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GENERAL IDENTITIES FOR FIBONACCI AND LUCAS NUMBERS 
WITH POLYNOMIAL SUBSCRIPTS IN SEVERAL VARIABLES 

RICHARD R.STONE 
Student, Montana State University, Bozeman, Montana 59715 

Among the well known Fibonacci identities we have 
Fm+n = Fm+1Fn + FmFn~1 

which may be written as 
Fm+1Fn~ F1Fm+n = FmFn-1 • 

In this form, we see a property which is common among Fibonacci and Lucas identities. Namely, that the sum of 
the subscripts of the first product Fm+iFn is identically equal to the sum of the subscripts of the second product 
F1Fm+n-

What general identities do we- have with this property? How does this property relate to the reducibility of a given 
form? 

It is with these questions that we are principally concerned. 

Definition 1. For every i, 1 <i <m, let the domain of /?/ be the set of integers. Then we let 

P = | polynomials in/?s/ n2, —, nm with integral coefficients}. 

For convenience in deriving general Fibonacci and Lucas identities for the forms 

FfFg±FhFk, LfLg±Li1Lj<f FfLg±FhLi<f 

where f, g,hfk^ P, with the property that f + g=h+k,we first express h and k in terms of f and g. 

Lemma 1. \\ftg,h, / r e P such that f + g^h + k, then there exists fu f2,gug2 e P such that 

h + f2 = l ffi + 92 = 9, fi +9X = h, and f2 +g2 = k. 

Proof Let 
fx = h, f2 =f-h, gx = Q, g2 = g, 

clearly, 
U> f2*ffv92 G p a n d fi+U = f, gx +g2 == g, ft +gx~ h. 

f2+g2 = f~h+g 
but, by hypothesis, 

f + g = h + k=>f-h+g = k=*f2 + g2 = k. q.e.d. 

Theorem 1. Let f,g,h,kePsuch that f+g = h + k, then 
FfFg-FhFk = hl)gHFf„hFf„k . 

Proof By hypothesis, 

f + g==h + k and ffg,h,k$aP 

Hence, by Lemma 1, there exist fu f2, gu g2 e P such that 

fx+f2=f, gt+g2^g, f.+g.^h, f2+g2^k. 
Then, clearly, 

FfFg - Fh Fk S Ffx +f2 Fgt +g2 - /=>, +gx Ff2 +g2 . 

. 28S 
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Using the Binet definition 

{ F n - ^ f , where ne [Integers], a = 1 - ^ , [S = J-~£ ) 

we have 

c p c c / af"+fl -Bfi +f* \ (a9*+g* - S9i *9> \ 

_ (afi+9l-8f'*91 )(af* +9> - Bf* +9* ) 

= (af>+f2+9>+9* — QfiH2g9i+9i ^gh+U^+g^ +$fl+fi+gi+g-t) ; 

_ {a
fx+U+9i+92 _Qfi+9lafi+92 _a

fi+9,^i+9i + gf>+9x +U+9i, 
~~ ~~ (a-W ~ . 

= f_ff*x +**gg. +92 + af, +9l&f, +92 _ aft +ftflg| +gt + gf, +9,af, +g2} 

(a-QP 
s 0f*a9' (-6fl a91 + af'39*) + of*<3g' (-of*B9* + Bft a9*) 

(a-BP 

(a- BP 

_ (aB)9>(-6f>-9> + af*-'*)(BaJr*(Bf*-a* -af'-'*) 
(a-pp 

(a- BP 

= (-1)9^+1 Ffi_giFfj_gx 

But 
9i+92=ff and fx -g2 = (ft +f2)- (f2 +gj s f- k and f2 - ft = (fx + f%)- (fx + gj = f- h. 

Thus, by substituting 
(-1)9>+9>+1Ffrg2Ff2„&i ^ (-1)g+1Ff„kFf„h ^ (-Vg+fFf„hFf„k q.e.d. 

Theorem 2. Let f,g,h, £ e P such that f+g=h+k,\hm 

(a) LfLg-LhLk =5(-l)gFf„hFf„k 

and 
(b) FfLg-FhLk^(-VgHFf„hLf-k. 

Proof. The proof of 2(a) and 2(b) is virtually the same as that of Theorem 1 (where Ln=an + @nl 

Corollary 1. Let f,g,h, k<z /'such that f+g= h+k. Then 

FfF9-FhFk^-(f^jJ±f^ . 

Proof. Compare Theorems 2(a) and 1. 

EXAMPLES AND APPLICATIONS 

The degree of freedom offered by Theorems 1 and 2 together with the identity given in their hypothesis is large 
indeed. We will endeavor, with some examples, to indicate that degree of freedom. 

EXAMPLE 1. By [1 , p. 7 ] , a general Turan operator is defined by 

Tf = Txf(x) = f(x + u)f(x + v)-f(x)f(x+u + v). 
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"For the Fibonacci numbers it is a classic formula first discovered apparently by TagSuri (Cf, Dickson [4, p. 
404]) and later given as a problem in the American Mathematical Monthly (Problem 1396) that 

'n*n ~ Fn+uFn+y— FnFn+u+y ~ (—1) FuFy," 
This is immediate from Theorem 1. 

letf=n+u, g = n + v, h= n and k = n + u + v. Clearly, 
f,g,h,k e P and f+g == h + k. 

Thus, applying Theorem 1, we have 
Fn+uFn+v-~FnFn+u+v = (-1)n^1F(n+ufrF(n+uHn+u+v) s (~1)n+v*1 FuF-v 

!\low using the well known identity (-1}m'h 1 Fm = f „ m yields 

(-1t»+*+lFuF.v - (-f)n+¥H(^rHFuF¥ ^ (-1)nFuF«, 
the desired result 

EXAMPLE 2. By Theorem 2(a), 
LfLg-LhLk SB (-V95Ff„hFf„k 

\f f, g, h, k e P and f+g =h + k. Then too, f~k= ft-g and f- hmk-g« 

Substituting, we obtain I f ^ - £/,£* = (-1)95Fk„grh„g, 

a trivial but equivalent form of Theorem 2(a). 
Another equivalent form of Theorem 2(a) is 

LfLg-5FhFk = (-1)9Lk-gLh-g . 
To obtain this equivalent form, we write 

f+(-g) ^(h-g} + (k-g). 

Clearly, 
f,H),(h-g).(k.-g)<E: P; 

hence, Theorem 2(a) may be applied to these new polynomials, yielding, 
LfL(-g)- L(h-g)L(k~g) = (-irgF(h-gH-p)F{k„gH-.g) 

then, 
(~n9Lflg-Ltn~g)lik-g) 3 (~l)95FhFk - LfLg~5FhFk EE (-1)9Lk„gLh„g . 

Similarly, Theorems 1 and 2 may be put into several other equivalent forms. 
It would be natural to ask what FfFg + Fh Fk would yield, subject to the condition 

f,g,Ji,.k.<= P and f + g = h + k, 

with a proof analogous to that of Theorem 1, The result is, in at least one form, 

FfFg + FhFk = L-°hlpL+{-1)^ L(f-»>5
L<f-Kt . 

However, this form is easily derived with the following method. 
EXAMPLE 3. 

f+g = h + k =• (0) + (f+g) = h+k, 

by Theorem 2(a), 

(±ak.Ljd±sF„Fk. 
0 0 
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Now we use Theorem 2(a) to find an expression for FfFg and obtain 

LhLk __(-1)^1Lf..hLm FfFg - — = - . 

Adding these identities produces 

FfFg+FhFk = L^m+(-i^
 LJ±y=h . 

Similarly, we find sums LfLg+ L^Lk by using Theorem 2(b). Also, other sums with various equivalent forms may 
be found. 

APPLICATION TO FIBONACCI AND LUCAS TRIPLES 
Application of Theorems 1 and 2 to the Fibonacci and Lucas triples [2], generated by R. T. Hansen, allow Theo-

rems 1 and 2 to be written in equivalent summation form for fixed integers. 
Theorem 3. Let A, B be fixed integers; then 

B-1 

A-1 

FALB S E ^ +KLA~B-2K+1 

A Ar-2 
LALB - E (-DB+KLA-B~2(K+1)+ E t-VB+KLA-B-2K' 

K=0 K^O 

Proof See [2] and directly apply Theorems 1 and 2. 
Clearly, from these forms, the summation equivalents of Theorems 1 and 2, for fixed integer A, B, C, 0 such that 

A+ B = C + D, may be obtained as immediate corollaries. We do not list these identities. 
FURTHER APPLICATION OF THEOREMS 1 AND 2 

We now apply Theorems 1 and 2 to find simple subscript properties between identically equal Fibonacci and 
Lucas products. 

Lemma 2. Let f, g e P such that f£ 2 mdg4 2 If Ff^ Fg, then |f| = |$j. 
Proof. 

Ff^Fg=> \Ff\ ^ \Fg\ => %, - Flgl . 
Clearly, 

I M ^ o - N*2* N ^ [Integers], 

is a strictly increasing sequence. Then F\f\ E= F\g\ and \f\ ̂  \g\ is a contradiction to the fact that | FfSi\^zs0fN^2f 

is strictly increasing. Thus, 

Ff = Fg~Fw = Fw~\f\ = \g\. C1.E.D. 
Theorem 4. Given f,g, h,.k e P„ If FfFg^FhFk, then | / | - | ^ | and | $ | - |Ar|, or \f\ = \g\ and |^|-|Ar| when-

ever 
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\f\Jg\f\h\,\k\, £ {oj}. 
Proof. If FfFg = FhFk , then 

(1) \FfFg\ =\FhFk\ => FmFlgl s FmFm , 

Since f, gf h, Ar.<= P, they are functions of nx, n2, •», and/?^Xet/?/for 1 </</77 bean arbitrary set of fixed val-
ues of/?/for 1 </</??, respectively. Then fugu hx, kx are the corresponding fixed integers..Assume W.LO.G. that 

\fx\ +\gt\ > \hx\ + \kx\ 
and that | n'j 1 is such that 

\fl\,\gl\,\hl\,\kl\ 

are not 2 or 0. Clearly, there exist Ksuch that K> 0, /Ce [Integers] and 

(2) \fx\ + \gx\ - \hx\ + \kx\ + K. 

By Theorem 1, 
F\fl\

F\gl\~
F\hl\

F\kl\+K = (•"^]9l^1F\fl\--\hl[
F\ft\-(\kl\+K) = 0 

if and only if 
I f J -\hx\ = 0 or I f J -f\kx\ +K) = 0. 

Without loss of generality, assume that 
\fxV-\hx\ = 0 =* I f J = \hx\ . 

Then by (2), \gx\ = \kx\ + K. 
Suppose Kf 0, then 

F\fl\
F\9l\

 = F\hl\
F\k1\+K ? F\hx\F\k%\ 

by Lemma 2. 
Thus, if 

Flf^lg^ = F'<hl\
 F\k%\ 

it is required that K = 0, Thus, 
I f J = \hx\ and \gx\ = \kx\ . 

Further, since the selection of nj was arbitrary with the conditions of the theorems hypothesis, its conclusion holds. 
Q.E.D. 

Note that the condition 
M,l/,l/>l,l*l * { 2 } 

is not really any restriction, practically speaking. That is F2= FXI so if one agrees always to write F2 as Fx we could 
require only that I f\, \g\, \h\, \k\ & {'Bj in the hypothesis of Theorem 4. 

Lemma J. Let f,g e P, if lf^Lg ,thm\f\ = \g\. 
Proof. Construct an argument similar to Lemma 2. 
Theorem 5, let f, g, h, k .& P. If LfLg^LhLk, thenM = l ^ l andl^l - 111 , o r l f l =\k\ andl^l = \h\ , 
Proof Construct a proof analogous to Theorem 4 by using Lemma 3 and Theorem 2(a). 
TheoremS. Given ff g,.h, Are P. \\ FfLg^FhLkAbm\f\ =\h\ and \g\ - I k\, whenever I f l j /? I &\o,2\. 

Proof Construct a proof analogous to Theorem 4 by using Theorem 2(b). informally speaking, Theorems 1, 2, 4, 
5 and 6 seem to suggest that an algebraic structure for Fibonacci identities, based on the subscripts, can be formed. 
If the reader is interested in investigating this, he will be more successful in using the following form of Theorem 1: 



2 e 4 GENERAL IDENTITIES FOR FIBONACCI AND LUCAS NUMBERS D £ C i g 7 5 
WITH POLYNOMIAL SUBSCRIPTS IN SEVERAL VARIABLES 

where 
f,gfh,k,flrf2,gir,g2 e P 

and 
U+h s f> • 9i +9* s 9, ft + QX = h, • f2 +g2 =; & 

and 
f+g = h + k. 

Further, note that if we let 
Q = \FRF$\R,$ e P and R + S^f+g\ 

then clearly 
Fft +f2 Fg% +g2, Ff% +Sx Ff2 +g^ e Q. 

Also, 

and then 

The reader may enjoy investigating further in this or other directions. 
SOME ADDITIONAL IDENTITIES 

Theorem 7. Let f,g,h<E P such that/=$?*/?. Then, 

(a) Ff-FgLh =(-1)9Fh-g 

(b) Lf-LgLh^l-D^Lh-g 

Proof. By using the Binetdefin'rtion we have 

F - F i = « ' - < * ' _ a9-$9 ah + &h = faf- Bf) - (a9+h - &9ah + asHh - &9+h) 

By hypothesis f=g + h, hence by substituting g + h for f in the above expression and simplifying we have 

The proofs of (b) and (c) are similar. Q.E.D. 
Although not included, theorems corresponding to those in this paper may be developed for Fibonacci and Lucas 

triples as well. (The author did develop the FyF^Lk - FfFmFn form.) Clearly, the proofs for these, which are vir-
tually the same as for Theorems 1 and 2, soon become cumbersome. We leave it to the reader to develop these 
to suit his needs. 

REFERENCES 
1. H. W. Gould, "Generating Functions for Products of Powers of Fibonacci Numbers," The Fibonacci Quarterly, 

Vol. 1, No. 1 (Feb. 1963), p. 8. 
2. R. T. Hansen, "Generating Identities for Fibonacci and Lucas Triples," The Fibonacci Quarterly, Vol. 10, No. 

5 (Dec. 1972), pp. 571-578. 



REPEATED BINOIVHAL COEFFICIENTS AND FIBONACCI NUMBERS 

DAVID SINGMASTER 
Polytechnic of the South Bank, London and Istituto Matematsco, Pisa, Italy 

ABSTRACT 

In this note, I show that there are infinitely many solutions to the equation 

(n + 1 ) - f n ) [k+ 1 ] \ k+2 J ' 

given by n = F2j+2F2i+3 ~ h k = ^2l^2i+3 ~ ^ where Fn is the nth Fibonacci number, beginning with F0 = 0. This 
gives infinitely many binomial coefficients occurring at least 6 times. The method and results of a computer search 
for repeated binomial coefficients, up to 248:, will be given. 

1. INTRODUCTION 

In [6 ] , I have conjectured that the number of times an integer can occur as a binomial coefficient is bounded. A 
computer search up to 248 has revealed only the following seven nontrivial repetitions: 

120- ( ' / ) - ( ' / ) ; ™ - ( ? ) - ( y ) ; ' * * - ( ? ) - ( ? ) ; 
7140= ( ' f ) - ( * ) ; 11628- ( ' f ) - ( j ) ; « , » - ( * ' ) - ( ' / ) ; 

3003- ( ? ) . ( y ) - ( y ) . 
In [2 ] , it has been shown that the only numbers which are both triangular, i.e., = ( " ) for some n, and tetrahe-

dral, i.e., = I" ) for some n, are 1, 10, 120, 1540 and 7140. The first two are trivial and the last three were also 
found by the computer, giving a check on the search procedure. 

The coefficient 3003 occurs in the following striking pattern in Pascal's triangle: 

1001 2002 3003 
3003 5005 

8008 

I had noticed this pattern some years ago when I discovered that it is the only solution to 

( z ) ; U " 0 • • ( * " * ) - , : ' ; 5 -
and that there is at most one solution to this relation when the right-hand side is replaced by a : h : c. Hence I was 
led to consider determining solutions when the right-hand side was a : b : a+b, or, equivalently and more simply, 
solutions of / \ / \ 
(1) [V+1 ) = \k+2)' 

2. SOLUTION CF EQUATION (1) 

From (1), we have (n + 1)(k+2) = (n-k)(n-k- 1). Setm = n + 1,j= k + 2, thus obtaining m2 +(1-3j)m + 
p - j = O. Solving for/77 gives 

295 
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(2) m = [-1+3ii*J~$F~=7jTT]/2 . 

For this to make sense, we must have that 5p -2j+ 1 is a perfect square, say s/2. We can rewrite this as 

(3) (5j- 1)2 -5v2 = -4. 

Letting u = 5j - 1,C = -4, we have the Peli-like equation 

(4) u2 ~5v2 = C. 

This can be completely solved by standard techniques [5, section 58, p. 204 f f ] . The basic solutions are: 

9+ 4V5"whenC= 1; 2 +y/E when £ = - 1 ; and 1 j-%/5 and 4 + 2^5" when C = - 4 . 

The class of solutions determined by 4 + 2^JB is the same as the class determined by 4 - 2\/5, i.e.,the class Is am-
biguous, in the terminology of [5] . Hence all solutions are given by 

u-x + v-rJ5 = (-1 + y/5)(9 + 4y/5)'', u,- + vgy/S = (1 + s/5)(9 + 4^/5 ) ' \ u/ + v,y/5 - (4 + 2S/B)(9 + 4^/s)1', 

and their conjugates and negatives. 
Let F0 = 0, Fx = 1, Fn+<j = Fn + Fn„f define the Fibonacci numbersand iet£,0 =2, Lx = 1, Ln+f - Ln + Ln„i de-

fine the Lucas numbers. 
Lemma. (Ln + Fn^5)(9 + 4^/s) = Ln+6 + Fn+&sf5 . 

Proof. Let a= (1+>j5)/2, /? = (1 - \fE)/2. By the Binet formulas, we have 

Fn = (an-pn)/sj5, Ln - an+Pn, 

and so Ln + Fns/5 = 2an. Hence the lemma reduces to showing a6 = 9 + 4>j5, which is readily done. 
Since the basic solutions u0 + vQ\f5 given above are respectively 

L„.t + F-i>j5. Lx+FlS/E and Ld+FdS/5, 

the general solution of (4) can be written as 

(5) L2j-1 + F2i-I>j5, i = 0 , l -

and we may now ignore the conjugates and negatives. 
To solve (3), we must have 5 / - 1 = L21-1. From the Binet formula, one may obtain L/^2-31 (mod 5) and hence 

£/ = - 1 (mod 5) if and only if/ = 3 (mod 4). Recalling t h a t / - k + 2 >2, the solutions of (3) are thus 

/ = (L4i+3 + 1)/5, v = F4j+3, 1 = 1, 2, - . 

By standard manipulations, we obtain 

(6) / = F2jF2i+3 +1, k = F2jF2j+3 - I ™ = F2J+2F2j+3= (L4i+5 - 1)/5, n = F2l+2F2l+3 ~ 1. 

Finally, observe that 

( * ) • • ( * " / ) =(k+1):(n-k) = F2i:F2i+1, 

( * ) •' \ k " l ) : \kl2J = f 2 / •' F21H = F2i+2-

The case/ = 1 givesn= 14, k~ 4 and 

( ' / ) • ( y ) - * » -
The case i = 2gives n= 103, k = 38,k + 2 = 40, and 

(7®g) = ( 1°j* ) = 6121818274330470189 14314 82520. 

This number does not occur again as a binomial coefficient. The next values of (n,k) are (713, 271) and (4894, 1868). 
Equation (1) has also been solved by Lind [4] . Hoggatt and Lind [3] have dealt with some related inequalities. 

hence 
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3. REMARKS 
The coefficients 

- ( "» : ; ) • ( - » ) - ( 7 ) 
give us infinitely many binomial coefficients occurring at least six times. This has also been noted in [1 , Theorem 3] . 
Since 3003 happens to be also a triangular number, one might hope that some more of these values might also be 
triangular. I first determined by calculation that 

Cs) 
was not triangular and later I determined that it did not occur as any other binomial coefficient. These determina-
tions are described below. I have not been able to discern any other patterns in the repetitions found. 

One might try to extend the pattern of Eq. (1) and try to find 
I " \ « [n + 1 \ = tn+2\ 
\ k+4 ) \ k + 3 ) \k+2 ) ' 

This would require two solutions of (1) with consecutive values of n and inspection of (6) shows this is impossible. 
The lemma is a special case of the general assertion that the solutions uj, i/; of 

UJ + v/y/5 = fu0 + v0^D Ha + b^/D)' 

both satisfy the same second-order recurrence relation: 

un+i = 2aun + (b2D -a2)un„i. 

(In our particular case: Fn+Q= 18 Fn - Fn-6.) I do not see whether the fact that the three basic solutions happen 
to neatly fit together into a single linear recurrence is a happy accident or a general phenomenon. The converse prob-
lem of determining which pairs of recurrence relations give all solutions of a Pell-like equation seems interesting but 
I have not examined it. 

4. THE COMPUTER SEARCH 

Two separate computer searches were made. First an ALGOL program was used to search up to 223 on the 

London Polytechnics' ICL 1905E. All the 4717 binomial coefficients ( £ \ with k>2, n > 2k and less than 223 

were formed by addition and stored in rows corresponding to the diagonals of Pascal's triangle. As each new coef-
ficient was created, it was compared with the elements in the preceding rows. Since each row is in increasing order, 
a simple binary search was done in each preceding row and the process is quite quick. All the repeated values given 
in the Introduction were already determined in this search. 

