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GENERAL IDENTITIES FOR FIBONACCI AND LUCAS NUMBERS
WITH POLYNOMIAL SUBSCRIPTS IN SEVERAL VARIABLES

RICHARD B. STONE
Student, Montana State University, Bozeman, Montana 59715

Among the well known Fibonacei identities we have
Fmtn = Fm+1Fn+ FmFp-1

which may be written as
Fm+1Fn—F1Fmin = FnFp-1 .

In this form, we see a property which is common among Fibonacci and Lucas identities. Namely, that the sum of
the subscripts of the first product £,,+7F, is identically equal to the sum of the subscripts of the second product

F7 Fm+n .
What general identities do we have with this property? How does this property relate to the reducibility of a given

form?
It is with these questions that we are principally concerned.

Definition 1. Forevery 7 <i<m, let the domain of n; be the set of integers. Then we let
P = { polynomials inn,, n,, -+, Ny, with integral coefficients } .
For convenience in deriving general Fibonacci and Lucas identities for the forms
FiFg# FpFy, Lilg#Llplg, Filgz Fplg,
where £, g, h, k € P, with the property that f + g =h + k, we first express / and & in terms of fand g.

Lemma 1. |1, g, h, k € Psuch that f+g=h + k, then there exists f,, f,, g,, g, € P such that
f,+f, =f g, %9, =g fotg =h and f,+g, =k
Proof. Let
f1Eh/ fg Ef'—h, _01501 ngg,
clearly,
g, fx +g1 = h.

1l

fi, 1. 9.,9, €P and fi+f, =1 g, %9,

but, by hypothesis,
k=1, +g9, =k qged

l

ftrg=h+k =1~f-h+g
Theorem 1. Letf g, h, k< Psuchthat f+g = h+Kk, then
FrFg=FnFi = (=1)7" T FrpFri .

Proof. By hypothesis,
f+g = h+k and fghk P

Hence, by Lemma 1, there exist f,, 7,, g,, g, € P such that

f, +f2 = f 9,79, =4 fi+tg, =h, f2 +g, = k.

Then, clearly,
Fng —FpFy = fo +f, F91+92 - fo *9, Ff2+92 '

289



290 , GENERAL IDENTITIES FOR FIBONACCI AND LUCAS NUMBERS [DEC.

Using the Binet definition

n
( Fn =%¢‘3{%’, where n< [Integers], a=1 +2\/§

.

g - 7—2\/5 )

we have

(af1+f2 “Bf‘+f’ ) (a91+92 —Bg1+y2 )
a-f a-p
(aﬂ*gl —gh*a )( o279 _ ght9, )
- a-f a-p
_ (a.fl +f,+9,+9, Bfl -I-fz‘]'g‘*f*g2 _ a,fl +f2ﬁgl +g, +6f1 +f, +91+92)
- fa—B)> :
(a,fl +f,+9,+9, _ﬁf1 +glaf2+g2 _ afl +91ﬁfz +g, +Bf’ +g,+f,+g, i
- fa—BJ '
(_Bfl +f2agl *9, 4 afl +glﬂf2+5’2 —_ afl +f2591 *9, 4 ﬁfx *9, afz +92}
(a— g/
_ szagx (_fo a9z +ah B892+ afzﬁg, (_alegz + fo aJ2)
- (a-B)
(_ﬂfxagz +af16g2)(8f2aq1 _,afzﬁglj -
(a—B)
(aB )92 (-39 +a'1792)(8a)% (872791 — a’2791)
(a—g)*
(aB)9:*9:*(a"1 792 _ g"1~92)ig" 91 _ g1
a—B)

= (—7)9:119,*1
= (~1)7 7% fo’ngfz'gx

Ffl +f, Fgl 9, ~ Ffl *9, Ffz 19, =

il

il

But
9,79, =g and f,—g, =(f,+Ff)-(f,+g,) =Ff—k and f,—f =(f+ H)]-(f+g)=F-h.

Thus, by substituting . . .
(~1)979  Fe o Fr g = (=17 TFeyFrp = (-1 TFepFrp  qed.

Theorem 2. Letf g h k< Psuchthat f+g= h+k, then

(a) Lilg—Lplg = 5(—1)9Fpp Frui
and
(b) Fflg— Fplg = (—-f/g”/:f_hlf_k .

Proof.  The proof of 2(a) and 2(b) is virtually the same as that of Theorem 1 (where L, =a” + 3}
Corollary 1. Letf g h k< Psuchthatf+g= h+k Then

FFg— FnFi = — “’—-fﬂ?“—éi’ﬁ‘-} .
Proof. Compare Theorems 2(a) and 1.

EXAMPLES AND APPLICATIONS

The degree of freedom offered by Theorems 1 and 2 together with the identity given in their hypothesis is large
indeed. We will endeavor, with some examples, to indicate that degree of freedom.
EXAMPLE 1. By [1, p. 7], a general Turan operator is defined by

Tf = Tyflx) = flx +u)fix +v) — fix)f(x +u +v).
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"“For the Fibonacci numbers it is a classic formula first discovered apparently by Tagiuri (Cf. Dickson [4, p.
4041 ) and later given as a problem in the American Mathematical Monthly (Prablem 1396) that
TnFn = FnsuFptv— FnFptuty = (—I)nFqu et
This is immediate from Theorem 1.
letf=n+u, g=n+v, h=n and k= n+u+v. Clearly,

fghkepP and f+tg = h+k.
Thus, applying Theorem 1, we have

FrtuFnty = FaFtate = (=1 F ntajon Flneu)tntury) = (1) FuFoy.
Now using the well known identity (— 7)’"+7Fm = F.p, yields

(—7}n+v+7FuF-v = (‘7)n+V+1(—7)_V+1FuFV = (- ﬂnFqu;
the desired result.
EXAMPLE 2. By Thearem 2(a),

Lilg—Lply = (~1)95F fopy Fric
iffg h ke Pandf+g=h+k Thentoo,f—k= h-gandf-h=k-g,
Substituting, we obtain Lilg—Lplg = (~1)95Fkgrp-g,

a trivial but equivalent form of Theorem 2(a).
Another equivalent form of Theorem 2(a) is

Lilg—5FpFy = (- 7}9Lk_gl.h..g .
To obtain this equivalent form, we write
f+{~g) = (h—g)+(k-g).

Clearly,
f(=g) th—g) (k—g) € P;

hence, Theorem 2(a) may be applied to these new polynomials, yielding,
Ltk -g) = Lin-g)Lik=g) = (=T 9F(n-g)(-p) F tk~g)~(-g)
then,
(~1)9L¢lg— L(h-g)L(k-g) = (~1)96FpFi = Lilg—5FnFy = (~1)9Lk-glp—g .
Similarly, Theorems 1 and 2 may be put into several other equivalent forms.
It would be natural to ask what F¢Fg + Fp Fr would yield, subject to the condition
f,g h kP and f+g = h+k,

with a proof analagous to that of Theorem 1. The result is, in at least one form,

FeFg+ FnFi = Eﬂ%’fﬁ.‘l_ #(=1)9%1 ﬂfﬁ#‘l .

However, this form is easily derived with the following method.
EXAMPLE 3.

ftg=h+k = (0)+(f+g) = h+k,
by Theorem 2(a),
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Now we use Theorem 2(a) to find an expression for F¢Fg and obtain

Lyl (~1)9 7 L pl
FiFg - h5k - 5f h L ek

Adding these identities produces
FeFg+ FnFy = 52@—”3" +(-1)9*7 éf—’;i’—"
Similarly, we find sums LfLg+ LpLg by using Theorem 2(b). Also, other sums with various equivalent forms may

be found.
APPLICATION TO FIBONACC! AND LUCAS TRIPLES
Application of Theorems 1 and 2 to the Fibonacci and Lucas triples [2], generated by R. T. Hansen, allow Theo
rems 1 and 2 to be written in equivalent summation form for fixed integers.
Theorem 3. Let A, B be fixed integers; then
B—1
FaFg =9 (~1)8" T"KEp piokes
K=0

A-1
Falg = Z (~1)8" K popo2icer
=0
A-2
B+K B+K
Lalg = Z (~1)""La-gamrny+ Y, (=17 Lag-2x -
K=0 K=0
Proof. See [2] and directly apply Theorems 1 and 2.
Clearly, from these forms, the summation equivaients of Theorems 1 and 2, for fixed integer A, B, C, D such that
A+ B=_C+ D, may be obtained as immediate corollaries. We do not list these identities.
FURTHER APPLICATION OF THEOREMS 1 AND 2

We now apply Theorems 1 and 2 to find simple subscript properties between identically equal Fibonacci and

Lucas products.
Lemma 2. Let f,

Proof.

,g € Psuchthat f# Zandg # 2. |f Fr= Fg, then |f| =|g|.

=Fg= |Fl = |Fgl = Fin = Fiy.

Clearly,
{FN}‘”_O, N #2 N € [Integers],

Figi and |f| # |g|is a contradiction to the fact that { Fn $;=0' N#2,

il

is a strictly increasing sequence. Then F|g
is strictly increasing. Thus,

Y

Fr=Fg

Theorem 4. Givenf g, h k< P. If FsF,
ever

Fm = Flgl = |f} = lgl Q.E.D.
= FpFy, then |[f{=|h|and |g|=|k]|, or |f| =|g| and |g| = |k| when-
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i 1gl, 1al 141, & {02},
Proof. If FeFg = FpFy , then
(1 |FeFgl =1FnFil = FinFig = FiniFik -
Since £, g, i, k = P, they are functions of n,, n,, -, and np, . Let nf for 1 <7 < m be an arbitrary set of fixed val-
ues of n; for 1 <7 < m, respectively. Then £, g,, #,, k, are the corresponding fixed integers. Assume W.L.0.G. that
L£0 #lg,) > 1h) +1k)]
and that {n,f § is such that
FARVARVARIS
are not 2 or 0. Clearly, there exist K such that K > 8, K € [Integers] and
(2) FARIPARERV ARSI A ¢
By Theorem 1,
Fit, 1Figy = Finy Fik, 1ok = (=19 T Fi L Fit ik 140 = 0
if and only if
£l ~1n,l =0 or lel —tle,l +K) = 0.
Without loss of generality, assume that
LEl=1nl =0=1fl =1a,l.
Thenby (2), lg,| = 1k,| +K
Suppose K # 0, then

Fif \Fig,1 = Fin \Fie, 1+ # Fin, 1Fik i
by Lemma 2,
Thus, if
FirFig = Fi) Fik g
it is required that K = 0. Thus,
£, = 1h,l and lg,l =1kl .

Further, since the selection of n; was arbitrary with the conditions of the thearems hypothesis, its conclusion holds,
QLE.D.
Note that the condition .
LA, 1l a1kl & {2t

is not really any restriction, practically speaking. Thatis £, = £, so if one agrees always to write 7, as £, we could
require only that| A, lgl, |al, 1kl & %D} in the hypothesis of Theorem 4,

Lemma 3. letf,g € PitLy=Ly, thenlfl =lgl.

Proof. Construct an argument similar to Lemma 2.

Theorem 5. Letf, g h k. P\ LiLg=LpLg, thenlfl =lhl andlgl = [4], orlAl =1kl andlgl =1al,
Proof. Construct a proof analogous to Theorem 4 by using Lemma 3 and Theorem 2(a).

Theorem 6. Givenf g h ke P. f Frly=Fplg, thenlfl =1hl andlgl =1kl, whenever|A | 5] é£a2§.

Proof. Construct a proof analogous to Theorem 4 by using Theorem 2 (b). Informally speaking, Theorems 1, 2, 4,
5 and 6 seem to suggest that an algebraic structure for Fibonacci identities, based on the subscripts, can be formed.
If the reader is interested in investigating this, he will be more successful in using the following form of Theorem 1:

_ [ 7}91 79,1
Ffl’sz F91+92 Ffz+g1 Ff2+gz = (1) 7% Ffl'ngfz"g;’
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where
fghk.f,f, 9,9, €P
and
f,+f, =1, 9,79, = 4 fi*g, = h, f,+g, = k
and

f+g =h+k.
Further, note that if we let
0= {FpFs|lRScP and R+S=ftg}

then clearly
Ffl +f, Fgl g, Ff1+91 Ff2+g2 € Q.
Also,
= 9,19, 17 9, 19,1
Ffl-;-fz F91+gz = (-1 Ff1+f2 F—g‘-g, = (~1)91792 Ff1+f2F‘91 :"-_g2 eq
and then

(~1)9:792 1 F o Fe g < Q.
The reader may enjoy investigating further in this or other directions.

SOME ADDITIONAL IDENTITIES
Theorem 7. Letf g h< Psuchthat f=g+h. Then,

(a) Fr—Fglp = (-1)9Fpg

(b) Li—Lglp = (-1)7Lpy
Ly (-1)9L4,..

(c) 3 - FoFn = =50

Proof. By using the Binet definition we have

Frm Foly = @=0" _ a?=p7  a"+f" _ (af=B") (@™ - %" + a%" - §7)

“a=-8 a-p 7 a-B

By hypothesis f=g + h, hence by substituting g + / for f in the above expression and simplifying we have

Fr—Fglp = &_@_ﬂah —a%"
a-f
= (a9 I=8"0) _(_yjop, .
The proofs of (b) and (c) are similar. Q.E.D. a-8
Although not included, theorems corresponding to those in this paper may be developed for Fibonacci and Lucas
triples as well. (The author did develop the FyFpLx — FjFmFp, form.) Clearly, the proofs for these, which are vir-

tually the same as for Theorems 1 and 2, soon become cumbersome. We leave it to the reader to develop these
to suit his needs.
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REPEATED BINOMIAL COEFFICIENTS AND FIBONACCI NUMBERS

DAVID SINGMASTER
Polytechnic of the South Bank, London and Istitute Matematico, Pisa, Italy

ABSTRACT

In this note, | show that there are infinitely many solutions to the equation

(Z:;)=(k22) .

given by n = Foj+oF2i+3 — 1, k = FoiF2;+3 — 1, where F, is the n™ Fibonacci number, beginning with F, = 0. This
gives infinitely many binomial coefficients occurring at least 6 times. The method and results of a computer search
for repeated binemial coefficients, up to 24, will be given.

1. INTRODUCTION

In [6], I have conjectured that the number of times an integer can occur as a binomial coefficient is bounded. A
computer search up to 24® has revealed only the following seven nontrivial repetitions:

120 = (’2‘?)= (%) 270=(22’)= () w0 = (%) - (22)-

- () - (% ); v (17) - () om0=(%)- (3)

2 2 5 8
and _[(78\_ [15 ) _ 14)
3003 = (2 ) = (5 =\% /)
In [2], it has been shown that the only numbers which are both triangular, i.e., = ( ’; ) for some n, and tetrahe-
dral, i.e., = {7 ) for somen, are 1, 10, 120, 1540 and 7140. The first two are trivial and the last three were also

found by the computer, giving a check on the search procedure.
The coefficient 3003 occurs in the following striking pattern in Pascal’s triangle:

1001 2002 3003
3003 5005

8008
| had noticed this pattern some years ago when | discovered that it is the only solution to
n . n . ( n ) =17:2:3
k| \k+1] \k+2 sy

and that there is at most one solution to this relation when the right-hand side is replaced by a - b : ¢. Hence | was
led to consider determining solutions when the right-hand side was a : b - a + b, or, equivalently and more simply,

solutions of

n+1 1\ _ n

0 (257) - («52)-
2. SOLUTION CF EQUATION (1)

From (1), we have (n+ 1)(k +2) = (n—k)in—k — 1). Setm=n + 1, j = k + 2, thus obtaining m? + (1 — 3j)m +

j* —j = 0. Solving for m gives
295
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(2) m= [-1+3j+J57 =2[+7]/2

For this to make sense, we must have that 52 — 2/ + 1 is a perfect square, say v2. We can rewrite this as
(3) (55— 1) -6y = —4.

Lettingu = 55 — 1, C = —4, we have the Pell-like equation

(4) u* -5 = C.

This can be completely solved by standard techniques [5, section 58, p. 204 f]. The basic solutions are:
9+4/5whenC=1; 2+ /EwhenC=-1; and 1++/5and4+2/5 when(C=-4.

The class of solutions determined by 4 + 2\/5 is the same as the class determined by 4 — 2\/5, i.e. the classisam-
biguous, in the terminology of [5]. Hence all solutions are given by

Ui+ vi/8 = (~1+/BHI+AJB),  ui+vn/B = (1+/EN9+45),  uj+vi/E
and their conjugates and negatives.

Let F,=0 F, =1, Fh+1= Fn + Fp-q define the Fibonacci numbersand let L, =2, L, =1, Lp+1= Ly + Lp-7 de-
fine the Lucas numbers.

Lemma. (Ly+FJE)N9+45) = Lpsg+ Fnie/5 .

Proof. Leta=(1+/5)/2, B=(1—+/5)/2. By the Binet formulas, we have

n = (a"-B")/\5, Lp =a"+p",

and so L, + Fy/5 = 2a”. Hence the lemma reduces to showing a® = 9 + 4./5, which is readily done.
Since the basic solutions v, +v,+/5 given above are respectively

+F_,\/5, L, +F 5 and L, +F,\5,
the general solution of (4) can be written as

(5) L1+ F2i-13/5, i=01,-

]

(4+25)(9+4J5),

and we may now ignore the conjugates and negatives.
To solve (3), we must have § — 7 = L5;_7. From the Binet formula, one may obtain L;=2- 3’ (mod 5) and hence
L;=—1 (mod 5) if and only if / =3 (mod 4). Recalling that j = k + 2 > 2, the solutions of (3) are thus

j = (Lgi+3+1)/85, v = Fgi+3, i=12 -
By standard manipulations, we obtain
(6)  j=Foifziz3+1, k=F3iF2i+3~1, m=Fou2F2i4+3=(Lgjr5—1)/5, n=FoiszFai+3— 1.
Finally, observe that
n ( n
k k+1

) -
( ) (kﬁ,) (k+2) = Foi: Fair1: F2jr2.
The casei=1givesn= 14, k=4 and
( ) ( ) = 3003,
The case /= 2 gives n = 703, k = 38, k + 2= 40, and
( {?‘75,4) = ( 103 ) = 612181827 43304 70189 14314 82520.

(k+1):(n—k) = Foj:Fory,
hence

oG

This number does not occur again as a binomial coefficient. The next values of {n,k/ are (713, 271) and (4394, 1868).
Equation (1) has also been solved by Lind [4]. Hoggatt and Lind [3] have dealt with some related inequalities.
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3. REMARKS

_ [(n+1 _ n _ [N
we (500) = (e5e) = (9)
give us infinitely many binomial coefficients occurring at least six times. This has also been noted in [1, Theorem 3].

Since 3003 happens to be also a triangular number, one might hope that some more of these values might also be
triangular. | first determined by calculation that 103
(%)

was not triangular and later | determined that it did not occur as any other binomial coefficient. These determina-
tions are described below. | have not been able to discern any other patterns in the repetitions found.
One might try to extend the pattern of Eq. (1) and try to find

n _(n+1\_ [n+2
k+4 k+3 k+2 | °
This would require two solutions of (1) with consecutive values of n and inspection of (6) shows this is impaossible.
The lemma is a special case of the general assertion that the solutions u;, v; of
Ui +vixJD = (uy +vo/D Na+b/D )
both satisfy the same second-order recurrence relation:

The coefficients

Up+1 = 2aup+ (620 —a*Jup-q.

(In our particular case: F,+g = 18 F, — Fp-g.) | do not see whether the fact that the three basic solutions happen
to neatly fit together into a single linear recurrence is a happy accident or a general phenomenon. The converse prob-
lem of determining which pairs of recurrence relations give all solutions of a Pell-like equation seems interesting but
| have not examined it.

4. THE COMPUTER SEARCH

Two separate computer searches were made. First an ALGOL program was used to search up to 22 on the

London Polytechnics’ ICL 1905E. All the 4717 binomial coefficients ( Z ) with k > 2, n > 2k and less than 223

were formed by addition and stored in rows corresponding to the diagonals of Pascal’s triangle. As each new coef-
ficient was created, it was compared with the elements in the preceding rows. Since each row is in increasing order,
a simple binary search was done in each preceding row and the process is quite quick. All the repeated values given
in the Introduction were already determined in this search.

The second search was carried out using a FORTRAN program on the University of London Computer Centre’s
CDC 6600. Although the 6600 has a 60-bit word, it is difficult to use integers bigger than 2*® and overflow occurs
with such integers. Consequently, | was only able to search up to 24®. There are about 24 x 10¢ triangular numbers
and about 12 x 10* tetrahedral numbers up to this limit. It is impractical to store all of these, so the program had
to be modified. Fortunately, the results of [2], mentioned in the Introduction, implied that we did not have to com-
pare these two sets. | wrote a subroutine to determine if an integer / was triangular or tetrahedral. This estimates
the J such that J{J + 7)/2=NbhyJ = [\/7517)] - 7 and then computes the succeeding triangular numbers until they
equal or exceed /. Two problems of overflow arose. Firstly: if / is large, the calculation of the first triangular num-
ber to be considered, i.e., J(J + 7)/2, may cause an overflow when J{/ + 7) is formed. This was resolved by examin-
ingJ ( mod 2) and computing either (J/2)(J+ 1) or

J+1
J LT
(%)
Secondly: if / is larger than the largest triangular number less than 24, the calculation of the successive triangular
numbers will produce an overflow before the comparison with // reveals that we have gone far enough. This was re-

solved by testing the index of the triangular numbers to see if overflow was about to occur. The test for tetrahedral
numbers was similar, but requires testing/ (mod 6).
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The search then proceeded much as before. All coefficients '/Z l with k > 4 and n > 2k and less than 2*® wsre

formed by addition and stored in rows. As each coefficient was formed, the subroutine was used to see if it was tri-
angular or tetrahedral and binary search was used to see if it occurred in a preceding row.

| was rather startled that the second search produced no new results. The results 210, 11628, 24310 and 3003 were
refound, which gave me some confidence in the process. | reran the program with output of the searching steps and
this indicated that the program works correctly. So | am reasonably sure of the results, although still startled. | hope

someone can extend this to higher limits, say 2%° and see if there are more repetitions.

