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SOME OPERATIONAL FORMULAS 

HUMPHREY NASH 
Department of Mathematics, East Carolina University, Greenville, North Carolina 27834 

1. INTRODUCTION 

In this paper we consider some simple variations of the derivative and the difference operator; deriving formulas 
for powers and factorials. 

Let s(n,k) denote the Stirling number of the first kind and S(n,k) denote the Stirling number of the second kind. 
They are defined by: 

n 

(1.1) Mn = Y s(fl'k)xk 

n 

(1.2) x* = Y S{n,k)(x)k , 
k=1 

where 
(x)n = x(x- 1)(x-2)-(x-n+V. 

Substituting (1.1) in (1.2) or (1.2) in (1.1) shows that 

an = *Ls(n,k)hk and bn = Y*S(n,k)ak 

are equivalent (inverse) relations. 
Define 

(1.3) 

(1.4) 

(1.5) 

(1.6) B(n)(x) = Y (-1)n~k$(n,k)xk . 
k=1 

l\\zx\An(x) = (x)n, the falling factorial;^ fn*(x) = xfn), the rising factorial an6Bn(x) is the single variable Bell poly-
nomial [3, p. 35]. We ha\i&An(B(x)) = xn = Bn(A(x)l etc., where (B(x)k =Bk(x), (A(x))k ^Ak(x). 

We will employ the following special notation: 
(1.7) [o<t>]n - e y 

A 

AnM = Y 
k~t 

(n)(x> - Y (-
k=1 

n 
BnM = Y 

k=*1 

n 

s(n,k)xk 

1)n~ks(nfk)xk 

$<n,k)xk 
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and if 
n 

fnM = Yl *'*' 
/=0 

then 
n n 

i=0 i=0 

REMAR K. When 6 and 0 commute or n * 1 then 
fdH" = (d(/))n and f„(8<kf>* f„[8<t>]. 

2. THE OPERATORS^, Dx, xA, Ax 

Operators of the form (xD)n, Dnxn, (Ax)n, etc., are often difficult to work with and we seek equivalent forms. 
First we note that 

n 
(2.1) (xD)n = An(xD) = Y, S(nfk)(xD)k = xnDn 

k=1 

follows by induction from 
(xD)k+1 = (xD)k(xD-k) = xkDk(xD-k) = xk(Dkx)D - kxkDk 

= xk(xDk + kDk~1)D-kxkDk - xk+1Dk+1 . 

But (2.1) admits the inverse 

(2.2) (xD)n = Ys$(n,khkDk = Bn[xD]. 

Equation (2.2) can slo be shown directly using the recurrence for S(n,k) [4, p. 218]. 
Similarly, 

n 
(2.3) (xA)n = An(xA) = Ys a(nfk)(xA)k - x(n)An 

k=>0 

follows by induction from 
(xA)k+j = (xA - k)(xA)k = (xA - k)x(k)Ak = \ xAx(k} - kx(kj\ Ak 

= {xx(k}A + kx(x + l)(k-1) + kx(x + 1)(k-1)A - kx(k) }Ak 

= {xx(k)A+kx(x+1)k~1A\Ak = (x + k)x(k)AAk = X^+V ^ . 

But (2.3) admits the inverse 
(2.4) <xA)n = XS(n,k)x(k)Ak = BJXAJ 

where xJ = xfJ. 
Since 

(Dx)n = x~1(xD)n+1D'1 and (Ax)n » x'1 (xA)n+1 A"1 

we have from (2.2) and (2.4), respectively, 
n+1 

(2.5) (Dx)n = x'1Bn+1[xD]D'1 = £ S(n + 7, k)xk'1Dk~1 , 
k=l 
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n+1 
(2.6) (Ax)n = x-7BnH[xA]AMl = J^ S(n+1, k)(x+l)(k~1)Ak'1 . 

k=1 

Using Leibnitz's formula for the derivative of a product we get; cf. [ 1. p. ] 

D"*" = £ ft) (Dk*n)Dn-k - £ (?) (n)kx
n-kD»-k - £ M d^o"-

k=0 k=0 X k=0 X 

Replacing /7 - /r by £ we have 

(2.7) D»x»-Y. ( O F * * ^ -
k=0 X 

Using 

we have by induction 
(2.8) 0 V = (xD + 1)M = (Dx)(n) - A(n)(Dx). 

Since 
fr/?/^ - (xD)(xD+1)(n"1) - (xD)(Dx)(n~1} = xDDn"1xn'1 

we have 

Using the difference analogue of Leibnitz's formula [2, p. 96] wegetcf. [1,p. 4 ] , 

A V 7 * ' = ^ ( j j ) An~kEkx{n}Ak =J2(n
k) An-k(x + k)(n)Ak - £ ("A (n)n„k(x+n)(k)Ak. 

k=0 ^ k=0 X k=0 X 

Hence 
n 

(2.9) Anx(n) = E ( M fr(x + n)(k)Ak . 
k ) k! 

k=0 ! 

Using 
Ak+1(x)kH - Ak(A(x)k+1) - A * { (x)k+1A +(k+ l)(x)k + (k+ 1)(x)kA\ 

= Ak(x)k\(x - k)A + (k+1) + (k+ DA } 

= Ak(x)k(xA+A + 1+k) = Ak(x)k(Ax-f k) , 
we have by induction 
(2.10) An(x)n = (Ax)(n) = A(n)(Ax). 

But 
A"x(n) = An(x + n_1)n = (&(x + n - !))("> ; 

hence using Ax = xA + A + 1 we have 
(2.11) Anx(n) = ((x + n)A + 1)(n} = ((x + n)A +n)n . 

Taking the inverse of (2.8) we have 
n 

(2.12) (Dx)n = ] T (-1)n-kS(n,k)Dkxk = Bln>[Dx] . 
k=1 
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Taking the inverse of (2.10) we have 
n 

(2.13) (Ax)n = £ (-1)n-kS(n,k)Ak(x)k = BM[Ax), 
k=1 

where xJ ^(x)j. 
Since 

(xD)m+n = (xD) m(xD)n and ) (xD)m }" - (xD)mn 

we have by (2.2) 
(2.14) Bm+n[xD] = Bm[xD]Bn[xD], (Bm[xD])n = Bmn[xD]. 

Similarly (2.4) gives 
(2.15) Bm+nlxLl = Bm[xA]Bn[xA], ^Bm[xA]\n = Bmn[xA]. 

Similar results also hold for B(k)[DxJ and B(k)[Ax]. 

3. THE OPERATORS^/ * Z7J» xf/ * A A (7 * D)x, (I + A)x 

Analogous to (2.1) is 
(3.1) (x(l + D))n = An (x(l + D)) = xn(l + D)n = Ml + D)J n 

which follows by induction from 
Ml + D))k+1 = Ml + D))k Ml + D) - k) = xk(l + D)kMl + D)*-k) 

~xk{x(l + D)k+1 +k(l + D)k-k(l + D)k} = xk+1(l + D)k+1 . 

But (3.1) admits the inverse 
n 

(3.2) Ml + D))n = Y* S(n,k)xk(l + D)k = Bn[x(l+D)] . 
k=1 

Since 
W + DMn = x"1MI + D))n+1(l + Dr1 

we have 
n+1 

(3.3) ((I + D)x)n = £ s(n+ 1> k>xk~1<l + D>k~1 • 
k=1 

Using 
(l + D)n+1xn+1 = (l + D)ri(l + D)xn+1 = (l + D)nxn(x+xD+n+1) = (I + D)nxn((l + D)x + n) 

we have by induction 
(3.4) (I + D)nxn = ((I + DM(n) = A (n)((l + DM 

which admits the inverse 
n 

(3.5) ((l + DMn = J2 <-1)n~kS(n,k)(l + D)kxk = B(n)[(l+DM . 
k=1 

By (3.4) and since (I + D)x = (x +xD) + /, 

Ml + D))(n} = (x+xD)(n) = x(l + D)((l + D)x)n-1 « x(l + DHI + D)n~1xn~1 . 

Hence 
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(3.6) (x(I + D))(nj = x(I + D)nxn~1 . 

By (3.1) and since 
(x + Dx)n = (x + Dx)(x+xD)n 

we have 
(3.7) ((/ + D)x)n = (I + D)xn(l + Of'1 . 

Using (1.4) 
n 

(3.8) (x(l+A))tn> = Y, (-D"~ks(n,k)Ml + A))k = AM(x(l + A)). 
k=l-

But, 
(3.9) Ml + A))n = x(n)(l + A)n 

follows by induction from 
(x(l + A))k+1 = (x(l + A))(x(l + A))k = x(l + A)xlk-'(I' + A)k 

= x \x(k,+x(k)A +k(x+1}<k-1) + k(x+1)(k-'l>A } (l+A)k 

= x{x(k> + k(x+1)(k-1>)<l + A)k+1 = x(x+1)(k-1)(x + kHI + A)k+1 = x<k+1)(l + A)k+1. 

Hence 
n 

(3.10) (x(/ + A))(n) = Y, (-l)n~ks(n,k)x(k)(/ + A)k = A(n)[x(l + A)] , 
k=1 

where A^ =x(k). 
Relation (3.8) admits the inverse 

n 
(3.11) (x(l + A))n = YL (-Vn~kS(n,k)(x(l + A))(k) = B(n)(x(l + A)), 

k=1 

where (x(I + A ))k = Ml + A))(k). 
Using (3.9), (3.11) may be rewritten 

n 

(3.12) (x)(n)(l + A)n « Y, (-Vn~kS(n,k)(x(l + A))(k) . 
k=1 

Using (1.1) 
n 

(3.13) (x(l + A))n = Y s(n,k)(x(l + A))k = An(x(l + A )) 
k=1 

and using (3.9) 
n 

(3.14) (x(l + A))n = Y s(n/k)x(k)(l + A)k = An[x(t + A)] , 

k=1 

where the inverses of (3.13 and (3.14 are, respectively, 
n 

(3.15) (x(l + A))n = £ S(n,k)(x(l + A))k = Bn(x(l +Aj) 
k=1 
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and 
n 

(3.16) x(n)(l + A)n = ] T s(n,k)M/ + A)}k = Bn(x(l + A)). 

k=1 

Iterating (I + A)x=x +xA + A +1 = (x + 1)(l + A) n times we have 

(3.17) (l + A)nx = (x + n)(l + A)n . 

More generally, 

(3.18) (! + A)nx(n) = (x + n)(n)(l + A)n 

as the following induction step shows: 

(I + A)n+1x(n+1) = (l + A)n(i + A)xin+1) = (l + A)n(x+1){n)(x + n + 1)(l + A) 

= (x+1+n)(n)(l + A)n(x + n + 1)(l + A). 

Using (3.17) we get 

(x+1 + n)(n)(x + n+1+n)(l + A)n(l + A) = (x + n+1)(n+1)(t + A)n+1 . 

Replacing* by x+ 1 in (3.9) and using (3.17) for/?= / we have 

(3.19) ((l + A)x)n = (x+1)(n)(l + A)n = (l + A)n(x)n . 

Similarly (3.10) becomes 

(3.20) ((I + A)x)(n) = A (n)[(x + 1)(l + A)] = A (n)[(/ + A)x], 

\Nhere(x+1)k^(x+1)(k), 
Equation (3.11) becomes 

(3.21) W + A)x)n = B(n)((x+ 1)0 +A)) = B(n)[(l + A)x]. 

Equation (3.14) becomes 

(3.22) ((l + A)x)n = An[(l + A)x] . 

4. THE OPERATORS*/? 2 *Dx 2 D,xA 2 x- 1, A(x- 1)(2}A 

We first note that xD and Dx commute, i.e., 

(4.1) xD2x = xDDx = x2D2 +2xD = DxxD = Dx2D 

and we restrict our attention to xD2x. 
Since xD2x=xDDx = xD(1 +xD) = Bx [xD](1 + Bx[xD])t 

(xD2x)n = {BjxDMl + BjxDDy. 

By (2.14) this gives 

(4.2) (xD2x)n = Bn[xD](1 + BjxD])n 

or alternatively 
n 

(4.3) (xD2x)n - J^ (n
k\ Bn+k[xD]. 

k=0 X 

This becomes 
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n+k 
(4.4) (xD*x)n = Yl (k)H S(n + k,j)xJDJ' 

k=0 v ' j=Q 

or utilizing (2.2), 
n 

(4.5) {xD*x)n = J2 Ik) (xD,n+k • 
k=0 

SincexD and Dx commute with each other, 
(xD*x)n = (xDDx)n = (xD)n(Dx)n = f(xD)(Dx)Jn . 

Using (2.2) and (2.12) this gives 
(4.6) (xD*x)n = Bn[xD]B(n)[Dx] 

Comparison with (4.2) yields 
n 

(4.7) B(n)[Dx] = J2 Ik) B*[xDj-
k=*Q * 

Since by (2.1) and (2.8), 
xnD2nxn = xnDnDnxn = (xD)n(Dx)(n) 

and since 
(xD - k)(Dx + k) = (xD - k)(xD + l+k) = xD2x - k(2} 

we have, analogous to (2.1) and (2.8), 

(4.8) xnD2nxn = n (xD2x-k(2}). 
k=0 

Remark. Dnx2nDn = xnD2nxn . 

We note that xA and A (x - 1) commute, i.e., 
(4.9) xA2(x- 1) = xA(1+xA) = (1+xA)x = (x-J){2)A. 

Writing 
xA*(x- 1) = xA(1+xA) = BjxA](1+BjxA]) 

we have using (2.14) 
(4.10) (xAUx- l))n = Bn[xA](1 + B[xA])n 

or 
n n n+k 

(4.11) (xAHx- 1))n = J2 (I) Bn+k[xA] - J^ (k) Z S(n + k0j)x'D! 

k=0 * k=0 * j=0 

or using (2.4) 
n 

(4.12) (xAHx- 1))n = Y. Ik) (xA>n+k • 

k=0 V 
Since by (2.3) and (2.10) 
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x(n)AnAn(x- Vn = (xA)n(A(x- 1))(n) = frA^frA + 1)(n) 

and since 
(xA-k)(xA + 1 + k) = (xA2(x- 1)-k(2}) 

we have, analogous to (4.8), 

(4.13) x(n)A2n(x-1)n = n (xA2(x-1)-k(2)). 
k=Q 

6. THE 0PERAT0RS^/^Z?M^/^A>/2 f r - V 

The operatorsx(l + D) and (I + Dfx commute, i.e., 
(5.1) x(/ + D)2x = (l + D)x2(l + D), 

and we have using (3.2) 
n n 

(5.2) Ml + D)*x)n - £ Ik) B"+k[x(l + D)1 = E (k ) Ml + D,,n \n+k 
[kj lA"^u/ 

k=0 % ' k=0 

and 
n n+k 

(5.3) Ml + D)*x)n = £ ( * ) ^ S(n+k'i,xi(l + D)1 ' 

The operators*/?* A) and (I + A)(x - 1) commute, i.e., 

(5.4) x(l + A)2(x- 1) = (l+A)(x- 1)(2)(I + A). 

Using (3.18), 
(5.5) x(l + A)2(x-1)=x(l + A)x(l + A)= Ml + A))\ 

Hence by (3.9) 
(5.6) x(l + Aft(x- 1))n = Ml + A))2n = x(2n)(l + A)2n . 

Since 
x(n)(l + A)n(l + A)n(x- 1)n = x(n)(1 + A)n(1 + A)n(x-n)(n) 

= x(n)(1 + A)nx(n)(1 + A)n = x(n)(x + n)(n)(l + A)n(1 + A)n 

we have 
(5.7) x(n)(1 + A)2n(x- l)n = x(2n)(1 + A)2n 

and comparing with (5.6) 
(5 '8 ) (x(l + A)2(x- 1))n = x(n}(l + A)2n(x- 1)n . 

REFERENCES , 
1. L Carlitz, "Some Operational Formulas," Mathematische Nachrichten , 45 (1970), pp. 379-389. 
2. C. Jordan, Calculus of Finite Differences, Chelsea, New York 1965. 
3. J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958. 
4. J. Riordan, Combinatorial Identities, Wiley, New York, 1968. 



MINIMAL AND MAXIMAL FIBONACCI REPRESENTATIONS: 
BOOLEAN GENERATION* 

P, SV10WTEIR0 and R, W, !\fEWC0IV!B 
University of Maryland, College Park, Maryland 20742 

"Then hear my message ere thou speed away." [1] 
1. INTRODUCTION 

Among the many important and interesting properties of Fibonacci numbers are those of yielding unique minimal 
and maximal representations of arbitrary nonnegative integers [2, p. 74]. Since these representations can be con-
venient for characterizing and calculating with integers, it is of interest to have an algorithmic process for obtaining 
the minimal and maximal representations. This we present here in terms of Boolean functions for which logic cir-
cuits are developed and from which hardware implementation can occur. 

We take thejth Fibonacci number as 
(1a) Fj= FH+Fh2 

(1b) F0 - 0, Fx = 1. 

For concreteness we use the initial conditions of (1b) though as far as the algorithm to be developed is concerned 
others, such asf0 = 2, Fx = 1 for Lucas numbers, are equally satisfactory. Then it is known [3] that any nonnegative 
integer N can be represented as 

n 
(2a) N = ] T aiFi; Fn < N < Fn+1, 

where each a,j is a binary number, that is either zero or unity. There are many such representations possible but that 
called the minima/ rep reservation, with [4] [5] 
(2b) ajCtj+f =* 0, / = 2,3,~<, n - 1 

and that called the maximal representation, with [6] 
(2c) aj + dj+1 > I j = 2t 3, »•, n - 1 
are unique. Indeed each of these two representations in itself uniquely characterizes the Fibonacci numbers [7 ] . In 
the following we shall represent N of (2a) by the coefficients, writing for convenience 
(3) N = a2Os>~an. 

Note that the least significant digits are to the left. Thus, for example 
N = 24 = F2+F3+F6+F^ - 1W0110 

has for its minimal and maximal forms N = 0010001 and/l/= 1111010, respectively. 
"Before thee mountai ns rise and rivers f low." [ 1 ] 

2. BOOLEAN EXPRESSIONS 
We first set down the rules for obtaining the minimal and maximal representations from which the desired Boolean 

functions can be obtained. The rules follow by iteratively applying (1a), the iterations being indexed by time f i n 

*This work was supported by the Air Force Office of Scientific Research under Grant AFOSR 70-1910. 
9 



10 MINIMAL AND MAXIMAL FIBONACCI REPRESENTATIONS: [FEB, 

discrete increments tk,k = 0, 1, - . Thus, we assume that a configuration for/l/ in the form of (3) is on hand at time 
tk, 

N = CL2(tkh3(tk)'"^n(tk)-

The configuration is "changed" at the next instant of time tk+1 according to the following rules. 
MINIMAL FORM RULE: If at time tk any sequence 110 occurs in N replace it by time tk+1 by 001; repeat for 

all tk until no changes occur. 
As an example to illustrate the process consider the following: 

f0, N = 61 = 111011010 

tu = 100100110 

t2, = 100100001 . 

The maximal form rule is similar but uses a procedure which is the reverse of that for the minimal form rule. 
MAXIMAL FORM RULE: If at time tk any sequence 001 occurs in N replace it at time tk+1 by 110; repeat for 

all tk until no changes occur. 
This is illustrated by the following example: 

f0, N = 13 = OOOOOI 

tu = 000110 

t2, =011010. 
Translation of the rules into Boolean expressions can occur through the use of a truth table [8, p. 50]. Alternately 

we can read off from the rules the Boolean conditions. For example, from the minimal form rule we have the follow-
ing: A zero in the j t h position becomes changed to a one (that is, complemented) if ay_ 7 and a/-2are both ones. If 
ay is a one it remains a one if either aj+i - aj-i - 0 or aj+i - OLJ+2 - 1; otherwise CLJ becomes zero. Using standard 
Boolean symbols (• = and, + = or, ~~ = complement = not) we then have the following Boolean expression: 

Minimal Form (assume ag(t) = a^(t) = an+2(t) = Q, 

(4a) aj(tk-f-i) = [aj(tk)-Q>j-i(tk)'CLj-2(tk)] + { a/(tk)'[(aj-i(tk)-aj+i(tk)) + (aj+1(tk)-aj+2(tk))] \ . 
Using similar reasoning we have 

Maximal Form (assumeaj(t) = 1,an+i(t) = an+2(t) = O): 

(4b) aj(tk+i> = faj(tk)-a^i(tk)J' + [aj(tk)-aj+1(tk)-aj+2(tk)] + [aj^Ctkl-ajfrkl-aj+^tk)] • 

As can be readily verified, beginning at f0 with a given number N, the maximum time to reach either the minimal 
or maximal form using (4) is t[n/2], where [•] denotes the integer part;this maximum time is achieved when/7 is 
odd and the initial representation has all zeros or ones except for an. 

Equations (4) can be implemented through logic circuits, these being shown in Figures 1 and 2 for oneay. Inthe 
figures, at a given instant tk, the binary values of the ajftk) are read into a register whose cells are so labelled. These 
values serve as inputs to the logic circuits shown. On being processed in the logic circuitry, designed according to (4), 
the result is fed back to the register cells to be clocked in at the next instant tk+1- The minimum time difference, 
tk+1 - tk' possible is seen to be the delay time for signals to traverse the logic circuits. After a time of at most t[n/2] 
the reading of the register will have settled to the required form. Of course, to completely implement (4) the end 
cells of the register, which have the assumed stationary values, remain constant between any two clock pulses. 

The output of Fig. 2 can be derived from the circuit of Fig. 1 by complementing the initial input and the final out-
put, and vice-versa. 

It should be mentioned that the given rules are not the only ones available. For example, we could have used the 
alternate minimal form rule: 

At time tk proceed from higher to lower numbered indices replacing at time tk+1 the first zero followed by two 
ones by a one followed by two zeros; repeat for all tk until no change occurs. 

This rule can be expressed in Boolean form by substituting 
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Equations (5) can be implemented by appropriate circuitry, as for (4), where R and $ represent the reset and set 
inputs of an RS flip-flop [8, p. 83] and Cj could be interpreted as a timing signal which signifies completion of 
changes (if any) in stage/ As before, a similar rule for the maximal form can be developed. 

"When thou art weary, on the mountains stay, 
And when exhausted, drink the rivers' driven spray." [1] 
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LETTER TO THE EDITOR 

December 2, 1975 
Dear Dr. Hoggatt; 

I showed Dr. James W. Follin, Jr., of the Applied Physics Laboratory the example in D. Shanks, "Incredible 
Identities," The Fibonacci Quarterly, Vol. 12, No. 3 (Oct. 1974), pp. 271, 180. I think his generalization would be 
of interest 

Set K2 = m +n. Then one has the identity 

sfm~+ \J2(K + sfm) = \jK + sfn + VK + m - «J~n + 2y/m(K- yfn) , 

which can be checked by squaring twice, while performing all simplifications, including substitution and observing 
a perfect square. 

William G. Spohn, Jr. 



SOME REMARKS ON INITIAL DIGITS 

BASIL DAVIS 
Indian Statistical Institute, Calcutta-35, India 

It can be shown that the distribution of first digits among Fibonacci numbers is as follows: The probability that 
the first digit of a random Fibonacci number is n is given by 
(1) P{n)=\wlfi(1+1/n). 

This property is true for any additive sequence of numbers, the mth term of which is expressed as 
(2» Um = Um-t + U^'-Unrt. 

