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INTRODUCTION

The compositae is one of the largest families of the vascular plants, comprising about 1000 genera and about
30,000 species. The members of this family are distributed in almost all parts of the world and are readily recognized
by their unique disc-shaped inflorescence, composed of numerous pentamerous florets packed on an involucrate
head.

There is a good deal of variation in the numbers of ray-florets and disc-florets in many compositae. Moreover,
beautiful phyllotactic configurations become visible due to the unique arrangement of florets/fruits in the head.
Definite equiangular spirals appear on the head of a composite, which run either right-handed (counter-clockwise)
or left-handed (clockwise). Another different set of spirals run opposite to the former spirals, and these intersect
each other, such as: 2/3, 3/5, 5/8, 8/13, 13/21, 21/34, ---. The numerators or the denominators of this series, when
considered alone, form the successive stages of the famous Fibonacci Sequence.

In this note are presented the results of a study on the variation in the number of ray-florets in four species of
compsoitae and also the variation in the number of disc-florets in one species.

PRESENTATION OF DATA
Variation in the number of ray-florets: Data on the variation in the number of ray-florets were obtained on:
1. Tridax procumbens
2. Cosmos bipinnatus (two varieties)
3. Coreapsis tinctoria
4. Helianthus annuus.

Tridax procumbens is an annual weed which usually grows on roadsides and wastelands. Its capitulum is small, the
diameter of a head usually measuring 4.5 mm to 5.5 mm and raised on a long peduncle. Cosmos bipinnatus is a com-
mon flower which grows during winter and is available in white, pink and saffron colours. Coreopsis tinctoria and

-Helianthus annuus are also common in India. The head of Coreopsis is small, but that of Helianthus is quite large,
with bright yellow ray-florets.

Data on Tridax procumbens were obtained from a locality near Andhra University, Waltair, Andhra Pradesh, India,
during July 1972. In all, 4000 heads were observed.

Data on 300 heads of each of the two varieties of Cosmos bipinnatus, the saffron coloured variety and the white
and pink coloured variety, were gathered from two localities at Calcutta. In both the localities, nearly 100 p.c. of the
heads possessed eight rays each.

Data on 500 heads of Coreapsis tinctoria were collected from the gardens of Royal Agri-Horticultural Society,
Calcutta.

One thousand and two heads of Helianthus annuus were observed in three different localities in Calcutta,

Variation in the number of disc-florets: Data on the variation in the number of disc-florets were collected on two
varieties of Cosmos bipinnatus, the saffron coloured variety (Variety 1) and the white and pink coloured variety
(Variety 2) from two localities in Calcutta.

Thirty heads of Variety 1 and 61 heads of Variety 2 were gathered from the gardens of the Indian Statistical Insti-
tute, Calcutta and the number of disc-florets on each of the heads were counted.
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DISCUSSION

From the data represented in Fig. 1, it is seen that though there is a great deal of variationin the numbers.of ray-
florets per head within the same species, the mode of each species invariably turns out to be a Fihonacci number.
For Tridax the mode is at the fifth Fibenacci number; that is, at 5; for both varieties of Cosmos as well as for
Coreopsis the mode is at the sixth Fibonacci number; that is, at 8; and for Helianthus the mode is at the eighth Fib-
onacci number; that is, at 21. Among the four species of compaositae observed, the variation in the number of ray-
florets is greatest for Helianthus and least for Cosmos.

Such variation surely has a genetic component and some (Ludwig, 1897) believed that {both within and between
plants) it is largely a result of climatic factors and nutrition, These multimodal distributions are not totally new, and
were demonstrated by Ludwig in the ray-florets of Bellis perennis, disc-florets in Achilles millefolium and flowers in
the umbels of Primula veris as early as in 1890 (Briggs and Walters, 1969).

Such modal variation can be explained by the model suggested by Turing (1952). Turing considered a system of
chemical substances, or “morphogens,” reacting together and diffusing through a tissue. He showed that such a sys-
tem, though ariginally homogeneous, may later develop a pattern or a structure due to instability of the home-
geneous equilibrium. In the simple case of an isolated ring of cells, one form of instability gives rise to a standing
wave of concentration of the morphogens. For any given set of values of the constants for the rates of reaction and
diffusion there will be a “chemical wave-length” of 8. If the circumference of the ring, s, is divided by §, the result
will not usually be an integer. Yet the system necessarily forms an integral number of waves, typically the integer
nearest to s/f.

This provides a simple mode! of the process whereby an integral number of discrete structures can arise from a
homogeneous tissue. All individuals of a population will have 7 structures if:

n— (%) <s/B < n+(%).

Writing Var. {s), Var. (8), and Var. (s/8) for the variances of s,8, and s/8 respectively, and Cov. {s,3) for the co-
variance between s and 3, one can easily see that:

Var. (s/8) = B7*[B2Var. s) + s2-Var. (8) — 258 -Cov. (s.8)] .

Itisalso interesting to know why the mades in the distribution of heads of ray-florets turn out to be Fibonacci num-
bers. An explanation which seems logical to us is the following:
The general formula for obtaining the Fibonacci numbers is:

Fn = Fpo1+Fp2,n=3425-; Fr=F2=1,
where £, denotes the n % Fibonacci number. When 7 is large, we can write:
Fn = (IANB)-L(1+5)/2]",
(where = means “approximately equal to”’), and one can approximate it by the continuous curve:

y = (1A/B)-[(1+B)/2]%,
0.4472 x (1.6180)% .

For all practical purposes, the Fibonacci numbers lie on this curve in its higher stages, and moreover it represents per-
fect exponential growth; presumably tending to reduce the size of the florets to the optimum necessary for quick
production of an adequate number of single seeded fruits. So the appearance of the Fibonacci numbers as the modes
for the distribution of the ray-florets on the heads can be taken as an indication for perfect growth, as is usually the
case. Also it is well known that Fibonacci phyllotaxis give optimum illumination to the photo-synthetic surfaces of
plants {Davis, 1971).

The appearance of the Fibonacci numbers can also be explained on the consideration that the individual flowers
emerge at a uniform speed at fixed intervals of time along a logarithmic spiral, r = #* with small a and with an ini-
tial angle @, = 137.5° (Mathai and Davis, 1974). They also show that the above logarithmic spiral may be a natural
outcome of the supply of genetic material in the form of pulses at constant intervals of time and obeying the law of
fiuid flow.

A new theory which has been proposed by Leppik (1960) has emerged from studies of the behaviour of pollinat-
ing insects and their relationships with flowers. On the basis of numerous observations and behaviour tests, Leppik
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has ascertained that most pollinating insects have the ability to distinguish floral characteristics—angular-form and
radial-symmetry in particular. He has hypothesized that some numeral patterns, which include the Fibonacci num-
bers, are more symmetrically arranged than others. And hence, floral differentiation occurred and this has gradually
led to the evolution of ecotypes with specific numeral patterns.

As we have already seen, in Cosmos, there is no (negligible) variation in the number of ray-florets and this turns
out to be 8. But there is a great variation in the number of disc-florets. This shows that the correlation between the
number of ray-florets and the number of disc-florets is almost zero. Also another interesting fact noticed is that there
is no correlation between the size of a flower (when the head is looked at as a single flower) and the number of disc-
florets present on the flower-head.
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COMBINATORIAL NUMBERS IN ¢”

S. TAUBER
Portiand State University, Portiand, Oregon 97202

1. INTRODUCTION

The use of linear algebra in combinatorial number theory was introduced in [4]. The present paper extends the
notations and studies the general properties of product functions, i.e., combinatorial number systems in £”. Among
the examples given are n-dimensional Bernoulli and Euler numbers which are useful in the expansion in series of func-
tions in n variables. The methods and notations introduced here will be used in the study of functions and series in
¢" that will be the subject of future investigations.

2. NOTATION

Let / be the set of positive integers, / the set of non-negative integers, and given n </, let /(n) c /,;and J(n) C J be
such that if k €J(n), then k <n.

In order to avoid confusion we shall write /d for the identity operator or the identity matrix.

Fornel, k elln), X = [x,, x,, -, X,] is an n-dimensional vector and x4 are complex numbers, i.e., X4 € £, so
that X",

Let

P = [p1lp21 "‘;pn]/ a-= [q1l g2, -, qn],

then W(in) c €" be such that for P € Win), m €l(n), pm <J, and for P,Q € Win), P < Q, iff for allm < I(n), pm <

Im -
We consider the following special vectors:

(2.1) U e Win), suchthat uy, =1 forall m e /fn),
(2.2) Uls) € Win), suchthat upm = 65, forall m < I(n),
where Bfn is the Kronecker delta. It follows that
n
U=3" Uls).
s=1
(2.3) Z(s) € Win), suchthat Zfs) = U—Ufs), e, zm=1-8n

(2.4) Z(X,s) € €", suchthat 2z, = xp(1-85,), e, 2zg=0 thus Z(Us) = Zls).
We next introduce for X € £7

n
(2.5) IX| =3 xm .
m=1

so that [U|=n, |U(s)|=1, |Z(s)|=n~1, and |Z(X;s)|=|X|— xs.
We finally introduce the inner product in the usual way: I X,Y € £7, then

n
(2.6) XY = z XmVm .

m=1

101
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where y , is the complex conjugate of y,, . It follows that

n %

(27) 1t = 0% = (5 )
m=1
If, however, X,Y € B c ¢", where A" is the space of real n vectors, then
n
(2.8) XY= Xm¥m .
m=1
and
n %

(2.9) IX| = (x-X)% = [ 3 x,ﬁ]

m=1

3. FUNCTIONS OVER ¢”

We consider functions ®: £7 > ¢.
A monomial in X can be written:

n k
(3.1) xK - mH__, xfn”’ = x,’xgz ---x,’,(” ,
where X € £”, K € W(n). In particular,
n
(3.2) XY= 11 xpy = x1x2-%, .
m=1

A polynomial in X, i.e., a polynomial in n variables, can be written

P
(3.3) fXP = Y alkixX,
K=0

[April

where the summation is extended over all K such that K < P, K,P = W(n) and a(K) are numbers. In the generally

adopted polynomial sense the degree of 7(X,P) is clearly p = |P|.

