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INTRODUCTION 

The compositae is one of the largest families of the vascular plants, comprising about 1000 genera and about 
30,000 species. The members of this family are distributed in almost all parts of the world and are readily recognized 
by their unique disc-shaped inflorescence, composed of numerous pentamerous florets packed on an involucrate 
head. 

There is a good deal of variation in the numbers of ray-florets and disc-florets in many compositae. Moreover, 
beautiful phyllotactic configurations become visible due to the unique arrangement of florets/fruits in the head, 
Definite equiangular spirals appear on the head of a composite, which run either right-handed (counter-clockwise) 
or left-handed (clockwise). Another different set of spirals run opposite to the former spirals, and these intersect 
each other, such as: 2/3, 3/5, 5/8, 8/13,13/21, 21/34, ••% The numerators or the denominators of this series, when 
considered alone, form the successive stages of the famous Fibonacci Sequence. 

In this note are presented the results of a study on the variation in the number of ray-florets in four species of 
compsoitae and also the variation in the number of disc-florets in one species. 

PRESENTATION OF DATA 
Variation in the number of ray-florets: Data on the variation in the number of ray-florets were obtained on: 

1. Tridax procumbens 
2. Cosmos bipinnatus (two varieties) 
3. Coreopsis tinctoria 
4. Helianthus annuus. 

Tridax procumbens is an annual weed which usually grows on roadsides and wastelands. Its capitulum is small, the 
diameter of a head usually measuring 4.5 mm to 5.5 mm and raised on a long peduncle. Cosmos bipinnatus is a com-
mon flower which grows during winter and is available in white, pink and saffron colours. Coreopsis tinctoria and 
Helianthus annuus are also common in India. The head of Coreopsis is small, but that of Helianthus is quite large, 
with bright yellow ray-florets. 

Data on Tridax procumbens were obtained from a locality near Andhra University, Waltair, Andhra Pradesh, India, 
during July 1972. In all, 4000 heads were observed. 

Date* on 300 heads of each of the two varieties of Cosmos bipinnatus, the saffron coloured variety and the white 
and pink coloured variety, were gathered from two localities at Calcutta. In both the localities, nearly 100 p.c. of the 
heads possessed eight rays each. 

Data on 500 heads of Coreopsis tinctoria were collected from the gardens of Royal Agri-Horticultural Society, 
Calcutta. 

One thousand and two heads of Helianthus annuus were observed in three different localities in Calcutta. 
Variation in the number of disc-florets: Data on the variation in the number of disc-florets were collected on two 

varieties of Cosmos bipinnatus, the saffron coloured variety (Variety 1) and the white and pink coloured variety 
(Variety 2) from two localities in Calcutta. 

Thirty heads of Variety 1 and 61 heads of Variety 2 were gathered from the gardens of the Indian Statistical Insti-
tute, Calcutta, and the number of disc-florets on each of the heads were counted. 
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DISCUSSION 

From the data represented in Fig. 1, it is seen that though there is a great deal of variation in the numbers of ray-
florets per head within the same species, the mode of each species invariably turns out to be a Fibonacci number. 
For Tridax the mode is at the fifth Fibonacci number; that is, at 5; for both varieties of Cosmos as well as for 
Coreopsis the mode is at the sixth Fibonacci number; that is, at 8; and for Helianthus the mode is at the eighth Fib-
onacci number; that is, at 21. Among the four species of compositae observed, the variation in the number of ray-
florets is greatest for Helianthus and least for Cosmos. 

Such variation surely has a genetic component and some (Ludwig, 1897) believed that (both within and between 
plants) it is largely a result of climatic factors and nutrition. These multimodal distributions are not totally new, and 
were demonstrated by Ludwig in the ray-florets of Bellis perennis, disc-florets in Achilles millefolium and flowers in 
the umbels of Primula veris as early as in 1890 (Briggs and Walters, 1969). 

Such modal variation can be explained by the model suggested by Turing (1952). Turing considered a system of 
chemical substances, or "morphogens," reacting together and diffusing through a tissue. He showed that such a sys-
tem, though originally homogeneous, may later develop a pattern or a structure due to instability of the homo-
geneous equilibrium. In the simple case of an isolated ring of cells, one form of instability gives rise to a standing 
wave of concentration of the morphogens. For any given set of values of the constants for the rates of reaction and 
diffusion there will be a "chemical wave-length" of ft If the circumference of the ring, 5; is divided by ft the result 
will not usually be an integer. Yet the system necessarily forms an integral number of waves, typically the integer 
nearest to s/($. 

This provides a simple model of the process whereby an integral number of discrete structures can arise from a 
homogeneous tissue. All individuals of a population will have/7 structures if: 

n~(%) < s/P < n + (1/2). 

Writing Var. (s), Var. (j5), and Var. (s/jS) for the variances of s,ft and s/($ respectively, and Cov. (s,$) for the co-
variance between s and ft one can easily see that: 

Var. (s/P) = /T4/j32.Var. tsl + sP-Vm. (&)-2s&-Gw. (s,$)]. 

It is also interesting to know why the modes in the distribution of heads of ray-florets turn out to be Fibonacci num-
bers. An explanation which seems logical to us is the following: 

The general formula for obtaining the Fibonacci numbers is: 

Fn = F„-t + Fn-2, n = 3,4, 5, ». ; F1 * F2 = /, 
where Fn denotes the nth Fibonacci number. When n is large, we can write: 

Fn = (1/j5)'[(1+j5)/2]n, 

(where - means "approximately equal to"), and one can approximate it by the continuous curve: 

y = {1/y/5).[(1 + yj5)/2l*, 
= 0.4472x(1.6780)x. 

For all practical purposes, the Fibonacci numbers lie on this curve in its higher stages, and moreover it represents per-
fect exponential growth; presumably tending to reduce the size of the florets to the optimum necessary for quick 
production of an adequate number of single seeded fruits. So the appearance of the Fibonacci numbers as the nrrades 
for the distribution of the ray-florets on the heads can be taken as an indication for perfect growth, as is usually the 
case. Also it is well known that Fibonacci phyllotaxis give optimum illumination to the photo-isynthetic surfaces of 
plants (Davis, 1971). 

The appearance of the Fibonacci numbers can also be explained on the consideration that the individual flowers 
emerge at a uniform speed at fixed intervals of time along a logarithmic spiral, r = ea0i\N\th small a and with an ini-
tial angle at = 137.5° (Mathai and Davis, 1974). They also show that the above logarithmic spiral may be a natural 
outcome of the supply of genetic material in the form of pulses at constant intervals of time and obeying the law of 
fluid flow. 

A new theory which has been proposed by Leppik (1960) has emerged from studies of the behaviour of pollinat-
ing insects and their relationships with flowers. On the basis of numerous observations and behaviour tests, Leppik 
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has ascertained that most pollinating insects have the ability to distinguish floral characteristics-angular-form and 
radial-symmetry in particular. He has hypothesized that some numeral patterns, which include the Fibonacci num-
bers, are more symmetrically arranged than others. And hence, floral differentiation occurred and this has gradually 
led to the evolution of ecotypes with specific numeral patterns. 

As we have already seen, in Cosmos, there is no (negligible) variation in the number of ray-florets and this turns 
out to be 8. But there is a great variation in the number of disc-florets. This shows that the correlation between the 
number of ray-florets and the number of disc-florets is almost zero. Also another interesting fact noticed is that there 
is no correlation between the size of a flower (when the head is looked at as a single flower) and the number of disc-
florets present oh the flower-head. 
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COMBINATORIAL NUMBERS IN C 

S.TAUBER 
Portland State University, Portland, Oregon 97202 

1. iWTRODUCTiOM 
The use of linear algebra in combinatorial number theory was introduced in [4], The present paper extends the 

notations and studies the general properties of product functions, i.e., combinatorial number systems in 0n. Among 
the examples given are /7-dimensional Bernoulli and Euler numbers which are useful in the expansion in series of func-
tions in n variables. The methods and notations introduced here will be used in the study of functions and series in 
$n that will be the subject of future investigations. 

2. iOTATiOW 
Let / be the set of positive integers, J the set of non-negative integers, and given n e /, let I(n) c //and J(n) c J be 

such that if k e J(n), then k < n. 
In order to avoid confusion we shall write Id for the identity operator or the identity matrix. 
For n e /, k e i(n), X = [xu x2, —, xn] is an /7-dimensional vector andx^ are complex numbers, i.e.,x^e 0, so 

that X eg"7. 
Let 

P = lPl,P2,'"tPnL ® = hl,Q2* ~iQn], 
then W(n) c 0n be such that for P e W(n), m e l(n), pm e J, and for P ^ e W(n), P<Q, iff for all m e Kn), pm < 
Qm> 

We consider the following special vectors: 
(2.1) U e W(n), such that um = 1 for all m e Kn), 
(2.2) U(s)<aW(n), such that um = 8s

m, for all m <E Kn), 

where 5 ^ is the Kronecker delta. It follows that 
n 

U = H u<s)-
sr1 

(2.3) Z(s) e W(n), such that Z(s) = U - U(s), 

(2.4) Z(X,s) e «'", such that zm = xm(1 - ds
m), i.e., 

We next introduce for X e ^ n 

/? 

<2-5> l X l = X x™ > 

so that j ^ | = /?, \U(s)\=1, \Z(s)\ = n-1, and \Z(X,s)\= \X\-xs. 
We finally introduce the inner product in the usual way: If X,Y e 0n, then 

/? 

(2.6) *K = Y, x^Vm , 
m=1 

i-e., zm = 1 -bs
m . 

z5 = ft thus Z(U,s) = Z M . 
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where y m is the complex conjugate of ym. It follows that 
n % 

(2.7) \X\ = (X-X)V* = ( £ M 2 ) 

If, however, X, K e Hn c # " , where /f7 is the space of real n vectors, then 
n 

(2.8) X-Y = Y, x™v™> 

and 
n % 

(2.9) IWI-^-[E4] 
3. FUNCTIONS OVER 0n 

We consider functions <£; 0n -» I f . 
A monomial in >Y can be written: 

(3.D * * - n x -̂x*^2•••**'', 
whereX^0n

 f K^W(n). In particular, 

(3.2) Xu = II xm = xix2'Xn . 

A polynomial in X, i.e., a polynomial in n variables, can be written 
P 

(3.3) f(X,P) = Ys a(K>XK> 
K=0 

where the summation is extended over all K such that K < P, K,P e W(n) and a(K) are numbers. In the generally 
adopted polynomial sense the degree of f(X,P) is clearly/? = \P\. 

More generally if <pk(xkl k e///?j, is a semipnne nf functions, ip/<: 0-+ 0, then with 

(3.4) < !> " - fi <pk(xk) = <p(X), 
k=1 

is called a product function of the functions </?£. 
We study the following examples: 
(i) \t<Pk = mt<,M= [mi, m2,~°, mnJ

 e J^fW, then with Ar e / /W 
A7 

(3.5) $u = MI = n 0?*/ , 

(ii) UM(=0n but.M&W(n), then we replace factorials by gamma functions thus \iipk = r(m/( + 1), then 

(3.6) q>u = T(M + U) = n T{mk+1). 
k=1 

(Hi) For / l / , / ^ G W(n), M < N, and k e /fW, we have for 



1976] COMBINATORIAL LUMBERS IN 0n 103 

(3.7) <$>u = n ("k) = n nk!/mk!(nk-mk)! = N!/M!(N-M)!= (M) • 
A:=7 V^A: I k=1 V ; 

It should be noted that ( ^ J is product function for binomial coefficients and not a multinomial coefficient. 
The corresponding multinomial coefficient would be (cf. [3]) 

[[M.W-M]) -[Znk]l/MI(N-M)t. 

where 
[M, N-M] = [m1f ni2, - , mnfn1-m1fn2-m2, - , nn -mmJ @ W(2n) 

and clearly \M\ + \N-M\ = \N\ . 
(iv) For N,M e WW, and A,B e 0 " 

and by regrouping the terms we obtain 
A/ 

(3.8) <A+B)N - Y, [M)AMBN-M. 
M=0 

(v) For X e #n
f and with e(/ = /e, e, —, ©7,, we define 

(eU)x = 6
| X | = fl eXk = n r £ x^/mki] = £ *MM' -

k=1 k=1 L J 
(3.9) e X = 

"mk=0 *" M=0 
and 

e~X= E (-DMXM/M! , 
M=0 

whereM; M = f - / ; | M l . 
It will be noted that whenever a summation goes to infinity the upper limit is left out. 