For Fibonacci and Lucas sequences k = 2. In the general case the ratio Um/Um~/ tends to a limit, say /?, asm -*«>. 
R is related to k as follows: 

(3) k = \n(2-RF1
 m 

log/? 
Hence an additive sequence tends towards a geometrical progression. As the reader may verify, the initial digits of 

any geometrical progression of real numbers will obey distribution (1 )f provided that the ratio is not a rational power 
of 10 (i.e., 10 p / g , where p and q are integers). 

The validity of the above law is tested below for the first 100 Fibonacci and Lucas numbers. The number of inci-
dences of n as initial digit for Fibonacci numbers is given under A and that for Lucas numbers under B. The percent-
age calculated on the basis of distribution (1) is given under C. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

A 
Fnos. 

30 
18 
13 
9 
8 
6 
5 
7 
4 

B 
L nos. 

31 
16 
14 
10 
8 
5 
8 
4 
4 

1001 
C 

ogJ0 (1 + 1//?) 

30.1 
17.6 
12.5 
9.7 
7,9 
6.7 
5.8 
5.1 
4.6 

The close adherence to the law (1) is evident and the deviations can be explained as due to the finite number of 
the terms considered. 

The distribution of first digits was the topic of a paper published by Benford [1] in 1938. St had been observed 
that the first few pages of logarithm books were consistently dirtier than the last few, indicating that the users had 
more occasion to look up numbers with smaller initial digits than larger ones. Benford collected a lot of numbers of 
the kind that users of logarithms were likely to deal with. They included surface areas of rivers, molecular weights 
of chemical compounds and such numbers as are found in scientific and statistical tables. Ignoring the decimal point 
and the magnitude of the numbers, he found that the first digits of these apparently random numbers followed very 
closely the following distribution: 

13 
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The probability that the first digit of a random entry is n is given by Pin) = log10 (1 + 1//7). This is known as 
Benford's Law, and the distribution is identical with (1). Some of the various explanations put forward to explain 
this Law may be found in the references. 

An elementary ''explanation" may be provided as follows: Before computers were put into large-scale use (that is 
when logarithm books had to be used) it was difficult to deal with large and cumbersome numbers. To overcome 
this difficulty it was necessary that the units in which different quantities were measured were adjusted so as to ren-
der the measurements small (though greater than 1). This can be illustrated in the case of measurements on length. 
In atomic measurements Angstroms and other microscopic units were used to render the very small measurements 
close to unity, in everyday life units ranging from millimeters and inches to kilometers and miles are still used. In 
astronomy Astronomical Units, light years and parsecs are among the units employed. Similarly for mass, time, area, 
etc., the units are varied to suit the scale. Hence the numbers found in scientific and statistical tables would tend to 
be small in magnitude, except when the numbers are less than 1. 

Thus one would expect the probability of the occurrence of a number of magnitude x to decrease monotonically 
withx when* > 1. Considering the simplest distribution Vx as a trial function, one may write f o r * > 1, 

(4) f(x)dx = ^2- , 

where f(x)dx is the probability of occurrence of a number in the rangex to x + dx and k is a constant of proportion-
ality. The form of fix) in the region 0 <x < 1 can be shown to be immaterial in obtaining the result below, provided 
fix) is finite throughout that interval. 

If a number has initial digit /?, it should lie between n and/? + 1 or 1077 and 10(/7 + 1) or 1007? and 100(/* + 1),etc. 
Hence the probability of occurrence of a number with initial digit n is 

n+1 Wln+7) 100(n+1) 
kdx 
x 

n 10n 100n 

Let there be/77 such integrals (thus putting an upper limit o n * which will be removed by lettingm -> «). 
Then 

Pin) = mkf/n (n+1)- ln(n)J = mk ln(1 + 1/n). 

Let m -> oc and k -» 0 so that mk remains finite. Then normalizing the probability, 
ink = , \n . In 10 

Therefore, 
Pin) = \^xJ1+1/n). 

Thus, Benford's Law is obtained. 
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P(n,= j («k+ f kM+ J ™*.+ . 



ON ISOMORPHISMS BETWEEN THE NATURALS AND THE INTEGERS 

SAtVtUELT.STERW 
State University College at Buffalo, S\Sew York 14222 

The mapping 

where [x] denotes the greatest integer in x, from the set of naturals N onto the set of all integers / is one-to-one. This 
mapping fails to preserve natural order and the operations of ordinary addition and multiplication. For while 2 < 3, 
g(2) <k g(3); also g(2 + 3) ? g(2) +g(3) and g(2»3) ? g(2)g(3l However, it is possible to define an appropriate order 
relation } and binary operations (+) and (•) on /, while retaining natural order and ordinary addition and multiplica-
tion on N such that g will become an isomorphism of /I/ to I, preserving order, addition,and multiplication as follows: 

m | ( x\ > \y\ if \x f \y\ 
(1) x \ y means { ' , / . , 

1 \ x < 0 and y > 0 if \x\ * \y\ 

(2) x(+)y 

(3) x(.)y 

[" 1 + \2x-1/2\ + \2v-1/2\ 1 (_ j j 1+\2x-1/2\+\2y-1M 

1 1+\4x-1\+\4y-1\+\4x-1\\4y-1\ 
1 + \4x - 1\ + \4y - 1\ + \4x - 1\\4y - 1\ | (_7) 4 

8 

Noting that [m/2] is equal \Qm/2\im is even andf/7?- 1)/2\\m is odd, it is easy to show that m > n if and only if 
g(m) \ g(n). Furthermore, 

g(m+n) = g(m) (+)g(n) and g(mn) - g(m) (-)g(n). 

An analogous treatment can be given the integers interpreted as equivalence classes of nonnegative integers. We let A 
be the set of all ordered pairs (a,b) of nonnegative integers and let (a,b) ~ (c,d) if and only if a + d = h + c. This de-
fines an equivalence relation ~ on A Let B be the set of all equivalence classes of A with respect to this relation. 
Consider the mapping 

(4) f(m) = K l^(1 + (-1)m) , ^ - ; (1 + (-Vm-1)) , 

where K(a,b) denotes the equivalence class of A which contains (a,h). fis one-to-one from N onto B. For let K(a,b) 
represent an arbitrary element of B. If a = b then f( 1) = K(a,b). If a = b + k, k a positive integer, then, f(2k) = K(a,b). 
If b = a + k, k a positive integer, then f(2k + 1) = K(a,bl Furthermore if 

K(Q(1 + (-1)mt,<£jl (1 + (-l)m~1)\ = K(^(1 + (-1)n) ,n-^(1 + (-1)n'1)\ 

then (-1)m(2m - 1) = (-1)n(2n - 1). Hence m and n must be either both even or both odd, and it follows that 
m = n. 

The absolute value of an element K(a,b) of B, denoted by \a,b\ is defined as follows: 
, . / Kiajb) if a > b 

{ K(b,a) if a < b 

15 



10 ON ISOMORPHISMS BETWEEN THE NATURALS AND THE INTEGERS [FEB. 

The order relation A is defined on B as follows: 
(6) K(a,b) A K(c,d) if and only if a + d > b + c. 

The order relation v is defined on B as follows: 

(7) K(a,b) v K(c,d) means { ' < \a,b\ A \c,d\ if \aM £ \c.d\ 
b and c > d if |3,Z>| = \c,d\. 

We show that with the relation of (7) on B and natural order on N the mapping (4) is an order isomorphism. For 
suppose that 

K[*{1 + (-1)m), V-fl (1 + (-1)m~1)) v K[n-(1 + (-1)n),n-^±(1 + (-1)n~1)) 

If these have the same absolute value, then by (7), 
(-1)m+1(2m-1) > 1 and (~1)n+1(2n-1) < 1. 

From the first of these inequalities we see that m is odd and since 2n - / is not zero (- 1)n+1 (2n - 1) must be a neg-
ative integer, whence n is even. Thus • , 

2 \ \2 I that is, 

which implies m >n. 
On the other hand if the two equivalence classes have different absolute values then 

if m and/7 are both even, 

if /77 and n are both odd, and 

K [ l ' ° ) A K ( i ' ° ) 

if m is odd and n even. In each case we have m > n. If m is even and n odd then 
K(l'°) AK(n-fJ-'0) 

which implies m > n. But m^n. Hence m > n. Conversely, Set/7? > n. Then if/77 and/7 are even, 

m .0 A 

If /77 and/7 are odd, then 
^ / T T ^ J ft 

$,o\ and * ( f ,<?) v * ( J , * ) . 

K[°>*LT1 ) * f<(o,n-f±) . / ? - / and 

If m is odd and n even and if also m = n + 1, then 

But if m > n + 1, then 

Either way 

|«*f-'|-|f''l -
\o,^\ A | | , 0 | 

K[°''ILTL) v K ( r ° ) • 
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If /77 is even and /? odd, then 

i'°\ 0.n-=± and K(-2.0) V K(0,n-fL) . 

Thus we have shown that m > n if and only if f(m) v f(n). 
The operations © , of addition and is , of multiplication are defined on B as follows: 

I
K (a + c, b+d) if m,n are even 
K(b + d+1,a + c) if m,n are odd 
K(b+c,a + d) if m is even, /i odd 
AYs + d, b + c) if /ft is odo\ n even 

I
K(2(a-b)(c-d),0) if /7?,/7 are even 
K(c,d + 2(a-b)(c-d) + h-a) if /T?,/7 odd 
K(a + 2(a- b)(d - c),b) if m is even, tf odd 
/tfc * 2fe - b)(d - c)fd) if /7? is odd, n even 

where m,n are the positive integers corresponding to (a,b) and fc,̂ A respectively in (4). 
It is easy to show that 

f(m+n) = f(m) © f(n) and f(mn) = f(m) » flW. 
A treatment similar to that above for arithmetic and geometric progressions can be found in [1]. 

REFERENCE 
1. M. D. Darkow, "Interpretations of the Peano Postulates," Amer. Math. Monthly, Vol. 64, 1957, pp. 270-271. 
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A FIBONACCI CURIOSITY 

LEON BANKOFF 
Los Angeles, California 80048 

In the Fibonacci sequence FQ =0, Fl = 1, - , Fn =Fn„i +Fn-2, 

the sum of the digits of FQ 

Ft 

Fs 

Fto 
F3l 

F,s 

F6i 

Fn 

= ; 
= 5 
= 10 
= 31 
= 35 
= 62 
= 72 



ON CONTINUED FRACTION EXPANSIONS 
WHOSE ELEMENTS ARE ALL ONES 

GREGORY WULCZYN 
Bucknell University, Lewisburg, Pennsylvania 17837 

f. EVEN PERIOD EXPANSIONS 

1. NUMBER THEORY REVIEW. Here is an example of an even continued fraction expansion of >JD, D a non-
square integer, with D - 13. 

sj~13 = 3 + ^13 - 3 * 3+^j-3-

J13 + 3 s 1 + y /Tj- 7 ^ ; + J13 + 1 

JT3+1 = 1 , J13-2 M 1 + JJ3+2 
3 3 3 

J13 + 2 s 1+ Jl3- 1 - . J13+1 
3 ' 3 ' 4 

J13+1 _ - , JT3-3 = 7 . Jl3+1 
4 " 4 ' 1 

Hence >/13 = < 3 ,1 , 1, 1,1, 6 > and the solution of the Pellian equationsx2 - Dy2 = d; can be found from the 
table. 

continued fraction elements c; 
signed denominators dj 
p convergents/7/ 
q convergents #/ 

3 
- 4 

3 
1 

1 
3 
4 
1 

1 
-3 

7 
2 

1 
4 

11 
3 

1 
-1 
18 
5 

The q convergents are the Fibonacci numbers. The primitive solution of A-2 - 13y2 s - 1 is picked up from the 
half period. Thus 

y = P+2* = 5; x = 4x1 + 7x2 = 18. 
In general for period 2r, 

y = qr + q^7 = q2r-i; x = p^q^j +prqr =* q2r-1 • 
Also the representation of D as the sum of two squares can be found as 

D = d2
r+(D-d2) = d2+t2 , 

where dr is the middle denominator. Thus 13 = 32 + 2 2 . Finally for Z7 = 5 (modulo 8), since a signed denominator is 
±4, the convergents under the - 4 column are the coefficients of the cubic root of unity 

3 + J13 
_ 2 

in the field (1,y/13). 
Sincethe period is even the x0 of the quadratic congruence x\ = - 1 (mod 13) is given by x0 = X E = 1 8 = = 5 (modulo 

13). 

18 
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2. FIBONACCI RELATIONS TO BE USED. 
(a) (F„, Fn+1) = 1. 

(b) F%n+1 = F2„-iF2n+i 

fc) F2
n + F

2
n+1 = F2nH. 

It may be noted that no odd Fibonacci number is ever divisible by a prime of the form p = % + 3 since from (b) 
x2 = - 1 (mod p) which is impossible. 

3. EVEN VARIABLE DIFFERENCE TABLE: Z? = /??2 * k 
2n ones n > 1 

m 1 1 1 1 2m 
_k — .—. _ _ _ 1 

m m +1 2m+ 1 mF2n+<i + F2n 
1 1 2 - F2n+1 

The supposition (mF2n+i + F2n)
2- F^n+i(m2 + k) = — ̂  leads to 

2mF2nF2n+1 + F2n~kF2n+t = ~* 

2mF2nF2n+1-kF2
2n+1 = -(F2

2n+1) = -F2n-iF2„+i 

2mF2n-kF2n+1 = F2n„7 

Recalling that (Fn, Fn+i) = 1 and that F$n is always even this linear diophantine equation will have an infinite num-
ber of positive integer solutions for m and k unless In +_1 = 0 (mod 3). 

Example. D = m2 + k, sjD = <m, 1, 1, 1, 1, 1,1, 2m > 

(13m+8)2 - 169(m2+k) = -1 

16m - 13k = -5, k = m+^j^-

m = 7, k = 7 + 2 = 9, D = 58, ^/58 = < 7,1, 1, 1,1, 1, 1, 14 >, x2 - 58y = - 1 
has primitive solution 

x = 13m+8 = 99, y = 13. 

m= 13+7 = 20, k = 20+5 = 25, D = 425, sj425 = < 20, 1, 1,1, 1, 1, 1, 40 >, x2 - 425y2 = -1 

has primitive solution 
x = 13m + 8 = 268, y = 13. 

In general if __ 
D = 169m2 - 140m+29, sjD = < 13m - 6, 1, 1, 1, 1, 1, 1, 26m - 12> 

and the primitive solution of x2 - Dy2 = - 1 is given b y x = 169m - 70, y = 13. 

I I . ODD PERIOD EXPANSIONS 
4. NUMBER THEORY REVIEW. Let D = 135 

V135" = 1 1 + v i 3 i T - 1 1 = 11+ V 1 3 5 ^ 1 1 

V135+11 = 1 + 7l35"-~3 = « 7135"+ 3 
14 14 9 

s/135 + 3 = - V135-.6. = « , V135 + 6 
9 9 11 

x/135 + 6 = , , j m - 5 . «' V135 + 5 
11 11. . 10 

[continued on next page.] 
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V135 + 5 = < , V 1 3 5 - 5 _ 1 , x/135 + 5 
10 10 " 11 

N/135 + 5 _ 1 + N / 1 3 5 - 6 = , . .N/135 + 6 
11 11 9 

x/135 + 6 = 1 + V 1 3 5 - 3 _ 1 , x/135 + 3 
9 9 14 

JM±1 = 1 + V 1 3 5 - H = i + x / 1 3 5 + 1 1 
14 14 v 

V135+11 = 22 
V135"= < 11,1, 1,1,1, 1f 1,1, 22 > . 

The solutions of the Pellian equations x2 - Dy2 = tf/can be found from the table. 

c. f. elements 
signed denominators 
p convergents 
q convergents 

£ / 

Pi 
Qi 

11 
- 1 4 

11 
1 

1 
9 

12 
1 

1 
- 1 1 

23 
2 

1 
10 
35 

3 

1 
- 1 1 

58 
5 

1 
9 

93 
8 

1 
-14 
151 

13 

1 
1 

244 
21 

22 

The primitive solution of x2 - 135y2 = 1 is given b y * = /?8 =244, y^q^ =21. It can also be picked up from the 
half period. If the period \s2r+ 1, y = (qr + qr-2kr-l • ^ere 

/ = 3(2 + 5) = 21, 

X = q^TP^+QrPr-l-
Herex = 3 x 23 + 5 x 35 = 244. 

5. FIBONACCMDENTITIESTO BE USED. 

(a) 

(b) 
(Fr-2 + Fr)Fr-1 - F2r-2 

F2nF2n-2 Fli-1-1 

6. ODD VARIABLE DIFFERENCE TABLE \D»m2+k 

2r- 1 ones m 1 
-k — — ~ — 
m m + 1 2m + 1 
1 1 2 

2 r2 , 

1 2m 
1 
mF2r + F2r-1 
F2t 

The supposition (mF2r+ F2r-V' - F2r^m + k) = 1 leads to 

2mF2rF2r-1 + F22r-1-kF2r= 1 

2mF2rF2r^-F2
2rk = -(F2

2r^ 1) - -F2rF2r-2 

2mF2r„1 - kF2r = -F2r~2 

Since (F2r, F2r-i) = 1, this linear diophantine equation will have an infinite number of positive integer solutions 
unless r is a multiple of 3. When r = 3t, F2r is even, but F2r„2 *s odd. 

Example: D = m2 + k, >JB = <m,\, 1, \,lm>(3m + 2)2 -9(m2+k) = 1 

4m-3k -1, k = m + m+ 1 

m 3, D = 7, sjl = < 2 , 1 , 1 , 1 , 4 > . 
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x2 - 7y2 = 1 has solution x = 3x2 + 2 = 8 y = 3. 

Since /?? = 2 + 3 = 5, £ = 5 + 2 = 7, # = 32 follows from k*m * ^ j - ^ . 
x2 - 32j/2 = 1 has primitive solution* = 3 x 5 + 2 = 17, y = 3. In general, 

0 = 9m2-2m, VZ? = <3m- 1, 1, 1, 1,6m-2>. 

The primitive solution of x2 - Dy2 = 1 is tiven by x = 9m - 1, y = 3. 
7. D = m2+k, 2mFr-kFr+1 = - / > . / 

JO = m + sj'D-m = m + ^ - ^ 
k 

jD+m s - + jD-(k-m) = - ^ jD + k-m 
k k 2m+1-k 

slD + k-m = 1 + >jD-(3m+1- 2k) = ; + JD + 3m + 1 - 2 k 
2m+1-k 2m+1-k 4k-4m-1 

jD + 3m+1-2k = * + <JB-(6k-7m-2) s - + JP + 6k-7m-2 
4k-4m-1 4k-4m+1 12m-9k + 4 

s/~D + FsFs-1k-(1 + 2F7F2+... + 2Fs„2Fs„1)m - (F%+ F§ + - + FJ2) 

2mFsFs-1-kF*+Fi1 

1 + 

(A) 
sjD-[(1+2F1F2 + - + 2Fs_1FsmhFsFs+1k + (F:jF%+:.+ Fs„1)] 

2mFsFs„1-kF2+Fi1 

1 + D + UQ 
kF2

+1-2mFsFs+1-F
2 

For this last assumption to be valid, 
(2mFsFs-7 - kF2+ F2^)(kF2

+1- 2mFs+1Fs- F2
S) ^ m2 + k - (A)2. 

This identity will be proved by equating coefficients: 
1. Coefficient of -m2 

4F2FS^FS+1 = 4F2[F2+(-1)s] = 4F*+4(-1)s F2 = -^ (L4s +L2s-4) = [FS+2FS- Fs+1Fs-2]
2- U 

2. Coefficient of—A"2 

F2 F2 _ F2F2 rs rs+1 " rsrs+1-

3. Constant term: 

4. Coefficient of 2mk 

Fs.,FsFf+? + Fs
5Fs+7 = FsFs+1{Fs_1Fs+1 + F2)=l2L2s + (-lf}FsFs+1 

FsFs+i(1 + 2F1F2 + - + 2Fs.1Fs = FSFS+1(FS+2FS- FS+1FS.2) = (2L2s+ (-if lFsFs+1 

5. Coefficient of k. 

2FsFs+1{F2+F2
2 + ~+F2

s_1)+1 = 2F2FS_1FS+1 + 1 = 1 + 2F2[F2+(-Vs] = 2F4
S +2F2(-1)S + 1 

FliF*+i + F4
S= Ff+ [F2+ (-lfl2 = 2F4

s + 2{-1)sF2+ 1 . 
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6. Coefficient of -2m 

FsFs-1 + Fs-1FsFs+t = Fs-1FsfFs+Fs-1Fs+l] = Fs-1Fs[Fs(Fs+2~ Fs+l) + Fs-1Fs+ll 

= Fs-1FsfFsFs+2- Fs+l(Fs~ Fs-l)l - Fs-1Fs(FsFs+2~ Fs+1Fs-2^'-

(F^ + F% + ~ + Flrfl + 2F1F2 + 2FsF3 + .» + 2F9„1FS = Fs-1Fs[FsFs+2-Fs+1Fs-2J 

In proving this identity the following Fibonacci identities were used: 
(a) 1 + 2F1F2 + - + 2FS„1FS = FsFs+2~ Fs+1Fs-2 

(b) FhF2 + "' + Fl= Fs-1Fs 

(c) Fs-1FsH = Ff + <-1)* . 

******* 

A MORE GENERAL FIBONACCI MULTIGRADE 

DONALD CROSS 
St. Luke's College, Exeter, England 

In a recent article I gave examples of multigrades based on Fibonacci series in which 
Fn+2 = Fn+1 + Fn • 

Here I first give a more general multigrade for series in which 
Fn+2 = yFn+1+xFri> 

Consider 
1 3 7 17 47 (whe re *=1 , / = 2). 

By inspection we notice that 
1 m + 3 m + 3 m + lm = 0 m + 4 m + 4™ + Gm 

3 m + lm + lm + \lm = {f" + 10m + 10™ + 14m , etc. 
(where m = 1, 2) . 

We can look at other series of a like kind: 
1 3 10 33 109 (wherex=1, y = 3). 

Here 
1 m + 3 m + 3™+ ^77 + 1 0 / 7 7 + 1 0 m * O^ + O/7** 7m+ 7m + 7 m + 9 m 

3m + 10/77 + 10777 +• 10™ + 3 3 m + 3 3 m = 0 m + 0"7 + 2 3 m + 2 3 m + 2 3 m + 3 0 m , etc. 
(where m = 1,2) 

1 3 11 39 139 (where* = 2, y = 3) . 
Here 

1 m + 1 m + 3 m + %m + 3/77 + ^ m + n/7? + n m = Qm + Qm + Qm + gm 4 gm + 8 m + 10™ + 10777 

3™ + 3 m + 1 1 m + 1 ] m + 1 1 m + 3 9 m + 3 9 m + 3 9 m = Qm + Qm + 0 m + 2 8 m + 2 8 m + 28/7? + 3 6 m + 36™, etc. 
(where m - 1, 2) 

The general series 
a b ax + by bx+ axy + by2 

gives 
x{aF+y{b)m + {x+y-2Max+by)m * (x+y - 2)0m+y(ax + by - b)m+x(ax +by - a)m 

(where/77 = 1, 2). 