More generally if ox (xgJ, k €/(n), is a seavence nf functions, @i : € — €, then with

o = [¢1(X1)1 ‘p7(x2)/ % San (Xn)],
(3.4) Y- ﬁ, ok lxe) = X)),
k=

is called a product function of the functions g .
We study the following examples:
i) Wox=my, M=[mq, ma, -, m,] € Win), then with k< /(n)

n
(3.5) QY =mr= 11 my! ,
k=1

(i) 1f M = £" but M & Win), then we replace factorials by gamma functions thus if ¢ = I' (my + 7), then

(3.6) @U=Tm+U)= 1 Tlmg+1).
k=1

{iii) For ,M € W(n), M < N, and k < /(n), we have for

Y
Pk = (mk)
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n
3.7) oY= T (”") < T nl/mellng—mil! = NYMIO - M)1 = (ﬁ) .
k=1 \Mgk k=1

It should be noted that (,{4\/) is product function for binomial coefficients and not a multinomial coefficient.
The corresponding multinomial coefficient would be (cf. [3])

n

(W) = [ 3 e ] v,
where k=1

M, N—-M] = [mq,ma, -, m, ny—mq,n2—ma, ~, 0y —mml & W(2n)

and clearly |M|+|N - M| = |N] .
(iv) For M Win), and A,B <"

n Nk
(A+BN = T (o +be)™ = TI (= () o™
k=1 k=1 L 0 k
and by regrouping the terms we obtain

N

N _ N M N-M

(3.8) (aep - 3 (M) AMgM
M=0

(v) ForXe£”, and withel = /e, g, -, e/, we define

n .
ek = 11 [ z: X,Tk/mk!J = Z XM/ ,
! k=1 = =0 mM=0

(3.9) eX = (o)X = X =

T:I:

and

o X = 2 (=1)MxMyyy
=0
where (—1)/M = ()M,
It will be noted that whenever a summation goes to infinity the upper limit is left out.
4. UMBRAL CALCULUS

Umbral calculus consists in substituting indices for exponents. In [2] the following notation is used for the one
dimensional case.

@.1) e = Z xKak/k1 > [exp ax, a* = a)] = Z xXap/k!
k=0 k=0
n n
(4.2) (a+b)" = Z (Z)b"'k»[(a+b)",ak = ak, b% = bl = Z (Z) axbp-k
k=0 k=0

We shall change this notation and extend it to the n-dimensional case. The umbral expression corresponding to a
vector exponent is clearly

K___ n km _ n
(4.3) A O a," > AK) = 11 amlkn),
m=1 m=1
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where instead of indices we write variables.
We now introduce the following convention: Whenever an element is to be written umbrally it will be underlined,
thus

n n
(4.4) (a+b)"=Y" (Z) akbp-k = Y ( ,’,;) alk)bn — k)
m=0 m=0
and with N,K € Win)
N
@.5) a+p = 0 fatm+om)™™ = Y (%) Atk £,
' m=1 K=0
but
N N
(4.6) (a+gN = % (ﬁ) ARsiv-K) = Y (% )AN'KB(KI,
K=0 =0
and in particular
N N
.7) w+eN =3 (%) BIN-K) = Y (ﬁ) B(K).
K=0 K=0

Similarly for the generalized exponential we have

(4.8) e = > xRk ki .
=0

It should be noted that the last umbral expression (4.8) is the exponential kind generating function for the numbers
AlK).
It should be noted that

eAXpBX - [Z XSA(S}/S!] [ > XTB(T)/T!] = 3 3 XS'Talsi(risIT!
5=0 -T=0 §=0 T=0

Let S+ T = K observing that (g) = KI/SI{K — §)!, we have

oAXeBX - 3T S xRatssik - susitk - - 2 oxKkn L (K ) asmik-s)
=0 §=0 K=0 =0

but according to (4.5) the last sum is equal to (A + 8), where the binomial coefficients for S > K are all equal to
zero. It follows that

(4.9) eAX oBX _ Z XK(A +Q}K/K! = plA+BIX ,
K=0
i.e., the symbolic exponential follows the same law of addition as the ordinary exponential.

5. GENERATING FUNCTIONS

Let
D (k) = [olk 1), o(k2), -, lkn)]

and using the notation of Section 2, we consider the product function

(5.1) olk) = [® (k)] Y = ﬂ7 olkm).
I
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Letv(t,m) be the generating function for the functions ¢ (k,m), i.e.,

(5.2) Golkm) = 3 olkmlt* = vitm),
k=0
where m € /(n).
By taking the product

n n
(5.3) I tkm)tk | = Jtm) = (VITNIY = Q(T),
m=7[§¢ m,,,] 1 mtm) = (VIT)] (1)
where 7= [t7, t2, -, t,] € €, and
V(T) = [v(l,tq), vi2ta), -, vinty)] = €7

we thus obtain the generating function of the product function.
If o(k,m) = olkxp), then vim,t,,) = vixy,, tm) and (5.3) becomes

n
(5.4) I vlm, tm) = (VIX,TIIY = QXT).
m=1
We can state this result as follows:

PROPOSITION 1. The generating function of the product function of a set of functions is equal to the product
of the generating functions of the set of functions.

6. INVERSION OF SERIES

Consider the series

6.1) AN) = Y fIN,KIB(K)

K=0
where the coefficients AV, K) are known. We say that (6.1) has an inverse if there exists a set of coefficients g/, K)
such that

6.2) BIN) = ), glN,KIA(K),
K=0
both series being convergent.
PROPOSITION 2. If both series (6.1) and (6.2) are absolutely convergent they are inverses of each other if and
only if fand g are quasi-orthogonal in the sense of [4] and [5].
PROOF:

AN) = S LKIBIK) = 5 LK) S alKSIAIS) = 2 2 fiN, KIgtK.SIAIS).
K=0 K=0 =0 =0 §=0

Since the series are absolutely convergent, their order can be deranged and the order of summation can be changed,
thus

Aw) = 30 AS) [ 3 fnKialks) | = 3 AlsIo,
S=0 "K=0 ' S=0
where 5,‘?, is the Kronecker-Delta. It follows that

> AN KIgKS) = 85
K=0
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which expresses quasi-orthogonality in the sense of [4] and [5].
PROPOSITION 3. A(N) = (€ + B)" and BIN) = (G + A" will be inverses of each other if (€ + G) T =5 .
PROQF. Since
N
A) = (¢ +8)" (%) ctxsm-rr= 3 (%) swiew-x).,
K=0

™M=

2
S

BN) = (G +AN

N — N
(Y swam-x = (%) Atxsm -,
K=0 K=0
where both series involved are finite, i.e., present no problem of convergence, we apply the results of Proposition 2

N N
3 ( ,"é) CN = K) (§ ) GIK~8) =S IN/KHN ~ K} [KI/SIK = S)CIN ~ KIG(K — )
K=S K=s

- (g) ff (%Ii) CIN - KIG(K - S) = 85 .
K=S

LetK—S8 =M, ie,N—- K= N-S8—M, so that
N-S\ _ N-S )_ N—S)
N- K N—-S—-N+K/| ~ M

The preceding quasi-orthogonality condition can thus be written

(Q’) 2N: (NA;S) GIMICIN =S — M) = (g)(Q*Q’N'S=5/‘\7/-s,

or taking ¥ —S=T,

(6.3) G+cIT =585 .
It will be observed that (6.3) can be written for an arbitrary vector X in either form
(6.4) eX(G*C) - 4
or
(6.5) eXC = 1/6%XC

7. OPERATORS IN ¢”
Let D(m) = 3/axm, m €l(n), and D = [D(1), D(2), ---, D(n)]. We consider the product operator

U n
(7.1) p=Dp"= 11 D(m)
m=1
and more generally K = [k, k2, -, kn]  Win)
n K,
(7.2) oK = 1 [o(m)]"™ .
m=1
Using this notation the n-dimensional Laplace operator can be written
n n
(7.3) Az =Y %} = Y pUim
m=1 m=1

It is easily seen that for k = /(n)



1976] COMBINATORIAL NUMBERS IN £7 107

(7.4) Clk) = ZIX,k)+CrUlK),  clk) = [C(k)] Y,
c(k) is such that Pe(k) = 0. Considering now the vector
(7.5) ¢ = [c(1), ¢(2), -, ¢ln)]

it follows that £C = 0, and, if n(X) is a function such that n(0) = 0, then n(C) is the most general expression such
that
(7.6) Pn=0,
where n=n(C).
Similarly for difference operators we define £(m) such that £(m)f(x; ) = flx; + 7)6,’,‘, , and

7.7) E = [E(1), E(2), ~, Eln)]
(7.8) E=EY- 1 Elm).
m=1

We clearly have E{m)o(X) = ¢ [X + U(m)], and
(7.9) EX = EYx = X+U,  EolX) = o(X+U).
The operator § = £ — /d is not a product operator of the form

n
I [Elm)-1d] .

m=1
We have however
(7.10) SX = U, SolX) = (X +U)— olX) .
The operator A (m) = E(m) — Id leads clearly to the
(7.11) A = [A(my), Almg), -, Almy)]
U n
(7.12) A =AY = kHI Afmy).

