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Let

be any two sequences, then the Cauchy convolution of the two sequences is a sequence { c,,}

GENERALIZED CONVOLUTION ARRAYS

V. E. HOGGATT, JR.

San Jose State University, San Jose, California 95192

and
G. E. BERGUM

South Dakota State University, Brookings, South Dakota 57006

given by the rule

(1.1

When we convolve a sequence with itself n times we obtain a new sequence called the n%”

1. INTRODUCTION

{on}oes

{ an };"___7 and

n
n = Z akbp-k+1 .
k=1

whose terms are

convolution sequence.

The rectangular array whose columns are the convolution sequences is called a convolution array where the nth col-
umn of the convolution array is the (n — 1% convolution sequence and the first column is the original sequence.

In Figure 1, we illustrate the first four elements of the convolution array relative to the sequence { u,,}

u, uf

u, 2u,u,

A 2uuy +u?
u, 2u,u, +2u,u,

3
3utu, + 6u,u,u, +u;

u3 uy
3utu, quiu,
3utuy + 3u,u? 4uiu, + 6utu?
4uidu, + 12utuyu, +4u 03

Figure 1

Throughout the remainder of this paper, we let

(1.2)

be the element in the m”

row and nt

) = Rmn

Rmn (ul p Uy,

column of the convolution array.

By mathematical induction, it can be shown that

(1.3)
(1.4)

(1.5)
(1.6)
(1.7)
(1.8)

A 4n
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Ren = nu, u6-

- n
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(1.9) Rz, = nu?"u;+( '2’) u2(u2 + 2uzus + 2uzug) + ( 3 ) u7'3(ug+3u22U5+6‘UZU3U4}

n n-4.,, 3 2.2 n n-5 4 n n-6 6
. +(4)u1 (4u2U4+6‘u2u3)+5<5)u, U2U3+(6)U1 uz ,
an

(110) Rgy, = nuf Tug+2 ( 5 )u’,"z(uzu7+u3u6+u4u5)+3 ('::, ) w732 g+ 2upugus + usuZ +uduy)

+4 ( / ) uT*udug + 3uBuguy +umu3) +5 ( 5 ) uT S, + 203u3)
n
+6(6) 7

u',"sugu3+ (" ) u'17"7u27

The purpose of this article is to examine the general expression for A2, and to find a formula for the generating
function for any row of the convolution array.

2. PARTITIONS OF 7z AND R,

A partition of a nonnegative integer m is a representation of m as a sum of positive integers called parts of the par-
tition. The function w(m) denotes the number of partitions of m.

The partitions of the integers one through seven are given in Table 1.

Table 1
Partitions of m m(m)

1 1
2,1+1
3,1+2,1+1+1
4,2+2,1+3,1+1+2,1+1+1+1
5,2+3,1+4,1+1+3,1+2+2,1+1+1+2,1+1+1+1+1
6,3+3,2+4,1+5,2+2+2,1+1+4,1+2+3,1+1+1+3, | 1

1+1+2+2,1+1+1+1+2,1+1+1+1+1+1
71 7,146,2+5,3+4,1+1+45,1+2+4,1+3+3,2+2+3,
1T+1+1+4,1+1+2+43,1+2+2+2,1+1+1+1+3, 15
1T+1+1+42+2,1+1+1+1+1+2,1+1+1+1+1+1+1

. Comparing the partitions of m, for m = 7 through m = 7, with the expressions for A, it appears as if the follow-
ing are true.

1. The number of terms in AR,,,, is equal to 7(m — 7).

2. The number of expressions whose coefficient is ( j” ) ,forj=1,2 -+, m— 1, is the number of partitions of
m — 1 into j parts.

3. The power of uy+7 inan expression is the same as the number of times ¢ occurs in the partition of m — 7.

4. The numerical coefficient of an expression involving ( ) forj=1,23 -,m—1,isequal to the product
of the factorials of the exponents of the terms of the sequence

{ ”n}n:}

in the expression divided into j factorial. The exponent for v, is not included in the product.
In [4], it is shown that these are in fact true statements. That is,

3

DT WN—
-~ N

m-~1

2.1) Rmnlur,uz, <) = 3 () i *Pmitur, uz, ),
k=1 '
where
/
(2.2) Pmk(UI,UZ,Uy ) = Z aw—ka*n’—? uf‘zu;% "'U;[,m, k=a,+a,++am.

wfm-1)
3. SOME FINITE DIFFERENCES

The first difference of a function #(x/ is defined as



1975] GENERALIZED CONVOLUTION ARRAYS 195

(3.1) Aflx) = fix + 1) — fix).
In‘an analogous fashion, we define recursively the nth difference A"f(x) of f(x) as
(3.2) A"flx) = A(A™Tf(x)).
In [3], we find
(3.3) E =< (1) ) = =0T A o).
x=0

Using mathematical induction, it is easy to show the following.

Theorem 3.1. If flx) = (’—IX” )then A"flx) = (1) (""/?‘j;" )
and
Theorem 3.2. If f(x)=( ’+}(+‘9 ) then A"f(x) = (";_Xn” ) .
Applying (3.3), we then have
Theorem 3.3. If f(x) = < "}‘” ) then

m-1
x [m—1 r—x+s _(rts—m+1
5 e () ) )
and =

Theorem 3.4. I f(x) = ( r +j.( ts ) then

Z (- ”x(m—7)<r+x+s) - (__”m-1(j_r—‘-ll-ns+1).

x=0
4. THE MAIN THEOREM

Combining (2.1) with Theorem 3.3., we see that, whenever v, = 1, we then have

m-1 m-1
Z: {___7)/(( -7) Hmn-k+7' Z (_7)/(( 7)2 ( n-—;(+1)ij
k=0 =1

m-1 m-1 m-1
"X e V("N X (2R EE ) P
j=1 k=0 j=1

Now, the only way to partition m — 1 into m — 1 parts is to let every part of the partition equal one. Hence, by
(2.2), we have o
Pmm-1 = U2
so that

(4.1) Z (—1)"( ) Rmnk+1 = Uy .

From (4.1), it is easy to see that the generating function g, (x) for the sequence { Hm,,,,«y}::o ,Whereuy = 1,
is of the form

42) gmi) = 2 L B 11"

In order to determine the generating function g,,(x) for the m® row of the convolution array, it is necessary to
determine what is commonly called “Pascal’s attic.” That is, we need to know the values for the columns correspond-
ing to the negative integers and zero subject to the condition of (4.1). With this in mind, we develop the next two
theorems.
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Theorem4.1. 1t m >2and u, = 1then Bp, o= 0.

Proof. Lettingn=m — 2in (4.1), we have
m-1

m-2
(—HM-I,qm,o = Z (—1)k*1 ( mI:I)Hm,m-kH*Uén-, = 2 (~1)mk <m,'n"—“” ) Amk
k=0 k=1

m-~1
+ud ! = > (—7)m+k( m- ! )Bmk +ud T,
k=1

By (2.1), using / as the variable of summation, and Theorem 3.4 with r = s = , we obtain

m-1 m-1
m-1 +k -1 k -7
SULEED Y Sl DR VLT
= =

m-1 m-~1
S e B e ()5 )
j=1 =0

m-~1
m~1 m-1
] ) o +u = -Pmm_1+tl =0
Y i (jfer) T2 m-1 712
=1

and the theorem is proved.

Theorem4.2. 1fn>1,m=>2andu;=1then
m-1

Am-n =3 (—1)"( ntk= ’) Prok -
k=1

Proof. We shall use the strong form of mathematical induction.
Replacing n by m — 3 in (4.1) and following the argument of Theorem 4.1 where we let r= 0 and s = —1 in Theo-

rem 3.4, we have

m-2 m-1
z (_7)k+7 ( m-—1 ) Rm,m—k—2+uén-1 - Z {_”m+k ( m; 1 )ﬁm,k—f +u5’7-1
=0 k=1

(—7)m-1ﬁml-7 = k
m-1 m-1 .
DD ISV Ll Lk Y o
j=1 k=1
m-1 m-1 . m-1
SIS M/ B L BETLD M g
j=1 =0 j=1
m-1 . m-1 )
D IR UEEIUR R/ DI G T
=1 = |

Recalling that '
—-n \ _ m{n+m—1"7%
( il j

ifn>1,andm>0and( _g ) =0 for all n provided m > 1, we have

m-1

(~1)"™ R a1 = ~Pryet = (=1)™ D (=1) Py +uZ"
i=1

1

so that
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m-1 .
Rm,-1 = (~1)Prmj
/=1
and the theorem is true forn =1,
We now assume that the theorem is true for all positive integers less than or equal to ¢. Replacingn by m - ¢t-.3
in (4.1), we see that
m-2

; m-1
(1) R perr) = 3 (~1)KFT ( m—1 )”m'm-t-k-2+”2
’ k=0 «
m-1
= Z (—1)™% (m; ! >Hm,-(t—k+7) +ug™!
k=1
m-1

m-1
=2 e 30 -1 (T ’) ( t'f*/) +af T
j=1 k=1

where the last equation is obtained by the induction hypothesis.
Multiplying by (~7)~7 and introducing k = 0, one has

m-1 ) m-1 ) m-1 et -1
Bmeterr) = 3 (=107 1Py 37 (1)K (m;’ )(f‘}‘*! )*Z (~1)! ( F1) Pt (-uz)
j=1 k=0 j=1

m-1 - m-1
j-1 t+j—m+1 | j [ t+j -1
< 2 0y (I (=1 (] ) Pt ()
j=1 . L=t

m-1 )
=g (_7}/ ( t]‘_/'f )ij , |

where the second equation is obtained by use of Theorem 3.3 with r = ¢ and s =/ and the theorem is proved.
We are now in a position to calculate the generating function for the m™ row of a convolution array whenuy = 1.
When m = 1, we see that A7 , = 1 for all n > 0 so that

oo

I o N I |
(4.3) gt = 2, K" =
n=0
By (4.1), we have
m-1
Hm,n+1 = Z (_7)k+1 (m;7 )Hm,n—k+7+ugl-1
k=1

so that when m > 2, we can use (4.2) to obtain

o m-1 o0 m-1
- -1 -
gmix) = Z Z (—1)k*T (mk 1 ) Rm,n—k+1Xn+z ug X" = Z (—1)k* ( mk ! )xk X
n=0 k=1 n=0 k=1
= k U'zn-7 = k+1 71 k iy 1 g7
Zﬁm n_k+1Xn +—7—~_—— = (-1) ( m= ) X gmix) + Z Rm _nX_n + 7‘—X
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Hence,
m-1 k-1
(1-x) (~1)k*1 ( m 7) R ex &1 4 uJ1
(4.4) Imlx) = k=1 _n=1 , m>2.
(1—x)"
For special sequences
R pu

with v7 = 1, the polynomial in the numerator of g, (x), m > 1, is predictable from the convolution array of the se-
quence. This matter will be covered by the authors in another paper which will appear in the very near future.
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LETTER TO THE EDITOR

February 20, 1975

Dear Mr. Hoggatt:

I’m afraid there was an error in the February issue of The Fibonacci Quarterly. Mr. Shallit’s proof that phi is ir-
rational is correct up to the point where he claims that 1/¢ can't be an integer. He has no basis for making that
claim, as ¢ was defined as a rational number, not an integer.

The proof can, however, be salvaged after the point where p is shown to equal 1. Going back to the equation
p* — pg = g%, we can add pg to each side, and factor out a g from the right: p? = g(g + p). Using analysis simi-
lar to Mr. Shallit's, we find that ¢ must also equal 1. Therefore, ¢=p/g = 1/1=1. However, * —p— 1=—71#0;
thus, our assumption was false, and ¢ is irrational.

Sincerely,
s/David Ross, Student,
Swarthmore College



A RECURSIVELY DEFINED DIVISOR FUNCTION

MICHAEL D. MILLER
University of California, Los Angeles, California 90024

INTRODUCTION

In this paper, we shall investigate the properties of a recursively defined number-theoretic function -y, paying special
attention to its fixed paints. An elementary acquaintance with number theory and linear recurrence relations is all
that is required of the reader.

Throughout the discussion, p, g, 1, 5, t, p,, p,, - will denote prime numbers.

THE FUNCTION vy
We define a function -y on the positive integers by settingy(1) = 1, and for ¥ > 1,

Y(N) = Z y(d).
d|N,d<N

Example 1:

(1) If p is prime, y(p) = 1.

(2) v(4) = v(1) +y(2) = 2.

(3) v(12) =y (1) +v(2) +y(3) +y(4) +y(6) = v (1) + ¥(2) +y(3) + [y (1) +y(2)] + [y(1) +y(2) +y(3)] = 8.

The following theorem clearly follows from the definition of 7.

Theorem 1. y(N) depends only on the structure of the prime factorization of /.

That is, if / =pf"’ p33 ---p,‘:h, Y(N) is independent of the particular primes p;, and depends only on the set
a,0,, -, ap of exponents. For example, 7y (12) =y(20) = y(75) since 12, 20, and 75 are each of the form p%g.

By actually determining the divisors of //, we obtain the following results:

N y(N) N (N N YN
p 7 I 8 7y 48
o 2 pq 20 e’ 76
pq 3 pg® 26 pPqr 132
p? 4 prqr 44 p*q*r 176
] 8 pgrs 75 piqrs 308
pgr 13 P’ 16 pgrst 541

HN=pHple. ... pgh, we define the exponent of N to be

h
Z a;.
=1

We now derive expressions for y(/V) in a few simple cases, and then proceed to determine the general form.

