2b2 - 2b2 = a2 - 4b2 < 0 . 

But then sJp/2 < b and we conclude that 

3a-4b>a>^/p>®. 

It now follows that if 
3a - 4b > s/2p , 

,~2tt then the rational part of ae will be greater than s/2p for all t^O. 

If we assume 
3a-4b < y/2p , 

then by squaring both sides and collecting terms we have 

17a2 - Wp < 24asJ(a2 -p)/2 . 

Note that 

17a2- Wp = 7a2 + 20b2 > 0. 

Squaring both sides again and simplifying yields 

a4 - 52a2p + WOp2 < 0, 
which can be written as 

(a2 - Wp)2 < 32a2p. 

This is a contradiction because 

a2 - Wp < 2p- Wp = -8p 

and hence 

(a2 - Wp)2 > 64p2 = (32p)(2p) > 32pa2 . 

Thus 
3a - 4 b > s/2p . 

This establishes that there is at most one solution u = a,v = b such that ^Jp <a< s/2p . 

The material in this section is summarized in Lemma 3.2 below: 

Lemma 3.2. If p is a rational prime of the form 8k + 1, the equation u2 - 2\/2 = p has exactly one solution 
u = a,v = b such that the following two equivalent statements are true: 

(i) y/p < a < ^/2p 

(ii) 0 < b < y/pTF. 

The equation u2 - 2v2 = p has Infinitely many solutions, all of which are obtained from 

(a + b^I)e2t, 

where t is any rational integer and u = af v = b is any solution of u2 - 2v2 = p. 
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The unique solution which satisfies (i) and (ii) will be called the fundamental solution oft/2 - 2v2 = p. 

4 PRIMITIVE PYTHAGOREAN TRIPLES WITH SUM OF LEGS EQUAL TO A PRIME 

The theorems of this section show that if (x,y,z) is a primitive Pythagorean triple with * + y equal to a prime/?, 
then p is of the form 8k + 1, and conversely, if p is a prime of the form 8k + 1, then there is a unique primitive Py-
thagorean triple (x,y,z) such that x + y = p. Since there are infinitely many primes of the form 8k + 1, this yields an 
affirmative answer to Question A of Section 1. 

Theorem 4.1. If (x,y,z) is a primitive pythagorean triple and/? is a prime divisor ofx +y or \x -y\, then p 

is of the form 8k + I 

Proof. Suppose/? divides*-/-)/ or \x - y\. IMote this implies (x,p)= (ytp)= I, a n d x ^ ^ y (mod/?) so that 

(1) 2x2 =x2+y2 = z2 (mod/?). 

By definition, A-2 is a quadratic residue of p. The congruence (1) implies 2x2 is also a quadratic residue of/?. If/? 
were of the form 8k + 3, then 2 would be a quadratic nonresidue of/? [3, pp. 136-139] and since*2 is a quadratic 
residue of/?, 2x2 would be a quadratic nonresidue of/?, contradicting (1). Thus/? must be of the form 8k + I 

Corollary. If x and y are the legs of a primitive pythagorean triple, then bo th* + y and \x - y\ are of the form 
8k + l 

This corollary is immediate from the theorem but it should be pointed out that the corollary may be proved di-
rectly by considering the following two cases: 

m = 2r, n = 2t + 1 

m = 2r, + I n = 2t, 

where m and n are the generators of the primitive pythagorean triple. 

Theorem 4.2. For every prime /? of the form 8k + 1 there exists a primitive pythagorean triple (x,y,z) such 
that* * ] / = /?. 

Proof. Let/? be a prime of the form 8k + /and \tf.u = a,v = b be the fundamental solution oft/2 - 2v2 = p. Let 
m = a - h and n = h. Note (m,n) = 1 because (afh) = 1. Clearly m and n are of opposite parity because m + n = a=1 

(mod 2). If m </? = /?, then 

p+2b2 = a2 = (n + m)2 < 4b2 

and thus/? >p/2, a contradiction. Hencem >/?. Thus/?? and/? generate the primitive pythagorean triple 

* = 2mn, y = m2 - n2, z = m2 + n2 . 

For this triple 

x + y = 2mn + m2 - n2 = (m + n)2 - 2n2 = a2 - 2b2 = /?. 

Theorem 4.3. If /? is a prime of the form 8k + /, then there is exactly one primitive pythagorean triple (xfy,z) 

such that* + y = p. 

Proof Let m and/? generate a primitive pythagorean triple (x,ytz) such tha t * + y = p. Then 

(m + n)2 -2n2 = p. 
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Since m > n it follows that 

p = (m+n)2-2n2 > (2n)2 - 2n2 = 2n2, 

which implies that n < ^Jp/2 . Thus u = m + n, v = n is the fundamental solution of u2 - 2v2 - /?, and hence, 
by Lemma 3.2, m and n are uniquely determined. 