It follows that AX = U, but the general expression of AXK is rather complicated.
The operator M(m) = [E{m) + Id] /2 |eads similarly to

(7.13) M = [M(mq), M(m3), -, M(mp, )]
and
n
(7.14) m=muY= 1 Mmg).
k=1

A more systematic study of the operators introduced here as well as the corresponding functional equations will
be published in the future. We introduce here only what we need in view of the applications given.

8. RECURRENCE RELATIONS AND FUNCTIONAL EQUATIONS
Letm € /(n), and a(m) be a one dimensional sequence of numbers satisfying a recurrence relation of the form

P
(8.1) S blomlalm) =0,  ped.
m=0
Letk € /ln), me € J, M = [mq, ma, -, m,], and

AlM) = [alm 1), alm3), -, almy)]
and the associated product function be

U n
(8.2) alM) = [AM)] 7 = 1L almg) .
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By writing the product for (8.1) we obtain
p

[ tomaima] =0,

m k=0

~
[=F]

Regrouping the terms we obtain
pU

(8.3) Y- blpmatm) = 0,
=0

where B(p,M) = [b(p,m 1), b(p,m2), -, blo,m,)], and

n
blp,M) = [Blp,M)] Y = s blp,my).

Clearly pU = [p, p, -, p]. We can state this result as follows.

PROPOSITION 4. If a sequence of numbers afm) satisfies a recurrence relation of the form (8.1) then the product
function of the numbers afm), i.e., a(M) satisfies a recurrence relation of the form (8.3).

If w (m) is an operator such that

(8.4) w(miflxe) = lxxlsy,
where 6,’,‘, is the Kronecker delta.
Let X € €,

F(X) = [f(1,x1), f2x2), -, finxp)] € €7, ®(X) = [p(lx1), pl2x2), -, plnxy)] €,
Q = [w(l), w(2), -, win)] ad #X) = [@XNY, ox)=@xXIY. w=8aY,

then
(8.4) wihlX) = lX).
9. EXAMPLES
(i) Consider the numbers a,,, = a(m/ defined in [1] p. 231. They satisfy the relation
n—1
9.1) > alm)in—m)l = a
m=0

These numbers are the coefficients of the Bernoulli polynomials

n
(9.2) onlx) = @lnx) = Y almx"™/(n—m)! .
m=0
The numbers
(9.3) Bm = Blm) = mla(m)
are called Bernoulli numbers and satisfy the relation
(9.4) (1+8)" - Bln) = 0.
By using the Bernoulli numbers the polynomials of (9.2) can be written
(9.2a) olnx) = (x +B8)"/n! .

We introduce M = [m 1, mo, -, m,] & Win) and A(M) = [a(m ), alm3), -, almp)],

(9.5) alm) = [AMIY = T almy),
k=1
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as well as
BM) = [Bimy), Blma), -, Blmn )],

n

(9.6) Binm) = [BM)]Y = T Blmy).
=7

The numbers B(n, M) are called the n-dimensional Bernoulli numbers. According to Section 8 we clearly have

P
(9.7) > atM)/ (P~ M)l - afP) = 0
M=0
and
(9.8) (U +Bn)]®— Bnp) = 0.

(9.7) and (9.8) are the recurrence relations for the a/#/) and the n-dimensional Bernoulli numbers.
Consider next

pP= [p1/ P2,y pn] & W(”}I Q(P) = [So(p 1/)(1)1 ‘p(p2l X2)/ tty ‘P(pn/ Xn)]

and
n P P

©.9) ¢P.X)= 1L ik xi) = 2 akixP Ry — k=37 Bin kIXPK/KitP — K)1 = [+ BN P,
= K=0 K=0

from where it is easily seen that (cf. (7.1))

(9.10) BplPX) = olP-U, X).

On the other hand, according to [11, p. 231,
1
Alkloloi, xi) = X /o= 1)1,
so that by multiplication over k we obtain
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©.11) AplPx) = xPYstp—up .

According to Section 5 and [1], we obtain the generating function of the n-dimensional Bernoulli numbers as
follows:
9.12) QT =1Y6T-1= 3 BinmTY .

M=0
{ii) Consider the numbers afm)J defined by the recurrence relation {cf. 1], p. 289)

n

(9.13) eln) + ) elk)in—k)l = 0.
k=0

The numbers efm) are the coefficients of the Euler palynomials

n
{9.14) ninx) = Z (k"X /tn — k1.
k=0

The numbers t{n) = 2"e(n)n! are called the tangent coefficients (cf. [1], p. 298) and the numbers

n
(9.15) dn) = (1+0" = 3 (1) e
k=0

Euler numbers. According to [1], the tangent coefficients satisfy the recurrence relation
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(9.16) (2+t)" +tln) = 0.
It is shown in [1] that (9.15) can be inverted to give t/n) = [e — 1] ". It follows that
9.17) [e+1]"+[e-1]" =0 n > 0.

As before we introduce M € W(n) and (M) = [efm 1), efm ), -, e(mp)], with
nlom) = )Y = T efmg).

m=1

The n-dimensional tangent coefficients will be 7(M) = [tim 1), tim2), -, tim,)], so that

o) = (T = 1 tlmg).

. k=1
Finally let e(M) = [elm 1), €(m2), -, €(m,,)], so that n
et M) = [eM)]™ = T elmy),
k=1
where the numbers €(n,M) are called the n-dimensional Euler numbers. It is easily seen, like in the case of the Ber-
noulli numbers, that

(9.18) leln) +1]P + [en)—1]P =0 P >0
(9.19) tnP)+20+T)]P =0 P> 0
(9.20) tin,K) = K12Kefn,K),

(9.21) elnpP) = [U+T)]*P,

(9.22) tinM) = [e(n) - UM .

We introduce in the same way the n-dimensional Euler polynomials: Let
H(P) = [n(p 1, X1), n(ﬂ2l X2}l "ty n(pn: Xn)] ’
where P € W(n). 1t follows that
P
n
(9.23) nP.K) = T nlpg,xe) = 9, elnkIXPK/tP— K1,
k=1 K=0
which defines the n-dimensional Euler polynomials.
It can easily be checked that similarly to the one-dimensional case we have

(9.24) Pn(P.X) = n(P - U, X)
and
(9.25) mnlex) = xF/pr .

According to Section 8 we obtain the following generating function for the Euler numbers efn, K) and the numbers
elnK)

(9.26) Genp) = 2/le” +e 7] = 3 el KITX/ kI

k=0
(9.27) GenpP) = 2/[e”+1] = 3 eln,KITK .

K=0
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CONSECUTIVE INTEGER PAIRS OF POWERFUL NUMBERS
AND RELATED DIOPHANTINE EQUATIONS

DAVID T. WALKER
Memphis State University, Memphis, Tennessee 38152

1. INTRODUCTION

S. W. Golomb [1] defined a powerful number to be a positive integer r, such that p* divides 7 whenever the prime
p divides 1, and discussed consecutive integer pairs of powerful numbers which fall into one ar the other of two types.
The types are TYPE I: pairs of consecutive powerful numbers one of which is a perfect square, and TYPE 11: pairs of
consecutive powerful numbers neither of which is a perfect square. He showed an infinity of cases of TYPE | by
applying theory of the Pell equation.

The first purpose of this paper is to elaborate on Golomb's findings for TYPE |, through theory of the Pell equa-
tion, to give all cases of that type. Then, built on that theory, the second purpose is to formulate all pairs of consecu-
tive powerful numbers of TYPE |1, through certain solutions of another Diophantine equation.

2. CONSECUTIVE POWERFUL NUMBER PAIRS OF TYPE |
Consecutive powerful number pairs of TYPE | correspond to certain numbers satisfying the Pell equation
(1) X*—-DY? = %1,

where O is a given positive integer not a perfect square.
It is convenient to make the following definitions

Definition. The number x + y</D is a solution of (1) if x = X and y = ¥ are integers satisfying (1).
Definition. A positive solution of (1) is a solution x * y</J of (1) in which both integers x and y are positive.

Although at times we will consider solutions in which x or y may be negative, our main concern is with positive
solutions. At all times our “integers’’ are assumed to be rational integers.

Definition. The positive solution x + y/D of (1) in which X and ¥ have their least values is the fundamental
solution of (1).