Theorem 2. y(p") = 2™, C ket
Proof. Forn = 1, the theorem clearly holds. Assume it true for n = k. Thus y(p~/=2""". Now,

YpK*T) = y(1) #y(p) + -+ 4p%) = 2y(p¥) = 2%,

since k_,) _ 7(pk),

(1) +y(p) + -+ y(p
199
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Theorem 3. Ylp"q) = (n+2):2"7,

Proof.  y(p"q) = (1) +y(p) + -+ (p" " )+ ylg) +Ylpg) + -+ (0" g) +y(p") = 2v(e™ T q) +(p" ).
Leta, = v(p"g). Then
ap—2ap-7 = vp") = 2T,
We solve this linear recurrence (using the fact that a, = 1) to obtain the desired result. N
Before proceeding, it will be valuable to make the following observation, If ¥ = p1.pS2 ... . phh, then

Y(N) = 5_“, yl(d)

is a sum involving two types of terms: those involving divisors of V/ whlch have p™ as a factor, and those which do

not. The sum of all terms of the latter type we recogmze as 27(p T.p%. ....pph). Each of the remaining terms
is of the farm y(p" d), where d properly divides p2 - - po‘ Moreover in each case, d has lower exponent than
that of V/pt

This observation leads us to a proof by induction on the exponent of A in order to find an expression for y(V).
We first look at the following example.

Example 2. Y0"4%) = 290" q%) +4(p") +v(p"q).
Using Theorems 2 and 3, and letting a,, = 7(p"q2), we rewrite this equation as
ap—2ap-g = 2" T +(n+2)2"°7.

Noting that a, = y(g2) = 2, we solve to find a,, = (0> + 7n + 8)2"2,

Using this example and observation as motivation, we now derive the general form of y(V) for any .

Theorem 4. Let

An = p?.pz‘xZ . one .pz‘h ,
where a, ,a,, -+, ap are fixed. Then
Y(A,) = Pin)-2",

where P(n) is a polynamial in n of degree e = a, + -+ ay with positive leading coefficient.

Proof We shall use induction one. Fore = 0, we have

An = p’ and Y(An) = 2" = .27

by Theorem 2. Now assume the theorem true for e < &, and look at B, = p{’-C, where C is of exponent k, andp,
does not divide £. By an earlier observation,
m
Y(Bn) = 2v(Bp_y) = 3 ¥(p?di),
=1
where d,, d,, -, dny, are the proper divisors of £. Now each such proper divisor d; of € in the summation is of ex-
ponent less than 4. Thus, by the inductive hypothesis, we can rewrite the right-hand side as
m
D Piln)-2" = P¥(n)-2",
=1
where P;(n) is a polynomial of degree the exponent of d;, and P*(n) is a polynomial of degree kK — 7 with positive
leading coefficient.
Now let a,, = y(B,, ). We thus have a non-homogeneous linear recurrence a, — 2a,,_7 = P*(n)-2". We try a particu-
lar solution of the form a,, = @(n)-2", where Q(n) is a palynamial of degree k. Hence we need
Qln)-2" - 20(n - 1)-2"" = P*n).2",

or @fn) — Q(n — 1) = P*(n). This will always have a solution @(n), of degree k, with positive leading coefficient.
Thus @(n)-2" is indeed a particular solution to the above recurrence relation. The general solution is therefore
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ap = ¢2"+Q(n)-2" = 2" (c +Qln)),
where ¢ is a constant. The theorem is proved.
This theorem, although giving much information about the nature of the function 7, does not explicitly give us a
formula from which we can calculate (V) for various values of /. However, it does tell us that once we know y(p"d)

for d with expanent less than &, we can find y(p"d*) with d* of exponent k by solving a relatively simple (yet most
times tedious) difference equation.

Doing this for a few simple cases, we obtain the following results:

N Y(N)
o 2n—1
p"q (n +2).2n-1
U n’ +27n +8 on-1
p"g n® + 15n* ;55n +48 | on-1
pgr (n* +6n +6).2"""
p"Pr n® + 13n* -21-42n +32 on-1

p"qrs (n® + 1202 + 36n + 26)-2"""

Theovem 5. (V) is odd if and only if /V is a product of distinct primes.
Proof. Recall the definition of y: (1) =1, and

YN = 2, yld)
dlN,d<N

for V > 1. We cannot directly apply the Mobius inversion formula to v, since the latter equation does not hold for //
= 1. We thus introduce an auxiliary function ) defined as follows:

_ flifnv=1
i) = {0 otherwise .

Then, for all positive integers /V, we have

YN) = D yld)+n(N), o 2[y(N)-n(N)] =2 3. yld) = Y yld)-n(N)
diN,d<N diN,d<n din
Let F(NV) = 2v(N) — n(N). We can now apply the Mobius inversion formula to F(/) to find that

YN) = Y pNAIF() = 2 Y wiN/dpy(d) =3 piN/dm(d) = 2yN)+2 37 piN/dhy(d) - piN)
dlN dl din dIN,d<N

From this, we deduce that

YIN) = V) =2 Y ulN/d)y(d).
dIN,d<N

Clearly, (/) is odd if and only if u(V) #0, that is, if and only if // is a product of distinct primes.
SUPER-PERFECT NUMBERS

We will call a positive integer NV > 7 super-perfect if y(N) = N.

Theorem 6. p" is never super-perfect.

Proof In order for p” to be super-perfect, we would need p” =2"'7, by Theorem 2. This forces p = 2, and thus
a contradiction.

The following theorem assures us of the existence of infinitely many super-perfect numbers.

Theorem 7. p"q is super-perfect if and only if p = 2 and n + 2 = 2q.
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Prooﬁ By Theorem 3, for p"g to be super-perfect, we need {n + 2)2" 7 = p"q. 10> 2, we must then havep = 2,
and after cancellation, we get n + 2 = 2g, as required. Forn =0, 1, or 2, the equation leads to a contradiction.

Since p and g are distinct, the first g and n for which n + 2 = 2g are g = 3 and n = 4, which gives 2* .3 = 48 as the
first super-perfect number of this form. As it turns out, it is the only super-perfect number less than 1000.

q n N=p"g (p=2)
3 4 48
5 8 1280
7 12 28672

11 20 11534336

Theorem 8. N=p"g? is never super-perfect.
Proof. From Example 2, we know that
Yip"q?) = (n? +7n +8)-2"2 .
Assume that
P = (n* +7n+8)-2"2.
For n > 4, this forces p = 2, which leads to (2g/)* = n* + 7n + 8 Howeverwe clearly have the inequality
n+3) <@?+7n+8 < (n+4) for n > 4.

Thus no solution exists in this case. f 7= 0,1, 2, 3, or 4, we get p¢g2 = 2, 8, 26, 76, 208, respectively, none of
which are possible.
The following theorems are stated without proof, for the proofs follow the same patterns as above,

Theorem9. N = p"g® is never super-perfect.
Theorem 10. N = p"qr is super-perfect if and only if p = 2, and 2qr = n* + 6n + 6.

g r n N=p"gqr (p=2
13 3 6 2496
37 3 12 454656
13 1 14 2342912
73 3 18 57409536

In all cases, we are faced with trying to find values for n which make a given polynomial in » have a certain prime
factorization structure. This is, in general, a very difficult, and in most cases, an unsolved problem.

0DD SUPER-PERFECT NUMBERS
Recall from Theorem 5 that y(AV) is odd only when /V is a product of distinct primes. We now use various combina-
torial methods to prove:
Theorem 11. There are no odd super-perfect numbers.

Proof. Suppose that p,, p,, - are distinct primes. Leta, = 1and a; =y(p,p, - -p;), i = 1, 2, -~ Using Theorem 1
to consolidate terms, we find that

n—1
e (3)e0r (3 )oree (o2 Jows - 5 (3o
=0
Then
s n—1 a
n _ 8
nl Z itln — i)t
i=
Let
b, =0 and bix) = bix?
n n! U ‘
=0

We thus have



1975] : A RECURSIVELY DEFINED DIVISOR FUNCTION 203

brx/-e"=2bfx"2"7= 5 > —b+Z Z( T2 +ba | X7 = 2b(x) b,

=0 /=0 n=1 /+/=n =0
But a, = &, = 1, so we solve to find that
2x 3x
bix) =—L— =y 1+ € e,
2" 2 4 8

We now expand each term in the infinite sum in powers of x, and then collect coefficients to obtain

(x}—/zZZ——-—x (g° =1).

n=0 i=0 2'n1
Thus
oo n oo "
b,—,=’/zzl_— and ﬂn=7~’zl—.
=0 2'n! =0 2'

In order to proceed, we need the following lemma.
Lemma. For fixed £,

frlx) = Z nkx"
n=0

converges for |x| < 1, and is equal to

(1—x)%*1
where Py (x/ is a monic polynomial of degree k with non-negative coefficients.
Proof The convergence part of the lemma follows immediately from the ratio test. For & = , we have

so the lemma holds. Assume it true for k =s. Thus

o

Ps(x)
folx) = nSx" = S
Zo (1—x)**

Now

, - o x(T=xSFPL) #xls + 1PNT = x)5 x(1—xIPilx) + x(s + 1)Pg(x)
fer1(x) = xfslx) = Z sty = XX sX X2:+2 s X AEx S_X S:;S Ly
=0 (1—x) (1-x)

It is straightforward to verify that the numerator is indeed a monic polynomial of degree s + 7 with non-negative
coefficients. The lemma follows.
Putting x = %2 in the lemma, we find that

ax = b Z ok KPkE) _
=0 on (V}k+1
Using the fact that P, (x)= 1= 0/, we can show (viaa S|mple induction argument) that the sum of the coefficients
of Py (x) is k. Smce Py (/z) < Py (1), we clearly have ag < 2%k!.
CompanngZ k! with the product

2%pi(%).

_H pi
=1
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of the first k odd primes, we see that k£ = 7 is the lowest & for which
k
2%k < 11 p; .
=1
But once this inequality holds for one £, it holds for all larger k. For by multiplying each side by 2(k + 7), we get
K+ k k+1
2Nk + 1) < T pp2tk+1) < T p;,
=1 =1

since p+7 > 20k +1).
Therefore, for all &,
k
a < II p;,

=1
and in particular, aj is less than any product of & distinct odd primes. We conclude that no product of distinct odd
primes can be super-perfect, and the theorem follows.

Fokdodokk

SIGNIFICANCE OF EVEN-ODDNESS OF A PRIME’'S PENULTIMATE DIGIT

WILLIAM RAYMOND GRIFFIN
Dallas, Texas

By elementary algebra one may prove a remarkable relationship between a prime number’s penuitimate (next-to-last)
digit's even-oddness property and whether or not the prime, p, is of the form4n + 7, orp = 1 (mod 4), or of the form
4n + 3, or p =3 (mod 4), where n is some positive integer.

The relationships are as follows:

A. Primes=1 (mod 4)
(1) If the prime, p, is of the form 10k + 1, k being some positive integer, then the penultimate digit is even.
(2) 1f p is of the form 10k + 3, then the penultimate digit is odd.

B. Primes =3 (mod 4)
(1) 1f p is of the form 10k + 1, then the penultimate digit is odd.
(2) If p is of the form 10k + 3, then the penultimate digit is even.

The beauty of these relationships is that, by inspection a/one, one may instantly observe whether or not a prime
number is = 1, or = 3 (mod 4). These relationships are especially valuable for very large prime numbers—such as the
larger Mersenne primes.

Thus, it is seen from inspection of the penultimate digits of the Mersenne primes, as given in [1], that all of the given
primes are = 3 (mod 4). This holds true for a/f Mersenne primes, however large they may be, for, by adding and sub-
tracting 4 from M, = 2P — 1 and re-arranging, we have

Mp=2P-1+4—4=2P_4+3=4(2°P2_7)+3 =3 (mod 4).

[Continued on Page 208.]



ANOTHER PROPERTY OF MAGIC SQUARES

H.S. HAHN
West Georgia College, Carrollton, Georgia 30117

1. INTRODUCTION

Consider nxn matrices A = [a;;/ with complex number entries satisfying

1 Zﬁij = Z ajj = Z ajj = Ealn-iﬂ
i j i i

Definition. Call A (multiplicatively) balanced if

-

@ 2o May = 3 llay,
Jjoi P

and completely balanced if

(3) Do Mlajrz =Y Mla+z)
i i

for all complex number z
These two properties are explored for n = 3, 4 and 5. Note that magic squares are our main object and there are
millions of them which satisfy (1), of order 5 alone.

2. THEOREM

These squares of order 3 are all completely balanced.
Proof. 1t is well known (see [2]) that (1) implies

k+a k—a—b k+b
laj] = | k—a+b k k+a—b ,
k—b k+a+bh k—a

where &, a, b are arbitrary parameters.
A direct computation can show (2). An easy way to see this is to change (2) into a determinant as follows:

k+a k k—a
2 Waj~3 May =
i ! il

k+a—b k—-b k—a-b
k+a+h k+b k—a+bh
because the first row is the average of the other two rows.
However, the majority of magic squares of order n(> 3) are not balanced. For example, the famous Diirer’s magic
square (Fig. 1) is not balanced and the second one (Fig. 2) is balanced and also completely.
An nXxn matrix A,to be completely balanced,all the coefficients of the polynomial in z, say

i
obtained from (3) have to be 0. Equation (2) is merely ¢, = 0. If ¢, =0, i.e., A is balanced, to determine whether A
205

dyy 8y A3
dyy dy Ay
3y, 83 8y

=0
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16 3 2 13 1 14 7 12
5 10 1 8 15 4 9 6
9 6 7 12 0 5 16 3
4 15 14 1 8 1 2 13
c.p.s. = 8,984 p.s. = 9,104

r.ps. = 11,024
¢.p.s. for column-product sum

Figure 1 Figure 2

is further completely balanced it is sufficient to show, by the fundamental theorem of algebra, that the above poly-
nomial is satisfied by any n different values of z In fact, checking for » — 4 (n > 3) values of z is enough. For:
ch=n—n=0,

L RDIDILED IPVE R
i i

Cr2 = D5 D aaki— 3 3 daik = z [ PIDILTTIED DD a,-,-a/k]
i<k

i j i<k 7 itk ik

iJ k#i iJj k#i

= ZL[Z ajj Z Ak -—Zaj,- Z ajk] = —2’— [Eﬁ,‘j(g —a,‘j) -E aj,-(S— aj,'} ]
i iJ
= 21 [SZa,y—Zag—SZajﬁEaﬁ ] =0,
ij ij iJ L

where S is the row (or column) sum, and

tn-3 = 2o [Z djeajrake — P aridgak | = é ST 20 aieajelS — aje — aje)
¢ Li<i<k i<j<k t L i#
- Z atjag; (S - agj — atj)]
i#j
-
_ 1
a3 Z S E ajrajr — 2 z a,-fajt -8 Z arjagj +2 z: agat,-
t L # i#i i#j i#

D=

[ -
2| S lieaje—agag) -2 Y aZ(s —ai) +2 Y af(s - ay)
t L # i i

(the first sum is 0 as in c,-2)

2_ .2 3_ .3
M EDICEEHE 2 fait - ati)] = ‘%[ § D Mag —ajg) +3 (e - ag}]
L f ti ti

t

XTEN



1975] ANOTHER PROPERTY OF MAGIC SQUARES 207

The above fact implies the following.
Theorem. Any balanced square of order 4 is completely balanced.
For n(> 4) we are unable to show c¢,,_4 = 0. An obstruction is the appearance of the sum

2,2 2,2
z : § "itajt”z :atiatj
t i# i#f

in cp-4. Since

2
2.2 _ 2 4
Z‘ﬁ!aitajt‘ (Z:"it> —Z aj ,
i#f i i

i#f

a sufficient condition for c,—4 = 0 or a condition that any balanced square of order 5 to be completely balanced
may be stated by
2 2

2 _ 2

@ P DR DM DI
t i t i

Incidentally, Eq. (4) is the condition easily satisfied by any doubly magic square, a magic square /a;;/ such that [ai?]
is also a magic square. Summarizing the above argument we state a theorem.