5. PRIMITIVE PYTHAGOREA1 TRIPLES WITH DIFFERENCE QF LEGS EQUAL TO A PRIME 

The material in this section is related to Question B of Section 1. The first theorem provides an affirmative answer 
to Question B by showing that every prime of the form 8k + 1 is equal to the difference of the legs of some primi-f 
tive Pythagorean triple. The second theorem shows that for every prime of the form 8k + 1 there is an infinite num-
ber of primitive Pythagorean triples with the difference of legs equal to that prime. W.P. Whitlock, Jr. [8] discusses 
briefly these same two theorems and points out that these methods were essentially known to Frenicle. The re-
mainder of this section is devoted to the characterization of ail primitive pythagorean triples with difference of legs 
equal to a prime. 

Theorem 5.1. For every prime/? of the form 8k+1 there is a primitive pythagorean triple (x,y,z) such that 
\x-y\=p. 

Proof. Let/7 be any prime of the form 8k + 1 and le\u = a, v = b be the fundamental solution off/2 - 2\t2 = p. 

Then, as in Theorem 4.2, it is easily shown that m = a + b and n = h generate a primitive pythagorean Xt\$\$(x,yfz) 

with x-y = -p. 

If p is a prime of the form 8k + /, then, as pointed out in Section 4, there is a unique primitive pythagorean triple 
(x,y,z) such that x + y = p. The fact that there is no such uniqueness when discussing the difference of legs follows 
from the theorem below. 

Theorem 5.2. If m,n (m >n) generate a primitive pythagorean triple (xfy,z) then M = 2m + n and N = m gen-
erate a primitive pythagorean triple (X, Y,Z)such that \X- Y\=\x -y\. 

The proof is computational and is left to the reader. 
The previous two theorems make it easy to show that for each prime p of the form 8k+1 there is an infinite num-

ber of primitive pythagorean triples (x,y,z) such that \x - y\ = p. This is done by defining an infinite sequence 

of primitive pythagorean triples (xj,yj,Zj) such that \xj- yj\= p for a l l / 

Definition 1. Let p be a fixed prime of the form 8k+ /and let sand b be the unique natural numbers such 
that 

a2 - 2b2 = p, yjp < a < *j2p, and 0 < b < y/p/J. 

Define the sequence J Tjfp) I as follows: 

Let T0(p) be the primitive pythagorean triple generated by m^ = a+b and/7 = & For ally > 1, define Tj(p) to be 
the primitive pythagorean triple generated by 

mj = 2m j-1 + rij-1, and nj = m^ 1. 

Figures 2 and 3 illustrate the sequence | Tj(p) |», 

An examination of a table of primitive pythagorean triples shows that for each prime/? of the form 8k + /there 
are primitive pythagorean triples (x,y,z) with \x - y\ = p which are not in | Tjfp) I. The next theorem will be used 
to show that for each prime /? of the form 8k+1 there is in fact another infinite sequence | Tj(p)l of primitive 
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Pythagorean triples (xj, yjf zj) such that 

W-yj\ = p 

f o r / > / and 

x'j + Vl* P 

f o r / - ft 

Theorem 5.3. If m and n (m >n) generate a primitive Pythagorean triple (x,y,z), then M = 2m - n and N = m 

generate a primitive Pythagorean triangle (X, Y,Z) such that \X - Y\= x + y. 

The proof is computational and is left to the reader. 

Definition 2. Let/?, a and b be the same as in the construction to | Tj(pn. Define the sequence j T)(p)\ 

as follows: Let T'0(p) be the triple generated by m'0 = a - b and n'0 = b. Let T\(p) be the triple generated by 

m\ = 2ml ~ no m^ n\ = m'o ' 

For all / > 2, define Tj(p) to be the primitive Pythagorean triple generated by 

mj = 2mj-i+nj._1 and nj = mj-i . 

Figures 2 and 3 illustrate the sequence I Fj(p) I 

Theorem 5.4. Let p be a prime of the form 8k + 1. If 7" is the set of triples 

{Tj(p)\j = 0, 1,2,-..\ 

and r is the set of triples J Tj(p)\j= 1,2, - i , then Tn V=<t>. 

Proof. Suppose there is a Tr(p) in 7" and a T's(p) in V such that r> 1, $^2 and Tr(p)= T's(p). Then mr =m's 

and nr = n's and hence 

mr„i = nr = n's = m$-i, 

which in turn implies 

2m's„i+nr„i = 2mr-i+nr-i = mr = m's = 2m's- / + n's- / , 

and thus/?r_/= A?5_/. Hence 

Tr^(p)= T's„7(p). 

Repeating this argument a finite number of times results in one of the following cases: 

Case 1. Tjp) = T's-r(p) if s > r+1. 

Case 2. Tjp) = Tjp) if s = r+1. 