The fact that powers of the fundamental solution of (1) generate all positive solutions is well known [2] and is
given here without proof in the following

Theorem 2.1.  Solutions of the Pell equation (1) may be formulated by the following cases. (1) If equation
(1) with the minus sign is not solvable, let x + y</D be the fundamental solution of (1) with the plus sign. Then all
positive solutions of the latter equation are given by

(2) xi+yi/D = (x +yJD)
for positive integers ; and where x,,y, =x,y. (2) If equation (1) with the minus sign is solvable and has fundamental
solution x + y~/0, then all its positive solutions are given by (2) for odd positive integers i In this case the funda-

mental solution of (1) with the plus sign is (x + y~/D)?, and all its positive solutions are given by xo;+ yar/D-=
[lx + y/D)*] ' for positive integers /

AMS 1970 subject classifications. Primary 10B05, 10B10; Secondary 12A25, 12A45,

Key words and phrases: powerful number, consecutive powerful number palr, positive solution, fundamental solu-
tion, smallest solution, property Q, least solution with property Q.
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For purposes of this paper it is convenient to write solutions in the form x; +yj\/5, where j is the exponent of the
power of the fundamental solution and not necessarily the ordinal number of the solution in sequence. Without loss
of generality we may assume that 0 is square-free.

In equation (1), for the two consecutive integers X2 and 0 Y?2, our desire that the latter be a powerful number mot-
ivates the following

Definition. Asolution u +v+/D of equation (1) has property Q if for p a prime, p|D implies p|v.

Definition. The leastsolution with property @ is the positive solution v + v+/D with property @ of (1), in which
integers v and v have their least values.

Now if equation (1) with the minus sign has a solution with property @, then 0 must be odd. For if X> — 0> =
—1 is solvable with D even, then no solution has property @ since 4fX* + 1= DY for any integer X.

If equation (1) has the plus sign and if D is even, let x + y~/0 be any solution. Then since x is odd

8|(x—1)x+1) = Dy*,

and 2 | y since D is square-free. So here 2| D implies 2 | y.

Now in the expaision of (2) we see that for any /
(3) yi = ix"Ty+ (é x3y%p + ..,
where y | y;, and D is a factor of every term on the right except the first. If the fundamental solution x + y\/l_7 of (1)
has property @, then it is clear from (3) that all positive solutions have property Q. Otherwise, if we takei=_Hp,-
the product of distinct odd primes p; such that p; | O butp;fy, then we see from (3} that the solution x; + y;/D has
property Q. Moreover, this is the least solution with property @ since (x,0) = 1 and since for any A </ there is at
least one of the primes p; such that p; | D but pj { yp, in the solution xp, + y4+/D of (1) asgiven by (2). We have
proved the following

Theorem 2.2. For either choice of sign, let equation (1) have fundamental solution x + y</D. Then

(1). If (1) has the minus sign, and if D is even, no solutions have property Q. In all other cases (1) has asolution
with property Q.

(2). If the fundamental solution has property @, then all positive solutions have property Q.

(3). If the fundamental solution does not have property &, then the least solution with property &, when it ex-
ists, is the number (x + y</0)', where the integer / is the product of the distinct odd primes dividing 2 but not
dividing the integer y.

Before considering all solutions of (1) with property @, we need two lemmas.
Lemma 2.3. Leta=x +y/D and §=u +vy/D be any solutions with property @ of equation (1) with either
choice of sign for each solution. Then

(1). The product 7y = aB = (xu + yv0) + (xv + yu)/D is a solution of (1) with the plus sign if @ and § are solu-
tions of (1) with the same sign, or -y is a solution of (1) with the minus sign for @ and Bsolutions of (1) with oppo-
site sign.

(2). The product solution 7 has property Q.

Proof. The first conclusion follows from
(xu +yvD)?* — D(xv+yu)* = (x* — Dy?)(u® — Dv?) = (£1)(£1) = £1.
Now by property @ for a.and Bif a primep | O, thenp |y and p

v, s0 p | (xv + yu) and y has property Q.

Lemma 2.4. Let (1) with the minus sign be solvable with fundamental solution x +y/D and have x; + yjx/D
the least solution with property Q. Letx, + y; /D be the least solution with property @ of (1) with the plus sign.
Then xy +y /D = (x; +yi/D)2.

Proof. By Theorem 2.1 the fundamental solution of (1) with the plus sign is
(x +y/D)? = (x* + Dy?) + 2xy/D .

By Theorem 2.2, D is odd, so (2x,0) = 1. Then the prime divisors of 0 not dividing 2xy are the same as those divid-
ing D and not y for the laast solution of (1) with the minus sign which has property Q. So that by Theorem 2.1 and
by conclusion 3 of Theorem 2.2, we have
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xp +yeND =[x +yJBP] = [lx +yJD)]2 = (x;+y;JD )2 .

Theorem 2.5. Let x; + y; /D be the least solution with property @, when it exists, of equation (1). Then the
formula
(4) Xin +Yin D = (j+y; /D)
gives all positive solutions with property @ of equation (1) with the plus sign for pesitive integers A, and gives all
such solutions-of (1) with the minus sign for odd pasitive integers A.

Prooﬁ For either choice of sign in equation (1), since integers x; and y; are positive, by repeated applications
of Lemma 2.3, we see that (4) always gives solutions as described in the statement of this theorem.

We now show that (4) gives all of the positive solutions with property @ of (1) for each choice of sign. Suppose
that (1), for some choice of sign, has a positive solution v + vi/D, which has property . and which is not given by
formula (4). Then for some positive integer 4, we have
(5) (xi+yiD)" < utvD < (x;j+y;JD)TE

Ifequation (1) has the plus sign, then €= 1, or if equation (1) has the minus sign, then € = 2 with / odd; and respect-
jvely the number

xi—yiJO = £1/tx;j+yi/D)
is positive or negative. For either case, multiplying inequalities (5) by £(x; — y; \/E)h, whichever is positive, gives
1 <a=(tutw/Dixi—yiJDI)" < B = (x;i+yi/DIE.

For both of these cases, by Lemma 2.3, the number a= w+z\/5 is a solution with property Q of (1) with the plus
sign, for some integer pair w,z. Substituting for a.in the last inequalities, we get

6) T <wtzyb < 8= (x;+yiJDJE,
and the inequalities
7 0 <w-2JD = 1/lw+2yD) < 1

imply that both integers w and z are positive. So w+z\/l_7is a positive solution of (1) with the plus sign. But in (6)
we have _ _
w+z/D < B = (x;+y; /D),

where for € = 1 or for € = 2, by Lemma 2.4, the number S is the least solution with property @ of (1) with the plus
sign, a contradiction. This completes the proof that (4) gives all positive solutions with property @ of equation (1).

Since equation (1) solutions (x; + y; /)" with property @ correspond to consecutive powerful numbers x7, Dyf-";,
we have thus accounted for all consecutive powerful number pairs of TYPE 1.

EXAMPLES. (1) The fundamental solution 24335 + 3588./46 of X2 — 46Y? = 7 has property @, and hence all
positive solutions have property Q. The corresponding powerful numbers are 592, 192, 225 and 592, 192, 224 or
(24335)2 and (25)(32)(132)(232). (2) The fundamental solution of X? — §Y? =7 is 5+ 2./6. The solution

(5+2/6)° = 485+ 1986

and all its powers have property &. This solution leads to powerful numbers 235, 225 and 235, 224 or (485)* and
(22)(35)(112). (3) The fundamental solution of X* — 5Y? = —1 is 2+ /5. The solution

(2+./8)° = 682+305.5

and its odd powers have property Q. This solution leads to the powerful numbers 465,124 and 465,125 or (682)2
and (5%)(612).
3. CONSECUTIVE POWERFUL NUMBER PAIRS OF TYPE 1!

Consecutive powerful number pairs of this type correspond to certain numbers satisfying the Diophantine equation
(8) mX* —nY? = 21,

where m and n are given positive integers, and neither is a perfect square.
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Our development of the theory of this equation proceeds along lines similar to that of the Pell equation {1). We
begin by making the following definitions

Definition. The number x+/m + x-/n is a solution of (8) if x = X and y = Y are integers satisfying (8).
Definition. A pasitive solution of (8) is a solution x</m + y</n of (8) in which both integers x and y are positive.

As before, although some solutions under consideration may have negative x or y, our main concern is with posi-
tive solutions.

REMARK. If x/m +y</n and x\/m +y"/n are positive solutions of {8}, then it is easily seen that the inequalities
x < x', y <y and xym+yJn < xIm+y/n
are equivalent. So among all the positive solutions, there is one solution in which both x and y have their least values.

Definition. The smallest solution of (8) is the positive solution x</m + y</n in which both integers X and Y
have their least values.

Analogous to Theorem 2.1 for solutions of the Pell equation is the theorem we now state without proof [3, Theo-
rem 9] for solutions of equation (8}

Theorem 3.1. If equation (8) has smallest solution x</m + y+/n, then all positive solutions of (8) are given by
&) xiJm +yiNa = (xJm +yJn )2
for non-negative integers /, and where x,, y, = xy.

Without loss of generality we may assume that integers m and 7 are square-free. Moreover, our desire that consecu-
tive integers mX? and nY? be a powerful number pair of TYPE |l motivates the following

Definition. Asolution u\/m +vi/n of (8) has property Q if for p a prime, p|mn implies p|uv .

Note that since (mu,nv) = 1, this definition is equivalent to saying the prime divisors of m divide u, and those divid-
ing n divide v.

Definition. The least solution with property Q of equation (8) is the positive solution u/m + vi/n with prop-
erty @ of (8), in which integers v and v have their least values.