The calculation of ¥ = (193 and the computational determination that it was not triangular were also compli-
40

cated by overflow, since &/ > 248, First | attempted to compute only the 103" row of the Pascal triangle by use of

103 ) _104—k [ 103 )
K F \k-1) -

using double precision real arithmetic. However, this showed inaccuracies in the units place, beginning with k = 33. |
then computed the entire triangle up to the 103" row (mod 10%4) by addition. | could then overlap the two results
to get V. The double precision calculation had been accurate to 27 of the 29 places.

| applied the idea of the subroutine to determine if // were triangular. This required some adjustments. Since 2V is
bigger than 2°¢, one cannot truncate //2V) to an integer. Instead /{N/2] was calculated, truncated to an integer,
converted to a double precision real and then doubled. Then the process of the subroutine was carried out, working in
double precision real form. / was found to lie about halfway between two consecutive triangular numbers. These re-
sults for // were independently checked by Cecil Kaplinsky using multiprecision arithmetic on an IBM 360.

In a personal letter, D. H. Lehmer pointed out that one could determine that // was not triangular by noting its resi-

due (mod 13). Following up on this suggestion, | computed the Pascal triangle (mod p) for small primes. Since Z

(mod p) is periodic as a function of n [7, Theorem 38; 8; 9], one can deduce that ¥ # ( Z for various k's_by ex-

amination of &/ (mod p) and the possible values of '/Z (mod p). For example, ¥ =4 (mod 13), but Z ) £4
(mod 13) for k=2, 4,6,7, 8,9, 10, 11, 12. Using the primes 13, 19, 29, 31, 37, 53, 59 and 61, one can exclude all
possibilities for &, other than 39 and 40 and hence // oceurs exactly six times.

On the basis of the computer search and the scarcity of solutions of (1), | am tempted to make the following:

CONJECTURE. No binomial coefficient is repeated more than 10 times. (Perhaps the right number is 8 or 127)
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A RECURSIVE METHOD FOR COUNTING INTEGERS
NOT REPRESENTABLE IN CERTAIN EXPANSIONS

J. L. BROWN, JR.
The Pennsylvania State University, University Park, Pennsylvania 16801

1. INTRODUCTION

Let { P; }T be a sequence of positive integers satisfying the inequality

n
(1 Ppeg > 1+ P for n>1;
1

then it is well known {[1], Theorem 1; [2], Theorem 2; [3], Theorem 1) that any positive integer / possesses at
most one representation as a sum of distinct terms from the sequence { P,-i;. Such representations, when they exist,
are thus unique, and we term a sequence ‘g P; } of positive integers satisfyinﬁ (1) asequence of uniqueness, or briefly
a u-sequence. Foliowing Hoggatt and Peterson {11, we define MV} for each positive integer // as the number of pos-
itive integers less than /V which are not representable as a sum of distinct terms from a given fixed v-sequence 5, P; }

The principal result in [1] (Theorem 4) is that if A/ has a representation
n
N=3 af
7
with { a; } binary coefficients, then
n .
mw) = N-3" 2",
7

so that an explicit formula for M(N) is available for representable positive integers. in general, a closed form expres-
sion for M(IV) as a function of &/ does not exist; our purpose in the present paper is to derive an expressicn from
which M{/N) may be readily calculated for an arbitrary paositive integer V.

2. DERIVATION
Throughout the following analysis, 4{ P; }T will denote a fixed u-sequence; we wish to find a recursive algorithm

for determining M(N 1
First, we recall ([1], Theorem 2) that

MPy) = Pp=2"1 for n>1,
so that only values of &/ not coinciding with terms of the u-sequence need be considered.
Theorem 1. Let N be an integer satisfying £, < N < P+ for somen = 1.

n
(i) £ P <N < P then MIN)=MPy)+MIN—P,).
7 299
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n n n
(ii) I ) Pi< N <Ppy then MN) =MD P+ M=) P |-1=N-2"
1 1 1

NOTE: Result (i) expresses M(V) in terms of M(P,,) and M(N — Pp,). But N — P,, < Pp, in case (i) since

n n-1
P,,</V<ZP; implies 0</V_Pn<2pi<pn,
i 7

the latter inequality following from the fact that { P; } is a u-sequence. Thus, if we consider the values M(7), M(2),
-, M(P, ) as known, then M(N) is determined from (i) whenever

n
P,,</V<ZP;,
1

while M(N) is given explicitly by (ii) for the remaining values of V in (P, Pp+1).
Proof. Let N satisfy '

n
P,,</V<Z‘P,~.
1

Then M(N) is equal to M(Pp,) plus the number of non-representable integers in the interval (P,,, N). But any integer.
K in (P,, V) which is representable must have P, in its representation (noting

n-1
Z P; < P,),
1

and since K = P, + (K — P, ), we see K — P,, must also be representable. Conversely if K — P,, (which is less than P,,)
is representable in terms of Py, -+, P,~7, then K is clearly representable. Thus the number of non-representable inte-
gers in (Pp,, V) is equal to the number of non-representable integers less than N — P,,, or M(N — P,, ). Hence

M(N) = M(P,)+M(N — P,),

establishing (i).
For V satisfying

n
ZP;</V < Pp+1,
1

it is obvious that // is not representable. Moreover

n n n n
MU D P+t | =MD P, M A2 =MD P|+1
7 1 7 7

(assuming the arguments of the left-hand terms are <P,+7) and in general (adding 1 to M(/V) each time A is increased
by 1),

n n n n
M) =m | 3 Pt N=3pF | |=m| P+ N=-2 P -1,
1 1 1 7

which is the first form of (ii). From Theorem 3 of [1],
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n n ’n i n n n
DI AEDINTED Y WAV N DI S S S S S )
1 1 1 , 1 1 1

Then

n n n n
M) =M\ 3P |+ W= P 1= P (2" 1)+ N=3 P | =1 = N=2"
7 7 17 7

as asserted.
Corollary 1. (Cf. [1], Theorem 4): If

n n n
N=Y ap then  MN) = ) aiMiP;) = W=D a;27 .
7 7 7

Proof. Let

N = Z a;P;
7
with a, = 1. Then

n

P,,</V<ZP,~,
1

so that by (i) of Theorem 1, we have

K
MN) = M(Pp) +M(N —Pyp) = MP)+M | D aifi |,
1
where ax = 1and K < n (note K is simply the largest value of / less than n for which a; # 0). Since

K K
Pk < 2 abi< Y P
7 7-
result (i) may be applied again and it is clear that successive iteration leads to
n
M(N) = Z a;M(P;).
7
Using M(P;) = P;— 2™, we have equivalently

n n n
M) = 3" ailPi=2"1) =y 2" = W=y a2
1 7 1

as required.
Corollary 2. (Cf. [1], Theorem 3):

n n
m{ S P )= mp
1 1

Proof. Immediate from Corollary 1 on takingall a;= 1fori=1, -, n.
3. EXAMPLE
LetP, =1,P,=10,P, =12 P, =30, P, = 75, - be the first 5 terms of a sequence which satisfies
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n
Ppiy = 7+Z P;
7

forall » = 1. Then, by direct enumeration

M) =0=1-2° M(13) = 8
M2 =0 M(14) = 8
M3j =1 M(15) = §
M) = 2 M(16) = 10
Mi5) = 3 M(17) = 11
MG = 4 m(18) = 12
M(7) = 5 M(19) = 13
me) = g M(20) = 14
M9) = 7 M(21) = 15
M(10) = 8 = 10— 2 m(2z) = 16
M(i1) = 8 M(23) = 16
M2) =8 =12-2 m24) = 16

M(25} = 17

M(26) = 18

M(27) = 19

m(28) = 20

M(29) = 21

M(30) = 22 = 30 - 2°

Now, note that all the values in the right-hand column may be calculated from those in the left-hand column; that
is, if 12 <V < 30, then we may apply Theorem 1 to see that

12 <N < 1+10+12 = 23 - MIN) = M(12) + MIN —~ 12)
23 <N <30 - MV} = N-2°

Thus, for example, &/ = 21 is not representable but M(27) = M(12}+ M(8) = § + 7= 15, where we have assumed
the values M(7) through M(72) are known. Similarly // = 27 is not representable but > 23, so M(27)=27 - 2% = 14.
Then, knowing M(7) through M{30), we may use Theorem 1 again to calculate /(37 through M(74). Note that for
case (i) of Theorem 1, only one addition is needed, since i/ — P,, always < P,, in this case, while for case {ii), the re-
sult for M(N ) is explicitly given by &/ — 27

4. CONCLUSION

A recursive scheme has heen derived for calculating M(/V}, the number of integers less than / not representable as

a sum of distinct terms from a fixed v-sequence { P,-}T. This approach has the advantage of not requiring any prior
information concerning which positive integers are representable; however, if a representation for AV is known, the re-
sult of Hoggatt and Peterson provides an explicit formula for M), while in at least some of the remaining cases [(ii)
of Theorem 1] an explicit formula is abtained froam Theorem 1 of this paper. Other values of M(V) for non-
representable /V are easily calculated via the recursion relation (i} of Theorem 1. In addition, Theorem 1 provides
alternative somewhat simpler deviations of Theorems 3 and 4 in [1].
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A NOTE ON WEIGHTED SEQUENCES

L. CARLITZ* AND RICHARD SCOVILLE
Duke University, Durham, North Carolina 27706

1. It is well known that the Catalan number
_ 1 2n
(1.1) a(ﬂ}—m(n)

satisfies the recurrence
n
(1.2) aln+1) =" aljlatn—j) (=012 ).
j=0
Conversely if (1.2) is taken as definition together with the initial condition a(0) = 1-then one can prove (1.1). Thus
{1.1) and (1.2) are equivalent definitions.
This suggests as possible g-analogs the following two definitions:

= _ 7 2n
(1.3) aln,g) = Iy [ ,,] ,
where
_1-g™1 | - (1—g® Y1 -g?" ) (1—g"T)
ln+1] 1-q 7 ["] (1—ql(1—q%)-(T—q") ’
n -
(1.4) aln+1,q) = E q’alj,qlaln —j, g/, al0q) = 1.
j=0

However (1.3) and (1.4) are not equivalent. Indeed
all,g) = 1, al2q) = 1+q, al3,q) = (1+q)+q+q*(1+q) = 1+2g +q* +¢q3,
af4q) = (1+2q+q* +q°) +q(1+q)+q*(1 +q) +g3(1+2q +q* +g°)

= 1+3q+3¢* +3¢> +2¢° +q° +q° .
On the other hand,

’ 2] L1 T+g 1—q
7 =1 [47 = 7 (1—g*M1—-gq%) _ .
a(24) 3] [ 2] T+g+qg* (1—qMl-q?) e,
7 =_1]6]- 7 (1—q* )1 —=q°)(1—4q*)
@l 4] [3] 1Trq+qg*+q*> (1—g)(1-qg*)(1-q3)

=7+qz+qﬁ+q4+q6 ,

aldq) = 75_—;— [il = 1+qg2+q3+2q*+q° +29° +q7 + 29 +q° +q*° + g2,

*Supported in part by NSF grant GP-37924X. 303
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Another well known definition of the Catalan number is the following. Let f(n,k) denote the number of sequences
of positive integers (a,, a,, -, a,) such that

(1.5) 1<a <a, <-<ap=k
and
(1.8) aj < i (1 <i<n)
Then (see for example [1])
o f(n,k)=”_‘k+7(";’_‘1-2 (1<k<nl
and in particular n
fin,n—1) = fin,n) = ,-:— 2,1”_"72 = afn—-1).

Next define f{n, k, g) by means of [1]
(1.7) fln, k, q) = Z q,a1+a,+...+a,, ,

where the summation is over all sequences (a,, a,, -, a,/ satisfying (1.5) and (1.6). It follows from this that the sum

n

(1.8) fin,q) = Y fin, k q)

k=1
satisfies
(1.9) fin, qf = ¢ fln+1,n,q) = g fn+1,n+1,q)
Moreover if we put
(1.10) fn+1,k+1, q) = q(k+1)(n+7)-Vzk(k+7)b(n, K, q—7}
then b(n, k, q) satisfies
(1.11) bin, k, q) = ¢"Xbn, k—1,q) +bln -1,k q).

We shall show that
(1.12) bin, n, q) = aln, q).
2. Returning to (1.4) we put

2.1) Alx,q) = 9 afn, ghx" .

n=0
Then

oo n X
Alx, q) = 1+x Z x" Z q’alj, glaln - j, q)
n=0 j=0
= 1+x Z alj, gJg'x! S aln, g™,
j=0 n=0

so that
(2.2) ; Alx, q) = 1+xAlx, g)Agx, q).
This gives

= _______7_.-—
gl 1—xAlgx, q)*
which leads to the continued fraction
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(2.3) Alx.q) = 7_7__. X i‘l)_(. 577_2

-~

By a known result (see for example [3, p. 2931)
1o x gx ¢’x . Dlgx.q)
1-1-1

- 71— d(x, q) *
where

s nin- 1) n
(2.4) B(x, q) = g (—1)" q—”——
and

(ghy = (1—gl1—q?*)(1—q").
Therefore we get the identity

_ Plgx, q)
(2.5) Alx, q) Blxq) -

On the other hand it is proved in [1, (7.10)] that

oo

(2.6) E bin+k— 1,k gk* = D(q"%, q) in>0).
Dix, q)
k=0
In particular, for n = 7, Eq. (2.6) reduces to
- k. Dlax, q)
(2.7) 2 blk k gi* = LA i
k=0
Comparing (2.7) with (2.5), we get
(2.8) blk, k, q) = afk, q).
3. Forx=—g, Eq. (2.3) becomes
|
g gl = L 4 9 4
@.1) Al q,‘q} 1+ 1+ 171+ 171+
It is known [3, p. 293] that the continued fraction
1 g & .. §f (1=¢""2)1-4%"3)
7+ 7 7+ n=0 (f— q5n+7}{7 5n+4)

Thus (2.5) yields the identity

(3.2) f: (=1)"a(n, glg" = E (1-g5"2)1 __05n+3}
n=0 n=0 (7 -

05n+1”7 _ 05n+4)

Another connection in which afn, g) occurs is the following. |t can be shown that afn + 7, g/ is the number of
weighted triangular arrays

I ay, dain
a as -
(3.3) u 2n-1 .
ant
where ;7= 0 or 1 and
(3.4) ajj > aj+1,j-1, gj > aj+1) -

More precisely
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{3.5) sln+1,q) = Y o=,

where the outer summation is over all {0.1) arrays (3.3) satisfying (3.4) and the sum Zaj; is simply the number of
ones in the array.
For example, for n = 2, we have the arrays
0 0 1 .0 0 1 1 1 1 1

0 ]
This gives 0 !

1+2g+q* +g° = af3, gq/.
Farn = 3 we have
000 100 010 001

110 101 611 1 110 011 111

00 60 ¢ 0 06 00 00 00 10 01 00
0 0 . 0 0 0 g 0 g 0 0
111 111 111 111
10 01 l 11 11
L. 0 0 0 1
This gives

1+3g+2g* +3g3 +2g° +q° +¢° = af4,q).
Let Ty fn) denote the number of solutions in non-negative integers aj; of the equation

k  k-i+1
n= E Z ajj,
=1 j=1
where the a;; satisfy the inequalities
dij = aj+1,j, ajj = aj+1,j-1-
It has been proved in [2] that
(3.8) . Telnk" = !
7 (1= x 26T j1 - 263" (7 x3 P27 — x2 517 _ g )k
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AN APPLICATION OF SPECTRAL THEORY TO FIBONACCI NUMBERS

C. RYAVEC
Menlo Coliege, Menio Park, California and Santa Clara University, Santa Clara, California 95053

It is well known that the n?” Fibonacei number, a,
(ag=a; =1, a,=ap-1tapn-s, n=>2)
can be explicitly written in the form

)\n+1 _ )\;')1‘1
1

(1) an:_)\-)\2 ’ ”=017121"'I
1

where

N o= B1+5), N, = %(1-5).
The purpose of this note is to derive Binet's formula (1) from the spectral decomposition of the matrix A, where
- (11
A-(,O).

First, note that forn =2, 3, 4, ---, we have

@ an= (3, ah).

Second, note that since A is a symmetric matrix, there is an orthogonal matrix, P(PTP =/}, such that

(3) P"’AP=D=($1£> ;

i.e., D is the diagonal matrix whose diagonal elements are the eigenvalues of A. These are the zeros of the character-
istic equation A> — A — 1= 10, of A. A short calcualtion reveals that

-1 1 )\1)
P E(—)\, 7

where d > 0, and

d* = 14N = BN, ;

(1 =N\ 1\ (1 A -
dz(xl D0 (5 N e

Raising the expression in (3) to the n™/" power yields
307
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(PTAP)" = PTA"P = D",
and, solving for A”, we have
) A" = PP p s 2

Equating the values in the upper left-hand corners of the two expressions in (4) gives formula (1) whenn > 2. A sim-
ple check shows that (1) holds in fact, for all n > 0.

The above method for obtainingthe explicit formula (1) is quite general; it can be used to obtain explicit formulae
for terms in other linear recurrences. Unfortunately, it is not directly applicable to arithmetic sequences in prime
number theory. In the case of the summatory function of A(k) (A(p”)=log p for any prime p, and

Afk) =10

otherwise),

(X)) = Y Afk),

k<x

what seems to be needed is an operator, 7, whose eigenvalues, o, are the zeros of the Riemann zeta-function. Then,
given x > 1, we would have, on the one hand

T Pk
Trace ( )%'— ) = x_ .,
p Pk
and, on the other
T s J )
x"\ _ log” x j-1
Trace( 7 ) = E ¥ (Trace 7) /77 .

j=0
An arithmetic interpretation of the right side of the last formula should yield an expression close tox — ¥ (x/

Jolodokololok



MINIMUM SOLUTIONS TO x? — Dy? = +1

GREGORY WULCZYN
Bucknell University, Lewisburg, Pennsylvania 17837

A solution pair (x,, y,) tox? — Dy? =+ shall be considered a minimum selution if y, is minimum, Throughout
this article F,, stands for the n" Fibonacci number of

Y1128, Frsg = Foeg#Fa Fo = Fp =1}
Fn 75 (a"-n"), a —'JEZ . b 5 . ab 1.
I. CONTINUED FRACTION EXPANSION OF ODD PERIOD 2+ 7, r # 0 (mod 3), r > 1

Let D =m? +k, m < k < 2m, and assume a continued fraction expansion all of whose middle elements are ones,
thus assuring minimum y.
y = For, X =mFa+ Fapyq

(mFop+ Fap1)* — y*(m? +k)= 1

upon using

Fee1Feq—Ft = (-1)
simplifies to
(1) 2mFop1— kFop = —F2p_2 ,

This has integer solutions given by
m = sFa,+ %(Fa,+ 1),

k = 25Fo, 1+ Fopg +1, D = s*F5 +5(F5,+2F2 + Fap_3) + %(Fop+ 1)* + Fap g+ 1.

x? — Dy? = 1 has integer solutions given by
x = sFp + liFa(Far 1)+ Farq, v = F2r.
{i. CONTINUED FRACTION EXPANSION OF ODD PERIOD 6r+7

Let 0 = m? + k. Assume that the central intgger in the continued fraction expansion is 2 and that all the other
middle elements are ones. The half period expansion is:

(3r-1) ones
m 1 . 1 1 2
m m+1 2m +1 mFzpe.1+F3p2 mF3z,+ F3pq _
1 1 2 F3r-1 F3r 2F3p+ F3r-q

Y = F3.[F3p1+2F3,+ F3pq] = 2F3,F341
X = 2mF3 F3peq + Fop+ F3p-1F 341
[2mF3pFape1 + Foy# Fap1Faper]® — 4F% Fhypqg(m® +k) = 1
simplifies to
m(F%, + F3r1F3pe1) = F3,F3pe1k = —F3,F3pq
+F3r-1{mF3r-1 +F3r)

2) k=m
F3rF3m1

309
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(a) r=2u+1.
Equation (2) transformed has integer solutions for m and k given by
m = Feu+3F6u+as * Féys3
k = (2F3u+3— 1)s + Fey+1Feura * F?;u+3 .
(b) r=2u
Equation (2) transformed has integer solutions for m and & given by
m = FgyFgu+1s+ FouF6u-1.
k = (2Fgy, +1)s + Fou-1F6u-3+ FouFeu-1
{1l. CONTINUED FRACTION EXPANSIONS OF EVEN PERIOD 2r +2,r# 1 (mod 3), r=>1,0=m* +k
Assume a continued fraction expansion all of whose middle elements are ones, thus assuring minimum .

Y = Farey, X = mFapsq+Fop and (mF2pe1+ F2p)* = Foppg(m* +k) = 1
simplifies to

@) 2mFap — kFapeq = —F2p-q
Equation (3) has integer solutions given by

m = $Fopg + B(Foprg + 1), k = 25Fa,+Fo,+1,

D = 5*Fomq +$5(F5pp1 + Fopq + 2F2.) # 1h(Foppq + 1)2 + Fop + 1.
x% — Dy? = —1 has integer solutions given by

X = SF5 g+ %Forsq(Fors1+ 1)+ Fay, y = Farer .