CaseS. Tr„s(p) = T\(p) if s < r+ I 

To complete the proof it suffices to show that each of these cases is impossible. In Case 1, 

b = n0 = n's„r = m/
s^1 > n/

s^1 = - = m% > n'0 = b, 

a contradiction. In Case 3; 
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/7V-s-/ = nr„s - n'i = m'o 
and 

2mr-s-,1 + nr-s-i = mr-s = rn'i = 2m'o = HQ. 
Hence 

0 < nr-s.f = -n'0 < 0 

which is again a contradiction. 
The above description of the sequences 

\T1(P)\ and {77/Wf 
gives a convenient method for constructing a triple of the sequence from the preceding triple. It is also possible to 
give an explicit formula for a triple in the sequence in terms of the fundamental solution of u2 - 2v2 = p. Certain 
properties of the triples in the sequence become more accessible when viewed in this way. One such property is 
stated in Theorem 5.6. 

Theorem 5.5. Let p be a prime of the form 8k + I Letu = a,v = h be the fundamental solution of 

u2 - 2v2 = p 

and let 
a = a + byj2 . 

(1) For/ > 0, Tj(p) is generated by: 

mj = R(aej) + l(aej) = l(aei+1) 

nj = l(aej). 

(2) For/ > 0, Tj(p) is generated by: 

mj = R(dej) +/(EeJ) = l(aei+1) 

nj = /(aeJ'l 

(3) For/ > 0, Tjfp) is generated by: 

J+1 _-zj+1 J+1 +TI+1 

_ e>-
' 2-J2 

= e' -e1
 a + e' +e' 

(4) For/ > 0, Tjfp) is generated by: 

' 2s/2 
ffY). — a _ fj 
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Proof (of (1)). By construction, T0(p) is generated by 

m0 = a+b = R(a&) + I(a&) 

and 
n0 = b = /(ae°). 

Make the induction hypothesis that Tjfp) is generated by 

mj = R(aeJ) + l(aej) and nj = l(a^). 

Then by construction, Tj+ilp) is generated by 

mj+1 = 2R(aei) + 3l(aeI) and nj = R(aej) +i(aej I 

By Lemma 2.1, 

R(aei+1J = Rfae1) + 21(aej) and l(aei+1) - Rfae1) + l(ae'). 

Now it is clear that 

mj+i = R(a€?+1) + l{ae!+1) + l(a<J+1) 

and 
nM = l(aej+1). 

It follows directly from Lemma 2.1, that 

rttj = R(aej) + i(aej) = t(aeJ+11 

Thus the formulae in (1) hold for a l l / > 0. The formulae in (2) are proved in exactly the same way. The formulae in 
(3) are proved by using Lemma 2.1 to get 

ms = R(aei) + I(aei) = i(aei+1) = l(ei+1 )R(a) + R(ej+1 )l(a) = *?'~JJ+1
 a + €H±£H h 

J 2sj2 2 

m = i(aej) = i(eJ')R(a) + R(eJ)I(a) = ^-=IL B + ^L±E b . 
J 2y/2 2 

The formulae in (4) follow from (2) in exactly the same manner. 

In Theorem 5.4 it was shown that the sequences j Tj(p) I and | Tjfp) I were disjoint. With Theorem 5.5 it is 

possible to show that these sequences are exhaustive in the sense that they contain every primitive pythagorean triple 
(xfy,z) with \x - y\ = p. To prove this result, stated below as Theorem 5.6, it will be shown that if (x,y,z) has \x - y\ 

= p, then its generators must be the same as those listed in Theorem 5.5. 

Theorem 5.6. Let/7 be a rational prime of the form 8k + I if T~ (x,y,z) is a primitive pythagorean triple such 

that \x - y\= pf then T is in one of the sequences j Tjfp) I or I Tjfp) I . 

Proof. Let u = a, v = b be the fundamental solution of u2 - 2v2 = p and \&ta-a + b>j2. If m and n are the gen-
erators of T= fx,y,z) then 

y-x - fm-n)2 -2n2. 
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Hence 
N(a) = p = +N([m - n] + n\fc). 

Since a is a prime, it follows that either a or a is an associate of 

(m - n) + nsf2 . 

Sf a is an associate of (m - n)+n^J2, then by definition there is an integer t such that 

aet = (m- n) + r\s]2 , 

or 

-aet = (m ~ n) + ns/2 . 

This second equaSity is impossible because 

-ae* < 0 < (m-n) + ns/2 . 

Thus if a is an associate of (m-n)+ n<j2, then 

ae* = (m - n)+ n^/2 

for some integer t Note that t < 0 implies that 

a > aet = (m - n)+n^/2 > a + bs/2 - a, 

which is a contradiction. Thus if a is an associate of (m - n) + r\\f2, there is an integer t > 0 such that 

aef = (m-n) + n>j2 . 

It is now clear that, in this case, T is generated by 

m - Rfae*)+ 1(0,6*) 
and 

n = Hae*), 

with t > 0, so that T is in | Tjfpt [ . 

If a is an associate of (m - n)+n>j2, then by definition, there exists an integer t such that 

~aet = (m - n) + ns/2 , 
or 

- a e r = (m - n) + t7s/I . 