The second search was carried out using a FORTRAN program on the University of London Computer Centre's 
CDC 6600. Although the 6600 has a 60-bit word, it is difficult to use integers bigger than 248 and overflow occurs 
with such integers. Consequently, I was only able to search up to 248. There are about 24 x 106 triangular numbers 
and about 12 x 104 tetrahedral numbers up to this limit. It is impractical to store all of these, so the program had 
to be modified. Fortunately, the results of [2 ] , mentioned in the Introduction, implied that we did not have to com-
pare these two sets. I wrote a subroutine to determine if an integer N was triangular or tetrahedral. This estimates 
the J such that J(J + 1)/2= l\(hyJ= fsf(2N)] - / and then computes the succeeding triangular numbers until they 
equal or exceed N. Two problems of overflow arose. Firstly: if N is large, the calculation of the first triangular num-
ber to be considered, i.e., J(J + 1)/2, may cause an overflow when J(J + 1) is formed. This was resolved by examin-
ing J ( mod 2) and computing either (J/2)(J+ 1) or 

jm • 
Secondly: if N is larger than the largest triangular number less than 248, the calculation of the successive triangular 
numbers will produce an overflow before the comparison with N reveals that we have gone far enough. This was re-
solved by testing the index of the triangular numbers to see if overflow was about to occur. The test for tetrahedral 
numbers was similar, but requires testing J (mod 6). 
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The search then proceeded much as before. AN coefficients / n
k \ with k > 4 and n > 2k and less than 248 ware 

formed by addition and stored in rows. As each coefficient was formed, the subroutine was used to see if it was tri-
angular or tetrahedral and binary search was used to see if it occurred in a preceding row. 

S was rather startled that the second search produced no new results. The results 210,11628, 24310 and 3003 were 
refound, which gave me some confidence in the process, i reran the program with output of the searching steps and 
this indicated that the program works correctly. So I am reasonably sure of the results, although still startled. I hope 
someone can extend this to higher limits, say 259 and see if there are more repetitions. 

The calculation of N - ( j l 3 ] and the computational determination that it was not triangular were also compli-
cated by overflow, since N > 24i. First I attempted to compute only the 103rd row of the Pascal triangle by use of 

/ 103 \ = 104- k I 103 } 
{ k I k \k- 1 J 

using double precision real arithmetic. However, this showed inaccuracies in the units place, beginning with k~ 33. I 
then computed the entire triangle up to the 103rd row (mod 1014) by addition. I could then overlap the two results 
to get N. The double precision calculation had been accurate to 27 of the 29 places. 

I applied the idea of the subroutine to determine if N were triangular. This required some adjustments. Since 2N is 
bigger than 296, one cannot truncate V5/v7 to an integer. Instead sJ(N/2) was calculated, truncated to an integer, 
converted to a double precision real and then doubled. Then the process of the subroutine was carried out, working in 
double precision real form. N was found to lie about halfway between two consecutive triangular numbers. These re-
sults for N were independently checked by Cecil Kaplinsky using multiprecision arithmetic on an IBM 360. 

In a personal letter, D. H. Lehmer pointed out that one could determine that N was not triangular by noting its resi-
due (mod 13). Following up on this suggestion, I computed the Pascal triangle (mod/?) for small primes. Since ( n

k J 

(mod p) is periodic as a function of n [1, Theorem 38; 8; 9 ] , one can deduce that N ? f £ 1 for various k'% by ex-
amination of N (mod p) and the possible values of ( J M (mod p). For example, N = 4 (mod 13), but f "A £ 4 
(mod 13) for k = 2, 4 ,6 , 7, 8, 9, 10, 11, 12. Using the primes 13, 19, 29, 31, 37, 53, 59 and 61, one can exclude all 
possibilities for kf other than 39 and 40 and hence N occurs exactly six times. 

On the basis of the computer search and the scarcity of solutions of (1), I am tempted to make the following: 
CONJECTURE. No binomial coefficient is repeated more than 10 times. (Perhaps the right number is 8 or 12?) 
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A RECURSIVE METHOD FOR COUNTING INTEGERS 
NOT REPRESENTABLE IN CERTAIN EXPANSIONS 

J. L.BROWN, JR. 
The Pennsylvania State University, University Park, Pennsylvania 16801 

1. INTRODUCTION 

Let | Pj l°° be a sequence of positive integers satisfying the inequality 

n 

( 1 ) ' Pn+1 > 1 + Y, pi for n > 1 ; 
1 

then it is well known ( [1] , Theorem 1; [2], Theorem 2; [3], Theorem 1) that any positive integer N possesses at 
most one representation as a sum of distinct terms from the sequence \Pj\. Such representations, when they exist, 
are thus unique, and we term a sequence \Pj\ of positive integers satisfying (1) a sequence of uniqueness, or briefly 
au-sequence. Following Hoggattand Peterson [1 ] , we define M(N) for each positive integer/!/ as the number of pos-
itive integers less than N which are not representable as a sum of distinct terms from a given fixed {/-sequence | Pj \. 

The principal result in [1] (Theorem 4) is that if N has a representation 

with I a/ \ binary coefficients, then 

M(N) = N - ] T aj2 

1 

so that an explicit formula iwM(N) is available for mpmemablepositive integers. In general, a dosed form expres-
sion for M(N) as a function of N does not exist; our purpose in the present paper is to derive an expression from 
which M(N) may be readily calculated for an arbitrary positive integer N. 

2. DERIVATION 

Throughout the following analysis, j Pj f will denote a fixed (/-sequence; we wish to find a recursive algorithm 
for determining M(N). 

First, we recall ( [1 ] , Theorem 2) that 

M(Pn) = Pn-2
n"1 for n > 1, 

so that only values of N not coinciding with terms of the (/-sequence need be considered. 

Theorem 1. Let N be an integer satisfying Pn<N < Pn+j for some n > I 

n 

(I) Sf Pn < N < Y* ph t h e n M(N) = M(Pn) + M(N-Pn). 
1 209 
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(ii) if J2 pi < N < Pn+1> then M(N) = M\ YL pi )+[N^HP' )-1 = N-2n. 

NOTE: Result (i) expresses M(N) in terms of M(Pn) and M(N - Pn). But N - Pn < Pn in case (i) since 

n n-1 

Pn < N < ] jT P{ implies Q < J\f - pn < ^ pi < pn > 

1 • 1 

the latter inequality following from the fact that j Pt- j is a (/-sequence. Thus, if we consider the values M(1), M(2), 

•••/ M(Pn) as known, then.ffl(N) is determined from (i) whenever 

n 

Pn < N < Y. P>> 
1 

while M(N) is given explicitly by (is) for the remaining values of N in (Pn, Pn+i). 

Proof. Let N satisfy 
n 

Pn<M<Y,Pi-
1 

Then M(N) is equal to M(Pn) plus the number of non-representabie integers in the interval (Pn, N). But any integer 
K in (Pn, N) which is representable must have Pn in its representation (noting 

n-1 

E Rt < pnh 
1 

and since K = Pn + (K- Pn), we see K- Pn must also be representable. Conversely if K- Pn (which is less than/^) 
is representable in terms of Pf, —, Pn„ / , then K is clearly representable. Thus the number of non-representable inte-
gers in (Pn,N) is equal to the number of non-representable integers less than /!/ - Pn, or M(N - Pn). Hence 

M(N) = M(Pn) + M(N-Pn), 

establishing (i). 
For N satisfying 

n 

Y, Pi < N < Pn+1, 
1 

it is obvious that N is not representable. Moreover 

M[ E p > + r) =M IE p i ) - * ( E >w) =«(E/»,) + / 
(assuming the arguments of the left-hand terms are <Pn+i)%nii in general (adding 1 to M(N) each time N is increased 
by 11 

M(N) = M 

1 \ 1 

which is the first form of (ii). From Theorem 3 of [1 ] , 

i>+U-E/'/ M £>• }+["-i.pi ) - i 
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( n \ n n I \ n n n 

E pi J = E w> = £ ( / w M = E PI-E2'~1 = E ^/-^- ft-
Then 

*ww = W Ep' W ^-E ^ r ; = E Pi-(2n-D+[ ^ - E p< ) - 1 = ^-^ 
as asserted. 

Corollary 1. (Cf. [1 ] , Theorem 4): If 

n n n 

N = Y* a-iPi* then M(N) = £ a/M^/J = N- E a / ^ / " / • 

Proof Let 
A? 

^= E ^/ 
1 

with a,, = 1. Then 

^ < N < E ^ -
so that by (i) of Theorem 1, we have 

M(N) = M(Pn) + M(N-Pn) = M(Pn) + M I £ afP/ I , 

where a/e = 1 and K < n (note K is simply the largest value of / less than n for which a; £ 0). Since 

K K 

RK< E a/̂ / < E ^ 
1 1-

result (i) may he applied again and it is clear that successive iteration leads to 
n 

MM) = E CL/MfP,). 

1 

Using M(P-,) = P\ - 2 , we have equivalently 
n n n 

M(N) = E ai(pi-2'~1l = E ai2'~1 = N~ E a*2*'1 

1 1 1 

as required. 
Corollary 2. (Cf. [1 ] , Theorem 3): 

4 Lpi )«E *w 
Proof. Immediate from Corollary 1 on taking all a/= 1 fo r /= 1, - , /?. 

3. EXAMPLE 

Let Pl = 1, P2 = W, P3 = 12, P4 = 30, Ps = 75, - be the first 5 terms of a sequence which satisfies 
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for all n > LThen, by direct enumeration 
Pn+l > 1 + Y, pi 

1 

M(1) = 0 = 1-2° M(13) = 8 
M(2) = 0 M(14) = 8 
M(3) - / M(15) = 9 
M(4) - 2 M(16) - 10 
M(5) - 5 M(11) = 11 
M(6) - 4 M(18) = 12 
M(7) - 5 M(W = 13 
M(8) = 6 M(20i = 14 
M(9) - / M(21) = 15 
M(10) = 8 = 10-2" M(22) - 16 
MI11) - 8 M(23) = 16 
M(12) = 8 = 12-22 M(24) = 16 

M(25) = 17 
M(26) - 18 
M(27) - 19 
M(28) = 20 
M(29) = 21 
MOO) - 22 - 30-23 

Now, note that ail the values in the right-hand column may be calculated from those in the left-hand column; that 
is, if 12 < N < 30, then we may apply Theorem 1 to see that 

12 < N < 1 + 10 +12 = 23 -> M(N) - M(12) + M(N - 12) 
23 < N < 30 - M(N) » N - 23 

Thus, for example, N = 21 is not representable but M(21) - M(12) + M(9) ^8+7= 15, where we have assumed 
the values M(1) through M(12) are known. Similarly N = 27 is not representable but > 23, so M(27) = 27- 23 = 19. 
Then, knowing M(1) through M(3Q)t we may use Theorem 1 again to calculate M(31) through M(74l Note that for 
case (i) of Theorem 1, only one addition is needed, since N - Pn always <Pn in this case, while for case (ii), there-
suit for/WW is explicitly given by N - 2n. 

4 CONCLUSION 
A recursive scheme has been derived for calculating M(N), the number of integers less than N not representable as 

a sum of distinct terms from a fixed (/-sequence | fy J~. This approach has the advantage of not requiring any prior 
information concerning which positive integers are representable;however, if a representation for N is known, the re-
sult of Hoggatt and Peterson provides an explicit formula for M(N), while in at least some of the remaining cases [(ii) 
of Theorem 1] an explicit formula is obtained from Theorem 1 of this paper. Other values of M(N) for non-
representable N are easily calculated via the recursion relation (i) of Theorem 1. In addition, Theorem 1 provides 
alternative somewhat simpler deviations of Theorems 3 and 4 in [1]. 
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A NOTE ON WEIGHTED SEQUENCES 

L CARLITZ* AND RICHARD SCOVILLE 
Duke University, Durham, Worth Carolina 27706 

1. It is well known that the Catalan number 
/ i'2n' (1.1) a(n)=1t2n\ 

n + / % n r 
satisfies the recurrence 

n 
(1.2) a(n + 1) = Y* a(i)a(n " / j (n s ft 1' 2> '"l 

M 

Conversely if (1.2) is taken as definition together with the initial condition a(0) = 1 then one can prove (1.1). Thus 
(1.1) and (1.2) are equivalent definitions. 

This suggests as possible ̂ -analogs the following two definitions: 

(1.3) *M) - ̂  [ 2 ; ] , 
where 

1 1 1-q ' L"J (1-q)(1-q2)-(1-qn) 

(1.4) a(n + I q) - J^ qja(j,q)a(n - j, q), a(0,q) = / . 
hO 

However (1.3) and (1.4) are not equivalent. Indeed 
a(1,q) = I a(2,q) = 1 + q, a(3,q) = (1 +q) + q + q2(1 + q) = / + 2q + q2 + q3, 

a(4,q) = (1+2q + q2 + q3) + q(1 + q) + q2(1 + q) + q3 (1 + 2q + q2 +q3) 

= 1 + 3q + 3q2 +3q3 +2q* +qs +q6 . 
On the other hand, 

a(1'q)~ Wl^'T^T^--7' 

{'q> [3] I 2} 1 + q+q* (1-qM1-q*) Q ' 

l'q> [4] L 3 j i+g+qt+gi (J _ q)(1 _ q*)(i _ g») 

= 1 + q2 + q3 +q4 +q6 , 

*(4'g, = W [4] = 1 + V* + q3 + 2ct* + Vs + 216 + q1+2q*+q9+q1,'+q12. 

'Supported in part by NSF grant GP-37924X. 
303 
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Another well known definition of the Catalan number is the following. Let f(n,k) denote the number of sequences 
of positive Integers (aX9 a%f •-, an) such that 

(1.5) / < ax < a2 < - < an = k 

and 

(1.6) a/ < / (1 < / < n). 

Then (see for example [1]) 
f(nfk) = (Lz±±l ( n + 1 j 2 ) (1<k<n) 

and in particular n x n~ 

f(n,n-1) = f(n,n) = l (2%Z?) ~*fo-V-

Next define f(n, kfq) by means of [1] 

(1.7) f(n,k,q) = £ qai+a>+'~+a» < 

where the summation isoverall sequences (aif a2, —., an ) satisfying (1.5)and (1.6). It follows from this that the sum 

n 

(1.8) f(n,q) = Y* f(">k<q) 
k=1 

satisfies 

(1.9) f(n, q) * q~n f(n + 1, n, q) = q'n~1f(n +1,n + 1fq) 

Moreover if we put 
(1.10) f(n + 1,k+1,q) = q<k+lH-*1hHk(kH)b(ni ^ q-1} 

then b(n, k, q) satisfies 

(1.11) bin, k, q) = qn~kb(n,k- 1, q)+h(n - /, k, q). 

We shall show that 

(1.12) b(n,n,q) = a(n,q). 

2. Returning to (1.4) we put 
oo 

(2.1) A(xfq) = Y* a(n,q)xn . 

n=*0 

Then 
oo n 

A(x,q) = 1+x ] T x" Yl QJa0,q)a(n-J,q) 
n=0 j=0 

oo oo 

= 1+x Ylad< vto1*' Yl a(n'q**n > 

so that 

(2.2) A(x, q) = 1+ xA (x, q)A(qx, q). 
i 

T h i s gives 

A{x, q) - ; 
1 -xA(qxeq)' 

which leads to the continued fraction 
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(2.3) A{x.q) « ^ £ f£ £*- .... 
By a known result (see for example [3, p. 293]) 

/ _x_ _gx_ g£x = # (qx, q) 
1- 1- 1- 1- '" Q(x,q) ' 

where 

(2.4) 

and 

Therefore we get the identity 

(2.5) 

wr^ „ nn(n-1)vn 

(q)„ = (1-qHl-qll~.<1-qn). 

A(x,q}-%te>*j. $ (x, q) 

On the other hand it is proved in [1 , (7.10)] that 

(2.6) £ b(n+k-1, k,q)xk = | f j ^ (n>0). 
k=0 

In particular, for/? = /, Eq. (2.6) reduces to 

(2.7) <£b(KK.gix*.*[ff*f. 
k-0 

Comparing (2.7) with (2.5), we get 
(2.8) h(k,k,q) = a(k,qh 

3. Forx = -# , Eq. (2.3) becomes 

(3 1) A(-a a) = -i- SL -£ -£ . . 
W.U A[ q,q) 1+ 1+ 1+ 1 + 

It is known [3, p. 293] that the continued fraction 
1 I J ! . . S n (1-q5n+2)(1-q5n+3) 
1+1+1+ «-0 (l-qS^Hl-q5"*4)' 

Thus (2.5) yields the identity 

(3.2) £ (-1)na(n,q)q" = II (1 ~q
K J<1 ~q

K J ' 

Another connection in which af/?, ^ occurs is the following. It can be shown that a(n + 1, q) is the number of 
weighted triangular arrays 

(3.3) * « :;. * * * - ' 

whereby = 0 or 1 and 

(3.4) a/y > ai+i,H > aij > ai+1,j • 
More precisely 
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(3.5) a(n + I q) = ^ q Ea,y 

where the outer summation is over a!! (0,1) arrays (3.3) satisfying (3.4) and the sum 2a// is simply the number of 
ones in the array. 

For example, for n = 2, we have the arrays; 
0 0 1 .0 0 1 1 1 1 1 

This gives 

Foj"/? = 3 we have 

0 0 

1+2q + q2+q3 = a(3,q). 

1 1 0 10 1 0 1 1 
0 0 0 0 0 0 
0 0 0 

0 0 0 I 1 0 0 0 1 0 0 0 1 
0 0 0 0 0 0 0 0 
0 I 0 . 0 0 

1 1 1 1 1 1 I 1 1 1 I 1 1 1 
10 0 1 1 1 1 1 
0 0 1 0 1 1 

This gives 
1 + 3q+2q2 + 3q3 + 2q6 + q5 +q6 = a(4,q). 

Let Tk(n) denote the number of solutions in non-negative integers ajj of the equation 
k k-i+1 

fl = E E au< 
where the ay satisfy the inequalities 

a// > ai+ij, a,-/ > a,-+ij-.i. 
It has been proved in [2] that 

1 

1 1 0 0 1 1 1 1 1 
1 0 0 1 0 0 
0 0 0 

(3.6) 5 " Tk(n)xn = —r— — — — 1— _ _ _ .— 
£ (1 -~x2k~1')(l -x2k~3,f~(1 -x*)k-2(1 -x'ik-1(1-x)k 
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AN APPLICATION OF SPECTRAL THEORY.TO FIBONACCI NUMBERS 

C. RYAVEC 
IVSenlo College, R/lenio Park, California and Santa Clara University, Santa Clara, California 95053 

it is well known that the nth Fibonacci number, an 

(a0 = a1 = I an = an-i +an„2, n > 2) 

can be explicitly written in the form 

\n+1 _ \n+l 
(1) an = Ai ^ -, n = 0,1,2,-. 

where 

The purpose of this note is to derive Binet's formula (1) from the spectral decomposition of the matrix A, where 

First, note that for n = 2, 3, 4, •••, we have 

O) A" IBn an"1 \ 
U) A = \ 3n~1 an-2 ) • 

Second, note that since A is a symmetric matrix, there is an orthogonal matrix, P(P P = I), such that 

(3) r'AP.D-(} I) ; 
i.e., D is the diagonal matrix whose diagonal elements are the eigenvalues of A These are the zeros of the character-
istic equation X2 - X - 1 = 0, of A A short calcualtion reveals that 

r = 1 I1 Xl 

where d > 0, and 

d \ - \ 1 I 

d2 = 1 + X2 = y/5\ ; 

i.e., 

d 

Raising the expression in (3) to the nth power yields 

± [ 1 - \ \ ( i 1YI1 K \ -
d 2 \ \ i j \ i o ) \ - \ 1 ; °-

307 
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(P~1AP)n = P'1AnP = Dn, 

and, solving for An, we have 

(4) An = PDnP~r
t n > 2, 

Equating the values in the upper left-hand corners of the two expressions in (4) gives formula (1) when n > 2. A sim-
ple check shows that (1) holds in fact, for all n > 0. 

The above method for ohtainingthe explicit formula (1) is quite general; it can be used to obtain explicit formulae 
for terms in other linear recurrences. Unfortunately, it is not directly applicable to arithmetic sequences in prime 
number theory. In the case of thesummiatory function of A(k) (A(pr) = log/? for any primep, and 

A(k) = 0 

otherwise), 

^(X)= Y^A(k), 
k<x 

what seems to be needed is an operator, T, whose eigenvalues, Pk, are the zeros of the Riemann zeta-function. Then, 
given x > 1, we would have, on the one hand 

and, on the other 

Trace ( ^ ) = £ ^ / * (Trace T)H . 
j-o 

An arithmetic interpretation of the right side of the last formula should yield an expression close t o * - "$?(x). 

*kkk*rkk 



MINIMUM SOLUTIONS TO x2 - By2 = + 1 

GREGORY WULCZYN 
Bucknell University, Lewisburg, Pennsylvania 17837 

A solution pair (x0, yQ) to*2 - Dy2 =+1 shall be considered a minimum solution if y0 is minimum. Throughout 
this article Fn stands for the nth Fibonacci number of 

\\,\,l,Z,-,Fn+2= Fn+1 + Fn, Fx « F2 « 1 ) ; 

Fn = -L (an-hn), ^ = L±f/l^ b * 1 ^ , ab = -1. 