Now from (9) we get x; and y; in the following expressions

X = mi X2 s (2/‘; 1) mn %3272 4 (27 4 1nixy @ and

(10)

Vi = (2 + Umix @y + (2i3+ 1) m~Tnx 22,3 4 .4 ply 21
Note that x; and y; have m and n respectively as a factor of every term except one, the term in each case having the
odd positive integer 2/ + 7 as a factor. Note also that (mx,ny) =1, x|x;, and y |y; .

if one of m or n, say m, is even, we see in {10) that.x; is even for all /, if and anly if x is even. Similarly, when n is
even, y; is even if and only if y is even. So for the possible prime divisor 2 of m or i, solutions with property Q of
{8) depend solely on the parity of integers x or y respectively of the smallest solution x/m + y~/n7 .

Now from (10) if the smallest solution x/m + y</nn of (8) has property Q, then all positive solutions have proper-
ty @ since forp a prime, p|mn implies g |xy | x;y; .

If the smallest solution x/m + y</n of (8) does not have property &, then for the odd integer 2/ + 7 in (9) and
(10), take

(11 2i+1 = Ilp;

the product of distinct odd primes p; such that pj | mn but p; [xy, and the solution x; /m *y; J/n as given in (9)

and {10) has property 4. Moreover, this solution obtained in (11) is the least solution with property 2 of (8). This

is due to the fact that a positive solution xj, \/m + yp </n, with # </, corresponds in (9) and (10) to an exponent

2h + 1 such that 2 + 7 and hence at least one of x5, or yj, are not divisible by some prime tivisor p; in (11) of mn..
We have proved the following
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Theorem 3.2. Let equation (8) have smallest solution x/m + y«/n. Then (1) 1f m (orn) is even and if x (ory)
is odd, then no solutions have property Q. In all other cases (8) has a solution with property Q. (2) If the smallest
solution has property g, then all positive solutions have property Q. (3) If the smallest solution does not have proper-
ty @, then theleast solution with property @, when it exists, is the solutionx;</m +y;</n given by (9)for which the
exponent 2/ + 7 is the product of the distinct odd primes dividing mn but not dividing xy.

Throughout the remainder of this discussion we will frequently be concerned with the Pell equation which we write
in the form

(12) R? —mnS? = 1,

and to which the same theory and definitions apply as to the Pell equation (1), since the product mn is square-free.
Before discussing all solutions with property @ of (8), we need the following two lemmas

Lemma 3.3. | a=uy/m + v/ is a solution with property Q of (8), and 8= r + s</(mn) is a solution of (12)
with property @ (as defined for that equation), then the product
v = af = (ur+nvsh/m + (vr + mush\/n

is a solution with property Q of (8).
Proof. (mu® — nv? )(r* — mns®) = (£1)(1) = m(ur +nvs)* — n(vr+ mus)* = £1.

So 7y isasolution of (8). Now by the properties @ for a and (3 respectively, if p is a prime and p | m, then p | (ur + nvs).
Similarly, if a prime g |n, then g|(vr + mus). So <y has property @ for equation (8).

Lemma 3.4. If

a = u\Jm +v/n and B = u'ym+vn
are solutions with property @ of equation (8), then the product
v = aB = (muu’ +nw’) + (uv’ +u'v)[lmn)
is a solution with property Q of (12).
Proof. (mu? — nv*)(mu™ — nv’?) = (£1)(£1) = (muu’+nw’)* — mnfuv’+uv)* = 1,

and 7yisasolution of (12). Now by property @ for aand gsolutions of (8), the prime divisors of m divide both v and
u’, and prime divisors of n divide both v and v*. So if a prime p \mn, then p|(uv’+u’v), and y has property @ for (12).

Theorem 3.5. Let x;</m + y;</n be the least solution with property @ of (8), when it exists. Then all posi-
tive solutions of (8) with property Q are given by the formula
(13) XM Hyun = (xim +yi )2
for non-negative integers A.

Proof.  The subscript # = 2ih +i +h, by Theorem 3.1. Since x;/m + y;/n is the least solution with property @
of (8), then by Lemmas 3.3 and 3.4 formula (13) gives a positive solution with property @ of (8) for every non-
negative integer A. _

Now suppose equation (8) has a positive solution wa/m + z+/n, with property @, which is not given by (13). Then
for some non-negative integer /7, we have
(14) (xiJm +yim )P < wym 2 < (xiJm +yim)2TE
The number _ _

xiNm —yiNn = £1/(xjJm +yi/n)
is positive or negative, respectively, according as equation (8) has the plus or minus sign. For either case, multiplying
inequalities (14) by £(x;/m — y,-\/ﬁlz”” whichever is positive, we get

(15) 1< a= (twym £z )xiJm—yiJn)?* T < B = (xi/m +yiJn )2
By Lemma 3.4, and since integers x; and y; are positive, the number 3= (x; \/m + y;</n)? is a positive solution with
property @ of (12). We will now show that § is the least solution with property @ of (12). Suppose on the contrary
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that the number rj+sj\/?mn) is the least solution with property Q@ of (12). By Theorem 2.1,
rj+si/lmn] = [r+sJ/mn] ]/,

where r + s3/(mn) is the fundamental solution of (12), for some positive integer . By Theorem 2.2., the integer; is

odd, and by [3, Theorem 6] the number .
r+sfmn) = (xJm +yn)*,
where x</m +y-/n is the smallest solution of (8). A substitution gives
ri+spJlmn] = [tem +yJa 217 = [lx/im +yJa)i]2 .
By Theorem 3.1, and sincej =2k + 7 is odd,
NNV N RSN Y e PN RN

the k™ pasitive solution of (8). Then
rj+si/Imn) = (xeJm +yJn ) = mxj +nyi + 2y /lmn)

Now since r; + s;</(mn) has property @ for (12) and since s; = 2x, y it follows that if a prime p [mn, thenp|2xxyk.
In fact if a prime p|mn, then p|xxyy . This is obvious if.p is an odd prime. Since equation (8) is assumed to have
asolution with property &, then by Thearem 3.2if 2|mn, then 2|xy |xxy for all k, and where integers x,y are those
of the smallest solution xs/m + y~/n of (8). So the paositive solution x</m + yx </n of (8) has property Q.

Then if

ritsiNimn) < B = (xjm+yin)?, or  (xmty~n) < (xiJm+yi/n)?,
it follows that _
Xk M+ YN < xiNm +yiN/n

the least solution with property G of (8), a contradiction. Thus we have shown the number 8= (x; \/m +y;j/n)? of
inequalities (15) to be the least solution with property Q of (12). L

Now consider the number a of inequalities (15). By Lemmas 3.3 and 3.4 the number a = v +v+/(mn) is a solution
with property Q of (12), for some pair of integers v and v. So that inequalities (15) become

(16) 1 < u+wflmn) < (xjJm+yiJn)*.
Then since u + v</fmn) is a solution of (12), the inequalities
0 < u—-v/lmnl = 1/[u+v/lmn)] < 1

imply that integers v and v are both positive, and v + v\/m is a positive solution of (12).

We have shown that the existence of a positive solution wx/m +zy/n with property @ of equation (8), which is not
given by formula (13), implies the existence of a positive solution v +v</(mn), with property @, of equation (12),
which by (16) is less than (x;/m + y;/n/)* the least solution with property Q@ of (12), a contradiction. This com-
pletes the proof that formula (13) gives all positive solutions with property @ of equation (8).

Since equation (8) solutions (x;\/m + y; \/77_}2h+’ with property @ correspond to consecutive powerful numbers
mx}; ny} we have thus accounted for all consecutive powerful number pairs of TYPE Il and hence, with Section 2
of this paper, for all pairs of consecutive powerful numbers.

EXAMPLE. The equation 7X* — 3Y? = 7 has smallest solution 23/7 + 3+/3. The solution

(2J7 +33)" = 2637,3627 +4,028,637\/3

and all its odd powers have property @. This solution corresponds to the following consecutive powerful number
pair of TYPE |1,
48,689,748,233,308 = 7(2,637362)* = (22)(7°)(13%)(43*)(337%)

48,689,748,233,307 = 3(4,028,637)> = (32)(139%)(9661%).
REFERENCES
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In the expansion

k-1)n
(1+x+x2+ et xk1)7 = Z {7 kx’, k=2 n=20,
=0
clearly
o], = [wZm] =1
01, tk—1n |, ~
and

k-1
n - n—1"7 n _ . . _
[":]k E[r—/Jk,-[j]k 0 i <0 > (k—1h.

For k = 2, these are the binomial coefficients and when dealing with these we shall use the usual notation:

n _[n )
[ r ]2 rl’
The problem of calculating sums of the following type for k = 2 was first treated by Cournot [2] and Ramus [5]
and Ramus’ method is outlined in [4]: .
N

S!n,/cq,r)=2[,quJk .

=0

V= l:(k—i)n—r:l ,
q

[i] denoting the greatest integer function. We wish here to investigate for certain fixed & and g the different values
of these sums as r ranges from 0 to g — 1 and, further, the differences between the sums.