This last equality is impossible, because a > 0 and aa=p imply that a > 0, and hence 

-ae f < 0 < (m - n) + r\sf2 . 
Note that if 

ae f = (m-n) + ny/2 and f < 0, 

then 
a > aer = (m - n)+ns/2 > a + bs/2 = a > a , 

which is impossible. 
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Thus if a is an associate of (m - n)+ nsjl, then there is an integer t > 0 such that 

ae f = (m- n) + n*j2 . 

Clearly, in this case, T is generated by 

m = Rfae^ + Kae*) and n = 1(5.6*), 

with t > 0, so that T is in | Tj(p) I . This completes the proof. 

In the description of the two sequences | Tj(p) I and | Tj(p) I it is obvious that the sequence jTj(p) I is 

closely related to the unique primitive pythagorean triple (x,y,z) with x + y = p. The following theorem is used to 

show that the sequence | Tj(p) j- is also related to the unique primitive pythagorean triple (x,y,z) w i t h * + y = p. 

Theorem 5. 7. If m and n (m > n) generate a primitive pythagorean triple (x,y,z), then M = 2n + m and N = 

n generate a primitive pythagorean triple (X,Y,Z) such that \X - Y\=x + y. 

The proof is computational and is left to the reader. 
If p is a prime of the form 8k + I, then as in Theorem 4.2P the unique primitive pythagorean triple (x,y,z) with 

x + y = p, is generated by m = a - b and n = b, where u = a, v = b is the fundamental solution oft/2 - 2v2 = p. By 
Theorem 5.7, 

M = 2n + m=a+b and N = n = b 

generate a primitive pythagorean triple (X, Y,Z) such that 

\X-Y\ = x+y = p. 

An examination of the generators M and N shows that (X,YfZ) is the triple labeled TJp) in the discussion of 

{wY 
6. SUMMARY 

In this paper it has been shown that the sum and the difference of the legs of a primitive pythagorean triple must 
be of the form 8k + 1, Conversely, if p is a prime of the form 8k + 1, there is a unique primitive pythagorean triple 
(x,y,z) with x + y = p, but there are two infinite disjoint sequences of primitive pythagorean triples with the differ-
ence of the legs equal to p for each triple in the sequences. Furthermore, every primitive pythagorean triple (xty,z) 

with \x - y\ = p is in one of these sequences. Figure 2 outlines a general method for constructing these triples and 
Fig. 3 illustrates the procedure with p = 137. Finally, explicit formulae for the generators of each triple in the se-
quences are given in terms of the fundamental solution of u2 - 2\/2 = p. 
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SPECIAL PARTITIONS 

V. E. HOGGATT, JR., and MARJORSE BBCKNELL 
San Jose State University, San Jose, California 05192 

In this paper, we discuss the partitions pfn) of non-negative integers/?, using summands 1 and 2. These are collec-
tions of 1 and 2 whose sum is/7 without regard to order. 

Example. 
5= 2 + 2+1 = 1 + 1 + 1 + 1 + 1 = 2+1 + 1 + 1 ; 

thus p(5) = 3 

Theorem. 
p(2n + 1) = p(2n) = n+ 1 for n > 0. 

Proof. Clearly, p(O) = 1, using no ones or twos, and p(1) = 1. First, 2n is the sum of n two's. Each two can 
be replaced by a pair of ones. This can be done in n distinct ways, making (n + 1) possible partitions. Second, 2n + 1 
is the sum of n two's and a one. Thus, it also has (n + 1) distinct partitions. 

Theorem. If all the partitions of n are displayed simultaneously, then there are U(n) ones, S(n) twos, and 
Pfn) plus signs, where 

U(2n) = 2Tn , 

U(2n + 1) = 2Tn+p(n) , 

S(2n+1) = S(2n) = Tn, 

P(2n+1) = 3Tnt 

P(2n+2) = 3Tn+2n + 1, 

where Tn is the nth triangular number, n > 0. 

Proofs. Let us start with S(2n), n > 0. Clearly, there are n twos and each two is sequentially replaced by a 
pair of ones in succeeding partitions until there are no twos. Thus 

S(2n) = n + (n-1) + ~+2+1 = Tn. 

Clearly, (2n + 1) also has/7 twos and a one so that the number of twos in all specialized partitions of (2n + 1) is also 

Next, consider N = 2n. From the sequential construction of the partitions beginning with n twos it is clear that 
the number of ones \$2Tn. However, for N = 2n + 1 we need an extra one for each partition; thus 

[Continued on page 254.] 
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PRODUCTS AND POWERS 

M.W. BUNDER 
The University of Woflongong, WoIIongong, N.S.W., Australia 

The generalized Fibonacci sequence is defined by 
(1) wn = pwn_f + qwn_2 

with 
WQ = a and wf = b. 

In Horadam's notation [1], wn is written wn(a,b;p,-ql 
In this note we see what happens when we replace the sum and products in (1) by a product and powers; i.e., 

(2) zn = z%-Vz%-2 

with 
ZQ = a and z/ = b. 