I. CONTINUED FRACTION EXPANSION OF ODD PERIOD l r * 7,r^0(mod 3),r> 1 

Let D = m2 + k, m < k < 2m, and assume a continued fraction expansion all of whose middle elements are ones, 
thus assuring minimum y. 

y = f2r, X = mF2r + F2r-i 

(mF2r + F2r-i)
2-y2(m2+l<)= 1 

upon using 
Ft+lFt-1-Ft = (~VX 

simplifies to 
(1) 2mF2r-1 - kF2r - -F2t-2 • 
This has integer solutions given by 

m = sF2r+
1/2(F2r+ 1), 

k = 2sF2r-i + F2r-l+1, 0 = s2 F2
2r +s(F2

2r +2F2r + F2f-3) + %(F2r+ V2'+ F2r-1 + *-

X2 _ Qy2 - ; nas integer solutions given by 
x = sF2

2f +
 1AF2r(F2r +1) + F2r- h y = F2t . 

IS. CONTINUED FRACTION EXPANSION OF ODD PERIOD 6r+ 1 

Let D = m2 + k. Assume that the central integer in the continued fraction expansion is 2 and that all the other 
middle elements are ones. The half period expansion is: 

(3r-V ones 
m 1 y — / / 2 
m m + 1 2m + 1 mF3r„i + F3r„2 mF3r + F3r^ 
1 / 2 F3r-1 F3r 2F3r+F3r„1 

y = F3r[F3r„1+2F3r + F3r„1] * 2F3tF3f+1 

x = 2mF3rF3r+1 + F2
3t + F3r-fF3f+i 

[2mF3rF3r+1 + F2
3r+ F3r.1F3r+1]*-4F2

3rF*3r+1(m
2+k) = 7 

simplifies to 

(2) k - m + 

m(F2
3r + F3r„1F3r+1)- F3tF3r+1k = -F3rF3r-i 

F3r-i(mF3t„i + F3r) 

F3rF3r+1 
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(a) r = 2u+U 

Equation (2) transformed has integer solutions form and k given by 
m = F6u+3F6u+4$ + FSu+3 

k = (2F2
6u+3 - 1)s + F6u+iF6u+2 + F6u+3 -

(b) r = 2u 

Equation (2) transformed has integer solutions form and /r given by 
m = F6UF6U+1S+F6UF6U-1 > 

k - (2F2
6u + 1)s + F6u„1F6u-3 + F6uF6u-1 

I I I . CONTINUED FRACTION EXPANSIONS OF EVEN PERIOD2r + 2tr^ 1 (mod3)fr> 1,D = m2 +k 

Assume a continued fraction expansion ail of whose middle elements are ones, thus assuring minimum y. 

Y = F2r+h x = ™F2r+1 + F2r and (mF2r+i + F2r)
2 - F2

2r+1 (m2 + k) = - / 
simplifies to 
(3) 2mF2r-kF2t+i - -F2t-1 

Equation (3) has integer solutions given by 

m = *F2rH + %(F2r+1 + U * = 2sF2r + F2r+U 

D = s2F2
2^1+s(F

2
2^1 + F2r+1+2F2f) + V4(F2t+1+1)2^F2t+U 

x2 - Dy2 = -1 has integer solutions given by 
x = sf2r+1 + 1/2F2r+l(F2r+l + V + F2n V = F2tH • 

IV. CONTINUED FRACTION EXPANSIONS WITH EVEN PERIOD 6r-2,r^1 

Let D = m2 +k and assume that the two central elements are each two and the other middle elements are all ones. 
From the half period expansion: 

(3r-3) ones 
m 1 1— — / 2 

_ - _ . . _ ^ _ _ . 2m+ 1 mF2r-2+ F3~r-3 ^F3r + F3r-1 

1 1 2 F3r-2
 F3t 

Y = Fh-2 + F2
3r 

x = (F3r-2 + F3r)m + F3r-2F3r-3 + F3rF3r-1 

(my + F3r~2F3r-3 + F3rF3r-l)2 -y2(m2+k) - - / 
simplifies to 

2(F3r-2F3r-3+F3rF3r~l)m - (F3r+F3r-2>k = ~F3^3' F%r-1 

k = m * m(F3rF3r'3 + F3r-2F3r-s) + F3r-3 + F3r-1 
F3f + F3r-2 

(4) 

(a) r = 2u 

. m (F6u F6u„2 + F6u_2 F6u„5) + F2
6u_2 + F2

6u„ 1 

t6u + t6u-2 
has integer solutions given by 

tn = 1MF6uF6u-3+ F6u-2F6u-5+ D, 
k = m + y2(F

2
6u_2 + F2

6u„5+1) 
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(b) 

m + • 

r = 2u+1 

m(F6u F6u+3 + F6u+1 F6u-2> + F6u + F't "6u+2 
F>6u+3 +F6u+1 

has integer solutions given by 
"> = -%(F6u F6u+3 + F6u+1 F6u~2 ~ D, k = m- 1/2(F

2
6li + F2

6u„2 - / ) . 