4. UMBRAL CALCULUS 
Umbral calculus consists in substituting indices for exponents. In [2] the following notation is used for the one 

dimensional case. 

(4.1) eax = X *kak/k!-+[expax,ak = ak] = £ xkak/k! 
1^0 k=0 

n n 
(4-2) (a + b,n = E ( k ) h"~k-»[(* +b)n,ak = ak. b

k = bk] = £ ( J) «**„.* . 

We shall change this notation and extend it to the /7-dimensional case. The umbral expression corresponding to a 
vector exponent is clearly 

(4.3) AK = n ak™ - A(K) = YL am(km), 
m=1 m=/ 
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where 
We r 

thus 

(4.4) 

instead of indices we write variables. 
low introd 

and with N,K e 

(4.5) 

but 

(4.6) 

and in 

(4.7) 

particular 

uce the following 

(a + b)' 

W(n) 

(A + B)N = 

(A+B)N 

convention: ' 

n 
7-E m=0 

n 
- n i 

m=1 

N 

= E 
K=0 

(U + B)N = 

c; 
'aiml 

(N 

N 

y. 

Whenever an 

| akbn-k
 = 

) + h(m)]nm 

) AKB(N-

(") BIN-

element is to be written urn 

J:{n
m)e(kMn-k) 

m^O 

N 

• E J 
K=0 

N / 

« - E ; K=0 

N 
-K>= T ( 

A(K)B(N-

\ 

brally it will be underlined, 

-K). 

\)AN-KB(K), 

\ 
t)B(K). 

K=0 K=0 

Similarly for the generalized exponential we have 

(4.8) e^ = *Y*XKAM/Kl • 
K=0 

St should be noted that the lastumbral expression (4.8) is the exponential kind generating function for the numbers 
MKl 

It should be noted that 

eAXeBX = T ^ XSA(S)/S/1 [ " £ XTB(T)/Tl'\ = £ Y*XS+TA(S}B(T)/S!T!. 
S=0 *-T=0 "* S=0 T=0 

Let S +T=K; observing that (*\ = K!/S!(K-S)!, we have 

eAXeBX m J- J^ XKA(SW(K-S)/S!(K-S)f = £ (XK/K!) 12 (*) A(S)B(K- S) , 
K=0 S=0 K=0 S=0 

but according to (4.5) the last sum is equal to (A + B) , where the binomial coefficients forS > /Tare all equal to 
zero. It follows that 

(4.9) * * * * * * - ] T XK(A+g)K/Kt = e(*+B)X , 

i.e., the symbolic exponential follows the same law of addition as the ordinary exponential. 
5. GENERATING FUNCTIONS 

Let 
HM = fipfk, 11 ip(k,2), - , *(Kn)] 

and using the notation of Section 2, we consider the product function 

(5.1) <p(ki = [<5>(k)]u = n <p(k,m). 
m=1 
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Let y(t,m) be the generating function for the functions $(k,m), i.e., 

(5.2) G<p(k,mJ = 2 2 ^Km)tk = v(t,m), 
k=0 

where m e l(n). 
By taking the product 

(5.3) f l [ V *(Km)tkm 1 - 5 v(m,tm) = [V(T)]U = n{T), 
m=1 L k==Q J m=1 

where 7"= /Y;, t2, - , tn] <E 0, and 

V(T) = M1M v(2,t2), - , v(n,tn)J = 0n 

we thus obtain the generating function of the product function, 
If if(k,m) = $(k,xm), then v(m,tm) = v(xm, tm) and (5.3) becomes 

(5.4) n v(xm,tm) = [V(X,T)]U = Sl(XJ). 
m=1 

We can state this result as follows: 

PROPOSITION 1. The generating function of the product function of a set of functions is equal to the product 
of the generating functions of the set of functions. 

6. INVERSION OF SERIES 

Consider the series 

(6.1) A(N) = 2 2 fW,K)B(K) , 
K=0 

where the coefficients f(N,K) are known. We say that (6.1) has an inverse if there exists a set of coefficients g(N,K) 
such that 

(6.2) B(N) = 2 2 g(N,K)A(K), 
K=0 

both series being convergent 
PROPOSITION 2. If both series (6.1) and (6.2) are absolutely convergent they are inverses of each other if and 

only if fand g are quasi-orthogonal in the sense of [4] and [5 ] . 
PROOF: 

A(N) = 2 ] M,K)B(K) = 22 m'K) 12 9(KS)A(S) = £ L M,K)g(K,S)A(S). 
K=0 K=0 S=0 K=0 S=0 

Since the series are absolutely convergent, their order can be deranged and the order of summation can be changed, 
thus 

AfN) = 12 A(SI [ 52 f<N,K)ff{KS)~\ = Yl A<S®N> 
S=0 "' K=0 " S=0 

where 5jy is the Kronecker-Delta. It follows that 

22 f(NfK)g(K,S) = hs
N 

K=0 
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which expresses quasi-orthogonality in the sense of [4] and [5] . 
PROPOSITION 3. A(N)=(C_ + B)N and B(N)=(G + A)N will be inverses of each other if f £ * G ; r = S J \ 
PROOF. Since 

N N 

A(N) = (C_ + B)N = ]T ( J ) C(K)B(N-K) = J^ ( j ) B(K)C(N- K) , 

B(N) = (G + A)N = £ (^) G(K)A(N-K) = £ f*\ A(K)G(N - K) , 

where both series involved are finite, i.e., present no problem of convergence, we apply the results of Proposition 2 
N N 

J2 (%} C(N-K) 1*\G{K-S)= Y, W/K!(N-K)!][K!/S!(K-S)!]C(N-K)G(K-S) 

" ( ? ) E (N
NZS

K)C(N-K)G(K-S)^S
N. 

at 
/ A / - S \ / N-S \_(N-S\ 
\N-Kj \N-S-N + KI"~\ M J ' 

/ condition can thus be written 

( ? ) X) (NMS) G(M)C(N-S-M)=(N
S)(G + CJN-S = S°N_S, 

N 

Let K-S = M,\.Q.,N- K = N- S-M, so that 

The preceding quasi-orthogonality condition can thus be written 
N 

M=o 

or taking/!/ -S= T, 

(6.3) (G + CJr = 5J . 

It will be observed that (6.3) can be written for an arbitrary vectorX in either form 

(6.4) a*®*® = /, 
or 
(6.5) eX$ = 7/eX£ . 

7. OPERATORS IN 0n 

Let Dim) = d/dxm, m e l(n), and D = [D(D, 0(2), - , D(n)J. We consider the product operator 

n 

a 
and more generally K= [kf, k2, •••, kn] <E W(n) 

(7.1) 0 = Du = n Dim) 

n (7.2) DK = n [D(m>] 
m=1 

kn 

Using this notation the/7-dimensional Laplace operator can be written 

(7.3) A2 = £ 32/3^ = £ > 
A?7= 7 m= 1 

It is easily seen that for k <E l(n) 

n 
2U(m) 
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(7.4) Clk) = Z(X,k) + CkU(k), c(k) = [C(k)]u , 

c(k) is such that 0c(k) = 0. Considering now the vector 
(7.5) C= [c(1)fc(2),...,c(n)] 

it follows that 0C = Q, and, if r\(X) is a function such that r\(0) = 0, then r}(C) is the most general expression such 
that 
(7.6) 0n = 0, 
where ri = ri(C). 

Similarly for difference operators we define Elm) such that Elm)]f(xk) = f(xk + 1)8^ , and 
(7.7) E = [EH), E(2), »•, E(n)J 

(7.8) £ = Eu = fi Elm) . 
m=1 

We clearly haveElm)y(X) = <p[X+U{m)], and 
(7.9) BX = EUX = X+ U, fy(X) = vlX+U). 

The operator 5 = £ - Id is not a product operator of the form 

I I [Elm)-Id], 
m=1 

We have however 
(7.10) 3X = U, 8<p(X) = $(X+ U)-y(X) . 

The operator A (m) = Elm) - Id leads clearly to the 
(7.11) A = tLtmi),L(m2).".Mmn)l 

(7.12) A = Au - n A(mk). 

It follows that AX = U, but the general expression of AX is rather complicated. 
The operator M(m) = [Elm) + Id]/2 leads similarly to 

(7.13) M = [M(m7), Mlm2h - , M(mn)J 
and 

(7.14) M = Mu = n M(mk). 
k=1 

A more systematic study of the operators introduced here as well as the corresponding functional equations will 
be published in the future. We introduce here only what we need in view of the applications given. 

8. RECURRENCE RELATIONS AND FUNCTIONAL EQUATIONS 
Let m G l(n), and aim) be a one dimensional sequence of numbers satisfying a recurrence relation of the form 

p 

(8.1) £ MP'MM™) = °< P <^J • 
m=0 

letk <E I(n), mk e J, M = [m<i,m2> ~'*mnL and 
AIM) = [aim i), aim2), -, a(mnJ] 

and the associated product function be 

(8.2) a(M) = [A(M)]U = I I a(mk) . 
k=1 
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By writing the product for (8.1) we obtain 
p 

n [ V b(p,mk)a(mk) 1 = 0 . 
= 7 L JTZn J 

* - "mk=0 

Regrouping the terms we obtain 

PU 

(8.3) ] T b(p,M)a(M) = 0, 

where B(p,M) = [h(p,m 1)/ h(p,m2>, - , b(p,mn)], and 

b(p,MJ = [B(p,M)]u - n b(p,mk). 
k't 

Clearly pU = [p, p, —, p]. We can state this result as follows. 
PROPOSITION 4. If a sequence of numbers aim) satisfies a recurrence relation of the form (8.1) then the product 

function of the numbers aim), i.e., a(M) satisfies a recurrence relation of the form (8.3). 
If OJ (m) is an operator such that 

(8.4) oo(m)f(xk) = <p(xk)8*, , 

where 8m is the Kronecker delta. 
Let X e 0, 

FIX) = tflUih f(Zx2l »•, f(n,xn)] e tn. &(X) = l*(Uih <p(Zx2), - , *(n,xx)] e= 0n , 

£1 = [OJ(D, CJ(2), -.., oo(n)J and f(X) = [$(X)]U, y(X) = [$(X)]U, OJ = &1U, 
then 
(8.4) cof(X) = ip(X). 

9. EXAMPLES 

(i) Consider the numbers am = a(m) defined in [1] p. 231. They satisfy the relation 

n-1 

(9.1) £ a(m)(n-m)! = 0. 

m=0 

These numbers are the coefficients of the Bernoulli polynomials 

n 

(9.2) <pnM = v(n,x) = £ a(m)xn-m/(n-m)! . 

m=0 
The numbers 

(9.3) Bm = B(m) = m!a(m) 

are called Bernoulli numbers and satisfy the relation 

(9.4) (1 + B)n -B(n) = 0. 

By using the Bernoulli numbers the polynomials of (9.2) can be written 

(9.2a) v(n,x) = (x + B)n/n! . 

We introduceM = [mi, m2, - , mn] <E W(n) and AIM) = [a(m j), a(m2), —, a(mn)], 

(9.5) a(m) = [A(M)]U = n a(mk), 
k=1 
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as well as 

B(M) = [B(mt), B(m2), - , B(mn)J, 

(9.6) B(n,M) = [B(M)]U = U B(mk). 
k=1 

The numbers B(n,M) are called the /7-dimensionai Bernoulli numbers. According to Section 8 we clearly have 
P 

(9.7) Y* a(M)/(P-M)!-a(P) = 0 

M=0 
and 

(9.8) [U + B_(n)]p-B(n,P) = 0. 