Continued on page 66* 



ON CONGRUENCE MODULO ,4 POWER OF A PRIME 

M. G.MONZfWGO 
Southern Methodist University, Dallas, Texas 75275 

A problem which appears in many textbooks in number theory, e.g. [1], is the following: 
If ap = bp (mod /?), then ap = bp (mod p2). 
In this paper this result will be generalized to higher powers of the prime /?. Also, there will be a generalization to 

a composite modulus. 
Lemma 1. If n is a positive integer for which ap ^bp (mod/?), thenar/? (mod/?). 
Proof. Let/? = 1;then, a^ap^bp^b (mod/?)by Fermat's Theorem. Suppose that ap = bp (mod/?) implies 

that a ^ (mod/?). \fapk+1^bpkH (mod/?), then (aPkf ^ (bPk)P (mod/?). Hence, 

aPk = (aPkf s faP*;p s ^ (mod/?) 
by Fermat's Theorem. By the induction hypothesis, a =b (mod/? A 

Lemma 2. If ^ - i&P'7 (mod /?"), then 
pn\(aPn-1 + aPn-2b + ~ + bl>n-1). 

Proof. By Lemma 1,/?l (a - b), and, thus, a = b + tp for some integer f. Then, with d = pn, 

a = b + (tp) 

a2 = b2 + 2b(tp) + (tp)2 

as = b3 + -+(tp)3 

ad-l s bd-1 + (d_ t)bd-2(tp) + -+(tp)d-1 . 

By multiplying the ith row by b , we obtain: 

abd-2 = bd-1 +bd-2(tp) 

a2bd-3 = bd-1 + 2b*-2 ftp) + bd-3(tp)2 

ad'2b = bd-1 + (d- 2)bd~2(tp) + -+b(tp)d-2 

ad-1 = bd-1± (d_ j)bd-2(tp) + ...+ (tp)d-t _ 

The coefficient of bd"k(tp)k~1 in the expansion ad~1 + ad'2b + - + bd'1 is 
d-1 

£ ( , ! . , ) • 
Using the identity 

23 
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rewritten as 

(/-,)=C:7)-(*) 
we have 

E(^,)= Z W)-d£ (i)-<J)*E CD-ECiMV) 
i=k-1 i=k-1 i=k-1 i=k-1 i=k 

- ( j )*E(i ) -E a)-o-(i)-
i=*k i=>k 

This implies that the kth term of ad~1 + - + bd~1 expressed as a polynomial in (tp) is (dr/k)bd~k(tp)k~1, where 

\i (p,k) = 1, then 
pn\ (dr/k)bd-k(tp)k~1 

since pn I d, Suppose that fo/rj ^ / ; then, k = pmg, whire /T? ̂  0 and /?j/#, To show that m <k- 7, suppose to the 
contrary that/77 > k- 7, i.e.,/T? > k. Since/7 > 1, pm >m. Hence,/?'77 >m> k, a contradiction. Thus, m < k - 7, 
and 

(dr/k)bd'k(tp)k"1 = (dr/g)bd"ktk^pk'm'1, 

where /? k~m~1 is integral. Since pjl g, 

pn\(dr/g)bd~ktk-1pk-m-1. 

Therefore, pn divides each term of a + — + bd~1 expressed as a polynomial in (tp). The conclusion follows. 
The next lemma is a generalization of the problem mentioned at the beginning of this paper. 

Lemma 3. WaPn^ bPn (modpn),thenaP" = bPn (mod/?"*7). 

Proof. Let d = pn; then, by Lemma 1fp\ (a - b), and by Lemma 2 ,p n I (ad~1 + - + bd~11 This implies that 

pn+1\(a-b)(ad-1 + - + bd-1). 

\.e.,pn+1\(aPn-bPn). 

Theorem. If a7 7 7- bm (mod m), then am ^ bm (mod m-plp2 -pr), where p^p"2 »>pn
r
r is the canonical fac-

torization of m. 

Proof. Let q = m/p"' ; then „,. 
(aqfi' ^ a

m ^bm ^ (bq)Pi (mod/7^1 

By Lemma 3, am ^ bm (mod/?"'*7). The conclusion follows since the/7/are relatively prime. 
The following example shows that in general the modulus in Lemma 3 and in the Theorem cannot be increased any 

more. 
Example: T = 1 9 (mod 9) implies that T - 19 (mod 27), but V £ V (mod 81). 

REFERENCE 
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FIBONACCI RATIO IN ELECTRIC WAVE FILTERS 

LBG.ZUKERIVIAf\i 
Los Angeles Department of Water and Power, Los Angeles, California 90012 

In the classical theory of electric wave filters, a complete filter is composed of a series of sections in cascade or tan-
dem, terminated at each end by a terminal half-section. Sections can be of For TTcircuit configuration (sometimes 
called "mid-shunt" and "mid-series" sections). 

Aside from the frequency selective properties of the filter, an important design requirement is that the image im-
pedances at the input and output terminals shall be as nearly constant as possible throughout the greater part of the 
pass-band. For this reason the terminating half-sections are usually of the "m-derived" type, where m is a design par-
ameter that can be chosen as anything in the interval between zero and unity, but is usually about 0.6 to satisfy the 
requirement of constant image impedance in the pass-band. This is the primary function of the terminating half-
sections. Figure 1 shows a family of curves giving the variations in image impedance throughout the pass-band for 
various values of m. Notice that the curve for m = 0.6 results in a variation of the ordinate within ±5% over 75% of 
the pass-band, and provides a good approximation to constant image impedance over the useful range of frequency. 

To demonstrate that the natural value for/7? is the inverse Fibonacci Ratio, 1/0, where 

l=^J]Lz±= 0.S18; 
0 2 

we use a low-pass T section as an example. Figure 2 shows a circuit diagram of such a mid-shunt section, together 
with a sketch of its frequency selective characteristic. 

The salient features of the response function are the two frequencies fc = cutoff and f^ = the frequency for infinite 
attenuation. 

Letting the ratio (fc/foo) = r/the relation between m and r is the equation of a circle: 

m2 + r2 = 1, 
where m and rare both restricted to non-negative real values. 

The design formulas are: 

Lx = mLK LK = 

f _ 1-m2 LK 

irfc 

m 4 

mCK CK = 1 
irfifc 

where R is the load resistance at the terminals and therefore the desired image impedance of the terminating half-
section. The circuit diagram of the /77-derived half-section is shown in Fig. 3. 

We notice that the coefficient involving m of the midshunt inductance L2 is: (1 - m2)/m and letting this coef-
ficient equal unity gives: 

/ - m2 = m, m2 +m- 1 = 0, 
from whidh the positive real root is: 

m = -i + ,/JT7= s[E_=_L = 0618 = 1 
2 2 • <p 

25 



26 FIBONACCI RATIO IN ELECTRIC WAVE FILTERS FEB. 1976 
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Then: 
7-/T72 1- 4 = 0.618 = I 

<t> 
1 _ x75 = /.2Z? 

This is substantially in agreement with a design rule that the frequency ai miniue emendation should he about 25% 
higher than the cutoff frequency. 
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ON A THEOREM OF KRONECKER 

MICHAEL WILLETT 
University of North Carolina at Greensboro 27412 

Consider the rth order homogeneous linear recursion 
(1) un+r = a / un+r„ i+- + arun, ar t 0, 

over a field F o f characteristicp > 0. Let 

be a non-trivial solution of the recursion (1) and let 

fix) ^x'-s-ix"-1 -ar= A (x-r,) 

be factored completely in its splitting field K where F c K. The results which follow remain valid if F is also the 
complex field. The polynomial f(x) is called a characteristic polynomial for the sequence V. \f(j)(n) is a sequence in 
K defined on the non-negative integers/ then define the operator E by E<j>(n) = $(n+ / j f o r /? e /. Recursion (1) may 
therefore be written as 
(2) f(E)un ss 0. 

The sequence V is said to satisfy a recursion of lower order if there exists a monic polynomial g(x) over Fsuch that 
de§g(x) < deg f(x)=r and g(E)vn = 0. There exists a unique monic polynomial of lowest degree which is a character-
istic polynomial for V, called the minimum polynomial for V[2]. The determination of the lowest order recursion 
that a given solution of (2) satisfies is an essential step in the study of the periodicity properties of such solutions. 
Define 

Vn Vn+1 •" vn+r-1 
Vn+1 Vn+2 

(3) D(n) = det 

Vn+r-l Vn+2r-2 

n e /. 

The purpose of this note is to present a new proof of a classic theorem of Kronecker [1, p. 199] which does not 
depend on the notion of a fundamental solution set for (2). To this end Lemma 2 gives an explicit calculation of 
the values of D(n). 

Theorem 1, (Kronecker) The solution V of (2) satisfies a recursion of lower order if and only if D(O) = 0. 
First define the polynomials 

(4) fk(x) = n fr-r/Jt / <k <r. 
¥k 

We have 
Lemma 1. fk(E)t/n = r% [fk(E)v0], n e / . 
Proof. Note that f(x) = (x - rk)fk(x) and since polynomials in E commute as operators we have 

(5) rkfk(Ehn = E[fk(Ehn] = ftfEhn+i . 

The result follows from a repeated application of (5). O.E.D. 
27 
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Corollary 1. If f^(E)i/o = 0 then fk(Ehn
 s ft n e L 

The main result of this note is 

DM = (-1)* n [fj(E)vn], t - rfr- /;/*, /? e / . Lemma 2. 

Proof. (Induct on the order r of the recursion) if r = 2 then 

* -(Vn+l-nVnlbn+l-Wn) = -ff2(E)*i>] IfffEhnJ -

Therefore the Semma is true for r = 2 Assume the lemma true for all recursions of order less than r>2. Since 
r 

fl(E)vn « vn+r-i + ̂  Cjvn+r-t 
i=2 

forsomec/e /C we have that c,- times the r+ 1 - i row of DM added to the r^ row for , ? < / < / gives 

0<W = det 

which, by Lemma 1, gives 

Vn+1 

Vn+r-2 
fl(Ehn fi(E)vn+1^f1(E)vn+^1 

DM = [ff(EhnJdet\ : : 
Vn+r-2 

Multiplying column / by -rt and adding to column / * 7 for 7 < / < r - 7, we have 

y/i+7 •" K/i+r-/ 
Kn*7 

V 

(6) 

for 

/?W = (-If 'ff,(E)vn] det 

Wn = VnH-nVn, n G I, 

where the matrix appearing in (6) is r - 7 square. Note that 
ff(E)wn « tff^ - ft /? e / , 

so that ff (x) is a characteristic polynomial for the sequence j wn j . Let 
0*M = n fr-r/Jt 2 < k < r. 

Then, by the induction hypothesis, Eq. (6) becomes 

DM = (-ir1[fi(E)vnl(-1)(r-m-2}/2 II [g,(E)wn] = f-l)r(r-1)/2[fi(E)i/n] U [fj(E)vn] 
1=2 h2 
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Therefore mathematical induction yields the result Q.E.D. 
An immediate consequence of Corollary 1 and Lemma 2 is 
Corollary 2. Either D(n) is identically zero or never zero. 
Zierler proves the following [2] . 
Lemma 3. Let fix) be a characteristic polynomial over the field F for the sequence 

Vss{*n\ ±F, VjkO, 

and \e\g(x) be the minimum polynomial for V. Then 
(i) g(x)\f(x), 
(••) hixfg(x) is also a characteristic polynomial for V, where h(x) is any monic polynomial over F. 

To complete the proof of Theorem 1 we note that Lemma 3 implies that l/satisfies a lower order recursion if and 
only if some f^ix) as defined in (4) is a characteristic polynomial for V. But then Lemma 2 and Corollary 2 imply 
that V satisfies a lower order recursion if and only if D(0) - 0. 
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A FIBONACCI PLEASANTRY 

LEON BANSCOFF 
Los Angeles, California 90048 

In the Fibonacci sequence FQ ^ 0, Fx = 1, —, Fn = Fn„i + Fn„2, list the sums Fn + n in ascending order of n and 
note the second differences. Do the same with Fn - n. 

0 + 

1 + 

1 + 

2 + 

3 + 

5 + 

8 + 

13 + 

21 + 

34 + 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

55 + 10 

= 

= 

= 

= 

= 
= 

= 

= 

= 

= 

= 

0 
> 

2 
> 

3 
> 

5 
> 

7 
> 

10 
> 

14 
> 

20 
> 

29 
> 

43 
> 

65 

2 
> 

1 
> 

2 
> 

2 
> 

3 
> 

4 
> 

6 
> 

9 
> 

14 
> 

22 
> 

-1 

1 

0 

1 

1 

2 

3 

5 

8 

13 

0-

1-

1-

2-

3-

5-

8-

13-

21-

34-

55-

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

= 
= 

= 

-

= 
= 

= 
= 

= 

= 

= 

0 
> 

0 
> 

-1 
> 

-1 
> 

-1 
> 

0 
> 

2 
> 

6 

13 
> 

25 
> 

45 

0 
>-1 

-1 
> 1 

0 
> 0 

0 
> 1 

1 
> 1 

2 
> 2 

4 
> 3 

7 
> 5 

12 
> 8 

20 
>13 

[Continued on page 41J 



COLUMN GENERATORS FOR COEFFICIENTS OF FIBONACCI 
AND FIBONACCI-RELATED POLYNOMIALS 

DEAN B. PRIEST and STEPHEN W. SMITH 
Handing College, Searcy, Arkansas 72143 

1. INTRODUCTION 

Generating functions, row sums and rising diagonal sums for the Pascal triangle and types of Pascal triangles have 
been studied in [2] and [4], Bicknell has pointed out in [1] that another Pascal-like array is observed if we con-
sider the coefficients of the Fibonacci polynomials Fn(t). These polynomials are such that 

F0(t) - 0, FtM « I and Fn(t) - tFn^(t) + Fn^ 

for n > 2. The array is as follows: 
Array 1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

t° 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

t1 

1 
0 
2 
0 
3 
0 
4 
0 

t2 

1 
0 
3 
0 
6 
0 

10 

f3 

1 
0 
4 
0 

10 
0 

t4 

1 
0 
5 
0 

15 

t5 

1 
0 
6 
0 

t6 

1 
0 
7 

f7 

1 
0 

f8 

1 

1-x2 (7-x2)2 (f-x2)* (1~x2)* 

,th -jSt 2nc* ird 

Column Generators 

Column 
Since the generating function for the zeroth column is f(x) s x/(1 - x2) and since each nonzero a/j has the Pascal-
like property 

hi 

for all / and /such that/ >j> 1, then techniques similar to those in Theorem 1 of [4] can be used to show that the 
generating function for the kth column (fr = 0, 1, 2, —) is 

9k(x) = f(x)[x/(1-x2)]k. 

Moreover, the generating function for the row sums of this array is 

k=0 k=0 
30 

n=0 
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as was to be expected. Again, employing results essentially the same as those in [2] and [4], the generating function 
for the rising diagonals of this array is 

BW.±S**>-*>±[TSI),.{Tiir){££) -j^-tr. 2n+1 

k=0 k=0 n=0 

2. GENERATING FUNCTIONS FOR COEFFICIENTS OF Fn(t) 

Now we consider the array for F'n (t), the first derivative of each Fibonacci polynomial. It will be noted that this 
array is quite similar to the array suggested by Hoggatt in problem H-131 of this Quarterly [5 ] . In that problem it is 
required to show that sums, Cn, of the rising diagonals are given by Cf = 0 and 

n 
cn+1 = 22 Fn-jFj • 

y-0 

If we appropriately relabel the columns in that array, this is the same as showing 
n 

M 

for A? := 0, 1, 2f —. Since the rising diagonal sums of that array are the same as the row sums of the array for the Fn (t) 

and since we can find the column penerators for the array below, we can employ techniques similar to those used in 
the previous section to answer problem H-131. For consider: 

Array 2 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

f° 
0 
0 
1 
0 
2 
0 
3 
0 
4 
0 

t1 

2 
0 
6 
0 

12 
0 

20 

t2 

3 
0 

12 
0 

30 
0 

f3 

4 
0 

20 
0 

30 

f4 

5 
0 

30 
0 

f5 

6 
0 

42 

f6 

7 
0 

f7 

8 

2x* 3x* 

nth 1s T»nd 

4x5 

(1-xV (1-x*)> (l-x>)4 (1-x*)5 

3rd 

Column Generators 

Column 

Denoting the generator of the zeroth column a$p(x), the column generator for the kth column is given by 

dk(x) = p(x)(k+1) [jzr^ f 

for k = O, 1, 2, - . The generating function for the row sums is given by 
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0 0 co , 
G<*> = E *kM = PM E <*+1>( 73™r ) s PM 

k=0 k=0 

(1-x2)2 _ 
[ '-7*1 

(1-x2) (1-x 
x2)2

 s 1 x y 
-x2)2 \ 1-x-x2 I 

n=0 n=0 n'O \ j-0 j 

Since we have relabeled the zeroth column, we have immediately that 
n 

r - V F .F. - F(1i 
Un " LJ rn~rl " rn 

1-0 
for/? = 0, I 2, - , where F*n

1' represents the first Fibonacci convolution sequence [3]. 
t 

3. GENERATING FUNCTIONS FOR THE COEFFICIENTS OF ln(t) = n f Fn(t)dt 

o 

The preceding suggests it would be in order to consider the array for 
t 

• f Fn(t)dt. 
o 

But this leads to an array containing fractions. To avoid this situation we consider the array for 
t 

l„(t) = n f Fn(t)dt 

instead. This array 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

now follows: 

f° f1 

0 
0 1 
0 0 
0 3 
0 0 
0 5 
0 0 
0 7 
0 0 
0 9 

f2 

1 
0 
4 
0 
9 
0 

16 
0 

f3 

1 
0 
5 
0 

14 
0 

30 

Array 3 
t4 

1 
0 
6 
0 

20 
0 

t5 

1 
0 
7 
0 

27 

t6 

1 
0 
8 
0 

f7 

1 
0 
9 

f8 

1 
0 

t9 

1 
This array looks familiar since the array for the Lucas polynomials is Array 4 at the top of the next page. 

It is easy to establish that 

hk-tM = (2k- 1) J F2k.j(t)dt « l2k-i(t) 

and 
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Array 4 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

f° 
2 
0 
2 
0 
2 
0 
2 
0 
2 
0 

t1 

1 
0 
3 
0 
5 
0 
7 
0 
9 

t2 

1 
0 
4 
0 
9 
0 

16 
0 

f3 

1 
0 
5 
0 

14 
0 

30 

f4 

1 
0 
6 
0 

20 
0 

ts 

1 
0 
7 
0 

27 

f6 

1 
0 
8 
0 

f7 

1 
0 
9 

f8 

1 
0 

t9 

1 

L2kM = (2k) f F2kMdt + 2 - l2k(t)+'2 

.th , 

for k= 1,2, 3, - ; or if you prefer, 
Dt[L„(t)] = nFn(t) 

for/7 = 1,2,3, .». 
It is interesting to note that in each of the above arrays if we consider the left-most column as the zero1" column, 

we do not obtain a Pascal-like triangle. However, if we consider the next column over as the zeroth column, then we 
do have a Pascal-like array and the results of [4] are applicable. 

Array 5 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

f1 

0 
1 
0 
3 
0 
5 
0 
7 
0 
9 

f2 

1 
0 
4 
0 
9 
0 

16 
0 

f3 

1 
0 
5 
0 

14 
0 

30 

t4 

1 
0 
6 
0 

20 
0 

t5 

1 
0 
7 
0 

27 

t6 

1 
0 
8 
0 

t1 

1 
0 
9 

f8 

1 
0 

r9-

1 

x(1+x2) x2 +X4 x3 +xs x4 +X6 x5 +X1 

(1-x2)2 (1-x2)3 (1-x2)4 (1-x2)5 (1-x2)5 

i t h St rjnd 3rd «th 

Column Generators 

Column 

If we denote the generator of the 0 t h column by q(x), then the column generator for the kth column (k~ 0,1,2,-) 

hk(x) = q(x)[x/(1-x2)]k. 

The generating function for the row sums is 
oo 

GM - £ hkM - qM JJ^^J = <1+*> (j^) (JZT^T) • 
k=0 
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The generating function for the rising diagonals is 
oo 

DM - £ **i*M = *W ••££>'f' +**) ( J5? ) ( jz fe ) • 
4. RELATIONSHIPS AMONG THE GENERATING FUNCTIONS 

We now observe some relationships between the generating functions^frA dk(x) and hk(x). First 

dk(x) = (k+1)xgk(x) 

which was to have been anticipated in light of the connection between Array 2 and Problem H-131. However, the re-
lationship between hk(x) andgk(x) is a little more surprising. Since Array 5 was obtained via an integration process, 
it might be felt thathk(x) should relate in some way to an integral ofgk(x); but 

hkM" (ITT) Q'kM 

which is easy to verify. This formula can be used to investigate some integral relationships however. Assuming each 
function is defined on [o,x] and using an integration-by-parts formula we have 

x x 

(k+f) f hk(x)dx+ f gk(x)dx * xgk(x). 

0 o 

Since dk(x) = (k+ 1)xgk(x), we now have 
x x 

dk(x) = (k+V2 j hk(x)dx + (k + 1) f gk(x)dx, 

a formula involving all three generating functions for k= 0, 1,2,3, 
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A SUMMATION IDENTITY 

THEODORE J. CULLEN 
California State Polytechnic University, Pomona, California 91768 

The purpose of this note is to generalize the following two well known formulas: 

n n-i+k n n-j+k 

«» E E =E E 
n I n n 

(2) H E - E E • 
i=k j=k j-k i~j 

These are double summation operators, and the equality means that when either operator acts on an arbitrary doubly 
subscripted sequence, the same result is obtained. 

To show how these formulas can be compounded, and to motivate the general result to follow, we offer the follow-
ing example. Each equality is justified by (1), (2), or the fact that the operators may commute when the subscripts 
involved are independent of each other. Note that the use of the parenthesis is to indicate which pair of operators 
is being permuted, and is not to imply any sort of associative law, 

( n n~i\+k \ n /3 n I n~i2+k n \ /3 n n I n»f2+k /3 \ 

E Z E E - E E E E - E E E E 
i\=k i^k jiz=i% i4=k i%=k \ i\=k / 8- /a / / 4 =* l2=*k /9- /a \ t ~k i^k j 

I n n \ /3 n~i2+k n I /3 /3 \ n-l%+k 

- E Z )Z Z = E [Z Z ) Z 

C n /3 \ /3 n-J2+k n n /3 n-i2+k 

U'k / 4 =* / / , - * t^k i^k /3-/4 /a-fr i\*k 
If we examine the resulting equality of the first and last operators, we see that order is reversed with respect to the 
i/s, /4 replaces i\ in the first factor, and the other factors are exchanged according to the schemes: 

n-j+k n-t+k 

(3) E — E 
i=k j*k 

(4) E^E 
i=] j=k 

Theorem. Consider an operator of the form 
n t "I 

Z n E • 
i\=k J^2 lf*hj 
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ni 

where the pairs hj, nj are of the following types: 
(5) hj = k and nj - n-ij„i + k 

(6) hj - k and nj = ij„<i 

(7) hj = /)„? and nj - n . 
Then 

n t fij n t-1 

£ n E - £ n £ < 
/ j - / : j=2 ijThj lt=k j=1 it-j 

where each factor on the right (after the first) has been exchanged according to the scheme (3), (4). 