IV. CONTINUED FRACTION EXPANSIONS WITH EVEN PERIOD 6r—2,r > 1

Let O = m? + k and assume that the two central elements are each two and the other middle elements are all ones.
From the half period expansion:

(3r-3) ones
m 1 et 1 2
m-—m+T2m+T  mFprz+F3-3  mF3+F3rq
1 1 2 F3r-2 F3r

y = Fg'r-Z + Fér
X = (F3rp+ F3,)m + F3,2F3p-3+ F3F3r-1
(my + F3r-2F3p-3+ F3rF3p-1)* —y*(m* + k) = —1

simplifies to
2F3p-2F3p-3+ F3,F3p-1)m — (F3,+ F3, 2)k = —F%._3- F%._4
(4) k=m _,_m(F.?rF.?r—.? + F3:—2F3;~5) + Fg’r—."’ * F?:‘r—7
F3,#F3.2
(a) r=2u

i = mv"MFouF6u-3* Fou-2F6u-5)* Foy-3* Fou-1
%u +F, éu-2

has integer solutions given by
m = JlFyFgu-3+ Feu-2F6u-5+1),
k =m+%(Fg, 3*Fg, 511
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(b) r=2u+1
k=m +m(F6‘uF6‘u+3+F6u+1F6‘u—2)+ Fé‘u * Fé‘u+2
F tz-'iu+3 +F, g‘u+7
has integer solutions given by
m = ~Vi(FeyFeu+3+ Fou+1Feu-2— 1), k= m—%(Fg,+Fgyo—1).
MINIMUM SOLUTION TABLE

period D X ¥

2 m*+171:2 m:1 7

3 m*+2m:3 m+1:2 1

4 25s5% + 64s + 41 : 41 255 +32:32 5

5 9s* +16s+7:7 9s+8:8 3

6 13 18 5

7 21 55 12

8 58 99 13

9 135 244 21

10 113 776 73

117 819 1574 55

12 2081 4060 89

13 1650 8449 208

14 13834 27405 233

15 35955 71486 377

16 1370345 1551068 1325

17 244647 488188 987

18 639389 1276990 1597

79 1337765 4325751 3740

20 4374866 8745055 4181

21 11448871 22890176 6765

22 7877105 66688052 23761

23 78439683 156859562 17711

24 205337953 410643864 28657

A continued fraction expansion is unique; has the unique half-period relations

92r = 4rlGr-1+qr+1), P2r = Pr-14r*Prare1
for period 2r + 1,

92rt1 = Q1+ dreq, P2r+1 = Prdr *+Pre1dre1
for period 2r + 2; and furnish a minimum primitive solution to x2 — Oy = 1. Using Fibonacci identities it can be
shown that all the assumed continued fraction expansions obey the proper half-period relations, give a minimum
primitive solution to x2 — Oy? = #7 and hence are the actual continued fraction expansions. The half-period rela-
tions are explicitly stated as the x and y values in 1i and [V. The other Fibonacci identities needed are

(1) F§r+7 = Forq1Forty

2) FitFriq = Foprrs

(3) Fr1(Fr2+Fp) = Foro2 ;
@) on-1—1= FanFan-2 .



DISTRIBUTION OF THE ZEROES OF ONE CLASS OF POLYNOMIALS

N. GEORGIEVA
Sofia, Bulgaria

INTRODUCTION
In the present paper we shall prove that the zeroes of the real polynomials
(1) folx) =0, fi(x) =35, filx)=x for1(x) = xfylx)+fa-1(x), n=23,-

with s # ¢ and n > 2 are simple, ofthe form —2i cos 0, where /2 = —17. and if 2/ cos 0{”+7),/ = {, -, n are the zeroes
of f,+71(x), then the points cos 61 ,j=1, -, nare divided by cos 6 fn) ; ,j=1,n—Tand for every interval be-
tween two successive points —[cos 6/("”) cos 0/"” ] one and only one of the fo!lowmg three possibilities holds:

(a) The interval contains one of cos o/n- k+’) 1<k<n-1,j=1-,n—k

(b) It contains one of cos (jn/k), j=1, -, k— 1or

(c) One of the boundary points of it coincides with one of cos

When s = g, then £, (x) becomes

0/”"‘*”, and cos (jm/k) simultaneously.

flx) =0, fnix) = xup_7(x), n=1, -,
where u,, (x) are derived from (1) for s = 7. u,, (x) are Fibonacci polynomials.

1. ON THE ZEROES OF FIBONACCI POLYNOMIALS

From the well known formula:

[n/2]
X (7o) 2K = 1o mFI - -G 2T
k=0

and [2] it follows that:

(2) uplx) = (2" % 4) Hix +xZ+4) = (x—JxZ+4)"), n=0,1,2

Then for x = 2/ cos 6 we get:
3) Up(2i cos6) = —(i"*" sin n6)/sin 6 .

So, the numbers 2/ cos (jm/n), where  is an integer and sin (jm/n) # 0, are zeroes of u, (x), n > 2. But onlyn — 7 of
them are distinct. Indeed, if / gets valuesj, and j; and j; —/, is a multiple of 2n then

cos (f,/n) = cos (f,m/n).
Otherwise
cos ((n +j)n/n) = cos(ln—jln/n) for 0 <j < n.

Therefore the numbers 2/ cos (jn/n), j = 1, ---, n — T are n — 1 different zeroes of (2). Since u,(x) is a polynomial of
then — 17 degree they are all its zerges.

312
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2. DISTRIBUTION OF THE ZEROES OF /,(x), n=2, ., WHEN s # 0
By induction it may be proved that:

(4) folx) = uplx)+(s = up-2(x), n = 2.
Owing to (3) and (4) we have:

fo(2icos0) = i ((sin n6 /sin 6) — (s — 7)(sin (n — 2)0)/sin 0) .

Functions

Q,(cosf) = sinnd/sin6, n

]
\N

are Tchebishev's polynomials of second class. Let
0_5(cos) = =1, Q,(cos@) =0 and P,(cosf) = Q,(cosf)— (s~ 7)Qp-2(cos0), n = 1,--.
Then the following conditions are fulfilled:
P,(cosB) = s P, (cos8) = 2cos,

Pp+1(cos8) = 2cos0P,(cos @) — P,-q(cos ), n=12-
and the polynomials

P,(cosB), P, (cosB), -, Phrqlcosh)

form a Sturm's row. From [1] —the zeroes of P,,+7 (cos 0) are real, distinct and the zeroes of P,, (cos 0) divide those
of Pp+7 (cos 0). So, f+7(x) has n distinct zeroes—

ZicosOf T, = 1,2, n

too and the points cos Bj("+2},/= 1, -, n are divided by cos 6/-("}, j=1,,n—1.

The position of the zeroes of P,_x (cos @) in relation to those of P, (cos §) can be examined by the help of the
lemmas:

Lemma 1.
(4) P,(cos0) = O (cos 0Pk (cosO) — Q-1 (cos 0)Pp_+7(cosB),
where n and k are positive integersandn > 2, 1<k <n.

This is proved by induction over n. It can be directly verified thatitisvalid forn=2, k=7and forn=3,k=1, 2
If we assume that (4) is true forsomen—7>3 k=12, --,n—2andn,k=1, -, n— 1, then

Pot1lcos@) = 2cos 6P, (cos 0) — Pp-7(cos 0) = 2 cos 0(Qy (cos )Pk (cos 8) — Q-1 (cos 0)Ps——1 (cos 6))

0y (cos 0 )Ppy_k-1(cos 0) + Qg1 (cos 0)Pp—k-2(cos )

0]

Qy (cos 0)Ppy_k+7(cos 0) — Qk-1 (cos 0)Ppk (cos 0) = Qy (cos 0)Py—g+71(cos @),
which is true for k=17, -, n — 2. When k=n — 17 and k = n, we have

Pp+1lcos@) = 2cos0Q,(cos 0) —sQ,—71(cos 0)

the validity of which is easily proved by induction over n.

Lemma 2.
Pp-k (cos 6]("”}) = Qg-1(cos Gj-("’L”)P,,_;(cos 61-("“)), j=1,2,n.
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This can be proved by induction over 4.

Owing to Lemma 1 and the results received above, the common zeroes of P,, (cosf) and P,,_x (cos 0 ) are zeroes of
Oy-1{cos0). Moreover P, (cos @) and Qg7 (cos @) have no other common zeroes.

Let

glm+1) (n+1))
j ’ 1

(cos cos 07 1<j<n-1

be an interval between two successive zeroes of P, (cos 6 ) which doesn’t contain any zeroes of Qx_7 (cos 0).
Then

Q-1 (cos 0!-{"+1)), Q-1 (cos Bj(,{’f7}) >0
Pn-1(cos 0/ 7)), P, 1 (cos 0/777) < 0
and by Lemma 2, we conclude that:
Pn-k (cos 0/””’ ), Pp-k (cos 0;,’3;‘ "y <.
This shows that £,,_x (cos §) has an odd number of zeroes in
[cos Bj{"+”, cos 0/-(,{7”] .
If P,k (cos 0) has more than one zero in this interval, from Lemma 1 it will follow that P, (cos 0) has a zero in
(cos 0/-("”}, cos 6/;’;”) ,

which contradicts our assumption. Therefore every interval

[cos 6j("+”, cos 0/{,?;”]

which doesn’t contain a zero of Q-7 (cos 8), contains only one zero of P,k (cos ). In asimilar way it is proved
that ifin

(n+1) (n+1)
[cos ;" ", cos 67 "]
there is no zero of £, (cos ), it contains one zero of Qg_7 (cos 0).
Thus we proved that in every interval between two successive points of

cos 6/_(n+ 7),

there is either one and only one of

oS 6](n-k+ 1)'

or one and only one of
cos (11 /k), j=1-, k-1

orone of the boundary points of this interval coincides with one of

ofrH 1) j=fn—k  andof  cosGIU/kL =1, k1.
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ON THE GENERALIZATION OF THE FIBONACCI NUMBERS

ANDRAS RECSKI
Research Institute for Telecommunication, Budapest, Hungary

The Fibonacci numbers (F, = F, = 1; F, = Fp_71 + Fp-2,if n > 2) are very useful in describing the ladder-
network of Fig. 1,if r = R (cf. [11, [2], [3]). If the common value of the resistances A and r is chosen to be unity,
the resistance Z, of the ladder-network can be calculated on the following way:

Fan
(1a) Zy = 7=—
" Fan-1
r r
| | -
M SO
© € -
R Ry
Figure 1
Let R #r. For the sake of convenient notation let x = r/R and z,, = Z,/R. Then
(1) - fantd
" fap-rlx)

where f, (x) = f,(x) = 1;and forn > 2,

fo-1(x) +fo_2(x) if £ isodd
folx) = . .
Xfp-1(x) + fo-2(x) if n iseven

(*)

This fact gave us the idea to examine into the sequences, defined by a finite number of homogeneous linear recur-
rences which are to be used cyclically. We may assume without loss of generality that the length of the recurrences are
equal and that this common length m equals the number of the recurrences:

afyg  + ot afp-m it n=0(modm)
alfpy +.t aipfpm it p=1(modm)
fp = :

@ttt a o n=m —1 (mod m)

It has been proved in [5] that the same sequence f,, can be generated by a certain unique recurrence too, which has
length m? and “interspaces” of length m, i.e.,

Tn = byfpem *b2fn-om + - +bmfp-m?

315
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Applying our results to {*) we have
fn (x) = (2+X)'fn—2(X} - fn-4(X}/

or, after the calculation of the generating function and expanding it into Taylor-series,

1 ‘
(2) fnlx) = Z (”I._’ ) x[nr2l-i
=0

This enables us to solve not only the problem of the lumped network mentioned above, but a special question of the
theory of the distributed networks (e.g., transmission lines) can also be solved. If we want to describe the pair of trans-
mission lines having resistance r, and shunt-admittance 1/8, (see Fig. 2}, then putr=r,/n and R = R, -n. Applying

(1) and (2) we have
Ryn?
o y_"i_rn__)_
n

Zy =
)
n ro
where
! i i n s s
gnlx) = (L;":/ ) ox! and hplx) = Z ( 2"/,‘/ ) Xl
=1 j=0
/2
)
1/R,
ry/2
Figure 2

The following simultaneous system of recurrences can be found:
Gn=1(x) = hplx) = (1+x)hp_g(x)
Xhp_olx) = gnlx) = (1 +x)gn-1(x),
which enables us to give an explicit form to gj, (x) and h,(x). At last

limZ}% = R rythro/Ry, if n—o,
where

th}/:""——'

This is exactly the result, which can also be received from a system of partial differential equations (the telegraph-
equations).
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R
On the other hand, (2) can be considered as a generalization of the Fibonacci sequence. Trivially £, (7) = F,,; and
[n/2]

fe 2 (777)

=0
a well-known result about the Fibonacci numbers. Similarly,
Fn=3Fp2—Fn-a .
iftn=4,or
Fp = tFn3+(17—4t)Fp.6+ (4 —t)Fphg
forany ¢, if n > 9 and ar infinite number of langer recurrences (length m? and interspaces m for arbitrary m = 2,3, )

could be similarly produced.
A possible further generalization of the Fibonacci numbers is

n v -i
p+i L [ .i]
Fapld) = E (nl_—/p )X pr1d
=0
where p is an arbitrary non-negative integer.
This definition is the generalization of the ufn, p, 7) numbers of [4], The following recurrence can be proved for the
Fi,p{x) polynomials:
p+1
. . ,
(3) XFp-p1,plx) = 2_‘ —1) ( p ,+ ) Fo-(p+1)i,p(x) .
i=0
Similarly, it can be easily proved that the generating function

S Fiptx)-Z
-

has the following denominator:
+1
(1=2P*1 P77 xzP?l

As a last remark, it is to be mentioned that a further generalization of the functions F,, ,(x) can be given (cf. [4]):

n-
[l | oy [
Fp,qix) = Z ( iq ) X
=0
but this case is more difficult. A recurrence, similar to (3) can be found, which contains on the left side the higher
powers of x, too. However, essentially new problems arise considering the case g > 2.
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THE GENERAL LAW OF QUADRATIC RECIPROCITY

LARRY TAYLOR
Briarwood, New York 11435

Extend the definition of the Jacobi Symbol to include values for iccative second entry as follows:
If a is an integer and p is an odd prime, set
(a/p) = a2 (mod p)
and
fajp) = 0 or £7 .
Set
fa/1) = 1.

If b is an odd integer, set

(a/b b,) = (a/b, Na/b,).

Set
(0/-1) = 0.
Set
(-1/-1) = —1.
There is another way of defining negative second entry in the Jacobi Symbol, which is based upon
(-1/-1) = 1.

This method is given in [1, p. 38, Exercise X, 5].

The Jacobi Symbol is only a definition and not a theorem; therefore it can be arbitrary as long as it satisfies two
requirements: First, it must be consistent and, secondly, it must represent mathematical results clearly and elegantly.

The definition given in this paper is superior from the second point of view. For example, with
(~1/-1) = 1

it is difficult to express the periodicity of the second entry. In fact, much of that periodicity is lost. But, with

(-1/~1) = -1,
the result is clearly stated in Corollary 2.

All of the known and proven properties of the Jacobi Symbol are retained in the extended definition (see [1, pp.

36-391 and [2, pp. 77-801).

This refers in particular to the multiplicavity of the first entry, which is easily proved for negative second entry. .

Then
(a,a,/b) = (a,/bla,/b)

and

[Continued on page 321. ]
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NON-HYPOTENUSE NUMBERS

DANIEL SHANKS
Naval Ship R&D Center, Bethesda, Maryland 20084

The non-hypotenuse numbers n = 1, 2, 3, 4,6, 7, 8,9, 11, 12, 14, 16, 18, --- are those natural numbers for which
there is no solution of

(1) n* =y +y? fu>v>0).

Although they occur very frequently for small n they nonetheless have zero density—almost all natural numbers n
do have solutions. Only 1/15.547 of the numbers around 10 are /4 numbers, and, around 2%°37 — 1, only
1/120.806.

In a review of a table by A. H. Beiler [1], | had occasion to remark that if VH(x) is the number of such n < x then
(2) NH(x) ~Ax/\/log x

for some coefficient A. Recently, T. H. Southard wished to know this A because of an investigation [2] originating
in a study of Jacobi theta functions. Inasmuch as most of the analysis and arithmetic has already been done in [3],
one can be more precise and easily compute accurate values of A and C in the asymptotic expansion:

3) NH(x) m[nlogxw ( — )J .

Landau's function B(x) is the number of n < x for which there /s a solution of

(4) n=u®+v?,

Note: n to the first power, and all v, v allowed. Then

bx c 7
B = 1+ ——+0 ( — )
©) &) Vlog x [ log x log? x ]
and | evaluated
(6) b = 0.764223654, ¢ = 0.581948659

in [3]. The n of (4) are those n divisible only by 2, by primes p =1 (mod 4), and by even powers of primes g =3
(mod 4). If b, = 1 for any m = any such n, and b, = 0 otherwise, one has the generating function

) Y imogyl_n1_nm—L
m=7 m° 1-2° p1-p* a1-qg=

In contrast, the /4 numbers are those divisible by no prime p, and so they are generated by

(8) gls) = ——m —1_
1-2"5q 7——q's

319
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Since

() Lfs)= 1-35+55 754 =T —L— 11
p1-p7q 1+g~°

we can write

(10 gls) = fls)/L(s).

Landau [4] showed that f(s) has a branch point at s = 1 and a convergent series

(1) 1) = 2 [1+a,(1= 0o+ -]
in its neighborhood for computable coefficients a, a,, - . In terms of these, one evaluates the coefficients of (5) as
(12) b= Lﬂ(yi), c=(a, —alf2a

with the usual method using Cauchy’s theorem and integration around the branch point. But L(s) is analytic at s = 1
and so we have, at once,

- _a_ d, _a, ,L11)
(13) v/ A My v 1)
for the new generator
(14) gfs) = \—/"7"-%_5 [1+d,(1=s)d+ ],
Therefore
(15) A = b/L(1), C=c+L1)/2L(1)

give the wanted coefficients of (3). Of course, L(7)= /4, and in [3] one has

; .
(16) L(1)/L(1) = log [(% ) "‘—]
I 2
in terms of the Euler constant y and the lemniscate constant 5 . So, from [3] one has
(17) A =221 (1-g-)% = 097303978
q

and

=1 a\_14d 1 =
(18) c 2[7+|og( a) R e J 070475345 .

q 1—-gq s=1 -

In [2] Southard gives
NH(99999) — NH(99000) = 295,

while (3), (17) and (18) give
NH(99999) — NH(99000) = 289.36 .

It is known that the third-order term in (3) is positive but it was not computed.



1975] NON-HYPOTENUSE NUMBERS 321

REFERENCES

1. A. H. Beiler, “Consecutive Hypotenuses of Pythagorean Triangles,”” UMT 74, Math. Comp., Vol. 22, 1968, pp.
690-692.

2. Thomas H. Southard, Addition Chains for the First n Squares, Center Numerical Analysis, CNA-84, Austin,
Texas, 1974.

3. Daniel Shanks, “The Second-Order Term in the Asymptotic Expansion of B(x),” Math. Comp., Vol. 18, 1964,
pp. 75-86.
4. Edmund Landau, “Uber die Einteilung, usw.,"" Archiv der Math. and Physik (3), Vol. 13, 1908, pp. 305—-312.

[Continued from P. 318.]

(1/-1) =1,
(-1/1) = 1,
(1/1) = 1.

The second entry of the Extended Jacobi Symbol is multiplicative by definition; it will be proved in the corol-
laries that both entries are also periodic.
The following results are easily derived:
Explicitly,
(/1) = 1,
(0/6) =0 if b#1,
(0/-b) = 0 it —b # 1,
(2/4b) = (—1)00*~1/8,
(-2/b) = (_7)(b2+4b-5)/8
(—2]/—[7} = (_”(b2—4b-5)/8.
If a# 0, then
(-a*/-1) = -1,
(—1/-b%) = -1,
(—-a/1) = 1,
(a/~1) = (a/~1) (see below),
(—a/~1) = —(a/~1);

(1/6) = 1,
(—1/b) = (—1)0"1)72,
(7/_[)) = 7/

(~1/=b) = (—1)0*1)72

[Continued on P. 324.]



THE FIBONACCI RATIOS F¢+1/Fx MODULO p

LAWRENCE SOMER
University of Hlinois, Champaign, lllinois 61820

It is well known that the ratios Fx.+7/Ff converge to ¢, the golden ratio. These fractions are alternately greater
than and less than ¢. However, interesting relationships also arise if we consider these ratios reduced modulo p, where
p isan odd prime.

Before proceeding further, we will need a few definitions. Let R be the Fibonacci ratio Fg+7/Fk. Let z(p) be the
restricted period of the Fibonacci series reduced modulo p—that is, F(,) is the first term = 0 (mod p) in the series.
Let  (p) be the period of the Fibonacci sequence modulo p and let

Blp) = wlp)/zip).

Ifz(p) =2 (mod 4), B(p)=1;if z(p) =4 (mod 8), B(p)=2; and if z(p) = 1 (mod 2), B(p) = 4. See [1]. Further, let us
agree to ignore all ratios modulo p which have 0 as a denominator.

Then, the Fibonacci ratios reduced modulo p repeat in periods of length z(p) — 1. This follows since the terms
Frz(p)+1 10 F(k+1)z(p) are constant multiples of the first z(p) terms. Furthermore, no two ratios within a period
repeat, since this would imply that a term of the Fibonacci series preceding Fz(p) was congruent to 0 modulo p.

Thus, if z(p) = p + 1, all the residues will be represented in the period of Fibonacci ratios reduced modulo p. The
fact that none of these ratios repeat is an easy way of showing that z(p) <p + 7. A necessary but not sufficient con-
dition for z(p) to equal p + 1 is that (5/p) = —1 and 8(p) = 2, which is equivalent to saying that p = 3 or 7 (mod 20).
See [1]. For primes such as 3, 7, 23, and 43, z(p) does in fact equal p + 7.