Theorem, 1f a halanced square of order 5 satisfies the condition (4), then it is completely balanced.
In the theorem (4) is a sufficient condition and we do not know whether it is necessary. All the balanced magic

squares of order 5 that we have been able to check turned out to be also completely balanced and they do satisfy
(4). Thus, we make a conjecture.

Conjecture. A balanced magic square of order 5 is completely balanced.
3/ CONSTRUCTION OF BALANCED SQUARES

Some magic squares of order 4 or 5 gonstructed by adding two orthogonal Latin squares seem balanced (also
completely). For example:

a d b c u v X y 14 23
c b d a v o u Yy X 3 2 41
b c a d y x v u 2 31 4
0 5 10 20 17 9 12 23
+ 0 20 0 & 14 21 3 7
5 0 20 10 8 2 24 11
20 10 5 0 22 13 6 4
p.s. = 19,646
abocde Xystuv 12345
deabec st vaxy 45123
becdeal+t]vxyst|=) 23451
eabcd ystvx 51234
cdeakb tvaXxys 34512
0 5 10 15 20 17 7 13 19 25
10 15 20 0 5 14 20 21 2 8
+ 20 0 5 10 15 |={ 22 3 9 15 16
510 15 20 0 10 11 17 23 4
1520 0 5 10 1824 5 6 12
p.s. = 607,425 diagonal p.s. = 599,399

Figure 3
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REMARKS

1. We do not know any nontrivial (all different entries) balanced square of order greater than 5. We constructed
a magic square of order 10 from the famous pair of orthogonal Latin squares of that order, but we found it not
balanced.

2. We do not know an example of a balanced magic square which is not compietely balanced.

3. Magic squares of order 6, 7 and 8 appearing in Andrews’ book [1] are not balanced.

4. We did not encounter yet a balanced square whose two-way diagonal product sums are equal to the row prod-
uct sum (really diabolic one) but at least two diagonal product sums alone can be equal as in Fig. 3.

REFERENCES

1. W.S. Andrews, Magic Squares and Cubes, Dover, 1960.
2. Jack Chernick, ““Solution of the General Magic Square,” Math. Monthly, March 1938, pp. 172—175.
Yoioirioioiok

[Continued from Page 204.]

Likewise, it is obvious by inspection of a table of Fibonacci primes (> 5) that they are = 1 (mod 4) and thus expres-
sable as the sum of the square of twa smaller integers; specifically, it is well known that

= 12 2
Up = Ulp-1)2* Utp-1
2

where Uj, is a Fibonacci prime (> 5).
Thus, it is perceived that the Mersenne and Fibonacci primes (> 5) form two mutually exclusive sets; i.e., no primes
(> 5) can be both a Mersenne and a Fibonacci prime.
REFERENCE

1. William Raymond Griffin, “Mersenne Primes—The Last Three Digits,” J. Recreational Math, 5 (1), p. 53, Jan.,
1972
ootk



ON HALSEY’S FIBONACCI FUNCTION

M. W. BUNDER
The University of Wollongeng, Wollongong, N.S.W., Australia

Halsey in [1] defined a Fibonacci function by
m

-1
7
(1) Fy = Z[(u—k)f x"-Zk-’n-x)kdx] ,
0

k=0 &
where m is the integer in the range (u/2) — 1 <m <(u/2)
This definition was criticized by Parker {2] for (a) being restricted to rational u's and (b) destroying the relation
(2) Furg = Fy+Fyg .

Neither of these criticizms are quite fair. Firstly, there is nothing in Halsey's paper to prevent (1) from defining
F,, for all real v and secondly (2) is still satisfied for approximately half of the real values of  and it is generalized
in the ather cases. This we show helow.

Firstly, we express £, in the more convenient form given implicitly by Halsey:

m
@ D S CRr A I

k=0
where (u/2) — 1 <m < {u/2) and m is an integer.
Now if (u/2) = % <m < (u/2), then
utl _ u utl
7 I <m«< 3 < 7
so that
m
Fu'+1 = E(U+7;k*7)
k=0
with the same m.
Also,
”2—7—7<m—7<‘i—1 <”;7
so that
m-~1
—f =k —
Fy-1 = E( “ 7/( 7)
k=0

also with the same m.

Now
209
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(v =k w—k=1) _ S~ fu—k=1)!
r - X u— _fu—k=1)1 _ u—k—1)
Furt = Fu 2 Tu=200 "~ la= 2k~ T)IkI ?_—; a = 2Kk = 1)1

m-1 ( ; 7}/
_ u—1-q—1) _
2 (u—1—2q—1)lgi - Where g=k—1
q=0

m-1

G R

q=0
If on the other hand (u/2) — 1 <m < (u/2) - %, then

utl _ u + utl
3 7<2<m 1< 7
so that
m+1
71—k —
Furr= (7T
k=0

where we are still using m as in (3).
Now

m
_(u-m-1 (u—k)! (u—k—1)!
Furr=Fu = ( m+1 ) +Z( —2k)IkI ~ {u— 2k — 1)1k!
k=1

0CT. 1975

m~1
(”;}’4’_’7’7) +Z(“_7;q“’) as before
q=0
fu-m—1\_[u-1-m—1" _ (u—m—-1) (fu=m-=2)!
( m+1 ) ( m )+F"" Fust * 1= 2m = 2im 171~ = 2m — 2)im]
(u—m-=2)! - u—-m-2
F”‘7+(u—2m—3)!(m+7}! F”'7+( m+1 )
Thus we have for 2m < v <2m + 1 that (2) applies and for2m + 1 <u <2m +2
®) Fu+7=Fu+Fu—7+(u,_nT1_2) .

where m is an integer.
Equation (5) also reduces to (2) when v is an integer and is also verified by Halsey’s tables for F,,.

REFERENCES

1. Eric Halsey, “The Fibonacci Number F, where v is not an Integer,"” The Fibonacci Quaiterly, Vol. 2, No. 2

(April 1965), pp. 147-152.

2. Francis D. Parker, ““A Fibonacci Function,” The Fibonacci Quarterly, Vol. 6, No. 1 (Feb. 1968), pp. 1-2.
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FIBONACCI MULTI-MULTIGRADES

DONALD C. CROSS
St. Luke’s College, Exeter, England

Readers of The Fibonacci Quarterly will probably be familiar with multigrades. Here are two examples:

(1) 1M+ 6M+8M = 2M 4™+ 9Mm (m=12)
and
(2) 1M+ 5M+8M 4 12M = 2M £ 3M 4+ 79™ + 171 (m=1223).

The first example is called a second-order multigrade; the second example, a third-order multigrade.
Adding, subtracting, multiplying and dividing do not affect the equality of a multigrade, provided we perform the
same operation or operations on each element in it. For example, Eq. (1) above becomes

2M+7M+ 9™ = 3™+ 5M 4+ 10™,
where m = 7,2, if we add 1 to each element; Eq. (2) becomes
2T+ 10™ + 16™ +24™ = 4™ + 6™ + 20™ + 22,
where m = 1, 2, 3, if we multiply each element by 2.
This note is concerned with what | call second-order Fibonacci multi-multigrades. (I define [1] a multi-multigrade
asamultigrade having three or more “components” as compared with the normal two “components” in a multigrade

asin (1) and (2) above.)
Here are some examples of Fibonacci multi-multigrades:

3) 0™ +(3.3)™ +(3:3)™ = (3-12)" +(3-12)" +(3.22)" = .. = ...
(4) O™ +(3:7) +(3-7) = (3-12)" +(3-22)" +(3-32)™ = (7.12)" +(7-1%)" +(7.22)™
= (12)7 + (42)7 + (52)™
G) 07 +(3-19)7 +(3-19)™ = (3-22) +(3.32)™ +(3-52)" = (19-12)" + (19-12)™ + (19.2% )"
= (12)" +(72)7 + (82)7
(6) 0™ +(3.49)™ + (3-49)™ = (3.3%)7 +(3.5%)™ + (3-82)™
= (49-12)M +(49-12)™ +(49-22)™ = (22)™ +(11%)™ + (13%)"
0™ + [3(Fap+a — Fn-Frsg )™+ [3(Fapiq = Fo-Fnsg )™ = [3F2,1]™ + [3F2,5] ™ + [3F2, 5] ™
= [(Fopsa = Fr-Frt1)F2]™ + [(Fapsg — Fr-Freg)F31™ + [(Fopsq — Fp-Fre1)FE1™
= [F2]™ + [(Fpis — Fn)?1™ + [Ffus]™ (m = 1,2).
Clearly, we can expand our multigrades by a simple process. If we multiply (4) by 19 x 49, (5) by 7 x 49 and (6)
by 7 X 19, we get
9™ 4 (3.7-19-49)™ + (3-7 -19-49)™ = [(3-19-49)12]™ + [(3-19-49)22] ™ + [(3.19-49) 32] ™"
= [(7-19-49)12] ™ + [(7-19-49)12]™+ [(7-19 -49)22]™ = [(19-49)12]™ + [(19-49)4%]™ + [(19-49)5%] ™"
= [(3-7-49)2%] + [(3-7-49)3%] ™ + [(3-7-49)52] " = - = [(7-49)1%]" + [(749)7%]" + [(7-49)8%]™
= [(3-7-19)32] + [(3-7- 79}52]'77 #[(3-7-19)82]™ = . = [(7- 19)22]™ + (7. 79)772]m+ 7 7‘9}732]m’
wherem = 1,2, -
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It is possible to obtain multigrades of higher and higher powers by using the traditional method summarized by
J.A.H. Hunter and myself in an article several years ago [2].

| give here, by way of example, the following which | recently derived:

(F2)™ + [(Frpa— Fp)? 1™ + [3F3 42+ 2Fn-Frsg — FE]™ + [Fieq + 3Ffsg — FEI™

= (3F7 )™ + (2Fn - Fasea)™ + (3F343)™ + (3FR43+ 2F - Frag — 3FEL1)™
where m=1,2 3,
07 + (Fpt5)™ # (Fpig + Fp)™ + (2Fpss + Fn)™ = (Frsg)™ + (Fusa)™ + (Fpsg+ Fo)™ + (Fpig+ Fre2)™,
where m=17,2 3%
O™+ (Fpig+ Fp)™ + (Fpig + Frea)™ + (Fris + Fpe3)™ + (Fpiz + Fp )™ + (Fpez + Fre2)™

= AFpa2) " # (Frsa)™ + (2Fp15)™ +(3Fps5+ Fp)™ +(Fpig+ Fp)™ + (Fpig+ Foe2)™ .
where n=17,2, 3, 4*%
REFERENCES
1. Donald Crass, “Second- and Third-Order Multi-multigrades,’” Journal of Recreational Math., Vel. 7, No. 1, Winter
1974, pp. 41-44,

2. D.C. Cross, “Multigrades,” Recreational Mathematics Magazine, No. 13, Feb. 1963, pp. 7-9.

3. D.C. Cross, ““The Magic of Squares,” Mathematical Gazette, Vol. XLV, No. 353, October 1961, pp. 224—227 and
Vol. L, No. 372, May 1966, pp. 173—-174.

*If we add F,+; to each term, the multigrade reads
(Foie1)™ + (Fpiq+ Freg)™ + (Fpeo + Fres)™ + (Fpio + 2Fpe5)™ = (Fpe3)™ + (Fpt1 + Fpe3)™

+ (Fn+2 + Fn+6'}m + (Fn+3 + Fn+6}m;
where m = 1,2, 3.

**1f we add F,+; to each term, the multigrade reads

(Fpe1)" +(Friot Frus)™ +(Fpig+ Fnis) ™ +(Fpeg + Frig+ Fris)™ + (Fpso# Fpez)™ #(Frez+ Frez)™
=AFnt3)" #(Fpt1+ Fns3)™ +(Fni1 + 2Fn45)" + (Fpip+ 3Fps5)™ + (Fpsz + Fne6)™ + (Fpi3+ Fri)",
where m=1,2 3 4
F———



ON FIBONACCI NUMBERS OF THE FORM k2 + 1

H. C. WILLIAMS
University of Manitoba, Winnipeg, Manitoba, Canada

Consider the Diophantine equation '
(1) X-v)7 =x5-y%,
where X, Y are to be integers. We have an infinitude of trivial solutions of (1) given by X =m, Y = m, where m is an
integer parameter. We shall concern ourselves here with solutions (X, Y) of (1) for which X # Y, There is no loss of
generality in assuming that X > V.