1. THE METHOD OF RAMUS
Let w be a primitive qth root of unity then

where

W = cos ZEHsinz—ﬁ .
q q

Then

— 33
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\ :
(et =[5 )o( 5 Jore (5 ) o5 ) re ()

(1+w%1)" =( Z )+ ( # ) wq‘7+( ’; )wz(q‘”+ (’; )wal"‘”+---+ ( " ) wnfa-1)

Multiplying each successive row by w, w ™, w‘zr, I w'(q'”’, 0 <r<g -1, and adding the products we get

) -1 q-1
W - Q/2 ,, -9/2n, ~R+en/2
120 ()« () o] - B votrion - 5 wrmeinpen
Q= =,

q-1 o -2 g-1 :

_ e \ 7 2 _ e \n oln=2r)2m .. on—2r)27 |
= Z 2 cos )¢ = Z 2cos 3 cos =E=2 T #/sin = s
=0 ) =0 ' - . 7 q

Since the left side is real, the coefficient of / on the right must be zero, hence

q-1 )
[ n n n =1 em \"  e(n—2r)
Sth. 2,0, 1) ( r )+( rt+q )+( r+2q) e EQZ_; (Zcos q ) 6os _n_t}—_lr

Applying the same technique to the expansion (7 + x #x2 4 +)(/"7)'7 one finds that
- . q-1 teet)
] 2 k-1)2 )0 -
S, k,q,1) = l_ J [-r+q] +‘|_l’+2(7] q2(7+w F WAt W ) w
- =0
g-1[ /(2;7 n
.7_ 2 Z cos ——I——Q(k—2.+ 7}7‘( +1 cos Q___(n/(—l_I_—___Z_fiTL for k odd
(- = q q
) oe1[ k2 , n
z 23" cos k=2 + 1) | go5 Unk—n=2r)m for k even
q 4 q q
Q= L j=1

2. THECASES k=2, g=3,4
This case is treated in [4] and more recently in [6]. From the formulas above one easily shows that

n n n n T 2nw
(0)+(3)+(6> o = [2 +(2cos§)cos—3— (2cos§—)cos 7

2" #cos M0+ (=1)"cos 200 | = L[ 27 4 205 2T
3 3 31 3
(3 (2)+[3)o—- e s

(3)- (2 )+(3) -4 esem 5]

By examining the table for cos (n7)/3 one sees that the three differences
2 nm_ (=2 _Z_l' (n—2)n _ (n—4)1r:| g[ (n—4)n _ IM-I
3 [cos 3 cos 3 ] 31 cos 3 €0s 3 and 3 c0s 3 cos 3 _
are 0, 1, —1. This problem appeared in the American Mathematical Monthly in May, 1938 as Problem E 300 (solution
by Emma Lehmer) and again in February, 1956, as Problem E 1172, In slightly altered form it had appeared in the
Monthly in 1932 as Problem 3497 (solution by Morgan Ward). It appeared as Problem B-6 in the 1974 William

Lowell Putnam Contest.

(5
(%
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The case of four sums (g = 4} yields in each case only two different or three different sums, depending on whether
n is odd or even and the differences in the values are successive powers of 2, as the reader can verify. This appeared
in Mathematics Magazine in November-December, 1952 as Problem 177 {solution by E. P. Starke).

3. THECASE k=2 ¢g=5

This case was treated tersely in the solution to a problem posed by E. P. Starke in the March, 1939, issue of the
National Mathematical Magazine, where the differences were observed to be simple and predictable but the sums
themselves were not seen to be reducible to simple form. We shall, therefore, treat this very interesting case at length,
along with generalizations.

Consideration of the following two figures yields values of x and y:

(a) {b)
Figure 1

x o _1 A LN/ TN EN/
7 2 '

where the signs are chosen so that x,y are positive. We note a is the golden ratio and the a8 are those of the Binet
formulas for elements of Fibonacci and Lucas sequences, i.e., if

Fr=1 Fo=1 Fy=Foq+Fpa, n>2 and Ly=1 La2=3 Lp=Llpg+tlp2, n>32
then

n n
Fo=STh ad Ly - dtepn,

where F,, and L, are the n7" Fibonacci and Lucas numbers, respectively [3].
From Fig. 1a, one sees that

m_a 2n _a-1
cos 573 and cos 57
and from a+§ = 7 one concludes that
2r _ =B
cos 3

From these one can construct a table of values for cos (nm)/5. Then

4
=1 e \7 ofn = 2r)m
Sin,2,5,r) =< 'r' )+( rz5)+( r+”70)+-~-- 3 2‘; (Zcos —5—> cos ==
Q: \

i~

L [Zn +a" cos [0 —52r}71 +(=B)" cos 2n =201 4 (a1 eos 4_(n_—5__2r)1r +8" cosh &_—52)77]

= 1 274207 cos (2207 4 517 oos 2220 Jtorr=01234
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Let us examine, for example, S(70m, 2, 5, 0):

10m
(/]

()

10

where L 79m is a Lucas number. Forn = 70m + 1,

70m ) o= gfz’o'"ua’”muﬁ"’”’/ = gfz"”"utmm/ .

S(70m+7,2,5,0)=15/2 70m+1+2a70m+1 . (a/2)—2[3 10m+1(ﬁ/2)] = §[270m+7 +a10m+2+370m+2]

= 1 rp10m+1
512

+Liom+2] .

We can continue to reduce these sums to the form 7/5/2" + A], where A is a Lucas number or twice a Lucas num-
ber and can, in fact, form the following table for the values of A:

Table 1

n r=20 r=1 r=2 r=3 r=4
10m 2L 10m L1om-1 ~Liom+1 —L1om+1 L1om-1
0m + 1 L1om+2 Ly1om+2 ~Liom =2L 10m+1 ~L10m
10m +2 L10m+1 2L 10m+2 Liom+1 —L10m+3 —L1om+3
10m +3 —L1om+2 L1om+4 L1om+4 —Liom+2 —2L10m+3
10m +4 —Liom+5 L1om+3 2L 10m+4 Liom+3 —L1om+5
10m +5 =2L 10m+5 ~Liom+4 Liom+6 Liom+6 —L10m+4
10m + 6 —L10m+7 —L10m+7 L10m+5 2L10m+6 Liom+s
10m +7 —L10m+6 =2L10m+7 —Liom+6 Liom+8 Liom+s
10m +8 Liom+7 ~Li0m+9 —L10m+9 Liom+7 2L 10m+8
10m +9 Liom+10 —Liom+s 2L 10m+9 —Liom+8 Liom+10

Thus we have formulas for all sums of the form

and since

2 (e ).

=0

n

>

i=0

r=201234,

n)- 2

we note that the sum of the five elements on any row of the above table must be zero and, furthermore, it is clear
from the method of generating Pascal’s Triangle that each element of Table 1 must be the sum of the element above
it and to the left of that. The following is the table of high and low values of the elements in Table 1:

Table 2
H L
2L 10m —Liom+1
Liom+2 =2L 10m+1
2L 10m+2 —L 10m+3
Liom+4 =2L 10m+3
2L 10m+4 —L10m+5
Liom+6 —2L10m+5
2L 10m+6 =L 10m+7
L10m+8 =2L10m+7
2L 10m+8 —L10m+9
Liom+10 —2L 10m+9
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The differences between the highest value of the sums for given n and the lowest value is, therefore, always of the
form

(2Ln + Ln+7)/5.
That

(2L + Lpt1)/5 = Fpeq

is proved easily by induction. We note that for each » there are only three different values for the five sums and that
differences between the high and low values are Fibonacci numbers. Furthermore, the differences between the high
and middle values, the middle and low values are again Fibonacci numbers, In fact, the three Fibonacci numbers have
consecutive subscripts.

4. THECASE k=3, g=5

In this case we are dealing with five sums of trinomial coefficients, and, forr=0, 7, 2, 3, 4,

4
- _ 1 2n ,, " 2n—rkn
S(n,3,5,r}—[ ] |:r+5] I—r+10]3+-'-—32[2c0s—5—+7] cos S

=0
But since
2c082ﬂ+7—2(—%)+7=—ﬁ+7=a=2cosg5n+7
and
2cos4”+7=2(—9)+7-—a+1-5 2cos5” +1,
5 2
S(n,3,5,r) =

[3”+a cos 2 5r}7'r +B" cos 401 4(n — — — 1) 4 g0 o5 Bln—rim E(n T 4 ol cos 6’(ng__r}l“]

tn(N i~

37 424" cos 2 5”” +2B" cos = (5’)7T]

These sums reduce in each case to the form 7/5/3" + BJ, where B is found in Table 3:

Table 3

n r=20 r=1 r=2 r=3 r=4
10m 2L 10m L10m-1 —Liom+1 ~L1om+1 Liom-1
10m + 1 L10m 2L 10m+1 L10m ~Liom+2 —Liom+2
10m +2 —L10m+3 L1om+1 2L 10m+2 L1om+1 ~L10m+3
10m +3 —L1om+a =L 10m+4 L1om+2 2L 10m+3 Liom+2
10m + 4 L1om+3 —L10m+5 —L10m+5 L1om+3 2L 10m+4
10m+5 2L 10m+5 L70m+4 —L1om+6 ~Liom+6 L1om+a
10m + 6 Liom+s 2L 10m+6 L1om+5 ~L1om+7 —Liom+7
10m + 7 —L 70m+8 L10m+6 2L 10m+7 Liom+6 ~Liom+8
10m + 8 —L10m+9 —L10m+9 Liom+7 2L 10m+8 Lrom+7
10m + 9 Liom+s —L10m+10 =L 10m+10 L1om+8 2L 10m+9