Proof. Inductively, suppose that the theorem is true for (t - 1) factors. We have 
n t nJ I n n2 \ t nj n t nJ 

<*> £ n £ - £ £ n £ = £ £ n £ . 
/\=k j=2 ij=hj \ i\=k t2=h% / j=3 }j=hj !%=k ix j=3 ij*hj 

where the S factor has been transformed by (3) or (4). Now the factor S can commute with each 2\ ,t>j>3, 
since each of these hf% and /?y's are independent of i\ . Hence 

n t nj I n t nj \ 

/\«/f j=2 ij=hj \i2=k j=3 ij=hj J lx 

and the result follows from the induction hypothesis on the first (t H 7,/ factors. 
Example. 

n n n n h U n h U 

£ E ••• E (£ ) -£ E " £ ( i ) - E E •••£(£;/) 

E g h + * - 1 \ - i n + t X 
\ k+t-1 * \ * * * ' ' 

it=k 
On the other hand, since 

E - E / = c-'i_+r') -

£••• £(£>-£(;?)£••• E ' - E (ii>(,,-:'-T",)< 
we have 

£OX" - ? - ; - ' ) -(,-;;)• 



FIBONACCI SEQUENCES AND MEIViORY MANAGEMENT 

TB G9 LEWIS 
University of Southwestern Louisiana, Lafayette, Louisiana 70501 
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IBM Corporation, General Products Division, San Jose, California 15100 

Fibonacci sequences have been studied from many points of view. We shall be concerned with sequences of integers 
which satisfy difference equations of the form 
(1) £/ - LM + Li-k-i . 

For various values of k, we obtain generalized Fibonacci sequences as studied by Daykin [1] and Hoggatt [4 ] , 
In [4 ] , many interesting properties of these sequences are derived by using generating functions and generalized 

diagonals of Pascal's Triangle. For our purposes, however, we need a formula which allows the direct calculation of 
any particular term in any one of the sequences determined by (1). The techniques are standard (see Miles [6] or 
Flores [2]) but will be developed here for completeness. 

The advantages of closed-form formulas are important to many applications of Fibonacci sequences. In particular, 
the solution of (1) is useful to computer scientists in their study of algorithms. The polyphase sort algorithm, for in-
stance, requires the use of Fibonacci numbers, and Fibonacci numbers arise naturally in the analysis of the algorithm 
to compute the greatest common divisor of two numbers. The application we investigate concerns the way Fibonacci 
numbers can be used to manage computer memory. 

Consider the objective of keeping as many jobs in memory as possible. To implement this, the system must keep 
extensive tables of areas in memory and the size of each area. As jobs finish, the memory area becomes checker-
boarded with vacant blocks of various sizes. Sometimes a new job is a little too big to fit in any of these areas, even 
though the total available area is sufficient to accomodate several new jobs. This checkerboarding is referred to as 
external fragmentation of memory. It can be alleviated by rearranging the jobs in memory so that all the vacant space 
is in one place. However, such operations require computer resources which could otherwise be used for user jobs in 
memory. 

Some systems arbitrarily divide memory into blocks of fixed size, and force the requests for memory space to con-
form to these constraints. This makes it more economical for the system to manage the available blocks and their 
locations. On the other hand, this can be extravagant use of memory, because requests for space seldom fill the blocks 
to which they are assigned. The unused memory area toward the end of these blocks is called internal fragmentation. 

in fact, there are memory management schemes which incorporate some of these features [7 ] . One such system is 
the Buddy System [5] and works as follows. The total memory sizem is a power of 2, say m~2n. when the system 
notes a request for storage space, it tries to find the smallest block still a power of 2, which will hold the request. 
Larger blocks may be split in half if available, creating two smaller blocks, either of which might hold the request 
with less wasted space (internal fragmentation). 

One feature of this system which reduces system overhead results from the fact that each block size (there are n 
distinct sizes) is twice the size of the next smaller block. That is the block sizes £/ satisfy the relation £/ = 2£./-y. If 
it happens that two adjacent blocks of size £/_/ become free, they are recombined into one block of size £;. This 
makes the tables and search procedures somewhat simpler. 

Others ( [3 ] , [5]) have noticed that the Buddy System enuatsort is a special case of the more general difference 
equation: 
(1) £/ = LM + LHC-U k » Q, 1,2,-.. 
For k = 0 (and appropriate initial values) we get the sequence 1, 2,4, 8,16,— . ForAr^ /, we can obtain the Fibonacci 
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sequence 1, 1, 2, 3, 5, 6f 13f — . For other values of k we will refer to the corresponding sequences as the kth Fib-
onacci sequence (see Table 1). 

Table 1 
Generalized Fibonacci Sequences Giving Block Sizes 1 Through 250 (approx.) 

/ 
Level 

1 
2 
3 
4 
5 
6 
7 
8 
e 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

k = 0 

1 
2 
4 
8 
16 
32 
64 
128 
256 

k=1 

1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 

Li 
k = 2 

1 
1 
1 
2 
3 
4 
6 
9 
13 
19 
28 
41 
60 
88 
129 
189 
277 

k = 3 

1 
1 
1 
1 
2 
3 
4 
5 
7 
10 
14 
19 
26 
36 
50 
69 
95 
131 
181 
250 

k = 4 

2 
3 
4 
5 
6 
8 
11 
15 
20 
26 
34 
45 
60 
80 
106 
140 
185 
245 

We can design a memory management scheme based on the kth Fibonacci sequence, modeled after the Buddy Sys-
tem. Initially, memory is the size of an appropriate Fibonacci number, and requests for smaller pieces of memory 
are serviced by using Eq. (1) to split and reassemble blocks. The question is, does this improve utilization of mem-
ory? Table 1 shows there is a greater variety of block sizes as k increases. We conjecture that internal fragmentation 
decreases as k increases, but that system overhead increases. 

For the moment we will disregard the overhead and examine the cost due to internal fragmentation. Let < L,l %Q 

be the collection of block sizes, with LQ= O and Ln = m the memory size. If the system services a request for a cer-
tain number* of memory locations, it will allocate a block of size £/, where £/- / <x < /./. The waste involved is 
.Ui-Xji 

The requests for memory space are always for an integral number of locations, but for convenience let us assume 
that the request sizes are given by a continuous probability function pdf(x). Then the expected average waste per re-
quest w is given by Hirschberg in [3] : 

Li 

w =Ys J (Li-x)pdf(x)dx. 

i=1 Lj-f 

Rewriting this, we obtain 

(2) w = m -x - £ (di)cdf(Lt-i), 
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where: 
m = maximum memory size 

m 

x = I xpdf(x) = avg. request size 
o 

n = number of distinct block sizes 
di = Li-Lh1 

cdf(z) = f pdf(z)dx = cumulative distribution function. 

The objective of memory management is to minimize w for a given pdf(x). If we restrict our attention to Fibonacci 
type systems, we can gain some additional insight into minimizina w. 

Equation 1 gives rise to the characteristic p o l y n o m i a l , * * * ' - * - 1 = 0, of Xnekth Fibonacci sequence. The poly-
nomial (for fixed k) is known to have (k + 1) distinct roots which yield a closed-form expression forthe/7f/? Fibon-
acci number. Note that f(x) =xkH - xk - 1 has a real root between 1 and 2, since f(1) is negative and f(2) fs pusi-
tive. By Descartes' rule of signs, this is the only positive root, which will be denoted by ax. Thus, 1 < ax < 1 {ax = 2 
for k == 0). Let the other roots of f(x) be a2,a3, ••«, a^^./. It is easy to establish that ax is the root of largest modu-
lus and, in fact, \a,-\ < 1 for / = 2,3, - , Ar + 1. (See, for example, [8].) 

Evidently, any sequence of numbers 1 u,-\ satisfying 

Uj = £ia't + C2CL2*""*ck+lQ>k+l 

will be a kth Fibonacci sequence satisfying Eq. (1). Specifying the initial (k+ 1) terms of the sequence determines 

the constants £ / , —, c^+f, or specifying the constants determines the sequence. For the particular sequence \ L,- \ 
in Table 1, we can write 

Li = £7(17 + - + Ck+ia'k+1. 

Since |a/ | < 1 fo r /= 2, 3, —, k+ 1, it follows that for sufficiently large /̂  

Lj & Cja'j . 

Some approximate values of cx and at are given in Table 2. The initial segments in Table 1 can be obtained from the 
formula Lj = c1a'1 (rounded to the nearest integer). 

Table 2 
Generators for Fibonacci Sequences 

k=0 k=1 k=2 k=3 k=4 

c(k) 1 .44721 .41724 .39663 .38119 
a(k) 2 1.61803 1.46557 1.38028 1.32472 

Consider now the value of ax for different values of k. Let this root be denoted by a(k). We have observed that 
1 < a(k) < 2. From Eq. (1) we see that 

and it follows that a(k + 1) < a(k) for every k. In fact, Ism a(k) ~ / 
k - > • « * 

Let us apply the preceding observations to a particular example, in which the distribution of request sizes is given 
by the uniform distribution pdf(x) = (1/m). Then cdf(x) - (x/m), and x = (m/2). Let k be arbitrary but fixed. We 
write a(k) = a and c(k) - c, so that £/ = caK and Ln - can - m. Then 
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n 11 

(3) w = m - x- £ (dikdfai.1) = /» - J - c (7 - £ ) £ oWm^ ^ 
/=/ /=l 

f-«('-:)?:«' 
Sf we assume that/w » 1, then 

a2m2 - 1 ~ a2m\ and w - ? - - ^ . 

Thus, w can he made as $m$!! as desired by increasing k, since a approaches 1 as k increases. 
Intuitively, this is to be expected, since for any finite memory size/w, if k >m, then the kth Fibonacci sequence 

contains all the integers from 1 through m, and wshould be zero. However, this leads to extreme overhead in mem-
ory management and places unreasonable demands on the search mechanism for allocation and release of area in 
memory. 

The waste function w measures only the cost of internal fragmentation. Let us assume that the overhead associated 
with a memory system is given by a function of /7, the number of distinct block sizes. Then a more complete cost 
function is 

n 

w = r n - x " - ] n (dj)cdf(Lh1) + f(n). 

HI 

This raises the possibility of optimizing the collection j L/f %Q by considering the equations 

M- = 0 for / = 1,2,»<,n-1 

and the boundary conditions Lo = 0, Ln = m. The solution is given by 

(A) t . cdf(Lj)-cdf(LH) 

Continuing with the simple example of the uniform request distribution, let us assume conveniently that f(n) = fi-n, 
where (3 > 0 is a constant. We obtain 

Lj+f = Lj+ ——j— = 2Lj- Lj-i . 

m 

The difference equation is not of the Fibonacci type, but does have a closed form solution 

So it is possible to optimize the collection \ L/f, which minimizes w, provided we know the nature of f(n) in Eq. 
(4). 

Unfortunately, other request distributions and other functions f(n) do not lead to such nice solutions. Indeed the 
difference equations resulting from (4) are, in general, extremely difficult to solve analytically. For certain pdf(x)'$, 
however, solutions are of considerable importance to computer systems designers, and where closed-form solutions 
of the difference equations are not feasible, it is still important to apply numerical techniques to these problems. 
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*kk*tktekk 

[Continued from Page 29.] 

> 35 > 33 
89 + 11 = 100 >21 89-11 = 78 > 21 

> 56 > 14 
144 + 1 2 = 1 5 6 >34 1 4 4 - 1 2 = 1 3 2 > 

> 90 > 88 
233 + 13 = 246 > 55 233 - 13 = 220 > 55 

>145 >143 
377 + 14 = 391 377-14 = 363 
etc., etc., etc. etc., etc., etc. 

Now try it with the Lucas series 1, 3, 4, 7, 11 ,—. 
N.B-(ln the reverse Fibonacci sequence, Fn is negative for even n). 

itkkkkkk 



INTERESTING PROPERTIES OF LAGUERRE POLYNOMIALS 
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Recent interest in optical communication has added to the importance of study of Laguerre polynomials [1] and 
distribution. We will establish two propositions which arise in studies of Laguerre distribution [2] . 

Definition. 

where 

/?'* = fx'pMdx . 
Proposition 1: 

f La
n(x)p(x)dx = L«(R) . 

Proof. 

n . w 

= E Cl?) -^* ' -^-
i=0 

Proposition 2. \i Rf+J'= R'R1', then 
( La

n(x)L^m(x)p(x)dx = L%(R)L%(R). 
Proof. 

/ « ' * * - E uz+-m-,?)-(Tfpfx%Mx 
n m 

= La
n(R)L^m(R) . 

CONCLUSION 
It is interesting to note that if p(x) > 0 and / p(x)dx = 1 and R' < «> % it then R' are called moments of the ran-

dom variable x. Expectation of Laguerre polynomials of random variables is Laguerre polynomials of moments. 
REFERENCES 
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1. INTRODUCTION 
In [11, [2], and [3], Hoggatt and BickneSI discuss the numerator polynomial coefficient arrays associated with the 

row generating functions for the convolution arrays of the Catalan sequence and related sequences. In [4], Hoggatt 
and Beirgum examine the irreducibility of the numerator polynomials associated with the row generating functions 
for the convolution arrays of the generalized Fibonacci sequence | Hn J-JJL/ defined recursively by 
(1.1) /// = 7, H2 = P, Hn = H^ + Hn-2, n>3, 

where the characteristic/32 - P- 1 is a prime. The coefficient array of the numerator polynomials is also examined. 
The purpose of this paper is to examine the numerator polynomials and coefficient array related to the row generat-
ing functions for the convolution array of the Fibonacci sequence. That is, we let P = /. 

2. THE FIBONACCI ARRAY 
We first note that many of the results of this section could be obtained from [4] by letting P= I 
The convolution array, written in rectangular form, for the Fibonacci sequence is 

Table 1 
Convolution Array for the Fibonacci Sequence 

1 
1 
2 
3 
5 
fi 

n 
21 

1 
2 
5 
10 
20 
38 
71 
130 

1 
3 
9 
22 
51 
111 
233 
474 

1 
4 
14 
40 
105 
256 
594 
1324 

1 
5 
20 
65 
190 
511 
1295 
3130 

1 
8 
27 
98 
315 
924 
2534 
6588 

1 
7 
35 
140 
490 
15.54 
4&78 

12,720 

1 
8 
44 
192 
726 
2472 
7776 

22,968 

The generating function Cm(x) for the m column of the convolution array is given by 
(2.1) Cm(x)= (1-x-x*fm 

and it is obvious that 
(2.2) Cm (x) = (x+x2)Cm (x) + Cm„ / (x). 
Hence, if Rnrm is the element in the nth row and mth column of the convolution array then the rule of formation 
for the convolution array is 
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'2-3) Rnem - Rn-1,m + Rn~2,m + Rn,rri-1 

which \$ representahle pictorially by 

where 
(2.4) x = u + v + w. 

If Rm (x) is the generating function for the mth row of the convolution array then we see by (2.3) and induc-
tion that 
(2.5) Rjx) ~ 1 

1 -x 
1 (2.6) Rjx) (1_x)2 

and 

(2.7. * .« . '-'*>«'-?-*> . J^L. „>3 
(1-x)m (t-x)m 

with Nm (xj a polynomial of degree 

[V] 
where / / i s the greatest integer function. 

The first few numerator polynomials are found to be 
NJx) = / 
NJx) = 1 

NJx) = 2-x 

NJx) = 3-2x 

NJx) = 5~5x+x2 

NJx) = 8- 10x+3x* 

NJx) = 13-20x + 9x2 -x3 

NJx) = 21 - 38x + 22x* - 4x3 . 

Recording our results by writing the triangle of coefficients for these polynomials, we have 
Table 2 

Coefficients of Numerator Polynomials Nm (x) 

1 

2 
3 
5 
8 

13 
21 

-1 
-2 
-5 

-10 
-20 
-38 

1 
3 
9 

22 
-1 
-4 

Examining Tables 1 and 2, it appears as if there exists a relationship between the rows of Table 2 and the rising 
diagonals of Table 1. In fact, we shall now show that 
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k 

(2-8) NmM = V Rm„2n+2,n(-*)n~1, m>2 . 

where 

[¥ 
It Is obvious from (2.5), (2.6), and (2.7) that the constant coefficient of Nm (x) is Fmfor ai! m > 1, where Fm is 

the/77th Fibonacci number. Furthermore, the rule of formation for the elements in Table 2 is given pictorially by 

where 
(2.9) x = ±(u + v~w) 

with the sign chosen according as* is in an even or odd numbered column. 
Letting Gm(x) be the generating function for the/??t/7 column and using (2.9) with induction, we see that 

(2.10) Gm(x) = \—^—\ Gm-iM = — U ^ — « (-1)m-1CmM. 

Equations (2.9) and (2.10) show that the columns of Table 2 are the columns of Table 1 shifted downward by the 
value of 2(m - 1) and having the sign (-1)m~1. Hence, Eq. (2.8) is proved. 

Adding along rising diagonals of Table 2 is equivalent to 
oo 

k=0 
which is the generating function for the sequence defined by 

m • * even 
(2-12) s-= !§ ] * / , -d 

Letting 
(2.13) G£(x) = (l-x-x*rk< 

we see that adding along rising diagonals with all signs positive is equivalent to 
oo 

(2.14) £ X*G^M - (jr^rO - ('-Trfe) = t-*-*-* 
k=0 

which is the generating function for the sequence of Tribonacci numbers. 
Since 

k=0 / x J 

we know that the row sums of Table 2 are always one. This fact can also be shown in the following way. From (2.7), 
we determine that the generating function for the polynomials Nm(x) is 

oo 

(2.16) fZT^W ' £ ***/M** • 
Lettingx= 1, we have 

oo 

(2.17) y - ^ - = £ Nk+1(1IKk 

k=0 
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so that Nk(1) = 7 for all Ar > 7. When x = 0, we obtain an alternate proof that the constant coefficient of Nm (xlls 

Row sums with all signs positive is given by 
oo 

(2.18) £ * *<w- (TT^T . ) • C ' - r r b ) - "-*-*•;- ' 
which is the generating function for the sequence defined recursively by 

(2.19) 7-y - 7, T2 = 7, Tn = Tn^+2T^2. n>3. 

It is interesting to observe that by letting x--1 in (2.16) we have N^i- V - 7& fo r / r>7 . 
Adding along failing diagonals is equivalent to 

(2.20) ^ ^ ^ / W = _ L _ 2 

k=*0 

which is the generating function for the sequence defined by 

(2.21) Sn°{ 'A n ° d d 
n 1 " ~ even 

bn [O. n 

In conclusion, we note that the sum of falling diagonals with all elements positive is equivalent to 
oo 

(2'22) E^6*+'M*T=5h? 
k=0 

which is the generating function for the sequence of Pel liars numbers defined recursively by 
(2.23) P1 = I P2 = 2, Pn = 2Pn--i +Pn-2, n > 3. 

3. PROPERTIES OF \ Nm(x))m*i 

The main purpose of this section is to show that if m > 5 then / l / m 6r^ is irreducible if and only if m is a prime. The 
irreducibility ofNm(x)for 1 <m < 5 is obvious. 

By standard finite difference techniques, it can be shown that the auxiliary polynomial associated with 

is 
(3.1) X2-X-(7-x) = 0 
whose roots are 

(3.2) X, = ^ | ^ * and X, = Lz^lH^L , 

Using (3.1) and induction, we have 
•\tn-\fn 

(3.3) Nm(x) = V ** , m > 1. 

Since \ \ = x- 1, we can use (3.3) to show that 
(3.4) Nm+n+, (x) = Nm+1 (x)Nn+1 (x) + (1- x)Nm (x)Nn (x), m>1, n > 1. 

Following the arguments of Hoggatt and Long which can be found in [6 ] , we obtain the following results. 
(3.5) (1-x,Nm(x)) = 1, m > 1. 

(3.6) lNmM,Nm+1(x»= 1, m > 1. 
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(3.7) If m > 3 then Nm(x)\Nn(x) if and only if m\n. 

(3.8) Let m > 5. If Nm(x) is irreducible then m is a prime. 
(3.9) For m > 7, n > 1, (Nm(x), Nn(x» = N(mfn)(x). 

Substituting (3.2) into (3.3) and expanding by the binomial theorem, we obtain the following. 
(3.10) ^2n+iM is a monic polynomial of degree n. 

(3.11) 4nN2n+iM - 2n+1(mod5-4x). 

Let/? be an odd prime, say/7 = 2n + h By expanding (3.3) and collecting like powers ofX, we obtain 

am , ,«, , - .£± t(^,){L)shm'-4xr-'.ic-)•*-<^"'-" 
2 m=0 j=m m

 p^j 

= (5-4x)~^ (mod/?). 
In orderto prove the converse of (3.8), we present the following argument. 
Suppose that for some prime p, p >5, Np(x) is reducible. Then, by (3.10), there ex?st two monic polynomials such 

that 
Npfx) = f(x)g(x) 

or 
Np(x

2) = f(x2)g(x2)* 

Since all the powers of f(x2) and g(x2} are even, we can use the division algorithm to obtain 
4ff(x2) = zl(xl(5-4x2)+h 

and 
4qg(x2) = si2(x)(5-4x2)+g , 

where t and q are respectively the degrees of f(x) and g(x) and h and g are integers. 
By (3.11), we see that 

(3.13) 4 2 f(x2)g(x2) sp = hg (mod 5 - 4x2). 
Hence, we assume without loss of generality that h = +p and # = ±7. 

|f/7 ~±2 (mod 5) then 5isaquadraticnonresidueso that 5-4x2 is irreducible in the unique factorization domain 
Zp[x], Hence, by (3.12), we conclude th at g(x)^(5-4x2) (mod/?) for some integer k. If/7 =±1 (mod 5) then 5 
is a quadratic residue so that 

(5-4x2) = (a-2x)(a + 2x) in Zp[x] with a2 = 5 (mod/?). 
Therefore, by (3.12), 

g(x2) = (a-2x)kUa + 2x)k* (modp) 
for some integers kl and k2. However, #fr2) is even so that kx = k2. In both cases, there exists an integers such that 
(3.14) g(x2) = 9.Jx)p + (5-4x2)k . 
Since fi3 (x) is obviously even, we know that 
(3.15) 4%(x) = c (mod5-4x2) 

for some integer c so that 
(3.16) 4qg(x2) s ±1 =± pc (mod5-4x2) 
which is impossible. Hence, Np(x) is irreducible. 
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LETTER TO THE EDITOR 

October 13,1975 
Dear Professor Hoggatt: 

It was with some surprise that I read Miss Ada Booth's article "Idiot's Roulette Revisited" in the April 1975 issue 
of The Fibonacci Quarterly. The problem she discusses-given N places circularly arranged and successively casting 
out the Cth place, determine which will be the last remaining place-is quite old and commonly referred to as the 
Josephus problem. The name alludes to a passage in the writings of Flavius Josephus [7 ] , a Jewish historian who re-
lates how after the fall of Jotapata, he and forty other Jews took refuge in a nearby cave, only to be discovered by 
the Romans. In order to avoid capture, everyone in the group, save Josephus, resolved on mass suicide. At Josephus' 
suggestion, lots were drawn, and as each man's lot came up, he was killed. By means not made clear in the passage, 
Josephus ensured that the lots of himself and one other were the last to come up, at which point he persuaded the 
other man that they should surrender to Vespasian. 

Bachet [2 ] , in one of the earliest works on recreational mathematics, proposed a definite mechanism by which 
this could have been accomplished: all forty-one people are placed in a circle, Josephus placing himself and the other 
manatthe 16f/? and 3 1 s t places; every third person is then counted off and killed. This is, of course, a special case of 
the question Miss Booth considers. 

Miss Booth's iterative solution to the general problem was apparently first discovered by Euler [5] in 1771 and 
then rediscovered by P. G. Tait [9 ] , the English physicist and mathematician, in 1898. Tait points out that the 
method enables one to calculate the last r places to be left, not merely the last as in Miss Booth's article. Although 
Euler and Tait content themselves with demonstrating how the iterative solution works and do not actually derive 
the formula for Miss Booth's sequence of "subtraction numbers," in the 1890's Schubert and Busche [8,4] derived 
a formula for this sequence (slightly modified) via a wholly different attack on the problem ("Oberreihen"). (Ahrens 
[1] has an excellent description of this work, as well as a comprehensive review of the history of the problem. Ball 
and Coxeter [3] briefly touch on the problem but omit any mention of the work of Schubert and Busche.) 