Using an idea of Rotkiewicz (cf. Sierpinski [56]), we letd = (X,Y) and X = dx, Y = dy. Substituting this in (1) and
rearranging terms, we get

d?(x — y}s = (x— y}4 +5xylx —y)? +5x2y2 .

Since (x,y) =1, x >y, and (x — y) must divide 5x2y2, we must havex — y = 7. Henge
2) d? = sy* + 10y + 10y2 + 5y + 1.

We rewrite (2) as

1642 = 5[(2y +1)2+1]2 - 4.
Putting
v=2d and  u=[2y+1)2+1]/2,
we have the familiar equation
(3) vZ—5u? = 1.
Now it is well known that if (v,u) is any solution of (3), there exists an integer m such that
u= (F6m+3)/21
where the Fibonacci numbers £, (In|=0, 1,2, ---) are defined by the recurrence relation
Fﬂ+7 = Fn + FI'I-7 (|”| = 0/ 7/ 21 "')
together with the initial conditions Fg = 0, F7 = 7. Thus, in order for (1) to have a solution, we must have an integer
m such that
Fem+3 = (2y + 7)2 +17.

In Gryte et al, [3] it was shown, by means of a computer search, that the more general equation
(4) Fo=k2+1
has no solution for any n such that § < n < 705, In this note we will show that all solutions of (4) are given by n=
#1, 2, £3, £5. Hence, the only solutions of (1) such that X > Y are (1,0) and (0, —1).

We first note that since 3| F,, if and only if 4|n, (4) has no solution if 4 |n. From Lucas’ [4] identities (52), we see
that

Fom+1—=1= Fplm+s when 2|m,
Fom+1—1= Fms1lm when 2fm,

Fom=1= Fmeilm+; when 2fm.

213
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Here L, (In1=0, 1, 2, ---) are the Lucas numbers defined by
Lpty = Lp*Llpg (lni =012 )

together with Lg=2, L= 1. We also have
2lmir = Lm+5Fm = 3lm-1+5Fm-1.

2Fm+1 = L+ Fm.

If p is any prime divisor of F, and L7, then p is a prime divisor of L. Since (Fp,, L) = 1,2, we see-that
p must be 2. From the fact that Zj/(Lm, Lm+1), it follows that (Fp,, Lyp+7) = 1. Using similar reasoning, it is not
difficult to show that (F 47, L) = 1. Finally, if p1(Lpy+7,Fm-7) and 2{m, then p|3L ,_7. In this case it is possible
forp=3 1fp#3, thenp|(Lpy-1, Fm-7)and p =2, but, since 2{(Lpy,, Lm+1), thisisnot possible. f9|(L 41,  ma1),
then 3|L -7, which is also impossible; consequently, (L+7, Fryp-7)= 1 0r 3.

in order to solve (4) we consider two cases.

Case (i). n odd.

Here we have

K2 = Flne1)/2Lin+1)/2 or k% = Frpepysaln-11s2 -
In either event, we must have some integer r = (n £ 7)/2 such that |F, | is an integer square. The only possible values
for r are £1, 0, £2, £12 (see Wyler [6] or Cohn [1]); hence, it is a simple matter to discover that the only solutions
of (4) for odd nn are n = £1, 3, 15,
Case (ii). 7 even,
In this case 4)n and
k2 = Fn/a-1Ln/2-1.
i (Fn/2-1, Lns2+1) =1, we have
Fnjo-1 =t and n/2—-1=+1,02 12

The only possible value of n such that (4) is satisfied isn = 2. If (Fp/2-7, Lns2+1)=3, wehave F/o_7= 352 for
some integer s, Putting r = L, /2_7 and noting that 7/2 — 7 is even, we see from the identity

L2 - 5F2 = a(-1)"

2

that
(5) r? - 455% = 4.
Since the Diophantine equation
x% - 45y2 = 4

has the fundamental solution x = 7, y = 7 and the equation
x?- 45y2 = -4

has no integer solution, we see from Cohn [2] that the only possible solutions of (5) are given by

5‘2 =0,uy,uz,uz,

where uy = 1, ug =7, uz = 48. That is, the only solutions of (5) are (£2,0), (+7,£1). It follows that F,,/2_7= 0,3 and
the only possible even value of n such that (4) is satisfied isn = 2,
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THE FIBONACCI LATTICE*

RICHARD P. STANLEY
Department of Mathematics, University of California, Berkeley, California 94720

1. DISTRIBUTIVE LATTICES

Our object is to investigate a certain distributive lattice F, closely related to the Fibonacci numbers. First we will
review some basic properties of distributive lattices and discuss some general combinatorial problems associated with
them. Thus this paper can be regarded as a semi-expaository survey of some combinatorial aspects of distributive
lattices.

In order that the combinatorial invariants we will be considering are finite, we need to restrict ourselves to dis-
tributive lattices L satisfying the following property:

(W) L is locally finite with a unique minimal element 0, and only finitely many elements of any given rank (or
height).

By locally finite, we mean that every segment [x,y/ = {z|x <z<y } of L is finite. The rank k of an element
x € L is the length of the longest chain between 0 and x. In any distributive lattice, if the length & of the longest
chain between two elements x and y is finite, then the length of any saturated (or unrefinable) chain between x and
y is also k. A distributive lattice satisfying property (W) will be called a W-distributive lattice.

Recall that an order ideal of a partially ordered set P is a subset / C P such thatif x/andy <x, theny /. By a
fundamental theorem of Garrett Birkhoff [2, Ch. I1l, §3], corresponding to every W-distributive lattice L is a par—
tially ordered set P, uniquely determined up to isomorphism, satisfying the following three properties:

(i) Every element of P is contained in a finite order ideal of P,
(ii) P has only finitely many order ideals of any given finite cardinality &,

(i) L is isomorphic to the set of finite order ideals of £, ordered by inclusion.

Conversely, given any partially ordered set P satisfying (i) and (ii), the lattice of finite order ideals of P (ordered
by inclusion) is a W/-distributive lattice. A partially ordered set satisfying (i) and (ii) is called a W-ordered set. The
correspondence between W-ordered sets P and W-distributive lattices L is denoted L =J(P). P isisomorphic to the
sub-ordered set of L consisting of all the join-irreducible elements of L. If / is a finite order ideal of P, then the car-
dinality I/| of 7 is equal to the rank of / in J(P).

If P is a W-ardered set, then we define a P-partition of n [18] to be an order-reversing map o : P—>{(J, 1,2, - }
satisfying

Zo(x) = n,
x<P

(In particular, only finitely many elements x of P satisfy ofx) > 0.) The statement that o is order-reversing means
that if x <y in P, then ofx) = ofy). The parts of o are the non-zero values ofx) (counting multiplicities). Let a(m,n)
denote the number of P-partitions of n with largest part < m. Since P is a W-ordered set, it follows easily that afm,n)
is finite. It can be shown that a(m,n) is the number of order ideals of cardinality  in the direct product P X m,
where m denotes an m-element chain,

m ={7,2,---,m}.

*Supported by the Air Force Office of Scientific Research AF 44620-70-C-0079, at M.I.T.
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Furthermore, let a(n) denote the total number of P-partitions of n. Hence

lim afm,n) = aln),
m—>o
and afn) is the number of order ideals of cardinality n in the partially ordered set Px/V, where // denotes the natural
numbers,
ﬂ={7,2,31...}_
In particular, a(7,n) is equal to the number of order ideals of cardinality n in P (equivalently, the number of ele-

ments of rank n in J(P)), since PX1 = P. In fact, there is a one-to-one correspondence 0 < /(o) between order-
reversing maps ¢ : P — { a1 } satisfying

z olx) = n,

XEP
and order ideals /(o) of P of cardinality n, viz.,
Io) = {xiotx) = 1}.
The number a(7,n) is denoted j,,(P) or simply j,. If P is finite, then the total number of order ideals of P is denoted
j(P), so j(P) = [J(P)|.
If L = J(P) is a W-distributive lattice and / = L, then define e(/) to be the number of saturated chains between 0

and /. (This number is obviously finite.) It is not difficult to see that e(/) is equal to the number of order-preserving
bijections o : / — k, where |/| = k. In fact, such a bijection o corresponds to the saturated chain

(1) pcalt)col2)ccol.
Thus a saturated chain between 0 and / corresponds to a permutation o' (1), 0-*(2), ---, 0-'(k) of the elements of /.

This provides a systematic basis for studying relationships between sequences and lattice paths which occur fre-
quently in combinatorial theory and probability theory.

2. EXAMPLES

By now the reader may be averwhelmed by a plethora of definitions and anxious to see the point of them. We will
give several examples, some of which will be used later, to illustrate the significance of the above concepts.
Example 1. Let P =/, the natural numbers with their usual ordering. Then a P-partition of 7 with largest part <m
is just an ordinary partition of n with largest part <m [8, Ch. 19]. As is well-known,
- n m i-1
E almn)x" = 11 (1-x')"" .
n=0 =1
Similarly afn) is equal to the total number of partitions of n (usually denoted p(n)), with the corresponding gen-
erating function
Z alnx™ = I (1- x')T,
n=0 =1

To tie in with subsequent results, we state the trivial formulas

(2) oe=1, 2 e? =1,
|1}=+ |1}=k
where the sum is over all order ideals / of // of cardinality 4.

Example 2. Let P be the disjoint union of two copies of /, denoted P =/ + N/ = 2/V. Thus J(P) is isomarphic to the
direct product /x/V =A/2. Here the numbers afm,n) are not so significant (in particular,



1975] THE FIBONACCI LATTICE 217

oo

Z afmn)x" = (1-x'12?) .
n=0

=

~

We will rather discuss the numbers e(/), / € J(P). For any W-ordered set Pand / € J(P), let/,, /,, -, I, be the ele-
ments of J(P) which / covers, i.e., I; </ and no /" € J(P) satisfies /; < /" < /. It follows that

(3) ell) = elly) +eflly) +-+efl,).
For the lattice LVZ under consideration, (3) is precisely the “addition formula” for constructing Pascal’s triangle.

The numbers e(/) are just the binomial coefficients, and in analogy to (2) we have the well-known formulas

Yo=Y em? - (%) .

|/}=« |/=«
More precisely, for any / € J(P) the segment /0,/] has the form

at1xb+1 and efl) = (azb)

Nowa + 7 x b +1=Jfa+b) Thus from (1), we have that

a+b
b
is equal to the number of order-preserving bijections o : a + b — a + b. The map o is determined by the image of a2
(or b ), so we get the usual combinatorial interpretation of

( ath

0"
as the number of combinations of a + 4 things taken b at a time.

The above discussion motivates defining a generalized Pascal triangle to be a W-distributive lattice together with
the function e. The entries e(/) of a generalized Pascal triangle have three features in common with the ordinary bi-
nomial coefficients:

(a) They can be obtained by an additive recursion,

(b) They can be interpreted as counting certain types of permutations or sequences.

(c) They can be interpreted as counting certain types of lattice paths in Euclidean space, since every finite dis-
tributive lattice can be “imbedded” in a Cartesian grid of sufficiently high dimension.

To illustrate the lattice path interpretation (c), consider the well-known problem of counting the number of lat-
tice pathsinan (n + 7) X (n + 1) array of lattice points from a fixed corner to the opposite corner, such that the path
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never goes below the diagonal. For instance, in
the 4x4 case we have as one path the following:

The total number in the 4X4 case is the number
of maximal chains in the following distributive
lattice L-

Here L = J(2x3). In the general (n + 1) X
(n + 1) case, the appropriate distrlbutive lattice
is L = J(2xn). The number of maximal chains
in-4{2xn) is known to be the Catalan number

1 (2n )
n+1 n

Many other known lattice path problems can
be formulated in a similar context. We give a
further example, arising from a lattice path
problem considered by Frankel [6]. Here if we
take P to look like
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34
21

then the generalized Pascal triangle corresponding
to J(P) looks like

The entries e(/) are all Fibonacci numbers.

Example 3. Let P = /2. Then the lattice J(P/ is denoted T and is called Young’s fattice (cf. Kreweras [11]). T can
also be regarded as the lattice of all decreasing sequences A = (\,, A,, -/ (with A, >N\, > -->0) ofnon-negative
integers A;, all but finitely many equal to 0, ordered coordinatewise. Hence \ may be regarded as a partition of [A| =
I\ Thusif A=\, N, - )eTandu=(u, 4, )T, then X< pif and only if \; < u; foralli= 17,2
From this it follows that ji(T) = p(k), the number of partitions of k. The lattice 7 is intimately connected with the
theory of plane partitions and the representation theory of the symmetric group (cf. Stanley [19], and the refer-
ences cited there). We will merely state some of the remarkable properties of the lattice 7.