(9.7) and (9.8) are the recurrence relations for the a(M) and the /7-dimensional Bernoulli numbers. 
Consider next 

P = [PhP2, '~,Pnl e W(n), <&(P) = [ip(pi,x1),y(p2,x2), ~,v(Pn,Xn)] 
and 

n P P 

(9.9) <p(P,X) = n $(pk,xk)= T a(K)XP~K/(P-K)! = V B(n,K)Xp-K/K!(P- K)l= [X + B(n)]P , 
1 K=0 K=0 

from where it is easily seen that (cf. (7.1)) 

(9.10) 0i(P,X) = <p(P-U.X). 

On the other hand, according to [1 ] , p. 231, 

A(khp(pk,xk) = x^/tpk- 1)!, 

so that by multiplication over k we obtain 

(9.11) &v(P.X) = XP~U/(P- U)l . 

According to Section 5 and [1 ] , we obtain the generating function of the /7-dimensional Bernoulli numbers as 
follows: 

(9.12) « (T ) = TU/(eT- 1) = ] T B(n,M)TM . 

(ii) Consider the numbers e(m) defined by the recurrence relation (cf. [1 ] , p. 289) 
n 

(9.13) B(n) + ^ e(k)/(n-k)f = 0. 

k=0 

The numbers e(m) are the coefficients of the Euler polynomials 
n 

(9.14) r\(n,x) = J2 e(k)xn~k/(n-k)!. 

k=0 

The numbers t(n) = 2ne(n)n! are called the tangent coefficients (cf. [1 ] , p. 298) and the numbers 
n 

(9.15) e(n) = (l + t)n = £ CnA tlk) 

k=0 

Euler numbers. According to [1 ] , the tangent coefficients satisfy the recurrence relation 
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(9.16) (2 + tf + tln) = 0. 

It is shown in [1] that (9.15) can be inverted to give t(n)= [e- 1]n. It follows that 

(9.17) [e+l]n + [e-1]n = 0, n > 0. 

As before we introduce M e W(n) and r\(M) = [e(m 1), e(rr)2l - , e(mn)], with 

ri(n,Mf = fo(M)]u = 5 e(mk). 
m=1 

The /7-dimensional tangent coefficients will be T(M) = Mm f), t(m2>, •••, t(mn)], so that 

t(n,M) = [T(M)]U = 5 t(mk). 
k—1 

Finally let e(M) = [e(m 1), e(m2), - , e(mn)], so that n 

e(n,M) = [e(M)]M = I I e(mk), 
k=1 

where the numbers e(n,M) are called the /7-dimensional Euler numbers. It is easily seen, like in the case of the Ber-
noulli numbers, that 

(9.18) [e(n)+1]p+[e(n>- 1]p = 0, P > 0, 

(9.19) t(n,P) + [2U + T(n)]p = 0, P > 0, 

(9.20) t(n,K) = K!2Ke(n,K), 

(9.21) e(n,P) = [U+T(n)]p , 

(9.22) t(n,M) = [e(n)-U]M . 

We introduce in the same way the /7-dimensional Euler polynomials: Let 

HIP) = fo(p i,Xf), V(P2, *2>, - , Vfon, Xn)J , 

where/3 e W(n). It follows that 
n P 

(9.23) n(P,K) = I I r\(pk,xk) = J^ e(n,K)Xp'K/(P - K)l , 
k~1 K=0 

which defines the/7-dimensional Euler polynomials. 
It can easily be checked that similarly to the one-dimensional case we have 

(9.24) 0v(P,X) = r\(P-U,X) 
and 
(9.25) Mr\(P,X) = Xp/P! . 

According to Section 8 we obtain the following generating function for the Euler numbers e(n,K) and the numbers 
e(n.K) 

(9.26) Ge(n,P) = 2/[eT + e~T] = ] T etn,K)TK/'K! 

(9.27) Ge(n,P) = 2/[eT + 1] = £ efn.KJT* . 
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CONSECUTIVE INTEGER PAIRS OF POWERFUL NUMBERS 
AND RELATED DIOPHANTINE EQUATIONS 

DAVID T. WALKER 
Memphis State University, Memphis, Tennessee 38152 

1. INTRODUCTION 

S. W. Golomb [1] defined a powerful number to be a positive integer r, such that p2 divides/* whenever the prime 
p divides r, and discussed consecutive integer pairs of powerful numbers which fall into one or the other of two types. 
The types are TYPE I: pairs of consecutive powerful numbers one of which is a perfect square, and TYPE IS: pairs of 
consecutive powerful numbers neither of which is a perfect square. He showed an infinity of cases of TYPE I by 
applying theory of the Pell equation. 

The first purpose of this paper is to elaborate on Golomb's findings for TYPE I, through theory of the Pell equa-
tion, to give all cases of that type. Then, built on that theory, the second purpose is to formulate all pairs of consecu-
tive powerful numbers of TYPE II, through certain solutions of another Diophantine equation. 

2. CONSECUTIVE POWERFUL NUMBER PAIRS OF TYPE I 

Consecutive powerful number pairs of TYPE I correspond to certain numbers satisfying the Pell equation 

(1) X2 -DY2 = ±1 , 

where D is a given positive integer not a perfect square. 
It is convenient to make the following definitions 

Definition. The number* +y\jD is a solution of (1) if x = X and y = /are integers satisfying (1). 

Definition. A positive solution of (1) is a solution x + y^jD of (D in which both integers* and y are positive. 

Although at times we will consider solutions in which x or y may be negative, our main concern is with positive 
solutions,. At all times our "integers" are assumed to be rational integers. 

Definition. The positive solution x + y^jD of (1) in which X and Y have their least values is the fundamental 
solution of (1). 

The fact that powers of the fundamental solution of (1) generate all positive solutions is well known [2] and is 
given here without proof in the following 

Theorem 2.1. Solutions of the Pell equation (1) may be formulated by the following cases. (1) If equation 
(1) with the minus sign is not solvable, l e t * +Y\JD be the fundamental solution of (1) with the plus sign. Then all 
positive solutions of the latter equation are given by 

(2) Xi-hyj^V = (x+ysfbf 

for positive integers i, and where xuy% =x,y. (2) Sf equation (Dwith the minus sign is solvable and has fundamental 
solution * + ysjD, then all its positive solutions are given by (2) for odd positive integers I In this case the funda-
mental sojution of (1) with the plus sign is (x + ysjD)2, and all its positive solutions are given by X2J+ y.2f\/D = 

[(x + yyjD)2] ' for positive integers i. 

AMS 1970 subject classifications. Primary 10B05, 10B 10; Secondary 12A25, 12A45. 
Key words and phrases: powerful number, consecutive powerful number pair, positive solution^ fundamental solu-
t ion, smallest solution, property Q, least solution wi th property Q. 
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For purposes of this paper it is convenient to write solutions in the form xj + y^D, where/ is the exponent of the 
power of the fundamental solution and not necessarily the ordinal number of the solution in sequence. Without loss 
of generality we may assume that D is square-free. 

In equation (1), for the two consecutive integersX2 and DY2, our desire that the latter be a powerful number mot-
ivates the following 

Definition. A solution u + VsjD of equation (1) has property Q if for/7 a prime, p\D implies p\v. 

Definition. The least solution with property Q is the positive solution*/ + V*JD with property Q of (1), in which 
integers u and ¥ have their least values. 

Now if equation (1) with the minus sign has a solution with property Q, then D must be odd. For if A'2 - D2 = 
- / i s solvable with D even, then no solution has property Q smce 4J(X2 + 1 = DY2 for any integer X. 

If equation (1) has the plus sign and if D is even, le t* + y\jD be any solution. Then since* is odd 

8\(x- 1)(x+1) = Dy2 , 
and 2 \ y since D is square-free. So here 2 \ D implies 2 | y. 

Now in the expaision of (2) we see that for any / 

(3) y, = ixi-1y+[i3y
i-3V3D + ~, 

where y | ylt and D is a factor of every term on the right except the first. If the fundamental solution x + y«jD of (1) 
has property Q, then it is clear from (3) that all positive solutions have property Q. Otherwise, if we take i=_Upj 
the product of distinct odd primespj such thatpj \ D hutptfy, then we see from (3) that the solution Xj + yj^JD has 
property Q. Moreover, this is the least solution with property Q since (x,D) - / and since for any h <i there is at 
least one of the primes pj such that/?y | D butp/1(/h in the solution Xh + yh\JD of (Dasgiven by (2). We have 
proved the following 

Theorem 2.2. For either choice of sign, let equation (1) have fundamental solution x +ys/D. Then 
(1). If (1) has the minus sign, and if D is even, no solutions have property Q. In all other cases (1) has a solution 

with property Q. 
(2). If the fundamental solution has property d, then all positive solutions have property Q. 
(3). If the fundamental sojution does not have property Q, then the least solution with property Q, when it ex-

ists, is the number (x + y\jD)', where the integer / is the product of the distinct odd primes dividing D but not 
dividing the integer y. 
Before considering all solutions of (1) with property Q, we need two lemmas. 

Lemma 2.3. Let a = x +y^jD and P= u + v^/D be any solutions with property Q of equation (1) with either 
choice of sign for each solution. Then _ 

(1). The product 7 = a/3 = (xu + yvD) + (xv + yu)\jD is a solution of (1) with the plus sign if a and j3 are solu-
tions of (1) with the same sign, or 7 is a solution of (1) with the minus sign for a and ̂ solutions of (1) with oppo-
site sign. 

(2). The product solution 7 has property Q. 

Proof. The first conclusion follows from 

(xu + yvD)2 - D(xv + yu)2 = (x2 - Dy2)(u2 - Dv2) = (±1)(±1) = ±1. 

Now by property Q for a and /3 if a prime p | D, then/71 / and/7 | v, sop \ (xv + yu) and 7 has property Q. 

Lemma 2.4. Let (1) with the minus sign be solvable with fundamental solution x + y>JD and haveXj + y/s/D 
the least sofutiori with property Q. Let x^ + yt^jD be the least solution with property Q. of (1) with the plus sign. 
Then xL +yL\fD = (x/ + y;s/D)2. 

Proof. By Theorem 2.1 the fundamental solution of (1) with the plus sign is 

(x + y^D)2 = (x2 +Dy2) + 2xyjD . 

By Theorem 2.2, D is odd, so (2x,D) = I Then the prime divisors of D not dividing 2xy are the same as those divid-
ing D and not y for the least solution of (1) with the minus sign which has property Q. So that by Theorem 2.1 and 
by conclusion 3 of Theorem 2.2, we have 
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XL+YLsJD = [(x+yjD)*]'1 = [(x+Vs/D)1']* = (xi + yiyJDP . 

Theorem 2.5. Let*/ + y, ^JD be the least solution with property Q, when it exists, of equation (1). Then the 
formula 

(4) Xih+VihJD = (xj + yls/D)h 

gives all positive solutions with property Q of equation (1) with the plus sign for positive integers h, and gives all 
such solutions of (1) with the minus sign for odd positive integers/?. 

Proof. For either choice of sign in equation (1), since integersx/andy/are positive, by repeated applications 
of Lemma 2,3, we see that (4) always gives solutions as described in the statement of this theorem. 

We now show that (4) gives all of the positive solutions with property Q of (1) for each choice of sign. Suppose 
that (1), for some choice of sign, has a positive solution u + VsjD, which has property Q. and which is not given by 
formula (4). Then for some positive integer/?, we have 

(5) (Xi + yiyjd)h < u + VsjD < (xi + yisjD)h+e . 