MINIMUM SOLUTION TABLE 

period 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

D 
m2 + 1:2 

m2 +2m :3 
25s2 + 64s + 41:41 

9s2 + 16s + 7: 7 
13 
21 
58 

135 
113 
819 

2081 
1650 

13834 
35955 

1370345 
244647 
639389 

1337765 
4374866 

11448871 
7877105 

78439683 
205337953 

X 

~~~~m":~1 " 
m + 1:2 

25s + 32:32 
9s + 8:S 

18 
55 
99 

244 
776 

1574 
4060 
8449 

27405 
71486 

1551068 
488188 

1276990 
4325751 
8745055 

22890176 
68688052 

156859562 
410643864 

y 
_ r 

/ 
5 
3 
5 

12 
13 
21 
73 
55 
89 

208 
233 
377 

1325 
987 

1597 
3740 
4181 
6765 

23761 
17711 
28657 

A continued fraction expansion is unique; has the unique half-period relations 

Q2r = Qr(Qr-1 +Qr+ll P2r = PrtQr + PrQr+l 
for period 2r+ 1, 

Q2r+1 = QI + QI+P P2r+1 " PrQr+Pr+fQr+l 

for period 2r + 2; and furnish a minimum primitive solution to x2 - Dy2 =±l Using Fibonacci identities it cars be 
shown that all the assumed continued fraction expansions obey the proper half-period relations, give a minimum 
primitive solution to x2 - Dy2 = ±1 and hence are the actual continued fraction expansions. The half-period rela-
tions are explicitly stated as the x and y values- in II and IV. The other Fibonacci identities needed are 

(1) 

(2) 

(3) 

(4) 

P2f+1 = F2r-1F2rt1 
Fr+ Ft+1 ~ F2r+1 >' 

Fr~i(Ff„2 + Fr) - F2r~2 : 

F\n-1- 1 = F2nF2n-2 -



DISTRIBUTION OF THE ZEROES OF ONE CLASS OF POLYNOMIALS 

N. GEORGIEVA 
Sofia, Bulgaria 

INTRODUCTION 
!n the present paper we shall prove that the zeroes of the real polynomials 

(1) f0(x) = Q, fjx) = s, fj(x) = xt fn+i(x) = xfn(x) + fn-i(x), n = 2, 3, -
with $ / 0- and n > 2 are simple, of the form -2/ cos 0, where i2 = -1. and \\2i cos Bj ,js I ••*, n are the zeroes 
of fn+i (x), then the points cos dj , j = 1, — , n are divided by cos 0; ,j= 1, —, n- /and for every interval be-
tween two successive points -[cos Qjn+1\ cos QJ+)- ] one and only one of the following three possibilities holds: 

(a) The interval contains one of cos 6jk+l, 1 <k <n- 1,j= 7, - , n - k. 
(b) It contains one of cos (jn/k), j= 1, —, k - 7 or 
(c) One of the boundary points of it coincides with one of cos 0jk+1, and cos (jir/k) simultaneously. 
When s = Q, then fn (x) becomes 

fjx) = 0, fn(x) = xun-i(x), n = I ••, 
where un (x) are derived from (1) for s = I un (x) are Fibonacci polynomials. 

1. ON THE ZEROES OF FIBONACCI POLYNOMIALS 
From the well known formula: 

[n/2] 

H (n'kk) 2"~2kzk = ((1+^F71^1 -u-y/^nn+1)/2y/rrT 
k=0 * 

and [2] it follows that: 

(2) un(x) = (2hy/kr+4r U(x + s/Pr^4)n -(x- yfiF+iFh n = 0, 1, 2,~. 

Then forx = 21 cos 6 we get: 

(3) un(2i cos6) = -tin+1 sin n6)Mn 6 . 

So, the numbers 2i cos (jir/nt, where/ is an integer and sin (jir/n) f 0, are zeroes of un(x), n > 2. But only n - 1 of 
them are distinct. Indeed, if/ gets values j\ and// and/j -y2 is a multiple of 2n then 

cos (j\ n/n) = cos (j2 ir/n). 
Otherwise 

cos ((n +jh/n) = cos ((n - jfa/n) for 0 < / < /?. 
Therefore the numbers 2/ cos 0'ir/n), j = 1, —., n - 1 are n - 1 different zeroes of (2). Since un(x) is a polynomial of 
the /? — / f degree they are all its zeroes. 
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2. DISTRIBUTION OF THE ZEROES OF f„M,/? =2, •-, WHEN s^0 
By induction it may be proved that: 

(4) fn(x) = un(x) + (s- 1)un„2(xh n > 2. 

Owing to (3) and (4) we have: 

fn(2icos6) = in~7(($\nn6/$md)-(s- 1)(sm (n-2)d)/$md) . 

Functions 
Qn(co$6) - sin/?#/sin0, n = 7,—, 

are Tchebishev's polynomials of second class. Let 

O-2(cos0) = - 1 , 0o(cos0) = 0 and P„(cos^) = 0„ (cos 0) - (s - 7)0,7-2 (cos 0), n = / , - . 

Then the following conditions are fulfilled: 

Po(cos0) = s, P2(cosd) = 2cos(9, 

Pn+7(cos6) = 2cosdPn(cosO)-Pn-i(co$6), n = 1,2,-
and the polynomials 

PQ (cos 6), Px (cos 6), - , Pn+1 (cos 6) 

form a Sturm's row. From [1] —the zeroes of Pn+f (cos 0) are real, distinct and the zeroes of Pn (cos 6) divide those 
of Pn+i (cos 6). So, fn+i(x) has n distinct zeroes-

2i cos 6Jn+7), j = 1,2,~,--,n 

too and the points cos0y , / = 1, - , n are divided by cos djn, / - 7, - , n - 7. 
The position of the zeroes of Pn.k(cos 6) in relation to those of Pn(cos 6) can be examined by the help of the 

lemmas: 
Lemma 1. 

(4) PnteosO) = Qk{cosd)Pn-.k{<:osO)- Qk-.iicosO)Pn-k+i{cos6), 

where n and k are positive integers and n > 2, 1 < k < n. 
This is proved by induction over/?. It can be directly verified that it is valid for/? =2, k= /and for/? = 3, k= 7, 2. 

If we assume that (4) is true for some n - 1 > 3, k = 1, 2, —, n - 2 and n,k = 1, —, n - 7, then 

Pn+1{cos0) = 2cos0/3„(cos^)-/?„_y(cos0) = 2cos0/rQAr(cos0)V^(cos0)-^-;(cos0)^„f^/(cos<9)) 
= Qk (cos <9 )/VAT- / (cos e) + Qk~ 1 (cos 0 )Pn-k-2 (cos 6) 

= Qk(co$d)Pn-k+i(co$d)-Qk„i(cosd)Pn„k(co$d) = Qk(zo$d)Pn-.k+i(co$d), 

which is true for k= 1, —., /? - 2. When k = n - 7 and /: = /?, we have 
Pn+i(cQ$6) = 2 cos0Q„(cos 0) -££?„_/(cos 0) 

the validity of which is easily proved by induction over /?. 
Lemma 2. 

Pn-k(cos6JnH}} = Qk^(^Q(
j
n+1))Pn.1(m%d(

j
n+1))l j - 1,2, - , /? . 
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This can be proved by induction over k. 

Owing to Lemma 1 and the results received above,the common zeroes of Pn(co$9land Pn„k (cos9) are zeroes of 
Qk-1 (cos 9). Moreover/^(cos9land G&_/(cos0) have no other common zeroes. 

Let 

(cos^";! co$dfif7)), 1 <j <n-1 

be an interval between two successive zeroes of Pn (cos9) which doesn't contain any zeroes of Qk„i (cos 9). 

Then 

Qk„1(cos9Jn+1))lQk-1(cos9(
jfi

1}) > 0 

Pn„fkosejn+7)),Pn-t(cos6J2f1)) < 0 

and by Lemma 2, we conclude that: 

Pn-k(m%Q(jn+1}), Pn„k(cosQj?t1J) < 0 . 

This shows that Pn„k (cos 9) has an odd number of zeroes in 

If Pn-k (cos 9) has more than one zero in this interval, from Lemma 1 it will follow that Pn (cos 9) has a zero in 

which contradicts our assumption. Therefore every interval 

lcos9(
j
n+1),cos9(

jH+1)\ 

which doesn't contain a zero of Qk^ (cos 9), contains only one zero of Pn„k (cos 9). In a similar way it is proved 
that if in 

[cos 9Jn+1), cos 9$1>] 

there is no zero of Pn„k (cos 9), it contains one zero of Qk~f (cos 9). 

Thus we proved that in every interval between two successive points of 

there is either one and only one of 

zo%ejn+u, j = 1,-,n 

m%9Jn-k+1), j = 1,-,n-k, 

or one and only one of 
cos (jTL/k), j = 7 , - , A r - 1 

or one of the boundary points of this interval coincides with one of 

cos 9\n"k+1K j = 1, .», n-k and of cos (jll/k), j * 1, - , k - 7. 
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ON THE GENERALIZATION OF THE FIBONACCI NUMBERS 

AS^DRAS RECSKS 
Research Institute for Telecommunication, Budapest, Hungary 

I. 

The Fibonacci numbers (FQ = Ft = 1; Fn = Fn„i + Fn„2, if /7 > 2) are very useful in describing the ladder-
network of Fig. 1,if r= R (cf. [1 ] , [2 ] , [3]). If the common value of the resistances/? and r is chosen to be unity, 
the resistance Zn of the ladder-network can be calculated on the following way: 

da) Zn - £*- . 

Figure 1 
Let R ? r. For the sake of convenient notation let x = r/R and zn = Zn/R. Then 

(1) z =J2aM. 
1 1 Zn f2n-iM ' 

where /0 (x) = fx (x) = 1; and for n > 2, 

f fn-iM + fn-2M if n is odd 
I xfn„ y (x) + fn„2 M if n is even 

This fact gave us the idea to examine into the sequences, defined by a finite number of homogeneous linear recur-
rences which are to be used cyclically. We may assume without loss of generality that the length of the recurrences are 
equal and that this common length m equals the number of the recurrences: 

a\fn-l +'"+ am'fn-m i f f l=0(modm) 
. a\fn-1 +>~+ ®h)fn-m if /l = 1 (mod/w) 

d?~1fn„-i + ^+ a™~ fn„m if/?=/77 - 1 (mod/??) 

It has been proved in [5] that the same sequence fn can be generated by a certain unique recurrence too, which has 
length m2 and "interspaces" of length m, i.e„, 

fn = blfn~m+h2fn~2m + '"+hmfn-m2 • 
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Applying our results to (*) we have 

fn (x) = (2+x)- fn„2 M - fn-4 M, 

or, after the calculation of the generating function and expanding it into Taylor-series, 

[n/2] 
(2) 

i=0 v 

[n/2]-I 

This enables us to solve not only the problem of the lumped network mentioned above, but a special question of the 
theory of the distributed networks (e.g., transmission lines) can also be solved. If we want to describe the pair of trans-
mission lines having resistance r0 and shunt-admittance 1//?0 (see Fig. 2), then put r = r0/n and /? = /?<,•/?. Applying 
(1) and (2) we have 

where 

ffn M = Y*l %~/ ) *> and hn(x) = £ ( 2n~l ) -xl . 

ri 

U2 

1/R, 

r0/2 

Figure 2 

The following simultaneous system of recurrences can be found: 

gn-iM = hn(x) - (1 +x)hn„1(x) 

x2 -hn„2 (x) = gn(x)-(1+ x)gn. 7 (x), 

which enables us to give an explicit form to gn (x) and hn(x). At last 

lirnZ* - y/R0r0-th</r0/R0l if /?->~# 
where 

thy = e e 

This is exactly the result, which can also be received from a system of partial differential equations (the telegraph-
equations). 
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I I . 

On the other hand, (2) can be considered as a generalization of the Fibonacci sequence. Trivially fn (1) = Fn; and 

[n/2] 

a well-known result about the Fibonacci numbers. Similarly, 

Fn = 3Fn„2 - fn-4 , 

if n > 4, or 
Fn

 = tFn„3 + (17 - 4t)Fn„6 +(4- t)Fn„g 

for any t, if n > 9 and an infinite number of longer recurrences (length m2 and interspaces m for arbitrary m - 2,3,-
could be similarly produced. 

A possible further generalization of the Fibonacci numbers is 

HO 

wherep_ is an arbitrary non-negative integer. 
This definition is the generalization of the u(n;p, 1) numbers of [4] . The following recurrence can be proved for the 

Fn,p(x) polynomials: 

(3) xFn^hp(x) = £J (-7)' lpl1) Fn„(p+1)KpM . 
HO 

Similarly, it can be easily proved that the generating function 
oo 

HO 

has the following denominator: 
J>+if+1 _ *.7P+1 

As a last remark, it is to be mentioned that a further generalization of the functions Fnp(x) can be given (cf. [4] ) : 

HO 

but this case is more difficult. A recurrence, similar to (3) can be found, which contains on the left side the higher 
powers of x, too. However, essentially new problems arise considering the case q > 2. 
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THE GENERAL LAW OF QUADRATIC RECIPROCITY 

LARRY TAYLOR 
Briarwood, New York 11435 

Extend the definition of the Jacobi Symbol to include values for negative second entry as follows: 
If a is an integer add p is an odd prime, set 

(a/pi ^a(p~1)/2 (mod/?) 
and 

Set 

lib is an odd integer, set 

Set 

Set 

(a/p) = 0 or ±1 . 

(a/1) - 7. 

(a/b.bj = (a/bjfa/bj, 

(0/-1) = 0. 

(-1/-1) = -1. 
There is another way of defining negative second entry in the Jacobi Symbol, which is based upon 

(-1/-V = 1. 
This method is given in [1 , p. 38, Exercise IX, 5] . 

The Jacobi Symbol is only a definition and not a theorem; therefore it can be arbitrary as long as it satisfies two 
requirements: First, it must be consistent and, secondly, it must represent mathematical results clearly and elegantly. 
The definition given in this paper is superior from the second point of view. For example, with 

f - / / - / ! « 1 

it is difficult to express the periodicity of the second entry. In fact, much of that periodicity is lost. But, with 

(-1/-1) = -1, 
the result is clearly stated in Corollary 2. 

All of the known and proven properties of the Jacobi Symbol are retained in the extended definition (see [1 , pp. 
36-391 and [2, pp. 77 -80 ] ) . 

This refers in particular to the multiplicavity of the first entry, which is easily proved for negative second entry..-
Then 

(axajb) = (aJbHaJb) 
and 

[Continued on page 321. J 
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NON-HYPOTENUSE NUMBERS 

DANIEL SHANKS 
Naval Ship R&D Center, Bethesda, Maryland 20084 

The non-hypotenuse numbers n = 1, 2, 3, 4,6, 7, 8,9, 11, 12, 14, 16, 18, -a re those natural numbers for which 
there is /?o solution of 

(1) u2 + \/2 (u > v > 0). 

Although they occur very frequently for small n they nonetheless have zero density-almost all natural numbers/? 
do have solutions. Only 1/15.547 of the numbers around 10100 are NH numbers, and, around 219937 - 1, only 
1/120.806. 

In a review of a table by A. H. Beiler [1 ] , I had occasion to remark that U NH(x) is the number of such n <x then 

(2) NH(x) ~>Ax/y/\OQX~ 

for some coefficient A. Recently, T. H. Southard wished to know this A because of an investigation [2] originating 
in a study of Jacobi theta functions, inasmuch as most of the analysis and arithmetic has already been done in [3 ] , 
one can be more precise and easily compute accurate values of A and C in the asymptotic expansion: 

(3) NHM Ax 
%/iogx 

1 + JL- + 0 
l og* 

1 
log2 x / 

Landau's function B(x) is the number of n < x for which there is a solution of 

(4) n = a2 + v2. 

Mote:/? to the first power, and all u, sallowed. Then 

(5) B(x) hx 
\J\OQX 

1 + log -+o(-1-\ 
x \ l o g 2 W 

and I evaluated 

(6) b = 0.764223654, c = 0.581948659 

in [3] . The n of (4) are those n divisible only by 2, by primes p = 1 (mod 4), and by even powers of primes q = 3 
(mod 4). If bm = 1 for any m = any such n, end bm = 0 otherwise, one has the generating function 

(7) Y: bjn = f(s)=-j- n- ; n / 
-2s 

(8) 

m=1 m" 1-2"s P 1-p~s Q 1-q~ 

n contrast, the NH numbers are those divisible by no primep, and so they are generated by 

gfs) = — ' _ n 
/ -2~s q 1-q"s 
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Since 

(9) 

we can write 

(10) 

Us) = l-3-s + 5-s-7~s + •••= n — 1 — n- 7 

P 1-p~sq 1 + q' 

g(s) = f(s)/L(s). 

Landau [4] showed that f(s) has a branch point at s = 1 and a convergent series 

(11 f(s) = - ais n + al(1-s)/a + -J 

n its neighborhood for computable coefficients a, au •••. In terms of these, one evaluates the coefficients of (5) as 

(12) aV(V2) c = (a. -a)/2a 

with the usual method using Cauchy's theorem and integration around the branch point. But L(s) is analytic at 5 = 1 
and so we have, at once, 

(13) 

for the new generator 

(14) 

Therefore 

(15) 

L(1)' d a L(1) 

g(s) dis2 

y/l-S 
[1+dx(1-s)/d + ~]. 

A = b/L(1), C = c + L'(1)/2L(1) 

give the wanted coefficients of (3). Of course, UD^itlb, and in [3] one has 

(16) LW/UV = log 

in terms of the Euler constant y and the lemniscate constant c3 . So, from [3] one has 

(17) 

and 

[(§)'?] 
A = ̂  n (l-q~2f% = 0.97303978 

(18) C = 

In [2] Southard gives 

i [ , -* (£ ) -J£„n- l 
2s 

s=/J 
= 0 70475345 

NH(99999) - NH(99000) = 295, 

while (3), (17) and (18) give 

NH (99999) - NH (99000) = 289.36. 

It is known that the third-order term in (3) is positive but it was not computed. 
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(1/-1) « 7, 
(-1/1) = 7, 
(1/1) = 1. 

The second entry of the Extended Jacobi Symbol is multiplicative by definition; it will be proved in the corol-
laries that both entries are also periodic. 

The following results are easily derived: 
Explicitly, 

(0/1) - 7, 
(O/b) « 0 if h ? 1, 

(0/-b) = 0 if -h f 1, 

<2/tb)*<-1)<b%-1>'8. 

(-2/h) = (-1)(b2+4b-5)/8, 

(-a*/-D » - / , 
(-1/-h*) - - 7 ; 

(-a/1) = 1, 
(a/-1) = (a/-1) (see below), 

(-a/-1) = ~(a/-1); 

(1/h)=1, 

(~1/b) = (-1)(b-1)K, 

(1/-b) = 1, 

If a =/ 0, then 

[Continued on P. 324J 



THE FIBONACCI RATIOSFk + 1 /Fk MODULO/? 

LAWRENCE SOMER 
University of Illinois, Champaign, Illinois 61820 

It is well known that the ratios Fk+i/Fk converge to 0, the golden ratio. These fractions are alternately greater 
than and less than 0. However, interesting relationships also arise if we consider these ratios reduced modulo /?, where 
/? is an odd prime. 

Before proceeding further, we will need a few definitions. Let Rk be the Fibonacci ratio Fk+1/Fk. Letzf/?j be the 
restricted period of the Fibonacci series reduced modulo p-that is, Fz(p) is the first term = 0 (mod/?) in the series. 
Let co (p) be the period of the Fibonacci sequence modulo p and let 

P(pt = cj(p)/z(p). 

\\zlp)^l (mod 4), fi(p)= 1; \fz(p)^% (mod S),p(p)=2;an6 \iz(p) = 1 (mod 2), P(p) = 4. See [1]. Further, let us 
agree to ignore all ratios modulo p which have 0 as a denominator. 

Then, the Fibonacci ratios reduced modulo p repeat in periods of length zip) - 1. This follows since the terms 
Fkz(p)+1 t 0 Ffk-rUzfp) are constant multiples of the first zip) terms. Furthermore, no two ratios within a period 
repeat, since this would imply that a term of the Fibonacci series preceding Fz(p) was congruent to 0 modulo p. 

Thus, if zip) = p + 1, all the residues will be represented in the period of Fibonacci ratios reduced modulo p. The 
fact that none of these ratios repeat is an easy way of showing thatz(p)<p+ 1. A necessary but not sufficient con-
dition for zip) to equal p+ 1 is that (5/p) = -1 and &(p) = 2, which is equivalent to saying that/? = 3 or 7 (mod 20). 
See [ 1 ] . For primes such as 3f 7, 23, and 43, zip) does in fact equal p + 1. 

The Fibonacci ratios reduced modulo 7 are shown below: 

L 
1 
2 
3 
4 
5 
6 
7 
8 

A_ 
1 
1 
2 
3 
5 
1 
6 
0 

Rk-1 

1/1 s 1 (mod 7) 
2/1 EEE 2 (mod 7! 
3/2 = 5 (mod 7) 
5/3 = 4 (mod 7) 
1/5 = 3 (mod 7) 
6/1 = 6 (mod 7! 
0/6 ss 0 (mod 7) 

Theorem 1. Rz(phn = 1 - Rn (mod/?) for 1 <n <z(p)- 1. 

Proof. This is true for n= 1, since Rx = 1/1 = 1 (mod/7) and Rz(p)-1 = 0 (mod/?). 

Now assume that the hypothesis is true up to n = k. Let Rk = r. Then 

fJp±^r and ^Rthtl s / _ r (mod/7) 
Fk Fz(phk 

Thus, Fk+i =rFk (mod/?). 
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Also, 

Hk+1 ~ -p E "~ = — c — = (mod/7 . 
Fk+1 Fk+1 rFk • r 

R = Fz(p)-k = . Fz(p)-k ^ Fz(p)-k 
z p -k-1 Fz(phk^1 Fz(p)_k+1 - Fz(p)-k (1 - r)Fz(phk - Fz(p)„k 

Fz(phk -1 

But 

^z^Tk^T (mod/?)" 

L±l^ f - ( ^ ) (mod/7) 

and we are done. 

Theorem 2. Rn'Rz(p)-n-i = - 1 (mod/?) for 1 </? <z(p)~~ 2. 

Proof. Rx = 1 and R2 = 2 (mod /?). By the previous theorem, 

Rz(ph2=1-2 = -1 ==1 (mod/7). 

Thus, the theorem holds for/7 = 1. The rest of the proof by induction is similar to the previous proof. 
The remainder of this paper will be devoted to investigating what residues appear and do not appear among the 

Fibonacci ratios reduced modulo/?. We will not consider such trivial residues as 2/1 or 3/2. By Theorem 1, if z(p) is 
even then the ratio Ry2Z(p) will be=1/2 (mod/?). If z(p) is odd, then Theorem 1 implies that ]4 will not appear among 
the Fibonacci ratios modulo p. Thus, if $(p) = 1 or 2,14 appears among the Fibonacci ratios and if $(p) = 4, ]4 will 
not be among the Fibonacci ratios modulo p. 

By Theorem 2, if zip) is odd Ry2(z(p)-1) will be congruent to one of the square roots of - 1 (mod /?). If z(p) is 
even, no square roots of - 1 will show up among the Fibonacci ratios reduced modulo p. 

Combining theorems 1 and 2, we see that no solution of the congruence 

1-k = =— (mod/?) 
k 

will appear among the Fibonacci ratios modulo /?. Solving for A, we see that 

k s l±JL (modp) 

if (5//?) = 0 or 1. It turns out that for certain primes such as 11, 19, and Z\,z(p)=p - /, and every residue but 

2 

appears among the Fibonacci ratios modulo p. A necessary but not sufficient condition for this to occur is that/? -
11 or 19 (mod 20). 

We are now ready to summarize our results: 
For all primes if the residue r appears among the Fibonacci ratios modulo/?, then 1 - r and -Mr will also appear. 
p = 5: All residues except 14 = 3 (mod 5) will appear. 
p = 2 or 7 (mod 20): All residues might appear si nee z(p) might equal/? + 1. In any case, the residue 14 will appear. 
p = 11 or 19 (mod 20): The residue % appears. The residues 

Mf& (mod/?) 

do not appear. All other residues could appear since z(p) might equal p - 1. 