[Continued on Page 51.] 



A COMBINATORIAL IDENTITY 

HAIWf HAWANI 
Technion-lsrael institute of Technology, Haifa 

Let q < p < k and v be positive integers, n be a nonnegative integer, fi0 ~ 7 and \ cl# fi2 •» i be a sequence of 
marks. Further let 7"^/ be the Stirling numbers of the first kind defined as the coefficients of 

k 

(1) fM=JL TkJJ °x(x-1)(x-2t~(x-k+V 
1=1 

and let 
(2) Uv,p, q) =J2 rj2 - / y ^ e ^ . . . ^ , 
where the summation is over all the sequences of integers ru r2, <-, r„ satisfying 

p = rQ > rl > r% > - > r„ « p - q, and * / /« /> . / - r / . 
In connection with integration of differential equations of a group, A Ran proved in his thesis [1] , using analyti-

cal methods, that 
k 

(3) £ TkJL(j + n,p,q) ^0 
M 

identically, i.e., that on the left side of (3) the coefficient of every product Hz? equals zero. 
Here the proof of (3) is given by combinatorial methods. To begin we write (2) in the form 

(4) L(K p, q) =T*R(K P, q, a, ir*?) n *f -

where the summation 2 * is over all sequences of nonnegative integers alta2, •••, aq satisfying S / a / - q, and 

(5) a - 53<V/ 
and prove the following 
Lemma. 

q 

(6) R(v,P, Q, a, IT*"1') - ] T ch(p~h)y , 
h = Q 

where the coefficients Ch do not depend on v (but may depend on p,q,a and 7T%') and are such that 
q 

(7) 53 chfp-h)** 0, f = ft/,».,«-/. 
h=0 

Proof. The proof is given by induction on a. For a = 1 we have 
v-1 

flrV, P, q, h V = (P ' Q> £ P'Vp - fl^" =^q (PV-(P- q)v), 
H> q 
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which satisfies both (6) and (7). 
Suppose now that (6) and (7) are satisfied for a = b- 1. It is easily seen that 

v-b 
R(v, P, Q, b, ntf ) = Y (P-V) Y, pPR(v-p-r.p-Tiq-nb-lTTtf/Qr)), 

where 17 obtains the values of/for which a / > 1. We make use of (6) with a = b- 1 and in order to stress that the co-
efficients Ch depend on 97 we write them in the form crjfh • We have 

v-h : q '• 

T? (3=0 /?=TJ 

h*r\ p=v-b+l h=*r\ n 
By (7) follows that 

Y Cri,h(P-hrM = 0 
h=ri 

for every rj and for 0 < v - j3 - 1 < b— 2, i.e., fori/ - b + 1 < 0 < v - 1 and consequently 

(8) R(v,P,q,b,^i) = YJ(p-r\) . j^^-fp'-fp-f*)") 

which proves (6) for a = b. 
To prove (7) let us denote for every r? 

q 

(9) Dn(t)= Y ^(^-(P-V*)-

Evidently D^(Q) = 0. For t > 1 we have 

OnM = L T ^ S P'to-h)*-'"1 = t>' ' Z ^(p-h)'-''1 • 

By (7) with a = b - 7, 

Y ^(p-h)*-'"1 = 0 
b=V 

for f = 7, £ >~, b - 7 and 0 < / < t - 7 and consequently Z ? ^ ^ 0 for 0 < f < b - 7. By (6), (8) and (9), 
q 

Y ch(p-b){ = R(t,pfqtb,iisi?) = Y (p-V^nM* 0, t = 0, 7,-.,b-1 

which proves (7) with a = b. 
Theorem. 

k 
Y TkJL(j + n,p,q) = 0. 
M 
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Proof By (4), (6) and (1) we have 

A: k q q 

£ TkJL(j + n, p, q) * £ TkJ £ n if £ oh(p - h)i+n 

j=1 j=1 - i=1 h=o 

= Z * n *? E ch(P-h)n £ TkJ(p-h)l*YL n *?'' £ ch(P~h)nf(p-h). 
1=1 h=0 ]*1 i"1 h=o 

By definition/? - /? is an integer satisfying \<p-h <p<k- 1 and consequently by (1), f(p - h) = 0 which 
proves the theorem. 

REFERENCE 

1. A. Ran# "One Parameter Groups of Forma! Power Series/'Duke Math, 1, Vol. 38 (1971), pp. 441-459. 
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[Continued from Page 48J 

Much more recently (1973), Jacobczyk [6] has given new iterative procedures for determining answers to both: 
(a) for each k,./•< k < N, which will be the kth place to be cast out? 
(b) for each k, 1 <k </\f, when will the kth place be cast out? 

(The "Oberreihen" methods described by Ahrens also provide answers to both questions.) 
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SOME REMARKS ON THE PERIODICITY 
OF THE SEQUENCE OF FIBONACCI NUMBERS 

T.E, STANLEY 
The City University, St John Street, London E.C1, England 

In the work of Wall [2], a function £ was defined by "<j>fm) is the length of the period of the sequence of Fibon-
acci numbers reduced to least non-negative residues modulo m, for m > 2." Thus, the domain of <£is the set of posi-
tive integers greater than 2, and the range vvas shown to be a subset of the set of all even integers. Below, I determine 
the range of £ exactly. In [1] I proved the following 

Theorem A. If m is an integer greater than 3 then $fFm) -2m if m is even and <j>(Fm) - 4m if m is odd. 
Here, Fm is the mth Fibonacci number, where 

F0 = 0, Fx = 7, Fn+g * Fn + Fn-<i (n > 1). 

Theorem 2 of [2] shows that the values of £ are completely known provided its values at all prime powers are 
known. But, as the table of values included in [2] shows, the values that ^ takes at primes do not seem to follow 
any simple pattern. In an attempt to find more of the values of <£I will prove the following 

Theorem B. If/7? > 2\\wb§{Fm„<i + Fm+i) = 4m \\m \s wn and QfFm-j + Fm+if* 2m if/77 is odd. 
Theorems A and B have the following 

Corollary. The range of £ is the set of all even integers greater than 4. 

Proof. It is clear that we cannot have an integer n for which $n) = 2 or <j>fn) - 4. Suppose that r is an even 
integer other than 2 or 4. if r is a multiple of 4, say rss4s, then Q/F^f + Fs+i) = r\U is even, while (£(FS) = r if s is 
odd and 5 > 3. Also<£/F^= 12. I fr is not a multiple of 4, say/-2s, wheres is odd ands> 1, then 

&Fg-i + F8+i) * r. 
A subsidiary result is required to prove Theorem B. In the following, the symbol - denotes congruence modulo 

(Fm-1 + Fm+i)< 

Lemma. For 1 < r <m let Gr- Fm„f + Fm+i - Fr. Then 

/ Fm„r if 0<r<m and r is even 

If m is a positive even integer then 

(ii) F2m+r^Gr if Q<r<m. 

( , ) Fm+r ~ \ Gmlr if 1<r</77 - 7 and r is odd. 

..... • __ j Gm-r if 0 < r < m and r is even 
( m ) 3 m * r | ^m- r 'f 1 < / - < / 7 7 - / and r is odd, 
Proof. We prove these results by induction on r. 

(i) The assertion here is trivially true if r = 0 or r = 1. Suppose the result is true for r - 1 and n If r + 1 is 
odd then 

^m*r*/ " Fm+r + Fm+r„i s Fm-f+ Gm-r+j by hypothesis 

~ ^ra-7 * ^ m * / * Fm^r- Fm„r+i 

= Fm„t + Fm+i *- Fm^(r+1) * Gm^(r+v . 
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If r + 7 is even then 
Fm+r+1 = Fm+r + Fm+r-1 

= Gm-r + Fm-(r-U by hypothesis 
s Fm~1 + Fm+1 + Fm-(r+1) 

= Fm-(r+1) • 
(ii) The case in which r = 0 follows directly from (i) with/* = /#. The result is also true forr= 1 because 

F2m+1 = F2m + F2m-1 
s Fo+Gm-(m-D by (i) 
= G1 

Suppose the result is true for r - 1 and r. Then 
F2m+rt-1 ~ F2m+r + F2m+r-1 

s Gr+Gr„i by hypothesis 

= Fm-1 + Fm+1~ Fr+1 

= Gr+1 

(iii) The case in which/• = 0 follows directly from (ii) with r = /77. When r = 1 we have 
F3m+1 = F3m + F3m-1 

s Gm + Gm-<i by (ii) 

- f m - 7 + 2Fm+1 - Fm 

- Fm-1 

so that the result is true for r = 1 . Suppose it is true f o r r - 1 and r. If r + 1 is odd then 
F3m+r+1 " F3m+r+ F3m+r-1 

s Gm~r + Fm-r+f by hypothesis 
35 Fm-(r+1) 

while if r + 1 is even we have 
F3m+r+1 ~ F3m+r + F3m+tf-1 

= Fm-r+ Gm~r+1 
= Gm-ir+1) 

This finishes the proof of the Lemma. 
We may now prove Theorem B by noticing that if m is even then the sequence of Fibonacci numbers reduced mod-

ulo (Fm„i + Fm+ 7) consists of repetitions of the numbers 
Fo, F1, ••*, Fm, Fm+i, Fm*2, Gm~>3fm-4*Gm-5, —, F2, Gi,0, 

G1, G2, - , Gm„1f Gm, Fm„i, Gm-2, Fm-3* Gm-4, ", G2,
 F1, 

while if m is odd we obtain 
% Fh - / Fm, Fm+h Fm-2* ^m-3/ Fm-4, Gms, " , G2, F1 . 

Thus, counting, and noticing that Gl? Fx, we obtain the required results. 
Using Theorem A, it may be shown that if m > 4 then 

<k(Fm-1 + Fm+l) * M&Fm-fl + tfFm+li). 

I conclude by conjecturing that if k is a positive integer with m - k > 3 then 

$fFfii-k + Fm+k) = j&Fm^k) + <£(Fm+k)). 
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PARITY TRIANGLES OF PASCAL'S TRIANGLE 

S. H. LKUNG 
Jacksonville University, Jacksonville, Florida 32211 

In the Pascal's triangle of binomial coefficients, (•")$ let every odd number be represented by an asterisk, "*," 
and every even number by a cross, " t ." Then we discover another diagram which is quite interesting. 

Every nine (odd) numbers form a triangle having exactly one (odd) even number in its interior (odd!). Thus we 
shall designate it as an Odd-triangle. 

The even numbers also form triangles whose sizes vary but each of these triangles contains an even number of 
crosses. This set of triangles is called Even-triangles. 

The present diagram (n - 31) can be easily extended along the outermost apex of Pascal's triangle. Some partial 
observations are: 
(a) If/7 =2'- /and 0<r<2/- 1, then ( ^ ) is odd, 

(b) I f / r ^ ' a n d 1 <r<2' - 1, then ( " ) is even, 

where/is a nonnegative integer. 

Parity Triangles of \ n
r ) 



THE SAALSCHUTZIANTHEOREMS 

L.CARL1TZ 
Duke University, Durham, North Carolina 27700 

1. Saalschiitz's theorem reads 

(1 1) V (-n)k(a)k(b)k = (c-a)n(c-b)n 

fa k!(c)k(d)k ~ (c)n(c-a-h)n ' 
where 
(1.2) c + d = -n+a + b + 1 
and 

(a)k = a(a + 1) - (a + k - 1), (a)0 = /. 
The theorem has many applications. For example, making use of (1.1), one can prove [3, §61 , [7, p. 41] 

(i-3) i [:Y*k ^m^*1"+*>--*. 
k=0 2j<n 

In particular, forx = 1, (1.3) reduces to 

(14) V / n \ 3
 = Y (n + 1,! 2n~21 

k=0 2J<n 

a result due to MacMahon. Forx = - / , (1.3) yields Dixon's theorem: 
2n 

d.5) Y. <-* [lY - <-*r W • 
k=0 

Saalschiitz's theorem is usually proved (see for example [2, p. 9 ] , [6, p. 86] , [8, p. 48]) by showing that it is a 
corollary of Euler's theorem for the hypergeometric function: 
(.1.6) F(a,b;c;x) = (1-x)c-a-bF(c-a,c-b;c;x), 
where as usual 

* - ' n!(c)n 
n-0 

As for0.6), the usual method of proof is by making use of the hypergeometric differential equation. 
The writer [3, §6] has given an inductive proof of (1.1). We shall now show how to prove the theorem by using 

only Vandermonde's theorem 

(1.7) F(-n,a;c;1) = —7-^ . 
(c)n 

Supported in part by NSF grant GP-37924. 
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We then show how the (/-analog of (1.11 can he proved in an analogous manner (for statement of the ^-analog see 
§5 below). Finally, in §6, we prove a ^-analog of (1.5). 

2. To begin with, we note that (1.4) is implied by the familiar formula 

k^O 

where a,b are non-negative integers. Since each side of (2.1) is a polynomial in a,b, it follows that (2.1) holds for 
arbitrary a,b. Replacing a by -a and b by c + n - 7, (2.1) becomes 

t (7)(c;v)--(c-ar-') • 
k=0 N 

that is, 

This is the same as 

2>« k (a)k(c + k)n^k _ (c-a)n 

k!(n - k)! n! 
k=0 

( 2 2 ) y» (-n)k(a)k _ (c-a)n 

„n kl(c)k (c)„ 
k=0 

so that we have proved (1.4). 
Now, by (2.2), 

Xs [C-a'nlb/n xn = *p [% n *p /jjk (n\ [Vk_ _ y ^ /^k Wk\°9k xk X^ \b + k)n y? 
" n!(c)n *-* n! ^ \kl Mk ^ MMk nl 

n=0 n n=0 k=0 • K k=0 n=0 

k=*0 

so that 

(2.3) £ (^fkxn = (1_xrbj^ ^(bkl_^\\ 
*-* n!(c)n *-*• k!(c)k \x-1 ) 
n=u k-u 

We have accordingly proved the well-known formula 

(2.4) F {a,h;C;~^j\ = (1-x)bF(c-a,b;c;x). 

In the next place, by (2.3), 

(c-a)n(c-b)n n_ h-c T p (a)k(c-b)k [ x \ k _ .a-cV (aIk. I * \k\^ / i\i lk\(bh 

nssd k=0 isssfi i=n * 
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(1-x)b'c 

oo m oo 

f - j!(c)j \1-x I V 1-x I U X) ^ j!(c)j * • 
j=0 s j=0 ' 

This evidently proves (1.6). 
To see that (1.1) and (1.6) are equivalent, consider 

Since 

it follows that 

(1-x)a+b-cF(a,b;c;x) = ] £ ^ZJZ^L xi j r (^J^ xk 

E n y ^ (a)k(b)k(c-a~h)n-k 

^ k!(c)k(n-k)! 
n=0 k=0 

la\ . = (a,n = (_nk Mn 

{a)n-k (a + n_k)...(a + n_1} r v ( „ 8 „ n + 1)n> 

U x) Fla,b,c,x) l * — ni
 x 2 ^ k!(c)k(a+b-c-n + 1)k 

n=0 ' k=0 

Hence (1.6) is equivalent to 

(c-a-b)n " ^ (~n)k(a)k(b)k = (c-a)n(c-b)n 

nT ^ k!(c)k(a+b-c-n+ljk
 nj(c)n 

k=0 
which is itself equivalent to (1.1). 

3. It may be of interest to remark that (2.4) is a special case of the following identity: 

(3.1) 

where 

(3.2) Mr - E (-Vs ( r
$ ) X,, Xr - 2J (-Vs C ) Ms 

s=0 V s=0 
Indeed 

r=0 r=0 x 

s=0 X s=0 

n^-i^A^rY-ti'-"'1^^"-"' 
r=0 ' r ~ 

/7=0 
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ForXr=(b)r/(c)r, (3.1) reduces to an identity equivalent to (2.4). For 

s=0 

and (3.1) becomes 

(3.3) £(*jL.(i-xftj^to(->LAr . 
~ r! c + r *-* (c)r+f \x-1j 
T—O f=0 

4. We turn next to the ^-analog of Saalshutt's theorem. We shall use the following notation. Put 

(4.1) (a)„ = Mn.q = (1 -a)(1 -qa)-(1- qn~ 1a), (a)0 - / / 
in particular 

<q)n = (1 - q)(1 ~ q2) »• (1-1nh Wo = 1. 

The ^-binomial coefficient is defined by 

(Q)n 

[I] (q)k(q)n-k ' 
it occurs in the ^-binomial theorem 

tx)n = (1-x)(1-qx)-»(1-qn-1x) = £ (-1)k M qM(k'1)xk 

k=0 L J 

We also put 
oo 

e(x) ' e(x,q) = 5 (1-qnxr1 = 22 -£- , 

where \q\ < 1, \x\ < 1. A more general result used below is 

(4.2) T<^xn=e{xl 
*-* (q)n e(ax) 
n=0 

We shall also use the identity 
oo 

n 

n=0 

For completeness we sketch the proof of (4.2). Put 

Since efqx) = (1 - x)e(x), it follows that 

so that 

n=0 

f(qx) _- £*. f(xh 

(1-x)J2 An*" = (J ~ax) £ Anq
nxn . 

n=0 n=Q 

This gives 
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An-An-t = qnAn-q
n~1aAn„t, (1-qn)An = (1-qn'1a)An^ 

Since A0 = 1, we get 

1 - qn {q'n 

thus proving (4.2). 
We shall also require the following formulas: 

(4"3) ^ (~1) iKl Wk
Q (C/d) "Mn~ ' 

k=0 

(4.4) V* (-1) k M (ElL 0
1/2k(k+1hnk = (c/a)n gn 

^ L*J (c)k
 Q ~ (c)n 

k=0 

(4.5) £ (-1)" (aJ"\ , . (c/aJn - -ffcL . 
n=0 

To prove (4.3), we note first that it follows from (4.2) and the evident identity 

e(x) efax) _ e(x) 
e(ax) e(abx) e(ahx) 

(4.6) ^ [ j ] (a)k(b)n„ka
n~k = fo^,, . 

Replacingihy = tf""* /c, this becomes 
oo 

(4.7) £ [2] feW'VcW7-* = fcf'V^, . 
k=0 

Now 

* - " « * « . - ( ' - ^ ' K ' - ^ ) •••( '-:-) 
= (-1)nq-y'n(n-1,(a/c)n(c/a)n / 

similarly 

h-^.(, .t=I)(, .^L).. (,.£) 
= (-irk

q-%nin-"+y*k{k-nc-n+k(<,kc)n-k 

= (-1)n-kq-*n<n-1>+*k<k-1>c-nH'(c)n/<c)k . 

Hence (4.7) becomes 

Ar=0 
so that we have proved (3.3). 

To prove (4.4), rewrite (4.6) in the form 

L i nknKk(k-1) [n] <ak ,,}k = (c/a)n 
('1) q M Wk

(C/a) (c)n ' 



60 THESAALSCHUTZ1AW THEOREMS [FEB. 

(4.8) Y, ft] (a)k(h)n-kh
k = (ab)n. 

k=0 
Then exactly as above 

£ [ J ] (a)k(q~n+1/c)n„k(q-n+1/c)k = (q~n+1a/c)n 

k=0 

which reduces to 

As for (4.5), we take 

e(ad 
e(c) 

£ (-V^^^fakfq^n^ = (c/a)nan . 
k=0 

eM yp (-1)° (aJ^r7-l k/af 
n=0 

- y (-if Q%n{n-1)(cMn e(gna) 
„% <*>» e(Q"c) 

^o (q)n £o (g)k 

^ icteh k ^ „ QW"-lHakc/a)n 

(c/a)k gk 7 
£?0 (q>* " e(qkc/a) 

:/a) ^ (qk e 

k e(a) 
e(c/a) ^ (q)k e(c/a) 

k=0 

This evidently proves (4.5). 

5. The ^-analog of Saalschiitz's theorem reads 

,, ^ y* (q"")k(a)k(b)k k s (c/a)n(c/b)n 

~ '<q)k(c)k(d)k Q ' (c)n(c/ab)n ' 

where 
(5.2) cd = q'n+1ab. 

The theorem is usually proved (see for example [2, p. 6 8 ] , [8, p. 96] ) as a special case of a much more elaborate 
result for generalized basic hypergeometric series. We shall give a proof analogous to the proof in §2 of the ordinary 
Saalschiitz theorem. 

Making use of (5.2), we may rewrite (5.1) as follows. 
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(5 3) V * (Q~nikMk(b)k k s (c/a)n(c/b)n 

h (q)k(c)k(q~n+1ab/c)k " Mn(c/ab)„ 

Since 

(5.3) becomes 

It follows that 

(q-")k = (-1)kqm(k-n-nkWn/(Q)n-k . 

(q-n+1ab/c)k = (-1)kq'M<k+1)-"k(ab/c)k(c/ab)n(c/ab)n.k , 

V M (a}k(b)k fr/ah> I jL.\k = (c/aUc/b)„ 
h L*J Mk(c/ab)n

 ,C/a°Jn-k [ ab I (c)„(c/ab)n 

E (c/a)n(c/b)n „ = i p f̂ê &>Ar / CY\ * y > fc/a^" / 
„ /W„fcA, " ^ W * t o * \ a& J ^ (g)„ 

n=0 k=0 n-0 
Hence, by (4.2), we have 

/ R / L \ V (c/a)n(c/h)n n = e(x) \ ~ " (a)k(b)k t C_x\k 

l b , 4 ) ^ (q)„(c)n ~ *fc*/aW yn (q)k(c)k [ab) ' 
n=0 k-0 

an identity due to Heine. Clearly (5.3) and (5.4) are equivalent, so it will suffice to prove (5.4). 
By (4.3), 

oo 0 0 / 7 

£ (c/a)(c/b)n „ = y. feU „ _ * r„-| Mk^Oc-Df^ 

E , .* (a)k(c/b)k '/,k(k-1),/alk V ^ fo C/^/? y n 

fc=0 n-0 

= y h1)« MkM»k qy^k-i)(cx/ajk __eM_ 
fa (q)k(c)k e(qkcx/b) 

k~0 

Next, using (4.4) we get 

£'-"' idwSk '"*"<""* 

-E'-"'fer'-«''g'-"'W^,w'"* 



62 THE SAALSCHUTZIAN THEOREMS [FEB. 

By (4.5) the inner sum is equal to 

e(qicx/b) = efcx/b) (cx/bj. 
efcx/ab) efcx/ab) J 

Hence we have 

k=0 

Combining (5.5) and (5.6), we get 

(q)k(c)k(cx/b)k 

eMM £ (^h. (cx/ab)i . 
eicx/ab) " (qmch 

j=0 J J 

(5.7) £ <C1YC/>)n *° - -F^TTT E rffi- lcx/ab>i • 
„ (q)n(c)n efcx/ab) ^ (q);(c); 

n-0 j=0 J J 

Thus we have proved (5.4) and so have proved (5.1). 
6. We now give an application of (5.1),. Making some changes in notation, (5.1) can he written in the following 

form. 
k k k 

(R \\ V 1 fa" ¥9 a)j(qbc/a)j j = (a/b)k(a/c)k / qbc\k 

f - ; (q)j(qb)j(qcjj Q (qb)k(qc)k { a I ' 
1=0 J ' ' 

It follows that 
k <,-k\/„k y * (a)k(a/b)k(a/c)k (qbcx \ k

 = sr* (jtk_ k ^ (q~ )j(q a)j(qbc/a)j / 
f t (q)k(qb)k(qc)k \ a ) ~ L* (q)k* L* (qljfqbljfqclj Q 

k=0 k=0 i=0 J J ' 

V l!L V U1)J l k \ <ah+k(qbc/a)j %j(j+1)-jk Zjr (q)k Zjr ' " [ /J (qb)j(qc)j * 
k=o ro 

, f M; / ^ f £ ^ ,-WMy f ^ (q~ix>
k . 