First, we have the beautiful formulas, originally due to MacMahon [13, Sect. 495],

Y almah™ = T (1—x/yminliml N ™ = T (1-x7)7
n=0 =1 n=0 =1
If A& T and |\ = K, then the number e(\) is traditionally denoted  and is equal to the degree of the irreducible

representation of the symmetric group Sy corresponding to the partition A. By either group-theoretic or combina-
torial means, the following formulas can be proved:

@) e =t 3 eN=k
IN=k A=k
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Here ¢ is the number of elements 7 €Sy satisfying 72 = 7. It is most easily computed from the recursion
to =t7 =1, tkt1 = tk t+ktg-g, k=>1
The generalized Pascal triangle associated with 7 looks as follows:

] 5 9510 16 1059 5 1

Let us consider the problem of computing the
individual e\)'s, A € T. The element A = (},,
A,, =) of T is represented schematically as an
array of left-justified squares, with \; squares in
the /™ row. This array is called the graph of \.
For instance, if A = (4,3,2,2,0,0, ---), then the
graph of X is

A maximal chain from 0 to A in 7 corresponds
to filling in the squares of the graph of A\ with
theintegers 1, 2, -, |\, such that these integers
are increasing in every row and column. Such an
array is called a Young tableau of shape \. For
instance, one of the Young tableaux of shape
4,3,22) is

N[O
©

11
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With each square S of the graph of a partition
A, we associate an integer A(S), defined to be the
number of squares directly to the right or di-
rectly below S, counting S itself exactly once.
This number #(S)/ is called the hook length of S.
The hook lengths for A = (4,3,2,2) are given by

AV IR A )]

N W o N

A basic result of Frame, Robinson, and Thrall [5] states that
e\ = ki/h(S, Jn(S, ) h(Sy),
where |\| = kand Sy, -, Sk are the squares in the graph of A
Formulas (4) can be stated in terms of Young tableaux as follows:
(i) The number of Young tableaux with & squares is 7 .
(i} The number of ardered pairs of Young tableaux of the same shape and with & squares is /.
122 12 13 1

For instance, when k = 3, we have the follow 3 92 2
ing 3 = 4 Young tableaux: 3
123 123 12 12 1213 11 13 12 13 13
We also have the following 31= 6 pairs: 3 3 3 2 22 2 3 2 2
33

in view of (i) and (ii), it is natural to ask for an explicit one-tc-one correspondence 7 — (P, Q) between permuta-
tions wof 1, 2, ---, k and ordered pairs (P2} of Young tableaux of the same shape and with k squares, such that if
m— (P.3), then ' (Q,F} (so that 7> = 1 if and only if w— (P.P) for some PJ. Such a correspondence was discov—
ered in a rather vague form by Robinson [14] and later more explicitly by Schensted [16]. Further aspects of this
correspondence were considered by Schiitzenberger [17] and Knuth [9], [10, §5.2.4]. We refer the reader to these
sources for the details.

It is natural to try to extend the results about 7 = J(/*) to the lattices J(V"), r > 2. Unfortunately, all the “'ex-
pected’” results turn out to be false, and very little is known about the numbers a(m,n) and e(/).

Example 4. Our final example in this section is when P is the universal binary tree T ,. This partially ordered set is
characterized by the property that it is a //fordered set with 0 such that every element is covered by two elements,
and every element except 0 covers one element. ®
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A finite order ideal of 7, (or an element of J(T,)) is a plane hinary tree. The number ji of order ideals of 7, of
cardinality k is the Catalan number
7 2k
k+1 ( k ) '

We thus have two order-theoretic interpretations of the Catalan numbers: (a) as the number of maximal chainsin
JI2 % k), and (b) as the number of elements of rank & in J(T, ). We state a third interpretation, viz., (c)

1 (2k
k+1 \ k
is the total number of elements in J(S(k — 1)), where S{P) denotes the set of segments (or intervals) of P, ordered

by inclusion®. Thus the Hasse diagram for Sfk— 7) looks like the “‘top half” of the distributive lattice k=7 X k—1.
For instance, when & = 4 we have S(3) and J(§(3)) as follows:

S(3)

J(S(3))

We leave as an exercise for the reader the result that the number of maximal chains in J(S(k )] is
( k+1 ),
2 )

(2k — 1)(2k — 3)2(2k — 5)3 ... 3K~ T 1K

There is an interesting way to see that the number of maximal chains in J(2 X k) is equal to the number of order
ideals of S(k — 7). Draw the Hasse diagram of J(2 X k), pick a maximal chain C, and rotate the Hasse diagram 90°
so there is one vertex on top and k — 7 on the bottom. Remove the “bottom zigzag” of this rotated Hasse diagram.
Then the resulting diagram # is the Hasse diagrams of S(k — 7). Let / be the smallest order ideal of # which con-
tains all the elements in the intersection £ N H. It is easily seen that this correspondence € — / between maximal
chains € in J(2 x k) and order ideals / of # = S(k — 1) as a hijection. As an example, we take k = 5 and £ as shown
at the top of the following page (indicated by wiggly lines).

The corresponding order ideal of S(4) con-
sists of the labeled elements on the right.

f e C a

*There are two other lattices associated with the Catalan numbers, due to D. Tamari [21] (first published in [7])
and G. Kreweras [12], but since these lattices are not distributive we will not discuss them here.
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The above correspondence between order ideals and maximal chains generalizes
straightforwardly to show that if L = J(P) is any finite p/anar distributive lattice
(equivalently, P has no antichains of cardinality > 3), then the number of maximal
chains in L is equal to the number of order ideals in the partially ordered set obtained
by rotating the Hasse diagram of L 90° and removing the “bottom zigzag."" We state
without proof one amusing consequence of this observation, based on a problem of
Berlekamp [22, p. 341, problem 3] (see also Carlitz, Roselle, and Scoville [4]).
Write down the graph of some partition M. Let S be a square of this graph with coor-
dinates (i) (i.e., S is in the i row and jth column). Then the squares (/") satisfying
i* = j and j* > j form the graph of a partition u (S). In the square § write the number
of elements v of the Young lattice T satisfying v < u. For example, if A= (3,3,2,1),
then we get the array shown above right. The entry 9, for instance, corresponds to
= (2,2,1) with the nine partitions » < u given by (2,2,1), (2,1,1), (2,2), (1,1,1),
(2,1), (2), (1,1), (1), ¢. Now “border" the bottom and right of this array with arook-
wise connected line of squares containing the integer 1. Thus for the above array, we
get the array shown in the lower right. For any entry in this new array, consider the
largest square of which it is the upper left-hand corner. For instance, the entries 5
(either one), 9, and 28 give the square arrays '

5 2 9 3 1 28 9 3
2 1 5 2 1 14 5 2
2 11 5 2 1

Then we have the following result: The determinant of each of these square arrays is
equal to one.

We now return to the partially ordered set 7,. Here no simple expression for the generating function

oo

Z aln)x"

n=0

223
28 3
14 2
5
2
28 | 9
14| 5
2
2 | 1
1 1
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is known. On the other hand, it is easy to show {we will not do so here) that

S ell) = k.

I =k

The numbers ef/) can be evaluated in a manner analogous to e/\), A€ T. In fact, if P is any finite rooted tree (con-
sidered as a partially ordered set) and x P, define } 1

hix) = card{y\y eP y>x }
Then an easy induction argument shows
elP) = ki/hix, Jhlx,) - hixy ),

where P = | k| and the x;’s are theelementsof 7.
For example, see the array on the right. So for this
partially ordered set 7,

efP) = 91/9-4.4.3.2-1-1.1-1 = 420.

A discussion of these and related results may be
found in [18, §22].

The lattice J(T,/ is closely connected with the
well-known problem of parenthesizing a string of &
letters (say x’s). A bibliography of this problem is
given by Brown [3], though the following lattice-theoretic interpretation appears to be new. We define an order re-
lation A, on all finite parenthesized strings of x's {excluding the void string) as follows: Given two strings $, and S,,
then §, < §, if and only if §, can be obtained from S, by substituting for each occurrence of x in S, some paren-
thesized string S (which depends on the particular x in §, being substituted for). For instance, if S, = (xx/)(x(xx))
and S, = (x(xx)N({xx)x){xx]}, then S, <&, since we have substituted for the five x's in S, the strings x, xx, (xx/)x,
x, x. The order relation 4, looks as follows:

B X

The basic result about 4, is that it is a distributive lattice isomorphic to J(T, ). In fact, the join-irreducible ele-
ments of A, are elements like x(/f{xx)x Jx} which are build up from x by multiplying successively by x either on the
left or on the right. Thus for instance the following order ideal of 7, corresponds to the elements

a;, = a,a; = (a,a,Ma,a,} = (xx)ixlex IHx HixxJx))) of A, -
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04 05=0g

In contrast to the difficulties involved in extending results about JIV2) ta JIN' ), our results on J(T, / easily gen-
eralize to J(T ), where T _is the universal r-ary tree (whose definition is evident). For instance,

ie= g (%) X et = tortor— 13— 20 (k= 1= k- 20,
|71=k

Moreover, the numbers e(/) can be computed for J(T,.) in exactly the same way as for J(T, ), since / is a rooted tree.

Finally if A, denotes the set of all finite strings of x's parenthesized in accordance with an r-ary operation and
ordered analogously to A,, then 4, =J(T )

3. COVER CHARACTERIZATIONS

Most of the distributive lattices we have been considering have an interesting property which we call a “cover char-
acterization.” A W-distributive lattice L is said to have a cover characterization if there exists a function #k,n/ such
that if an element x of L of rank & covers n elements, then x is covered by f(k n) elements. If f{k,n) is independent
of k (in which case we simply write n}), then we say that L has a strong cover characterization. The function f{k,n)
{or #(n)) is called the cover function of L.

It is easy to see (by inductively building L from the bottom up) that there can be at most one distributive lattice L
(up to isomorphism) with a given cover function f(kn/ It is not difficult to verify that the following lattices have

the indicated cover function. L flk.n)
N = Jirv) r

JINZ)T = J(rl?) n+r

2" = Jir1) —n+r

HT)S = JT,) (= 1)k+s

On the other hand, the lattices /W), r > 2, do not have a cover characterization.

An interesting prablem is to determine which functions 7(k,n) can be the cover functions of a distributive lattice.
For instance, given a function a(n/, for what functions 4(k) is f(n,k) = a(n) + b(k) a cover function? The following
proposition is useful in ruling out various functions. The proof is left to the reader.

Proposition 1. Let L be a W/-distributive lattice such that u(ij) elements of rank / cover exactly j elements, and
v(i,j) elements of rank 7 are covered by exactly / elements, Then foralli >/ > 0

S uin (£)- iv(/—/‘,k)( “).

k=0 k=0
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(Each sum has only finitely many non-zero terms.) [J

Thus, for instance, using Proposition 1, it can be shown that if L is a //-distributive lattice with the cover function
f(n) =an +b, then u(5,1) = —(b/3)(a + 1)(2a® — 23> — 3). Hence u(5,7) < 0 if 1al > 2, so in this case L does not ex-
ist. We in fact conjecture that if L has a strong cover characterization with a non-decreasing cover function #(n) (i.e.,
f(i + 1) = #(i)), with £/(0) > 0, then f(n) =a or fln) =n +a.

One positive result is the determination of all finite distributive lattices with a strong cover characterization.

Proposition 2. If L is a finite distributive lattice with a strong cover characterization, then L isa boolean algebra 2",

Proof. Suppose L is a finite distributive lattice with a cover function f(n). Let r be the number of elements cover-
ed by the top element 1 of L. Then f{r) = 0. Let / be the meet of all elements covered by the top element 1 of L.
Then / is covered by r elements. Suppose / covers s elements, so f(s) = r. Under the assumption s > 0, we will show
that there is an element /* > / such that /* covers s elements. Then /” must be covered by r elements, which is impos-
sible since the join of these r elements would lie above 1. Hence s = 0, and L is a boolean algebra.

Assume s > 0. Let L = J(P). If M is the set of maximal elements of P, then / is the order ideal P — M. Sinces > 0,
1 # ¢. Let x /. Then there is some x, € M satisfyingx, > x. Letx,, -, x, be the remaining elements of M/ (inany
order). Define /=M u {x,, Xy, 0, Xk } Then each /g is an order ideal of £, and the number of maximal elements
of /4 is at most one more than the number of maximal elements of /,_7. Since /, has < s maximal elementsand /,
has r maximal elements, some /¢ has s maximal elements. This /¢ is the desired /°, and the proof follows. [J

Using Proposition 1, one can determine the number j; of elements of rank & of a W-distributive lattice L with a
cover function f(k,n), without explicitly determining L. Is there a method for computing

e
S elt) and ) eli)?
|1]=k |7]=k °
There is some evidence for believing that these numbers °

will have a relatively simple form. In particular, if f(k,n)
= gfk) (independent of n), then it is trivial that

S ell) = gloJg(1) - glk — 1),
|rf=«
4. THE FIBONACCI LATTICE

Let K, denote the set of ordered pairs (m,n) of inte-
gers 7 < m, 0<n < 1, under the order relation (m,n) <
(m’,n") if and only if = 0 and m <m”. Thus K, loaks
as is shown on the right.

The lattice J(K, ) of finite order ideals of X, is called
the Fibonacci /attice and is denoted F,. Thus we have
the generalized Pascal triangle at the top of the next
page.

Proposition 3. The number fx of elements of F, of
rank k is the K’ Fibonacci number (, = f, = 1, fi =
-1+ f-2 if k > 2).

Bfoof. We will give three different proofs, reflecting
three different properties of the Fibonacci numbers.

First proof. Clearly £, = f, = 1. Let / be an order ideal of K, of cardinality k > 1. If the minimal element O is re-
moved from K, there results an isolated pointx and an issmorphic copy K7 of K,. If / contains x, then / — { l],x}
is an order ideal of K7 of cardinality K — 2. If / doesn’t contain x, then / — {0 -is an order ideal of K7 of cardinal-
ity k — 1. Conversely if /”is any order ideal of K7, then /"L {0} and /v { 0,x} are order ideals of K,. Hence fx =
fk-1* k-2

Second proof. Define x; = (;,0) € K,. Let / be an order ideal of K, of cardinality k. Let / be the least integer such
that x; € . Then x,, x,, -, Xg-; are in /, and the remaining / elements of / are of the form (m;, 7),/=1,2, -,
where the m/'s are an arbitrary /-subset of 7, 2, ---, k — i. Hence
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This sum is a well-known expression for the Fibonacci numbers.

Third proof. There is a one-to-one correspondence between order
ideals / of K, of cardinality & and ordered partitions (or composi-
tions) k, + k, + -+ k, = k of k into parts k; = 1 or 2, as follows:
ki=1if(i,0) /but (i,1) £1, ki =2if (i,7) €/ The number .of such
ordered partitions is well-known to be the k" Fionacci number fr.O0

We will denote order ideals / of K, (or elements of £, ) by the no-
tation k, k, - k., where k, + -+ k, is the ardered partition defined
above. Thus for instance the order ideal 122112 < £, is given on the
right.

By madifying the second proof of Propasition 3, one can establish
the following result.