If equation (1) has the plus sign, then e= 1, or if equation (1) has the minus sign, thene= 2 with/? odd; and respect-
ively the number _ _ 

xi - yi y/D = ± 1/(XJ + Yi s/D) 

is positive or negative. For either case, multiplying inequalities (5) by ±(x; - y/yjO) , whichever is positive, gives 

7 < a= (±u±\/^/D)(xf-Yi^/D)h < 0 = (xi + Yiy/D)6• 
For both of these cases, by Lemma 2.3, the number a= w + z^jD is a solution with property Q of (1) with the plus 
sign, for some integer pair w,z. Substituting for a in the last inequalities, we get 

(6) / < w + ZsJ~D < P = (xf + Y/s/D)6, 

and the inequalities 

(7) 0 < w-Zs/D = 1/(whZyJB) < 1 

imply that both integers w and z are positive. So w + Zs/Dk a positive solution of (1) with the plus sign. But in (6) 
we have _ _ 

w + ZsjD < |8 = (xj+Yj^/D)6, 
where for e= 1 or for e = 2, by Lemma 2.4, the number 0 is the least solution with property Q of (1) with the plus 
sign, a contradiction. This completes the_proof that (4) gives all positive solutions with property Q of equation (1). 

Since equation (1) solutions (xj + y'ls/D)h with property Q correspond to consecutive powerful numbersx//, Dyf^ 
we have thus accounted for all consecutive powerful number pairs of TYPE I. 

EXAMPLES. (1) The fundamental solution 24335 + 3588V46 of X2 - 46Y2 = 1 has property Q, and hence ail 
positive solutions have property Q. The corresponding powerful numbers are 592, 192, 225^and 592, 192, 224 or 
(24335)2 and (25)(32)(132)(233). (2) The fundamental solution of X2 - 6Y2 = 1 is 5 + 2^6 . The solution 

(5 + 2V6)3 = 485+198V6" 
and all its powers have property Q. This solution leads to powerful numbers 235, 225 and 235, 224 or (485)2 and 
(23)(35)(112). (3) The fundamental solution of A* - 5Y2 =-1 is 2 + V5. The solution 

(2 + V5T)5 = 682 + 305V5 
and its odd powers have property Q.. This solution leads to the powerful numbers 465,124 and 465,125 or (682)2 

and (53)(612). 
3. CONSECUTIVE POWERFUL WUJvlBER PAIRS OF TYPE II 

Consecutive powerful number pairs of this type correspond to certain numbers satisfying the Diophantine equation 

(8) mX2 -nY2 = ±1, 

where m and n are given positive integers, and neither is a perfect square. 
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Our development of the theory of this equation proceeds along lines similar to that of the Pell equation (1). We 
begin by making the following definitions 

Definition. The numberx^Jm -f-Xy/n is a solution of (8) if x = Xandy = Kare integers satisfying (8). 
Definition. A positive solution of (8) is a solution Xsfm + yyfnoi (8) in which both integersx and y are positive. 
As before, although some solutions under consideration may have negative x ory, our main concern is with posi-

tive solutions. 
REMARK. If Xs/m +y^/n and^y/?? +y'>Jn are positive solutions of (8), then it is easily seen that the inequalities 

x < x\ y < y' and Xsfm + ysfn < x'-Jm +y'\fn 

are equivalent. So among all the positive solutions, there is one solution in which both x and y have their least values. 
Definition. The smallest solution of (8) is the positive solution x^Jm + y^Jn in which both integers X and Y 

have their least values. 
Analogous to Theorem 2.1 for solutions of the Pell equation is the theorem we now state without proof [3, Theo-

rem 9] for solutions of equation (8) 
Theorem 3.1. If equation (8) has smallest solution x<j7n + y\fi), then all positive solutions of (8) are given by 

(9) Xjs/m + yi y/n = (xy/m + ys/n)2i+1 

for non-negative integers/̂  and wherex0, yQ = x,y. 

Without loss of generality we may assume that integers/77 and n are square-free. Moreover, our desire that consecu-
tive integersmX2 and nY2 be a powerful number pair of TYPE II motivates the following 

Definition. A solution Usfm + Vyj7i a\ (8) has property Q if for/7 a prime, p\mn implies p\uv. 

Note that since (mu,nv) = 1, this definition is equivalent to saying the prime divisors of m divide*/, and those divid-
ing/7 divide v. 

Definition. The least solution with property Q of equation (8) is the positive solution Usfm + v^Jn with prop-
erty Q of (8), in which integers u and v have their least values. 

Now from (9) we getx-, and / / in the following expressions 

x, = m' x2i+1 + ...+ [ 2i+
3

 1) mn'-'xV'-2 + & + Ito'xy21, and 

Vi = (2i+1)mix2iy+ [^ * 1) mh 1nx2h2y3 + ••• + niyi V'w . ; o; t ot j . 1\ ;_1 o;_o o j 21+1 

Note that x,- and y,- have m and n respectively as a factor of every term except one, the term in each case having the 
odd positive integer-?/ + 1 as a factor. Note also that (mx,ny) = 1, X\XJ, and y\y,- . 

If one of m or n, say/77, is even, we see in (10) that x; is even for all i, if and only if x is even. Similarly, when/? is 
even, /,- is even if and only if / is even. So for the possible prime divisor 2 of m or/7, solutions with property Q of 
(8) depend solely on the parity of integersx or y respectively of the smallest solutionx-Jlh +y^Jn . 

Now from (10) if the smallest solution Xyjm + y^Jri of (8) has property Q, then all positive solutions have proper-
ty 0 since for/? a prime,/?|/77/7 impliesp\xy\x,yj . 

If the smallest solution x^/m + y^/n of (8) does not have property d, then for the odd integer 2i+ 1 in (9) and 
(10), take 
(11) 21+1 = 11/?/ 

the product of distinct odd primes pj such that/?/ | mn but pjj[xy, and the solution x,y/m ^ j / / N / ^ as given in (9) 
and (10) has property Q. Moreover, this solution obtained in (11) is the least solution with property Q of (8). This 
is due to the fact that a positive solution x^ yjm + y^ sfi, with h < i, corresponds in (9) and (10) to an exponent 
2h + /such that 2h + 1 and hence at least one of AT, or//, are not divisible by some prime divisor /?/ in (11) of/??/?.. 

We have proved the following 
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Theorem 3.2. Let equation (8) have smallest solutionx^fm + y%/n. Then (1) If m (or/7) is even and \ix (or / ) 
is odd, then no solutions have property Q. In all other cases (8) has a solution with property Q. (2) If the smallest 
solution has property Q, then all positive solutions have property Q. (3) If the smallest solution does not have proper-
ty Q, then the least solution with property Q, when it exists, is the solution*; V ^ * > 7 N / ^ 9«ven by (9) for which the 
exponent 2i + 1 is the product of the distinct odd primes dividing mn but not dividingxy. 

Throughout the remainder of this discussion we will frequently be concerned with the Pell equation which we write 
in the form 

(12) R2 -mnS2 = 7, 

and to which the same theory and definitions apply as to the Pell equation (1), since the product mn is square-free. 
Before discussing all solutions with property Q of (8), we need the following two lemmas 

Lemma 3.3. If a = u^Jm + \/\fn\% a solution with property Q of (8), and P = r + s>J(mn) is a solution of (12) 
with property Q (as defined for that equation), then the product 

y = aft = (ur + nvs)\fm + (vr + musjs/n 

is a solution with property Q of (8). 

Proof. (mu2 -nv2)(r2 -mns2) = (±1)(1) = m(ur-f-nvs)2 -n(i/r + mus)2 = ±1. 

So 7 is a solution of (8). Now by the properties Q for a and P respectively, if p is a prime and/7 \m, then/7 | (ur + nvsl 
Similarly, if a prime ^|A?, then q | (vr + mus). So 7 has property Q for equation (8). 

Lemma 3.4. If 
a = Usjm + v^/n and P = u'sjm + v'\/n 

are solutions with property Q of equation (8), then the product 

7 = aP = (muu' + nvv') + (uv' + u'v)sj(mn) 

is a solution with property Q of (12). 

Proof. (mu2 -nv2)(mu'2 -nv'2) = (±1)(±1) = (muu' + nvvl2 - mn(uv'+ u'v)2 = 7, 
and 7 is a solution of (12). Now by property Q for a and /^solutions of (8), the prime divisors of m divide both*/ and 
u\ and prime divisors of/7 divide both v and v'. So if a prime/? IJ/T?/?, \\\vx\p\(uv' +U'V), and 7 has property Q for (12). 

Theorem 3.5. Let x/y/m + y,y/n be the least solution with property Q of (8), when it exists. Then all posi-
tive solutions of (8) with property Q are given by the formula 

(13) xH^m+yH^n=(xjjm+yjjn)2h+1 

for non-negative integers/7. 

Proof The subscript// = 2ih +i + h, by Theorem 3.1. Since x/v^? + y,y/n~\$ the least solution with property Q 
of (8), then by Lemmas 3.3 and 3.4 formula (13) gives a positive solution with property Q of (8) for every non-
negative integer h. _ _ 

Now suppose equation (8) has a positive solution Wyjm +ZyJn, with property Q, which is not given by (13). Then 
for some non-negative integer/?, we have 

(14) (xjsjm+yj^n)2h+1 < Wsjm+Zyjn < (xfy/m + yi^n)2h+2 . 

The number _ 
Xjsfm -y/y/n = ±1/(xj^/m+yj>Jn) 

is positive or negative, respectively, according as equation (8) has the plus or minus sign. For either case, multiplying 
inequalities (14) by ±(x,\fm - y,-y/n) whichever is positive, we get 

(15) 7 < a= (±WyJm ± Zyfn Hxjyfm - yjyjn ) 2 h + 1 < p = (x/y/m+yis/n)2 

By Lemma 3.4, and since integers*/and//are positive, the numberP= (xjyfm + y,\]n)2 is a positive solution with 
property Q of (12). We will now show that P is the least solution with property Q of (12). Suppose on the contrary 
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that the number /y + Sjs/(mnT is the least solution with property Q of (12). By Theorem 2.1, 

rj + SjsJ(mn) = [r + s^J(mn) ]J, 

where r + S\/(mn) is the fundamental solution of (12), for some positive integer/ By Theorem 2.2., the integer/is 
odd, and by [3, Theorem 6] the number 

r + s^J(mn) = Ixsfm+y^fri)2 , 

wherexV^ + Y\Jn is the smallest solution of (8). A substitution gives 

rj + Sjyjlmn) = [(xjm + yjn)2]i = f(xy/m +yjn)J]2 . 
By Theorem 3.1, and since/ = 2k + 1 is odd, 

(xs/m+ys/F)J = (xs/m+ysfn)2k+1 = xksfm+yk>Jn , 

the kth positive solution of (8). Then 

rj + $jsj(mn) = (xks/m + yksfn)2 = mx\ + ny2
k+2xkyks/(mn) . 

Now since rj + Sj^/fmn) has property Q for (12) and since Sj = 2xkyk it follows that if a primep\mn, thenp\2xkyk. 
In fact if a prime p \mn, then p\xkyk, This is obvious if p is an odd prime. Since equation (8) is assumed to have 
a solution with property Q, then by Theorem 3.2 if J?|/T?/7, then 2 \xy\xkyk for all k, and where integers x,y are those 
of the smallest solutionXs/m +y^fn of (8). So the positive solutionxk\Jm +yk sj~n of (8) has property Q. 

Then if 
r/ + Sjyf(mn) < j3 = (xjyjm + y/s/n)2, or (xksjm + yk«Jn)2 < (x/s/m +y,>Jri)2, 

it follows that 
xk v ^ +Yk\fn < xi \/m + Yi y/n 

the least solution with property Q of (8), a contradiction. Thus we have shown the number f}= (x/^/m + y/\/n~)2 of 
inequalities (15) to be the least solution with property Q of (12). 

Now consider the number a of inequalities (15). By Lemmas 3.3 and 3.4 the number a= u + VsJ(mn) is a solution 
with property Q of (12), for some pair of integers u and v. So that inequalities (15) become 

(16) / < u + vjTmn) < (xlS/m-f-y/s/n)2 . 