*rt (q)j(qb)j(qc)j ^ (q)k 

1=0 J ' ' x=0 

We now take a = q m and replaces by gmx, where m is a non-negative integer. The above identity becomes 

(6.2) V r '"2^T^tT—" fr*"f W 
~ (q)k(qh)k(qc)k 
k=0 E (-i)i (q'2mhj(q2m+1 hc)j mj-W-Dyi V * (^2m+2j)k (nm-iy\k 

' " (q)j(qb)j(qc)j Q l * (q)k
 {Q ** 

j=0 J ' k=0 
The inner sum on the right is equal to 

2/77-2/ 

We have therefore proved the identity 
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2m -mOm Om Om 

(6-3) £ (vktokfak (q bcx) 

Z <-1)i (V~2mhi(il~2m+1/bc)j amj-'Aj(j-1) j, -m+j , 

M Wlbt/fqc)/ " X (q X>2m-2' 

?QTX= 1, (6.3) becomes 

(6 4) V (q'2m)k h~2mMk (q~2m/ck ,n3m+1hr!K 

= (-1)m W2m(Q~ m /bc)m -%m(3m+1) 
(q)m(qh)m(qc)m 

In particular, for b = c - 1, (6.4) reduces to 
2/77 , r-o 1 * %(m-k)2+X(m-k) ( . 

(6.5) X (-'>"[?]' *2 = (->,m (ItUF > 
a result due to Jackson [5] and Bailey [1 ] . Jackson's more general results can also be proved [4] using the ^-analog 
of Saalschutz's theorem. 
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A DENSITY RELATIONSHIP BETWEEN ax + b A N D [x/c] 

ROBERT W.STRINGALL 
University of California, Davis, California 95615 

This note is motivated by the following problem originating in combinatorial logic. Let /and g be the functions 
on the set of positive integers defined by fix) = 3x and g(x) - [x/2], where ifrj denotes the greatest integer less than 
or equal to the real number r. Let Y denote the collection of all composite functions formed by repeated applica-
tions of / and g. For which positive integers k does there exist h e T such that h(1) = k? For example, if f,g and Y 
are defined as above, then 

f(1) = 3, P(1) = 9, P(1) = 27, gP(1) = 73, fgP(1) = 39 and gfgffl) = 19. 

Thus, given any number from the collection j 3, 9, 27, 13, 39, 39 \ there exists an/?GT such that/?M is the 
given number. The following theorem verifies that every positive integer can be obtained in this manner. 

Before stating the theorem, the following conventions are adopted. The set qf non-negative integers, the set of pos-
itive integers and the set of positive real numbers are denoted by N, N and R+, respectively. If f and g are functions 
on N to N, then the composite function g*f\% defined by g-f(x) - g(f(x)) and the functions obtained by repeated 
applications of f, /7-times, will be denoted by fn. If r is a real number then the greatest integer less than or equal to 
r is denoted by //*/. Finally, two integers a and c are said to be power related provided there existm,n& N such 
that am = cn. 

Theorem 1. Let a ? 1, c ̂  1 be positive integers. Let h e N and let fand g be the functions on N to N de-
fined by f(x) = ax + b and g(x) = [x/c]. If a and c are not power related and if u,v <= N+, then there exist m,n e N+ 

such t h a t / " V Y f / j ^ . 
Using this theorem with a = 3, b = 0 and c = 2 and noting that 2 and 3 are not power related leads to the previously 

mentioned result. 
A related theorem will be proved from which Theorem 1 will follow. Three lemmas will be employed. Indications 

of proof will be provided for all three. 
Lemma 1. Leta^e N+, atl.cfl. The collection j an/cm: m,n<E N f is dense in/?* if and only if a 

and c are not power related. 
Proof. This result is well known and is generally considered to be folklore; a guide to its proof is given. 
Using the continuity of the logarithm and results found on pages 71-75 of [1], the following statements can be 

shown to be equivalent. 
(a) The collection j an/cm : n,m <E N \ is dense in R+. 

(b) The collection j n - /w(log c/log a): n,m e N J- n R+ is dense in R+. 

(e) The quotient (log c/loga) is irrational. 
(d) The numbers^ abd care not power related. 
Lemma 2. Let a and b be positive integers with the additional property that the collection | an/cm :n,m^N\ 

is a dense subset of R+. Then if/70 e N*", the collection j an/cm: n > n0;n,m e N \ is also a dense subset of R+. 

Proof. The subset \(an/cm)n*: n,m &N\ C { an/cm : n > nQ;n,m e N\ is dense in R+. 

Lemma 3. Let a,b<EN, whe rea t and*?/* /. If f is defined on/I/ by f(x) = ax + b, then 
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fn(x) = anx,B^_lb^ant (l^J)x±Mlz^ ) 
a- 1 \ a-1 I 

for all /? e N+. 

Proof. A straightforward induction argument establishes the lemma. 
Theorem 2. Let a and c be positive integers neither of which is 1. Let b e N. Let f denote the function on N 

defined by f(x) = ax + h. If a and c are not power related, then for ail u e N*, the collection 

A(u) = [?lM-:m,n <s /V i 

is dense in R+. 

Proof. Let r <B R+ and let e > 0 be given. The quotient 
r(a-1) 

(a- 1)u + b(1-a~n) 
decreases as n increases and has limiting value 

r(a-V 
(a- 1)u + b ' 

as n -* <*>. Choose n0 such that n > n0 implies 

r(a-V { J±zJL ^ r(a-1) 
(a-Vu + b (a-Vu + b > . .. .,_ „n. 

fc- 1)u + b(1-a ) 
Then for/? >/70, 

r f e - f j < (r+(e/2))(a-1) < (r + e)(a-1) < (r+e)(a-1) 
(a-1)u + b(1-a~n) (*-Vu + t> (a-Vu+b ^ (a_ 1)u+b(1 „ a~n} 

Since a and c are not power related, Lemma 1 yields the fact that | an/cm : m,n^/\/\ is a dense subset of /?* 
By Lemma 2, it is possible to choose mu nt such that nx > n0 and 

It follows that 

and 

By Lemma 3, 

(r+(e/2))(a-1) < a^ < (r + e)(a-1) 
(a - 1)u + b cml (a- 1)u + b 

r(a-1) < j^i < Ir+eHa- 1) 

(a-1)u + h(1-a~ni) cmi (a - 1)u + b(1 - a'n*) 

r < *!Ii (a-1)u + b(1-a-ni) < r ^ e _ 
„m, a— 7 

r < -—UU- < r+e. 

Hence A(u) is dense in R+. 
An additional lemma will expedite the proof of Theorem 1. 
Lemma 4. Let c e /V* Let # be defined on /?+ by # M = /xvfc/. If i/ e N+ and if r is a real number such 

that vcn < r < (v + 1)cn, then gn(r) = v. 

Proof. The proof is by induction on/?. If/? = 1, then vc <r < (\/+ 1)c implies r = vc + s, wherese/?*ors = 0 
and 0 < s < c. It follows that 

* ' - [*?]-[ ' *?] and - < 7. 



66 A DENSITY RELATIONSHIP BETWEEN ax + b AND [x/c] FEB. 1976 

Hence#/W = i/. Suppose#V,/ = i/ whenever vck <r<(v+ 1)ck. Suppose, in addition,that vck+1 <r0 < (v+ 1)ck+1. 
Then 

9k+1(r0) = 9k{[ "f} ) and vck < rf < (v+ 1)ck . 

It follows that 

vck < r±- < (v+1)ck. 

Hence by the induction hypothesis 

To prove Theorem 1, employ Theorem 2 to obtain positive integers n and m such that 

, < ^ M <v+1 

and apply Lemma 4. 
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Continued from page 22. ****** 

We can add any quantity B to each term: 

x(a+B)m+y(b+B)m + (x+y-2)(ax+by+B)m = (x+y-2)Bm+ y(ax +by + B- b)m +x(ax + by + B- a)m 

(where m = 1, 2). 
A special case of a Fibonacci-type series is 

l A 7 ? nttl q/77 ^ nt7i 

Consider the series when m = 2: 

(1) 1 4 9 16 25 

where 
Fn = 3(Fn-<i - Fn-2) + rn-3 

[we obtain our coefficients from Pascal's Triangle], i.e., 
(x + 3)2 = 3[(x + 2)2 -(x+ 1)2] + x2 . 

I have found by conjecture that 
]m __4™ _ 4 ^ _4Ar7 + 9/r7 + 9 m + 9 m - 1 6 " 7 = -0m - 12"7 - 12™ - 12m + 1™ + lm + lm + 15m 

(where m = 1, 2). 
[I hope the reader will accept the strange -O/77 for the time being.] 
If we express the series (1) above in the form 

a b 3(c-b) + a etc., 
our multigrade appears as follows 

am-3bm+3cm-[3(c-b) + a]m = -Om- 3(3c- 4h + a)m + 3(2c -3b + a)m + [3(c-b)]m 

(where/7? = 1, 2) . 
We could, of course, write the above as 

(x2)m-3[(x+1)*]m + 3[(x + 2)*]m-[3[(x + 2)2 - (x+1)2] + x2]m 

= -Om-3[x* -4(x + 1)2 +3(x+2)*]m + 3[x* - 3 ( x + 1)2 - 4 ( x + 2)2]m-f [3[(x + 2>* - (x + 1)2]m 

(where/77 = 1, 2). 
Continued on page 82. 



GENERALIZED BELL NUMBERS 

E. A. EI\ll\IEKI!\IG and J, C. AH (MA 
Portland State University, Portland, Oregon 92707 

1. 1WTF10DUCTSQW 
In the notation of Riordan [2 ] , the Stirling numbers of the second kind, S(n,k), with argumentsn and /rare de-

fined by the relation 
n 

(1.1) tn = £ S(n,k)Mk, n > 0, 
k=0 

where (t)n = t(t - 1) — (t - n + 1)\% the factorial power function. They have been utilized by Tate and Goen [4] in 
obtaining the distribution of the sum of zero-truncated Poisson random variables where 

oo 

(1.2) (ex- 1)k/k! = YJ Stn,k)tn/n! . 
n=k 

The Bell numbers or exponential numbers Bn can be expressed as 
n 

(1.3) Bn = J 2 S(n>k)< n > °* 
k=0 

with BQ = 1. They have been investigated by many authors: see [1] and [3] for lists of references. Uppuluri and 
Carpenter [7] have recently studied the moment properties of the probability distribution defined by 
(1.4) p(k) = S(n,k)/Bn, k = 1,2, -,n, 

and give 
n r 

(1.5) £ krS(n,k) = E ( /) Wn+r-l . 
k=1 i=1 

where the sequence i Cn,n = 0, 1, ~ > is defined by 
oo 

(1.6) E Ckx
k/k! = exp(1-ex) . 

k=0 

Tate and Goen [4] have also derived the /7-fold convolution of independent random variables having the Poisson 
distribution truncated on the left at Y in terms of the generalized Stirling numbers of the second kind, dc(n,k) given 
by 

oo 

(1.7) fer- 1-t tc/c!)k/k! = 5 3 clc(n,k)tn/n!, 
n=k(c+1) 

where dc(n,k) = 0 for n < k(c + 11 They give an explicit representation for dc(n,k) too complicated to reproduce 
here. The dc(n,k) can be shown to satisfy the recurrence formula 

m 
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(1.8) dc(n + 7, k) = kdc(n,k) + I "c \ dc(n - c, k - 1), 

where dc(0,0)= 7 for all a 

Definition 1, We define the numbers Bc(n) given by 

n 

(1.9) Bc(n) = ] T dc(n,k), 

k=0 

fore > 1 and/7 >0 as generalized Bell numbers. It may be noted that BQM = Bn . 

Definition 2. A random variable X is said to have the generalized Bell distribution (GBD) if its probability func-
tion is given by 
(1.10) pc(k) = dc(n,k)/Bc(n), k = Q,1,...,n. 

It may also be noted that when c = Omdn > 0 (1.10) reduces to (1.4) as then dQ(n,0) = 0. 
In this paper we investigate some properties of the numbers Bc(n) and provide recurrence relations for the ordinary 

and factorial moments of the GBD. It is shown that the related results obtained by Uppuluri and Carpenter [7] 
follow as special cases for c = 0. 

2. PROPERTIES OF Bc(n) 

Property 1. 

(2.1) 2" ] Bc (n)tn/nf = exp (e * - 1 - t tc/c!). 
n=0 

This is immediately evident upon expansion of the right-hand side making use of (1.7). 

Lemma 1. 
n-c 

(2.2) * dc(n + 1,k)=J2 ( M de(m,k-1). 
m=0 

Proof, Differentiating both sides of (1.7) with respect to t and expanding in powers of t we obtain 
oo oo oo 

£ E ( 'IT ) dc(m,k- 1)tr+m/(r + m)! = X ) dc(n,k)tn-1/(n - 1)! . 

r=c m=0 n=0 

Interchanging sums on the left-hand side and equating coefficients of tn we are led to Lemma 1. 
Property 2. 

n-c 

(2.3) Bc(n + 1)= Y, (m) Bc(m) ' 
m=0 

This is now immediate from Definition 1 and Lemma 1. We note that when c = 0 (22) reduces to the known relation 

n 
Bn+1 = I J (m) Bm 

m=0 
for Bell numbers. 

In attempting to find a recurrence relation in c for Bc(n) we first need 
Lemma 2. 

k 

(2.4) dc(n,k) = Y* [(-lynl/iHclfo-ciMdc-tfn-chk-i), 
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for o h 
Proof See Riordan [2 ] , p. 102. 

Using Lemma 2 we can now write 

n n 
Bc(n) = L tf-^' ( ? ) (n-i)!/(c!)}(n-ci)!] £ dc^(n - ci, k- i). 

i=0 k=i 

It follows directly from the above that we now have 
Property 3. 

n 

(2.5) Bc(n) = Y, K-V* (") (n-iWfciy'fn-ciMBc-rfn-cii, 
i=0 

C> 1. 

The well-known Dobinski formula for Bell numbers has the form 

(2.6) BnH = e'1(1n+2n/1! + 3n/2! + -). 

When c= 1 Property 1 gives us a formula similar to that of Dobinski. 

Property 4. 

(2.7) Bj(n) = e"U(-1)n/H+ 1n/2! + 2n/3! + -). 

Property 3 suggests that we may write the generalized Bell numbers as a linear combination of the Bell numbers. 
Write the right-hand side of (2.1) in the form 

(2.8) exp (ef - 1 - t - t2/2! tc/c!) = exp (er - 1)H(t), 
where 

oo 

(2.9) Hit) = J2 bc(r)t
r/r!, c > 1. 

r=0 

Property 6. 

(2.10) 
n 

Bc(n) = Y* [ni)bc(i)Bn-h 
1=0 

c > 0. 

Proof. Expand the right-hand side of (2.8) in powers of t Property 5 now follows from (2.1), with c = 0, and (2.9). 

For the purposes of enumeration the recurrence relation i®xhc(r), 

c-1 

(2.11) bc(r+1) = - Y, ( / ) bc(r-i), c>1, 
i=0 

with b0(j) = 0 for all / > 0 and bc(0) = 1, can be obtained by differentiating both sides of (2.8) with respect to t, 
using (2.9), and equating coefficients. With bx (j) = (- 1)J we alternately have Property 4 from Property 5. 

Making use of the above properties, the first few values of Bc(n) are as follows: 
Table 1 

Table for Bc(n) 

N.^ 
c \ 
0 
1 
2 

0 

1 
1 
1 

1 

1 
0 
0 

2 

2 
1 
0 

3 

5 
1 
1 

4 

15 
4 
1 

5 

52 
11 
1 

6 

203 
41 
11 

7 

877 
162 
36 
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3. RECURRENCE RELATIONS FOR MOMENTS OF THE GBD 

mdom va 
of X is given by 

LetX be a random variable having the generalized Bell distribution defined by (1.10). Therth ordinary moment 

(3.1) nc(x
r) = ] T krdc(n,k)/Bc(n). 

k=0 
Let 

n 

(3.2) Bc(n,r) = ] T krdc(n,k). 

k=0 

Property 6. 
r 

(3.3) Bc(n,r+1) = Bc(n+1,r)~ ( " ) £ . . ( y ) * c f o - * , / A 
j=0 

Proof. Multiply both sides of (1.8) by kr and sum over>. We have for every choice of c 

n 

Bc(n + 1,r) = Bc(n,r+1)+[n\ ] P krdc(n-c,k-1) 

k=o 

r 

= Bc(n,r+V+[nc
}jYl( rj)Bc(n-c,j). 

ro 

Property 6 follows immediately. Whenc = 0, BQ(n,r) becomesB„ in [7]with Property 6 replaced by 
Property 7. 

(3.4) <>!?"-*%,-£ ['A '? • 
i-o 

Property 7 is not given however by Uppuluri and Carpenter. 
In attemptingtoexpress£c (/?,/->/as a linear combination of the generalized Bell numbers we are led after expanding 

(3.3) for the first few values of r to the following: 

Property 8. 
r i 

(3.5) Bc(nj) = J^ YLati(n'r'c)Bc (n + r - i - jc), 
i=0 rO 

where a,j (n,r,c) satisfies the recurrence relation 
aij(n, r + he) = ajjfn + 1, r, c) 

( 3 6 ) - ( c ) t [rs)ei+s-r-i,H<n-c,s,c), 
s=r~i+j 

with aofolnjfc) = 1 and a,j(n,r,c) = 0 if / > r, j > i, or/ = 0 and / > 0. 
The proof consists of substituting (3.5) into (3.3) and equating appropriate coefficients. 
Comparing (3.5) with (1.5) when C = 0\NB must have 

(3.7) £*u(n,r,0) = (r.)Ci. 
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independent of n for / = 12, - , r. By starting with (3.6) and summing out/one can show that 

(3.8) CkH=-£ [ki)Ci 
i=0 

which agrees with Proposition 3 in [7 ] . We note also when c = 0 

(3.9) au(n,r,0) = (-1}'( r.) S(iJ), 

independent of n, as (3.6) is then equivalent to 
/-/ 

(3.10) S(ijt= J2 {''~1) S(k.j-1). 
k=0 

a property of Stirling numbers of the second kind. 
Now let 

n 

(3.11) Wc(n,r) = £ (j)rdc(n,J). 

1=0 

Then the factorial moments of the generalized Bell distribution are given by 

(3.12) vc((x)r) = Wc(n,r)/Bc(nh 

We now seek a recurrence formula for Wc(n,r) and investigate the special case c = 0. 
Property 9. 

(3.13) Wc(n,r+1) = Wc(n + 1, r) - rWc(n,r) - ( "c) [Wc(n - c, r) +rWc(n - c, r- 1)1. 

Proof. From (3.11) 

n n 

Wc(n,r+ V = Y, (J)r+ldc(n,f) = £ j(j)rdc(n,j) - rWc(n,r). 

j=0 l=o 

Hence 
n 

(3.14) Y* I0')rdc(nj) = Wc(n,r+ 1) + rWc(n,r). 

j=0 

Using (1.8) we can write, with c>\, 

n 
wc(n,r+l) = Y (i)r[dc(n+ 1j)~[ n

c)dc(n-cfj- 1)1 - rWc(n,r) 

1=0 

n-1 

= Wc(n +1,r)- rWc(n,r) - l n
c ) j 2 (j + 1)rdc(n - c,j}. 

' I=o 

Now with (3.14) and the fact that 
d+Dr = j(})r-1 + (l)r-1 

we have the desired recurrence relation stated in Property 9. One can verify directly that when c - 0 we have 
Property 10. 

(3.15) Wjn,r+1) = WQ (n + 1, r) - (r+1)Wjn,r) - rWjn, r-1), 

so that (3.13) is true for all c. 
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The Wjn.r) may also be expressed as a linear combination of the Bell numbers. In fact using the same substitution 
procedure as before for Property 8 one can prove 

Property 11. 
r 

(3.16) Wjn,r) = ] T a(r,i)Bn+r-j, 

i=0 

where a(rj) satisfies the recurrence relation 

(3.17) a(r+1,i) = a(r,i)-(r+1)a(r,i- 1)-ra(r- 1,i-2), 

with a(r,0) = 7, a(r,i) = 0 if / > / , and a(rj) = (- 1)r. A table of the a(n,k) is as follows: 

Table 2 
Table for a(n,k) 

(3.18) 

j v * 
I fi^v 

0 
1 
2 
3 
4 
5 
6 

0 

1 
1 

1 

-1 
-3 
-6 

-10 
-15 
-21 

2 

1 
8 

29 
75 

160 

3 

- 1 
-24 

-145 
-545 

4 

1 
89 

814 

5 6 

-1 
-415 1 

We note that the a(n,k) are the coefficients of a special case of the Poisson-Charlier polynomials (cf. Szego [6], p. 
34). Touchard [5] gives formulas for the first seven polynomials corresponding to the coefficients in the table above. 
The polynomials take the form 

hn(x> = x ; (-w (i)(x)^h 
i=0 

(3.19) 

If we write 
n-i 

(3.20) (x)n-i = X ) s(n ~ '<k)xk' n-i > 0, 
k=0 

where the s(n,k) are the Stirling numbers of the first kind, (see Riordan [2] p. 33), then 

(3.21) 

Hence a(n,k) has the representation 

(3.22) 

hn(x) = X 
k=0 

n-k 
£ (-t)''(l)s(n-i,k) 
i=0 

a(n,k) = ]T r - / / ( ; )^ /7- />-k). 

Investigating the general case using similar procedures as before one can easily prove 

Property 12. 

(3.23) Wc(n,r) = X X) bij(n,r,c)Bc(n+r-i-jc), 

i=0 j=0 
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where b;j(n,r,c) satisfies the recurrence relation 

b,j(n, r+1,c) = b; j(n + 1, r, c) - rbH 1 j(n,r,c) 

~ ( c j fci-U-lfo " c' r> c) ~ rbi-2J-l(n -c,r-1, c)], 

with brJ(n,r,c) = 0, for / = 0, 1, »., r- 1, bQt0(n,r,c) = I and bcr(nfrfc) = (- 1)rn!/(c!)n(n - rc)i. 
Comparing (3.16) and (3.23) when c = 0, we have 

/ 
(3.25) a(r,i) = ^bu(n,r,0). 

TO 
Hence in view of (3,22) 

(3.26) hu(n,r,0) = (-1)'[ r. }s(r-j,r-i) 

independent of n. 
Recurrence relations for the ordinary and factorial moments are readily obtained from (3.3), (3.4), (3.13), and (3.15). 
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A NOTE ON A THEOREM OF W. B. FORD 

T. K. PUTTASWAMY 
BalS State University, Muncie, Indiana 47306 

W. B. Ford's theorem as stated in [1] on page 205 is incorrect. We observe that in Ford's proof, he claims 
lim Dn = 0 

on page 207 in [1] . But his hypotheses do not guarantee at all that Dn -> 0 as /7->°°, when 
max I g(2n + 1/2+iy)\ - °° 

n - • <» 

for small values of y. Ford's proof holds, if we make an accurate restatement of Ford's theorem with appropriate gen-
erality, as follows: 

If the coefficient^/?^ of the power series 
OO 

(1) f(zi = £ g(n)zn 

radius of convergence > 0 may be considered as a function g(s) of the complex variable s ~ x + iy and as such satisfies 
the following two conditions, when considered throughout each right half planex >xQ, where xQ is any arbitrary 
large negative number. 