Proposition 4. The number of elements of £, of rank k which cover exactly / elements is

k—i—1 k—i
( i—1 ) * (i—7 )
(with a binomial coefficient equaling 0 if any entry is negative). The number of elements of £, of rank k which are
covered by exactly / elements is 0 if K — 7 is even, while if k — 7 is odd this number is

tk +i—~1)/2
((k-—i+7)/.2)'[j
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We now consider the problem of evaluating the sums

Doet)  and Y ell).
|7|=k |1]=k
Surprisingly, these sums turn out to be the same as for the Young lattice 7! Although coincidences in mathematics
are suspect, | can offer no other explanation for this phenomenon. The evaluation of these sums for F, is much
easier than for 7.
Proposition 5. We have

Z ell) = t and Z efl)> = ki,
|1 =k |1|=«
where the sums are over all order ideals / of K, of cardinality k&, and where 4 is the number of elements 7 in the
symmetric group Sy satisfying 7 = 1.
Proof. Let

he=3 ell) and  ge= D ell).
/=« |/ |=k

Let x be the unigue maximal element of K, which covers 0. We divide all order-preserving bijections ¢ : / - k (/ an
order ideal of K, ) into two classes: (a) x £ /, and (b) x /. Since K, — 0,x} is isomorphic to K, the number of o
of type (a) is fig-7. If x 1, then ofx) can be any of 2, 3, ---,k, so the number of o of type (b) is (k — 7)hg-o. Hence
hi = hg-1 + (k — 1)hk-2. Moreaver, by inspection h, = h, = 1, so hy = t.

Similarly the number of pairs (0,7) of order-preserving bijections of / on-
to &, for all / with x & /, is gg-7. If x €/, then there are (k — 7)* ways of
specifying ofx) and 7(x), so there are (k — 1) gx_o pairs in this case. Hence
Ok = gk-1* (k — 1)*gg-2.Since g, =g, = 1, we have gx = k.. O

In analogy with the definition of a Young tableau, we define a Fibonacci
tableau (1,0) to be a finite order ideal / of K, together with an arder-
preserving bijection o : / — k, where |/| = k. The order ideal / is called the
shape of the tableau, and k is called the size of (/,a) Thus for example,
the tableau on the right is a Fibonacci tableau of shape 212211 and size 9.

Proposition 5 can then be restated as follows: The number of Fibonacci
tableaux of size k is tx, and the number of ordered pairs of Fibonacci tab-
leaux of size k and of the same shape is £/ There isa very simple alternative
proof that the number of Fibonacci tableaux of size k is ¢, — we construct
a one-to-one carrespondence €2 : (/,0) — m between Fibonacci tableaux (/,0) of size k and elements 7 < Sy satisfying
m = 1. Namely, we define 7 by the condition 7(i) = j for i > j if and only if some maximal element z of K, satisfies
ofz) = i and the unique element y covered by z satisfies a(y) = . Thus for the Fibonacci tableau illustrated above,
7= (19)(2)(34)(57)(6)(8). It is easily seen that this construction establishes the desired one-to-one correspondence.

Similarly one would like to prove the second formula of Propaosition 5 by constructing a one-to-one correspond-
ence ¥ : (/,g7) — 7 between ardered pairs ((/,0), (/,7)) of Fibonacci tableaux of size k and of the same shape /, and
elements 7 < Sk. The correspondence Y should satisfy the following two properties: (a) If Y(/,07) = m, then Y(/,7,0)
=" and (b) W(/,g0)= Sl,0). This correspondence would be a ““Fibonacci analogue” of Schensted's correspond-
ence for Young tableaux (see Example 3). Such a correspondence was found by E. Bender (private communication),
as follows: Let x = (m,n) €/, and define x”= (m, 71— n). Then mis defined by the conditions

_ ) Tix) it x &1
w(olx)) x’ i xel”
We next consider the problem of evaluating the numbers ef/) themselves, where / is the shape of a Fibonacci tab-
leau. A finite order ideal / of K, is a rooted tree, so from (5) we have
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where |/| = k, and h(x) = card§ y|y €/, y > x}. It is easily seen that the above expression for e(/) is equal to the
productn, -n, --n, where the n/'s are those integers such thatk >n, >n, >-->n,>0and (k—n;j—i+1,1)/
It follows that no two of the n;'s can be consecutive integers. Conversely, given a set of integers k >n, >n, > >
n, > 0, no two consecutive, there is a unique order ideal / of K, of cardinality & such that (m,7) €/ if and only if m
has the form &k — n; — / + 1. We therefore obtain the following result:

Proposition 6. The set of numbers e(/), including multiplicities, as / ranges over all order ideals of K, of cardinality
k is equal to the set of numbers

I n,

nsS

where S ranges over all subsets of { 1,2+, k-1 } containing no two consecutive integers. [J

For instance, when k=5 we have the eight sets S given by ¢, «f 1 }, { 2}, { 3 } { 4}, «21,3 } {1,4}, \{ 2,4}.Hence
the numbersef(/), |/| =5, are givenby 1, 1, 2, 3, 4, 3, 4, 8. ’
Combining Propositions 5 and 6, we obtain the formulas

szngsn=tk, ?ngsnz = kI,

where both sums are over all subsetsSof 41,2,--, k— 17 } containing no two consecutive integers. Both these for-

mulas can be easily proved directly by induction on .
Let us now turn to the problem of counting the number afm,n) of K, -partitions of n with largest part <m. A K-
partition is called a protruded partition [18, §24]. For instance, there are six protruded partitions of 3, as follows:

NS

Proposition 7. Let a(m,n) be the number of protruded partitions of » with largest pair <m. Then

oo

Z almn)x" = 11 (1—x' = xTT _x*2_ . _x2)

n=0 =

-1

Proof A protruded partition of n with largest part < m can be regarded as two sequencesa,, a,, ~-and b,, b,, -
of non-negative integers satisfying
Zaj+ Zbj = n, mz>a, »a, =a, = -, aj > bj.

Let k; be the number of a;'s which are equal to /. 1f some a; =/, then b; can be any of0, 1,2, -,/ s0a;+bjis one of
Li+1,i+2 -,2i Thus

i m o . . ki m . . . -1
Z: a(m,n)xn - H Z (){I+XI+7 + "'+X2,} = E (’ _XI __XI+7 o X2I} ) O
n=0 =1\ k=0 i=1

On the following page, we give a table of afm,n) form,n < 10.
Many features of the theory of ordinary partitions carry over to protruded partitions. We state one such result here.
For a proof, see [18, §24]. A classical identity in the theory of ordinary partitions is
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n™ 1 2 3 4 5 6 7 8 9 10
1 1 1 i 1 1 1 i i 1 1
2 2 3 3 3 3 3 3 3 3 3
3 3 5 6 6 6 6 6 6 6 6
4 5 10 12 13 13 i3 i3 13 i3 13
5 8 17 22 24 25 25 25 25 25 25
6 13 31 42 a7 49 50 50 50 50 50
7 21 53 75 86 91 93 4 A4 94 o4
8 34 92 135 159 170 175 177 178 178 178
9 55 156 238 285 309 320 325 327 328 328
10 89 265 416 509 558 582 593 538 600 601
Z g = E (I—qxi)'7 .
e (1=xN1=x?)A1-x") =0
The corresponding identity for protruded partitions is
3 a
o (T —x =X T =x? =5 —x*) (1= x" = X" o x?1)
=2 (1S T Y Ty .
=0 =0 (1=x)(1=x2) (1 =X )1 = x = x2 )1 = x = x2) e (1= x = X7}

By inspection, the Fibonacci lattice £, does not have a cover characterization. It does possess, however, a different
type of property, viz, it is an extremal distributive lattice [20]. This means that if L is any locally finite distributive
fattice with 0 having the same number ry of join-irreducibles of rank k as F, (namely,r, = 1,r, =r, =--=2), then
Ji (L) <ji(F, ). Infact, F, is precisely the distributive lattice L (1, 2, 2, 2, ---) constructed in [20).

Recall the result A, ~J(T,/ discussed in Example 4, where A, is the lattice of parenthesized strings. Consider the
related problem of parenthesizing a string of k x's subject to the commutative law (but not of course the associative
law). For instance, when k = 6 there are 6 distinct strings, viz.,, x(x(x-x3 ), x(x? -x3 )}, x*{x-X? }, x 2ox? -x2, x(x(x? -x*)),
and x3-x* (an expression such as x® has an unambiguous meaning since x(xx) = (xx)x by commutativity). The
problem of counting the number V% of such strings was first considered by Wedderburn [23], who obtained a recur-
sion for V. It is unlikely that a simple expression for Vi exists. For an historical survey of this problem, see Becker
[11.

Let C, be the partially ardered set of strings of x's subject to commutativity, ordered in the same way asin A4,. It
has been conjectured (e.g., by myself and by E. Bender) that €, =J(F, ) The reason for this conjecture is the fol-
lowing: It is not hard to see that the sub-ordered set P of £, consisting of those elements which cover exactly one
element is isomorphic to £, . Hence if C, were a distributive lattice, we would have C, ~ J{F, ). Unfortunately, it
turns out that C, is not even a lattice. In particular, the elements y = (x-x>)(x?(x-x%}) and z = (x{x-x*))(x? -x? ] lie
above exactly the same set of elements of P, If C, were a lattice, the elements of P would be the join-irreducibles, so
y and z would lie above the same set of join-irreducibles, which is impaossible.

In conclusion we mention the problem of extending the lattice F, = J(K, /) to a sequence of lattices F, = J(K,)
There are several possible definitions of K. The ane which seems to work best is the following: K, is the unique
locally finite partially ordered set with 0 such that when 0 is removed from K., there results a partially ordered set
issmorphic to a disjoint union of r_and K. For example, see the following page for what K, and K, look like.

Most of the results we have obtained for £, generalize straightforwardly to £, = J(K,). For instance,

(6) Ze(m,n}x" = _m ( 1—x' (’r+i)x )_1 ,

n=0 =1
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where

(),

( k ) _(1=x*)1=xKT) 1 = KA
I lx (1= xI)1—xF1) (1= x)

denotes the Gaussian coefficient,

Similarly the numbers

E efl) and Z efl)?
|f]=k |/|=k
satisfy simple recurrence relations, but they seem difficult to evaluate explicitly.

The limiting case K_, (where K_ with G removed is isomorphic to a disjoint union of K_ and //) seems of some
interest. The distributive lattice £ = J(K_ ) is isomorphic to the set of all sequences (n,, n,, --) of non-negative
integers such that all but finitely many n; are equal to 0 and such that n; = 0 =n ;+7 = 0, ordered coordinatewise.
The following formulas can be verified:

o ) -1
1
{7) i =27, k> (m, /x”=ﬁ (7— X - )
g ,Z‘(‘; e =1 (1—x)(1=x2)(1-x')
z: efl) = By, Z ell)* = Cy .
|7 |=k [7]=«

Here By is a Bell number, (also called an exponential number) defined by

k oo
A X—
By =1, Bisr = 9. (ff)B,-, or by D Bixkskr =67
0 0
[15]. Similarly Cx is defined by

k ™

2 *T—__

Co =1, Cher= 9, ( . ) ci, or by 3 cexfrer = 12, (2x%) - 1),
0 0
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where

l(z) = 3 2%/2%kn
0

is the 0%-order modified Bessel function.

Proposition 7 and Eqs. (6) and (7) are actually special cases of the following general result. Suppose P and Q are
W-ordered sets such that P has a 0 which when removed results in a partially ordered set issmorphic to a disjoint
union of P and @ Let a(m,n) (resp. b{m,n)) be the number of P-partitions (resp. @-partitions) of nwith largest part
<m. Then

Z alm,n)x" = i (1-x'v;itx))",
=1

n=0
where

Umix) = E blmnx" .
n=0
The proof is left to the reader.
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COMPOSITIONS WITH ONES AND TWOS

KRISHNASWAMI ALLADI*
Vivekananda College, Madras 600004, India
and
V.E. HOGGATT, JR.
San Jose State University, San Jose, California 95192

A great deal of literature has been published on the compositions of integers. In this paper, we attempt to throw
some new light by discussing compositions which lead to recurrence relations. Actually, in this article we restrict our
attention to compositions using on/y ones and twos. Compositions using 1,2, and 3, ---, or 1 and 3 will lead to more
general recurrences, but this will form the subject of later investigations.

Deﬁnition 1. Denote by C,, for positive integral n, the number of compositions of n using only 1 and 2.

We make the convention that whenever we refer to the word “composition” in this paper, we mean compgsitions
with 1 and 2 unless specially mentioned.

Examples:
Compositions of n
1
2,1+1
2+1,1+2,1+1+1
2+2,2+1+1,1+2+1,1+1+2,1+1+1+1
2+2+1,2+1+2,1+242,2+1+1+1,
1T+2+1+1,1+1+2+1,1+1+1+2,
T+1+1+1+1

The Fibonacci enthusiast will immediately recognize the Fibonacci number pattern in the sequence C,,. So we have

Theorem 1. Cpn = Fn+1, n=123-,
where the £, are the Fibonacci numbers,

Fn+2=Fn+7+Fn, F1=F2=7.
Proof 1. It is quite clear from the table that Theorem 1 holds for n = 7,2, -, 5. Let (1) and €y (2) denote
the number of compositions of m that end in 1 or 2, respectively. We then have, trivially,
(1) Cn+1 = Cp1(1)+Cpsq(2).
Pick a composition of (7 + 7), ending in a one. If we remove the one at the end, we get a composition of n. Con-
versely, to a composition of n by adding a one at the end we get a composition for (n + 7). Therefore,
(2) Cn+1(1) = Cp.

Now consider a composition of (n + 7) ending in a two. |f we remove the two at the end, we get a composition for
(n ~ 7). Conversely, we could get a composition for (n + 7) from (n — 7), by adding a two or two ones. The latter
case has been counted by (2) and so we have

(3) Cne1(2) = Cni .

ST WN =
oomww—?

*Fibonacci Scholar, Summer, 1974,
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Now, (2) and (3) together with (1) establish Theorem 1 by induction.
Proof 2. Consider the generating function

2
@) Clx) = 225
1—(x+x2)
Clearly,

Cix) = D (x+x2) = Z x+xy" .
n=0 =

if we now collect the terms with exponent n, we get C,, terms! This gives

Cix) = Z Cyx"
n=1

But we also find from (4) that

oo

Clx) = —————— 1= Z Fox"™ —1 = Z Fos1x" Z Cpx"

7—(X+X2J n=

-~

This proves that £, = F,+7, establishing Theorem 1.