Then since u + v^J(mn) is a solution of (12), the inequalities 

0 < u-vsj(mn) = 1/[u + VsJ(mn)] < 1 

imply that integers u and v are both positive, and u + v^J(mn) is a positive solution of (12). 
We have shown that the existence of a positive solution w-Jm + ZyJn\N\\h property Q of equation (8), which is not 

given by formula (13), implies the existence of a positive solution u + v-s/(mn), with property Q, of equation (12), 
which by (16) is less than (xj*Jm + y/s/n)2 the least solution with property Q of (12), a contradiction. This com-
pletes the proof that formula (13) gives all positive solutions with property Q of equation (8). 

Since equation (8) solutions (x/s/m + y,sjh~) with property Q correspond to consecutive powerful numbers 
mx2

H nyl/we have thus accounted for all consecutive powerful number pairs of TYPE II and hence, with Section 2 
of this paper, for all pairs of consecutive powerful numbers. __ 

EXAMPLE. The equation 7X2 - 3Y2 = 7 has smallest solution 2^/7 + 3-J3. The solution 
(2y/7 +3yj3)n = 2,637,362^7+ 4,028,637^3 

and all its odd powers have property Q. This solution corresponds to the following consecutive powerful number 
pair of TYPE II, 

48,689,748,233,308 = 7(2,637,362)2 = (22)(73)(732)(432)(3372) 
and 

48,689,748,233,307 = 3(4,028,637)2 = (3*)(1392)(96612). 

REFERENCES 
1. S. W. Golomb, "Powerful Numbers," American Math. Monthly, 11 (1970), pp. 848-852. 
2. Trygve Nagell, Introduction to Number Theory, John Wiley & Sons, Inc., New York, 1951, pp. 197-202. 
3. D. T. Walker, "On the Diophantine EquationmX2 - nY2 = ±1,"Amer. Math. Monthly, 74 (1967), pp. 504-513. 
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In the expansion 

(k-Dn 

(1+x+x2 + .~ + xk-1f = Y* [ / " ] * ' k>2, n> 0, 
1=0 

clearly 

[ o ] * " U-/*»]*=1 
and 

[a-g[;:;:ur].-« '<* '**-*• 
For Ar = 2, these are the binomial coefficients and when dealing with these we shall use the usual notation: 

•],-(' 
The problem of calculating sums of the following type for k = 2 was first treated by Cournot [2] and Ramus [5] 

and Ramus' method is outlined in [ 4 ] : 
N 

j=0 k 

where 

N= j- f t -y,_f-| f 
[ ] denoting the greatest integer function. We wish here to investigate for certain fixed k and q the different values 
of these sums as r ranges from 0 to q - 1 and, further, the d i f erences between the sums, 

1. THE METHOD OF RAIV1US 

Let co be a primitive qth root of unity then 
2TT - • 2TT 

to = cos — * / s i n — • 
Q Q 

Then 
t ^ ^ ' ( t t o ) * ( n i ) + ( n 2 ) * ( n 3 ) + -*(nn) 

117 
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(1 + u*-i}n . / £ ) + ( ", j a>*" f+( 5 ) c o 2 ^ + ( ^ ) c o ^ ' V . . * ( JJ ) a > " ^ " . 

Multiplying each successive row by co, co"7", a)"2'', •••, u>~'q~1 , Q<r<q- 1, and adding the products we get 

* [ (? ) * ( ,%) - (,*%) *•••'] - £ tf *««/V« - £ („** + <>•**fur**** 
$1=0 0=O 

q-1 

- ^ [ i c o s ^ l w 2 
gfr?-2r; Q - / 

fi=0 

/ y.\n-*n q-l . \ r 1 
( 2cos e ^ ) "co 2 . £ K c o s fijr \ n\ cos fife^r + / l i n £ ^ ^ r 

Since the left side is real, the coefficient of / on the right must be zero, hence 

4-1 
S(n. 

0=0 ^ ' 

Applying the same technique to the expansion (1+x +x2 + - +xk~1 ) n one finds that 

S(n,k,q,r) = I n 1 + f " 1 4 " 1 

o(n - 2rh 

,20 

f *-1 

0=0 

q-1 

kzl 2 

&=o 

2 y efk-Zj+thr +1 

M 
k/2 

q £-* 
o=o 
n 

o(nk - n - 2r)ir 
Q 

(k-Dzf^-rS. 

cos for k odd 

M 

o(k - 2j + Ifr 
Q 

cos o(nk - n - 2rh 
Q 

for k even 

2. THECASESA-2, q = 3,4 

This case is treated in [4] and more recently in [6]. From the formulas above one easily shows that 

I [ > + coi f+(-1)ncos 2jf~\= | [ > + .? cos nf] 

(s)*(O*(0+---j[^e»^] • 
By examining the table for cos (nir)/3 one sees that the three differences 

|[COS^._COS/>L^L], | [ c o $ fez^T_c o s^k.J a n d | | - c o s k^r 

are 0, 1, - 1 . This problem appeared in the American Mathematical Monthly in May, 1938 as Problem E 300 (solution 
by Emma Lehmer) and again in February, 1956, as Problem E 1172. In slightly altered form it had appeared in the 
Monthly in 1932 as Problem 3497 (solution by Morgan Ward). It appeared as Problem B-6 in the 1974 William 
Lowell Putnam Contest. 

cos 
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The case of four sums (q = 4) yields In each case only two different or three different sums, depending on whether 
n is odd or even and the differences in the values are successive powers of 2, as the reader can verify. This appeared 
in Mathematics Magazine in November-December, 1952 as Problem 177 (solution by E. P. Starke). 

3. THE CASE* = 2*7 = 5 

This case was treated tersely in the solution to a problem posed by E. P. Starke in the March, 1939, issue of the 
National Mathematical Magazine, where the differences were observed to be simple and predictable but the sums 
themselves were not seen to be reducible to simple form. We shall, therefore, treat this very interesting case at length, 
along with generalizations. 

Consideration of the following two figures yields values of x and y: 

x - 1 

(a) 
Figure 1 

7 / 
1 x- 1 ,-i^.. 

(b) 

= _ 7 -V5 
y 1-y 

where the signs are chosen so thatx , / are positive. We note a is the golden ratio and the a,j3are those of the Binet 
formulas for elements of Fibonacci and Lucas sequences, i.e., if 

Fj = 1, F2 = I Fn = Fn-j + Fn-2, n > 2, and Z. / = 7, L2 = 3, Ln = Ln^ + Ln.2, n > 2, 

then 

and L„ - oP+tf1 , 

where Fn and Ln are the /7f/7 Fibonacci and Lucas numbers, respectively [3] . 
From Fig. 1a, one sees that 

cos E = <k 
5 2 

and cos 2ir _ a- 1 

and from a + P = 1 one concludes that 

cos 5 2 
From these one can construct a table of values for cos (mi)/5. Then 

4 

= l [ > + a n c o i (n-/r'n + H ? r cos 2("-5
2r)7r+(-a)ncos *k^S +/3"cos fc£&] 

= l\ 2" +2a" cos (-~^ +2<-$)n cos Hn^-ldl ] for r = 0, 1,2, 3,4. 
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Let us examine, for example, S(10m, 2, 5, 0): 

to 

where L iom is a Lucas number. For/7 = 10m + 1, 

L[210m+2a10m+2$10m] = 1-[210m+2L10m] 
D O 

S<10m + 1,Z5,0)=1-J210m+1+2a10m+1 • (a/2) - 2p10m+1 ($/2)l = 1-[210m+1 +a10m+2+ $10m+2] 
D 3 

_ / r910m+1 , , / 

We can continue to reduce these sums to the form 1/5[2n +A], where A is a Lucas number or twice a Lucas num-
ber and can, in fact, form the following table for the values of A ' 

Table 1 

r = 0 1 r = 2 r= 4 

LlOm-1 
L 10m+2 
2i 10m+2 
L Wm+4 
L 10m+3 
-i-IOm+4 
-l-10m+7 
-2L Wm+7 
~Li0m+9 
-LiOm+8 

Thus we have formulas for all sums of the form 

10m 
Wm+1 
10m+2 
10m+3 
10m+4 
10m+5 
10m+6 
10m+ 7 
10m+8 
10m+9 

2LiOm 
L Wm+2 
LtOm+1 
~L10m+2 
~L10m+5 
-2L jom+5 

-l-IOm+7 
~L10m+6 
l~10m+7 
L-Wm+W 

-^Wm+1 
-Liom 
L-Wm+1 
L 10m+4 
2L iom+4 
L Wm+6 
L 10m+5 
-i-Wm+6 
-Ll0m+9 
-2L iom+9 

-Lwm+1 
-2LiQm+1 
-l~10m+3 
-Lwm+2 
L 10m+3 
L 10m+6 
2L Wm+6 
L JOm+8 
L Wm+7 
-LlOm+8 

Lwm-1 
-Lwm 
-t-10m+3 
-2L Wm+3 
-L-10m+5 
~Ll0m+4 
L Wm+5 
L Wm+8 
2L iOm+8 

Lwm+10 

2^[ r + 5t j ' r = 0,1, 2, 3, 4, 

t=0 
and since 

til)-*1-
i=0 

we note that the sum of the five elements on any row of the above table must be zero and, furthermore, it is clear 
from the method of generating Pascal's Triangle that each element of Table 1 must be the sum of the element above 
it and to the left of that. The following is the table of high and low values of the elements in Table 1: 

Table 2 
H 

2Lwm 
L Wm+2 
2L Wm+2 
L Wm+4 
2L Wm+4 

L Wm+6 
2L Wm+6 
L Wm+8 
2L Wm+8 

LWm+10 

L 
-L-Wm+1 

-2Lf0m+1 
-Lwm+3 
-2L Wm+3 
-l-Wm+5 
~2L Wm+5 

-t~Wm+7 
-2Liom+7 
-t~Wm+9 
~2L Wm+9 
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The differences between the highest value of the sums for given n and the lowest value is, therefore, always of the 
form 

(2Ln + Ln+1)/5. 
That 

(2Ln + Ln+i)/5 = Fn+1 

is proved easily by induction. We note that for each n there are only three different values for the five sums and that 
differences between the high and low values are Fibonacci numbers. Furthermore, the differences between the high 
and middle values, the middle and low values are again Fibonacci numbers. In fact, the three Fibonacci numbers have 
consecutive subscripts. 

4. THE CASE k = 3f q = 5 

In this case we are dealing with five sums of trinomial coefficients, and, for r= 0, 1, 2,3, 4, 

4 
5 M ^ - [ ; ] / [ ^ 5 ] / [ r / ? 0 ] / . . . - l E [ ^ o s f , ? ] " o o s 2(n - r)9.iT 

e=o 
But since 

and 

2 cos 2-?- + 
5 

in 
5 

1 = 2 (- | y 1 = -p+1 = a= 2 cos &J- + 1 

2co$Q+1 = 2 ( - ! ) + 1 = -a+1 = P= 2QO*QZ + 1 , 
b 

S(n,3,5,r) = \ [ > + a " cos ^ & + 0» cos ^ f ^ * 0 " cos fc^ + a " cos idLzliS."] 

= I [ 3" +2an cos llO^JhL +2$" C0S^^=jJjL J . 