(a) The function g(s) is single valued and analytic except for a finite number of poles situated at the points 
s = su s2, —, sp which lies within a Band B: 

I lmsj\ < c, Resj < c, 

where c is a fixed positive constant and / « /, 2, •-, p. Furthermore, none of the s/ is a negative integer and p 
may increase asx0 is decreased. 

(b) For any points =x + iy to the right of the \mex = x0 and outside the Band/?, 

(2) \g(x + iy)\ < ke(T+€)M, 
where 7 is some fixed value such that 0 < 7 < IT and e is any positive number. The value of k depends upon x0 

and e . 
Then the f u n c t i o n ^ as defined by (1) will be analytic in a sectorS:y<argz <2TT- 7and for z'% of large modu-

lus in Sector & f(z) may be developed asymptotically 

(3) M-£,*-£***• . 

where rn represents the residue of the function 

s'\mrs 
at the point s = sn,n = 1, 2, - , p . 
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A METHOD FOR THE EVALUATION OF CERTAIN SUMS 
INVOLVING BINOMIAL COEFFICIENTS 

GEORGE H.WEISS 
Department of Health, Education and Welfare, Bethesda, Maryland 20014 

and 
MENACHEM D1SH0N 

Department of Applied Mathematics, Weizmann Institute of Science, Behovot, Israel 

Recently T. V. Narayana presented two verifications of the sum 

(D s - E E { r
 r i ; _ / - J «v - E E cfx^v 

r=1 s=1 r-1 s=1 

= %(1 - u - V - <J1 - 2(u + v) + (u - v)2) 

first derived by him in [1 ] , and by Kreweras in [2] , [3] . No direct proof of this formula'seems to have been given. 
It is the purpose of this note to present an analytic derivation of Eq. (1) and to suggest a method more generally 
applicable to summing series with binomial coefficients. The method involves the introduction of an integral repre-
sentation for at least one of the binomial coefficients. 

To begin with let us transform the series of Eq. (1) by using the integral representation 
oo 

(2) / _ f dt 
r + s- 1 J tr+s 

and interchange the orders of summation and integration (a step that can be justified in detail for values of u and v 
for which the original series converges). Then we can write 

«) s- f dtitv+s
r-

i){r+s
s-

i){u
Ty{v

Ti 
1 r=1 s=1 

so that we need only find the sum of the simpler series 
oo oo 

(4) w - E E ( f + r ' ) ( f T ' ) ^ 
r=1 s=1 

with x = u/t, y = v/t At this point we introduce the integral representation 
(5) (^" ? ) - i i^^ to. 

X $ # 271/ X zs+1 

where the contour will be chosen as the unit circle. We can again interchange orders of summation and integration 
to find 

r=1 s=1 z 

But the summation over s can be effected explicitly using the formula 
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<7) E (7y) *' 
valid for \a\ < \. in this way we find 

(1-a)r+1 

F(x,yj = JL<£diT xr(1+z)r Z-
2™* ? % [z-(1+z)Yr1 

(8) =-T^$ j m ± l L 
2m J [z(1-y)-y][xz*+z(x + y-1)+y] 

= z3L £ dz(1 + z) 

The quadratic form in z can be factored in the form 

(9) z^z[x-±^=-J) +^(z-z+)(z-zj, 

where 

(10) z+ = J- (1 - x - y ±yJ~(T~x - y)2 - 4xy ) . 

It is easily verified that the only root of Eq. (8) that lies in the unit circle as* or y tends to zero is z_, hence in the 
evaluation of the contour integral in Eq. (8), we need only be concerned about the poles at z =y/(1 - y) and atz = z«. 
The residue of the integrand at z = y/(1 - y) is found to be (1 -y)/y and the residue at z = z_ is 

(11) 1+Z„ = -(1 - y)(1 -X-v + hJ(1 -x-y)2-4xy ) 

(z_-z+)(z--j£--\ 2ys/ir=~x~vP-4xy 

If we add the contributions from the two poles we find 
(12) F(x,y) = (1-x-V + \/Jl-x~y)2 - 4xy) _ f = 1 - X - y - Jd - x - y)2 - 4xy 

2sJTT~ x - y)2 - 4xy 2sf(1 - x - y)2 - 4 xy 

If we now return to the integral over t, we find that S can be expressed as 
o© oo 

(13) S = f F{u/t, vMdt = f LzJLzJL^^^^^M dt . 
f f 2s/(t-u-v)2 -4uv 

Letting f - u - v = f , we can transform this last integral to 

(14) S = j Lz^&LzJsSL d£ . 

Finally, the substitution f = 2sfuv cosh 0 allows us to express S as 

e~edd = v^expT-cosh^ ( LzJL=JL\l 

\ 2Jw I 
2\fuv 

2^/uv I 

1/s(1- u-V- sj(1 -u-v)2 - 4uv ) 
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as found in the earlier references. 
Another set of identities that has been the subject of several recent notes, [4] - [ 6 ] , is the following 

N 

n=0 
(16) 

N 

These can both be derived in the same way as the identity of Eq. (1). In the expression for / I we note that the upper 
limit of the sum can be chosen to be °° if we use the convention that 

for/any positive integer. If we then use an integral representation for ( N
6_ ) we find 

(17) A = ± £ (-l)»(» + e-l)£ <±±llLdz = J^$Jl_=o . 
2m £~J \ n / J N+1-n 2w J ^N+1 

n=0 z z 

Similarly the series of B can be expressed as 

n=0 z 

where the contour can be suitably modified when a branch cut must be made. 
The preceeding analysis is of interest not for its derivation of known results but because it gives a method that can 

be tried on many similar problems. In cases where a summation in closed form is not possible, the integral represen-
tation can sometimes lead to asymptotic results. 
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ON THE ORDER OF SYSTEMS OF TWO SIMULTANEOUS 
LINEAR DIFFERENCE EQUATIONS IN TWO VARIABLES 

ROBERT GORDON BABB IS 
University of Waterloo, Waterloo, Ontario, Canada 

1. INTRODUCTION 

Several techniques are known for solving general linear difference equations [1, 2, 3] . We are not concerned here 
with specific techniques for actually solving difference equations (whether numerically or symbolically}. Rather, 
the main problem dealt with is that of determining the order (number of initial conditions) of systems of two simul-
taneous linear difference equations in two variables. Since the order for non-homogeneous equations is that of the 
associated homogeneous equations, we content ourselves with the homogeneous case. This paper examines the defin-
ition of two-dimensional sequences by a system of two simultaneous linear difference equations in two variables and 
the initial value problem is solved algorithmically. 

While it is relatively simple in the one-dimensional case to specify suitable initial conditions, the same problem in 
two dimensions is considerably more complicated. The traditional algebraic approach relies upon the representation 
of the elements of two-dimensional sequences as the matrix product of two geometric progressions, one considered 
as a row matrix, the other asa column matrix. 

In the author's algorithmic approach a suitably defined finite subset of elements of the sequence is selected. Using 
constraints determined by the difference equations, certain elements of the subset are chosen whose values are de-
termined by the values of the remaining elements of the subset that in turn are determined by initial values. Induc-
tion is used to prove that the entire sequence is determined by the initial values. The algorithm has been programmed 
in FORTRAN. 

2. THE DEFINITION OF TWO-DIMENSIONAL FIBONACCI SEQUENCES 

Any linear difference equation in one variable can be written in the following form: 
n 

(1) cJ(i + mQ) = Yl CkW + mic) , 
k=1 

where / is a function on the integers, i.e., a sequence, M = (irik) is a vector with n + 1 integer components, and the 
c'% are non-zero coefficients and are distinct. For some purposes, it is more convenient to express linear difference 
equations diagrammatically rather than strictly algebraically as in (1). For example, the diagram, ox pattern as we 
will call it, for the Fibonacci recursion relation is shown in Fig. 1. The two variable equation corresponding to (1) is 

n 

(2) c0f(i + m0fj-f-n0)=J2ckf(/ + mk,l-hnk)/ 

k=1 

where f is a function of two integer variables, m^ corresponds to the column index for the kth term, and % corres-
ponds to the row index. M = (m^) and N - (n^) are vectors with n + 1 integer components with (m-,, n/) / (mj, nj) 
if / V / The c's are non-zero coefficients. 

J _i i A ioJ 
Figure 1 Pattern for the Fibonacci Recursion Relation 
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One of the simplest non-trivial two dimensional sequences is the "Fibonacci Multiplication Table," derived from 
the simultaneous equations 
(3) f(i + 2,j) = f(i+1,j) + f(i,j) 

(4) Hhi + 2) = f(i,j+1) + f(i,j). 

The pattern for Eq. (3) is 

and the pattern for Eq. (4) is 
b0 = ht+b2 . 

Equations (3) and (4) with initial conditions 
m o) = o, no. i) = o, 
f(lO) = Q, HID = 7, 

lead to a sequence with the property that 
(5) f(1,j) = f(i,1)f(l,j). 

Since row 1 and column 1 contain ordinary Fibonacci sequences, the sequence may be looked at as a multiplication 
table for the Fibonacci numbers. 

3. INITIAL CONDITIONS FOR LINEAR DIFFERENCE EQUATIONS 
In the one-dimensional case, the order is easily determined by inspection (see [4]). If the equation is written in 

the form of (1), the order, which we will call Ng is 
(6) Ng = max |m/ - /wy | . 

This number Ng is also one less than the width in grid squares of the pattern for the equation. 
The set G = gi< giving a possibility for the relative positions of the initial values will be diagrammed on a grid 

in analogy to the way patterns are diagrammed. For example, the pattern 
H I K l H>i: ao s *i +a* 

requires four initial values, since the width is 5. One valid ,g-pattern for these initial values is 

In the traditional algebraic approach to initial conditions in two dimensions, we represent the solution by a matrix 
product of two geometric progressions. If we use R for the horizontal ratio and S for the vertical ratio, then the ana-
log of Eq. (2) is 

(7) c0R
m°Sn* = £ ckR

mkSnk . 

If we form the Eqs. (7) for two patterns, and let the first pattern have degree dx in R and et in S, and the equation 
for the second pattern have degree d2 in R and e2 in S, then solving the equations simultaneously using the resultant 
(see [5]), we find there are at most Mg initial conditions required, where 
(8) Mg = (dt + d2)max (eue2)m\n(du d2). 

This method may require much tedious algebraic manipulation. Also, the theory does not provide in general even one 
valid ^-pattern. The algorithm described in the following section solves the initial value problem without relying on 
geometric progressions. Also, it has the advantage of yielding a family of valid ^-patterns. 
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4. AN EFFICIENT ALGORITHM FOR DETERMINING SETS 
OF INITIAL CONDITIONS IN TWO DIMENSIONS 

Given two patterns for two linear difference equations in two unknowns, the algorithm described in this section 
first constructs a special set of adjacent grid squares (corresponding to the elements of a two-dimensional sequence) 
called a starting set Then the number of initial conditions necessary and sufficient to determine the values for all of 
the elements in the starting set is calculated by matrix operations on the coefficients of equations implied by the 
difference equations. A form of two-dimensional induction is attempted to check whether the values for the entire 
sequence can be determined from the equations already solved and the values for the elements of the starting set. If 
the induction step fails, either the equations were not independent, or the starting set was not large enough. Assum-
ing the latter, the starting set is enlarged and the procedure is repeated until either the induction step succeeds, or 
too many initial conditions are required for the equations to have been independent. 

ALGORITHM FOR THE TWO-DIMENSIONAL INITIAL VALUE PROBLEM 

Given two patterns with elements labelled a0, at, - , an and h0, bu •-, bm, representing two linear difference 
equations in two variables, find Ng, the number of initial values necessary and sufficient to define a complete two-
dimensional sequence and find at least one valid ̂ -pattern if Ng is finite. 

STEP 1. (Initialize the first starting set.) Fix the position of the pattern whose squares are labelled witha's on a 
grid. Let S be the set of all grid squares necessary and sufficient to represent 

m 
ai ' b° s ]C bk 

k=*1 

for i = 0, 7, —, n. (Note that the squares representing a0, au •«, an are in S.) 
STEP 2. (Check for horizontal gaps.) If there is no element of S between two elements of S in the same row of 

the grid, then go to Step 4. 
STEP 3. (Augment S to reduce a horizontal gap.) Replace S by S u R, where R is the set of all grid squares one 

grid square to the right of a grid square in S. Go to Step 2. 
STEP 4. (Check for vertical connectedness.) If each row containing an element of S (except the bottom-most) 

contains an element of S that is vertically adjacent to an element of S in the next row down, then go to Step 6. 
STEP 5. (Augment S to reduce a vertical gap.) Replace SbySuB, where B is the set of all grid squares one grid 

square below an element of & Go to Step 2. 
STEP 6. (Set up equations.) Associate the ith grid square in S with the variable x,. Form M'as a coefficient ma-

trix with columns representing the variables x; and whose rows are the coefficients of all possible equations deter-
mined by the two patterns and involving only elements of the starting set S. 

STEP 7. (Echelonize M'.) Put M' into echelon form M. 
STEP 8. (Count free variables.) Label the distinguished column variables of M withx/s, and the free-variable col-

umns with g,'$. Let ng = the number of g/%. (Note that ng is also the difference between the number of columns and 
the number of non-zero rows of M,) 

STEP 9. (Check for dependent equations.) \ing>Mg from Eq. (8) then stop. Ng - <=» . 
STEP 10. (Check horizontal induction.) Check whether M is row-equivalent to a matrix G, in echelon form, all of 

whose free variables correspond to grid squares of S that have a grid square corresponding to a distinguished variable 
on the right. (In forming G, columns of M may be interchanged if a non-zero value appears in both columns for any 
one row.) If so, go to Step 12. 

STEP 11. (Augments.) Replace S by S u T, where T is the set of all elements that are one grid square left of, 
right of, above, or below an element of S. Go to Step 6. 

STEP 12. (Check vertical induction.) Check whether M is row equivalent to an echelon matrix H all of whose free 
variables correspond to grid squares that have a grid square corresponding to a distinguished variable one grid square 
DBIOW. If not, go to Step 11. Otherwise, the algorithm terminates, Ng is equal to the ng calculated in Step 8. The 
grid squares correspond to the #&'s for the matrices M, G, or H, form valid ^-patterns. • 
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The goal of Steps 1 through 5 is to find a starting set with the following properties: 
(1) The set should be connected, that is, it should be possible to go from each element to every other element re-

maining within the set and using only moves of one square horizontally or vertically. 
(2) Every element of S should appear in at least one equation formed in Step 6. 

The reason behind requirement (1) is that it has been found empirically that when it is satisfied the algorithm never 
needs to execute Step 11 and repeat Step 6 and the following steps. This has not been proved, however. The reason 
for requirement (2) is to avoid introducing extraneous free variables into the starting set If an element appears in no 
equations for a particular starting set, that element will always appear to be a free variable, even though it would not 
necessarily be free if a larger starting set were used that allowed it to appear in an equation. 

We now give a proof that the number ng calculated in Step 8 is always a lower bound on the number of initial con-
ditions necessary to define a complete sequence. 

Proof. If Step 12 is reached and is successful, then ng is a sufficient number of initial conditions, and all the 
values for elements of the sequence outside the starting set are derivable from the values of the starting set given ng 

initial conditions in the positions of the free variables (the g'$). Including equations involving elements outside the 
starting set would not add any new information to the system. If either the horizontal or the vertical induction fails, 
and all bordering values are not deriveable, then, since each 57 is necessary because at least onexy depends on it, ng is 
a lower bound on the number of initial conditions required. • 

The procedure must terminate (i.e., is an algorithm) because, if a finite number of initial conditions exists, the start-
ing set must eventually include at least one possible set of locations for those initial conditions, since all of the ele-
ments in the sequence are eventually included in the starting set 

The claim for efficiency in the title of this section is based on the observation that, for all cases tried, the number 
of zero rows in the matrix M, the echelon form of M\ is (N3 + 1)(N5 + 1), where N3 is the number of times Step 3 
was executed in constructing S, and N5 is the number of times Step 5 was executed. This means that, if deriving val-
ues for the elements of a two-dimensional sequence is the object of discovering the number Ng and a valid ̂ -pattern, 
most of the rows of M, with the exception of a limited number of zero rows, are useful for back-substitution in M 
given values for the g,'s. Also, using the two-dimensional induction technique, the value for any element in the se-
quence can be determined using only repeated back-substitution inM. 

As a specific example of the algorithm, we give the results for the two patterns shown in Fig. 2. The number of in-
itial conditions ng for this case is 3, and a valid ^-pattern is shown in Fig. 3. A portion of the two-dimensional se-
quence determined by gv = Q, g2 = I gz = 2 is shown in Fig. 4. More detail on the operation of the algorithm, as well 
as the results for many other cases, are given in [6] „ 

an - a, +a- +a% 

ia. 
A. 

5 h, -b x +b ,+h , 
ft 

01 ft 

Fig. 2 Patterns for f(m + 2,n+V = f(m, n+3) + f(m+1,n + 1) + f(m,n) F j g 3 A v a | j d g . p a t t e m 

and f(m,n) = f(m, n + 3) + f(m + 1,n+1) + f(m + 7, n) f o r " t n e p a t t e m s jn Fjg> 2 
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Fig. 4 A portion of a two-dimensional sequence satisfying the patterns shown in 
Fig. 2. The initial values are circled. 
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Continued from page 66* ******* 
If we add any quantity B to each term, the above becomes 

(x* +-B)m-3[(x+ 1)*+B]m + 3[(x+2)* +B]m- [3[(x+2)2 - (x + V2J + x*+B]m 

= -Bm - 3[x* - 4(x + 1)* + 3(x + 2)* + B]m + 3[x*-3(x + V2 - 4{x+2)% +B]m + [3[(x+2P - (x+ I)2] +B]m 

(where/?r= 1, 2). 
Finally, take the series in which 

Fn = An-1Fn-1 + An-2Fn-2'"A2F2 + A1F1. 
We conjecture that 

AiFf + A2F? + A3F? -An_2F™2+ An.1/%, + ( s ' A -2 ) f „m 

(2) , n 1 \ 
= A1<Fn-Fir+A2(Fn-F2j

m +A3(Fn-F3)
m...An.2<Fn-Fn_2r+An_1(Fn-Fn.1)

m+ ( 2 A-2)^ 

(where/n = 1,2). 
Proof: Whenm = 1, 

LH.S. = ( 2 A-1 \Fn. 

When/w= 1, 

nM.S. = (A1+A2+A3-An.2+An_1)Fn-(A1F1+A2F2+A3F3"An.2Fn.2+An.1Fn.1) = { "z A-I)F„. 

:. LH.S. = R.H.S. 
When m = 2, 

LH.S. = AjF2 + A2Fl + A3F2
3- An_2F2

n-2+An_iF*_i + ( "x A -2 } / % 

R.H.S. = A1F
2-2A1F1Fn+A1F

2 + A2Fn-2A2F2Fn+A2F2 

+ A3F
2

n-2A3F3Fn+A3F
2

3+-

+ An-1F
2-2An-1Fn-1Fn + An-,F

2., 

"iAF2
n-2Fn>Fn+A1F2

1+ A2F2
2 + A3F§ - An. 1F2., n-1 

2 
7 

£ A-2 \F2 + A1F
2 + A2F§ + A3F§-An-1F

2-, = LH.S. 

If we add any quantity B to each term, we get 

AjtFj + Br +A2(F2 + B)m + A3(F3 + B)m-A„.2(Fn-2 + B)m+An-1{Fn.1 + B)m+[ni1 A-2^ (Fn+B)m 

= A1(Fn-F1+B)m+A2(Fn-F2+B)m+A3(Fn-F3+B)m-An.2(Fn-Fn.2+Br+An.1(Fn-Fn.1+Br 

+ ( i A-2)jBm (wherem = 1,2). Continued on page 92, 



LUCAS POLYNOMIALS AND CERTAIN 
CIRCULAR FUNCTIONS OF MATRICES 

J. E.WALTON 
The University of New England,, ArmidaSe, N.S.W., Australia 

INTRODUCTION 
1. The fundamental function Un(p,q) as defined by Lucas [4] uses the second-order recurrence relation 

(1) U„+2 = pUn+i-qUn (n > 0) 

with initial values U0 = 0 and Lll = 1. For example, we find by calculation, that 

(U4=p*-2pq Us = p4 -3p*q+q* -
so that, by induction 

[n/2] 

(2) un= Y. ('1,r (n7r) pn~2r*r 

As the sequence <Un I has only been defined for n > 0, and as we often require negative-valued subscripts, we 
find, by calculation of the U'% that 
(3) U-n = -q-nUn 

to allow unrestricted values of A?. 
2. In addition, Lucas [4] also defined the primordial function Vn(p,q) by 

(4) Vn+2 = pVn+1-qVn (n > 0) 

with l/0 = 2 and Vl = p. For example, 
V* = P3-3pq 

-2q2 SA = ps -5p3q + 5pq2 
iV2=p*-2q 

14 ' \V4 =p*-4p*q+; 

As in Lucas [4], it can easily be verified that 
(5) V2n+1 = pU2n+1~2qU2n 

and 
(6) ^2n+1 = 2U2n+2~9^2n+1 • 

3 In [1], Barakat considered the matrix exponential ex for the 2 x 2 matrix 
ati ax 

S 21 ^22 S 
(7) X 

where he took 
(8) trX = p and detX = q. 

83 
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By showing that we could express A^ in terms of the Un for unrestricted values of n, viz: 

(9) Xn = UnX-qUn^l and X~n = -qU-nX~1 + U-n+1l 

(where / is the unit matrix of order 2). 
Barakat [1] was then able to obtain various summation formulas for the Lucas polynomials by the use of the ma-

trix exponential function, where 

7 X'n (10) ex = V J-Xn and e'x - ] T , 
*-* n! *-* n! 
n=0 n-0 

4. It is the purpose of this paper to extend the work of Barakat [1] by considering the matrix sine and cosine for 
2x2 matrices, and their corresponding connections with the sequences i(Jn I and <Vn i . As special cases, we 
will then examine the relationships between the Lucas polynomials and the Chebychev polynomials. We commence 
with an investigation of the sine of a matrix. For every square matrix X, the sine of X is defined by the power series 

( i i ) s in* = V l-U"**"' 
n=0 

We then give a set of parallel results for the cosine function, where we define the cosine of every square matrix X by 
the power series 

(12) «,*-£ t-iy^p. 

Expansions (11) and (12) are perfectly valid since, as the functions s in/ and cosz converge for allz/ the eigenvalues 
of X lie within the circle of convergence of radius R = °° . 
Summation Formulas - The Sine 

5. If we substitute (9) into (11), then 

L 
n=0 

Thus, we have 

" * = £ ^~iU2n+lX-qU2nl) 

H3) ,hJf';fE|^r^r*i;^«* 
n=0 n-0 

6 By using Sylvester's matrix interpolation formula, viz. Bellman [2 ] : 
If f(t) is a polynomial of degree < N - 7, and if \ , \ , — X/v are t n e N distinct eigenvalues of X, then 

(14) fM*Y, f(ki} n f^ l ' 

we can show that if Xx and X> are tfre eigenvalues of our 2x 2 matrix X defined in (7), then 

~ 1^'<N I Ay - Xy f<j<N Xj - \j /<y</V I K - X; J 
'~7 JH J

 J¥1
 L J 1*2 
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Hence, we have 

s i n * = ^ x { W - X a / ; $ i n X 1 - ( X - X ^ s ' n ^ } 

so that 

(15) $\nX = r fsinXt - s i n X ^ - fXt sinXx -X 3 s i nX 2 ^ / 

7. Now, the characteristic equation of X is 

I d,-, A 3 1 2 

a22 - X 

= X2 -p\+q = 0 . 