(We can write zn as zn(a,b; p,q).) 
The sequence becomes #,£, ab, ab2, a2b3

f a3b5, a5b8, — in the case where p = q = 1 so that 

zn(a,b;1,1) = aFn-1-bFn 

The general case gives the sequence 
a, b, apbc>, ap«, bp+q\ apUpq\ b2pq+q\ -

with 7- _ . _ „ . 
zn(a/b;p/q) -a >b 

REFERENCE 
1. A.F. Horadam, "Generating Functions for Powers of a Certain Generalized Sequence of Numbers/' Duke Math. 

Journal., Vol. 32, No. 3, pp. 437-446, Sept. 1965. 
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A SPECIAL CASE OF THE GENERALIZED FIBONACCI SEQUENCE 
OVER AN ARBITRARY RING WITH IDENTITY 

M.W. BUNDER 
The University of Wollongong, Wollongong, N.S.W., Australia 

DeCarli [1 ] introduced the sequence j Mn I of elements of an arbitrary ring with identity S by 

Mn+2 = A7Mn+7 +A0Mn for n>0, 

where Mg, Mj, AQ and A / are arbitrary elements of S. He considers in particular the case which he calls the sequence 
SFn\ with 

Fn+2 = A-iFn+j+AoFn for n > 0, 

where FQ = 0 (the zero of the ring) Fj = I (the identity) and AQ and A7 are arbitrary elements of S. 
A number of DeCarls's theorems can be simplified in the special case where AQA / = A <IAQ. We use the following 

theorems which are easily proved by induction. 

Theorem 1. AoFn = FnA0, A7Fn = FnA7 for all n. 

Theorem 2. FnFm = FmFn for all m and n. 

Thus DeCarli's Theorem 3 
FnFn+r- Fn+rFn = FnFrAoFn-1 ~ Fn-lAoF7Fn 

becomes trivial. 
Also we can prove that Fn commutes with any element of S which commutes with AQ and A ?. In particular when 

AQ and A 7 commute with ail elements of S so does Fn. 
The two parts of DeCarli's Corollary 1 can thus be rewritten as 

Fn+1Fn-1 ~ Fn = Ao(Fn_<i - FnFn„2>-

In the same way as above for the general sequence, if MQ, M^AQ^WAA^ all commute with each other then all 
Mn's commute with each other and with AQ and / I / . 

REFERENCE 

1. D.J. DeCarli, "A Generalized Fibonacci Sequence Over an Arbitrary Ring," The Fibonacci Quarterly, Vol. 8, No. 
2 (March 1970), pp. 182-184. 
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ADVANCED PROBLEMS AND SOLUTIONS 
Edited by 

RAYMOND E.WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 17745 

Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathematics 
Department, Lock Haven State College, Lock Haven, Pennsylvania 17745. This department especially welcomes 
problems believed to be new or extending old results. Proposers should submit solutions or other information that 
will assist the editor. To facilitate their consideration, solutions should be submitted on separate signed sheets within 
two months after publication of the problem. 

H-252 Proposed by !/.£ Hoggatt, Jr., San Jose State College, San Jose, California. 

Let/l^Xrt bean/7 x n lower semi-matrix andBnXn, CnXn
 De matrices such thatAnXnBnXn = CnXn- Let Akxk, 

Bkx*/ Ckxk be the k x k upper left submatrices of AnXn, BnXn, and CnXn. Show AkxkBkxk = Ckxk for k = 1, 
2, »., n 

H-253 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 

£t»-i>n+t+, ) £ V - * - ' ) ^ - ' ^ W ( i ) 
t=0 j=0 m=0 

n+m-t-j-1 

r=0 

where j3 is an arbitrary complex number and n and k are positive integers, k < n. 
This identity, in the case ]3 = 2, arose in solving a certain combinatorial problem in two different ways. 

H-254 Proposed by R. Whitney, Lock Haven State College, Lock Haven, Pennsylvania. 

Consider the Fibonacci-Pascal Type Triangle given below. 

F1 

f , F, 
F1 F2 Fx 

Fl F3 F3 Ft 

F% F< F6 FA Fi 

Find a formula for the row sums of this array. 
SOLUTIONS 

ENUMERATION 

H-226 Proposed by L. Carlitz and R. Scoville, Duke University, Durham, North Carolina. 

(i) Let k be a fixed positive integer. Find the number of sequences of integers (au a2, —. an) such that 

0 < a/ < k (i = 1,2, •..,/?/ 

and if a, > 0 then a\ $ a/_7 for / = 2, —., n. 
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(ii) Let k be a fixed positive integer. Find the number of sequences of integers (at, a2, •», an) such that 

0 < a; < k (i = 1, 2, - , n) 

and if a; > 0 then a,-1 a/_; for / = 2, —, n; moreover a; = 0 for exactly r values of i. 

Solution by the Proposers. 