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p = 13 or 17 (mod 20): The residue V2 does not appear. Exactly one square root of - 1 appears. 
p = 1 or 9 (mod 20) and 0(p) = 1 or 2: The residue 14 appears. Both square roots of - 1 and the residues 

- M ^ (mod/?) 

do not appear. 
p = 1 or 9 (mod 20) and &(p) = 4: The residues Vz and 

1-^- (modp) 

do not appear. Exactly one square root o f - 1 (mod/?) appears. 
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[Continued from P. 321.] 
If (a,h) = 7, then 

(a2/b2) » 7, 

(-a2/b2) - 7, 

(a2/-b2) - 7, 

(-a2/-b2) = - 7 ; 

(a/b2) = 1, 

(-a/b2) = 7, 

(a/-b2) = (a/-1), 

(-a/-b*) = -(a/-1); 

(a2/b) » 1, 

(-a2/b) * (-1/b), 

(a*/-b) •» 7, 

(-a*/-b)* -(-1/b); 

(a/b) = fo/W, 

f-*/W = (a/b) f-1/b), 

(a/-b) - (a/b)(a/-1)e 

(-a/-b) = -(a/b)(a/-1)(-1/b). 

It remains to evaluate / V - 7 j . Sfrnce (~a2/-1) = -1, therefore fa / - 1) = -(-a/-1). This means that fe/- 7̂  cannot 
be defined in terms of an integer. Either (a/-1) = 7 if and only if a is positive or (a/-1) = 7 if and only if a is nega-
tive. The choice of alternative is dictated by the fact that (1/-1) = 1 and (-1/- 1) = - l Therefore, (a/-1) = 1 if and 
only if a is positive. 

(See Tables 1 through 4.) 

[Continued on P. 328.] 



ON ALTERNATING SUBSETS OF INTEGERS 
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A finite set /of natural numbers is to be alternating [1] provided that there is an odd member of / between any two 
even members and an even member of / between any two odd members; equivalent^, arranging the elements of/ in 
increasing order yields a sequence in which consecutive elements have opposite parity. In this note we compute the 
number anj of alternating subsets of | 1, 2, ••-., n [ with exactly r elements, 0 < r < n. 

As a matter of notation we denote an alternating /--subset of \ 1, 2, - , n j by (qu q%/ •••, qr;n), where 
we assume qt <q2 < •» < qr. 

Let Enf (resp. On,A
 De t n e number of alternating subsets of { 1 , 2, —, n } with r elements and with least ele-

ment even (resp. odd). It follows that 
(1) an/f - Entr+On,r {1 <r <n). 

For reasons which will soon become evident we set En/g - O^Q = 1; hence, antQ = 2 for n > 0. In addition, 
set 3 0 , 0 = 1 . 

Lemma. For any positive integer m, 

Em+hr = °m,r; 0 < r < m+ 1. 

Proof. The case r = 0 is trivial. If r ~ m + 1, then 

Em+1,m+1 - 0 - Om,m+1-

For 1 <r<m consider the correspondence 
(Qu Q2, •"/ Qrtm + 1) ** fai -1,Q2- I ~, Qr- Vm). 

If ql is even then it easily follows that the number of r-subsets of \ 1, 2, •••, m + 1 J with least element even 
equals the number of r-subsets of < 1, 2, —, m \ with least element odd, q.e.d. 

Proposition 1. For any positive integer m, and 1 < r < m + 1, 
(2) am+1fr = am,r-i+®m-1,r • 

Proof. The case/7? = 1 is obvious, so assumem > 2. If r = 1 then 
am+i,i = m + 1 while am,0 = 2, am^i = m- 1 ; 

hence (2) holds. For r > 1 we divide the r-subsets of | 1, 2, •-,/?? + 1 \ (denoted as usual by (qu q2, -r-,^; 
m + 1)) into two groups: 

(i) qx = 1. Then (q2/ •»., qr;m + 1) is an (r-/j-subset of j 1, 2, - , m + 1J which has an even least element, 
so there are Em+^r./ such subsets. 

(ii) ^ > 2. Then the correspondence given in the previous lemma shows that the number of such r-subsets is 
am,r • 

We thus conclude that 

(3) 

whence it follows that 

(4) 

am+1,r ~ Em+1,r-1 +am,r 

am+1,r = Em+1,r-1 + Em,r-1 +am-1,r-
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Applying the Lemma, Eq. (4) becomes 
(5) am+1,r s Om^t + Em^ + am^j. 
Substituting (1) in (5) yields (2), q.e.d. 

We remark that (2) holds for m = 0 if we define an/t = 0 if n < 0 or r < 0. 
The recurrence (2) can be solved using the standard technique of generating functions [2,3]. We first define 

(6» An(x) = E *n.rxr • 
k=0 

Notice that An(x) is a polynomial of degree n sincean,r~ 0 fo r r> /? . Using (2) we deduce that for n > 3, 
(7) An(x) = xAn-jtxI + A^M, 

while (6) and the boundary conditions on an^ give 
AoM = a0^0 = 1 

Ajx) = alf0 +axlx = 2+x 

AJx) = a2f0 +a2Ax + a2f2x
2 = 2 + 2x+x2 • 

Set 
oo 

A(y,x) - ] T AnMvn • 

Then the above initial values together with (7) yield 

(8) A(y*)= T-lLt±)-2 . 
1 - xy-y2 

We now derive an explicit representation ofAn(x). To begin, expand 1/(1 -xy-y2) in a formal power series: 

Fix any integer n > 0. Then the coefficient of yn in (9) is easily seen to be 

(10) B„(x) = ( n
Q ) x" + ( " ~ 1 ) xn-2 + ...+ ( nfn/2]/21) x"'2["/2} • 

It follows that An(x), the coefficient of yn in A(ytx), is given by 
tn/2] [fn-V/2] 

< 1 1 > U i - E (V)*""**' I] (it-/-*),*-/-* 
/n/27-/ 

* E (»-f-')*»-*•* 
s«0 

= Bn (x) + 2Bn„ i (x) + Bn„2U) . 
We now determineanj, which, we recall is the coefficient of xr lnAn(x). We have two cases. 
CASE 1. Assume r ==/? (mod 2). Then we can find s > 0 so that n- rs2s, i.e., s - #//? - r). Motice that Bn-](x) 

does not contain the term x r . If 5= 0, then r- /7 and 

a»<n " ( 2 ) s / ; 
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otherwise we can rewrite r as r = (n - 2)- 2(s- 1) and thus both Bn (x) and Bn-2M contain a term in xr\ hence 
(io) . _ / n - Vs(n - r)\ ' / (n - 2) - [%(n - r) - 1] \ 

Simplifying (12) we have that for r = n (mod 2), 

H3) Bntr ~ \Kln-r)) \ X(n - r) - 1 ) ' 

CASE 2. Assume r ^n (mod 2). Then the term xr appears only in Bn-i(x), so we obtain (in a fashion analogous to 
the one above) that 

an,r ~ ' \ Kln-t -1) / " 
That is, for r^ n (mod 2), 

(14) a =2 (Mn + r-1)\ 

We summarize these results in the following: 
Proposition 2. Let an,r be the number of alternating /--subsets of j 1,2, -, n \ . 
(i) l f r = /?(mod2), 

_ f%(n + r)\. (%(n + r)-1\ 
an>r " \%(n-r) / \ Kin -.r) - i t ' 

(ii) I f r^ /? (mod 2), 
s W X f n + r - « \ 

Asa result of this development we obtain an interesting relation between the numbersan/tand th&Fibonacci num-
bers [3]: 

Corollary. Let fn be the Fibonacci sequence, i.e., /0 - ^ - 7 and ̂ +7 = />, * /J7-7- T n e n w e nave 

n 

(15) W s X ^>" 

Proof. Recall (see [3], p. 89) that the ordinary generating function for the sequence fn is 
00 

(16) Ffy) = £ f„K" = J—L-; . 
n=0 

It follows from (8) that 

A(y, 1) = (1 +y)*F(y) = £ (fn +2f^i + fn-2)y" . 
n=*0 

where Lt = L2 = 0. But from (7), 

n=0 

and 

n 
An(J) = £ «„,,-, 

/=0 
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Yl 3n,r = fn+ ^n-1 + fn-2 
r«0 

whence we conclude that 

(17) 

Using the recurrence 

fn+1 = fn +fn-1, 

the right-hand side of (17) simplifies to fn+2, which is the desired result, q.e.d. 
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TABLE 1 
Jacobs Symbols: b = 1 

(a/b) (b/a) (a/-b) (-b/a) 

- 7 1 1 - 1 1 
- 5 1 1 - 1 - 1 
- 3 1 1 - 1 1 
- 1 1 1 - 1 - 1 

1 1 1 1 1 
3 1 1 1 - 1 
5 1 1 1 1 
7 1 1 1 - 1 

a 

-7 
-5 
-3 
- 1 

1 
3 
5 
7 

(a/b) 

-1 
1 
0 

- 1 

1 
0 

- 1 
1 

TABLE 2 
Jacobi Symbols: b = 3 

(b/a) (a/-b) 

- 1 
- 1 

0 
1 

1 
0 

-1 
- 1 

1 
- 1 

0 
1 

1 
0 

- 1 
1 

(-b/a) 

- 1 
1 
0 

- 1 

1 
0 

- 1 
1 

[Continued on P. 330.] 



STRUCTURE OF THE REDUCED RESIDUE SYSTEM 
WITH COMPOSITE MODU LUS 

HUG0S.SUf\! 
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In [1] a group-theoretical technique was employed to prove the following: 

Theorem 1. Let 
m = 2ep?> -Pi" • 

The congruence A-2 = 1 (mod/77) has 2k solutions if e - 0, 1, 2k+1 solutions if e > 2. 
We extend this method to study the structure of the reduced residue system. Since the reduced residue system 

mod m is isomorphic to the automorphism group of cyclic group of order/7, we need several lemmas on automorph-
ism groups. Because of the existence of primitive root mod pn. we have 

Lemma 1. The automorphism group A(Cpn) of the cyclic group of orders" is cyclic, and its order is 

cpfp") = p» - p n ~ 1 . 

Lemma 2. A(C2n) is cyclic if n = 1, 2. If n > 2, 
A(C2n) = C2n-2 x C2 . 

Proof. The first statement is obvious. For n > 2, the automorphism a of C ^defined by o(a) - a 5 has order 
2n~2; in fact if n = 3, 2 

o(a) = a5, o2(a) = a, 
so |(7| = 2. By induction on n, 

o2"~2(a) = a5*"'2 = a ^ r = a<l+2n-1+k2nr = ai+2n = a on C^ . 
i.e., a 2 = the identity automorphism on C n but o2 is not, so ia| =2n~ . 

Next we show that every automorphism aonC2rj is a product of a power of crand an automorphism r of order 2. 
Let a be defined by a(a) = at

/ where t is odd, we have 

a(a) - a 

i.e., a(a) = G,r(al where 

Theorem 2. Let 
7(a) = a ' 2 

m - 2 p1
iP2

2 y-pn . 
where e > 0, e,- > 1, The reduced residue system mod m is generated by the powers of n + k elements, with 

II 0 if e - 0 or 1 
' 1 if e = 2 

2 if e > 2, 
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Proof. 
Cm = C2exCPiel x «. x CPne„A(Cm) = AfCj) x AfC^eJx »• x A(CPna„) 

A(C2e) = 

!

(1) if e = 0 or / 
C2 if e = 2 
C

0e-2 *C2 if 8 > 
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TABLE 3 
Jacobi Symbols:/? = 5 

(a/h) (h/a) (a/-b) (-b/a) 

Then 

if and only if a is positive and/or b is positive; and 

-7 
-5 
-3 
- 1 

1 
3 
5 
7 

a 

-1 
-5 
-3 
- 1 

1 
3 
5 
7 

- 1 
0 

-1 
1 
1 

-1 
0 

- 1 

(a/b) 

0 

-1 

- 1 

0 

- 1 
0 

- 1 
1 
1 

- 1 
0 

-1 

TABLE 4 
Jacobi Symbols: 

(b/a) 

0 
-1 

1 
1 
1 
1 
i 

— i 
0 

( (ihl) \ 

1 
0 
1 

- 1 

1 
-1 

0 
- 1 

b=7 

(a/-b) 

0 
-1 
- 1 

- 1 

0 

= 1 

- 1 
0 

- 1 
-1 

1 
1 
0 
1 

(-b/a) 

0 

-1 

- 1 

0 

(b/-1) 

[Continued on P. 333.] 



ON AN INTERESTING PROPERTY OF 112359550561797752809 
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In solving Problem 301 by J. A. Hunter in [1] an interesting Fibonacci property arose. The problem was to find 
the smallest positive integer with the property that when the digit 1 was appended to both ends, the new number 
was 99 times the old. If x is the original number then the problem can be restated by solutions x, ktQ 

jjg—L = x and [Sog10x] = K 

where [••• ] is the greatest integer function. The problem can of course be generalized to other bases. In particular in 
the base g,g-\ plays the role of 9 in the base 10, so the original problem becomes 

Generalized FrobSem: Find x, k if 

gk+2+gx+l = (g2-1)x , 
orequivalently 

ak+2 + 1 

g2~g~i 

It is an easy inequality argument to show for a positive integer#> 3 that 

gk < J^+L < / * * . 
g-2-g- 1 

Thus the condition [ l o g ^ ] = k can be dropped for# > 3 and we will do so for the remainder. 
By long division, 

nk+2 
= JL 

92~g 

;th 

+ 1 - f V * „k+h1p \ . 9Fk+2*Fk+1+1 

-1 \fc J g2-g-1 
where F; is the / Fibonacci number (F j = F2 = 1,. etc.). So all the solutions for a given g are found by finding the 
k'% for which 

gFk+2 + Fk+1 + 1 

9 -9- 1 
is an integer. 

Solving the equation 

g -g- 1 

f o r * and k is equivalent to solving the congruence gf = - 1 (mod g2 - g- / ) f o r f > 2. As a matter of fact, since 
1022 = - 1 (mod 89) we see that for#= 10, all solutionsx are given by 

W22+44j+1 
x W ' 

The first such x is 112359550561797752809. 
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In the remainder of this paper we will always use/7 to denote an odd prime. It is easy to showthat#f = - 1 (mod 
pa) has a solution t if and only if ordp# is even, where ordp# means the order of g in the multiplicative group of in-
tegers modulo p. In this case t is an odd number times 34 ordp#. Then using the Chinese Remainder Theorem, the 
fact that ordm#= l.c.m. j ordpag:Pa\\m I , and the fact that ord a# is a power of p times ordp#, it is an elementary 
argument to show for m odd and (g,m) = 1 that#f = - 1 (mod m) has a solution t if and only if there is an* > 1 
such that 2x||ordp#for each/?|/77, in which case t is an odd number times 1/2ordm# Compiling this result with our 
earlier discussion and the fact thatg2 -g- 1 is always odd leads to the following theorem. 

Theorem 1. letg > 3 be an integer,, Then the following statements are equivalent. 
(a) The Generalized Problem has a solutions k. 
(b) There is an integer k such that 

gFk+2 + Fk+l + l 
92-g-1 

is an integer. 
(c) There is an integer* > 1 such that 2*||ordp#for every prime/?^2 -g- I 

If these statements hold, then k + 2 is any odd number times 14 ord^-^/gL 
The question naturally arises as to how many bases g are there for which the Generalized Problem has a solution. 

Towards this end let/! denote the set of those #> 3 for which the Generalized Problem has a solution and let 
B = \g > 3:g £A\ . 

Let p be a prime of the form 3 (mod 4) which divides h2 - h - 1 some h. Then p also divides (-h + V2 

- f-h + 1) -1. Furthermore 

(n*?) •{!)•-'• 
where (— /p) is the Legendre symbol. So either 

Let ap stand for h or -h + 1 according as to which Legendre symbol is 1. Then if g = ap (mod p) we have that 
P \g2 ~ 9 ~ 1 and that ordp# is odd (since 

g(p-1)/2 s g(p-l)/2 s ( fe. ) s 1 (modp) and IfL 

is odd). On the other hand if/? is any prime of the form 1 or 4 (mod 5) then/?|/?2 - h - /for 

where/?2.5 5 (mod p). (Note that 

h = 1~(1+b)(l+p), 

(in*)-* 
so h exists.) Therefore if p = 1 or 4 (mod 5) and in addition/? = 3 (mod 4), i.e.,/? = 11 or 19 (mod 20), then there 
is an ap such that for every g^ap (mod/?) we have ordp# is odd and/?|/7/2 -g- 1. Let P= i p:p is a prime of the 
form 11 or 19 (mod 20) | and let C = i g > 3:g = ap (mod p) for some/? &P\. Then Theorem 1 implies C c B. 
Furthermore, Dirichlet's theorem on primes in arithmetical progressions implies 

7 _ 
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It then follows that the asymptotic density of C, and hence B, is 1. We have thus proved the following theorem. 
Theorem 2. The probability of a random choice of a base# > 3 not yielding a solution tothe Generalized Prob-

lem is 1. 
In light of this theorem it seems that the choice of the base 10 in the problem as originally stated was a wise choice! 

We leave as an entertaining problem for the reader the question of the identity of the basest less than 100 for which 
there is a solution. 

We have shown that in some sense A has far fewer elements than B. But is A finite or infinite? If g = 3 (mod 4) is a 
prime and p - g2 - g - \ is also a prime, then p = 1 (mod 4) and 

[i)-(t)-{?)•-'• 
Hence gl = - 1 (mod p) has a solution and g<= A. We note that Schinzel's Conjecture H [2] implies there are infin-
itely many primes # = 3 (mod 4) for which g2 - g - 1 is also prime. Hence if this famous conjecture is true it follows 
that our set A is infinite. 
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[Continued from P. 330.: 

I (-1/h) 1 ( 1J (a-1)(h-1)/4 _ = / 
if and only i fa = 1 (mod 4) and/or£ = 1 (mod 4). 

If A = ±1 and B = ±1 are logical variables, then the sixteen functions of those variables are given by ±1, ±A +B 
±AB and ±(±A/±B). This is a result that cannot be obtained with the definition (-1/-1) = I If A = (-1/b) and 
B - (-2/b), then the logical functions of A and B give the congruence of b modulo 8. For example 

(A/B) = (_f)(b'-b*+7b-7)/16^ , 

if and only if b = 1, 3 or 5 (mod 8). The function - 1 is a null function which cannot occur. 

Wb = ±piP2 -Pk with pi not necessarily distinct, and n is the number of /?,- for which (a/p) =-1, then 

Theorem. If ab = 1 (mod 2) and [a,h) = l , then 

<»»»•( ffltm) • 
In other words, 

(a/bHb/a) = 1 
if and only if ((a is positive and/or b is positive) and (a = 1 (mod 4) and/or b = 1 (mod 4))) or (a is negative and b is 
negative and a = - 1 (mod 4) and b = - 1 (mod 4)). 

Proof. 
((-1/a}/(-J/b)t = -1 

if and only if 
(-1/a) = (-1/b) = -1; 

[Continued on P. 336.] ((-1/-a)/(-1/h)) = - / 



DISTRIBUTION OF THE FIRST DIGITS OF FIBONACCI NUMBERS 

WILLIAM WEBB 
Washington State University, Pullman, Washington 99103 

In a recent paper [1] , J. L. Brown, Jr., and R. L, Duncan showed that the sequence *{ QnFn I is uniformly dis-
tributed modulo 1 (u.d. mod 1), where c/7 denotes the natural logarithm and Fn is the/?f/7 Fibonacci number. In this 
paper we show that some modifications of these ideas have some interesting consequences concerning the distribu-
tion of the first digits of the Fibonacci numbers. This also answers a question raised in Problem H-125. 

It has been noticed, and proved in the probabiiitic or measure theoretic sense, that the proportion of physical con-
stants whose first significant digit is less than or equal to a given digit a (in base 10), is log10 (1 + a). See [2] , [4] . 
We will show that a wide class of sequences, including the Fibonacci numbers, have a natural density satisfying a sim-
ilar distribution. Hence, roughly speaking, a large percentage of the Fibonacci numbers have a small first digit. 

Let h be a given positive integer. All of our numbers will now be written in base b. Let j an I be a given se-
quence of positive numbers. For any digit d in base b, let x^ = number of n < x such that the first digit of an is < d. 
More generally, if 

define 
a - aQbk + aih

k~1 + - , a0 ? 0, 

ab~k 

so that 1 <a*<band a and a* have the same digits. Then if X is any number 1 <\<b, define x ^ - the number of 
n <x such that a* <X Also, let x\(k) = the number of n <xsuch thatZ?^ <an <X6 / f . Hence 

We will say that a sequence 4 an J- is logarithmicly distributed (LD) if x\~x log X, where log means log&. The 
connection between this type of distribution of first digits and uniform distribution mod 1 is given by: 

Theorem 1. \ an I is LD in base b if and only if j l o g a ^ i is u.d. mod 1. 
Proof. 1 < a * < X, if and only if bk <an< Xbk for some integer k, if and only if k < log an < k + log X for 

some integer k, if and only if (log an) < log X, where (m) denotes the fractional part of m. Hence * \ = number of 
n <x such that (loga,,) < log X, and $ox\~x log X if and only if i l oga^ i is u.d. mod 1. 

Corollary 1. | a n > is LD if and only if a is not a rational power of b. 

Proof. This follows immediately from the fact that 4 /? loga I- is u.d. mod 1 if and only if log a is irrational [3], 
This last result follows from Weyl's theorem that i jSy I is u.d. mod 1 if and only if 

n 
im ^ V eMhfil -Y. 

» - - • M 

for all integers h > 0 [3] . 
Using Weyl's theorem and results concerning trigonometric sums, we can show that sequences such as j a n\ and 

I nn J- are LD where pn denotes the nth prime. 
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The following results can be proved using Weyl's theorem, but they can also be obtained directly from the defini-
tion of xx without recourse to any considerations of uniform distribution. 

Theorem 2. If j an j is LD then 
(i) | can [ is LD for all constants c> 0, 
(ii) j an | is LD for all positive integers k 

(iii) { Van \ is LD 
(iv) \pn] isLDif |3r a~an. 

Proof. We illustrate the methods used by proving (iii). 
Let S = | an | be LD and let S' = j 1/an j . Let x\ refer to S, x'x refer to S', etc. Then 

if and only if 

hence 

which implies 

b* < JL < uk 

{ b~k < an < b'k 

A 

*x = E X'\M = E **M~ «-%W- « 
- *6 - * 6 A -̂  A- — x log (b/k) ~ x log X. 

We are now ready to show: 
Theorem 3. | F„ ] is LD. 
Proof. 

Since 

Now 

is LD by Corollary 1, 
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is LD by Theorem 2-(i), and so Fn is LD by Theorem 2-(iv). 
Theorem 3 is easily extended to other recurrence sequences. 
It should also be noted that examples can be constructed which show that 

| an j. and \ ft, } 
LD does not imply that any of 

{a1
n

/k}, \an$n], or \an + &n) 

are LD. It might be interesting to obtain necessary and/or sufficient conditions for these implications to hold. 
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[Continued from P. 333.] 

if and only if 
l-1/a) 1 (-1/h) = -1; 

<(-1M/(-1/-b)) * -1 
if and only if 

(-1/a) t (-1/h) = 1; 
((-1/-a)/(-1/-b» = -1 

if and only if 
(-1/a) = (-1/h) = 1. 

Now stipulate that 
(a/-1) = (b/-1) = 1. 

Then, by the classic Law of Quadratic Reciprocity, 