Thus, as in Barakat [1 ] , the eigenvalues Xx and X2 satisfy the quadratic equation 

(16) X2-pX+q = 0 

so that 

(17) X, = ^A and 
(18) 

8. Substituting these values for Xj and X^ in (15) eventually gives 

(19) s i n * = b s ^ s i n | cos f ] * - j V ' p s i n | c o s | * s i n | cos | | / . 

Thus, on comparing Eqs. (13) and (19), we see that 

\=BJ± and \ = £ y i (say) 
5 = Ay' = (p2-4g)'/i . 

(20) 

and 

(21) 

/.!- 5 ^ ^ r ^ - ^ S i n | c o S | 
/?=0 

9. If we rewrite (5) in the form 

" ^ (^TW U2n = h'1p sin 2 cos I *$in f cos ! 

(22) 
M;" £ ^ V2-+1=p i £h< U2n+l'2q z ^V ^ 

H=0 _ n
 f l - ° /?-0 

we have, on using (20) and (21), that 
oo 

(23) £ ̂  V2"+1 = "2 Si" f C°S 

Re-writing (6) as 
oo oo 

(-1)" u _ , V (-1)" 
I 

n=0 

(-1)" 

^ 0 A7*0 
gives 

(25) 'S^^-SI^WJ:-^ (2n + 1)1 U2n+2 2^ (2n + 1)1 
n=0 n=0 

Using (20) and (24) in (25) yields, on calculation, 
n~0 

(2n + 1)! 7
 U2n+1 
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(26) U JL^JJ U2n+2 = 8'1p sin | cos J - sin | cos | • 
n=0 

Summation Formulas - The Cosine 
10. if we parallel the work in paragraphs 5 to 9 for the cosine of the matrix X as defined in (12), we also have 

the following results: oo oo 

(27) cos* - 1-X £ <=£- U2nHQ £ *=$£ V2n-t 

SO that 

(28) cos* = -X £ ) (=/j£- U2n + IQ f ) kjgl. U2n_, 

since, when/? = 0, 

on using (1) and 

on using (3). 
(29) 

(2n)! "dn H *-o (2n)! 
n=0 n=0 

-X(-7)UQ = 0 

lqU-<i = lq-q~1 = I 

cosX= r--?S"/ sin | sin | ] * - j cos | cos | - S ' ^ s i n | sin | 1 , 

(30) £ < T 2 ^ £ / ^ - 2 6 " / | i n f l , n y 

oo 

(31) q V £ j g ? L </2„_7 = s-'/ i s in J sin | - cos | cos | 

OO 

(32) £ t i g - l / 2 „ = f c o s f c o s f 

OO 

(33) V t g _ </2„+; = S-'p sin | sin | + cos | cos | 

Chebychev Polynomials 
11. As in Horadam [3], which deals among other things with Chebychev polynomials in relation to a certain gen-

eralized recurrence sequence, write 
(34) x = cos0 with p = 2x and q = 1. 

Then the Un are precisely the Chebychev polynomials of the first kind, Sn(x), Thus 

(35) Un(2x, 1) - Sn(x) = | M 0 (n > 0), 

where 
(36) Sn+2 = 2xSn+1-Sn with S0 = 0 and Sx = 1. 

Likewise, the Vn are the Chebychev polynomials of the second kind, tn(x) - 2Tn(x), where 
(37) Tn+2 = 2xTn+1-Tn with T0 = 1 and Tx - x 
so that 
(38) f0 = 2 and ^ = 2x(=p). 

Thus 
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(39) V„(2x, 1) = 2T„M = 2cosn6 (n > 0). 

Putting q = 1 in (20) and using (35) yields 

J^TIT,
 u2"+i ~ I- J2TTIW S2n+1M ' <L 

n=0 n=0 n=0 
L (2n+1)I U2n+1 ~ ^ / S i + / ; / S 2 n + ' W " ^ tin + Manx 

1=0 n=C 

1 v ^ " J'7'2"*7 

i i n * *-* (2n + 1)1 \ 

H)x _e-i(2n+1)x 

n-0 

. _ / _ V | (-1)n(e'*)2n+1 _ (-1)n(e~ixr+1 \ 

^r-:— 4 sine — sine *• 2/smx 1 * 

2/sin* 
-'— 2cose—hr— sin e-—/— 

cos fcos xj sin (i $mx) 
1 smx 

cosfcosxj/sinh (mx) 
1 s i n * 
cosfcosxjsinh (%\nx) 

sin* 
Thus, we have 

(—\)n sin (2n + 1)x _. cos fcosxjsinh (%\x\x) 
(2n+1)!$\nx sinx 

Similarly, from (21), (30) and (32) and using (35) and (37), it can be shown that 

(-Dn 

(2n + 1)1 

n=0 

(41) iL o iTT w$(2n+1)x = sin (cosxlcosh hmx) 
n=0 

oo 

(A?) V * (-Dn+1 s\n2nx = sin /cosxjsinh fsinxj 
1 ' ^ (2n)!$\x\x mx 

n=0 
and 

(43) £ (~Vn+(2nT2n~ = " C ° S toS ^ C ° S h ft'" ^ 
A7=0 
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ADVANCED PROBLEMS AND SOLUTIONS 
Edited by 

RAYMOND E.WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 17745 

Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathematics 
Department, Lock Haven State College, Lock Haven, Pennsylvania 17745. This department especially welcomes 
problems believed to be new or extending old results. Proposers should submit solutions or other information that 
will assist the editor. To facilitate their consideration, solutions should be submitted on separate signed sheets within 
two months after publication of the problem. 

H-258 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Sum the series 

where the summation is over all non-negative a, b, c, d such that 

12a < b+c + d 
2b < a+c + d 
2c < a+b+d 
2d < a+h+c. 

H-259 Proposed by R. FinkeI stein, Tempe, Arizona. 

Let/7 be an odd prime and m an odd integer such that m j£0 (mod/7). Let Fmp = Fp»Q. Can (Fp,Q) > 1? 

H-260 Proposed by H. Edgar, San Jose State University, San Jose, California. 

Are there infinitely many subscripts, .n, for which Fn or Ln are prime? 
Editorial Note: Good luck on this one! 

SOLUTIONS 
CORRECTION 
H-179 Proposed by D. Singmaster, Bedford College, University of London, England. 

Let/r numbers/? 7,/?£, — ,Pk be given. Setan = Ofor/7 < Qiao- 1 and define * „ by the recursion 
k 

an - Yl P'an-f f o r n > 0. 
M 

1. Find simple necessary and sufficient conditions on thepj for lim an to exist and be (a) finite and non-zero, 
(b) zero, (c) infinite. n ~* °° 

2. Are the conditions:/?/ > Ofor /= 1, 2, - , p; > 0 and 

k 

E Pi * 1 

sufficient for lim an to exist, be finite and be non-zero? 
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SOSVIE SQUARE 
n-z30 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

(a) If 5 is a quadratic nonresidue of a prime/? (p £ 5), thenp\Fk(p+^, k a positive integer. 
(b) If 5 is a quadratic residue of a prime/?, then p\Fk(p^i), k a positive integer. 

Solution by J. L Hunsucker, University of Georgia, Athens, Georgia. 

In problem H-221 of this Journal {Vol. 2, No. 3), L. Carlitz gave the theorem: 
Let p be an odd prime,/? £5. If/? = 1 (mod 4) then (Fp^f/2) = Q (mod/?) for (5/p)a 1 and(Fp+i/2) = Q (mod/?) 

for (5/p) = - 1 ; if p = 3 (mod 4) then (Lp^/2) = 0 (mod /?) for f5//?; = 1 and (Lp+1/2) = 0 (mod /?) for (5/p) = - 1 . 
Using the theorem that Fn\Fkn in the case p = 1 (mod 4) and for the case p = 3 (mod 4), using in addition to 

V̂? | ^ A ? , the theorem that Ln\Fm if and only if m = 2kn we see that H-230 follows immediately from H-221. 

Also solved by P. Tracy and the Proposer. 

RECURRENT THEME 
H-231 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

1. Le t / l o ^ f t ^ i = 1, and 

Find An. 
2. Let B0=2,BX =3, and 

Find Bn . 

jf &2k+1 = A2k + &2k-1 , 
\ &2k+2 " &2k+1 - &2k • 

®2k+1 * B2k + B2k-U 
®2k+2 " #2fc+7 -^2Ar-

Solution by Robert M. Guili, San Jose State University, San Jose, California. 

1. | A - | / = 0,1,2,.-.} = { 0,1, 1,2,1,3,2,.S,.3, 8,-4 
(FJ (FJ (FJ (F5) (FJ- , 

f/V f f j fFJ (FJ (FJ-
A2k+1 = ^+2> A2k+2 = Fk+1 for £ = 0, 1,2,-. 

2. { B,\i = 0, 1, 2, • • • } = { £ * /, * 3, 7, 4, 11, 7, 18,- [ 
f l j fc8J (LJ (LJ (LJ-

(LJ (LJ (LJ (LJ (LJ-

B2k+1 = Fk+2, B2k+2 = Fk+1 for k = 0, 1,2, - . 

To derive these two solutions note that by combining the two equations 

i ^2k+1 = H2k + H2k-1 
\ ^2k+2 = H2k+1 ~ H2k, 

we §&H2k+2'= H2k-P Using this relation to replace H2k in the first equation, and H2k+1 in the second, we get 

/ ^2k+1 = H2k-3 + H2k-1 
\ H2k+2 = H2k+4 ~ H2k-2 > 

Now let m = 2k - 1, and n = 2k + 2 for k = 0, 1,2, - , which yields 
) Hm+ -j - Hm„ 7 + Hm 

\ Hn+1 ~ Mn-1 +Hn • 



90 ADVANCED PROBLEMS AND SOLUTIONS [FEB. 

These we recognize as the generalized Fibonacci recursive relation. By applying the starting values (A 0, AUA2) 
and (B0, Bu B2) in problems 1 and 2, respectively, we get the desired result. 

Also solved by P. Tracy, A. Shannon, I/. £ Hoggatt, Jr., P. Bruckman, and the Proposer. 

USING YOUR GENERATOR 
H-232 Proposed by R. Garfield, the College of Insurance, New York, New York. 

Define a sequence of polynomials G^fx) £=0 as follows: 

1 L Gk(x)tk . 1-(x2 + 1)t2 - xt3 

1. Find a recursion formula for G^fx). 
2. Find G^fl) in terms of the Fibonacci numbers. 
3. Show that when x= 1, the sum of any 4 consecutive 6 numbers is a Lucas number. 

Solution by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

SOLUTION 1. 

- - ;
 7 = 1 + t2(x2 + 1) + t3x + tA(x2 + 1)2+ts [ ( ^ ] xlji+t6[(x+1)3+x2] 

+ ...+ t2k{[k0)(x
2+l)k+ [k~1)(x2+1)k-3x2+ [k-4

2)(x2+1)k-6x4+^ 

SOLUTION 2. 
; - ; 1 + -.—t—=l-t + t2-t3+'»+Fnt

n+1 

1-2t2-t3 (t+])(1~t-t2) t+l 1-t + t2 

= tn+1[Fn + (-l)n+1]. 

SOLUTION! 

F„ + (- Vn+ 1 + Fn+1 + (- 1)n+2 + Fn+2 + (- Dn+3 + Fn+3 + (- 1)n+4 

= 1 [an(1 + a+a + a)-hn(1 + h+b+h)] = 1 [ * " ( ^ f ^ ) +bn ( i ^ A ^ ) ] Js 

- ~n+3 . un+3 _ , -a +b - Ln+3 . 

Also solved by C. Chouteau, P. Bruckman, A. Shannon, and the Proposer. 

GENERAL-SZE 
H-233 Proposed by A. G. Shannon, NSW Institute of Technology, Broadway, and The University of New England, 

Armidale, Australia. 

The notation of Carlitz* suggests the following generalization of Fibonacci numbers. Define 
ftf = (ank+k-bnk+k)/(ak-bk), 

where k=r- 1, and a,b are the zeros of x2 -x- 1, the auxiliary polynomial of the ordinary Fibonacci numbers,/^ . 
Show that 
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X f(nr)xn = 1/(1-(ak + bk)x+(akbk)x2) 

n=0 

Let fk = (ak*1 - bk+1 )/(a - b), and prove that 

(b) 

(Note that when r = 2 (and so k = 1),fks f'k-l~ t fk-2^0, and (b) reduces to the well known 

^- E Cr)-> 
0<2m<rc 

Solution by P. Bruckman, University of Illinois at Chicago, Chicago, Illinois. 
We form the series 

oo oo oo oo 

_ / , _ _ , nk+k ,nk+k \ „k ,B__̂  . ,k —-* . ^ 

E #'*" = E 3 r . )*" =T~I E ^ - / ^ L ^ 
/7=o /?-0 a - A a -b n=:o a -b n=0 

• T ^ I — i r - - r - f - L r ' \ o-^n-b^'r1 

ak-bk 1-akx ak_bk 1_bkx 

= | 1-xLk + (-1)kx2)-1 = { / - f e ' + ^ J k + feW**2}"' , 

which is the result of part (a). Now consider the series Six) defined as follows: 
oo 

{2s fm-s fn-m-s , 

n=0 0<m+s<n then 

sw-E*" E (7)(n-|B)£/«3T 
n=0 0<m+s<n 

oo n n-m 

*<*> - E E E *"(m
s )["~s

m) t-iCPrm-s 
n=0 m=0 s=0 

oo n n 
_ _ _ #. m \ / n ~ m \ r2s-2mr2m-sfn-

' 2^ 2^ 2^ X [s-m)[s-m j'k'l fk-2 fk 
n=0 m=0 s~m 

oo n n oo oo n 

E E E e(n-m's) =Y,T,i:°(°'>"'S> 
n=0 m~0 s=m m-0 n-m s-m 

oo oo 

m=0 s=m n-s 

£ . ' " ^ ( : )(";•) tiCifnk 
tn,s,n-0 

- E *m+s (7) £»«3 E (";•) w = 
m,s=0 /7«0 
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/ 2 \m 

m=0 

•n-*r'\i-**-gjt}" 

= \ 1 -x(Fk+1 + Fk„1) + x2(Fk+1Fk-1- F%)\ (Fk\$thekth Fibonacci number) 

= {1-Lkx + (- 1)kx2 \ = Y< fnix" > bV Part <a>" 
n=*0 

Comparing coefficients of the power series, this establishes part (b). N.B. F(n+uk/Fk = fff{ 

Also solved by the Proposer. 

Editorial Note: Dale Miller's name appeared incorrectly in H-237. 

Continued from page 829 ******* 
Returning to (2) above, we can generate multigradesof higher orders. (Forthe standard method employed, see below.1) 
I give now, as an example, a third-order multigrade: 

Arf + Asff-An-^ +("i1 A-2 ) F™ + A7(2Fn~ F7)
m + A2(2Fn~F2)

m -An,1(2Fn- Fn^)m 

+ [%%-2)f^ = A1(Fn-F1)
m+A2(Fn-F2)

m-~An„1(Fn^ 0m 

+ A1{Fn + F1)
m+A2(Fn + F2)

m.»An-1(Fn + Fn„1)+ ( s A-2^(2Fn)
m 

(where m= 1,2,3). 

[\ have added Fn to each term in (2), and added the L.H.S. totals to the original R.H.S. and vice versa.] Expressed 
more tidily, the above becomes 

n-1 
S A-2 
1 

A1[(F1)
m + (2Fn - F7)

mJ +A2[(F2)
m + (2Fn - F2)

ml»An.1[(Fn.1)
m - (2Fn - Fn^)m] +2 

= A rf(Fn- F7)
m + (Fn + F1)

m] +A2[(Fn - F2)
m + (Fn + F2)

m] -An„7[(Fn - Fn^)m + (Fn + Fn^)m] 

+ ( s A-2 \[(2Fn)
m + 0m] (where m = 1,2, 3). 

Fm rn 

Again, if we add any quantity B to each term, the final 0 terms each become Bm. 

REFERENCE 
1. M. Kraitchik, Mathematical Recreations, George Allen & Unwin, London, 1960, page 79. 
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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+1 + Fn, F0 = 0, F-j = 1 and Ln+2 = LnH + Ln, L0 - 2, L-j = I 

Also a and b designate the roots (1 + \[5)/2and (1 - sj5 )/2, respectively, of x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-322 Proposed by Sidney Kravitz, Dover, New Jersey. 

Solve the following alphametic in which no 6 appears: 

A R K I N 
A L D E R 
S A L L E 

A L L A D I 

(All the names are taken from the front cover of the April 1975 Fibonacci Quarterly.) 

B-323 Proposed by J. A H. Hunter, Fun with Figures, Toronto, Ontario, Canada. 

Prove that F2
n+r - (- 1)rF* = FrF2n+r -

B-324 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Determine a constant k such that, for all positive integers n, 

p3n+2 = knFn^1 (mod 5) . 

B-325 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Let a = (1 + \j5)/2 and b = (1 - <j5)/2. Prove that there does not exist an even single-valued function G such that 

x + G(x2) = G(ax)+G(bx) on -a < x < a. 

B-326 Based on the solution to B-303 by David Zeitlin, Minneapolis, Minnesota. 

For positive integers n, let o(n) be the sum of the positive integral divisors of/?. Prove that 

o(mn) > 2\Jo(m)o(n) for m > 7 and n > 1. 

B-327 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas. 

Find all integral values of r and s for which the equality 

93 
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i=0 
holds for all positive integers n. 

SOLUTIONS 

A CORRECTION 

Jeffrey Shallit points out that the second solution n2/22 to problem B-274 is incorrect and that a correct solution 
using n,l, and 2 Is ir2/22 . 

AN APPLICATION OF THE BSNET FORMULAS 

B-298 Proposed by Richard Blaze}, Queens Village, New York. 

Show that 5F2n+3F2n-3
 = Un + 1& 

Solution by Gerald £ Bergum, South Dakota State University, Brookings, South Dakota. 

Using Fn = (an-hn)/s/5, Ln = an + bn, 

and the fact that 

ab = -1, 5F2n+3F2n„2 - (a2"+3-b2n+3)(a2n-3-h2n-3) - a4n +b4n - (a6+b6)(ab)2n~3 

= L4„ - L6(- D2n~3 - L4n + L6 = L4n + 18. 

Also solved by George Berzsenyi, Wray G. Brady, PaulS. Bruckman, Warren Cheves, Herta T. Freitag, Ralph Garfield, 
Frank Higgins, Graham Lord, John W. Milsom, C. B. A. Peck, Jeffrey Shallit, A. C. Shannon, David Zeitlin, and the 
Proposer. 

A CONVOLUTION FORMULA 

B-299 Proposed by Verner £ Hoggatt, Jr., San Jose State University, San Jose, California. 

Establish a simple closed form for 
n 

F2n+3~ £ (n + 2-k)F2k. 

k=1 

Solution by Frank Higgins, Naperville, Illinois. 

Using Problem B-295, we have 

n n n 
F2n+3~Ys <n+2-k)F2k « / = 2 # i * 3 - £ (n + 1 - k)F2k - £ F2k 

k=*1 k=1 k=1 

= F2n+3-{F2n+2-(n-U)-(F2n+1- V * n + Z 

Also solved by Gerald £ Bergum, George Berzsenyi, Wray C. Brady, Paul S. Bruckman, Herta T. Freitag, Ralph 
Garfield, Peter A. Lindstrom, Graham Lord, C. B. A. Peck, Jeffrey Shallit, A. C. Shannon, and the Proposer. 

ANOTHER CONVOLUTION 

B-300 Proposed by Verner £ Hoggatt, Jr., San Jose State University, San Jose, California. 

Establish a simple closed form for 
n 

L2n+2-H, (n+3-k)F2k. 
k=1 
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Solution by George Berzsenyi, Lamar University, Beaumont, Texas. 

Utilizing well known formulae and the solution to Problem B-299, one finds that 
n n n 

L2n+2~Yi (n + 3-k>F2k = L2n+2-Ys ("+2-k^2k-Y, F2k 
k=-4 k*1 k=*1 

= L*2n+2 - (F2n+3 - n - 2) - (F2n+1 - / 
* L2n+2 + n + 3- (F2n+1 + F2n+3i 
= t-2n+2 + n + 3- L2n+2

 = n + 3-

Also solved by Gerald £ Bergum, Wray G. Brady, PaulS. Bruckman, Herta T. Freitag, Ralph Garfield, Frank Higgins, 
Peter A. Lindstrom, Graham Lord, C..B. A. Peck, Jeffrey Shallit, A. C. Shannon, and the Proposer. 

GREATEST INTEGER IDENTITY 

B-301 Proposed by Phil Mana, Albuquerque, New Mexico. 

Let fxj denote the greatest integer in x, i.e., the integer m with m <x <m+ 1. Also let 

A(n) = (n2 + 6n + W/12 and B(n) = (n2 +7n + 12)/6. 

Does [A(n)l + [A(n+D] = [BM] for all integers/?? Explain. 

Solution by Graham Lord, Secane, Pennsylvania. 

The identity is correct, as can be seen upon placing n = 6m, 6m + 1, •», 6m + 5 successively. For example, with 
n = 6m+ 4: 

[AMI + [A(n+1)] = [A(6m+4)] + [A(6m + 5>] = (3m* + 7m+4) +(3m2 + 8m + 5) 

= [6m2 + 15m + (56/6)] = B(6m + 4) = B(n). 

Also solved by PaulS. Bruckman, David Zeitlin, and the Proposer. 

COMPOSITE FIBONACCI NEIGHBORS 

B-302 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Prove that Fn - 1 is a composite integer for/? > 1 and that Fn + 1 is composite for/? > 4 . 

Solution by John Ivie, Student, University of California, Berkeley, California. 

Using the Binet Formulas, the following identities can be established: 

F4k- 1 = L2k-lF2k+V F4k+1 = L2k+1F2^1. 
F4k+1~ I - L2k+iF2k; F4k+t+ 1 = L2kP2k+t. 

F4k+2~ I = L2k+2F2k; F4k+2+ 1 = L2kF2k+2. 

F4k+3~ 1 = L2k+iF2k+2; F4ic+3+ 1 « L2k+2F2k+h 

Since Fn > 1 for n > 2 and Ln > 1 for n > 1, one thus sees that Fn — \ is composite for/? > 7 and Fn + 1 is com-
posite for n > 4. 

Also solved by Gerald £ Bergum, George Berzsenyi, PaulS. Bruckman, Graham Lord, A. C. Shannon, David Zeitlin, 
and the Proposer. 
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A SIGMA FUNCTION INEQUALITY 
B-303 Proposed by David Si ngm aster, Polytechnic of the South Bank, London, England. 

In B-260, it was shown that o(mn) > ofni) + o(n), where o(n) is the sum of the positive integral divisors of n. What 
relation holds between o(mn) and o(m)o(n)? 

Solution by Frank Higgins, Napervilie, Illinois. 

Let 

m = I I pf1 and n * I I py, 
M i=*1 

where each a/ and ft- is non-negative and where p 1, p2, •••, Pk are distinct prime numbers. Since 

P i - i < P i - i - Pi-i ' 

where equality holds iff a//3/= 0, it follows that o(mn) < o(m)o(n), where equality holds iff (m,n)- 1. 

Also solved by PaulS. Bruckman, Graham Lord, C. B. A. Peck, David Zeitlin, and the Proposer. 
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