Part (i). 
Let fj(n) denote the number of such sequences with an =j. Then clearly 

fjn) = . - = fk(n) 
and 

f0(n + 1) = fQ(n) + kfJn) 

fjn + 1) = fQ(n) + (k-1)fJn). 
It follows that 

f0(n+2) = kfjn+1) + f0(n) 

fJn+2) = kfJn+D + fJn) . 
Also 

f0(1) = I f0(2) = k+ 1, fJ1) = 7, fj2) - k. 
It is convenient to take 

fQ(0) = 0, fJO) = 1; 
then (*) holds for all n >0. 

We now take 

{ 

n=0 

so that 

Similarly 

which yields 

FoM = E f o ^ " = 1+x+x2 Y, (Mjn + i) + fjn))x 
o 

oo 

= 1-(k-1)x + (kx +x2) ] T f0 (n)xn, 

1 - kx-x2 

FtM = E f>)xn = X+T, (kfjn + 1) + ft(n))xn, 
n=0 0 

FJx) = 
1-kx-x2 

Let S(n) = f0 (n) +kfx (n) denote the total number of sequences satisfying the stated conditions. Then 

£ S(n)xn = i I** % 
Q 1-kx-x2 

Since 
oo oo /- oo 

1-kx-x2 

r=0 r=0 j=0 n=0 2j<n 

it follows that 
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S(n) = E (7')*"^+£ ("-/-' ) ^ 2 H 

2/<n 2j<n 
Part (ii) 

Let fj(n,r) denote the number of such sequence with an = j. Then clearly 

fx(n,r) = »• = fk(n,r) 
and 

where f;(n, -1) = 0. 
Clearly 

Put 

f0(n + 1,r) = fQ(n,r- 1) + kfx(n,r- 1) I f0(n + 1,r) = fjn,r-

\ fjn + 1,r) = f0(n,r) + (k-1)fjn,r) 
(n > 1, r > 0), 

Then 

Thus 

'*u'n \o (otherwise) 

f (1 r) = i 1 (r=1}
 t 

1 ' / , , / ( 0 (otherwise). 

oo n 

Fi(z<x> = E E fi(n,r)znxr (i = 12). 
n=1 r=0 

oo n+1 

F0 (z,x) = zx + Y £ (fo in> r ~ 1 ) + kfi (n* r ~ U)zn+1xr = zx + zxFQ (z,x) + kzxFx (z,x), 
n=1 r=1 

o- n 

Fi {z<K) = z f E I (fo in>r} + (k~ 1)f* farM*"*1*' = z + zFo (z<x> + (k - VzFt (z,xl 
n=1 r=0 

(1 - zx)FQ (z,x) - kzxF% (z,x) = zx 

~zF0 (z,x) + (1-(k- 1)z)Fx (z,x) = z. 
It follows that 

F0 (z,x) zx + z2x 
1-(x+k- 1)z-z2x 

FJz,x) = 
1 - (x + k - 1 )z - z2x 

We have 

^zj+2s T-r—T—^ r-= E ^(x + k-i+zx)" = Ts(
J'ts) (x + k-i)lx*. 

1 -(x + k-1)z-z2x ~ .'-'A s I 
n=0 j.s-0 

oo 

n=0 2s<n 

Y fjn + u)xr= Y {n;s)xs(*+k~tr2§ - E ( 7 * ) * * E ( 7 * )fe-//H2*v 
2s<n 2s<n t^O 

ixr£(n7S){nr-2sS)<k-1>n-r'S > 

Hence 
n+1 

r=0 

r=0 s=0 
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so that 

«» +i.r>-£(";') (",2? )»-ir 
s=0 

It is evident from (*)that 
fQ(n + 1,r+1) = fJn + lrl + fJ^r-D. 

Thus 

fjn + i,r+i) = J2(n7s)[n
r-

2ss)<k-1>"-r-s+!Z (n~',~1)(T-*-! )<k-irr-s. 
s=0 s-0 

Let S(n,r) = f0 (n/r)+kf1 (n,r) denote the total number of sequences satisfying the stated conditions. Then 

—n s-0 

E("-r/)(v4s--2
,)^-/^"s+/-

s=0 s=0 

r-2 

+ 

s=0 

We remark that if we sum over r we get 
n+1 

£ S{n + 1,r) = k £ ("J'jk^+Y, ("7S )k"'2S+H (»-°s-l}k"-2s-1 
—n 2s<n 2s<n 2s<n 

_ y ^ / n-s + l \ ^n-2s+1 + V ^ / n -s \ ^n-2s 

2s<n+1 * I 2s<n * ' 

Editorial Note: G. Wulczyn solved H-221 (previous issue). 



ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by 

A. P. HILLMAN 
University of New Mexico, Albuquerque, New Mexico 87131 

Send all communications regarding Elementary Problems to Professor A.P. Hillman; 709 Solano Dr., S.E.; 
Albuquerque, New Mexico 87108. Each solution or problem should be on a separate sheet (or sheets). Preference 
will be given to those typed with double spacing in the format used below. Solutions should be received within four 
months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 
Fn+2 = Fn+1 + Fn< F0 = 0, F7 = 1 and Ln+2 = Ln+1 + Ln, LQ = 2, L1 = 1. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-310 Proposed by Daniel Finkel, Brooklyn, New York. 