Again, differences of the sums are Fibonacci numbers. If one examines cases for larger values of & and uses the fact
that, for
g =25 T+w+w?+w?+w* =0,

one sees that the sums will be expressible in the form )
7 n ]
= +
Llwzc],

where C is a Lucas number or twice a Lucas number, and the differences will be consecutive Fibonacci nunrbers, in
the cases where k = 2,3 (mod 5). In other cases, the sums take on a constant value or take on two values which differ
by 1.
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5 THECASEOF k=2 ¢g=6

Here
1 5[ e\ efn=2r)n _ 1T ,n 70 (n=2r)m 2(n = 2r)m
Stn,26,r) = 5 Q}__; 2 cos 5| e T T 5[2 +2(/3) cos —F +2 ¢08 G J
r=40, 1, -, 5 and the sums take the form 57,-[2" +0], where, for r = 0, for example, 0 can he found in Table 4.
Table 4
n D
12m 2.35™ + 2 (this breakd down for m = 0)
2Zm+1 | 354 g
122m+2 | 36m*1_q
Z2m+3 -2
12m +4 ~36m*2 _ 4
12m+5 | —35m*3 4
12m+6 | -2.35"*3 47
12m+7 | —36m* g
12m+8 | 3%
12m+9 -2
12m+10 | 3% _ g
12m+11 | 35™*6 4

The other sums, for r= 1,2,3,4,5 can be computed easily and, not surprisingly, the largest and smallest sums differ
by a power of 3 or twice a power of 3.

6. THECASEQF k=2 g=8
The Pell numbers P,, are defined by the following:
P1 =1, P2 =2 Pn = 2Pp-1+Pp2, n>2

and we shall define the Pell-Lucas sequence &/, as satisfying the same recursion relation but @, =2, @, = 6. The roots
of the auxiliary equation x* — 2x — 7 = 0 are, in this case,

y=1+2 and 8=1-2
and the Binet-type formulas in this case are, analogously,

n n
P,,:'I——_—g—— and Qn =y"+8".

Forg =8, the sums S(n,2,8,r) forr=10, 1, 2, .-, 7 can be written

7
n n
S(n,2,8,r) = (';'>+( r,-17-8) +( r+"76.) #o = JLZ( Zcoss%) cos g@_%ﬂ_w = é {2"+(2cosg)
=0 / -

3

Cone In =20 2n \" 2= 2r)m | 3x \" _ 3n—2rnw
cos 3 \ + (Zcos 2 cos % +{ 2cos 2 cos =

o Em " =20 61 \" . 60— 20 70 \"  7in— 200
+(2cos 7 ) cos 7 +( 2 tos 3 ) cos -3 + 2cos—8— cos T

- g l:zn + 2.2y 20 [n_—ng}Tr +2.90/20s 2Un = 2r)T +2.2M4_g /2 &E_Zmr:l
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One can reduce these sums to the form ;—[2” +E], where £ is found in Table 5. S(n,6,8,r) is similar.

Differences between the largest and smallest sums are, in this case, powers of 2 times Pell or Pell-Lucas numbers.

Further cases yield more differences which satisfy increasingly complicated linear recursion relations or combina
tions of such relations. Some of these, along with other techniques for handling such problems will appear in a later
paper. Some generalizations to multinomial coefficients appear in [1].
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PER NORGARD’S “CANON"’

HUGO NORDEN
Boston University, Boston, Massachusetts 02100

Two preliminary facts must be stated to establish the relevance of what follows. And that which follows concerns
a landmark in contemporary musical composition and publishing.

Per Ndrgard is one of Denmark’s leading composers. The Wilhelm Hansen Musik Forlag is one of Europe’s most
prestigious music publishers. These two forces have produced a musical composition that might well mark the be-
ginning of a new era of music writing.

The composition under consideration for the moment is Per Ndrgard’s CANON for organ. It is based entirely and
to the minutest detail on the Fibonacci numbers. These proportions are carried out with such precision that the com-
poser found it necessary to invent a new system of notation. Conventional notation could not express the fluid
rhythms generated by the Golden Mean. It is mainly this aspect of the compaosition that is being discussed herewith.

Actually CANON is not a canon in the usual sense of the term. Rather, it signifies music written according to
“law.” It is a series of truncated multiple augmentation canons in three-part texture. These fall into seven sections
comprising 62 “stages,” eight in each of the first six sections and fourteen in the last. Some of the “stages” are sub-
divided into smaller units in order to exploit further the proportions therein in varying time dimensions. The simple
1:1and 1: 2 time relationships occupy the two ends of the 25-minute composition with the higher ratios spiralling
inward palindromically to 8 : 13 : 8 to form the peak of rhythmic complexity at the middle. The complete rhyth-
mic scheme as it operates within the composition’s seven principal sections has been tabulated by the composer as
follows:

T:1:1:1:1: 1:1:1ink,
1:2/2:1/1: 2/2:1inl|,
2:3:5:3/3: 5:3:2inlll,
3:5:8:5:8:13:8:5inlV,
3:3/5:5/8: 8/5:5inV,
3:3:3:3/5: 5:5:5 inVI|, and
3:3:3:3:3: 3:3:3
(@:1:1:1:1:1: 1:1:1) inVIL

All of the above relationships indicate note values. For instance, 1 : 1 means notes of equal value, while 1: 2 could
mean a quarter-note followed by a half-note, and so on. As the augmentation ratios become higher, such as 5 : 8 and
8 : 13, it is at once obvious that the notation becomes cumbersome.

The notational problem encountered by Nérgard was to express accurately his augmentation proportions. In con-
ventional notation absolute accuracy is not possible since this is fundamentally a duple system in which a whole-
note is progressively divided into two half-notes, four quarter-notes, ejght eighth-notes, sixteen sixteenth-notes, and
so on. In terms of Fibonacci numbers it is possible. But, the composer required precision of 1 : 1.618 refinement.
And this is absolutely impossible in conventional notation. So in order to express his intentions he invented a new
kind of spatial notation wherein one cm. represents one second. In other words, the distance that comes between
notes visually on the printed page is as important as the notes themselves. This presents a totally new and probably
unwelcome problem for music engravers. In the case of the Wilhelm Hansen edition the new notation was not en-
graved, but merely a reproduction of the manuscript. The latter, however, is beautiful.

126
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The following quotations show in both notations stage 2 of Section I, in which the 1: 2, 2 : 1 proportions oper-
ate simultaneously in three dimensions.
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The ingeniously contrived excerpt quoted above consists of an Augmentation Canon in exact Contrary Motion in the
two lower parts, calculated in the theoretical key of E-flat major, while the uppermost part imitates the middle part
at the octave above in quadruple augmentation and the bass part in double augmentation and in exact contrary mo-
tion. That is to say, the three strands of the contrapuntal fabric comprises three canons: bass + alto, bass + soprano,
and alto + soprano. This is likewise true of the entire composition.

The complete proportion scheme of the three parts in relation to each other has been tabulated by the composer
as shown on the following page.

Per Ndrgé’rd, in composing his CANON, and the Wilhelm Hansen Musik Forlag, in publishing it, have done some-
thing of far greater significance in the development of music than either of them may be presently aware. First, con-
ventional notation has for a long time become increasingly inadequate to express accurately the musical thought of
the contemporary composer. Experimentation is going on continuously in many quarters, but without much public
notice. But, Ndrgard's CANON is the first instance of a major music publisher investing heavily in alarge serious work
scored in a completely new notation that is likely to baffle the traditionally trained performer. It is to be hoped that
still other publishers will become as venturesome. Would that the music industry in the United States would catch at
least partially the pioneering spirit currently extant in Copenhagen!
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Secondly, NnSrgé)rd has brought out in the open the fact that intelligent composers are deeply involved creatively
with mathematically coneeived structure, This is, of course, equally true of the whole gamut of music history. But,
for some unexpiainable reason, the academic world of music theory and music history has remained almost com-
pletely blind to it. The Fibonacei oriented underlay of a Palestrina mass, a Bach fugue or a Beethoven sonata-allegro
is there for all to see. It isto be hoped that Ndrgard’s almost indecent exposure of his quite sophisticated working
techniques will jolt the too often dreary “establishment” scholars and theorists into realizing that this sort of thing
is new more in degree than in kind, and that it might prove rewarding to undertake a rather different type of approach.

{ super 4 : 4 : 4 : 4
medium 2 : 2 : 2 : 2 : 2 : 2 :2: 2
sub Tetetetototototetotototote111

[=-]

12 : 20 : 12
4 6 10 6 36 10 6 4

2:3:5:3:3:5:3:2:2:3:5:3:3:5:3:2
v % : 26 : 42 : 26
6:10:16 : 10:16 : 26 : 16 = 10

3:5:8:5:8:13:8:5;5:8:13:8:5:8:5:3

vV 34 : 55 : 89 : 55
13 : 21 : 34 : 21 : 34 : 65 : 34 : 2
5:8:13:8:13:21:13:8:13:21:34:21:13:21:13:8

Vi 34 : 34 : 565 : 55
13 1321 2 534 ;34 521 P21
5:5:8:8:13:13:8:8:13:13:21:21:13:13:8:8

34 : 34 : 34 ;34
13 ;13 :13:13 (21 121 ;21 21
5:5:5:553:8:8:8513:13:13:1358:8:3:8

Vil 26 : 26 : 26 : 2
B 13 : 13:13: 13: 13:13 : 13

5:5:5:5:5:5:5:5;8:8:8:8:8:8:8:8
Fehchdodokde



BODE'S RULE AND FOLDED SEQUENCES

W. ELLIOTT GREIG
West Virginia University, Morgantown, West Virginia 26506

THE THEORY

| have discovered a new and most interesting variation on recursions during my work on Bode's rule. Fibonacci-
Lucas (F-L) sequences, by definition, satisfy Hx+7 = Hg + Hg7. A folded or crimped-in-upon-itself infinite sequence
is V-cyclic and breaks the F-L rule only once per cycle, ie.,

(1) Gk+1 = Gy + Gy-g except that { GN}[N = {GN}O forallj /.