The Fibonacci ratios reduced modulo 7 are shown below:

ko Fe LIS

1 1

2 1 1/1 = 1(mod 7)
3 2 2/1 = 2 (mod 7}
4 3 3/2 = 5 (mod 7)
5 b 5/3 = 4 (mod 7)
6 1 1/5 = 3 (mod 7)
7 6 6/1 = 6 (mod 7}
8 0 0/6 = 0 (mod 7}

Theorem 1. Rypp)-p = 1— R, (modp) for 1 <n <z(p) - 1.
Proof. Thisis true forn = 1, since R, = 1/1=1 (mod p) and Rz (p)-7 = 0 (mod p).
Now assume that the hypothesis is true up to n = k. Let B¢ =r. Then

F -
kt1 _ and Faprirs _ 71— r (modp)
Fi Fzlp)-k

Thus, Fi+7 =rFg (mod p).
322
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- Frt2 _ FrrrtFe _ (r21)Fe _r+g

R = = =rti
k+1 7 Ferr A ; (mod p).
Also,
Rzp)k-1 = Fa(p)-k = _Fatp)k = Falp)-k
P Fz(p}—k—r Frip)-kt1 — Fa(pi-k (1- /')Fz(pl—k — Fz(p)-k
_ _Fepre g
~rFzto)k T 1 (mod p).
But
r+1 =14

— = 7—(-}— } (modp)

r

and we are done.
Theorem 2. Rp-Ry(pj-p-1 = —1 (mod p) for 1 <n <zfp) - 2.
Proof. R, =1and R, =2 (mod p). By the previous theorem,

Repp)z =1~-2=-1= —E—I {mod p).
1
Thus, the theorem hoelds for » = 1. The rest of the proof by induction is similar to the previous proof.

The remainder of this paper will be devoted to investigating what residues appear and do not appear among the
Fibonacci ratios reduced modulo p. We will not consider such trivial residues as 2/1 or 3/2. By Theorem 1, if z(p/ is
even then the ratio Ry, (p) will be =% (mod p). If 2(p) is odd, then Theorem 1 implies that %2 will not appear among
the Fibonacci ratios modulo p. Thus, if 8(p) = 1 or 2, ¥ appears among the Fibonacci ratios and if 8(p/) = 4, ¥ will
not be among the Fibonacci ratios modulo p.

By Theorem 2, if zf{p) is odd Ry(z(p)-7) will be congruent to one of the square roots of —1 (mod p). If z2(p) is
even, no square roots of —1 will show up among the Fibonacci ratios reduced modulo p.

Combining theorems 1 and 2, we see that no solution of the congruence

1—k = _/(7 {mod p)

will appear among the Fibonacci ratios modulo p. Solving for &, we see that

k = Llf?@ {mod p)

if (5/p)=0or 1. It turns out that for certain primes such as 11, 19, and 31, z(p) = p — 7, and every residue but

e
2

appears among the Fibenacei ratios modulo p. A necessary but not sufficient condition for this to oceur is thatp =
11 or 19 (mod 20).
We are now ready to summarize our results:
For all primes if the residue r appears among the Fibonacci ratios modulo g, then 1 — r and —1/r will also appear.
o =25 Allresidues except % =3 (mod 5} will appear.
£ =3 or7 (mod 20): All residues might appear since z{p) might equal p + 1. In any case, the residue % will appear.
p=110r 19 (mod 20): The residue % appears. The residues

J—%ﬁ (mod p)

do not appear. All other residues could appear since z(p) might equal p — 7.
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p =13 or 17 (mod 20): The residue % does not appear. Exactly one square root of —1 appears.
p=10r9 (mod 20) and B(p) = 1 or 2: The residue ¥ appears. Both square roots of —1 and the residues

1—1;4@ (mod p)

do not appear.
p=10r9 (mod 20) and B(p) = 4: The residues % and

%E (mod p)

do not appear. Exactly one square root of —1 (mod p) appears.
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Fetctcheokcte
[Continued from P. 321.]
If (ab) = 1, then
(a2/b%) = 1,
(—a*/b?) = 1,
(a*/-b%) = 1,
(_az/_b2} = —7;
fa/b®) = 1,
(—a/b?) = 1,

(a/~-b%) = (a/-1),
(—a/-b%) = —(a/~1);

(a%/b) = 1,
(—a2/b) = (-1/b),
(a*/-b) = 1,

(—a*/=b) = —(-1/b) ;

(a/b) = (a/b),
(—a/b) = (a/b)(-1/b),
(a/~b) = (a/bla/-1),
(-a/-b) = —(a/b)a/~1)(—1/b).

It remains to evaluate (a/~ 7). Since (—a®/—1) = —1, therefore (a/~1) = —(—a/~1). This means that (a/~1) cannot
be defined in terms of an integer. Either {a/~7) = 7 if and only if a is positive or (a/~7) = 7 if and only if a is nega-
tive. The choice of alternative is dictated by the fact that (7/~7) = 7 and (—1/~1) = —1. Therefore, (a/~17) = 1 if and
only if a is positive.

(See Tables 1 through 4.)

[Continued on P. 328.]



ON ALTERNATING SUBSETS OF INTEGERS
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(Present Address: Dept. of Mathematics, University of Toronte, Canada, M5S 1A1)

A finite set / of natural numbersis to be a/ternating [1] provided that there is an odd member of / between any two
even members and an even member of / between any two odd members; equivalently, arranging the elements of / in
increasing order yields a sequence in which consecutive elements have opposite parity. In this note we compute the
number a,, , of alternating subsets of {1, 2,--, n } with exactly relements, 0 <r<n.

As a matter of notation we denote an alternating r-subset of { 1,2, «,n } by fg,, 9,, -, g,; nJ, where
we assume g, < g, < - <g,. ,

Let £, , (resp. Op, ) be the number of alternating subsets of { 1,2,,n } with r elements and with least ele-
ment even (resp. odd). It follows that
(1) anr = Enr* Onyr (1 <r<n)
For reasons which will soon become evident we set £, 9 = O, p = 1; hence, a5 o = 2 for n > 0. In addition,
setagp= 1.

Lemma. For any positive integer m,

Emtt,r = Omyr . 0<r<m+1.
Proof. The case r = 0is trivial. If r=m + 1, then
Emtim+1 = 0= Omm+1.
For 1 <r < m consider the correspondence
(qxl [/ PYRE Gr;m + 7) A (01 - 7/ q, — 1» gy Il.m),

If g, is even then it easily follows that the number of r-subsets of % 1,2, m+1 } with least element even
equals the number of r-subsets of { 1,2,,m } with least element odd, g.e.d.

Proposition 1. Forany positive integer m, and 1 <r<m + 1,
(2) am+1,r = am,r-1*8m-1,r -

Proof.  The casem = 1is obvious, so assume m > 2. If r = 1 then
am+1,1 = m+1 while am,0 = 2, am-7 =m-—1;

hence (2) holds. For r > 1 we divide the r-subsets of { 1,2, o, m+1 } (denoted as usual by (g,, 9,, .4 ;
m + 1)} into two groups:

(i) g, =1.Then(q,, -, g,; m+ 1)isan (r—7)-subset of { 1,2,-,m+1 } which has an even least element,
so there are £547, -7 Such subsets. .

(i) g, = 2. Then the correspondence given in the previous lemma shows that the number of such r-subsets is
ﬂm’r -

We thus conclude that
(3) am+1,r = Em+1,p-1 *am,r
whence it follows that

(4) am+t,r = Em+1,r-1* Empr1*am~1,r .

325
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Applying the Lemma, Eq. (4) becomes

(5) am+t,r = Omy-1*Eme-1*2m-1,r -
Substituting (1) in (5) yields (2), g.e.d.
We remark that (2) holds for m = 0 if we define a,,=0if n < 0orr <0.
The recurrence {2) can be solved using the standard technique of generating functions [2,3]. We first define

(6) Anlx) = Y anpx”
k=0
Notice that A (x/ is a polynomial of degree n sincea,, , = 0 for r > n. Using (2) we deduce that forn > 3,
{7 Aplx) = xAp-1(x)+ Ap-2lx/),
while (6) and the houndary conditions on a, , give
Aglx) = a,, = 1
Ailx) = a, , +al X = 2+x
Aylx) = a,o+a, x+a, ,x* = 2+2x+ x> -
Set

Alyx) = Z Aplxly”
n=0
Then the above initial values together with (7) yield

- (7 _(1+y)
(8) Afy,x) e

We now derive an explicit representation of A, (x) To begm, expand 1/(1 — xy — y?) in a formal power series:

©) T—xy—y* xy y? Zy(xf-y}t Z Z( )Xtrr_z E( )Xt_r o

t=0 r=0 t=0 r=0
Fix any integer n = 0. Then the coefficient of y” in (9) is easily seen ta be

(10) Batx) = (5 ) x"+ ("7 ) %" n[;/g}/é’] ) xn2ins2l
It follows that A, (x), the coefficient of y” in Afy,x), is given by
In/2] [(n-1)/2]
(11) Aplx) = 2 (n-s—S)Xn—23+2 }’: (n—sl—s)xn-j-gs
s=0 5=0
[n/2]-1
+ FZO (H—SZ—S)Xn-Z—Zs

Bp(x)+2Bn_1(x) +Bn_o(x) .

We now determine a,, , which, we recall is the coefficient of x” in A, (x). We have two cases.
CASE 1. Assume r =n (mod 2). Then we can find s = 0 so that n — r = 25, i.e., s = %fn — r). Notice that 8, 7(x)
does not contain the term x”. If s = 0, then r =n and

wn = (5) =15
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otherwise we can rewrite r asr = (n — 2) — 2(s — 1) and thus both B, (x) and B,,_2(x) contain a term in x”: hence

_ g n—%Nh-—r (n—2)— [%(n—r)— 1]
(12) an,r = %(n—r) ) +( ! Vz{n-—r)n— 7r )

Simplifying (12) we have that for r =n (mod 2),
_ f %n+r) Y%(n+r)—1
(13) anr= Catnon)* Cemin=1)-
CASE 2. Assume r #n (mod 2). Then the term x” appears only in B,,—7 (x/, so we obtain (in a fashion analogous to
the one above) that

o n—1—Yn—r—1)
anr=2(" 750500

That is, for r # n (mod 2),

. _ Y(n +r-1)%
(14) an,r = 2 %n-r-1) 0 °

We summarize these results in the following:
Proposition 2. Let ap,r be the number of alternating r-subsets of { 1,2, -,n } :
(i) Ifr=n (mod 2),

_ f %(n+r) %ln+r)—1
an,r = (%-(n-r))+ (Vz(n-.r}—I

(i) 1fr#n (mod2), )
= Yln+r—1)
anr = 2 (%(n—-r— 107"
Asa result of this development we obtain an interesting relation between the numbers a, ,and the: Fibonacci num-
bers [3]:

Corollary. Let 7,, be the Fibonacci sequence, i.e., f, =f, = 7 and fp+7 = f, + fp-7. Then we have

n
(1) fas2 = D an,r.
r=0
Proof. Recall (see [3], p. 89) that the ordinary generating function for the sequence , is
(16) Fiy) = 3 fay" = -—L—
=0 -y-y

It follows from (8) that

Aly,1) = (1+y)2Fly) = D (fg+ 260 g +F2ly"

n=0

where ., = £, = 0. But from (7),

Aly,1) = Y Anllly" .

n=0

and

n
An(l} = Z an,r .
r=0
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whence we conclude that

n
(17 Z anr = fn+2fnq+fp2.
r=0
Using the recurrence

fnt1 = fo +fp-1.
the right-hand side of (17) simplifies to 7,+2, which is the desired result, g.e.d.
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Yolodokioiok
[Continued from P. 324.]

TABLE 1
Jacohi Symbols: = 7

a (a/b) (b/a) (a/=b) (—b/a)

=7 1 - 1

51 1 -1 -1

31 1 -1 1

gL e B
1 1 1 1 1
3 1 1 -1
5 1 1 1 1
7 1 1 -1

TABLE 2

Jacobi Symbols: =3
a (a/b)  (b/a) (a/~b) (—b/a)

-1 -1 -1 1 -1
-5 1 -1 -1 1
-3 0 0 0 0
-1 -1 1 1 -1
1 1 1 1 1
3 0 0 0 0
5 -1 -1 -1 -1
7 1 -1 1 1

[Continued on P. 330.]



STRUCTURE OF THE REDUCED RESIDUE SYSTEM
WITH COMPOSITE MODULUS

HUGO S.SUN
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In [1] a group-theoretical technique was employed to prove the following:

Theorem 1. Let :
m = Zepfl “'p/fk .
The congruence x2 =1 {mod m) has 2X solutionsife = 0, 1, 2X*7 solutions if e > 2.
We extend this method to study the strueture of the reduced residue system. Since the reduced residue system
mod m is isomorphic to the automorphism group of cyclic group of order n, we need several lemmas on automorph-

ism groups. Because of the existence of primitive root mod p”. we have
Lemma 1. The automorphism group A(Cgn) of the cyclic group of order p” is cyclic, and its order is
¢(p") = pn__pn—7 .
Lemma 2. A(C,n)iscyelicifn=1,2.1n>2,
AlC,n) = C,n—2 x C,.

Proof.  The first statement is obvious. For n > 2, the automorphism o of C_, defined by o(a) = a* has order
2"2.in factifn = 3, 2

ofa) = a°, o*(a) = 4
s0 |01 = 2. By inductionon n,
-2 -3
n-2 27 2" 2 n-1 n n _
a2 (a) = a2 - 3(5 2o a(7+2 +k27) o 142 a on 6‘2,, ,
. 22 . . . on-3 . n-2
i.e., 0 = the identity automorphismon C_,, but o isnot,so |o1=2"""°,

Next we show that every automorphism aon 6'2,, is a product of a power of gand an automorphism 7 of arder 2.
Let a be defined by afa) = a%, where ¢ is odd, we have
(—Ht—;—’ 5’
afa) = a ,
i.e,afla) = o’'r(a), where
t-1
7)==
Tla) = a( )z
Theorem 2. Let
‘ e
m = 2%p71p72 wp,",
wheree > 0, g; > 1. The reduced residue system mod /7 is generated by the powers of n + k elements, with

6'0ife 0 or 1

k=§1 if e =2
(2 if e > 2

329
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Proof.
Cm = cze X Cp &, X = X CppenAlCm) = A(Cze) X A(cpl";)x X AlCp, en)
(1) it e=0or1
AlC ) ={¢C, if e=2

€2 XC2 if & >3,

REFERENCE

1. H. S. Sun, “A Group-Theoretical Proof of a Theorem in Elementary Number Theory,” The Fibonacci Quarterly,
Vol. 11, No. 2 (April 1973), pp. 161-162.

[Continued from P. 328.] laaiaaiaiaad
TABLE 3
Jacobi Symbols: =5
a {a/b) (b/a) (a/~b) (—b/a)

-7 -1 -1 1 -1
-5 0 0 0 0
-3 -1 -1 1 -1
-+t v S
1 1 1 1 1
3 -1 -1 -1 1
5 0 0 0 0
7 -1 -1 -1 1
TABLE 4

Jacobi Symbols: b= 7
a {a/b) (b/a) (a/-b) (—b/a)

-1 0 0 . 0 0
-5 1 -1 -1 1
-3 1 1 -1 1
o it 4
1 1 1 1 1
3 -1 1 -1 -1
5 -1 -1 -1 -
1 0 0 0
Then
(’ (a/~1) ) -7
(b/~1)

if and only if a is positive and/or b is positive; and

[Continued on P. 333.]



ON AN INTERESTING PROPERTY OF 112359550561797752809
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In solving Problem 301 by J. A. Hunterin [1] an interesting Fibonacci property arose. The problem was to find
the smallest positive integer with the property that when the digit 1 was appended to both ends, the new number

was 99 times the old. If x is the original number then the problem can be restated by - solutions x, k to
10K*2 4+ 1 _ -
g5 "X and [log,,x] = &,

where [-- ] is the greatest integer function. The problem can of course be generalized to other bases. In particular in
the base g, g — 1 plays the role of 9 in the base 10, so the original problem becomes
Generalized Problem: Find x, & if

+2+gx+7= (y‘?—l)x,
or equivalently

k+2
=4 “*1 =
X , and k = [loggx] .
g%g-1 I
It is an easy inequality argument to show for a positive integer g > 3 that
k+2
+ 1 k+1
y — <4 .
Sg7mg-1

Thus the condition [loggx] = k can be dropped forg > 3 and we will do so for the remainder.
By long division,

k+1
\ - k+2 Z gk+"‘7F ng+2+Fk+z +1
g2 g- 7 g2-g-1 ’

where F; is the i Fibonacci number (F, =F, =1, ete.). So all the solutions for a given g are found by finding the
k's for which

GFkt2t Frrq 1

9 -g-1
is an integer.
Solving the equation
Al
g —g-1

for x and k is equivalent to solving the congruence g* = —1 (mod g — g — 7) for ¢ > 2. As a matter of fact, since
10%* = —1 (mod 89) we see that for g = 10, all solutions x are given by
22+44)
X = 10 1
89
The first such x is 112359550561797752809.

3
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In the remainder of this paper we will always use p to denote an odd prime. [t is easy to show thatgts—'l (mod
p?) has a solution ¢ if and only if ordy,g is even, where ord, g means the order of g in the multiplicative group of in-
tegers modulo p. In this case ¢ is an odd number times % ord, g. Then using the Chinese Remainder Theorem, the
fact that ord,g = L.c.m. { ordpag;panm } , and the fact that ordpag is a power of p times ordpg, itis an elementary
argument to show for m odd and (g,m) = 1 thatyt = —1 (mod m) has a solution ¢ if and only if there isanx > 1
such that 2xnordpg for each p|m, in which case ¢ is an odd number times % ord,,g. Compiling this result with our
earlier discussion and the fact that g* — g — 1 is always odd leads to the following theorem.

Theorem 1. Letg = 3 be an integer. Then the following statements are equivalent.

{a) The Generalized Problem has a solution x, k..

(b) There is an integer & such that

gFk+2t Frrr # 1
@ -g-1
is an integer.

(c) There is an integer x > 1such that 2%||ard, g for every prime plg* — g — 7.
If these statements hold, then & + 2 is any odd number times %2 ordg2 574

The question naturally arises as to how many bases g are there for which the Generalized Problem has a solution.
Towards this end let A denote the set of those g > 3 for which the Generalized Problem has a solution and let

B=-{g>3.‘g§éA}.
Let p be a prime of the forry 3 (mod 4) which divides > — / — 1 some h. Then p also divides (—h + 1)?

— (—h + 1) —1. Furthermore
(/lv )('i’i) = (:l) = -1
p N p p !
where (- /p) is the Legendre symbol. So either

(8)-r w (22

Let ap stand for /1 or —A + 1 according as to which Legendre symbol is 1. Then if g =a, (mod p) we have that
p|g* — g~ 1 and that ord, g is odd (since
gl 172 - a;ﬁ‘o'”/z = ( %’l) = 1(modp) and /’-———;7

is odd). On the other hand if p is any prime of the form 1 or 4 (mod 5) then p|#* — h — 7 for

h = g (1+b)(1+p),

5Y-[2)=

( o ) ( 5 ) "

so b exists.) Therefore if p =1 or 4 (mod 5) and in addition p = 3 (mod 4), i.e., p = 11 or 19 (mod 20), then there
is an ap such that for every g =a, (mod p) we have ordy,g is odd and p|g* — g — 1. Let P= ] p: p isa prime of the

form 11 or 19 (mod ZO)i and let €= § g > 3:g=ap (mod p)forsomepeP}. Then Theorem 1 impliesC c 8.
Furthermore, Dirichlet’s theorem on primes in arithmetical progressions implies

where 5> = 5 (mod p). (Note that

7=oo
)RR

pEP
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It then follows that the asymptotic density of £, and hence B, is 1. We have thus proved the following theorem.

Theorem 2. The probability of a random choice of a base g > 3 not yielding a solution tothe Generalized Prob-
lemis 1.

In light of this thearem it seems that the choice of the base 10 in the problem as originally stated was a wise choice!
We leave as an entertaining problem for the reader the question of the identity of the bases g less than 100 for which
there is a solution.

We have shown that in some sense A has far fewer elements than B. But is A finite or infinite? If =3 (mod 4) is a
prime and p = g* — g — 1is also a prime, thenp =1 (mod 4) and '

( g.. ) = ( p_ ) = ( —_._7 ) = _7_
p g9 g
Hence g' = —1 (mod p) has a solution and g € A. We note that Schinzel’s Conjecture H [2] implies there are infin-

itely many primes g =3 (mod 4) for which g> — g — 1 is also prime. Hence if this famous conjecture is true it follows
that our set A is infinite.
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[Continued from P. 330.]
(—1/a) \ _ (a-1)(b-1)/4
((—7/1:) ) = -1 Va1
if and only if a =1 (mod 4) and/or 6 = 1 (mod 4).

If A =#7 and B = #7 are logical variables, then the sixteen functions of those variables are given by #7, £4, #B,
+AB and £(+A/+B). This is a result that cannot be obtained with the definition (—7/=7) = 7. If A = (— 1/b) and
B = (=2/b), then the logical functions of A and B give the congruence of 5 modulo 8. For example,

(A/B) = (_”(b’-b2+7b-7l/76'~= 7

ifand only if 6 =1, 3 or 5 (mod 8). The function —1 is a null function which cannot occur.
Ifb=2#p1p2 - Pk With p; not necessarily distinct, and n is the number of p; for which (a/p) = — 7, then

= (a/~1) _qn
(ab) (W_”)( 0.
Theorem. fab=1 (mod Z)and (ab) = 1, then

(a/b)(b/a) = ( %—:% )( 5_:_%_)))

In other words,

(a/b)(b/a) = 1

if and only if ((a is positive and/or b is positive) and (2 =1 (mod 4) and/or 5 =1 (mod 4))) or (a is negative and b is
negative and a =—1 (mad 4) and 6 =—1 (mod 4)).

Proof.
((—1/a)/(-1/b)) = 1

if and only if
(—1/a) = (-1/b) = -1,

[Continued on P, 336.] ((=1/~a)/(=1/b)) = 1



DISTRIBUTION OF THE FIRST DIGITS OF FIBONACCI NUMBERS

WILLIAM WEBB
Washington State University, Pullman, Washington 99163

In a recent paper [1], J. L. Brown, Jr., and R. L. Duncan showed that the sequence {QnF,, } is uniformly dis-
tributed modulo 1 (u.d. mod 1), where 2n denotes the natural logarithm and F, is the n™ Fibonacci number. In this
paper we show that some modifications of these ideas have some interesting consequences concerning the distribu-
tion of the first digits of the Fibonacci numbers. This also answers a question raised in Problem H-125.