(1) (a/b)(b/a) = ((-1/a)/(-1/b)). 
But 

(-a/h) = (a/b)(-1/b) 
and 

(b/-a) = (b/a)(b/-1). 

Since (h/-1) = 1, therefore 

[Continued on P. 339.] 
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and 
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American University of Beirut 

INTRODUCTION 

In 1954, H. L Aider [1 ] showed that, as a generalization of the Rogers-Ramanujan identities, there exist polynom-
ials G/</n(x) such that 

d) H f/-x"r' - £ Gk>»M 

nm±A2k+n n=0 (1-X)<1-X*)-(1-Xn) 

and 

(2) 5 ff-xY'1 = £ GkrnMx" 

where k is a positive integer and the left-hand side of (1) is the generating function for the number of partitions into 
parts & 0, ±k (mod Ik + 1), while the left-hand side of (2) is the generating function for the number of partitions in-
to parts ^ 0, +1 (mod 2k + 1). As Aider remarks, when/r = 2, identities (Hand (2) reduce to the Rogers-Ramanujan 
identities for which £2,/?(x)=x . 

Alder showed that identities similar to (1) and (2) exist for the generating function for the number of partitions 
into parts £ 0, ±(k - r) (mod 2k + 1) for all r with 0 < r < / r - 1, so that, for a given modulus 2/r + 1, there exist k 

such identities. 
We shall show in this paper that a similar generalization is possible for recursion formulae for the number of un-

restricted or restricted partitions of n. The best known of these is the Euler identity for the number of unrestricted 
partitions of n: 

(3) pM=Y,(-ni+1p[n-3-^fJ-) f 
J 

where the sum extends over all positive integers/for which the arguments of the partition function are non-negative. 
Another recursion formula was obtained by Hickerson [2 ] , who showed that q(n), the number of partitions of/? in-
to distinct parts, is given by 

00 

(4) q(n) = Y. (-DJ'p(n-(3j*+j)), 
y«-oo 

where the sum extends over all integers/for which the arguments of the partition function are non-negative. 
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We shall show here that these and other recursion formulas are special cases of the following 
Theorem. If we denote the number of partitions of n into parts £ 0, ±(k - r) (mod 2k +a) by /?'(0, k- rt 2k 

+ a;n], then f o r 0 < / - < £ - /, 

(5) p>(o,krr.2k + a;n)=^t-1)lp[n-&^^ . 

J 

where the sum extends over all integers/for which the arguments of the partition function are non-negative. 
Proof. Using Jacobi's triple product identity 

oo 

n (1-y2n+2)(1+y2n+1z)(1+y2n+1z-1)= Y y?J . 
n=0 ;_ 

y=r-oo 
With 

y s x(2k+a)/2t z = _x(2r+a)/2 ^ 
we obtain 

(2k+a)j2+(2r+a)j 
fl (1 „x(2k+a)n+(2k+a)j(j _x(2k+a)n+k+r^j(j _x(2k+a)n+k-rj = y ^ (^px 2 

n=0 ~ 

Dividing both sides by 
CM 

Tin-xs), 

the left-hand side becomes the generating function for the number of partitions of/7 into parts £ 0 , +(k- r) (mod 
2k + a). Equating coefficients of xn in the resulting equation yields the theorem. 

Corollary 1. For r = 0, we obtain the following recursion formula 

(6) mwk+Vn) = Y,(-^'p["-<2k+f+ai) . 
J 

where it shall be understood here and henceforth 

E 
/ 

denotes a sum over all integers for which the arguments of the partition function are non-negative. 
Corollary 2. If in (6), we letk = a = 1,thenp'(0,1,3;n) = 0and £M4,(„_aL£/ y0 

j¥0 ' 
which is the Euler identity (3). 

Corollary 3. If in (6), we let k - 2, a = 1, we obtain a recursion formula forp'(0,2,5;n), which by the first 
Rogers-Ramanujan identity is equal to the number of partitions of n into parts differing by at least 2, or qjnj. 
Therefore we have 

(7) qiM = X*(-1)lp( n-^-). 
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Corollary 4. If in (5), we let r = k - a, we obtain 

(8) m*.2k+a;n) = Y.(-^p{"~(1]Lt^-k^ 
1 

Corollary 5. Sf in (8), we let k = a = 2, we obtain a recursion formula for/?Y0,2,6;/?A which is equal to q(n), 
the number of partitions of n into odd parts, so that we have 

q(n) = J^f-Vtpfn-W+W, 
i 

which is (4). 
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[Continued from P. 336.] („aMb/„a) « (a/b)(b/a)(- 1/b) 

= ((-1/a)/(-1/b))(-1/b) 

= - / 

f-1/a) t (-1/b) = -1. 

(~a/b)(b/-a) = ((-1/-a)/(-1/b)i. 

(a/-b) - (a/b)(a/-1)' 

(-b/a) = (b/aH-Va). 

(a/-b)(-b/a) = (a/b)(b/a)(-1/a) 

= ((-1/a)/(-1/b))(-1/a) 

= -1 

(-1/a) t (-1/b) = 1. 

(a/-b)(-b/a) = ((-1/a)/(-1/-b)). 

(-a/-b) = -(a/b)(a/-1)(-1/b) 

l-bl-a) = -(h/a)(b/-1)(-1/a). 

if and only if 

Therefore, 
(2) 

Also, 

and 

Since (a/-1)= 7, therefore 

if and only if 

Therefore, 
(3) 

Finally, 

and 

[Continued on P. 342.] 



ON LUCAS NUMBERS WHICH ARE ONE MORE THAN A SQUARE 

RAPHAEL FINKELSTEIN 
Bowling Green State University, Bowling Green, Ohio 43403 

Let Fn be the nth term in the Fibonacci sequence, defined by 
Fo = 0, Fj = 1, Fn+2 - Fn+j + Fn, 

and let Lm be the nth term in the Lucas sequence, defined by 

LQ = 2, L-i = 1, Ln+2 = Ln+1 + in -
In a previous paper [4], kthe author proved that the only numbers in the Fibonacci sequence of the form 

y2 + 1 are 
Fx = 1, F2 = 1, F3 = 2 and Fs = 5. 

The purpose of the present paper is to prove the corresponding result for Lucas numbers. In particular, we prove the 
following: 

Theorem. The only numbers in the Lucas sequence of the form 
y2 + 1, y e z, y > 0 

are L0 =2 and Lt = 1. 
In the course of our investigations, we shall require the following results, some of which were proved by Cohn [1], 

[2], [3]. 

(1) L2n = L* + 2(-1)n-1 . 

(2) (F3n, L3n) = 2 and (Fn, Ln) - 7 if 3 Ifn. 
(3) L2 5F2 4(^vn 

n n 
(4) If F2n = x2, n > 0, then 2n * 0,2 or 12. 

(5) The only non-negative solutions of the equation x2 -5y* ~4 are 
[x,y] = [2,0], [3,1] and [322,12]. 

(6) Ln is never divisible by 5 for any n. 

(7) If a=tt^H/ $=LzJi then Fn - ^ - ^ - . 

(8) F2n = FnLn . 

(9) If Ln = x2, n > 0, then n = / or 3. 

(10) If Ln = 2x2, n > 0, then n = 0 or 6. 

We now return to the proof of our theorem, and consider two cases, 
CASE I. n even: If L2n = y2 + I then by (1), either 

y2 + 1 = L2
n+2 or y2 + 1 = L2-2. 
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The first case yields 
L2

n-~y2=-1, Ln = Q, y=1, 

which is impossible. The second case yields 
L%-y* =3, 

and it is easily proved that the only integer solution of this equation is 
L„ = 2, y*1. 

CASE II. n odd; First, we prove the following Lemmas: 
Lemma 1. \\F2n = 5x2 then n = 0. 
Proof. By (8), we have FnLn = 5x2 and, by (2), either 

(Fn/Ln) = / or (Fn,L„) = 2. 

Iff/7,,, I * ; =7, then, by (6), 
Fn = 5s\ Ln = t2 . 

But then n= 7 or 3 and Ft 5s2. If (Fm Ln) = 2, then we conclude that 
Fn = Ws2, Ln * 2t2 . 

By (W),n = 0or 6. ButFn= Ws2 only for n = 0. 
Lemma 2. The only integer solution of the equation*/2 - 125^=41$ 

u = +2, v - 0. 

Proof. If u2 - 125v* = 4, then u and 5v2 are a set of solutions of 
p2 -5q2 =4 

thus 

u + 5v2s/5 = 2 ItJl " = 2a2n, u-5v2s/5 = 2$2n . 

so F2n = 5v2 and thus v = 0. 
Now let us use (3) with n odd and Ln = y2 + tm • We get 

(11) (y2 + 1)2+4 « 5x2 , 

and we wish to show that the only integer solution of this equation is y - 0, x = 1. Note first that if y is odd the 
equation is impossible mod 16. 

On factorizing (11) over the Gaussian integers, we set 
(y2 + 1 +2i)(y2 + 1 - 2i) = 5x2. 

Since y is even, the two factors on the left-hand side of this equation are relatively prime. Thus we conclude 
y2 + 1+2i = (1 +2i)(a+bi)2 . 

This yields 
a2 + ab-b2 = 1, a2 - 4ab - b2 = y2 + 1, 

i.e., 
(12) a2+ab-b2 = 7 
and 

Sab - -y2 . 

The first equation of (12) yields [a,b)= 7, and it may be written 
(13) (2a + b)2 -5h2 - 4. 
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Since (a,b) = 1 the second equation of (12) yields either 

(14) b = +t\ a = +5a2 

or 
(15) b = ±5t\ a = +s2 . 
Equations (13) and (14) yield 

(+10s2 ±t2)2 -5t« = 4. 

By (5), the only integer solutions of this equation occur for t = 0, 1 or 12. But none of these values of t yield a value 
for s. Equations (13) and (15) yield 

(+2s* ± ft2)* - 125t* = 4. 

By Lemma 2,t = 0,s= 1,a = + 1, b = 0, Ln~ L The proof is complete. 
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* * * * * * * 
[Continued from P. 339.] 

Since 
(a/-1) = (b/-1) = I 

therefore 
(-a/-b)(-b/-a) = (a/b)(b/a)(-1/a)(-1/b) 

= ((- 1/a)/(- 1/b))(- 1/a)(- 1/b) 

= 1 
if and only if 

(-1/a) = (-1/b) - 7. 
Therefore, 
(4) (-a/-b)(-h/-a) = -((-1/-a)/(-1/-b». 

From (1), (2), (3) and (4), it can be seen that the theorem is true for all sixteen combinations of 
(a/-1) = ±1, (b/-1) = ±1, (-1/a) = ±1 and (-1/b) = ±1. 

Corollary 1. If a = 0 or 1 (mod 2), /? = 1 (mod 2) and (a,b)= 1, and if ax ^a2 (mod/?), then 

<«*> - ( w ^ ) • 
In other words, (ala2/b)= 1 if and only \\axa2 is positive and/or b is positive. 

[Continued on P. 344.] 
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GEORGE BERZSENYI 
Lamar University, Beaumont, Texas 77705 

The purpose of this note is to announce the following formulae, where H0 and Ht are chosen arbitrarily and 
Hn = Hn„i + Hn„2 for /i > 1: " 

n f 

V HkHk+2m+i =J H2m+n+1-H2
m+1 + HoH2m+1, i f " is even 

k=0 \Mm+n+1-H}n , if /̂  is odd k=0 

(*) 
Hm+nHm+n+1 - HmHm+1 + H0H2m, if n is even 
'm+nHm+n+1-Hm-lHm , if /? is odd 

These results may be established by first proving the corresponding formulas for Fibonacci numbers and then ex-
panding the expressions on the left side of (*) by using the well-known relation 

Hn = Fn-lHo+FnHl -

To prove (*) for Fibonacci numbers the method of generating functions is utilized. Using Binet's formulae for 
Fibonacci and Lucas numbers, one finds that 

V ^ ra „ " - F"> +[Fm-lFm + (-Dm]x-F2
m„1x

2 ^ „ _ FmHx - Fm.jX2 

2 - FnHnX <1+x)(1-3x + x*) a n d ^ FnFnHn* " <1+x)(1-3x+x*) ' 
n=0 n-0 

Moreover, 

i (i ««~y - (t A(± '.^A- lT^s^n • 
n=0 \ n=0 f \ n-0 f ^ n=0 f 

and with the methods of Gould [1] one can derive the bisection generating functions 

V F2
 vn _Fm + [(-Dm-3Fm-2Fm]x + F^2x

2 

/ , l~2n+mX ; 
n=0 (1-x)(1-7x+x2) 

/ 2 n \ r r 2 

'-Fm^x2 

and „ >2n+1 

E l V F F 1 v " - Fm+3X ~ Fm-P 

n \ h FkFk+mY ~ <1-x)(1-7x + 
n=0 \ k=0 / 
oo /' 2n+l \ 

n=0 \ k=0 J 

X2) > 

Fm+1- Fm-3X 

(1-x)(1-7x+x2) 
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The proof of (*) for Fibonacci numbers is then completed by observing the relationships among these generating 
functions. For example, 

oo oo oo 

E ( F2n+m+2 ~ Fm ) Xn - E F2n+m+2*n " Fm E * " 
n=0 n=0 n^O 

_ Fm+2 * [(-Dm+2-3FmFm+2lx + F^x1 F*m 

(1-x)(1-7x + x2) 1~x 

= (F"+2 -F2
m) + [(-Dm - 3Fm Fm+2 + 7F2

mlx 

(1-x)(1-7x+x2) 

_ F2m+2 ~ F2m-2X 

' (1-x)(1-7x+x2) 

and hence, 

The other three cases are similar. 

°° / 2/7+7 V 

E l E FkFk+2m+l)xn 

n=0 \ k=0 f 

2n+1 

E FkFk+2n+1 = F2n+m+2-~Fn 
kH7 
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irkkkkkk 
[Continued from P. 342.] 

Proof. The corollary is known to be true for (b/-1) = I Then the following results can be calculated: 
If 

(a.aJ-1) = 1, 
then 

Wla.aJ-D = -1, then 

[Continued on P. 349.] 

(axa2/b) = I 

(-ava2/b) = (-1/b), 

(axa2/-b) = 1, 

(~axa2/-b) = -(-1/b); 

(axa2/b) = /, 

(-axa2/b) = (-1/b), 

(axaj-b) = -1, 

l-axaj-b) = (-1/b). 



A PRIMER ON THE PELL SEQUENCE AND RELATED SEQUENCES 

MARJORIEBICKNELL 
Vilcox High School, Santa Clara, California 05051 

1. iWTRODUCTlOW 
Regular readers of this journal are well acquainted with basic properties and identities relating to the Fibonacci 

sequence and its associated sequence,the Lucas sequence, but may be unaware that the Pell sequence is one of many 
other sequences which share a large number of the same basic properties. The reader should supply the analogous 
Fibonacci identities, verify formulas numerically, and provide proofs for formulae given here. The proofs are very 
similar to those for the Fibonacci case. 

2. THE PELL SEQUENCE 
By observation of the sequence 11, 2, 5,12, 29, 70, 169, - , Pn, - J- it is easily seen that each term is given by 

(D P„ = 2Pn-1+Pn-2. Px * h ?2 = 2. 

The sequence can be extended to include 

P0 = ft P-i = I P-* = -2, P-3 « 5, -.. P_n « (-1)n+1Pn . 
The associated sequence j Rn j , where Rn = Pn~i + Pn+t, has 

(2) Rn = 2Rn-1 + Rn-2, *x = Z #2 « 6, 

with first few members given by 2, 6,14,34,82, 198, - ,and can be extended to include 

R0
 SZ R-t = ~2< "V R-n s (-1)n*n. 

The Pell numbers enjoy a Binet form. If we take the equation 
y2 = 2y+1 

which has roots 
a = (2 + *j8)/2 and |8 - (2 - sj8)/2, 

then it can be proved by mathematical induction that 

(3) Pn - ^ f , Rn - oT+ft". a" - !*±fe£- . 

Using the Binet form, one can prove that Pnk is evenly divisible by Pk, k 10, so that the Pell sequence also shares 
many divisibility properties of the Fibonacci numbers. 

Geometrically, the Fibonacci numbers are related to the Golden Rectangle, which, of course, has the property that 
upon removing one square with edge equal to the width of the rectangle, the rectangle remaining is again a Golden 
Rectangle. The equation related to the Pell numbers arises from the ratio of length to width in a "silver rectangle" 
of length y and width 1 such that, when two squares with side equal to the width are removed, the remaining rec-
tangle has the same ratio of length to width as did the original rectangle, or such that 

so that y = a, the positive root given above. 

345 
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1 1 1 v - l I 

M 
Figure 1 

Some simple identities for Pell numbers follow. No attempt was made for completeness; these identities merely in-
dicate some directions that can be explored in finding identities. (Most of these identities can be found in Serkland 
[1] andHoradam [2].) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

PnHPn-1-P2„= <-D" 

Rn+1Rn_1-R>n = 8(-})n+1 

Rn = Pn+1+Pn-1 

8Pn - Rn+1 + Rn-1 

P2n+1 = Pn+t +Pn 

2P2n = Pn+1-Pn-1 

P-n = t-U n+U 

R.„ = <-DnRn 

P2n ~ Pn^n 

Rn + Rn+1 = 4P„+, 

R, + Rl+R^+- + R„ = 2PnH 

Pn+p+1 = pn+lPp+1+pnpp 

R%
n-tt»„ = M-lf 

P\+P\+P\+~. + P% = (PnPn+1)/2 

= £ Pnx" 
1-2x-x* /=/ 

n 
H{n

k)2
kP2^P2n 

k=0 

n 

T,("k)
PkPn-k=2nPn 

k**0 

The Fibonacci numbers were generated by a matrix 

fl-(IJ) 
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which satisfied the equation whose roots provide the Binet form for the Fibonacci numbers. The PeSI numbers are 
also generated by a matrix M, 

M (?j)- « - ( ; : ' , ; ; ) 
which can be proved by mathematical induction. The matrix M provides some identities immediately. For example, 

det /T - fdetMj" - (-1)n - Pn+lPn-1-Pn 

and expanding Mn+P = MnMp gives 

Pn+p+1 s Pn+lPp+1+PnPp 
upon equating elements in the upper left. The matrix M also satisfies the equation related to the Pell sequence, 
M2 - 2M + I 

1 THE GENERAL SEQUENCE 
Since the Fibonacci sequence and the Pell sequence share so many basic properties, and since they have the same 

starting values but different, though related, recurrence relations, it seems reasonable to ask what properties the 
sequence | Un | , 
(21) U0 - Of Ux = I Un+1 - bUn + Un-, , 

which includes both the Fibonacci sequence (b = 1) and the PeSI sequence (b = 2) as special cases, will have. 
The first few values of | ( / f i | are: 

U0 = 0 
Ux - / 
U2 = b 
£/3 - b2 + 1 
U4 = b3+2b 
U5 - h«+3b2 + 1 
U6 = h5+4b*+3b 
U, = h6+5b«+6h2 + 1 
UB = b1 +6b5 + Wb3+4h 

These are just the Fibonacci polynomials Fn(x) (see [3]) given by 
F0 (x) = ft Fx (x) = I Fn+ / (x) = xFn (x) + Fn. 1 (x) 

evaluated atx = b. That is, 
Fn(V=Fn, Fn(2)*Pn, and Fn(b) « Un. 

Thus, any known identities for Fibonacci polynomials establish the same identities for | Fn J-, | Pn p and { Un \. 

\Un\ has an associated sequence \ Vn \, Vn - Un~i + Un+i, where 
(22) VQ = 2, Vx - b, Vri+2 - bVn+1 fVn. 

Using identities for Fibonacci polynomials given in [2], we have 

(23) Um = \/kUm-k + (-1)kHUm-2k 

(24) U-n = (~l)nHUn 

(25) !/.„ - hDnVn 
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(26) 

(27) 

(28) 

(29) 

Vn = bUn+2Un„1 

bVn=Un+2-Un-2 
U2n = UnVn 

Um+n + (-VnUm-n = UmVn 

Also from [2 ] , we can also state that Uni< is always divided evenly by Un, n?0. 
Now, if we explore the related equation 

with roots 
y2 = by+1 

b+Jb2+4 and - b-Jb2+4 
2 

it can be shown by mathematical induction that 

(30) 

(31) 

U„ = 11 
a-/3 

Vn = an + $n 

oP a Vn + Uns/b*+4 

Geometrically, Un and Vn are related to "silver rectangles." (See Raab [4].) If a rectangle of length / and width 1 
has dimensions such that, when b squares with side equal to the width are removed, the rectangle remaining has the 
same ratio of length to width as the original, then the ratio of length to width is a = (h + sjb2 + 4)/2, as seen by the 
following: 

/ 

Figure 2 

y2 - by - 1 = 0, s b+Jb2+4 
1 y-b' 

Further, it can be proved that 

(32) Mm %l-*+VSyT-a , 

Serkland [1] and Horadam [2] establish that the generating function for \ u n \ is 

( 3 3> T^T* = t "nx" . 

Now, it is well known that the Fibonacci polynomials are generated by a matrix. (See [1] , [3 ] , for example.) 

That the matrix Q below generates j Un I can be established by mathematical induction: 
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a = I h M an - i Un+1 Un\ 

Sincedet£2" = (6etQ)n = (- If, we have 
(34) Un+1Un^-U2

n- (~1)n . 

Using Qm+n = QmQn and equating elements in the upper left gives us 

(35) Um+n+1 = Um+lUn+1 + UmUn 

(36) U2n+1 = Ul+f + Ul . 

Many other identities can be found in the same way. Note that the characteristic polynomial of Q \sx2 - bx - 1 = 0. 
Summation identities can also be generalized [1 ] , [2 ] , as, for example, 

(37) Ui+U^Ut*.» + Un = (Un + Un+1 - 1)/b 

(38) Vt + Vx + V2+~+Vn = (V„ + Vn+1+b-2)/b 

(39) U2
0 +U\+ U\ + ~+U*n * (UnUnH)/b . 

The reader is left to see what other identities he can find which hold for the general sequence. 
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[Continued from P. 344.] 

Corollary 2. \Ub = \ (mod 2) and (a,b) = 1, and if bx =b2 (mod 2a), then 

"•"•>•<>> - ( 7 ^ k > ) • 
In other words, 

(a/hxbj = 1 

if and only if a = 1 (mod 4) and/or blb2 = 1 (mod 4). 
Proof. From (hlb2/a), (-b1b2/a), (hxbj-a) and (-bxbj-a), the following results can be obtained by quadra-

tic reciprocity: 

[Continued on P. 384.] 



PALINDROMIC COMPOSITIONS 

V. E. HOGG ATT, JR., and MARJORIE BSCKWELL 
San Jose State University, San Jose, California §6102 

In this paper, we discuss paiindromic compositions of integers n using members of general sequences of positive 
integers as summands. A palindromic composition of n is a composition that reads the same forward as backward, as 
5 = 1 + 3 + 1, but not 5 = 3 + 1 + 1. We derive formulas for the number of palindromic representations of any inte-
ger/7 as well as for the compositions of /?. The specialized results lead to generalized Fibonacci sequences, interleaved 
Fibonacci sequences 1, 1,2, 1, 3, 2, 5, 3, 8, 5, •••, and rising diagonal sums of Pascal's triangle. 

1. GENERATING FOfyCTIOf^S 

Let 

be any increasing sequence of positive integers from which the compositions of a non-negative integer/? are made. 
Then let 

Fix) = xa° +xai + -+xak + - , 

which will allow us to write generating functions for the number of palindromic compositions Pn as well as the num-
ber of compositions Cn made from the sequence 

Theorem 1.1. The number of compositions Cn of a non-negative integer n is given by 

E Cn*n
 f__F(x) -

n=0 

Proof. Now CQ = 1 and Ct = C2 =. - = £a 0 - / = 0 because the numbers 1, 2, 3, •», aQ - 1 have no composi-
tions, while the number 0 has a vacuuous composition using no summands from the given sequence. Next, 

Cn ~ £V?-30
 + Cn-ax

 + '" + Cn~as
 + '" > 

where Cj=Q i f / < 0. Thus, 
oo oo 

£ Cnx
n = (xa° + xa^ + xa* +:-) J^ Cnx

n+1 

n=0 n=0 

from which Theorem 1.1 follows immediately. 
Theorem 1.2. The number of palindromic compositions Pn of a non-negative integer n is given by 

n=0 

or 

E P vn _ / + F(x) 