As an example the / = 3 case is { G, } =..2,0,22,0,2 2,0, in which {Ga }'o = {6'3 } 5 Application of
(1) ¥ — 1 times gives

(2) GoFn-1+G1Fyn = Go ,
where { F} is Fibonacci's sequence. This determines the sequencesin Table 1. The partial sum of a F-L sequence

is (Fp+2 — Fm+1) for all m,n, where Fp, and £, are the first and last terms. Using this the sum over one cycle of a
folded F-L sequence gives Gy + Gy — G 7. Since (1) and (2) give Gx = G+« for all integers ,k we have

N-1
(3) Z Gy = G-1+Gp— Gy .
k=0
An easy way to generate folded F-L sequences follows. From (2), { GN}D must equal or be a multiple of Fpy to
avoid a fractional {GN} - Let { Gy }0 = Fg+ Fp then (2) gives { GN}}1 =F;— Fp-1. Thus every -{ GN} is
simply the sum of a positive and negative Fibonacci sequence. We have

(4) {ent, = Fer -0V TFn, o<k <N

and using the “skew symmetric”’ fact that

(5) Fi = (~1)*TF,

gives the simpler expression

(6) {onb, = Fert-1FFn, 0 <k <.

One can also define negative folded F-L sequences which are finite and of length / + 7. Their definition is

(7) {onb = et -1)"Few, 0 <k <.

An example is { G5 } =_5,4, -1, 3, 2, 5. Substitution of (4) or (6) into (3) permits an explicit sum formula:
N-1

(®) > {6} = v =N g
k=0

When mod (V,4) = 0 then
—G1/Gg = (FnN-1=1)/FN = Lin-1/Lpm .

129
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where V = 2m. The proof consists of crossmultiplying and inserting identity (7) of Hoggatt [1] which is true for all
integers m. This reduces to a special case of identity (21) in the list [1]. Thus mod (V,4) = 0 gives folded Lucas se-
quences. Similarly when mod (N,4) = 2 then =G /Gg= Fm-1/ Frpy giving folded Fibonacci sequences. The proof
is identical and ends with a special case of identity (23) in his list [1]. But the interesting cases are mod (V,4) = 7 or
3

Table 1
Folded Fibonacci-Lucas Sequences

N ONE CYCLE OF SEQUENCE SUM
2 10 1
4 3 -1 2 1 5
6 8 -4 4 0 4 4 16
8 21 12 9 -3 6 3 9 12 45
10 55 -33 22 -11 11 0 11 11 22 33 121
3 2 0 2 4
5 B -2 3 1 4 1
7 13 -7 6-1 5 4 9 29
9 34 -20 14 -6 8 210 12 22 76
1 89 -54 35 -19 16 -3 13 10 23 33 56 199
13 233 -143 90 -53 37 —16 21 5 26 31 57 88 145 521
15 - —142 .92 -50 42 -8 34 26 -- 1364
33 - —1974;2584,610;3194,3804,6998;10802---
o =SB0 /B +2; 1;/5+3:/5 +4 -

The reciprocal periods of planets and satellites are given by alternate members of an odd N-folded sequence. Their
properties are studied best by placing the origin in the middle hence I define a half-integer subscript/ given by
2k = 2i + M.

Theorem: {GN};,«; /{ GN},- approaches a limiting value for all / as V > - for mod (V,4) = 7 and another for
mod (N,4) = 3.

Proof: It is sufficient to prove this for one value of / whence it is true for all / by (1) aside from a constant fac-
tor which is of no interest. Write 4 = % for typographical ease. | also define even integer m = (¥ £ 7) /2 when mod
(N,4) =3 or 1, respectively. Then by (4) the middle pair for mod (V,4) = 1is

{6n},/ {60}y = Fone1 # Fom)/ Fent Fomet) = Fnet/ Frysz > 1/@ a5 N o
via Binet’s expression since 5N >0as/ >, wherea,f= (1 £ \/E)/Z, respectively. For mod (A4) = 3 we have:
{GN}h/{GN}_h = —Fms1/Fm-2 » —a® as N » =

for the same reason. These initial ratios o™ define {S } and {S*} and apply to any star (planet) with an in-
finite number of planets (satellites). When mod (V,4) = 1 let S_, = 2 + /6 and Sp, = 1 as in Table 1. Then (1) gives us

(3a) Si = Fi+nSp *+ Fi-nS-p

for all positive or negative half-integers /. Similarly when mod (V,4) =3 letS* =—1and Sf=2+ /5 then
(9b) SF = FisnSp+ FipSZp .

Substitution of (5) into (9a,b) proves the equivalence of S and S* but for signsi.e.,

(10) St = (-1 o 8% = (-1)"""s;

Use of Fj+p + 2Fi—p = Li+p in (9a,b) gives the elegant relations

(11) Si = Lizh*+/5Fi-n and SF= Lip+</5Fi

(11a) Si = So(\/EFNh ~Li-p) and  S7 = spllisp — \/—.‘):F,'._h)
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which via Binet's thearem become

(12a) Si = (d +(-1)""aT ) fog
(12b) Sf=(d +(~1)""a7 ) sy

which immediately give (10) again and where \/5p = (" +a™") = 2.068171 = 1/0.485868.
The Lucas complement of any two-point sequence is defined by the two apart sum operator T, namely

(13) W,y = Wypy + Wog)/d

where d is the difference in the roots of the recursion’s characteristic equation [2] and & = /5 for F-L sequences. It
is known that ZTET =/, the identity operator. We come now to the strongest property of { S } and 'f s }
Aside from signs they are their own complements! The fact that this property is not true of the Fibonacci and Lucas
sequences themselves indicates the greater importance of { S } and its approximation { Gy } After all { GN}
is a generalization of { F } and { L } Applying ETto the elegant (11) immediately gives

(14) =TS, = 57 = (~1)"s;

since _ _
Vi2tE, =1,  ad  2Ti, = JBF,.

Alternatively given (14) we can ask what the ratio Sp, /S.p, in (9) must be. One obtains
82, —4S_,Sn— 53 = 0.

2. THE OBSERVATIONS

Several facts of satellites (planets) need to be explained. They can be remembered using the vowel mnemonic,
aeiwweA. They are: (i) rule(s) for the major semi-axes of the orbits, (ii) their near zero eccentricities, (jii) sin /=0,
ie., their orbital inclinations are nearly 0 or 180° for outer satellites, (iv) their spins are almost all counterclockwise
(cew) with a preference for 23° < w < 29° where the sun and Jupiter are prominent exceptions, (v) their spins satis-
fy the narrow range 6 < P < 25 hr unless tidally disturbed, (vi) the sun's obliquity €= 7° hence the sun’s equator
does not lie in the invariable plane, (vii) the sun’s Angular momentum is very small (it rotates in ~ 30 day). | add
(viii) that each satellite system has one or two satellites much more massive than the others. The massive satellites
are called secondaries and all others are tertiaries. Thus Saturn's and Jupiter's secondaries are Titan+Hyperion and
Galilei's quadruplet, respectively. The non-zero tilt of most of their axes suggests that the torque that each exerts on
the other causing precession may be important. The ideal tilt is then 45°,

| envisage that the sun's family began with the sun and Jupiter (+ 7) Saturn from a contracting cloud and that all
planetary and satellite systems start as binary systems, Le., a primary + secondary (ies). All other bodies, tertiaries,
were subsequently formed by accretion. The sun’s nebula would have dispersed early due to radiation pressure and
infalling due to the Poynting-Robertson effect. Many planets and satellites should have formed from the nebula left
around Jupiter. Binaries enable the capture of tertiary bodies. A single primary cannot capture a tertiary body
whose orbit must ab /nitio be an ellipse or hyperbola. Outer satellites, those beyond the secondaries, act as if the
secondaries were part of the primary. When the maximum elongation angle of the secondaries is very small they act
as a point source. The number of major planets makes &/ = 33. Although // may be slightly different for the satellite

systems % Gy } > { S } rapidly and for A/ > 13 the discrepancies are < one percent as Table 1 shows.

In Table 2, major bodies are capitalized. Also pons, faye, neujmin and hungaria refer to groups of comets at 61 <
P<77yr,83<P<79yr,P=18yr, and a group of small planetoids 2.5 < P < 3.0 yr named after the first dis-
covered [3] 434-Hungaria (P = 991 da). There is a void in the planetoid distribution [4, p. 169] separating these
from the normal asteroids indicated by a typical member Astrea. See also [10, 11]. Note that satellites of Saturn
and Jupi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>