It has been noticed, and proved in the probabilitic or measure theoretic sense, that the proportion of physical con-
stants whose first significant digit is less than or equal to a given digit a (in base 10), is log,, (7 +a). See [2], [4].
We will show that a wide class of sequences, including the Fibonacci numbers, have a natural density satisfying a sim-
ilar distribution. Hence, roughly speaking, a large percentage of the Fibonacci numbers have a small first digit.

Let b be a given positive integer. All of our numbers will now be written in base 6. Let { a, } be a given se-
quence of positive numbers. For any digit @ in base b, let xy = number of 7 < x such that the first digit of a, is < d.
More generally, if

= aobk+a1bk'1 + o, a, # 0,
define
a*=ab™*
so that 1 < a* < p and aand a* have the same digits. Then if X is any number 1 <A < b, define x, = the number of
n <x such that a* <\. Also, let xp (k) = the number of n < x such that bk < ap < No¥. Hence

X\ = Z X}\(k}.

We will say that a sequence { an } is logarithmicly distributed (LD) if x ~ x log A, where log means logp. The
connection between this type of distribution of first digits and uniform distribution mod 1 is given by:

Theorem 1. {a.,, } is LD in base b if and only if {Iog an, } is u.d. mod 1.

Proof. 1<aj <A, ifand only if bk < an <\ for some integer &, if and only if k < loga, <k + log A for
some integer &, if and only if (log a,,) < log A, where (m) denotes the fractional part of m. Hence x) = number of
n < x such that (log a, ) < log ), and so x, ~ x log A if and only if { loga, } is u.d. mod 1.

Corollary 1. { al } is LD if and only if a is not a rational power of 4.
Proof. This follows immediately from the fact that { nloga } is u.d. mod 1 if and only if log a is irrational [3].
This last result follows from Weyl’s theorem that { B; } is u.d. mod 1 if and only if

n
. 7 2nihB; .
lim = e 1 =0
n—> n /""21

for all integers # > 0 [3].
Using Weyl's theorem and results concerning trigopnometric sums, we can show that sequences such as { ap"} and
{ n" } are LD where p,, denotes the nth prime.
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The following results can be proved using Weyl's theorem, but they can also be obtained directly from the defini-
tion of x, without recourse to any considerations of uniform distribution.

Theorem 2. | {a,, } is LD then
(i) { ca, } is LD for all constants ¢ > 0,

(ii) { af, } is LD for all positive integers k
(i) { 1/a, } isLD
(V) {Bn} isLDifBy~ap.
Proof. We illustrate the methods used by proving (iii).
LetS = { an } be LD and let S = { 1/a, } Letx), refer to S, x3 refer to S’ etc. Then

bk < L <k

an
if and only if
%\b'k <a, <b™*;
hence
xylk) = xp(—k = 1) = xpp(—k—=1)
which implies

A= O Xilk) =Y xpl—k=1)=xpal~k = 1)
Xp—Xpm ~ x—xlog (b/\) ~ x log \.

>
>
|

We are now ready to show:
Theorem 3. { Fn } is LD.

Proof.
C(E)- ()
" NG
Since
(54)" -
(2]
Foom 2 1
" N3
Now
(255)

is LD by Corollary 1,
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is LD by Theorem 2-(i), and so F, is LD by Theorem 2-(iv).
Theorem 3 is easily extended to other recurrence sequences.
It should also be noted that examples can be constructed which show that

{a,,} and {Bn}

LD does not imply that any of
fa™ Y, fanB}, o {antn}

are LD, It might be interesting to obtain necessary and/or sufficient conditions for these implications to hold.
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Yododokokiok:
[Continued from P. 333.]
if and only if
(—1/a) # (-1/b) = -1,
((—1/a)/(-1/-b)) = -1
if and only if
(—-1/a) # (—1/b) = 1;
((—1/~a)/(-1/-b)) = —1
ifand only if

(—1/a) = (-1/b) = 1.
Now stipulate that
(a/~1) = (b/~1) = 1.
Then, by the classic Law of Quadratic Reciprocity,
(1) (a/b)(b/a) = ((—1/a)/(-1/b)).

But
(—a/b) = (a/b)(-1/b)

and
(b/-a) = (b/a)(b/-1).
Since (b/-1) = 1, therefore

[Continued on P, 339,]



GENERALIZATIONS OF EULER’S RECURRENCE FORMULA
FOR PARTITIONS

HENRY L. ALDER
University of California, Davis, California 95616
and
AMIN A. MUWAFI
American University of Beirut

INTRODUCTION

In 1954, H. L. Alder [1] showed that, as a generalization of the Rogers-Ramanujan identities, there exist polynom-
ials G, (x) such that

(1) it (1-x";7 =Y Gr,nx)
= n ’
n,éo,ik'(’mgdzkm n=0 (1=xN1—x2)-(1-x")
and
@) n (1-x"7" =3 Gn (x)x"
n=
n#0,#1(mod 2k+1) n=0 (1=x1=3) (1 -x")

where k is a positive integer and the left-hand side of (1) is the generating function for the number of partitions into
parts & 0, +k (mod 2k + 1), while the left-hand side of (2) is the generating function for the number of partitions in-
to parts £0, +1 (mod 2k + 1). As Alder remarks, when k = 2, identities (1) and (2) reduce to the Rogers-Ramanujan
identities for which G2, (x) =x",

Alder showed that identities similar to (1) and (2) exist for the generating function for the number of partitions
into parts # 0, +(k — r) (mod 2k + 1) for all r with 0 <r < k — 1, so that, for a given modulus 2k + 1, there exist
such identities.

We shall show in this paper that a similar generalization is possible for recursion formulae for the number of un-
restricted or restricted partitions of n. The best known of these is the Euler identity for the number of unrestricted
partitions of n:

B) pin) = 3 (g (- TEL)
J

where the sum extends over all positive integers j for which the arguments of the partition function are non-negative.
Another recursion formula was obtained by Hickerson [2], who showed that gfn), the number of partitions of n in-
to distinct parts, is given by

) gln) = 2 (—=1)ptn — (3 +})),

/‘:—. o

where the sum extends over all integers / for which the arguments of the partition function are non-negative.
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We shall show here that these and other recursion formulas are special cases of the following

Theorem. If we denote the number of partitions of n into parts # 0, +(k — r) (mod 2k +a) by p(0, k—r, 2k
+a;n), thenforO<r<k-1,

(5) pl0 k=1, 2k+ain) = 3 (~1)ip( o~ Bktal 2 tal )
i

2

where the sum extends over all integers / for which the arguments of the partition function are non-negative.

Proof. Using Jacobi’s triple product identity

Ho (7_y2n+2)(7+y2n+1zm+y2n+1z—1) - Z yizzj .

n o
f—
with
y = x(2k+a)/2, 7= —x (2r+a)/2 ,
we obtain
o o {2k +a)j* +(2r+a)j
110 (7 __X(2k+a)n+(2k+al”7 _X(Z‘k+a)n+k+r+a)(7 __X(2k+a)n+k—r) = Z (—7)7/\’ 2
n=i .
j=—.°°
Dividing both sides by
I (71-x°%),
s=1

the left-hand side becomes the generating function for the number of partitions of n into parts £0, +(k — r) (mod
2k +a). Equating coefficients of x”? in the resulting equation yields the theorem.

Corollary 1. Forr=0, we obtain the following recursion formula

10 k: o) = ] (2k +a)j* +aj
6) p'(0, &2k +a;n) = Z(-n/,,(n____%/__az ) )
J

where it shall be understood here and henceforth

J
denotes a sum over all integers for which the arguments of the partition function are non-negative.
Corollary 2. 1fin (6), we let k =2 =1, then p(0,1,3;n) = 0 and

Z(—-I}jp(n—‘gﬁz—ﬂ )= 0
i
or

” 2
pin) = 3 (~1)’ ’p( n-Lt ) .
J#0
which is the Euler identity (3).
Corollary 3. 1t in (6), we let k = 2, a = 1, we obtain a recursion formula for p(0,2,5; n), which by the first
Rogers-Ramanujan identity is equal to the number of partitions of » into parts differing by at least 2, or g,(n).
Therefore we have

(7) g,(n) = Z (-7//',;( n—%—t[- )
/
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Corollary 4. Ifin (5), we let r = k — 4, we obtain

) P10, 2 +ain) = 3 (~1)ip( n - Bhral s Bhal] |
i

Corollary 5. If in (8), we let k =a = 2, we obtain a recursion formula for 5°(0,2,6; n), which is equal to g(n),
the number of partitions of » into odd parts, so that we have

aln) = " (- 1)pln - (32 +j)),
j
which is (4).

REFERENCES

1. H. L. Alder, “Generalizations of the Rogers-Ramanujan Identities,” Pacific J. Math., 4 (1954), pp. 161-168.
2. Dean R. Hickerson, ' Recursion-type Formulae for Partitions inte Distinct Parts,” The Fibonacci Quarterly, Vol.
11, No. 3 (Oct. 1973), pp. 307-311.

Fededdrdrdedr
(-a/b)(b/-a) = (a/b)(b/a)(—1/b)
((—1/a)/(=1/b))(—1/b)

[Continued from P. 336.]

1]

= —7

if and only if

(—1/a) # (—1/6) = —1.
Therefore,
(2) (—a/b)(b/-a) = ((—1/-a)/(—1/b)).

Also,

(a/-b) = (a/b)(a/~1)

and

(—b/a) = (b/a)(—1/a).
Since fa/~1) = 1, therefore '
(a/~b)(-b/a) = (a/b)(b/a)(—1/a)
((—1/a)/(~1/b))-1/a)

]

= -1
if and only if
(—1/a) # (—=1/b) = 1.
Therefore,
(3) (a/-b)(—b/a) = ((—1/a)/(-1/-b)).
Finally,

(~a/-b) = —(a/b)a/~1)(—1/b)
and

(—b/-a) = —(b/a)b/~1)(—1/a).

[Continued on P. 342.]



ON LUCAS NUMBERS WHICH ARE ONE MORE THAN A SQUARE

RAPHAEL FINKELSTEIN
Bowling Green State University, Bowling Green, Ohio 43403

Let F,, be the n™ term in the Fibonacci sequence, defined by
Fo=0 F;=1 Fp+2= Fps1+Fp,
and let L, be the n®™ term in the Lucas sequence, defined by
Lo=2 Ly=1 Lpt2=1Lps1+Ly.

In a previous paper [4], .the author proved that the only numbers in the Fibonacci sequence of the form
y: + 1 are
F,.=1 F, =1 F,=2 ad F, =5.
The purpose of the present paper is to prove the corresponding result for Lucas numbers. In particular, we prove the
following:

Theorem. The only numbers in the Lucas sequence of the form
y*+1, yez y=>10
areLly=2amd L, = 1.
In the course of our investigations, we shall require the following results, some of which were proved by Cohn [1],

(21, [3].

(1) Lon = L2+2(-1)"7

(2) (F3n, L3n) = 2 and (Fp,Lp) = 1 if 3j/n.
2 2 _ n

3) 12— 5F2 = 4(-1)",

(4) If Fop=x%* n>0 then 2n=202o0r12

(5) The only non-negative solutions of the equation x> — 5y* =4 are
Iyl = [20], [31] and [322,12].

(6) L, is never divisible by 5 for any n.

= 7+\/§ = 1— \5 = a’n i
() f a > B 5 then Fn ——-ﬁ—\/g
(8) Fon, = Fplp, .
(9) If Lp,=x* n>0 then n=10o3
(10) If L, =2x* n >0 then n=20orbé.

We now return to the proof of our theorem, and consider two cases,
CASE I. n even: If Lo, =y? +1, then by (1), either
y:+1=1L2+2 or yr+1=1L}-2.

340
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The first case yields
Lh~y*=—1, Lp=40 1y=1,

which is impossible. The second case yields
L,Z.' - y2 = 3]
and it is easily proved that the only integer solution of this equation is
Lp=2 y=1.

CASE Il. n odd: First, we prove the following Lemmas:

Lemma 1. If Fo, = 5x* then n=0.

Proof. By (8), we have F,L, = 5x* and, by (2), either

(Fn, Lp) = 1 or (Fn, Ln) = 2.
If (F,, Ly) =1, then, by (6),
Fn = 552, L, =t2.
But thenn =7 or3 and F # 5s%. If (F,,, L,) = 2, then we conclude that
F, = 10s?, L, = 2t*.
By (10),n = 0 or 6. But F, = 10s* only forn=0
Lemma 2. The only integer solution of the equation u? — 725/ =4 is
u=+2 v=0_0
Prooﬁ If u? — 125v* = 4, then v and 5v? are a set of solutions of
p*—5g7 = 4
thus
n
U525 = 2 ""—"Zx@ =207,  u-5nJF = 262"

0 Fo, = 5v2 and thus v = 0.

Now let us use (3) with n odd and L, =y + 7, We get
(11) (y*+1)*+4 = 5x*,
and we wish to show that the only integer solution of this equation is y = 0, x = 7. Note first that if y is odd the

equation is impossible mod 16.
On factorizing (11) over the Gaussian integers, we set

fy2 +1+2i)ly* +1-2i) = 5x2.

Since y is even, the two factors on the left-hand side of this equation are relatively prime. Thus we conclude
y2+1+2i = (1+2i)(a+bi)?.

This yields
a* +ab—-b* = 1, a%—4ab—h* = y2+171,
i.e.,
(12) a*+ab—b* =1
and

bab = —y* .
The first equation of (12) yields (a,6) = 7, and it may be written
(13) (2a + b)* — 5b2 = 4,
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Since (a,b) = 1 the second equation of (12) yields either

(14) b = +t2, a = ¥53*
ar
(15) b = +512, a = Fs? .

Equations (13) and (14) yield
(F10s* +12)" - 5t* = 4,
By (5), the only integer solutions of this equation occur for = 0, 1 or 12. But none of these values of ¢ yield a value
fors. Equations (13) and (15) yield
(F252 + 512)° — 125t* = 4,
By Lemma 2,t=0,s=1,a=+1,b=0, L, =1 The proofis complete.
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[Continued from P. 339.]

Since
fa/~1) = (b/~1) = 1,
therefore
(-a/~b)(—b/~a) = (a/b)b/a)(—1/a)(-1/b)
= ((—17a)/(-1/b))(—1/a)(-1/b)
=1
if and only if
(—1/a) = (-1/b) = 1.
Therefore,
(4) (—a/~b)(~b/-a) = —((—1/-a)/(—-1/-b)).

From (1), (2), (3) and (4), it can be seen that the theorem is true for all sixteen combinations of
fa/~1) = #1, (b/~1) = #1, (-1/a) = £1 and (-1/b) = #1.
Corollary 1. 1fa=00r1(mod 2), 5 =1 (mod 2) and (3,b) =1, and if 2, =a, (mod b), then

(a,a,/b) = ( (i(l[;z—_/i_)l{ )

In other words, (a,a,/b) = 1 if and only if a, a, is positive and/or b is positive.

[Continued on P. 344.]
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GEORGE BERZSENYI
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The purpose of this note is to announce the following formulae, where #, and H, are chosen arbitrarily and
Hp=Hpq +Hpzforn>1:

n
2 —HZ .+ ; ;
Z HiHiiomer = {Hm+,,+, H+1+HoHom+1, if n iseven

k=0 Hirin+1— Hp , if n isodd
(*)
n B Hm+nHm+n+7 —HmHm+1 + HoHom. if n iseven
Zg HiHi+2m =\ HppinHmsns1 = Hm-1Hm , if n isodd .
k=

These results may be established by first proving the corresponding formulas for Fibonacci numbers and then ex-
panding the expressions on the ieft side of (*) by using the well-known relation

Hn = Fhoo1Ho+ FoHq .

To prove (*) for Fibonacci numbers the method of generating functions is utilized. Using Binet's formulae for
Fibonacci and Lucas numbers, one finds that

= Fry # [F-1Fm +(=1)"]x = Fpp_1x* - Fm+1X = Fm-1x*

F? n_"m m-1"m m-1 d F.F n _ m m .
% mrmX (1+x)(1-3x+x*) an ngé n?ntmX (1+x)(1-3x+x*)
Moreover,

oo n oo 2
Fm+1X — Fp-1x
FiF, "= n FnF, ny= m
z_: Z_: kThem JX ; X Z_: e ntms (1—=x)(1+x)(1-3x +x*)
n=0 \ n=0 n=0 n=0

and with the methods of Gould [1] one can derive the hisection generating functions

’

i: F§n+an = FI";’]+[(—I)m‘_‘gFm_sz]X'f'F,zn.zxz
=0 (1=x)1-7x+x*)

o 2n
S S FeFirm )27 - Fm+3% = Frp-1x*

m (1—x)1—-7x+x%) '
n=0 k=0

and

[y

o 2n+1
F, — Fm-3x
E: FiFrtm x" = m+1 m-3

— —_— 2
n=0 k=0 (1—=x)1—-7x +x*)
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The proof of (*) for Fibonacci numbers is then completed by observing the relationships among these generating
functions. For example,

oo

Z (F5n+m+2— Fm )X" = Z Fntm#2x" = Fm Z x"
n=0 =0 n=0

= Frwa # =12 = 3F i Frsalx + Fipx®  Fp
(1—x)1-7x+x*) T-x

(1—x)(1-7x+x*)

_ Fam+2 — Fam-2x
(1-x)1-7x +x*)

oo 2n+1
=3 X Fka+2m+1)X" ,

n=0 k=0
and hence,
2n+1
D FkFisznt1 = Fantme2— Frm -
k=0

The other three cases are similar.
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Fodkokdkok
[Continued from P. 342.]

Proof. The corollary is known to be true for (5/~7) = 7, Then the following results can be calculated:

If

(a,a,/~1) = 1,
then

(a,a,/b) = 1,
(—a,a,/b) = (-1/b),
(a,a,/-b) = 1,
(<a,a,/-b) = —(-1/b);
If (a,a,/~1) = —1, then
(a,a,/b) = 1,
(-a,a,/b) = (-1/b),
(a,a,/-b) = -1,

(-a,a,/~b) = (-1/b).
[Continued on P. 349.]



A PRIMER ON THE PELL SEQUENCE AND RELATED SEQUENCES

MARJORIE BICKNELL
Wilcox High School, Santa Clara, California 95051

1. INTRODUCTION

Regular readers of this journal are well acquainted with basic properties and identities relating to the Fibonacci
sequence and its associated sequence, the Lucas sequence, but may be unaware that the Pell sequence is one of many
other sequences which share a large number of the same basic properties. The reader should supply the analogous
Fibonacci identities, verify formulas numerically, and provide proofs for formulae given here. The proofs are very
similar to those for the Fibonacci case.

2. THE PELL SEQUENCE

By observation of the sequence { 1,2,5,12, 29,170, 169, -, Py, -+ } it is easily seen that each term is given by

(1) Pp = 2Pp1+Pp-2, P, =1, P, = 2.
The sequence can be extended to include
P,=0  P,=1  P,=-2 P, =8 -~ P,=(-1)"p,.

The associated sequence { R, } where R, = Pp-1 +Pp+7, has

(2) Ry = 2Rn-1+ Rp-2, R, =2 R, =6,
with first few members given by 2, 6, 14, 34, 82, 198, -+, and can be extended to include
R, =2, R, = -2 -, Rn = (-1)"R,.
The Pell numbers enjoy a Binet form, If we take the equation
y* =2y +1

which has roots
a=(2+/8)/2 and B=1(2-8)/2,

then it can be proved by mathematical induction that

n n
(3) Pn = “—a_:g— Ro=a"+p"  d" =i"—+-;£\/i

Using the Binet form, one can prove that P, is evenly divisible by Py, k # 0, so that the Pell sequence also shares
many divisibility properties of the Fibonacci numbers.

Geometrically, the Fibonacci numbers are related to the Golden Rectangle, which, of course, has the property that
upon removing one square with edge equal to the width of the rectangle, the rectangle remaining is again a Golden
Rectangle. The equation related to the Pell numbers arises from the ratio of length to width in a “silver rectangle”
of length y and width 1 such that, when two squares with side equal to the width are removed, the remaining rec-
tangle has the same ratio of length to width as did the original rectangle, or such that '

’§=7:’7, yr-2-1=0,
so that y = a, the positive root given above.

345



346 APRIMER ON THE PELL SEQUENCE AND RELATED SEQUENCES (DEC.

'l (W}
i® 4 K

Figure 1

Some simple identities for Pell numbers follow. No attempt was made for completeness; these identities merely in-
dicate some directions that can be explored in finding identities. (Most of these identities can be found in Serkland
[1] and Horadam [2].)

@) Pnt1Pp-1—P% = (-1)"
(5) Rpe1Rn-1— B2 = 8(1)"7
(6) Ap = PpagtPpg
n 8Pp = Rpt1+ Rp-y
8) Pan+1 = Ppe1+pp
(9) 2Pop = Pper—Pheg
(10) Pp = (-1)"1p,
(1) B.p = (~1)"R,
(12) Pan = Pnfip
(13) Rp+ Rps1 = 4Poss
(14) R,+R, +R, + +R, = 2Pnyy
(15) Patpt1 = Pne1Pp+1 +PpPy
(16) R — 8P% = 4(—1)"
(17 P2+P: P+t Py = (PoPpsg )/ 2
() iy ; Pnx”
n
(19) 2 (1) 2P = Pan
k=0
n
(20) 2_ () PePai = 2P,
=0

The Fibonacci numbers were generated by a matrix

2=(7 o)
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which satisfied the equation whose roots provide the Binet form for the Fibonacci numbers. The Pell numbers are

also generated by a matrix M,
Ppry P
M=(21), Mn:(n n)
7.0 Pn Pp-1

which can be proved by mathematical induction. The matrix M provides some identities immediately. For example,
det M” = (detM)" = (~1)" = PpstPpg—Pj
and expanding M7 = M7MP gives

Potpt1 = Pae1Pp+1+ PPy

upon equating elements in the upper left. The matrix M also satisfies the equation related to the Pell sequence,
M = 20 + 1.
3. THE GENERAL SEQUENCE

Since the Fibeonacci sequence and the Pell sequence share so many basic properties, and since they have the same
starting values but different, though related, recurrence relations, it seems reasonable to ask what properties the

sequence { U, } ’

21) u, = 0, U, =1, Uppg = bUp + Up-g .

which includas both the Fibonacei sequence (¢ = 1) and the Pell sequence (4 = 2) as special cases, will have.
The first few values of { Un } are:

1]

]

1

=h

b+ 7

= ph*+2b

bt +3b% +1

b +4b® + 3b
be+5b% +6b> + 1
b7 +6b% +100° +4b

@
It

N e

i

w

o w
W

]

~

S A T
]

=l

These are just the Fibonacci polynomials £, (x) (see [3]) given by
Folx) =0, Filx) =1, Fne1lx) = xFplx) + Fpoq(x)
evaluated atx = h. That is,
Fn(l) = Fp. Fol2) = Py, and  Fplb) = Uy.