These sums reduce in each case to the form 1/5[3n + B], where B is found in Table 3: 

n 

Torn 
10m + 1 
10m +2 
10m+3 
10m+4 
10m+5 
10m+ 5 
10m+ 7 
10m+ 8 
10m+ 9 

r = 0 

2Li0m 
LlOm 
~LWm+3 
-t-10m+4 
L Wm+3 
2L iOm+5 

L 10m+5 
-L-jOm+g 

~LWm+9 
L 10m+8 

Table 3 
r = 1 r = 2 

LtOm-1 -L10m+1 
2Lwm+1 ^-Wm 
Lwm+1 2L<iom+2 
-l~Wm+4 Liom+2 
-t-iOm+5 -LiOm+5 
L>Wm+4 -LiOm+6 
2L Wm+6 L 10m+5 
L Wm+6 2L iOm+7 

-LiOm+9 L-iom+7 
-LiOm+10 -Lwm+10 

r = 3 

-LlOm+1 
-LlQm+2 
l-10m+1 
2L iOm+3 
L Wm+3 
-LiOm+6 
~^Wm+7 
l~Wm+6 
2L Wm+8 

L Wm+8 

r = 4 

i-Wm-1 
-Lwm+2 
-l~Wm+3 
L Wm+2 
2L mm+4 
L Wm+4 
-Lwm+7 
-Lwm+8 
f-Wm+7 
2L Wm+9 

Again, differences of the sums are Fibonacci numbers. If one examines cases for larger values of k and uses the fact 
that, for 

q = 5, 1 + GO +o)2 +<J03 +GO4 = 0, 

one sees that the sums will be expressible in the form 

where C is a Lucas number or twice a Lucas number, and the differences will be consecutive Fibonacci numbers, In 
the cases where k = 2,3 (mod 5). In other cases, the sums take on a constant value or take on two values which differ 
by 1. 
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5. THE CASE QFk = 2, q = 6 

Here 

S(n,2,6,r) = I £ I 2 cos f ] "cos ^zMM = ^2"+2(s/3)n cos (-n-f^ + 2 cos 2<n ~2r)« ] 

r=Q, 1, - , 5, and the sums take the form ^[2n +D], where, for/"= 0, for example, D can be found in Table 4. 
o 

Table 4 
n 

12m 
12m+ 1 
12m+2 
12m+3 
12m+4 
12m +5 
12m+6 
12m+ 7 
12m+8 
12m+9 
12m + 10 
12m+ 11 

2.36m + 2 (this breakd down form = 0) 
36m+1 + 1 

j6m+1 __ ^ 

_36m+3+1 

O 06171+3 , O 

-36*1+4 + J 
n6m+4 _ . 

-2 
06m+5 _ * 
36m+6+1 

The other sums, for r - 1,2,3,4,5 can be computed easily and, not surprisingly, the largest and smallest sums differ 
by a power of 3 or twice a power of 3. 

6. THE CASE OF k = 2, q = 8 

The Pell numbers/^ are defined by the following: 

Pf = I P2 = 2, 2Pn-1+Pn-2, n > 2, 

and we shall define the Pell-Lucas sequence Qn as satisfying the same recursion relation but Qx =2, Q2 =6. The roots 
of the auxiliary equation x2 - 2x - 1 = 0 are, in this case, 

y = 1 + y/2 and 8 = 1 - ^2 

and the Binet-type formulas in this case are, analogously, 

Pn = ^L^-
n 7 -5 

and Q „ = T " + S ' 

For q = 8, the sums S(n,2,8,r) for r = 0, 1, 2, •••, 7 can be written 

S(n,2,8,r> - ( ; ) * ( / „ ) • ( , / „ ) . . . . - 1 £ ( ,cos f ) "cos ^ f h _- I | > , ( 

. c o s i ^ J L + / , c o $ | I j " c o s l ^ E + / 2 c o s ^ [ j " C Q S fcjW* 

A2cos f j \*§!!LzM!L J 2cos f ) "cos ^ L z ^ T , / , c o s Z* J " c o s TOLZM*' 

= I r ^ + ^ n / V ^ c o s (n~2rh +2-2
n/2cos 2(n ~ 2r,Z + 2-2n/4(-8)n/2 3<n-2rht-

o L o 8 8 

2 cos £ 
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One can reduce these sums to the form 1-[2n + E], where E is found in Table 5. S(n,6,8,r) is similar. 
o 

Differences between the largest and smallest sums are, in this case, powers of 2 times Pell or Pell-Lucas numbers. 
Further cases yield more differences which satisfy increasingly complicated linear recursion relations or combina-

tions of such relations. Some of these, along with other techniques for handling such problems will appear in a later 
paper. Some generalizations to multinomial coefficients appear in [1] . 
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PIER N0RGARD'S "CANON" 

HUGONORDEW 
Boston University, Boston, Massachusetts 02100 

Two preliminary facts must be stated to establish the relevance of what follows. And that which follows concerns 
a landmark in contemporary musical composition and publishing. 

Per Ntfrgard is one of Denmark's leading composers. The Wilhelm Hansen Musik Forlag is one of Europe's most 
prestigious music publishers. These two forces have produced a musical composition that might well mark the be-
ginning of a new era of music writing. 

The composition under consideration for the moment is Per Ntfrgard's CANON for organ, i t is based entirely and 
to the minutest detail on the Fibonacci numbers. These proportions are carried out with such precision that the com-
poser found it necessary to invent a new system of notation. Conventional notation could not express the fluid 
rhythms generated by the Golden Mean. It is mainly this aspect of the composition that is being discussed herewith. 

Actually CANON is not a canon in the usual sense of the term. Rather, it signifies music written according to 
"law." It is a series of truncated multiple augmentation canons in three-part texture. These fall into seven sections 
comprising 62 "stages," eight in each of the first six sections and fourteen in the last. Some of the "stages" are sub-
divided into smaller units in order to exploit further the proportions therein in varying time dimensions. The simple 
1 : 1 and 1 : 2 time relationships occupy the two ends of the 25-minute composition with the higher ratios spiralling 
inward palindromically to 8 : 13 : 8 to form the peak of rhythmic complexity at the middle. The complete rhyth-
mic scheme as it operates within the composition's seven principal sections has been tabulated by the composer as 
follows: 

1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 In r, 
1 : 2 / 2 : 1 / 1 : 2 / 2 : 1 in IS, 
2 : 3 : 5 : 3 / 3 : 5 : 3 : 2 in III, 
3 : 5 : 8 : 5 : 8 : 1 3 : 8 : 5 in IV, 
3 : 3 / 5 : 5 / 8 : 8 / 5 : 5 in V, 
3 : 3 : 3 : 3 / 5 : 5 : 5 : 5 in VI, and 
3 : 3 : 3 : 3 : 3 : 3 : 3 : 3 

( 3 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 ) in VII. 
All of the above relationships indicate note values. For instance, 1 : 1 means notes of equal value, while 1 : 2 could 
mean a quarter-note followed by a half-note, and so on. As the augmentation ratios become higher, such as 5 : 8 and 
8 : 13, it is at once obvious that the notation becomes cumbersome. 

The notational problem encountered by Nrfrgard was to express accurately his augmentation proportions. In con-
ventional notation absolute accuracy is not possible since this is fundamentally a duple system in which a whole-
note is progressively divided into two half-notes, /b^rquarter-notes, e/#/)f eighth-notes, sixteen sixteenth-notes, and 
so on. In terms of Fibonacci numbers it is possible. But, the composer required precision of 1 : 1.618 refinement. 
And this is absolutely impossible in conventional notation. So in order to express his intentions he invented a new 
kind of spatial notation wherein one cm. represents one second. In other words, the distance that comes between 
notes visually on the printed page is as important as the notes themselves. This presents a totally new and probably 
unwelcome problem for music engravers. In the case of the Wilhelm Hansen edition the new notation was not en-
graved, but merely a reproduction of the manuscript. The latter, however, is beautiful. 
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The following quotations show in both notations stage 2 of Section III, in which the 1 : 2f 2 : 1 proportions oper-
ate simultaneously in three dimensions. 

<D 

* 

ova* 

1 i 
' ~V 

l e g a t o J*ew*pr 

^ ^w ^ 
lcj |* -fewt^ra, 

5U^=4 I 
leg* «r^**ppe. 

The ingeniously contrived excerpt quoted above consists of an Augmentation Canon in exact Contrary Motion in the 
two lower parts, calculated in the theoretical key of E-flat major, while the uppermost part imitates the middle part 
at the octave above in quadruple augmentation and the bass part in double augmentation and in exact contrary mo-
tion. That is to say, the three strands of the contrapuntal fabric comprises three canons: bass + alto, bass + soprano, 
and alto + soprano. This is likewise true of the entire composition. 

The complete proportion scheme of the three parts in relation to each other has been tabulated by the composer 
as shown on the following page. 

Per Wrgard, in composing his CANON, and the Wilhelm Hansen Musik Foriag, in publishing it, have done some-
thing of far greater significance in the development of music than either of them may be presently aware. First, con-
ventional notation has for a long time become increasingly inadequate to express accurately the musical thought of 
the contemporary composer. Experimentation is going on continuously in many quarters, but without mush public 
notice. But, Ngirgard's CANON is the first instance of a major music publisher investing heavily in enlarge serious work 
scored in a completely new notation that is likely to baffle the traditionally trained performer. It is to be hoped that 
still other publishers will become as venturesome. Would that the music industry in the United States would catch at 
least partially the pioneering spirit currently extant in Copenhagen! 
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Secondly, Nrfrgard has brought out in the open the fact that intelligent composers are deeply involved creatively 
with mathematically coneetved structure* This is, of course, equally true of the whole gamut of music history. But, 
for some unexptalnable reason, the academic world of music theory and music history has remained almost com-
pletely blind to i t The Fibonacci oriented underlay of a Palestrina mass, a Bach fugue or a Beethoven sonata-allegro 
is there for all to see. It is to be hoped that Nrfrgard's almost indecent exposure of his quite sophisticated working 
techniques will jolt the too often dreary "establishment" scholars and theorists into realizing that this sort of thing 
is new more in degree than in kind, and that it might prove rewarding to undertake a rather different fc/pe of approach. 

I super 4 : 4 : 4 : 4 

medium 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 

sub 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 

4 : 8 

2 : 4 

1 : 2 : 2 : 1 

4 

1 : 2 

2 

2 : 1 

8 : 

2 : 4 

1 : 2 : 2 : 1 

4 : 2 

1 : 2 : 2 : 1 

8 : 12 

4 6 10 

2 : 3 : 5 : 3 

20 

3 : 5 : 3 : 2 

12 

10 6 4 

2 : 3 : 5 : 3 3 : 5 : 3 : 2 

IV 16 : 26 : 42 : 26 

6 : 10 : 16 : 10:16 : 26 : 16 :: 10 

3 : 5 : 8 : 5 : 8 : 1 3 : 8 : 5 : 5 : 8 : 1 3 : 8 : 5 : 8 : 5 : 3 

V 34 : 55 : 89 : 55 

13 : 21 : 34 : 21 : 34 : 55 : 34 : 21 

5 : 8 :13 : 8 : 13 : 21 : 13 : 8 : 13 : 21 : 34 : 21 : 13 : 21 : 13 : 8 

VI 34 : 34 

13 : 13 :21 : 21 

5:5:8:8:13:13:8:8 

55 
34 
13 : 

: 55 

: 34 :21 : 21 

13:21 : 21 : 13: 13:1 

34 : 34 

13 : 13 : 13 : 13 

5:5:5:5 8:8:8:8 

8:8 

: 34 : 34 

21 : 21 : 21 : 21 

13 : 13 : 13 : 13 :8:8:8:8 

VII 26 : 26 : 26 : 26 

13 : 13 : 13 : 13 : 13 : 13: 13 : 13 

5:5:5:5:5:5:5:5:8:8:8:8:8:8:8:8 



BODE'S RULE AND FOLDED SEQUENCES 

W. ELLIOTT GREiG 
West Virginia University, IVlorgantown, West Virginia 26506 

THE THEORY 

I have discovered a new and most interesting variation on recursions during my work on Bode's rule, Fibonacci-
Lucas (F-L) sequences, by definition, satisfy Hk+1 = Hk + Hk„7. A folded or crimped-in-upon-itself infinite sequence 
is /l/-cyclic and breaks the F-L ruie only once per cycle, I.e., 

(1) Gk+1 = Gk + Gk„t except that | % } / / v = \GN\0 for a l l / /V . 