Let £, (n) and £, (n) denote the number of ones and the number of twos in the compositions, respectively. Let p(n)
denote the number of “+" signs that sccur in the compasitions of 1.

Theorem 2.

filn+1) = fy(n)+F1(n—1)+Fpeq, faln+1) = faln)+fafn—1)+F,.
Proof. Split all the compositions of (7 + 7) as
cn+1 cn+1{”+cn+7(2)

Since Cpp+7(2) = Cp-7, we have f7(n — 1) ones since a “2" is not going to affect the counting of ones, We have also
by (2) that £,+7(1) = Cp, and we have an extra *1” in each composition counted by £+ (7). So we have counted

f1n) + C,, ones, proving
fifn+1) = feln) +f1fn— 1)+ Fpeq.

Now, going back to Cp,+7(7) and Cp+7(2) and using (3) and (2), we can get by similar arguments that

foln+1) = fofln) +fafn— 1)+ F,.
This proves Theorem 2.

Theorem 3. faln+ 1) = f1(n).

Proof.' One can verify Theorem 3 forn =7, 2, 3. Now, by Theorem 2, we have
(5) f7(ﬂ}=f7(ﬂ—7)+f1(l7-—2)+F p
(6) fafn +1) = faln) +fafn — 1)+ F,.

Now, Eqs. (5) and (6) establish Theorem 3 by induction.
Theoremt 4. The sequence 7 (n/ is the Fibonacci convolution sequence.
Proof. By induction and from Theorem 2,
Theorem 5. The sequence g(n/ is the convelution sequence of Ch.

Proof First let us find the generating functions of the sequence 7, (n) and £, (n). We have by Theorem 3 and Theo-
rem 4 that

oo

E frln)x" =

o n-a+wy2

and
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oo

2
S fala" = — 2
=1 [1—(x +x2)]?
From the definition of p(n) it trivially follows that
7 pln) = f1(n) +faln) - C,
so that we have by (7) that
i‘ pln)x" = X - x2 _ x +x? - Ix #x2) — (x +x2)[1 = (x +x2)]
=1 [1=(x+x9]?  [1—(x+x2)]? 1—(x+x?) [1-(x+x2)]?

x+x2)? 2
S T i [cix)]
proving Theorem 5.

We next shift our attention to compositions with special properties. A composition of n is defined to be “palin-
dromic” if written in reverse order it remains unchanged.

Examples: 1+2 +2 + 1 is a palindromic composition of 6 while 1 +2 + 1 + 2 is not.

Let II(n) denote the number of palindromic compositions of n, II(n, 7) the number of those ending with 1, and
I1(n,2) the number of those ending with 2. Let I, (1) and II, (n) denote the number of ones and the number of twos
in all the palindromic compositions of n, respectively. Let IT+(n) denote the number of “+"' signs in the palindromic
compositions of 7.

Theorem 6. Min+17)=(n-1)+1(n-3),

and the sequence I1{n) is an alternation of Fibonacci sequences
1,2,1,32,5,3,8,5,13,8, .
To be more precise,
M2n+1) = Fp, I0(2n) = Fpez.
Proof. We can split
8) Min+1) =n+1,17)+1n+1,2).

Since II(n + 7, 7) counts the palindromic compositions ending in a 1, by removing the 1's on both sides we geta pal-
indromic composition for (n — 7). So we have

@) On+1,1) = Hn-1)

and

(10) Min+1,2) =1l(n-3)

by similar arguments. Now (9), (10) and (8) together yield Theorem 6. The II-functions also obey

(11) O(n+2) = Un+1)+(—1)"1(n).

Examples:

n Palimdromic Compositions of 77 II(n)
1 1 1
2 2,1+1 2
3 1+1+1 1
4 2+2,1+2+1,1+1+1+1 3
5 24142, 1+1+1+1+1 2
6 2+2+2,2+1+1+2,1+2+2+1, 5

1T+1+2+1+1,1+1+1+1+1+1

We now define enumerating polynomials on the above compositions. For a certain n1, ¢, (x) contains the term

“ax P if there are “a compositions with “5” + signs. The sequence of polynomials ¢, (x/ is:
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1, x+1, X2 xZ+2x2+x, x2Ux%+1), xZ+xt+ 4%+ 52,

obeying the recurrence

(12) Snt2lx) = X2 [Pp(x) + pz (x)]
and this is quite obvious, for

(13) : On+2(x) = Il(n +2).

Theorem 7.

(14) Otln+2) = Mefn) + M pfn = 2) + 211 (n +2),
(15) O,(n+2)=1,(n)+10,(n-2) + 2l1(n),
(16) O,(n+2) = 1,(n)+11,(n-2)+21(n-2).
Proof. First we prove (14). From the definition of ¢, (x/ it is evident that

: UL S WD

atx=1

By (12) we have

i) _ 2 " dn (x) , don-(x)
dx dx ax

Now, using (13) and Theorem 6 we get

Mifn+2) = Wafn) +Msln - 2)+211(n +2).
We prove (15) and (16) combinatorially. Split the compositions of (7 +2) as
Min+2) =Mn+2 1)+1(n+2 2)

Iiin+2 1) = 1(n), and Min+22) =1(n-2).

Now, in the compaositions counted by I1(n + 2, 2), the extra 2 does not affect the counting of 1's. Therefore, we have
counted IL,(n — 2) “ones.” The compositions counted by IIfn + 2, 7) contain two extra ones, compared to those
counted by II{n), and so we count IL, (n) + 211 (n) ones. This proves

,(n+2) = M(n) +,(n — 2) + 211 (n).

By the same arguments we find the compositions counted by IIfn + 2, 7) contains the same number of twos as
those counted by I1{n) and so we have counted IL(n) twos. But the compositions counted by Il(n +2, 2) contain
two extra 2's compared to those counted by I1{n — 2) giving IL,(n — 2) + 2I1(n — 2). Putting these together,

IL(n+2) = IL(n) +1L,(n — 2) + 211(n - 2).

J +2X[¢n(xl+¢n—2(xlj .

We know

Theorem 8.

(17) iln) = Mgl — 1) +(=1)""2T1(n — 2) +11(n),
(18) yn +1) = yfn) + (1) " T(n - 1) + I (n),
(19) IL(n+2) = W(n +1)+(—1)"1L,(n) +(—1)"11(n).

Proof. We know by Theorem 7 that the following hold:
ifn+2) =M 4ln) = Mtfn-2) = 21(n +2)
Oetn+17)=Mefn—=1)=Mpfn—3) = 2l(n+1)
Mtn) =Naln—-2)—Us(n—-4) = 211(n) .
We also know that the II-functions satisfy
Mifn+2) = Myfn+1)+(-1)"11(n).

If we put these together we get
M4ln+2)-Mpln)-Mgfn-2) = Mypln+1)-Msln-1)-Mpln - 3)+(=1)" M 4(n)-T+(n - 2) -1+ (n - 4)].
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Assume that for a fixed i, (14) holds for n and (7 - 2). This means that we get from the above the following:
Mtln +2) = Taln = 1) = (=1)" 2T 40 +2) = TL(n) = Wt = 3) = (=1)"* T (0 — 4) = Ti(n — 2)
=Mt +1)=Ttln — 1)~ Maln = 3) +(=1)" [Wln) = M t(n = 2) = M 4(n - 4)]
which simplifies to
Miln+2) = Miln+1)+(=1)"4(n) +11(n +2)

establishing (17) for (n +2). Now one can verify (17) forn=0,7,2,---,5, and so (17) holds by induction.
Now, to prove (18), we observe from Theorem 7 that

,(n +2) - ,(n) —,(n — 2) = 211(n)
M(n+1)=1(n—1)-1(n-3) = 2Il(n - 1)
M,(n) = T(n—2)-1,(n—4) = 211(n - 2).
If we again use (11) we find
I +2)-1,(n) -, (n-2) = Wn+1)=T,(n—1)=T(n-3)+(—1)"[T,(n) -T,(n - 2) = TL,(n - 4)] .
Now, if we assume that for a fixed n, Eq. (18) holds for (n — 2) and n, then we have
W(n+2)=Tn—1)=(—=1)"21(n-2) = n— 1) = ,(n — 3) = (~1)"TL,(n — 4) = T(n — 3)
=L +1) =1L —1)=1,(n = 3)+(-1)"[TL,(n) = IL,(n — 2) = TL,(n — 4)]

which simplifies to

I(n+2) = I(n+1)+(-1)"11,(n) +T(n + 1)

establishing (18) for (n + 2). Again one can verify (18) forn =17, 2, 3, 4 5, and so (18) holds by induction for all
positive integral .
We prove (19) with the aid of (17) and (18). From the definitions of II,, I1,, and IL+ we get

IL(n) = T +(n) +11(n) — T,(n).

If (19) were to hold, we must have

Mifn+2)+Min+2)-1n+2) = Mefn+1)+(n+1) =1L (n+1)
#(=1)"[M+(n) +(n) = W(n)] +(=1)"TL(n).

Since (17) and (18) holds, we have
Miln+1)+(—1)"Ts(n) + M (n+2) +(n+2) = Wfn + 1) — (=1)"T,(n) = I (n + 1)
= s +1)+Xn+1)=fn+1)+(=1)" [ +(n) + (n) - U, (a)] +(-1)"T1(n)

which reduces to
21l(n+2) = 21l(n + 1) +2(-1)"1l(n),

which we know is true. This establishes (19) and so Theorem 8. Note that we could have proved (19) in the same
way as we did (17) and (18).

Definitions. f in a composition of 7, a 2 follows a 1, we say it is a “rise,” and if a 1 follows a 2, it is a “fall.”
Two 1's or two 2's contribute a “straight.”

_Let R(n), F(n), and Sfn) denote the number of rises, falls, and straights, respectively, in the compositions of n. It
is easy to establish that
(20) R(n) = F(n)
and

p(n) = Rin) + F(n) +S(n).
Theorem 9.
R(n+2) = Rln+1)+R(n)+F,

and A(n) is the Fibonacci convolution sequence displaced.
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Proof.  Partition the compositions of (n + 2) as
Cnt2 = Cpaa(1)+Cpa2(2).
We know
C,;+2(7) = Cp+1, and C,-,+2(2) = cn .
The 1 at the end of the compasitions counted by C,,+2(7) will not affect the counting of rises counted in the com-

positions included in Cp,+7. But the 2 at the end of the compasitions counted by C,+2(2) will contribute an extra
rise if and only if the compositions counted by £, end in a 1. This is true for C,(7) = F,, compositions. This proves

21) Rin+2) = Rin+1)+R(n)+F,.

The form of the recurrence in (21) and induction establishes the second part of Theorem 9.
Theorem 10. Stn+1)=8)+Sh —1)+L,_q,

where L, = Fp+7 + Fp—1 are Lucas numbers. Further,

(22) 8(n) = Rin+1)+R(n—1).

Proof. Partition as before
L"n+1 = cn+1(7) + Cn+1(2}-
We know that £,,+7(7) = Cp,. The extra 1 at the end, in the compositions counted by Cp,+7(7) will give an extra
“straight” if the correspanding composition counted by C,, ends in 1. So we have C,(7) = F, extra “straights.”
Now,
Cn+1(2) = Cp-q = Fp,
and so the 2 at the end of the compositions counted by C,+7(2) will contribute an extra “straight,’ if the corres-
ponding compositions counted by €,,_7 end in 2. This happens for C,,7(2) = F,,_5 compasitions, and so we have
(23) Sn+1) = 8n)+F,+8Sn—1)+Fno=8)+8Sh—1)+L,_q.
We can establish the second part of Theorem 10 by induction on (22). Let
Stn) = Rln+1)+R(n—1)
forn = 1,2, 3, -, m. We know by (23) that
Stm+1) = S(m) +S(m — 1)+ Lpy_q
which can be split up as

Sim+1) = Rim+1)+R(m - 1)+ R{m) + R(m "2}+Fm +Fm—2.
This can be grouped as
Sim+1) = Rlm+1)+R(m)+Fp+R(m—1)+R(m—2)+Fpo
= R(m +2)+R(m)
by Theorem 9, establishing (22) forn=m + 1.
This proves the theorem.
Theorem 11. The sequence S(n) is a convolution of the Fibonacci and Lucas sequences.
Proof One could say that Theorem 11 follows by observing the form of (23). We, however, use generating func—
tions to prove Theorem 11.
By Theorem 9 we know the “R” to be the displaced Fibonacci convolution sequence. So

oG

Z Stn)x" = Z [R(n+1)+R(n—1)]x"

n=1 n=1

x? A x4 - _Xxlx+tx X L X*x

Cl—terx 2 [1—crx 2 [T (ctxlZ 1—(xix) 1—(x+x2)

3} 3

which says that the S(n) is the convolution of the Fibonacci and Lucas sequences shown below:



1975] COMPOSITIONS WITH ONES AND TWOS 239

Lucas (withextra 1): 1,1,3,4,7,11,18,29, -
Fibonacci: 1,1,2,3,5, 8, 13,21,

This completes the proof.
We can actually state a stronger form of Theorem 10. If S,(n) and S,(n) are defined to be the number of
“straights” counted as 1+ 1 and 2 + 2, respectively, in the compaositions of n, then it is obvious that

Sin) = S,(n) +S,(n).

We also know
Stn) = Rin+1)+R(n).

It is indeed remarkable that

Theorem 12. Rin+1) = 8,(n) and R(n) = S,(n) .

Tables:
n Cp, fi) fn) pln) Rin) Sl) ) 1) n) ()
1 1 i 0 0 0 0 1 1 0 0
2 2 2 1 1 0 1 2 1 1
3 3 5 2 4 1 2 1 3 0 2
4 5 10 5 10 2 6 3 6 3 6
5 8 20 10 22 5 12 2 6 2 6
6 13 0 25 5 14 8 17

38 20 63 1

Krishnaswami Alladi would like to thank Prof. V. E. Hoggatt, Jr., for the award of a Fibonacci Scholarship during
the tenure of which this work was done.