Thus, any known identities for Fibonacei polynomials establish the same identities for { Fpy }, { Pn } and { Un}.
{U,, } has an associated sequence { Vn } Vip=Upayt Uy, where

{22) Ve = 2 vV, = b, Viro = bVne1 ¥ V.
Using identities for Fibonacci polynomials given in [2], we have

(23) Unm = ViUmek # (=1 U2

(24) Uop = (=10,

(25) Vop = (-1)7V,



348 A PRIMER ON THE PELL SEQUENCE AND RELATED SEQUENCES [DEC.

(26) Vi = bUp +2Up-q

(27) bV, = Upiz—Un-2
(28) Usp = UpVp

(29) Umtn*(=1)"Upmep = Um Vi

Also from [2], we can also state that U, is always divided evenly by Up,, n # 0.
Now, if we explore the related equation

y: =by+1
with roots
NN ez SR RSN 2
it can be shown by mathematical induction that
(30) U, = ‘%’_’—g—n, Vp=d"+p",
(31) o = Vot U744

2

Geometrically, Uy, and V,, are related to “silver rectangles.” (See Raab [4].) If a rectangle of length y and width 1
has dimensions such that, when b squares with side equal to the width are removed, the rectangle remaining has the
same ratio of length to width as the original, then the ratio of length to width is a= (b + \/b* +4)/2, as seen by the
following:

1 1
1 T o - 1 y-b
|€ y ”|
Figure 2
Y= -—7—- 2 _ - = = Q_ﬂ
7=y =b y*—by—-1=14, y 3
Further, it can be proved that
. Un+1 _ b+ \b>+4 _
(32) nTw U, 5 a .

Serkland [1] and Horadam [2] establish that the generating function for { U, } is

X - n
(33) s }_E Unx" .
I:.‘

Now, it is well known that the Fibonacci polynomials are generated by a matrix. (See [1], [3], for example.)
That the matrix @ below generates { U, } can be established by mathematical induction:
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_ 7 n_ | Un+1 Up
”‘(70)' ”‘(Un Un—l)

Since det 8" = (det @) = (—1)", we have

(34) Ups1Upeg = Up = (=1)" .
Using ™" = @™ Q" and equating elements in the upper left gives us
(35) Umtnt1 = Um+1Un+q1+UmUy
(36) Uznt1 = Uns1+Up .

Many other identities can be found in the same way. Note that the characteristic polynomial of Q isx2 — bx — 7=0.
Summation identities can also be generalized [1], [2], as, for example,

(37) Up+U, +U, +tUp = (Up+Upnpy— 1)/b
(38) VotV +V, + et Vy = (Vg+ Ve +th—2)/b
(39) Uy +U3 +U;+ 4 U2 = (UpgUpsq)/h .

The reader is left to see what other identities he can find which hold for the general sequence.
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Fokedrdododole

[Continued from P. 344.]

Corollary 2. \fab=1 (mod 2) and (a,b) = 1, and if b, =b, (mod 2a), then

a/b,b,) = ( (_(?/Z/laz)h) ) '

In other words,
a/b,b,) = 1
ifand only if a=1 (mod 4) and/or b,8, =1 (mod 4).

Proof. From (b,b,/a), (~b,b,/a), (b, b,/~a) and (—b, b,/~a), the following results can be obtained by quadra-
tic reciprocity:

[Continued on P. 384.]



PALINDROMIC COMPOSITIONS

V.E.HOGGATT, JR., and MARJORIE BICKNELL
San Jose State University, San Jose, California 95192

In this paper, we discuss palindromic compositions of integers # using members of general sequences of positive
integers as summands. A palindromic compasition of n is a compasition that reads the same forward as backward, as
5=1+3+1, but not5=3+1+ 1. We derive formulas for the number of palindromic representations of any inte-
ger n as well as for the compositions of n. The specialized results lead to generalized Fibonacci sequences, interleaved
Fibonacci sequences 1, 1,2, 1, 3, 2,5, 3, 8, 5, -, and rising diagonal sums of Pascal’s triangle.

1. GENERATING FUNCTIONS

{ak}f;o

be any increasing sequence of positive integers from which the compaositions of a non-negative integer n are made.
Then let

Let

a,
Flx) = x% +x1 + ..+ x k 4.

which will allow us to write generating functions for the number of palindromic compesitions P,, as well as the num-
ber of compasitions £, made from the sequence

’

'{ 3k}‘/?.-_—0 .
Theorem 1.1. The number of compositions £, of a non-negative integer n is given by

1
2. Cx" = T—Flx)

Proof. Now G, =1and £, = C, = - = L4 -7 = 0 because the numbers 1, 2, 3, -+, a, — 1 have no composi-
tions, while the number 0 has a vacuuous composition using no summands from the given sequence. Next,

cn = 6‘"__50 + Cn-a, + oot Cn—as e,
where C; =0 if j < 0. Thus,
}: Cpx" = (x% +x%1 +x%2 4+ ...) Z Cox"+1
=0 n=0

from which Theorem 1.1 follows immediately.
Theorem 1.2. The number of palindromic compositions 2, of a non-negative integer n is given by

P x" = 1+ Flx)
2 Fax 7= Fix?)
n=0

or

350
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= n _ Fix)+Fix2)
E] an 7" F(X2}
n=

Proof First, we can make a palindromic composition by adding an a, to each side of an existing palindromic
composition. Thus

Pn = nnzao +PI'I—281 +'"+Pn-'235+ .,
where ;= 0ifj < 0. Thus

oo
3 Pax™ = xZ0 (P, Pox+ Pyx 4 ) #XPA (P # P X 4 Pyx? )
n=0
+X232(p0 FPXFP X+ o)+t (x% +x1 +x% 4 ),

where the terms x %0 + x?1 + x?2 + ... account for the single palindromic compositions not achievable in the first
form. Theorem 1.2 is immediate.
We note that the function
Flx) = x% +x71 4ot x5 .0

is such that

Fltx) = E Rinix",
n=0

where A(n) is the j-part composition of n;

Fitx2) = 3 R*nkx",
n=0

where A *(n) is the 2i-part palindromic compasition of n,; and

Fix)F'(x2) = 3~ R**(nkk",
n=0

where R **(n) is the (2/ + 1)-part palindromic composition of n.
Next, we find the number of occurrences of ax in the compositions and in the palindromic compositions of n.

Theorem 1,3. Let A, be the number of times ax is used in the compasitions of n. Then

n = e ————
Z Anx [7= Fix)]?
n=0

Proof. Itis easy to see that
A, = A”’ao +A,.,_a1 o +An-—ak i cn-'ak o,

where Gyand Ay = 0ifj < 0.

= a a
S Ak = (%0 et #etx ) T Ak 1% o
n=0 n=0 n=0

from which Theorem 1.3 follows after applying Theorem 1.1,
It follows from Theorem 1.3 that the total use of all ax is given by all integer counts in the expansion of

Fix)
[1- Flx)]*"
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Since the number of plus signs occurring is given by the total number of integers used minus the total number of
compositions less the one for zero, the number of plus signs has generating function given by
Fix) __ __Flx) _ F(x)
[T-F(x)]* 1-F(x) [1-Flx)]?
Theorem 1.4. The number of occurrences of ax in the palindromic compositions of n, denoted by U,,, is
given by the generating function

K 2P ) =, on
T=Fa) = Fxei 24:0 Unx™.

Proof. To count the accurrences of ax in the palindromic compositions of n,

Un = Un-2a, * Up-2a, +++ (Up-25/ + 2Pn-24,) +8 = § 1ifn=a
0ifn#a
the one being for the single palindrome ay, and U; and £; = 0 forj < 0.
Z Upx" = x220(Uy + U, x + Uyx? + ) # 221Uy + U x + Uyx? + )
n=0

2a E)
F ot XUy # U X+ Uyx? 40 ) # b x K

2
+2x % Z Pox" .
=0

Therefore, applying Theorem 1.2 and simplifying yields Theorem 1.4.
As before, from Theorem 1.4 we can write the total number of integers in all palindromic compositions displayed
in the form of the generating function
Flx) _ ,2F(x*)(1 + F(x))
71— F(x?*) [1— F(x2)]?

Now, in getting all the plus signs counted we need only subtract the generating function for the palindromic com-
positions of all » except zero. Thus
Flx) _, 2F(x*)(1+F(x)) _ Flx*)+Flx) _ F(x*)[1+2F(x)+ F(x*)]
71— Fix?) [1- F(x*)]? 71— Fix*) [1- F(x*)]* ’
2. APPLICATIONS AND SPECIAL CASES

The results of Section 1 are of particular interest in several special cases.
When the summands are 1 and 2, F(x) = x + x? gives the result of [1] that the number of compositions of n is
Fp+1, the (n+ 1)t Fibonacci number, since by Theorem 1.1,

n - 1 = n
(2 1 ) Z C,-,X = 7_——-()7;—;2—) = Z Fn+ X,
n=0 n=0

where we recognize the generating function for the Fibonacci sequence. Theorem 1.2 gives the number of palin-
dromic compositions as

n . _1+x+x*
(2.2) % Ppx P oy

which is the generating function for the interleaved Fibonacci sequence 1, 1,2, 1,3, 2,5, 3, 8,5, 13,8, 21, ---.
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When the summands are 1, 2, and 3, F(x) = x + x> + x3 in Theorem 1.1 gives the generating function for the
Tribonacci numbers 1,1,2,4,7, «, Tpe3 = Tps2+ Tneg1 + Tp, as

(2.3) Z Can = m = E Tn+1Xn
n=0 n=0

while the number of palindromic compositions from Theorem 1.2 becomes

2.4 no _1#X+X24X2
(2.4) Z_anx PR i m——

which generates the interleaved generalized Tribonacci sequence 1,1, 2, 2, 3, 3, 6, 6, 11, 11, 20, 20,-.
When the summands are 1, 2, 3, -+, &, then F(x)=x+x2 + o+ x% in Theorem 1.1 gives the generating function
for a sequence of generalized Fibonacci numbers { F;;} defined by

Fiuk = Fiket + Firkog # -+ Fl, =1, Fy=2"" n=234.k
so that C,, = Fri+7.

When the summands are the positive integers, F(x) = x +x* +x3 +..=x/(1 — x) in Theorem 1.1 gives the num-
ber of compositions of n as 27~ 7, n > 1,since

n 7 _ 1—x
(2.5) > Cx — —

which generates 1, 1, 2, 4, 8, 16, 32, ---. Applying Theorem 1.2 to find the number of palindromic compositions
gives the generating function for the sequence 1, 1, 2, 2, 4, 4, 8, 8, -+, or, P, =2[”/2],n =0,1,2,-,where [x]
is the greatest integer function.

Taking odd summands 1, 3, 5, 7, -+, and using F(x) =x +x3 + x5 +x" +--=x/(1 — x?) in Theorem 1.2 to find
the number of palindromic compositions of » again gives the generating function for the interleaved Fibonacci se-
quence 1,1,2,1,3,2,5,3,8,5, 13, 8, 21, -+, while Theorem 1.1 gives the number of compositions of 7 as

— x2 =
(2.6) 2 Cnx" = Ix - 7—7x_xx2 = 2 (Fne1 = Foo1 k"
n=0 -7 n=0

so thatCp = Fp.
If we use the sequence 1, 2, 4, 5, 7, 8, --, the integers omitting all multiples of 3, then

Fix) = (x +Xx2)+ (x* +x5)+ (x" +x3)+ . = (x +x2 )1 - x?)

yields the number of compositions of n as

2.7 n _ 7 = 1—-x3
27 Z Cnx j_x+x? T—x—x*—x®

1-x3

so that, returning to Eq. (2.3), C, = Tj+7 — Tp-2, where T, is the n™/' Tribonacci number.
If we take
X2

Fix) = x>+ X3 + X% +x5 4. = ;
—-X

’

the number of compositions of n using the sequence of integers greater than 1 is given by
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(2.8) z_: cnxn = /1 Ixz = 1—x— Xz Z FH—V(
B T—x
so that C,, = F,-7. Applying Theorem 1.2 we again find the number of palindromic compositions to be the inter-
leaved Fibonacci sequence, but with the subscripts shifted down from before,as 1,0,1,1,2,1,3,2,5,3,8,5, -
(Note: Zero is represented vacuously; one not at all.)
The sequence of multiples of & used for summands leads to

Fix) = xK+x2K 153 4. = xk/(7~xk),

which in Theorem 1.1 gives us

i k
(2.9) PRI e S Z 21y km
1—-2x
n=0 m=1
so that the number of compositions of n is 2™ i n=kmorQifn # km for an integer m.

3. SEQUENCES WHICH CONTAIN REPEATED ONE’S

Compositions formed from sequences which contain repeated one's also lead to certain generalized Fibonacci
numbers. We think of labelling the one’s in each case so that they can be distinguished. These are weighted
compositians.

First, 1, 1, and 2 used as summands gives F(x) = x +x + x? so that

(3.1) Z Cox" Zx — = Z Prg1x"

n=0

so that Cp, = pp+1 where p, is the n™ Pell number defined byp,=1p,=2 pp+2=2pn+1*pn- Applying Theo-
rem 1.2, we find that we have the generating function for the sequence 1, 2, 3,4, 7, 10, 17, 24, 41, -, which is a
sequence formed from interleaved generalized Pell sequences, having the same recursion relation as the Pell sequence
but different starting values.

In general, if we use the sequence 1, 1, 1, -+, 1, 2 (k one’s) as summands, Fx)=x +x +X + ..+ X + X2 = kx + x*
in Theorem 1.1 gives

n _ 7 _ n
(3.2) Z ch = 7—:—/&—_—){‘5 = Z p;;.,.,X
n=0 o

where

Y=L pr =k ppio = kogegtey.
Thus, the number of compositions of n formed from this sequence is £, = p}, ;. The number of palindromic com-
positions is again a sequence formed from two interleaved generalized Pell sequences, having the same recursion re-
lation as p but different starting values. The starting values for one sequence are 1 and & + 1; for the second, & and
k2. Thus, the interleaved sequence begins

1,k k+1 k? k?+k+1,k®+k, k3 +k? +2k+ 1, k* +2k?, -
One other special case using repeated ones is interesting. When the sequence 1, 1, 1, 1, 2 is used as summands,

oo

F
(3.3) Z Cox" - —4_x_—_x; = E 3(Z+1/ X"
n=0

using the known generating function [2], where L is the k™ Lucas number,
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(3.4) L - S N
T—Lx+(—-1)%% 25

Actually, as a bonus, this gives us two simple results; F3x is always divisible by 2, since £, is an integer, and, from
the recursion relation Cpr0 =4Ch 11 + Cpy, we have

F3tn+2) = 4F3(n+1)* F3n.
But, we can go further. Equation (3.4) combined with Theerem 1.1 for odd k gives us

- 7 =
(3.5) Z chn = th—X:? = Z (Fk(n-,«-])/Fk}Xn, k odd,
n=0 n=0
so that

Cn = Frfn+1)/Fi
when Ly repeated ones and a 2 are used for the sequence from which the compositions of # are made, & odd. Since
Cp, is an integer, we prove in yet another way that £y divides Fg,, [31, as well as write the formula
(3.8} Fitn+2) = LiFifn+1) * Fkn. Kk odd,

4, APPLICATIONS TO RISING DIAGONAL SUMS IN PASCAL'S TRIANGLE

The generalized Fibonacci numbers of Harris and Styles [4], [5] are the numbers ufn; p,g) which are found by
taking the sum of elements appearing along diagonals of Pascal’s triangle written in left-justified form. The number
uln; p,q) is the sum of the elements found by beginning with the left-most element in the n™ row and taking steps
of p units up and g units right throughout the array. We recall that

)T -
(4.1) —#—?———a = Z uln; pgx” .
” - X} - X n=0

Note that p = ¢ = 7 yields the Fibonacci numbers, or, F.7 = ufn; 7,1). Now, Eq. {4.1) combined with Theorem 1.1
gives us the number of compositions of 7 from the sequence { L,p+1 } as

(4.2) I LI R DY
=0 7 —x—xP*? n=0

so that €, = ufn, p, 1), the sequence of diagonal sums found in Pascal's triangle by taking steps of p unitsup and 1
unit right throughout the array. Note again that p = 1 gives us the Fibonacci sequence.
Suppose that tha compositions are made from the sequence of integers greater than or equal to p + 1. Then

Flx) = xPTT e xP*2 4 x P34 = xPHT 17 _ x),

so that Theorem 1.1 gives

(4.3 E Cox" = 7+7 = =X prii Z [uln;p, 1) — ufn — 1;p,1)]x"
n=0 7_)_;5__ 1—x—xP n=0
- X

and the number of compositions of » becomes
Cp = ufn;p,1)—uln—1p1).

Again the special case p = 7 yields Fibonacci numbers, with £, = F,_7.
Now, if the compositions are made from the sequence 7, p + 2, 2o + 3, -- or the sequence formed by taking every
{p + 1)t integer,
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Flx) = x +xPT2 4 x20#3 1 330 4 = /(1 xP*1)

in Theorem 1.1 gives

- 7 1 - xP*1
(4.4) Y, Cnx" = =
— J—o—X o x—xPt

7__Xp+1
so that
Cp = uln;p,1)=uln—p-1p1).

Again, p = 7 yields Fibonacei numbers, being the case of the sequence of odd integers, where Cp, = Fp,, asin (2.6).
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Folokokodook

A NOTE ON TOPOLOGIES ON FINITE SETS

A. R.MITCHELL and R. W, MITCHELL
The University of Texas at Arlington, Texas 76010

{n an article [1] by D. Stephen, it was shown that an upper bound for the number of elements in a non-discrete
topology on a finite set with n elements is 3(2"2) and moreover, that this upper bound is attainable. The follow-
ing example and theorem furnish a much easier proof of these results.

Example. Let 4, ¢ be distinct elements of a finite set X'with nfn > 2) elements. Define
r ={A-:)(IbeA or ceéA}.
Now I' is a topology on X and since there are 271 subsets of X containing b and 272 subsets of X which do not
intersect { b,c ¢ we have

214 2m2 = 3(272)
elementsin I,

Theorem. If £ is a non-discrete topology on a finite set X, then 2 is contained in a topology of the type de-
fined in the example.

[Continued on Page 368.]
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1. INTRODUCTION

We form the complete convolution array for a sequence whose generating function is

(1.1) flx) = Z fix' = Z a;,oxi
=0 =0
with /{0) = f, = a,, # 0, and let

(1.2) [T = 3" apx’, = 0,41,42, 43, ;
i=0
note that

_ _ {1 i=0
31 = 8j0 = {o,' i#0

This convolution array is the source of an infinite number of sequences which are intimately related to the coefficients
of fix)
Form a new sequence whose generating function S, (x) is given by

(1.3) Hf(x) = S,(x)

and

(1.4) S,Ix) = fix = Z aix’
=0 =0

We call the sequence {s,-}}'io the H-convolution transform of the sequence { f'}}:o, but it is easier to express
this relationship between the generating functions. That is, H{fi},f'i-o = { Si }, o is expressed Hf(x) = S, (x).

In the next section we shall prove that, if #f(x) = S, (x), then f(xS,(x)) = S, (x) with f(0) = S,(0) # 0. It is well
known that

| 2n
(1.5) to = —= (%)
defines the Catalan numbers, whose generating function is C(x) = [1 — /7 — 4x]/2x. Let f(x) = 1/(1 — x). The
Catalan generating function satisfies 7 + xC?(x) = C(x). This implies that 7//7 — xC(x)] = C(x). That is, if

fix) = 1/(1=x),
then
fixC(x)) = 1/[1—-xC(x)] = Clx),

so that from Pascal’s triangle generator we get the Catalan number genetator; #(7/(1 —x)) = C(x), C(0) = 1.
357
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2. LAGRANGE'S THEOREM
Lagrange’s Theorem: (Asin Polya and Szegd [1])
Let f{z) and ¥(z) be regular about z= 0 and (0) # 0, ¥(0) # 0, and z = ¢ /(z). Then

S o d i ) |
1—wylz) = n! dx" =0

Since
l0) # 0, and w = z/¢(z) = g(z),

if f{z) = 1, then we are dealing only with reversal of power series [2].
We now use Lagrange’s theorem to prove our major result.

Theorem 1. Let f(x) be analytic about x = 0, with /0) # 0, and

[f(X)]iH = Z a,-,-xi ,
=0
and let

a
S, (x) = Z ﬁ7 x';

i=0
then f(xS,(x))=S,(x),and S, (0) = f(0) # 0.
Proof of Theorem 1. Let
5,00 = 3 2
i=0

then .

d < i~ d e |
= 8, 0x) = 2 ax = 205,

i=0 =0 =~ dx
which can be visualized for Lagrange’s theorem as

4 B — 5/ i )
i 65,0 = 57 Lt 6|y

i=0
or
_d - __ftz)
o K6 = T
with w =x and ©(z) = f(z). From z = xf(z), x #0,
X—2z Zl,i
y df _ ) = z
24) = flz) pranllt
and so X—z dx .
(2.2) 1—xflz) = 1— dz .z dx
X X dz

Thus,

_d. = d—z—
. (xS, (x)) o
which implies that xS, (x) = z +¢; but xS, (x)— 0 and z— 0 as x — 0. Thus, ¢ = 0 and xS, (x) = z Thus,

xS, (x) = xf(xS,(x))
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or
S.x} = fixS, (x)) = flz).