Find some positive integers n and r such that the binomial coefficient I n J is divisible by n + I 

B-311 Proposed by Jeffrey Shallit, Wynnewood, Pennsylvania. 

Let k be a constant and let \ an \ be defined by 

an = an^ +an„2
+K a0 = 0, a-j = 1. 

Find 
lim (an/Fn). 

n - > oo 

B-312 Proposed by J.A.H, Hunter, Fun with Figures, Toronto, Ontario, Canada. 

Solve the doubly-true alphametic 
ONE 
ONE 
ONE 
TWO 

THREE 

EIGHT 

Unity is not normally considered so, but here our ONE is prime! 

B-313 Proposed by Verner E. Hoggatt, Jr., California State University, San Jose, California.. 

Let 
MM = Lkx + (L2 /2)x2 + (L3 /3)x3 + - . 

Show that the Maclaurin series expansion fore M is Fx + F2x + F3x
2 + •••. 

B-314 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Show that L k = 3 (mod 10) for all primesp > 5. 
2p 
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SOLUTIONS 
DIFFERENTIATING FIBONACCI GENERATING FUNCTION 

B-279 (Correction of typographical error in Vol. 12, No. 1 (February 1974). 

Find a closed form for the coefficient of xn in the Maclaurin series expansion of 
(x+2x2)/(1-x-x2)2. 

Solution by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

Let 

F(x) = (1-x-x*)'1 = Yl Fn+1x
n 

n=0 

be the well-known generating function for the Fibonacci numbers. Differentiating term by term, we have formally: 
oo 

Fix) = (1+2x)(1-x-x2)-2 = Y* ^n+l*"'1 • 
n=1 

Therefore, 
oo 

(x+2x2)(1-x-x>)-* = £ nFn+1x
n. 

n=0 

Hence, the required coefficient is equal to nFn+1, n = 0, 1, 2, —. 
Also solved by Clyde A. Bridger, Charles Chouteau, Edwin T. Hoefer, A.C. Shannon, and the Proposer. 

GOLDEN POWERS OF 2 
B-286 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Letg be the "golden ratio" defined by 
g = lim (Fn/FnH). 

Simplify 

0 ' 

Solution by Graham Lord, Temple University, Philadelphia, Pennsylvania. 

As 1/g = a= (1 + s/5 )/2 then the sum equals 

o 
that \sg2n'(1 + a3)n, which simplifies to 2n. 

Also solved by W.G. Brady, PaulS. Bruckman, Ralph Garfield, Frank Higgins, A.C. Shannon, Martin C. Weiss, David 
Zeitlin, and the Proposer. 

SIMPLIFIED 
B-287 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Let^beasin B-286. Simplify 
g2{(-ir1[Fn„3-gFn„2]+g+2\. 
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Solution by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

Since g= l/a=-ft, 

Fn-3-gFn-2 = r * j a"'3 - fT3 - a 1 a"'2 - ^ n ' 2 \= 5^ \^2\{a-? } - ^ 2 

Also, since/32 = (3 + /, theng2 = 1 - g. Hence, 

g2(g+2) = (1-g)(2+g) = 2-g - g2 F 2-g - 1 +g = 1. 

Therefore, the given expression reduces to: 
g2(_i)i-1(_1)n-2gn-2+1 s ; _ g n 

Also solved by Ralph Garfield, Frank Higgins, and the Proposer. 

A MULTIPLE OF £2/7 

B-288 Proposed by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

Prove that F2n(4k+1) = F2n (m°d L2n) for all integers n and k. 

Solution by Graham Lord, Temple University, Philadelphia, Pennsylvania. 

If/7 is even then 
'm+p ~ >m~p ~ LmFp. 

Replace p by 4nk and m by 2n(2k + 1) to get 
F2n(4k+1) = F2n + L2n(2k+1)F4nk . 

The required congruence follows with an application of Garlitz' result: La divides Z.& iff b = a(2c - 1), a> 1. ("A 
Note on Fibonacci Numbers," The Fibonacci Quarterly, Vol. 2, No. 1, 1964, pp. 15-28.) 

Also solved by Clyde A. Bridger, Ralph Garfield, Frank Higgins, A.C. Shannon, Gregory Wulczyn, David Zeitlin, and 
the Proposer. 

A MULTIPLE OF L2n+1 

B-289 Proposed by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

Prove that F(2n+D(4k+1) = F2n+1 (mod l-2n+lh for all integers n and k. 

Solution by Graham Lord, Temple University, Philadelphia, Pennsylvania. 

If p is even then 
Fm+p~Fm-p = LmFp. 

Replace p by 2k(2n + 1)andmhy (2n + 1)(2k + 1) to get 
F(2n+1)(4k+1)- F2n+1 = L.(2n+1)(2k+1)F2k(2n+1)• 

The required congruence follows with an application of Carlitz' result: La divides £& iff b~a(2c- 1), a> 1. ("A 
Note on Fibonacci Numbers," The Fibonacci Quarterly, Vol. 12, No. 1, 1964, pp. 15-28.) 