THE RANK OF APPARITION OF A GENERALIZED FIBONACCI SEQUENCE

H. C. WILLIAMS
University of Manitoba, Winnipeg, Manitoba, Canada

1. INTRODUCTION
In [4] Waddill and Sacks discuss a generalized Fibonacci sequence { Kn }, where K,=0,K,=1,K,=1, and
Kn+1 = Kn+Kn-1+Kp-2.
Several other properties of this sequence, often called the Tribonacci Sequence, may be easily deduced from the
more general results of Miles [2] and Williams [5].

We give here the definition of the rank of apparition of an integer m in the sequence '{ Kn }
Definition. The rank of apparition of an integer m in the sequence { Kn } is the least positive integer p for which

K}p7 = Kp =0 ﬁnodnﬂ.

This definition is analogous to that for the ordinary Fibonacci sequence (see, for example, Vinson [3]). In [5] it
was shown that such a rank of apparition always exists for any integer /m, the purpose of this note is to determine,
more precisely than was done in [5], the rank of apparition of any prime p.

2. PRELIMINARY RESULTS

We shall require a theorem of Cailler [1], which we only state here.

Theorem. Let R,S be given integers and let p(>3) be a prime such that (p,R) = 1. Let A = 4R3 + 2752 and put g
equal to the value of the Legendre symbol (3A |p).

If p =—g (mod 3), there is only one root in GF/p] of

2.1) x3+Bx+S =0 (modp).
If p=¢q (mod 3), put m = (p — g)/3. There are three roots of (2.1) in GF[p] if
(2.2) Um =0 (modp).

If (2.2) is not satisfied, there are no roots of (2.1) in GF[p]. Here U, is the Lucas Function defined by the recur-
rence relation
Up+1 = PUp—QUp-q

and the initial conditions U, =0, U, = 1. Pand Q are determined from the relations
30 = -R, RP = -3S (modp).
We also require the following

Theorem. (Williams [5]). If K,_7 = K,, =0 (mod m) and p is the rank of apparition of m, then p is a divisor of n.
Finally, we need the fact [5] that
n+1

a
B ﬁn+7
Y

Q

(2.3) Kn =

Qi
e e )

n+1

2

where @, {3, y are the three roots of
x>-x2-x-1=0

240
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and [ is the value of the Vandermonde determinant

a

NN

a

[

T v v

3. THE MAIN RESULT

Let F(x) be the polynomial x% — x? —x — 1. If F(x) is irreducible modulo p, let G = GFlp] be the splitting field
of F(x) (mod p)and let 8, ¢ = 0P, Y =0P" he the roots of

(3.1) Fix) =0
in G. Then in G we have

N

09y = 1= 077" = gTtPte" -y Ttotet
From (2.3) we have

Kpr#p = Kprap+7 = 0.
Ifp=1(mod 3),
g **p*1)(p~1)/3 _ 4.

hence,
gP**p+1)/3 _ pplp*p+1)/3 _ ¢(p’+p+7)/3 _ w(p’+p+7)/3

and
K(p*p-2)/3 = K(p2#p+1)/3 = 0.
If F(x) is factorable modulo p into a linear and irreducible quadratic factor, let G = G‘F[p2] be the splitting field
of F(x)and let @ € GF[p], ¢, ¥ = ¢P be the roots of (3.1)in G. lf p =1 (mod 3),
¢(p’—7}/39 (p-1)/3 _ 1

thus,
p0*=1)/3 _ ¢(p2-7)/3 =y 1073
and
(3.2) Kip*-4)/3 = Kip2-1)73 = 0.
If p=—1 (mod 3), we use the simple fact that
(3.3) Pix=1)°% =4,

if F(x) = 0. Hence, in G ) X
(62 (¢ — 7)3)(P -1)/3 _ 4(p -1)/3

and
¢(p’-7)/3 - glo®™1)/3 _ " (p*-1)/3
We again have (3.2).
If F(x) is factorable modulo p into three linear factors, let 8, ¢, ¥ € GF[p] be the roots of (3.1). We have
gP-1 = ¢ T = P! =1 (mod p)
and
Kp-2 = Kp-7 = 0 (mod p).

if p=1 (mod 3), from (3.3)
020p=1)/3 _ 41p=1)/3 _ y2(p=1)/3 _ y 2lp=1)/3 (11541 p)-

hence, we have
g p-1)/3 _ ¢(p-7)/3 =y (o-1)/3 (mad p)
and
Kip-4)/3 = K(p-1)/3 = 0 (mad p).
Since

(—6)3F(x) = (—6x +2)* +48(-6x +2) + 304,

we can put together the above results and the theorems of Section 2 to obtain the following
Theorem. (The law of apparition for the Tribonacci sequence). Let U, be defined by the linear recurrence
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Upsy = 19Uy — 16Up-1
and the initial values U, =0, U, = 1.

If p is a prime (£2,3,11) and p = —(33|p) (mod 3), the rank of apparition p of p is a divisor of (p>- 1)/3. If
p=(33|p) =1 (mod 3), pis a divisor of (p — 7)/3 when p divides U,_1)/3; if p does not divide U(p_7)/3, p is
a divisor of (p* + p + 1)/3. If p =(33|p) =—1(mod 3), pis a divisor of p— 7 when U ,+1) 3 is divisible by p; if p
does not divide Up+7)/3, pisadivisorof p*+p + 1. if p=2, p=4,ifp=3, p=13;and, it p =11, p=110.

The last results were obtained by direct calculation.

4. TABLE
We give here a table of values of p and p for all p < 347.

p 4 p o p P p P

2 4 67 1519 157 8269 257 256
3 13 A 5113 163 54 263 23056

5 31 73 1776 167 9296 269 268
7 16 79 1040 173 2494 2n 24480
" 110 83 287 179 32221 2717 12788
13 56 89 8011 181 10981 281 13160
17 96 97 3169 191 36673 283 13348
19 120 101 680 193 1552 293 28616
23 553 103 17 197 3234 307 10472
29 140 107 1272 199 66 n 310
31 331 109 330 211 1855 313 32761
37 469 13 12883 223 16651 317 100807
41 560 127 1792 227 17176 331 36631
43 308 131 5720 229 17557 337 5408
47 46 137 18907 233 9048 3417 40136
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ON THE SOLUTIONS TO THE DIOPHANTINE EQUATION x? + xy — y? = D,
OR THE NUMBER OF FIBONACCI-TYPE SEQUENCES
WITH A GIVEN CHARACTERISTIC

BRIAN PETERSON and V.E. HOGGATT, JR.
San Jose State University, San Jose, California 95192

In this paper we are concerned with a question that has already been answered, involving Fibonacci-type sequences
and their characteristic numbers. We are only interested in primitive sequences .{consecutive pairs of terms have no
common factors) and for these sequences we ask: What numbers can be the characteristic of a sequence, and given
such a number, how many sequences have it?

Thoro [1] has shown that J may be the characteristic of a sequence if and only if 2 has prime power decomposition

D = 5ep1°‘1p2°‘2 ...pr‘;‘n ,

where e = 0 or 1 and p; = 70m #1 for all i, while Levine [2] has shown that for such D, there are exactly 2”7 primi—
tive sequences possessing it. Levine’s proof involves the use of quadratic fields and rings of integers in such fields.

Our purpose, here partly fulfilled, is to construct an elementary proof. In this paper, we show the ideas of our
argument, and the difficulties encountered.

In what follows, F, and L, are the n™ Fibonacci and Lucas numbers, respectively, while H,,, H}5, Ap, Bn. etc.,
will represent the n™ term of some general Fibonacci-type sequence. It can be shown that any sequence has a “pivo-
tal"” element, such that it and all of the elements after (or before) it are of the same sign, which we take positive
when convenient, while the element before (or after) it is of the opposite sign and ail the elements before it have
alternating signs. With the exception of the Fibonacci sequence % -,1,0,1,1,2, - } , we will always assume that
for a sequence

% Hn }n=-°° ’

Hg is the pivotal element. Finally, if { H, } is a sequence, then by { /TI,7 } we will mean the conjugate sequence
whose terms are given by _
Hp = (-1)"H_, .
Henceforth, when we say sequence, unless otherwise stated, we will mean Fibonacci-type sequence.
We begin by stating the identity

(1) Fm+1Fn+1+ FmFn = Fotner .

which can be proved by induction on either m or n. There are several similar identities:

(2) Lnt1Fner + LmFn = Lmtn+1

3) Hm+1Fne1 + HmFn = Hmen+t

@) Lmtilnt1+Lmln = 5Fmin+1 \

and in general,
(5) Hm+1Hnt1 + HmHi = Gman+1
gives the terms of a sequence { G, } What we have, then, is a way of combining pairs of sequences to obtain a new
sequence, a type of multiplication of sequences. We will see shortly that this operation is commutative and associa-
tive, as may already be apparent.

We will need to recall a few notions concerning sequences.

243
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OR THE NUMBER OF FIBONACCI-TYPE SEQUENCE .
For any sequence, there is a positive number C, called the characteristic number for the sequence, such that
(6) Hn-1Hnt1 - HZ = £C,
where the sign varies according as n is even or odd.
Also, for any sequence, there is a function which generates the terms with non-negative subscripts, given by

oo

Ho+H_1x
) ;—”—’3 = 2 Hux".
- X—X n=0

Recall, too, that given any two sequences { H, } and &:H,ﬂ, we can form what is called the convolution of
the sequences, given by the sequence ’

8
which is not Fibonacci-type and which has terms given by
@) Co = HoHg, €, = HHF+HH, €, = HHS+HH+HHY
Cn = HpHytHp 1HY+ o+ HyHY_; +HoH .
The terms of { Cp } satisfy the recurrence
9) Cn+g—20n+3— Cps2+20p+71+Cp = 0,
and are generated by the product of the generating functions for i H, } and { Hy }

(Hy + Hox)(HE + HXx) =

2)2 = ZC,,X" .

n=0

(10)

(1—x—x
We will now see that the convolution of the sequences {H,, } and { Hy } is closely related to the sequence
G, } given by Eq. (5).
For’a Fibonacci-type sequence { Ap } we have

(11) A,-,+2—An+1—An =0.
The sequence { Cn } above does not satisfy Eq. (11), but if we let
(12) Cn+2=Cn+1—=Cn = By

then we observe that
Ap+2—Dps1—Dp = (Cn1g—Cps3 = Cp+2) = (Cns3 — Cns2— Cn+1) = (Cps2— Cpsq — Cp)
= Cn+q—20p+3— Cpn+2+2Cp+1+Cp = 0.

So the { A, } forms a Fibonacci-type sequence. Since two adjacent terms of a sequence determine the sequence,
we have only to look at A, and A, to know all about { A,,i,. We will see that A, = G, and A, = G,.
From Eq. (8) and then (5), we see that !

Ay =C,—C, —Cy = (HH¥+HH*+HHY — (HH+HHF) — (HHE)
= (Hy —H, —HH¥+(H, = HH +HHY = (0)HE+(H_JH* +HHY = G, ,
and, since
C, = HHE¥+H,H*+HH}+HH?,
= C=Cy,—C, = (Hy—H, —H JH¥+(H, — H, ~HJH*+(H, — HJH}+HH¥

= (OHF+(0JHF+ (H_ H}+HHE = G,
Thus, we have
(13) Gn = Cnt1=Cn=Cn-1.,

which can be interpreted in terms of generating functions. Using Eq. (10), we have
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H +H ® 4 H* - it =
(1—x—x?) (H, —1)(”/'102 Hax) = L Cox" = z Cp-1x" - Z Cp-2x"
(1-x-x) n=0 n=1 =2

= Cy +(C, = Cx + Y, (Cp—Cpog = Cra k",

n=2
or,

Hy + H_x)(H§+HX 3
(o t HopJHEHHAX) e o b oS G
T-x-x? n=2

(14)

Thus, we see that, if we simply multiply the numerators of the generating functions for { H, } and {H,*,‘}, we
obtain, except for the first couple of terms, a generating function for {G,, f

From this, it follows immediately that our operation of multiplying sequences is commutative and associative,
since multiplication of polynomials is commutative and associative.

Next, we will show that, when we multiply sequences, the product of their characteristic numbers give the char-
acteristic of the product. Unfortunately, we have no neat way to show this, so we indicate the steps in the rather
messy but elementary calculation. If we let

{An}:{'“,a,b,a'f'b,"'} and {cn}zg...lc,d,c+d,..},
then their product, which we denote {AC,,}, has

{Ac, } = { - bd+ac, a+b)d+be, (a+20)d + (o + b, -}
Ignoring the question of sign, { Ap } has characteristic a2 +ab — b*,and 3 C, f has characteristic c? + cd — d?.

We compute the characteristic of {AC,,} , and find it is the product of these, as follows:

[bd +ac] [(a +2b)d + (a + b)c] — [(a +b)d + be] ?
= [abd® + 2b*d? + abcd + b*cd +a*cd + 2abed +a*c* +abc?] — [a*d* + b2d? + 2abd? -+ b3c? + 2abed + 2b%cd]
= a%c* +a’*cd — a*d* +abc*® +abed — abd® — b*c* — b*cd + b*d* = (a® +ab — b*)(c* +cd — d?).
Thus, the characteristic of the product is the product of the characteristics.

These are the tools we wish to use in our argument, which rests upon something we have so far been unable to
show with an elementary proof. We want to show that, for a prime p = 70m £17, exactly two sequences have p as
their characteristic, and that these are conjugate to one another. Then we would like to show that these are the
atoms from which we can build the whole universe of sequences.

Suppose that we are successful in dealing with this basic problem of showing that exactly two sequences corres-

pond to a prime p = 70m + 1. Then, we have several lemmas that show that we can build from the sequences cor-
responding to prime characteristics.

Levnma 1. The product of a seque<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>