Fram z = xf{z) to z = xS, (x} is a reversal of power series, and a necessary and sufficient condition for S, fx/ to be

regular about x = 0 is thatx = z/[f(z)] = g(z) be such that (0} # 0. Clearly, this is guaranteed by #(0) # §, since
g'lz) = [flz) - zF(z} ]/ (z} and g(o) = 1/f0) # 0.

~ See Copson [2].

We thus see that if f(x) is regular about x = 0 and 0} # 0, then Hf(x) =S, (x)isa function such that /0)= S, (0) #
0 and xS, {x)} = S,(x), and S, (x) is regular about x = 0,

Corollary. olz} = Slx),  where ©(xSix)) = Six/).

We now proceed to another important
Theorem 2. \Let f(x) be regular about x = 0 and #0) # 0, and

()7 =3 apx!, =012,
=0
and

oo

Gitx) = fv{-—/ ajij-1x" .
i=0
Then G;(x) =Shx) forj=1,2,3, .

Proof of Theorem 2.

; o~ xM g
gt = 3 A A
puvs i +)il it |x=0

or

A g = i1 S & AU
dx ! i jf ax!
=0 X =0
e i1 el i e
- X 2) 11, d2
1—xFf(z) i) dx ’
with «w = x and #(z) replaced by f1(z): the last step follows from (2.2), the result in the proof of Theorem 1. Thus,
A i) = i1 92
T (x1Gilx)) = jz ot
which implies that ijj(x) =2/ +¢ Since x"G,'(x} and 2/ - 0 as x — 0, then ¢ = 0, so that
Gjfx) = 2t = Flz) = Shix),
since the same hypotheses of Theorem 1 are used in Theorem 2, and there f{z} = §, (x). Thus,
sit) = 5 ' dipr)]
pare i+jil dx’ 0
= Z —-/— a,',,‘+j_7xi R j=1,23 .
=0 '

The next theorem is harder to prove.
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Theorem 3. Let f(x) be regular aboutx =0, (0) # 0, and

[l =3 apx’,  j=01,2-
=0

Let
oo . . . . |
Gl = 3 A X dUGI (X)) .
i=0 i=j i dx’ x=0
where the prime indicates/ # . Then
i g »
Gl +% L (s7)| = 871
I ax! X=

Proof of Theorem 3. Clearly the missing term is indeterminate since

a0l foiti#0;
aj—(f(){}} ‘{1'”/:0;

x=0
in either case, the missing term is 0/0. Now

; TP & B P PR PRTL
xT6ta) = 30 7 K LU ) )
i=0 ’ dx

x=0
so that

. P R Py
_li (X_/G_j()(” = _/-X-/-7 ,}’_ d'(f" (X}f (x) .
dx il dx!
=0 X | x=0
Thus, by Lagrange’s thearem, with w = x, ¢(z) = f(z), and f(z) replaced by (f(z))'j, and by the result (2.2) in the
proof of Theorem 1,

A i o)) = il i1y 02 o~j-1 dZ.
dx (x G./(X” /X 77" (z) dx fz o

since z = xf(z), so that
x'jG_j(x) = z'j+c,
and . - . .
G-jlx) = Fz) +cx! = SFUx) +ex? .

Recall that G_;(x) has a zero coefficient forx /. Thus, we can get equality if and only if

i
c=- 1, LA (S,’(x))l
" dx!

x=0

which concludes the proof of Theorem 3.

3. APPLICATIONS OF THESE THEOREMS

The three theorems we have proved now give us an explicit set of instructions on how to convert the entire con-
volution array generated by the powers of f(x) into the entire convolution array for S, (x/.

The central falling diagonal is converted into S, (x), and the diagonals parallel to this are explicitly converted into
S’ (x) for all integral j, where f(0) = S, (0) and f(xS, (x)) = S, (x). We have in reality explicitly derived series expan-
sions for all $/(x/ in terms of the entries of the convolution array for (x). This is
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(3.1) Sitx) = I_J+73,~,,-+,-.,x" ,
i=0
where
reisreiron |
ajitj-1 = ,”; M&llf_fﬁ) )
: ax x=0

for all integral j, with special attention given when 7 +j = 0, as earlier discussed. This, of course, can now be repeated
any number of times.

A particularly pleasing special case of sequences of convolution arrays arises upon taking f(x) = 7/(1 — x), giving
rise to the generating functions for the columns of Pascal’s triangle. This paper proves and generalizes the results
found when considering Catalan and related sequences which arose from inverses of matrices containing certain
columns of Pascal’s triangle [3], [4], [5], [6].

4. FURTHER GENERALIZATIONS

We can, of course, apply the convolution transform # to f(x) several times. Hf{x) = S, (x) means f(xS, (x)) = S, (x),
and H2f(x) = S, (x) means that #S, (x) = S, (x), where S, (xS, (x)) = S, (x). Further, we can show f(xS?(x)) = S,(x)
as follows:

f(xS,(x)) = S,(x);
replace x by xS, (x) to obtain

f(xS,(x)S, (xS, (x))) = f(xS3(x)) = S,(xS,(x)) = S,(x).
In general, one can show that, if

Sk(xSi+1(x)) = Sg+1(x),
then
(4.1) H*f(x) = Si(x)  and  F(xSK(x)) = Skix).
Thus, one can secure an infinite sequence of generating functions from one generating function, f(x/

We can now discuss the inverse convolution transform, #~7. From #(xS, (x)) = S, (x), we look at S, (x/f(x)),
replace x by xS, (x), so that

S, (xS, (x)/f(xS,(x))) = S,(x) = (xS, (x));
thus
S, (x/f(x)) = f(x).

H™'S, (x) = f(x) means S, (x/f(x)) = f(x). If we designate f(x) = S, (x, then
H'S,(x) = S,(x),
and, in general,
(4.2) H S (x) = Seix)  and  H7KS (x) = Slx),

generating a doubly infinite sequence of generating functions from the convolution array for f(x) =S, (x).
We now derive the explicit formulas for these.

Theorem 4.
Siix) = 23 /7#"’"""*/'""" k=012-".
=

Proof of Theorem 4.
We consider the elements aj; of the convolution array for f(x) such that f(0) # 0 and
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[fx)] 7T = }: a;jxi )
i=0

j an integer. We proceed first for/ positive,
For S, (x), the elements processed are a;;; for S, (x), the elements processed are a; »;; and for Sk (x), the elements
processed are a; ;. This is, of course, done sequentially. Consider the element a; ;+;-7. We now find the sequential
factors to convert it into the coefficient of x’ in S{(x/ .
First, we consider the diagonals parallel to the principal falling diagonal a;;;the diagonal S,(k'7)’+’ (x) contains
aj ki+j-y and was multiplied by
tk—1)i+j
ki+j
In the diagonals parallel to the a; 2;, the diégonal Szlk"2)i+/(x) contains a; kj+j-7 and was multiplied by an addi
tional factor of
(k=2)i+j
(k—1)i+f*
and so on. In the diagonals parallel to a; «/, S/((x) picked up a factor of j/(i +j). Thus, for the terms of S,/({x)
T ) itj (k—1)i+j
Sitx) = 2 757 : 2/+,L" T TR 4)

i
aj ki+~-1X
=0

j i
/71-—1{_’]-— aj ki+j-1X

1]
1

This can also be established by induction. Look at a; (x+7)i+j—7. Each factor we used before has its right subscript
of a;; advanced by / so that

Shsqlx) = Z (k———1+ T aj, (k+1)i4j-1%" .
i=0
This holds forj =1, 2, 3, -, and concludes the proof of Theorem 4, for / positive. For /=0, S (x) = 1. Forj <0,
there are special problems to surmount.

Theorem 5. 1f £ (xS¥(x)) = S(x), with $(0) = £7(0) # 0, then S(x) = S_1(x).
Proof. The function £ 1(x) induces a two-sided sequence of generating functions. From 77 (xS(x)) = S(x), we
e S/ (x))%) = £ (x)
Stx*(x)) = £ (x)
S xf(x)) = #ix).
But S_¢ (xf(x)) = f(x), so that Sfx) = :,Z (x).
Theorem 6. Forj>0 k>0,

sl = S 1 2 dirigrkig)

ki+j i i
=0 "7 dx

x=0

Proof. Apply Theorem 4 to the function F(x) = 1(x). Thus forj>0and k>0

oS X AU e )
Skl Z Tki—j sl
i=0 X x=0




1975] THE H-CONVOLUTION TRANSFORM 363

This is equivalent to the theorem.
SUMMARY:

oo I

. . kl
4.3 Shix) = J XA x)
4.3) I (x) g) i

x=0

nowholdsforj>17, k> 1 0rj<—1, k<—1. Thecasej=0, k # 0 is routine and k = 0 for any / is routine.
We note that in the proof sequence of Theorem 4, there are no zero factors except when /= 0.
Theorem 7 (The Completion of Theorem 4).

If f(z) is regular about z = 0 and £(0) # 0, then, for k # 0,

oo

(i) sl =S J+ X dU M) |

il
i=0 dx x=0
when —j/k # m, a positive integer.
The prime below indicates / #m,
: s ; i giggis, 1eki
j =§, i xDdY(FPx) (x)
Sklx) Ki+j il il

. i=0 x=0
(ii)
X7 g™ () (x)
m! de ( x=0
when —j/k = m, a positive integer.
Proof of Theorem 7. Let
< X! diFiri )
gjlx) = E I = e
= kit dx’ x=0

forj#0, and g, (x)=1.

Case (i).
ik~ k. xR gl )ekingg)
X !]/(X} Z ik il 4 i
=0 X x=0
Taking the derivative,
0 ity ) = [ L xitk=1\ S 2 dUelori)
(@.4) & g = ( a1 ) 5 o PRI
i=0 dx’ x=0

But .
z = xp(z) = xX(z).

From the corollary to Theorem 1, *(2) = S(x), where F(xS(x)) = S(x). To identify S(x/, recall that
fxGX(x)) = G(x)

implies that
G(x) = Sklx)
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as defined for #(x); hence,
Stx) = G5(x) = SK(x)

so that {z) = Sk (x).
Returning now to (4.4),

(Xj/kg (x)) = X//k-1fj-k(z) dZ

From z/x = f*(z), then (z/k) 17k - f(z), so that

k() = (z/x) KK and  xIlTpiR () = ilkT
Therefore,
a ik - jlk-1 dz_
dx (x gj(X” Z dX ,
so0 that
xi/kgj(x} = 7k ¢
27k ik
) = 2,
gj(X) Xi/k Cx .
Thus,

gilx) = Fifz) + Cx % = §f(x) + CxI7%
From the definition of

e K dr i)
i = 1wk 5 :'xi X

i=0 x=0

where —j/k # m, a positive mteger we see that gj(x) has a Mac|aunn power series. Further, Sk (x) is regular about
x =0, S (0) # 0, and hence Sk(x) is regular about x = 0 and S (0) # 0; thus Sk(x) also has a power series expansion.
Their difference is a power series so that if —j/k #m, a posmve integer, then C = 0, and the proof of part (i) is com-

plete. Since S} (x) = 1, then Theorem 7, part (i), is valid for all integral / and S, (x) = f(x) does not need such a form.
Case (ii). If —j/k = m, a positive integer, then

f 1y )£KT |
yj(X} = Z kl+/ X_ d(f (X)f (X))

il i
=0 dx x=0

when written as above has an indeterminate term; thus, as in the form in part (ii), it should be primed. Thus, g/(X)
has no term when ki +/ = 0, so it is necessary and sufficient that in
gitx) = Skix)+ cx %,

m
¢ =~-L L (sgmky)
m! dxm

x=0
This completes the proof of part (ii).
Theorem 8. When —j/k # m, m a positive integer,

Sk(x} = Z Py a/,k/+/-1X
i=0
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When —j/k =m, m a positive integer,

. ? . m - |
T DA U . i iy p LT
eed Ki+f m!
i=0 ax™ x=0

Thearem 8 is simply a collection of results in terms of

F*7(x) = 3 a4
i=0-

Theorem 9. Let
XS (x)) = Sklx),

then
- xm 4m —k m = kg d k
25 = (St = ) o )
m=0 x=0
Proof. Let
flz)=1, z=xSz);
then
= XM g™ ek, ym = X 0z
X & stk =18
,g‘ m! Ule =0 zax -
where
z=xSk)  and  SK(xS(x)) = Six),
but
Selxf ¥ (x)) = fix),
so that

Sk = Fkix).
That is, S(x) = £ (x). Further, »
x/z = SK(z) = 87 x) = *ix),
so that

I
@.5) X2 0T gk )y

< = F(x) f (xF*(x)) .
m=0 " dx"

x=0

Since /¥ 7{x) is implicit in our problem, we can express Eq. (4.5) in a better form.

[fx)] T = Z a,,-jxi

*ix) = Z aj k-1x"
i=0

365
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) =Y ajkerx!
=0

j+
Xf-k(X} = Z a,-,_k..7x’ !
i=0

377 xrX(x)) = 2 (i + 7}3;,_/(_1)(’ = Z b,-,_k_1xi .

=0 =0
Let
k d k I O m .
ix) i (xf(x)) = L Amnx™ ;
m=0
then
m m
(4.6) Am = L atk-1bm-t k-1 = Z (m+1—tlagk-1am-t-k-1, k& # 0.
t=0 t=0

Comment: For each Sj; {x), there is one term (when —j/k = m, m a positive integer) that is not easily specified by
the convolution array for f{x). With Theorem 9, we now know how to get that missing term in terms of the convolu-
tion array coefficients for f(x) as given in Eq. (4.6).

5. FURTHER GENERALIZED IDENTITIES

The following is a consequence of Theorem 8 for —j/k # m, a positive integer.

Theorem 10 (A Generalized Identity)

Let
Gjlx) = Z /—(-I_'jf'_/_ ai,ki+j-1Xi = S/I;(X),
i=0
Gslx) = Y k/_i? aikirs-1%' = Sglx);
=0
then

oo

Gosjlx) =9, k—/%(??/—) ajkitsti-1x' = ST (x).

=0
Thus, by convolution it is true that
. n .
(5.1) i i: ny an,kn+stj-1 = E /51:7 dtktti-1 /—(-{—n—:%—_’_-; an-tk(n-t)ts-1 -
=0

Corollary 3 (Abel Convolution Formula)

Let f{x)=e* and k=17 in Theorem 10; then by exponential convolution,
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n
S tesri =3 (1) s i

n-t
n—t+s .
t+] +s f /
t=0

Corollary 2 (Generalized Abel Convolution Formula)
Use Theorem 10 with f(x) = &* and & a positive integer; then
S +[ _qjn
Wntits [tn+1)k+s+j—1]

[tn—t+1)k+s—1]7F,

n
:FZO(,;)#— [(l‘+7)k+/"7]t—'(——:7)-_;';"

See Raney [14], who conjectured this form.
Corollary 3 (Hagen-Rothe Identity)
Let f(x) = {1+x)?, k=1, in Theorem 10; then

sty aln +s +j) a(t+s) aln — t+j)
n+s+j ( ) Zt+s )n——t+/ n—t

Corollary 4 (Generalized Hagen-Rothe Identity)
Let f{x) = (7 +x)? and k be a positive integer in Theorem 10; then

st{ (a[k(n)+s+j)
kn +s+j n ;

Z ey a[{kt)t+j) 7 _sm (a[k(r;:t;l+s)

6. FINAL REMARKS

I. Schur in [8] has done much in this area. Schur [8] and Carlitz [7] give derivations of Lagrange’s theorem. H.
W. Gould in [13] has summarized much of what has been done earlier. There is still much that can be done for
specialized functions #(z).
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Proof.  Since Z is a non-discrete topology on X there exists ¢ X with ; c } & 2. Let A be the topology on X

enerated b
’ ! EUN)(}IXGX\iL'}}

and notice A is non-discrete since % c } &

Consider
S=n{A eAIceA} .
Since A'is finite if S = { c} then i( c} € A. Thus, choose beS\{_c}. Let
F=={BchbeB or ceéB}.
Let Te A. lfce TthenSc Tandso b € T which implies7Te I lf ¢ £ T then T € T" by definition of I'. Hence
ZcAcT.

Corollary. Every non-discrete topology on a finite set with n elements is contained in a non-discrete topology
with 3(277<) elements.
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ADVANCED PROBLEMS AND SCLUTIONS

Edited by
RAYMOND E. WHITNEY
Lock Haven State College, Lock Haven, Pennsylvania 17745

Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathematics
Department, Lock Haven State College, Lock Haven, Pennsylvania 17745. This departmant especially welcomes
problems believed to be new or extending old results. Proposers should submit solutions or other information that
will assist the editor. To facilitate their consideration, solutions should be submitted on separate signed sheets with-.
in two months after publication of the problems.

H-255 Proposed by L. Carlitz, Duke University, Durham, North Carolina.
Show that

zzm % (—1)itk (2,77 )(2/:1 ) (2m +2n) ( 2m+2n Yy - qmin (3m + 3n)i(2m)i(2n)!
i .

ot jtk 2m-j+k mini(m +n)!(2m +n)l{m +2n)! *
=0 k=

where (a), = ala + 1) (a+k—1)
H-256 Proposed by E. Karst, Tucsan, Atizona.

Find all solutions of

(i Xty+z =
and

(i) X4y 4z = 26'n+1 -1
simultaneously for n < 5, given that

(a) x, y, z are positive rationals

(b) 22771 _ 1, 2677 _ 1 areintegers

{c) n=1log,~/t, where ¢ is a positive integer.

22n+7 ~1

H-257 Propaosed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California.

Consider the array, J, indicated below in which Fa,+7 (n =0, 1, 2, -+ ) is written in staggered columns

1
2 1
5 2 1
D: 13 5 2 1
3 13 5 2 1
89 34 13 5 2 1

i) Show that the row sumsare Fop+2(n=0, 1,2, - )
(ii) Show that the rising diagonal sums are Fp.7Fpag (n = 0, 1,2, ).
(i) Show that if the columns are multiplied by 1, 2, 3, --- sequentially to the right, then the row sums are F2,+3 -~
1n=0,1,2 )

369
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READER COMMENTS
Paul Bruckman noted that H-241 is identical to H-206.
Charies Wall noted that H-188 is a weaker version of B-141.

H-239 Correction
The given inequality should read

codlo |

SN

1
| < 100

QU

SOLUTIONS
A NEST OF SUBSETS

H-223 Proposed by L. Carlitz and R. Scoville, Duke University, Durham, North Carolina.

Let S be a set of £ elements. Find the number of sequences (A,, A,, -, A, ) where each A; is a subset of S, and
where A, CA,, A, DA, A, €A, A, DA, etc.
Solution by the Propasers.

Let ¢, be the characteristic function of A,, ¢, the characteristic function of A;, ¢, of A;, ¢, of A, etc. The
condition on the A/'s is equivalent to

ay Gilf) = 1 = ¢i+1(j) = 0, Yij-

For instance, suppose A; C Aj+7. Theni+ 7 iseven. If ¢;(j) = 1, thenj € A;, jE Ajr1, j & Ajrq and $j1(j) = 0.
The matrix (¢;(j)) has k columns each of which is a sequence of 0's and 1's of length » in which no 1's occur con-
secutively. Since there are F,,+2 such sequences, there are F,/§+2 matrices satisfying (1)’.

SUM LEGENDRE
H-227 Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Show that

m n ) minfm,n)

Y2 ’;")( v ) @ ckm v ds = mint Y ';’)( 7)a ™A )"
=0 k=0 r=0

In particular, show that the Legendre palynomial P, (x/ satisfies

n
n1PPatx) = 30 =17 (1) %) i rokr s a,

i k=0
wheread = %(x + 1), bc=%(x— 1)
Solution by the Proposer., We have
m n
A ~j . .
z kzg =y () () i ok bk
j=0 k=
m . m n
ST (N (2) B X (7)(7) e
j=0 k=0 r=0 s=0

Ms
Ms

1
Q
©
i
QS

() (2)smersmt.
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where

m n
Smn = Z (_7)177-1“( r}?)/-m+n-r-s 2 (—1)7k ( Z ) P

j=0 k=0
Since

m
L COVRR A SH%

it follows that Sp,, = 0 unless

that is, r +s =s. Hence

m n
Do o0 (=1 INRY o+ k)™ b+ k)" = minl 30 (T W5 ) e e b
/=0 k=0 r+s=n

min(m,n)

= mln! Z ( ’:’)(:’) am..rdn-r(bﬂ)r .
r=0

Since (see for example G. Szegd’s Orthogonal Palynomials, p. 67)
n 2 k n—k
= n x -1 x+ 1
- £ () (52)'(341)"
k=0

the second assertion follows at once.
ATRIANGULAR ARRAY

H-229  Proposed by L. Carlitz, Duke University, Durham, North Carolina.

A triangular array A(n,k) (0 < k < n) is defined by means of

(*) Aln+1,2k) = Aln, 2k — 1) +aAln, 2k)
Aln+1,2k +1) = Aln, 2k) + bAln, 2k + 1)

together with

[}

Al0,0) = 1, AlOKk) = 0 (k # 0)

Find A(n,k) and show that

}

Z Aln, 2k)(ab)* = ala +b)"7,
k

D" Aln, 2k + 1)(ab)* = (a+b)"" .
k

Solution by the Propsoer.
It follows from the definition that

Afn,0) = a" (n=2012-).