Also solved by Clyde A. Bridger, Ralph Garfield, Frank Higgins, A.C. Shannon, Gregory Wulczyn, David Zeitlin, and 
the Proposer. 

CONVOLUTED F2n 

B-290 Proposed by V.E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Obtain a closed form for 
n 

2n + 1 + Y^ (2n + 1-2k)F2k. 
k=1 
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Solution by Graham Lord, Temple University, Philadelphia, Pennsylvania. 

The sum of the first k odd indexed Fibonacci numbers is F2k and that of the first k even indexed ones is F2k+1 
- 1, where k> 1. 

Therefore, 
n n~1 

2n + 1 + H (2n + 1-2k)F2k = 2n + 1 + F2n+i-1+2Yj ^2 +?4 +~'+?2k) 
k=1 k=1 

n-1 

- 2n + F2n+1+2 £ (F2k+1~D 
k=1 • 

= 2n + F2n+i +2(F2n -F7-n + 1) 

= F2n+1 +2F2n = L2n+1. 

Also solved by W. G. Brady, Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, Frank Higgins, A. C. Shannon, 
Gregory Wulczyn, and the Proposer. 

TRANSLATED RECURSION 

B-192 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Find the second-order recursion relation for { * > ? [ . given that 
n 

k=0 

where a and b are constants. 

" = J2 ( 1 ) Vk and Vn+2 = Wn+l+bVn, 

Solution by AC. Shannon, New South Wales Institute of Technology, N.S.W., Australia. 

Letyn = Aan + B$n, where A,B depend on yi, y2and a,j3arethe roots of the auxiliary equation 

0 = x2 - ax - b. 
Then 

zn=J2 (n
k)(Aakf-B$k) = A(1 + a)n+B(1+$)n 

k=o 

= ((1 + a) + (1+ $))zn„7 -(1 + a)(1 + $kn-2 = h + 2)zn^ ~(a-b+ 1)zn_2 

since a = a + 0 and b = -a(3. 

Also solved by W.G. Brady, Paul S. Bruckman, Ralph Garfield, Frank Higgins, David Zeitlin, and the Proposer. 

******* 
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*V. E. Hoggatt, Jr. 
*A. F, Horadam 
Virginia Kelemen 
R. P. Kelisky 
Ce He Kimberling 

^Kenneth Kloss 
J0 Lahr 
George Ledin, Jr. 
H4 T. Leonard, Jr. . 

•*C. T. Long 
D. P. Mamuscia 
E. T. Manning 
James Maxwell 
R. K. McConnell, Jr. 

* Sister M. DeSales McNabb 
L. P. Meissner 

F. J. Ossiander 
Fanciulli Pi'etro 
M. M. Risueno 
T. C. Robbins 
M. Y. Rondeau 
F. G. Rothwell 
H. D. Seielstad 
C. E. Serkland 
A. G. Shannon 
J. A. Shumaker 
D. Singmaster 
C. C. Styles 
M. N. S. Swamy 
L. Taylor 

*D. E. Thoro 
H. L. Umansky 
Marcellus Waddill 

*L. A. Walker 
J. B. Westbury 
Raymond Whitney 
Paul Willis 
C. F. Winans 
E. L. Yang 
Charles Ziegenfus 

* Charter Members 

ACADEMIC OR INSTITUTIONAL MEMBERS 

DUKE UNIVERSITY 
Durham, North Carolina 

ST. MARY'S COLLEGE 
St. Mary's College, California 

SACRAMENTO STATE COLLEGE 
Sacramento, California 

UNIVERSITY OF SANTA CLARA 
Santa Clara, California 

SAN JOSE STATE UNIVERSITY 
San Jose, California 

WASHINGTON STATE UNIVERSITY 
Pullman, Washington 

THE BAKER STORE EQUIPMENT COMPANY 
THE CALIFORNIA MATHEMATICS COUNCIL 



BINDERS NOW AVAILABLE 

The Fibonacci Association is making available a binder which can be used 
to take care of one volume of the publication at a time. This binder is 
described by the company producing it as follows: 

"•••The binder is made of heavy weight virgin vinyl, electronically 
sealed over rigid board equipped with a clear label holder extending 
2%" high from the bottom of the backbone, round cornered, fitted 
with a IV2" multiple mechanism and 4 heavy wires." 

The name, FIBONACCI QUARTERLY, is printed in gold on the front of 
the binder and the spine* The color of the binder is dark green. There is a 
small pocket on the spine for holding a tab giving year and volume. These 
latter will be supplied with each order if the volume or volumes to be bound 
are indicated. 

The price per binder is $3„50 which includes postage (ranging from 50f£ to 
80^ for one binder). The tabs will be sent with the receipt or invoice. 

All orders should be sent to: Brother Alfred Brousseau, Managing Editor, 
St. Mary's College, Moraga, California 94575. 