As an example the N = 3 case is | G3 J- = - 2 , 0 , 2,2,0, 2, 2, 0 , - i n which \G9\O - f & 3 f 3- Application of 
(1) N - 1 times gives 

(2) GQFN^-J + GiFfq = Go , 

where 1 F I is Fibonacci's sequence. This determines the sequences in Table 1. The partial sum of a F-L sequence 

is (Fn+2 - Fm+i) for all m,n, where Fm and Fn are the first and last terms. Using this the sum over one cycle of a 
folded F-L sequence gives 6/v-7 + G/\/- G-j. Since (1) and (2) give Gk - GjN+k for all integers j,k we have 

AM 
(3) ]T Gk = G-7 + G0-Gi . 

k=0 

An easy way to generate folded F-L sequences follows. From (2), \ G/s/f must equal or bfi a multiple of F/sj to 

avoid a fractional - jG/vj^.Let | G/y \Q = Fo + F/y then (2) gives | G/y^ = F7 - Fn„]. Thus every i G/yl is 

simply the sum of a positive and negative Fibonacci sequence. We have 

(4) {GN\k = Fk + (-1)N+1Fk„N, 0 < k <N 

and using the "skew symmetric" fact that 

(5) F„k = (-1)k+1Fk 

gives the simpler expression 

(6) \GN\k = Fk + (-1)kFN-k, 0 < k < N. 

One can also define negative folded F-L sequences which are finite and of length N + 1. Their definition is 

(7) { G-N }k = Fk + (- 1)NFk„N, 0 <k < N. 

An example is j G.5 I = - 5 , 4, - 1 , 3, 2, 5. Substitution of (4) or (6) into (3) permits an explicit sum formula: 

AM 
(8) H{°N\k = LN + <-1? lN+1 

luIVfk ~ L A/ T I - ' 

k=0 

When mod (N,4) = 0then 
-G1 /G0 = (FN~-i - 1)/FN * Lm-t/Lr, 

129 
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where N = 2m. The proof consists of crossmuStiplying and inserting identity (7) of Hoggatt [1] which is true for all 
integers m. This reduces to a special case of identity (21) in the list [1] . Thus mod (N,4) = 0 gives folded Lucas se-
quences. Similarly when mod (N,4) = 2 then -Gj /GQ = Fm-i /Fm giving folded Fibonacci sequences. The proof 
is identical and ends with a special case of identity (23) in his list [1 ] , But the interesting cases are mod (N,4)= 1 or 
3. 

Table 1 
Folded Fibonacci-Lucas Sequences 

N ONE CYCLE OF SEQUENCE SUM 

2 
4 
6 
8 
10 55 

21 
-33 

8 
-12 
22 

3 
-4 
9 

-11 

1 
-1 
4 

-3 
11 

0 
2 
0 
6 
0 

1 
4 
3 
11 

4 
9 
11 

12 
22 33 

1 
5 
16 
45 
121 

3 
5 
7 
9 
11 
13 
15 
33 

233 
89 

-143 

2 0 2 4 
5 - 2 3 1 4 11 

13 - 7 6 - 1 5 4 9 29 
34 -20 14 - 6 8 2 10 12 22 76 

-54 35 -19 16 - 3 13 10 23 33 56 199 
90 -53 37 -16 21 5 26 31 57 88 145 521 

-142 92 - 5 0 42 - 8 34 26 ••• 1384 
- -1^74;2584;610;3194;3804;6998;10802-. 
. . -V5-V5+2; W5+3;V5+4-

The reciprocal periods of planets and satellites are given by alternate members of an odd N-folded sequence. Their 
properties are studied best by placing the origin in the middle hence I define a half-integer subscript/ given by 
2k = 2i + N. 

Theorem: i t f / v } / * / / j t f / v j - / approaches a limiting value for all / as N + <*> for mod (N,4)= I and another for 
mod(/V,4) = 3. 

Proof: It is sufficient to prove this for one value of/whence it is true for al l / by (1) aside from a constant fac-
tor which is of no interest Write h = Yi for typographical ease. I also define even integer m = (N ± 1) /2 when mod 
(N,4) = 3 or 1, respectively. Then by (4) the middle pair for mod (N,4) = 1 is 

{GN)h/{GN\„h = (Fm+1 + F^m)/(Fm + F.m.1) = Fm-f/Fm+2 • V& as N*~ 

via Binet's expression since QN * 0 as N + ~, where af j3= (1 ± V5 )/2< respectively. For mod W;4) = 3 we have: 

| % } / , / ! % } . / , = -Fm+i/Fm„2 * -a3 as N * ~ 
for the same reason. These initial ratios±aT3 define \S f and { S* f and apply to any star (planet) with an in-
finite number of planets (satellites). When mod (N,4)= 1 letS-/, = 2+VETandS^ = 1 as in Table 1. Then (1) gives us 

(9a) Si = Fi+hSh + FhhS-h 

for all positive or negative half-integers/ Similarly when mod (N,4) = 3 letS*/, = - 1 and $%= 2 + V 5 then 

(9b) sf = Fi+hsj; + Fhhs:h. 
Substitution of (5) into (9a,b) proves the equivalence of S and S* but for signs i.e., 

(10) Sf = (-1)hhS-i or S*f = (-1)i+hSj . 

Use of Fj+h + 2Fj^ = Lj+h in (9a,b) gives the elegant relations 

(11) Sj = Ll+h + s]~5Fhh an d Sf = Lhh + JBFi+h 

(11a) Sf = sQ(sJ~5Fi+h - Lhh) and Sf = s0(Lj+h - y/5Fhh) 
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which via Binet's theorem become 

(12a) Sj = faW-//*V'y*0 
(12b) Sf= ld + l - i r h a i ) ^ 

which immediately give (10) again and where «js^ = (ah + ah) = 2.058171 = 1/0.485868. 
The Lucas complement of any two-point sequence is defined by the two apart sum operator 2 *, namely 

(13) Y/Wn = (WnH + Wn-lt/d , 

where d is the difference in the roots of the recursion's characteristic equation [2] and d = V ^ f o r F-L sequences. It 
is known that 2 / 2 = /, the identity operator. We come now to the strongest property of I S | and I S* k 
Aside from signs they are their own complements! The fact that this property is not true of the Fibonacci and Lucas 
sequences themselves indicatesthe greater importance of | S I and its approximation I G/y 1. After all j G/\/l 

is a generalization of | F J- and j Z. | . Applying 2 t o the elegant (11) immediately gives 

(14) SfS/ = Sf = (-1)hhS-i 

since __ _ 
y/SJ^Fn = Ln and S1"^ = sj5Fn. 

Alternatively given (14) we can ask what the ratio S^/S^ in (9) must be. One obtains 
Slh-4S_hSh-S*h-0. 

2. THE OBSERVATIONS 
Several facts of satellites (planets) need to be explained. They can be remembered using the vowel mnemonic, 

aeicotoeA. They are: (i) rule(s) for the major semi-axes of the orbits, (ii) their near zero eccentricities, (iii) sin /<*0, 
i.e., their orbital inclinations are nearly 0 or 180° for outer satellites, (iv) their spins are almost all counterclockwise 
(ccw) with a preference for 23° < co< 29° where the sun and Jupiter are prominent exceptions, (v) their spins satis-
fy the narrow range 6 < P < 25 hr unless tidally disturbed, (vi) the sun's obliquity e~ 7° hence the sun's equator 
does not lie in the invariable plane, (vii) the sun's Angular momentum is very small (it rotates in « 30 day). I add 
(viii) that each satellite system has one or two satellites much more massive than the others. The massive satellites 
are called secondaries and all others are tertiaries. Thus Saturn's and Jupiter's secondaries are Titan+Hyperion and 
Galilei's quadruplet, respectively. The non-zero ti l t of most of their axes suggests that the torque that each exerts on 
the other causing precession may be important. The ideal t i l t is then 45°. 

I envisage that the sun's family began with the sun and Jupiter (+ ?) Saturn from a contracting cloud and that all 
planetary and satellite systems start as binary systems, i.e., a primary + secondary(ies). All other bodies, tertiaries, 
were subsequently formed by accretion. The sun's nebula would have dispersed early due to radiation pressure and 
infalling due to the Poynting-Robertson effect Many planets and satellites should have formed from the nebula left 
around Jupiter. Binaries enable the capture of tertiary bodies. A single primary cannot capture a tertiary body 
whose orbit must ab Initio be an ellipse or hyperbola. Outer satellites, those beyond the secondaries, act as if the 
secondaries were part of the primary. When the maximum elongation angle of the secondaries is very small they act 
as a point source. The number of major planets makes N = 33. Although N may be slightly different for the satellite 
systems | G^ J- * 1 S I rapidly and for N > 13 the discrepancies are < one percent as Table 1 shows. 

In Table 2, major bodies are capitalized. Also pons, faye, neujmin and hungaria refer to groups of comets at 61 < 
P < 11 yr, 6.3 < P < 7.9 yr, P = 18 yr, and a group of small planetoids 2.5 < P< 3.0 yr named after the first dis-
covered [3] 434LHungaria (P = 991 da). There is a void in the planetoid distribution [4, p. 169] separating these 
from the normal asteroids indicated by a typical member Astrea. See also [10, 11]. Mote that satellites of Saturn 
and Jupiter are included. The accuracy is very high. Discrepancies are never more than 2.5 percent except Jupiter 
(6%) and Galilei's quadruplet (10%) both of which are secondaries for which the rule is not intendecLThe observed 
Sapetus/Phoebe ratio (outer satellites of Saturn) is 6.938. The predicted ratio is very nearly (76 + 21%/5 )/(11 +3 N / ^ ) 
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= 75004/10802 » 6.9435. This is amazing agreement, an error of 0.0008 parts! The otrswved and predicted Saturn/ 
Uranus ratios are 2.852 and 10802/3804 = 2.840, an error of 0.004. The Direct/Retrograde satellites of Jupiter give 
2.835. Again excellent agreement. The agreement for Venus/Earth is similar. The data in [5] give JXI S/Retrograde = 
1.18 compared with a predicted 120. Planet X was predicted [6] from perturbations of Halley's comet, i find its 
period to be 521 to 524 yr. Bailey [7] proposed that the moon was once between Venus and Mercury. 

Table 2 
Reciprocal Periods 

Sun pons Nep X Uran Satur neujm Jup faye 
3524578,.- 4558, -1974, 2584, 610, 3194, 3804, 6998, 10802, 17800, 28602, 46402 

JXH * Retr Direct 
Phoebe 

Astrea Hungar Mars earth Venus luna? Mercury Sun 
075004, 121406, 196410, 317816, 514226, 832042, 1346268, 2178310, 3524578, (5702888) 
lapetus T+H Galilei Rhea dione Tethys Almathea 

The predicted effective solar rotation period is 32.8 day. If ail planetary (and satellite) systems have about the 
same number of bodies and if these are tied to the primary's rotation then stars rotating much faster than the sun 
will have their planets too close to permit life. This would be true of white stars (earlier than type F5) whose rota-
tion period is about 0.01 of the sun's. The theory predicts Mercury's period to be 86 £0.2 day. Hence some mech-
anism decreased its orbital energy and increased its orbital angular momentum. Furthermore the planetary rotations 
seem to be quantized near 1.14, 0.70, 0.43, 0.27 (asteroids), 0.17, 0.10 (solar grazing body) day. Although Folded 
sequences have made excellent predictions far more accurate than any previous work the sequences for Jupiter's a*rd 
Saturn's satellites can be modified to include the sun's motion around the planet. For Saturn's satellites the sequence: 
0.093, 0.636, 1.815, 4.809, 12.612 •• is equally good. Similarly a Jovian sequence: 0.23, 1.35, 3.82, 10.11 -•- is a 
good predictor. The units are (kiloday)^. The first term of each sequence is the motion of planet and sun around 
each other and is already determined by the sequence forjJie planets [8, 11]. 

Alternate F-L members approach the limit | = (3 + y/b )/2. The limiting distance ratio, d, is given by Kepler's III 
law: a3 =p2. Hence d- 1.899547627. Planets and satellites were accreted from grain orbits of maximum eccentricity 
e thus (1 -e)l(\ +e) = Md. This function occurs often in science and deserves its own name. I define 

oin(x,p) = (1 -x)/(1 +px) 

because it is its own inverse, i.e., if j / = oin(x,p) thenx = ofn(y,p), wherep is a parameter. This gives e = 0.3102. 