Then
Aln, 1) = a1 +bAMn—1,1)

so that

n
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n n
Aln,1) =3 =b_

a—b
Put
Arlx) = 3 Alnkix" .
n=k
Then by (*)
Agklx) = Y (Aln—1,2k— 1)+aAln— 1, 2k)X" = xAgg_1(x) + axAgc(x),
n=k
so that
(1—ax)Agx = xAog-1(x).
Similarly
(71— bx)Agk+1(x) = xAg(x).
It follows that
Agir1lx) = x2H(1 — ax) k=111 - px) 51
(**) 2k -k-1 -k
Az (x) = x<5(1—ax)™""(1 - bx)
Since
(7 __aX)—k—7 - Z ( k;l’ )afxl’l
r=0
we get
n-2k-1
_ K+ —k—r—1 -2k-r-1
A, 2k+1) = 3 (KEr)(n—kor=1)arpn-2r
r=0
n-2k
- N g kFr n—k—r—1v _r,n-2k-r
A, 2k) = 3 (TR )ab .
r=0
It follows from (¥**) that
2k _ 1—bx
Z Az lxly (1—ax)(1 - bx) — x*y?
k=0
(***)
2k+1 _ Xy
IZ% Ak+1(xly A1 —ax)(1 - bx) — x?y?
Hence
k - 1—bx+xy
Z Ar(xly (1—ax)(1—bx)—x*y* *
k=0
For a = b this reduces to 7

o i T—ax—x
which is correct. a 4

Finally, taking y* = ab in (***), we get

S Aln, 2k)ab)* = ala+6)™7, D Aln, 2k + 1)fab) = (a+5)"
k k

Jedodcdriodok
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ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A.P. HILLMAN
University of New Mexico, Albuguerque, New Mexico 87131

Send all communications regarding Elementary Problems to Professor A.P. Hillman; 709 Solano Dr., S.E.;
Albuquerque, New Mexico 87108. Each solution or problem should be on a separate sheet (or sheets). Preference
will be given to those typed with double spacing in the format used below. Solutions should be received within four
months of the publication date.

DEFINITIONS
The Fibonacci numbers F,, and the Lucas numbers L, satisfy

Fni2 = Fp1+Fn, Fo =0 F, =1 and Lpt2 = Lp#1+Llp, Ly =2, L, =1

PROBLEMS PROPOSED IN THIS ISSUE
B-316 Proposed by J.A.H. Hunter, Fun with Figures, Toronto, Ont., Canada,

Solve the alphametic:
TWO
THREE
THREE

E1LGHT
Believe it or not, there must be no 8 in this!
B-317 Proposed by Herta T. Freitag, Roanoke, Virginia .
Prove that L 5,7 is an exact divisor of Lg,-7 — 7forn=1,2, «..
B-318 Proposed by Herta T. Freitag, Roanoke, Virginia.
Prove that F2,, + 8F 2, (Fap + Fgp) is a perfect square forn =1, Z, -
B-319 Proposed by Wray G. Brady, Slippery Rock State College, Slippery Rock, Pennsylvania.
Prove or disprove:
dededcdld o)
B-320 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas.
Evaluate the sum:
n
2:/%&ﬂm~
=0

B-321 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas.
Evaluate the sum:

373
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n

> FiFitamei.-
k=0

SOLUTIONS
A COMBINATORIAL PROBLEM

B-292 Proposed by Herta T. Freitag, Roanoke, Virginia.

Obtain and prove a formula for the number Sfn,t) of terms in (x, + x, + -+ x,) ", where n and ¢t
are integers withn > 0, t > 0.

. Solution by Graham Lord, Secane, Pennsylvania.

S(n,t) is the number of unordered selections of size t and a set of » elements, that is:
- gn+tt—1
Sht) = ("FETT) .

This is a well known result. See for example H.H. Ryser, ““Combinatorial Mathematics,”” Carus Monograph, American
Math Association, 1963.

1. Solution by Frank Higgins, Naperville, Iilinois.
_fn+tt—1
St) = ("*17T) .

Far n = 1, the formula clearly holds for all integers ¢ > 0, Suppose the formula holds for some integer # > 7 and all
integers t > 0. Now, for any integer ¢ > {, we have that

t
-k _k
(x, +x, +'”+Xn+xn+7)t = [(Xx X, +"'+Xn)+xn+7]t = Z ( It; ) &, X +."+X")t an+1
k=0
and hence, by the induction hypothesis, that
t
= n+t—k—1 _ +t
Stn+1,¢) Z( t—k )"("t )

k=0

which completes the proof.

Also solved by Paul S. Bruckman, Jeffrey Shallit, A.C. Shannon, Gregory Wulczyn, and the Proposer.

THE FIRST SIX FIBONACCI TERMS
B-293 Proposed by Harold Don Allen, Nova Scotia Teachers College, N.S., Canada,

Identify 7, W, H, R, E, F, [, V and G as distinct digits in { 1,2,+,9 } such that we have the following sum (in
which 1 and 0 are the digits 1 and 0):
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Solution by George Berzsenyi, Lamar University, Beaumont, Texas.

It is easy to see that the digit carried from the thousands column must be 1; consequently, 7+ 7 = £. Applying
this fact to the ones column yields the congruence 27 + 4 = T (mod 10) whose only solution is 7 = 6. Therefore,
E = 7 follows. On the basis of the thousands column one can also easily deduce that / < 5. Furthermore, it is evident
that the values of VV and I/ are interchangeable. The value of # determines the possible values for V and 4 resulting
in the following ten cases:

) H=1;v,we {58}: (6 H=4:V,we {15}:
) H=1;V,we {49}, () H=5V, we {34},
@B H=2:v,we {13}, @) H=5V,we {89},
@ H=2;vV,we {59}, O H=8V,we {19};
6) H=3:V,we {14}, (0 H=9;V,We {38}.

All but two of these lead to contradictions. Case (4) yields one solution, from Case (9) two solutions are obtained;
they are given below.

1 1 1
1 1 1
690 610 610

62477 68577 68277
8157 3297 5497

71326 72486 74386

As remarked earlier, upon interchanging the values of V/ and /¥, three additional solutions may be given. It may be
of interest to note that the number of essentially different solutions, the possible values of £ (commonly used to
denote the Fibonacci numbers), as well as the possible values of # (often used to denote generalized Fibonacci num-
bers) are all Fibonacci numbers.

Also (partially) solved by Paul S. Bruckman, Warren Cheves, J.A.H. Hunter, John W. Milsom, Carl Moore, Jim Pope,
A.C. Shannan, and the Proposer.

A FORMULA SYMMETRIC IN 2 AND 7
B-294 Proposed by Richard Blazej, Queens Village, New York.
Show that
Folg+ Fylp = 2Fpe.
Solution by Frank Higgins, Naperville, Illinais.
Using the Binet formulas we have
Fnlg+ Fxlp =( ""-;\/E”i )(ak+bk)+ (1’1\75_/1" ) (" +b") = 2 ( f%'f ) = 2Fpi .

Also solved by George Berzsenyi, Paul S. Bruckman, Warren Cheves, Herta T. Freitag, Mike Hoffman, Peter A.
Lindstrom, Graham Lord, John W. Milsom, Carl Moore, F.D. Parker, Jeffrey Shallit, A.C. Shannon, Paul Smith,
Gregory Wulczyn, and the Propaoser.

CONVOLUTION OR DOUBLE SuM

B-295 Proposed by V.E. Hoggatt, Jr., California State University, San Jose, California.

Find a closed form for n

Z (n+1—k)Fox = nFa+(n—1)Fgq+-+Fo, .
n=1
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Solution by Graham Lord, Secane, Pennsylvania.

The sum of the first k odd indexed Fibonacci numbers is Fo and that of the first k even indexed ones is Fox+7 —
1, where k > 1.

Therefore,
n n i n
L (n+7—k}F2k=Zz F2,'=z (Foj+1—1)
k=1 j=1 i=1 j=1

= Fz(n.;.” -n—-1.
NOTE: Compare B-290.

Also solved by George Berzsenyi, Paul S. Bruckman, Herta T. Freitag, Frank Higgins, Mike Hoffman, Peter A.
Lindstrom, Carl Moore, Jeffrey Shallit, A.C. Shannon, Paul Smith, and the Propaser.

AMOST CHALLENGING PROBLEM
B-296 Proposed by Gary Ford, Vancouver, B.C., Canada.
Find constants a and b and a transcendental function G such that
Glyn+3) + Glyn) + Glyn+2)Glyp+1)
whenever y,, satisfies y,+2 = ayp+7 + byn.
[. Solution by Carl F. Moore, Tacoma, Washington.

Two solutions are given by:

(1) a=b=1 and Glu) = 2cosu,
(2) a=b-=1 and Glu) = cY+c™Y (¢ #1).
[Notice G(u) = 2 cosh u is a pleasing special case.]
To show (1),
Glyn+3)+ Glyp) = 2 cos(yp+3) + 2c0s (yp) = 2 (cos (yp+3) +cosly,))

2 2

2Yn+2 2Yn+1
Z(Zcos 5 - cos 2

= (2cos fype2))-(2cos (vp+1)) = Glyn+2)-Glypn+1).

+ —
-5 (Zm Ynt3t¥n oo Vnt3 Vn)

0

To show (2),
G{Vn+3)+G(yn} - (cyn+3+c‘yn+3}+(cyn +L_'Vn) - cVn+2+Vn+1 +L“Vn+2'yn+1 +cyn+2‘yn+7

- Yn+ “Yn+2__~¥Yn+ Yn+2 ~Ynt+ Yn+1 ~Yn+
+cy,,+7y,.,+2=cyn+2_cn1+c n2‘c n1+cn2.c n1+cn1'c n+2

_ (cyn+2+c‘Vn+2).(cVn+7 +C‘Vn+7) - G(y,,+2I-G(yn+1}.

/l. Solution by the Proposer.

Let G(x) = ¢* + ¢™, with ¢ any (complex) constant and let { y, } be a generalized Fibonacci sequence (satis-
fying y¥p+2 = yn+1 * ¥n and having any initial conditions).

There were no other solvers.
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PARTIAL FRACTIONS
B-297 Proposed by Paul S. Bruckman, University of lllinois, Chicago Circle, llinois.

Obtain a recursion formula and a closed form in terms of Fibonacci and Lucas numbers for the sequence (G, ) de-
fined by the generating function:

(1-3x=x*+5x> +x* —x5) = Gy + G, X+ GoX*> # - Gpx" +oe
Solution by David Zeitlin, Minneapolis, Minnesota.

We note that
Gn5— 3Gn+qg — Gn+3+56n+2+ Gpvy1— Gp = 0
Since
(1=3x—x2+5x2+x* — x5} = (1=3x+x*})(1 =x — X’)(7+X/
e obtain, using partial fractions,

10 L 18— _ _5(2+x) , 2

71— 3x—x*+5x3+x* —x° 71— 3x +x* 1—x—x? T+x °

1f Wyt =aly+1 + bW, then

™ U = W, + (W, — al, Jx
x = Wo 2 W, = ally jx

71— ax — bx?
n=0
Thus,
_18—-7x_ 7x _2+x 7 n,n
7__ X+X2 Z L2n+6‘X ; 7 X — x2 Z Fn+3X 1+x z& ) .
n=0 =
Thus,

G, = —7-277- {Lopte— 5Fnez+2(-1)7).
Also solved by Frank Higgins, Carl F. Moore, A.C. Shannon, Gregory Wulczyn, and the Proposer.

Yereodoiok i



VOLUME INDEX
ABERCROMBIE, ALEXANDER G. Letter to the Editor, Vol. 13, No. 2, pp. 171-173.

ALDER, H. L. “ldentities Relating the Number of Partitions into an Even and 0dd Number of Parts,” Vol. 13, No.
2, pp. 147-148. Co-author, Amin A. Muwafi. "‘Generalizations of Euler's Recurrence Formula for Par-
titions,” Vol. 13, No. 4, pp. 337-339. Co-author, A. Muwafi.

ALLADI, KRISHNASWAMI. “A Farey Sequence of Fibonacci Numbers,” Vol. 13, No. 1, pp. 1-10. “A Rapid
Method to Form Farey Fibonacci Fractions,” Vol. 13, No. 1, p. 31. “Generalized Fibonacci Tiling,”
Vol. 13, No. 1, pp. 137—144. Co-author, V. E. Hoggatt, Jr. ““Compositions with Ones and Twos,"”
Vol. 13, No. 3, pp. 233-239. Co-author, V. E. Hoggatt, Jr. “Approximations of Irrationals with
Farey Fibonacci Fractions,” Vol. 13, No. 3, pp. 2656—259.

ALLEN, HAROLD DON. Problem Proposed: B-293, Vol. 13, No. 4, p. 274. Problem Solved; B-293, Vol. 13, 'No.
4, p. 275.

ARKIN, JOSEPH. “The Generalized Fibonacci Number and Its Relation to Wilson's Theorem,” Vol. 13, No. 2, pp.
107-109. Co-author, V. E. Hoggatt, Jr.

BERGUM, G. E. "“Chebyshev Polynomials and Related Sequences,” Vol. 13, No. 1, pp.” 19—24. Ca-authors, V. E.
Hoggatt, Jr., and W. J. Wagner. “Sums and Products for Recurring Sequences,” Vol. 13, No. 2, pp.
116—120. Co-author, V. E. Hoggatt, Jr.. “Generalized Convolution Arrays,” Vol. 13, No. 3, pp. 193—
197. Co-author, V. E. Hoggatt, Jr..

BERZSENYI, GEORGE. “Sums of Products of Generalized Fibonacci Numbers,” Vol. 13, No. 4, pp. 343-344.
Problems Proposed: B-320, Vol. 13, No. 4, p. 373; B-321, Vol. 13,.No. 4, p. 373.  Problems
Solved: B-293, Vol. 13, No. 4, p. 375; B-294, Vol. 13, No. 4, p. 375; B-295, Vol. 13, No. 4, p. 376.

BICKNELL, MARJORIE. ““Special Partitions,” Vol. 13, No. 3, p. 278. Co-author, V. E. Hoggatt, Jr.. ““A Primer on
the Pell Sequence and Related Sequences,” Vol. 13, No. 4, pp. 345—-349.  “Palindromic Composi-
tions,”” Vol. 13, No. 4, pp. 350—356. Co-author, V. E. Hoggatt, Jr..

BLAZEJ, RICHARD. Problems Proposed: B-298, Vol. 13, No. 1, p. 94; B-294, Vol. 13, No. 4, p. 375,
Problems Solved: B-282, Vol. 13, No. 2, p. 192; B-294, Vol. 13, No. 4, p. 375.

BOOTH, ADA. “ldiot's Roulette Revisited,” Vol. 13, No. 2, pp. 181-184.
BRADY, WRAY G. Problems Solved: B-275, Vol. 13, No. 1, p. 95; B-282, Vol. 13, No. 2, p. 192; B-286, Vol. 13,

No. 3, p. 286; B-290, Vol. 13, No. 3, p. 288; B-192, Vol. 13, No. 3, p. 288. Problem Proposed: B-319,
Vol. 13, No. 4, p. 373.

378



DEC. 1975 VOLUME INDEX 379

BRIDGER, CLYDE A. Problems Solved: B-279, Vol. 13, No. 3, p. 286; B-288, Vol. 13, No. 3, p. 287; B-289, Vol.
13, No. 3, p. 287.

BROOKE, MAXEY. Problem Proposed: B-280, Vol. 13, No. 2, p. 191. Problem Soived: B-280, Vol. 13, No. 2, p.
191,

BROUSSEAU, BROTHER ALFRED. "Symmetric Sequences,” Vol. 13, No. 1, pp. 33—41. “A Least Integer
Sequence Investigation,” Vol. 13, No. 1, pp. 145—146.

BROWN, J. L., JR. "A Recursive Method for Counting Integers not Representable in Certain Expansions,” Vol.
13, No. 4, pp. 299-302.

BRUCKMAN, PAUL S. "“A General ldentity for Multisecting Generatina Functions,” Vol. 13, No. 2, pp. 103—104.
A Formula for Aj(x},” Vol. 13, No. 2, pp. 106—106. “The H-Convolution Transform,” Vol. 13, No.
4, pp. 357-368. Co-author, V. E. Hoggatt, Jr.. Probiems Proposed: H-245, Vol. 13, No. 1, p. 89;
B-277, Vol. 13, No. 1, p. 96;B-278, Vol. 13, No. 1, p. 96; H-251, Vol. 13, No. 2, p. 185; H-219, Vol.
13, No. 2, p. 185; B-288, Vol. 13, No. 3, p. 287; B-289, Vol. 13, No. 3, p. 287; B-297, Vol. 13, No. 4,
p. 377. Problems Solved: H-216, Vol. 13, No. 1, p. 91; H-217, Vol. 13, No. 1, p. 91; H-218, Val. 13,
Ne. 1, p. 93; B-274, Vol. 13, No. 1, p. 95; B-275, Vol. 13, No. 1, p. 95; B-276, Vol. 13, No. 1, p. 96,
B-277, Voli. 13, Ne. 1, p. 96; B-278, Vol. 13, No. 1, p. 96; H-219, Vol. 13, No. 2, p. 187; B-280, Vol.
13, No. 2, p. 191; B-281, Vel. 13, No. 2, p. 192; B-282, Vol. 13, No. 2, p. 192; B-283, Vol. 13, No. 2,
p. 192; B-286, Voli. 13, Neo. 2, p. 192; B-279, Vel. 13, No. 3, p. 286; B-286, Vol. 13, No. 3, p. 286;
B-287, Vol. 13, No. 3, p. 287; B-288, Vol. 13, Ne. 3, p. 287; B-289, Val. 13, No. 3, p. 287; B-290,
Vol. 13, No. 3, p. 288; B-192, Vol. 13, No. 3, p. 288; B-292, Vol. 13, No. 4, p. 374; B-293, Val. 13,
No. 4, p. 375; B-294, Vol. 13, No. 4, p. 375; B-295, Vol. 13, No. 4, p. 378; B-297, Vol. 13, No. 4, p.
377.

BUNDER, M. W. “On Halsey's Fibonacci Function,” Vol. 13, No. 3, pp. 209—-210. “Products and Powers,” Vol.
13, No. 3, p. 279. “A Special Case of the Generalized Fibonacci Sequences Over an Arbitrary Ring
with {dentity,” Vol. 13, No. 3, p. 280.

BYRD, PAUL F. “New Relations Between Fibonacei and Bernoulli Numbers,” Vol. 13, No. 1, pp. 56—69. “Rela-
tions Between Euler and Lucas Numbers,” Vol. 13, No. 2, pp. 111-114,

CARLITZ, LEONARD. “Eulerian Numbers and Operators,” Vol. 13, No. 1, pp. 71-83. Co-auther, Richard
Scoville. “Fibonacci Notes—4: g-Fibonacci Polynomials,” Vol. 13, No. 2, pp. 97-102. ““Some
Identities of Bruckman,” Vol. 13, No. 2, pp. 121-126. “A Note on Weighted Sequences,” Vol. 13,
No. 4, pp. 303—306. Co-author, Richard Scoville. Problems Proposed: H-248, Vol. 13, No. 1, p. 89;
H-250, Vol. 13, No. 2, p. 185; H-220, Vol. 13, No. 2, p. 187; H-221, Vol. 13, No. 2, p. 188; H-253,
Vol. 13, No. 3, p. 281; H-226, Vol. 13, No. 2, p. 281; H-256, Vol. 13, No. 4, p. 369; H-223, Vol. 13,
No. 4, p. 370; H-227, Vol. 13, No. 4, p. 370; H-229, Vol. 13, No. 4, p. 371. Problems Solved:
H-216, Vol. 13, No. 1, p. 90; H-220, Vol. 13, No. 2, p. 187; H-221, Vol. 13, No. 2, p. 189; H-226,
Vol. 13, No. 3, p. 282; H-223, Vol. 13, Ne. 4, p. 370; H-227, Val. 13, No. 4, p. 370; H-229, Vol. 13,
No. 4, p. 371.



380 VOLUME INDEX [DEC.

CHEVES, WARREN. Problem Proposed: B-275, Vaol. 13, No. 1, p. 95. Problems Solved: B-275, Vol. 13, No. 1, p.
95; B-293, Vol. 13, No. 4, p. 375; B-294, Vol. 13, No. 4, p. 375.

CHOUTEAU, CHARLES. Problem Soived: B-279, Vol. 13, No. 3, p. 286.

CROSS, DONALD C. “Fibonacci Multi-Multigrades,” Vol. 13, No. 3, pp. 211212

EVERETT, C. J. “A Greatest integer Theorem for Fibonacci Spaces,”” Vol. 13, No. 3, pp. 260—-262.
FINKEL, DANIEL. Problem Proposed: B-310, Vol. 13, No. 3, p. 285.

FINKELSTEIN, RAPHAEL. “On Lucas Numbers Whcih are One More Than a Square,” Vol. 13, No. 4, pp. 340—
342.

FORD, GARY. Problem Proposed: B-296, Vo!. 13, No. 4, p. 376. Probiem Solved: B-296, Vol. 13, No. 4, p. 376.

FREITAG, HERTA T. Problems Proposed: B-282, Vol. 13, No. 2, p. 192; B-314, Vol. 13, No. 3, p. 285; B-286,
Vol. 13, No. 3, p. 286; B-287, Vol. 13, No. 3, p. 286; B-317, Vol. 13, No. 4, p. 373; B-318, Vol. 13,
No. 4, p. 373; B-292, Vol. 13, No. 4, p. 374; B-294, Vol. 13, No. 4, p. 375. Problems Sclved: B-275,
Vol. 13, No. 1, p. 95; B-276, Vol. 13, No. 1, p. 96; B-281, Vol. 13, No. 2, p. 192; B-282, Voi. 13, No.
2, p. 192; B-286, Vol. 13, No. 3, p. 286; B-286, Vol. 13, No. 3, p. 287; B-290, Vol. 13, No. 3, p. 288;
B-292, Vol. 13, No. 4, p. 374;B-295, Vol. 13, No. 4, p. 376.

GARFIELD, RALPH. Problems Solved: B-286, Vol. 13, No. 3, p. 286; B-287, Vo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>