360 
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V p y" = F(x) + Fix2) 
^ nX 1-F(x2) " 

Proof. First, we can make a palindromic composition by adding an a^ to each side of an existing palindromic 
composition. Thus 

Pn = Pn-2a0 + Pn-2ax + - + Pn~2as + - , 

where Pj = 0 if / < 0. Thus 
oo 

E Pnx
n = x2aUP0+Pxx + P2x

2 +>-)+x2aUP0 + Plx + P2x
2 +-) 

n=0 

+x2a*(P0 +Pxx+P2x
2 + -) + »>+(xa* +xa* +xa* +-), 

where the terms xa° + x6*1 +xa* + — account for the single palindromic compositions not achievable in the first 
form. Theorem 1.2 is immediate. 

We note that the function 
F(x) = xa° +xa* + >-< + xas + -

is such that 
oo 

Ff(xi = £ R(n)xn > 
n=0 

where R(n) is the /-part composition of n; 
oo 

F'(x2) = J2 R*(n)xn, 
n=*0 

where R*(n) is the 2/-part palindromic composition of/?;and 
oo 

F(x)F'(x2) = J2 R**(n)xn, 
n=0 

where R**(n) is the (2i + /Apart palindromic composition of/?. 
Next, we find the number of occurrences of a^ in the compositions and in the palindromic compositions of/?. 
Theorem 1.3. l&\An be the number of times a^ is used in the compositions of/?. Then 

V A xn = x 

La Mn* [1-FM12 • 
n=0 

Proof. It is easy to see that 
An ~ ^ /7-a0

 + ^n-ax
 + '" + ^n-a^^ Cn-a^ + ' " # 

where Cj and Aj = 0 if / < 0. 

£ Anx
n = (xa° +xa^ +~. + xa* + .~) Z Anx

n+xak £ Cnxn 

n=0 n=0 n^O 

from which Theorem 1.3 follows after applying Theorem 1.1. 
It follows from Theorem 1.3 that the total use of all a^ is given by all integer counts in the expansion of 

Fix) 
H-F(x)]2' 
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Since the number of plus signs occurring is given by the total number of integers used minus the total number of 
compositions less the one for zero, the number of plus signs has generating function given by 

Fix) Fix) = F2(x) 

[I-FMJ* 1-FM n-F(x)]* -
Theorem 1.4. The number of occurrences of ak in the palindromic compositions of n, denoted by Un, is 

given by the generating function 

xak ,.2x^(1 +Fix)) _ f - u n 
J-Fix2) [1-F(x2)]2 ^ n ' 

Proof. To count the occurrences of ak in the palindromic compositions of n, 

Un = Un^a, +Un-2ax + ~' +(Un-2ak+2Pn-2ak) + $ = J V x U ^ 
| 0 ifn ?ak 

the one being for the single palindrome akt and Uj and Pj = 0 for/ < 0. 

J^ Unx
n = x2a»(U0 +Ulx + U2x

2+-)+x2ai(UQ + Uxx + U2x
2+»>) 

n=0 

+ ~< + x2as(UQ + Uxx + U%x2+^) + >~ + xak 

2ak 

n=0 
+ 2x2ak J^ pn*n • 

Therefore, applying Theorem 1.2 and simplifying yields Theorem 1.4. 
As before, from Theorem 1.4 we can write the total number of integers in all palindromic compositions displayed 

in the form of the generating function 
Fix) !2F(x2)(1 + F(x)) 

7-Fix2) ft-Fix2)]2 ' 

Now, in getting all the plus signs counted we need only subtract the generating function for the palindromic com-
positions of all n except zero. Thus 

Fix) ,2F(x2)(1 + F(x)) Fix2) +Fix) s F(x2)[1 + 2F(x) + Fix2)] 
1~F(x2) ff-F(x2)]2 1-Fix2) [1-Fix2)]2 

Z APPLICATIONS AND SPECIAL CASES 

The results of Section 1 are of particular interest in several special cases. 
When the summands are 1 and 2, Fix) = x + x2 gives the result of [1] that the number of compositions of n is 

Fn+i, the (n + 1)st Fibonacci number, since by Theorem 1.1, 

n=Q n=0 

where we recognize the generating function for the Fibonacci sequence. Theorem 1.2 gives the number of palin-
dromic compositions as 

oo 

(2 2) Y* P xn = 1 +x+x2 

[ L l ) ^ FnX 1-(x2+x«) 
n=0 

which is the generating function for the interleaved Fibonacci sequence 1,1, 2, 1, 3, 2, 5, 3,8, 5, 13, 8, 21, —. 
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When the summands are 1, 2, and 3, Fix) = x + x2 + x3 in Theorem 1.1 gives the generating function for the 
Tribonacci numbers 1, 1r 2, 4,7, ••<, Tn+3 = Tn+2+Tn+i + Tn,a$ 

(2-3> E <?»*" - ,_,_',,_,, - E r^,*" 
while the number of palindromic compositions from Theorem 1.2 becomes 

CO 

1 +X+X2 + X% (2.4) 2>„*l,« ^ 
/?=0 

X2 - X 4 - X 6 

which generates the interleaved generalized Tribonacci sequence 1,1, 2, 2, 3, 3f 6, 6,11,11, 20, 20, - . 
When the summands are 1, 2, 3, —, k, then F(x) = x + x2 + —+xk in Theorem 1.1 gives the generating function 

for a sequence of generalized Fibonacci numbers i F* J defined by 

F*^ = /%*_, * F ^ „ 2 +... + F*, Ff = 1, F* « 2n'1f n « 2, 3,A.,~, K 

so thdt Cn = FX+i-
When the summands are the positive integers, F(x) - x +'x2 +x3 + ---x/H - x) in Theorem 1.1 gives the num-

ber of compositions of n as-?"""3\n > 1, since 
oo 

(2.5) " ^ " " 1 1~X E c**n = - ^ 
,7=0 7 - j-^ 

1-2x 
X 

which generates 1, 1, 2, 4, 8, 16, 32, - . Applying Theorem 1.2 to find the number of palindromic compositions 
gives the generating function for the sequence 1, 1, 2, 2, 4, 4, 8, 8, - , or, Pn = 2* , /?-0, 1, 2, - , where [x] 
is the greatest integer function. 

Taking odd summands 1, 3, 5, 7, ••<, and using Fix) = x+x3 +x5 +X1 + ~>*x/(1 -x2)in Theorem 1.2to find 
the number of palindromic compositions of n again gives the generating function for the interleaved Fibonacci se-
quence 1,1,2, 1, 3, 2, 5, 3, 8, 5, 13, 8, 21, •-, while Theorem 1.1 gives the number of compositions of n as 

(2.6) £ Cnx" L - - jJf^ - E (Fn+1 - W*" 
n=0 1 - JZT^r n=*0 

so that Cn = Fn. 
If we use the sequence 1, 2, 4, 5, 7, 8, -•, the integers omitting all multiples of 3, then 

Fix) = (x+x2)+(x*+x5) + (x1 +x*)+- = (x + x2)/(1 -x3) 

yields the number of compositions of n as 

(2.7) y Cnxn = 1— = -
n=0 7-T^xT 

1-X3 

X -Xz -Xs 

so that, returning to Eq. (2.3), Cn = Tn+1 - Tn„2, where Tn is the nth Tribonacci number. 
If we take 

Fix) = x2 +x3 +x4 +x5 +.- - -^— , 
1 -x 

the number of compositions of n using the sequence of integers greater than 1 is given by 
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(2.8) T Cnxn = 7 — - — i _ . « V Fn_lX" 
*-~* f X2 1-X-X2 *—< 

so that £,? = Fn-1- Applying Theorem 1.2 we again find the number of palindromic compositions to be the inter-
leaved Fibonacci sequence, but with the subscripts shifted down from before, as 1, 0, 1, 1, 2 , 1 , 3, 2, 5, 3, 8, 5, —. 
(Note: Zero is represented vacuously; one not at all.) 

The sequence of multiples of k used for summands leads to 
Ffx) = xk +x2k +x3k + »• = xk/(1 - xk), 

which in Theorem 1.1 gives us 

(2.9) E cnxn = j ^ £ r - / + £ 2m~1*km 

so that the number of compositions of n is-?'77 if n = km or 0 if n ^ km for an integers. 

3. SEQUENCES WHICH CONTASN REPEATED ONE'S 
Compositions formed from sequences which contain repeated one's also lead to certain generalized Fibonacci 

numbers. We think of labelling the one's in each case so that they can be distinguished. These are weighted 
compositions. 

First, 1, 1, and 2 used as summands gives F(x)=x+x +x2 so that 
oo oo 

(3-D £ Cn*n = i_2l_x, = £ pn+ix" 
n=0 n=*0 

so that Cn = Pn+1 where pn is the nth Pell number defined bypx - 1,p2 = 2 , p n + 2 - 2Pn+i +Pn- Applying Theo-
rem 1.2, we find that we have the generating function for the sequence 1, 2, 3,4, 7, 10, 17, 24,41, —, which is a 
sequence formed from interleaved generalized Pell sequences, having the same recursion relation as the Pell sequence 
but different starting values. 

In general, if we use the sequence 1,1, 1, —, 1, 2 (tone's) as summands, F(x)=x+x +x + — +x+x2 = kx+x2 

in Theorem 1.1 gives 
oo oo 

<3-2> E Cn*" = t-J-x* = £ P*n+ix" > 
n=0 n=*0 

where 
p* = I p* = k, p*+2 = kp*+1 -f-p*. 

Thus, the number of compositions of/? formed from this sequence is Cn- p*+ 7. The number of palindromic com-
positions is again a sequence formed from two interleaved generalized Pell sequences, having the same recursion re-
lation as pp but different starting values. The starting values for one sequence are 1 and k + 1; for the second, k and 
k2. Thus, the interleaved sequence begins 

/, k, k + 7, k2, k2 +k+1, k3 +k,k3 +k2+2k+ 1, k4 +2k2, - . 
One other special case using repeated ones is interesting. When the sequence 1, 1, 1,1, 2 is used as summands, 

/ s V F3(n+1) xn 

n=0 n-0 

using the known generating function [2 ] , where Lk is the k Lucas number, 
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(3-4) — ^ — = T. Fknx», 
1-Lkx + {-1)kx2

 n=0 

Actually, as a bonus, this gives us two simple results; F3k is always divisible by 2, since Cn is an integer, and, from 
the recursion relation Cn+2 = 4Cn+i + Cn, we have 

F3(n+2) = 4F3(n+1) + F3n. 

But, we can go further. Equation (3.4) combined with Theorem 1.1 for odd k gives us 
oo oo 

(3-5) £ Cnx
n = yzTT^T = E (Fk(nH)/Fk)x

n, *odd, 
n=0 n=0 

so that 
Cn = Fk(n+1)/Fk 

when Lk repeated ones and a 2 are used for the sequence from which the compositions of n are made, k odd. Since 
Cn is an integer, we prove in yet another way that Pk divides Fkn [ 3 ] , as well as write the formula 
(3.6) Fk(n+2) = LkFk(n+1) + Fkn, k odd, 

4. APPLICATIONS TO RISING DIAGONAL SUIVSS IN PASCAL'S TRIANGLE 
The generalized Fibonacci numbers of Harris and Styles [ 4 ] , [5] are the numbers u(n;p,q) which are found by 

taking the sum of elements appearing along diagonals of Pascal's triangle written in left-justified form. The number 
u(n; p,q) is the sum of the elements found by beginning with the left-most element in thenth row and taking steps 
of p units up and q units right throughout the array. We recall that 

(4.1) J1ZL*E1— = ym u(n;p,q)xn . 

Note that/? = g = / yields the Fibonacci numbers, or, Fn+i = u(n; 1,1). Now, Eq. (4.1) combined with Theorem 1.1 
gives us the number of compositions of n from the sequence i 1, p + 1 I as 

oo oo 

(4.2) £ cnx" = r, = £ u(n;p,1)xn 

n=0 / -x -x n=ig 

so that Cn = u(n; p,1), the sequence of diagonal sums found in Pascal's triangle by taking steps o fp units up and 1 
unit right throughout the array. Note again that/? = 1 gives us the Fibonacci sequence. 

Suppose that the compositions are made from the sequence of integers greater than or equal to p + 1. Then 
F(X) = xP+1+xP+2+xP+3 + ... = xp+1/(1-x), 

so that Theorem 1.1 gives 
oo oo 

<4-3> E cn*n = 1—r = 1~*"T, = £ [u(n;p,1)-u(n-1;p,1)]xn 

n=0 1 _ X— ' x x n-0 
1~x 

and the number of compositions of n becomes 

Cn = u(n;p, 1) - u(n - 1;p, 1). 

Again the special case/? = / yields Fibonacci numbers, with Cn = f „ _ / . 
Now, if the compositions are made from the sequence 1,p+2,2p+ 3, — or the sequence formed by taking every 

(p + 1)st integer, 
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F(x) = x+xp+2+x2p+3+x3p+4 + >.> = x/(1-xp+1) 

in Theorem 1.1 gives 

/ -
/ 

X 

1-x"+1 

= 
1 

1-

-X 

-x^i 

-xp+1 (4.4) £ C«Kn = 

n=0 

so that 
Cn - u(n;p,1)-u(n-p- 1;p,1). 

Again, p = 1 yields Fibonacci numbers, being the case of the sequence of odd integers, where Cn - Fn, as in (2.6). 
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A NOTE ON TOPOLOGIES ON FINITE SETS 

A. R, MITCHELL and R. W. MITCHELL 
The University of Texas at Arlington, Texas 76010 

In an article [1] by D. Stephen, it was shown that an upper bound for the number of elements in a non-discrete 
topology on a finite set with n elements is 2(2n~2) and moreover, that this upper bound is attainable. The follow-
ing example and theorem furnish a much easier proof of these results. 

Example. Let b, c be distinct elements of a finite set A^with n(n > 2) elements. Define 
T =\ A c X\b <EA or c £ A\ . 

NowF isa topology on X and since there are 2n~1 subsets of X containing/? and 2n~2 subsets of X which do not 
intersect j b,c j we have 

2n~1 + 2n~2 = 3l2n~2) 
elements in F. 

Theorem. If 2 is a non-discrete topology on a finite set X, then 2 is contained in a topology of the type de-
fined in the example. 

[Continued on Page 368.] 
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1. INTRODUCTION 
We form the complete convolution array for a sequence whose generating function is 

oo oo 

(i.i) rf*; = £ V - £ aw1 

i=0 HO 

with f(0) = f0 = aQ0 1 0, and let 
oo 

(1.2) [f(x)]'+1 = J2 a}jx
j, j = 0, +1, +2, ±3, - ; 

i=0 

note that 
a><-l " d',o - \ df [fo 

This convolution array is the source of an infinite number of sequences which are intimately related to the coefficients 
of fix) 

Form a new sequence whose generating function Si (x) is given by 
(1.3) Hf(x) = SJx) 
and 

oo oo 

(1.4) S i M = E - 7 7 * ' * £ * / * ' • 
j=0 1=0 

We call the sequence J SX^Q the H-convolution transform of the sequence I fj\T=o, out it is easier to express 
this relationship between the generating functions. That is, / / • [ / ; J-£0 = | SJI^Q is expressed Hf(x) = Sx (x). 

in the next section we shall prove that, if Hf(x) = Sx (x), then f(xSt (x)) = St (x) with f(O) = St (0) j 0. It is well 
known that 

b-5> C"%-T7('") 
defines the Catalan numbers, whose generating function is C(x) - /"/ - \/l - 4x]/2x, Let f(x) - 1/(1 - x). The 
Catalan generating function satisfies 7 +xC2(x) = C(xl This implies that 1/[1 - xC(x)] = C(x). That is, if 

fix) - 1/(1-x), 
then 

f(xC(x)) = 1/[1-xC(x)] = CM, 

so that from Pascal's triangle generator we get the Catalan number generator; H(1/(1 - x)) = C(x), C(0) = 1. 

317 



358 THE H-C0I\1V0LUTI0S\I TRANSFORM [OEC. 

t LAGRANGE'S THEOREM 

Lagrange's Theorem: (As in Polya and Szego [1]) 

Let f(z) and $(z) be regular about z = 0 and f(0) ? 0, $(0) f Q, and z « m^izl Then 

Hz) a y a£ dn(f(xhnM) 
1-00ip'(z) ^ n! > n 

n=0 "<* X=0 
Since 

</>ft?J ^ 0, and co = z / V / y - g(z), 

if flz^ = /, then we are dealing only with reversal of power series [2] . 
We now use Lagrange's theorem to prove our major result. 

Theorem 1. Let f(x) be analytic about x = 0, with f(0)^0, and 

mii+1 -Y* *n*s-
i=0 

and let 

then f(xSx (x)) = St (x), and St (0) = ffO) / 0, 

Proof of Theorem 1. Let 

S>M-Y.lh*'> 
1=0 

*// J+1 

xWUfh*''-
then 

MO 

JL (xsjx)) - £ ;*' - £ ^77 ^ ^ 
/«0 /-0 dx' 

.jr«0 

which can be visualized for Lagrange's theorem as 
oo , 

£ (*SJx))=ZX
T^Mf'ML=o> 

•I=SQ dx 

or 
/ (XSJX)) = —&L-T, 
dx l 1 - xf(z) 

with co =x and $(z) = Hz). From z = xflzjj, * ^ 0, 

df x ~z dz (2.1) 

and so 

(2.2) 
Thus, 

which implies thatxSJx) = z +c;bu\xSl(x)-^% andz-* 0 asx-»Q. Thus, c = QmdxSJx) ~z. Thus, 

xSJx) = xf(xSJx)) 

1-

dz 

-xf'(z) = 

d 
dx 

X -Z 

/ — _ 
X 

(xSJx)) -

X2 

dx 

_ dz 
dx 

1 

L 
X 

, 

dx 
dz " 
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or 
SJx) = HxSJx)) = Hz), 

From z = xf(z) to z =xS1(x)\s& reversal of power series, and a necessary and sufficient condition for SJx) to be 
regular about x = 0 is that x = z/[f(z)] = g(z) be such \\\dXg'(0)? O. Clearly, this is guaranteed by f(0) ? 0, since 

g'(z) = ff(z)-zf(z)J/P(z) and g'(O) = 1/HO) ¥ 0. 

See Copson [2]. 
We thus see that if f(x) is regular about x = 0 and f(0)¥0, then Hf(x) * S% (x) is a function such that HO) = S, (0) ¥ 

0 and f(xSJx)) = SJx), %n&Sx(x) is regular about x- 0. 
Corollary. $(z) = S(x), where ip(xSM) = S(x). 

We now proceed to another important 
Theorem 2. Let fix) be regular about x - 0 and HO) ¥ 0, and 

[f(x)l i+1 

i=0 

i* 0,1,2,, 

and 

GJM = E j{j aU+Hx'' • 
1=0 

Then GJx) = s{(x) for/ = 1,2,3,-
Pro of of Theorem 2. 

* biM - L. {i+i)u 
1=0 dx1 x=0 

or 

dx 
xj dHfHx)flM (xJGj(x))=jx"J^^^(zh 

•^n L dx1 
i=0 )K=0 

= ixhlfl(z) = ixHfl-l(li <k. 
1-xf'(z) JX {Z) dx' 

with ca =x and Hz) replaced by fJ(z);the last step follows from (2.2), the result in the proof of Theorem 1. Thus, 

which implies that xJG/(x) = zJ + c. SincexJGj(x) and zJ -> 0 asx -+ 0, then c = 0, so that 
GJx) = zj/xj = fj(z) = S{(x), 

since the same hypotheses of Theorem 1 are used in Theorem 2, and there Hz) - Sx (x). Thus, 

x=0 

]C jij aU+Hx' > i=1,2,3,-. 
i=0 

The next theorem is harder to prove. 



360 THE H-CONVOLUTION TRANSFORM 

Theorem J . Let f(x) be regular about x = 0, f(0) ? 0, and 
oo 

[f(x)]l+1 - £ *n*'> i = 0,1,2,-. 
HO 

Let 

G_jM _- £ 'dL I dUrlMtim 
x=0 

where the prime indicates/V/l Then 

G-iM+x' d' 

Proof of Theorem 3. Clearly the missing term is indeterminate since 

JL (foM) 
dxi x=*0 

fOJf/VO; 
" \ U f / = 0 ; 

in either case, the missing term is 0/0. Now 

i=*0 

x!2 dl(rJ(x)fl(x)) 

dx1 
x=0 

so that 

-f (x-^M) - -fie*' £ 4 dJldlM 
dX

 lmn ' ! dx1 
i=0 x=Q 

[DEC. 

Thus, by Lagrange's theorem, with co = x, ip(z) = f(z), and Hz) replaced by (f(z))~J, and by the result (2.2) in the 
proof of Theorem 1, 

-i-fx-iG-jM) = -jx+1rh1M %-* -}2~H £ - , 
dx J dx dx 

since z=xf(z), so that 

and 
x^G.j(x) = z~J' + c, 

G-j(x) = rJ(z) + cxJ = S'/M + cx1. 

Recall that G.j(x) has a zero coefficient forxy. Thus, we can get equality if and only if 

i 4 (Sj(x))\ 
x=0 

which concludes the proof of Theorem 3. 

3. APPLICATIONS OF THESE THEOREMS 

The three theorems we have proved now give us an explicit set of instructions on how to convert the entire con-
volution array generated by the powers of f(x) into the entire convolution array for S1 (x). 

The central falling diagonal is converted into Sjx), and the diagonals parallel to this are explicitly converted into 
S[ (x) for all integral j, where f(O) = St (0) and f(xS1 (x)) = Sx (x). We have in reality explicitly derived series expan-
sions for all S[(x) in terms of the entries of the convolution array for f(x). This is 
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(11) siM^Yljlj'iWx'' 
HO 

where 
a..M. , - / d'(f'Mf'M) 

dx x=0 

for all integral/, with special attention given when i+j= Q, as earlier discussed. This, of course, can now be repeated 
any number of times. 

A particularly pleasing special case of sequences of convolution arrays arises upon taking fix)- 1/(1 - x), giving 
rise to the generating functions for the columns of Pascal's triangle. This paper proves and generalizes the results 
found when considering Catalan and related sequences which arose from inverses of matrices containing certain 
columns of Pascal's triangle [3] , [4 ] , [5] , [6]. 

4. FURTHER GENERALIZATIONS 
We can, of course, apply the convolution transform H to fix) several times. Hf(x) - Sx (x) means f(xSx (x)) = Sx (x), 

and H2 f(x) = S2 (x) means that HSX (x) = S2 (x), where Sx (xS2 (x))« S2(x). Further, we can show f(xS\ (x)) = S2 (x) 
as follows: 

f(xSJx)} = Sjx); 
replaces byxS2(x) to obtain 

f(xS2 (x)Sx (xS2 (x))) = f(xS\ (x)) = Sx (xS2 (x)) = S2 (x). 

In general, one can show that, if 
Sk(xSk+1(x)) = Sk+1(x), 

then 
(4.1) Hkf(x) = Sk(x) and f(xSk

kM) - Sk(x). 

Thus, one can secure an infinite sequence of generating functions from one generating function, f(x). 
We can now discuss the inverse convolution transform, H~ . From f(xSx(x)) - Sx(x), we \ookatSx(x/f(x)), 

replace x by xSx (x), so that 
Sx(xSx(x)/f(xSx(x))) = Sx(x) = f(xSx(x)); 

thus 
Sjx/f(x)) - f(x). 

H"1SX (x) = f(x) means Sx (x/f(x)) = f(x). If we designate f(x) = Sjx), then 
H'SJx) = $x(x), 

and, in general, 
(4.2) HkSjx) = Sk(x) and H"kSjx) = S-k(x), 

generating a doubly infinite sequence of generating functions from the convolution array for fix) - S0 (x). 
We now derive the explicit formulas for these. 
Theorem 4. 

HO 

Proof of Theorem 4. 
We consider the elements an of the convolution array for f(x) such that f(0) ? 0 and 
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[f(x)]l+1 - Y, aUx' > 
i=o 

j an integer. We proceed first for/ positive. 
For5j (x), the elements processed are an; for S2(x), the elements processed area/^;; and forSk(x), the elements 

processed are */,£/. This isf of course, done sequentially. Consider the element a ^ / ^ / . We now find the sequential 
factors to convert it into the coefficient of x1 in SJ

k(xj. 
First, we consider the diagonals parallel to the principal falling diagonal a//;the diagonal S\ +I (x) contains 

ai,ki-f-j<*l and "was multiplied by 
(k-1)i+i 

ki+j 
Sn the diagonals parallel to the a,t2i, the diagonal s'k~2'l+Hx) contains^/*/-/. and was multiplied by an addi-
tional factor of 

(k-2)i+i 
Ik-1)i+j' 

and so on. In the diagonals parallel to a,-^,-, SJ
k(x) picked up a factor of j/(i+j). Thus, for the terms of SJ

kfx) 

oo 

SkM - ,L jij • 2ftf -177/ "*'+* 
i=o ' 

i=0 

This can also be established by induction. Look at ajjk+Di+j-1- Each factor we used before has its right subscript 
of ajj advanced by / so that 

oo 

$'k+lM = 2- , (k+i/yl+j
 ai,(k+1)i+Hxl • 

This holds for/ = 1, 2, 3, — , and concludes the proof of Theorem 4, for/ positive. For/= ft S°k(x) = I For/< 0, 
there are special problems to surmount 

Theorem 5. if f 1(xSk(x» = SM, with S(O) = f1 (0) ? 0, then Six) = $~JkM. 

Proof. The function f1(x) induces a two-sided sequence of generating functions. From F 1 (xSk(x)) = $(x), we 
imply 

S(x/(r1(x))k) *f1(x) 

s(xfkM) « rUxi 
S'Uxfk(x)) = f(x). 

ButS-k(xfk(x)) = f(x), so thatSM = S~JkM. 

Theorem 6. For / > 0,k>0, 

<rhxi = T _ L ^lifhEM^Ml 
x=0 i=0 

Proof. Apply Theorem 4 to the function F(x) - f1 (x). Thus for/ > 0 and /r > 0 

/t ri'frUxDhf-k/vni 

1=0 ' dx \x=:0 

s:iM = T -d-. *± lLr1M)HrkMV 
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This is equivalent to the theorem. 
SUMMARY: 

(4.3) 
/=0 J dx' x=*0 

now holds for/ > 1, k> 1, o r / < - / , k < - / . The case/= ft k£0\% routine and Ar = 0 for any /is routine. 
We note that in the proof sequence of Theorem 4, there are no zero factors except when/- 0. 
Theorem 7 (The Completion of Theorem 4). 
If f(z) is regular about z = 0 and f(0) ± ft then, for k t ft 

when -j/k?m, a positive integer. 
The prime below indicates /V/w, 

4 ^ - E r f - i d'(flMfki(x>> 

Uk' ' '' dx' 

Sik(x) = *£z+i M^M 

x=0 

x=0 

, xm dm(f'(x)fki(x» 
ml dxm 

when -j/k = m, a positive integer. 
Proof of Theorem 7. Let 

i=*0 

^x=0 

J— *f ^(fUxH^M) 
dx'' x*0 

for/Yft .and#0M = I 

Case (i). 

Taking the derivative, 

(4.4) 

But 

g,M" hl+iTk ~ *** x=0 

_d_ 
dx ;=:n dx i=0 

= Lxl
/k-1flMx-d-L . 

k z dx 

z = x<p(z) = xfk(z). 

I where fk(xS(x» = 
f(xGk(x)t - G(x) 

G(x) = Sk(x) 

x=>0 

From the corollary to Theorem 1, fk(z) = S(x), where fk(xS(x)) = S(x). To identify Six), recall that 

implies that 
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as defined for fix); hence, 

%*\\\z\f(z) = SkM-
Returning now to (4.4), 

= nk S(x) = GK(x) « S£(x) 

From z/x = ^(z), then (z/k)1/k = f(z), so that 

fhk(z) = (z/x)(hk)/k and x'^k'1&k{z) = zi/k'1 

Therefore, 

so that 

Thus, 

From the definition of 
91 

xj/kgj(x)- zi/k + C 

9i(x) , ^U Cx'"k . 

f(x) = fi(z) + Cx'i/k - si(x) + Cx-i/k. 

a.(vi = V —1— xi- d'(fj(x)fk,'(x)} 
gi[X} Z-r jk+j a . / x-0 

where -j/k ^ m, a positive integer, we see that # / M has a Maclaurin power series. Further, Sk (x) is regular about 
x = 0,Sk(0)?0, and hence 5j( W i s regular about x - t f a n d ^ / W ^ t h u s S ^ M a l s o has a power series expansion. 
Their difference is a power series so that if -j/k ?m,a positive integer, then (7=0, and the proof of part (i) is com-
plete. Since S°k(x) = 1, then Theorem 7, part (i), is valid for all integral/and S0(x)~f(x) does not need such a form. 

Case (ii). If -j/k = m, a positive integer, then 

gJiX/ Ls ki+j // . i 
j=0 ' dx x~0 

when written as above has an indeterminate term; thus, as in the form in part (ii), it should be primed. Thus,#/M 
has no term when ki +j=Q, so it is necessary and sufficient that in 

9jM = SiM + Cx~l/k , 

1 d -mk / 
m . m m dx x=0 

This completes the proof of part (ii). 

Theorem 8. When -j/k^m, m a positive integer, 

sUx) 
LJ ki+ a,> 
i=0 

ki+j-lX 
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When -j/k = m, m a positive integer, 

k *-*> ki+j ''*' ' ' ml H„m K Ml 
x=0 

Theorem 8 is simply a collection of results in terms of 

Theorem 9. Let 

then 

fi+1M = £ a,fx'. 
HO-

f(xSk
kM) = Sk(x); 

yx-^L (s-k*(x))" 
*~> ml ^..m K ml Hvm 

x=0 

Proof. Let 

then 
f(z) = 7, z = xS?(z); 

fk(x) / (xf*(x)f 
dx 

-k, 

V >£• -JO (S'k
k(x)) 

m=0 dx x -0 

x_dz_ 
z dx / 

where 

but 

so that 

That is, S(x) = fk(x). Further, 

so that 

-k, z = xS(x) and Sk
K(xS(x)) = S(x), 

Sk(xfkM) - f(x), 

Slk(xfk(x)) = rk(x). 

x/z = S~k
k(z) = S^(x)= fk(x), 

(4.5) -£-> ml -,..m K 

m=0 ml dxm x -0 
dx 

Since fI+1 (x) is implicit in our problem, we can express Eq. (4.5) in a better form. 

[f(x)]i+1 - £ a„x' 
i=o 

1*M = £ ai.K-ix' 
i=0 
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oo 

i=*0 

*rkM - £ * w / + / 

i=o 

i=o hO 

Let 

fkM £ fxr*M) = £ AmXm 

then 

flf-Y 

(4.6) Am = £ at,k-lbm-t,-k-i s E (m + 1 ~ t)*tk-lam-t,-k-,l, k f 0. 

Comment: For each SJ
kM, there is one term (when -j/k = m, m a positive integer) that is not easily specified by 

the convolution array for f(x). With Theorem 9, we now know how to get that missing term in terms of the convolu-
t ion array coefficients for f(x) as given in Eq„ (4.6). 

B, FURTHER GENERALIZED IDENTITIES 
The following is a consequence of Theorem 8 for -j/kf6mf a positive integer. 
Theorem 10 (A Generalized Identity) 
Let 

GiM '•* E jitr WW1 = S*M> 

oo 

GsM = E kfTJ ai,ki+s-ix! * Ss
k(x); -s 

hO 

then 
oo 

Gs+jM = E kiTJ^T) *W+*+Hxl = SpM. 

Thus, by convolution it is true that 

ki+ts+j) 
HO 

(5 '1 ) k^TJ an,kn+s+H = E ]^Jat,kt+H jfaZJjTJ *»-*("-*>+*-1 
t=*0 

Corollary 3 (Abel Convolution Formula) 
Letf(x) = ex and k= 1 in Theorem 10;then by exponential convolution, 
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n+s+j t-d \t/t+j n-t+s 

Corollary 2 (Generalized Abel Convolution Formula) 
Use Theorem 10 with fix) = ex and k a positive integer; then 

j-ifJ-[(„ + ,» + ,+,-V" 

= i(nt)itj[(t+m+;i-i]t ki^TTj "°-t+'**'- ^~r-
t=0 

See Raney [14], who conjectured this form. 

Corollary 3 (Hagen-Rothe Identity) 
Let f(x)=(1+x)a, k= 1, in Theorem 10; then 

n 
S+j / afn + $+J) X = y ^ S /af t + s) \ j / afr? - t */7 \ 

n +s+j ^ n / Z«* £*s \ f / n-t+j * *> - ? ' ' 

Corollary 4 (Generalized Hagen-Rothe Identity) 
Let fW= /7 -/-*>/aand&bea positive integer in Theorem 10; then 

S+j £a[kfn) + s+j\ 
kn+s+j v n / 

n 
L_ * a[(k)t+j \ S fa[kfn-t)+s\ 

kt+j \ t ) k(n-t)+s \ fl-^f / 

6. FINAL REMARKS 

I. Schur in [8] has done much in this area. Schur [8] and Carlitz [7] give derivations of Lagrange's theorem. H„ 
W. Gould in [13] has summarized much of what has been done earlier. There is still much that can be done for 
specialized functions f(z). 
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[Continued from Page 356.] 

Proof. Since 2) is a non-discrete topology on X there exists c &K with \c\ <£%. Let A be the topology on X 
generated by 

and notice A is non-discrete since { c J <£ A. 
Consider 

S = n\A e A\c e A\ . 

Since A is finite if S= { c j then j c j e A. Thus, choose b e $\\c\. Let 
r = \B C X\b £ 5 or c £ B\ . 

Let7"e A . l f ^ e TthenSc 7"andsoZ?e 7" which implies 7"e I \ If c£ 7" then f e Y by definition of T. Hence 
S c A c T. 

Corollary. Every non-discrete topology on a finite set with n elements is contained in a non-discrete topology 
with 3( l " ' 2 ) elements. 

REFERENCE 
1. D. Stephen, "Topology in Finite Sets," American Mathematican Monthly, 75 (1968), pp. 739-741. 
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H-255 Proposed by L Car/itz, Duke University, Durham, North Carolina. 

Show that 
2m 2n 
V V /_ 1 \i+k I2m\(2n\(2m+2n\ f 2m + 2n \ s / 1}m+n (3m + 3n)!(2m)!(2n)i 
Z-r L*1 / ; V / A k t\ j + k )\2m-j+k) f ,7 m!n!(m+n)!(2m+n)!(m+2n)! ' 
j=0 k=0 
where (a)k - a(a + 1) »•• (a+k - 1). 

H-256 Proposed by E. Karst, Tucson, Arizona. 

Find all solutions of 
(i) x + y + z = 22nH -1 

and 
(Si) x*+y*+z3 « 26n+1 - 1, 

simultaneously for/7 < 5, given that 
(a) x, y,z are positive rationaIs 
(b) 22n+1 - 1, 26n+1 - / are integers 
(c) n = iog2x/F, where t is a positive integer. 

H-257 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Consider the array, D, indicated below in which F2n+1 (n - 0, 1, 2, -t is written in staggered columns 
1 
2 
5 

13 
34 
89 

1 
2 
5 

13 
34 

1 
2 
5 

13 

1 
2 
5 

1 
2 1 

i) Show that the row sums are p2n+2 (n ~ ft t 2, — i 
(ii) Show that the rising diagonal sums are Fn+lFn+2 (n ~ ft IZ ttll 
(iii) Show that if the columns are multiplied by 1,2, 3, -sequentially to the right, then the row sums are p2n+3m 

1(n = 0, 1,2,-') 

369 
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READER COMMENTS 

Paul Bruckman noted that H-241 Is identical to H-206. 
Charles Wall noted that H-188 is a weaker version of B-141. 

H-239 Correction 
The given inequality should read 

\a b\ 100 \d b\ 100 " 

SOLUTIONS 
A NEST OF SUBSETS 

H-223 Proposed by L Carlitz and R. Scoville, Duke University, Durham, North Carolina. 

Let S be a set of k elements. Find the number of sequences (Ax, A2, •»., An) where each A/ is a subset of S, and 
where Ax CA2,A2 DA3,A3 CA4,A4 DAS, etc. 
Solution by the Proposers. 

Let 0j be the characteristic function of Ax, <p2 the characteristic function of A2, 03 of A\, 04 of A'4I etc. The 
condition on the Afs is equivalent to 

(1K Mi) - / - 0/+/W - ft V -

For instance, suppose/I; c /1/̂ .y. Then/* / is even. li<p/(j)= 1, then j <E A;, J <E A,+i, j £ Aj+i and ty+ifj) = 0. 
The matrix f0/f/A/ has £ columns each of which is a sequence of 0's and 1's of length n in which no 1's occur con-

secutively. Since there are Fn+2 such sequences, there are Fk
n+2 matrices satisfying (1)'. 

SUMLEGENDRE 
H-227 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 
m n min(m,n) 

E E (-Vm+n~hk (J)[nk) (aj + ck)m(hj + dk)n = mini £ [?)[",) ^^n"r(bc)r . 
1=0 k=0 X ! ! r~0 X ! j 

Sn particular, show that the Legendre polynomial Pn(x) satisfies 
n 

(n!)2PnM= E (-1,I+k [")[ k) <ai + ck)n(bj + dk)n, 

where ad = 1/2(x + 1), be = %(x - 1). 
Solution by the Proposer. We have 

m n 
^ £ (-Vm+*+kt mUn \ (aj+ ck)m(bj+ dk)n 

M k=o N M ' 
m n m n 

E E (-"m+n-hk (7)(Z) E E (•",)[:) wwi 
1=0 k=0 \ l\ I r==Q sssQ \ l\ I 

m n 
r=n *=n ' s I r=0 s=0 
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where 
m n 

V n = Z (- »"* ( 7 ) im+n^s E <~ "** C I ) kr*s • 
Since 

m 

x>?r-/(7)/<={r fr;ft-
it follows that 5 m > n = 0 unless 

j m + n — r — s > m 
i r+s > n * 

that is, r + s~s. Hence 
m n 

Y*1L (-Dm+n~hk(T)(n
k) (aj + ck)m(bj + dk)n - m!n! £ ( ? ) ( £ ) a^c'b^d8 

j=0 k=0 r+s=n 

mm (m,n) 

Since (see for example G. Szego's Orthogonal Polynomials, p.. 67)" 

the second assertion follows at once. 
ATBIANGULAR ARRAY 

H-229 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

A triangular array A(n,k) (0 < k < n) is defined by means of 

{*v | A(n + 7, 2k) = A(n, 2k - 1) +aA(n, 2k) 

1 A(n + I 2k +1) = A(n, 2k) + bA(n, 2k + 1) 

together with 
A(0,0) = 1, A(0,k) - 0 (k t 0) 

Find A(n,k) and show that 

] P A(n,2k)(ab)k - a(a+hf~1, 
k 

] T A(n,2k+1)(ab)k = (a + h)n~1 . 
k 

Solution by the Propsoer. 

It follows from the definition that 

A(n,0) = 5° (n * 0,i,2,-»). 

Then 
/ I f e / i = a^'+bAfn- 1, 1) 

so that 
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Put 

Then by (*) 

so that 

Similarly 

It follows that 

Since 

we get 

A(n,1)=a—^-
a — b 

Ak(x) = Y, A(n,k)xn. 
n=k 

oo 

A2kM = J2 (A(n-~ I 2k- 1) + aA(n- 1, 2k))xn - xA2k-iM + axA2k(x)f 

n=k 

(1 -ax)A2k = xA2k-lM-

(1 -bx)A2k+1(x) = xA2k(x). 

\ A2k+1(x) = x2k+1(1-axrk"1(1-bxrk'1 

A2k M = x2k(1 - axFk'1(1 - bxfk 

n~2k-1 

A(n,2k+1)= £ {k+
k
t){n-k-r-1)atbn-2k-r-1 

n-2k 

r=Q 
it follows from (**) that 

(***) 

E *2kMy2k - n - z u ^ 
k=0 

(1-ax)(1-hx)~x2y2 

J2 A2k+1(x)y 2k+1 _ JUL 

Hence 

For a = b this reduces to 

k=0 
(1-ax)(1 -bx)-x2y2 

£ *«** - „_J,7^,V • 
which is correct. 

Finally, taking y2 = ab in (***), we get 

7 - ax ~xy 

£3 A(n/2k)(ab)k = a(a+bf~\ £ A(n, 2k+1)(ab)k - (a+bf~1 . 

*kkkkkk 
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A.P. HfLLIVSAgy 

University of New Mexico, Albuquerque, l\9ew Mexico 87131 

Send ail communications regarding Elementary Problems to Professor A.P. Hillman; 709 Solano Dr., S.E.; 
Albuquerque, New Mexico 87108. Each solution or problem should be on a separate sheet (or sheets). Preference 
will be given to those typed with double spacing in the format used below. Solutions should be received within four 
months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+1+Fn, F0 « 0, Fx « / and Ln+2 = Ln+<i + Ln, L0 = 2, Ll = /. 

PROBLEMS PROPOSED IU THIS ISSUE 

B-316 Proposed by J. AH. Hunter, Fun with Figures, Toronto, Ont, Canada. 

Solve the alphametic: 
TWO 

TH REE 
TH REE 

E I G H T 

Believe it or not, there must be no 8 in this! 

B-317 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Prove that /-2A?-/ >S an e x a c t divisor of L.4n-j - 1 for n = 1,2, —. 

B-318 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Prove that F\n + 8F2n(
F2n + F6n) «s a perfect square for/7 - /, 2, >•>. 

B-319 Proposed by Wray G. Brady, Slippery Rock State College, Slippery Rock, Pennsylvania. 

Prove or disprove: 
J-+± + JL+...= JJj__±+±_...\ 
L.2 L6 Lx% s/5\F2 F6 F10 J 

B-320 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas. 

Evaluate the sum: 
n 

Yl FkFk+2m > 
k=0 

B-321 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas. 

Evaluate the sum: 

373 
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n 

J3 FkFk+2m+1-
k=0 

SOLUTIONS 

A COMBINATORIAL PROBLEM 

B-292 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Obtain and prove a formula for the number S(n,t) of terms in (xt + x2 + ~' + xn)
t, where n and t 

are integers with n > 0, t > 0. 

I. Solution by Graham Lord, Secane, Pennsylvania. 

S(n,t) is the number of unordered selections of size t and a set of n elements, that is: 

S(n,t)= {n + \ - 1 ) . 

This is a well known result See for example H.H. Ryser, "Combinatorial Mathematics," Cams Monograph, American 
Math Association, 1963. 

//. Solution by Frank Higgins, Naperville, Illinois. 

S(n,t) = ( n + t
t - 1 ) . 

For n = 1, the formula clearly holds for all integers t> 0. Suppose the formula holds for some integer n > 1 and all 
integers t > 0. Now, for any integer t>0, we have that 

t 

(xx +x2+- + xn + xnH)t = [(x% + x2+~+xn)+xn+1]
t - ] £ ( £ ) fri +x*+"'+xn)

tmkx1n.1 

k=0 

and hence, by the induction hypothesis, that 

^w-n»+;:* - ' ) . (Y' ) 
which completes the proof. 

Also solved by Paul S. Brue km an, Jeffrey Shall it, A C. Shannon, Gregory Wulczyn, and the Proposer. 

THE FIRST SIX FIBONACCI TERMS 

B-293 Proposed by Harold Don Allen, Nova Scotia Teachers College, N.S., Canada. 

Identify T, W, H, R, E, F, I, Vand £? as distinct digits In | 1,2, - , 9 | such that we have the following sum (in 
which 1 and 0 are the digits 1 and 0): 

1 
1 

TWO 
TH REE 

F I V E 

E I G H T 
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Solution by George Berzsenyi, Lamar University, Beaumont, Texas. 

It is easy to see that the digit carried from the thousands column must be 1; consequently, T+ 1 = E. Applying 
this fact to the ones column yields the congruence 2T + 4 = T (mod 10) whose only solution is T= 6. Therefore, 
E = 7 follows. On the basis of the thousands column one can also easily deduce that / < 5. Furthermore, it is evident 
that the values of Vand M̂ are interchangeable. The value of H determines the possible values for V and W, resulting 
in the following ten cases: 

(1) H=1;V,W.<=: iS,8\: 
(2) H=1;V,We {4,9\; 
(Z\ H = 2;V,W^ {13}; 
(4) H = 2;V,Wsz {5,9}; 
(5) H = 3;V,WG \l/\; 

(6) H = 4;V,W<= il5.\ : 
(7) H = 5;V,We {3,4}; 
(8) H = 5;V,W<a {8,9}; 
(9) H = 8;V,W<E {1,9}; 

(10) H = 9;V,We {3,8}. 

All but two of these lead to contradictions. Case (4) yields one solution, from Case (9) two solutions are obtained; 
they are given below. 

1 
1 

690 
62477 
8157 

1 1 
1 1 

610 610 
68577 68277 
3297 5497 

71326 72486 74386 
As remarked earlier, upon interchanging the values of fand W, three additional solutions may be given, it may be 

of interest to note that the number of essentially different solutions, the possible values of F (commonly used to 
denote the Fibonacci numbers), as well as the possible values of H (often used to denote generalized Fibonacci num-
bers) are all Fibonacci numbers. 
Also (partially) solved by Paul S. B rue km an, Warren Cheves, J. AH. Hunter, John W. Miisom, Carl Moore, Jim Pope, 
A. C. Shannon, and the Proposer. 

A FORMULA SYMMETRIC IN &AND n 

B-294 Proposed by Richard Blazej, Queens Village, New York. 

Show that 
FnLk + FkLn = 2Fn+k. 

Solution by Frank Higgins, Naperville, Illinois. 

Using the Binet formulas we have 

Also solved by George Berzsenyi, Paul S. Bruckman, Warren Cheves, Herta T. Freitag, Mike Hoffman, Peter A. 
Lindstrom, Graham Lord, John W. Miisom, Carl Moore, F.D. Parker, Jeffrey Shailit, A.C. Shannon, Paul Smith, 
Gregory Wulczyn, and the Proposer. 

CONVOLUTION OR DOUBLE SUM 
B-295 Proposed by V.E. Hoggatt, Jr., California State University, San Jose, California. 

Find a closed form for 
n 

J^ (n+1-k)F2k = nF2 + (n-1)F4 + -+F2„ . 
n=1 
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Solution by Graham Lord, Secane, Pennsylvania. 

The sum of the first k odd indexed Fibonacci numbers is F2^
 ana" t n a t of the first k even indexed ones is F2k+1 ~ 

1, where k> 1. 
Therefore, 

n n i n 

X) (n+1-k)F2k * £ E F* = E <F2i+l-1) 
k=l j=i i=7 M 

= F2(n+1)-n~ 1 -
NOTE: Compare B-290. 
Also solved by George Berzsenyi, Paul S. Bruckman, Herta T Freitag, Frank Higgins, Mike Hoffman, Peter A. 
Lindstrom, Carl Moore, Jeffrey Shallit, AC Shannon, Paul Smith, and the Proposer. 

A MOST CHALLENGING PROBLEM 
B-296 Proposed by Gary Ford, Vancouver, B.C., Canada. 

Find constants a and b and a transcendental function G such that 

G(yn+3) + G(y„) + G(yn+2)G(yn+1) 

whenever yn satisfies yn+2 = ayn+l + °Vn-

I. Solution by Carl F. Moore, Tacoma, Washington. 

Two solutions are given by: 
(1) a = b = 1 and G(u) = 2cosu, 

(2) a = b=1 and G(u) = cu + c~u (c*1). 

[Notice G(u) = 2 cosh u is a pleasing special case.] 
To show (1), 

GlYn+3) + G(Yn) = 2 cos (yn+3) + 2 cos (yn) = 2 /"cos (yn+3>+ cos (yn)) 

* (2 cos (yn+2))-(2 cos (yn+1)) = G(yn+2)-G(yn+1). 
To show (2), 

G(yn+3) + G(yn) = (cVn+3 + C-Vn+3) + (cVn+c-Vny= cyn+2+Yn+1 +c-Yn+2-Vn+1 + cVn+2-Yn+1 

+ cVn+1-Vn+2 = cyn+2.c
v"+1 + c'

Vn+2 ,C'Vn+1 + CV"+2-c'Vn+1 + C
Vn+1 -c'Vn+2 

= (cy"+2
 + c-y°+2HcVn+1+c-yn+1) = G(yn+2).G(yn+1). 

II. Solution by the Proposer. 

Let G(x) = cx + c~x, with c any (complex) constant and let | yn I be a generalized Fibonacci sequence (satis-
fy ing yn+2 = Yn+l + y^and having any initial conditions). 
There were no other solvers. 
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PARTIAL FRACTIONS 
B-297 Proposed by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

Obtain a recursion formula and a closed form in terms of Fibonacci and Lucas numbers for the sequence (Gn) de-
fined by the generating function: 

(1- 3x-x2+5xz+xA-x5)-1 * G0 + Gtx + G2x
2 +-+ Gnx

n + - . 

Solution by David Zeitlin, Minneapolis, Minnesota. 

We note that 
Gn+s - 3Gn+4 - Gn+3 + 5Gn+2 + Gn+f~ Gn = 0. 

Since 
(1-3x-x2 + 5xz + x4 - x5) = (I - 3x+x2)(1 -x - x2)(1+x), 

we obtain, using partial fractions, 
10 s 18-7x _ 5(2+x) + 2 

1- 3x-x2+5x3+x4 -x5 "" 1-3x+x2 1-x-x2 1+x ' 

if Wn+2 = aWn+i + bWn, then 

£ WnXn = ^ - y . 
" I -ax-hx2 

n=0 
Thus, 

oo oo oo 

18- 7x _ V * / *n • 2 + x - V /: «!/"• 1 - V / i)nvn 

i-3x+x> - ^ i 2 n + 6 X ' T^T^ -1. F»+3X • — X - L . { - " X -
n=0 n=0 n=Q 

Thus, 

Gn = jjf (L2n+6-5Fn+3 + 2(~1)V. 

Also solved by Frank Higgins, Carl F. Moore, AC. Shannon, Gregory Wulczyn, and the Proposer. 
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[Continued from P. 349.] 

THE GENERAL LAW OF QUADRATIC RECIPROCITY 

If (~1/blh2)=1, then 
(a/b.bj = I 

(-a/b^J = I 

(a/-btbj = (a/-1), 

(-aZ-b.bJ = ~(a/~1); 

lU-l/b.bJ = -7 , then 

(a/b.bj = (-1/a), 

(-a/b.bj = -(-1/a), 

(aZ-b.bJ = (a/-1)(~1/a), 

(-ahb.bj = (a/-1)(-1/a). 
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