3. INNER SATELLITES 

Once again the god of time Chronos or Saturn holds the secret Table 3 gives the reciprocal periods, £1, 

Table 3 
Inner Saturnian Satellites 

Rhea Dione Tethys M+2E Janus Rotn? Cassin Q,gl 

221.4 365.4 529.7 838.0 1310.6 2091.5 3345.0 5379.4 
144.0 164.3 308.3 472.6 780.9 1253.5 2034.4 

123.7 20.3 144.0 164.3 308.3 472.6 780.9 1253.5 

in (kiloday)"1. The errors for Rhea, Dione and Tethys are each 0.01 percent! The first differences are the synodic 
frequencies and they are a F-L sequence! Cassini's division falls on one of these values. Slightly different sequences 
occur in [9 ] . I must define two new operators. They are a forward knight operator K^A+ A2 and a backward knight, 
operator N - V - V2 by analogy with the chess piece. More generally: 
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P 

(15) Kp =A* r £ ( P\ Ax 

For any F-L sequence KpFn = Fn for al! n and all integersp > 0. Carried leftwards Table 3 predicts the period of a 
grazing satellite to be 0.155 day. Table 3 is a shifted F-L sequence. It satisfies 
(16) Kton + £l* = an, 

where Q® = 0,0571 inverse days. But £2° is very nearly the mean reciprocal period of massiveTitan and Hyperion! 
For the terrestrial planets the situation is almost as good. Errors are negligible but for Mars. Here we have (16) with 

Table 4 
Terrestrial Planets in (KiSodayF1 

Hungar (Mars) Earth Venus luna? Mercury (Vulcan) 
1.026 1.851 2.738 4.450 7.049 11.360 18.270 29.49 

0.825 0.887 1.712 2.599 4.311 6.910 11.221 
0.062 0.825 0.887 1.712 2.599 4.311 

£2° = 0.000 139 invday. This compares well with the synodic frequency between Jupiter and Saturn, 0.000 137 9. 
Hence the frequencies of inner planets are increased by the frequency of Jupiter and Saturn conjunctions. Carried 
leftwards Table 4 suggests a solar rotation of 25 day. The Martian error can [9] be removed by writing £1° = 
-.000 256 at a small expense to Mercury. The inner Uranian triplet satisfies 

6a£2 = VX2 and A£2„ * ^ ° = £ln , 
where £2° = 0.0858 invday and 5 is the central difference operator. 

COLOPHON 
Johannes Kepler's Zeroth Law appeared in the year F17. It was the first cosmological attempt and states that 

planets orbit in spheres which in- and circum-scribe the F5 perfect solids arranged in the order 2, 8, - 8 , 0, - 2 erf 
faces minus vertices-all but one, members of J Ft. It is to his faith in pure mathematics that I am indebted. F14 
years later I found that the universal answer is (S2 ~ /)£2 * 0. Another genius, J. C. Maxwell, also began his life [11, 
p. 93] studying the perfect solids and provided us with an elegant derivation of kinetic theory to which I am also in-
debted. Pussy willow leaves [1] and Houseleek petals display the 5/13 arrangement. And in haiku let us say: 

Nature numbers hides 
In shells, petals, moons to find 
Is to hear with her 

and in tanka style: 
Each conjunction that I see 
So real that 
'junctions too must f i t the rule 
For are not 'junctions real 
And earth's motion their conjunctions. 
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DIOPHANTINE REPRESENTATION OF THE LUCAS NUMBERS 

JAMES P. JONES 
University of Calgary, Calgary, Alberta, Canada 

The Lucas numbers, 1, 3,4, 7, 11, 18, 29, - , are defined recursively by the equations 
Lf = 1, L>2 = 3 and Ln+2 = Ln+<i + Ln . 

We shall show that the Lucas numbers may be defined by a particularly simple Diophantine equation and thus ex-
hibit them as the positive numbers in the range of a very simple polynomial of the 9th degree. 

Our results are based upon the following identity 
(D L2

n+1-Ln+1Ln-L
2
n = 51-1 ) n + 1 . 

This identity (cf, [1] p. 2 No. 6) actually defines the Lucas numbers in the following sense. 
Theorem I .For any positive integer/, in order that y be a Lucas number, it is necessary and sufficient that 

there exist a positive number x such thait 
(2) y2 - yx -x2 = ±5. 

Proof. The Proof is virtually identical to that of the analogous result for Fibonacci numbers proved in [2 ] . 
Theorem 2.The set of all Lucas numbers is identical with the position values of the polynomial 

(3) y(1-((y2-yx-x2)2-25)2) 

as the variables* and y range over the positive integers. 
Proof. We have only to observe that the right factor of (3) cannot be positive unless equation (2) holds. Here we 

are using an idea of Putnam [3] . 
It will be seen that the polynomial (3) also gives certain negative values. This is unavoidable. It is easy to prove that 

a polynomial which takes only Lucas number values must be constant (cf. [2] Theorem 3). 
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PASCAL, CATALAN, AND GENERAL SEQUENCE 
C O N V O L U T I O N A R R A Y S I N A M A T R I X 

V. E. HOGGATT, JR., and MARJ0R8E B1CKWELL 
Sao Jose State University, San Jose, California 95192 

The Catalan numbers | 1, 1, 2, 5, 14, 42, — r are the first sequence in a sequence of sequences S,- which arise in 
the first coiumn of matrix inverses of matrices containing certain columns of Pascal's triangle, and which also can be 
obtained from certain diagonals of Pascal's triangle [1 ] , [2] . These sequences S,- are also the solutions for certain 
ballot problems, which counting process also yields their convolution arrays. The convolution triangles for the se-
quences 5/ contain determinants with special values and occur in matrix products yielding Pascal's triangle. Sur-
prisingly enough, we can also find determinant properties which hold for any convolution array. 

1. OW THE CATALAN WUIV1BERS AMD BALLOT PROBLEMS 

When the central elements of the even rows of Pascal's triangle are divided sequentially by 1, 2, 3, 4, —, to obtain 

1/1 = 1, 2/2 = 1, 6/3 = 2, 20/4 = 5, 70/5 = 14, 252/6 = 42, - , the Catalan sequence j Cn \ results, 

The Catalan sequence has the generating function [4] 

(1.2) CM=1^1^L = Y.C„x" 
2x 

n=0 

and appears in several ways in Pascal's triangle. 
The Catalan numbers also arise as the solution to a counting problem, being the number of paths possible to travel 

from a point to points lying along a rising diagonal, where one is allowed to travel from point to point within the 
array by making one move to the right horizontally 
the number of oossihle oaths to arrive there from the 

it to points lying along a rising diagonal, where one is allowed to travel tram point to point witnin tne 
iking one move to the right horizontally or one move vertically. Each point in the array is marked with 
of possible paths to arrive there from the beginning point P in Figure 1 below. 

f~—r 
132| 

®-
42 

14 Figure 

®-
2 5 

® f" 
1 1 2 1 3 

1 
©-
P 

L——k 1 L 
1 1 J 1 1 I 

14 

42 

28 

14 

132 

90 

48 

20 

135 
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Given two sequences j an I and j bn \, there is a sequence j cn I called the convolution of the two sequences, 

n 
cn * X ] br\-kak • 

k=0 

If the sequences have generating functions A(x), B(x), and C(x), respectively, then CM - A(x)B(x). The successive 
convolutions of the Catalan sequence with itself appear as successive columns in the convolution triangle 

1 
1 
2 
5 
14 
42 
132 

1 
2 
5 
14 
42 
132 

1 
3 
9 
28 
90 

1 
4 
14 
48 

1 
5 
20 

1 
6 

Notice that these same sequences appear on successive diagonals in Figure 1. 
Call the Catalan Sequence S%, the first of a sequence of sequences S,- which arise as the solutions to similar count-

ing problems where one changes the array of points. The counting problem related to S2 we illustrate in Figure 2 

below. The circled vertices yield S2 - { 1, 1, 3, 12, 55, 273, ••• i ; under this is the first convolution 

| 1, 2, 7, 30, 143, - \, which can be computed from the definition of convolution. Successive diagonals continue 

to give successive convolutions of S2 . 

® 
273 

& 
55 

12 

©-

©~ 

• & • 

12 

12 

30 

18 

55 

55 

25 

143 

88 

33 

273 

Figure 2 

Similarly for S3 = j 1,1,4,22, 140, —J-, the circled vertices are the sequence^, and under this appears the first 

convolution, and so on, as shown in Figure 3. 
The sequences S/ and their convolution triangles are the solution to such counting problems, where one counts the 

number of paths possible to arrive at each point in the array from a beginning point from which one is allowed to 
travel from point to point within the array by making one move to the right horizontally or one move vertically. For 
the sequence £/, the points in the grid are arranged so that the successive circled points are / to the right and orae 
above their predecessors. By the rule of formation as compared to the rule of formation of the convolution array for 
Sf as found in [1 ] , one sees that we have the same sequences S/ in both cases. Here, we go on to relate these convo-
lution arrays to Pascal's triangle as matrix products. 
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<j>1 [ 1 1 1 
^ 

<& 
<7 

9 15 

22 
22" 
22 

52 
30 

140 
» • 

91 
39 

140 
l 4 0 ~ 

49 
10 

Figure 3 

2. THE CATALAN CONVOLUTION TRIANGLE IN A SV1ATR1X 

Write a matrix A which contains the rows of Pascal's triangle from Fig. 1 written on and below the main diagonal 
with alternating signs. Write a matrix B containing the Catalan convolution triangle on and below its main diagonal, 
augmented by the first column of the identity matrix on the left. Then B is the matrix inverse of A, so that AB = lf 
the identity matrix, where, of course, all matrices have the same order. That is, for order 7, 

0" 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 
0 
0 

0 
1 
-1 
0 
0 
0 
0 

0 
0 
1 

-2 
1 
0 
0 

0 
0 
0 
1 

-3 
3 
-1 

0 
0 
0 
0 
1 

-4 
6 

0 
0 
0 
0 
0 
1 
-5 

1 
0 
0 
0 
0 
0 
0 

0 
1 
1 
2 
5 
14 
42 

0 
0 
1 
2 
5 
14 
42 

0 
0 
0 
1 
3 
9 
28 

0 
0 
0 
0 
1 
4 
14 

0 
0 
0 
0 
0 
1 
5 

0 
0 
0 
0 
0 
0 
1 

= / 

As proof, the columns of A are generated by [x(l 
The columns of AB, then, are the composition 

1(1 ~~ 

x)]J~7 while those of B are generated by [(l-sjl - 4x)/2lJ 

-x)x)/2] H *H ^1-4(1-

the column generators for the identity matrix. Notice that the row sums of the absolute values of the elements of A 
are the Fibonacci numbers, 1, 1, 2, 3, 5, 8, 13, —, while the row sums of B are the Catalan numbers. 

Mow, if the Catalan convolution triangle is written as a square array and used to form a matrix C, and if Pascal's tri-
angle is written as a square array to form matrix P, then P is the matrix product AG. First, we illustrate for 5 x 5 
matrices A, C, and/I* 

' 1 0 0 
O 1 Q 
0 - 1 1 
0 0 - 2 
0 0 1 

"1 
1 
2 
'5 

14 

1 
2 
5 

14 
42 

1 
3 
9 

28 
90 

1 
4 

14 
48 

165 

1" 
5 

20 
75 

275 

1 
1 
1 
1 
1 

1 
2 
3 
4 
5 

1 
3 
6 
10 
15 

1 
4 
10 
20 
35 

1" 
5 
15 
35 
70 

Again considering the column generators and finding their composition, we prove that AC = P, The column genera-
tors of C are 1(1 - \J1 - 4x)/2x]J~1, making the column generators of the matrix product AC to be 

[(l-^r^xTT^x))/2x(l-x)]H = [l/(l-x)]H, 

the generating functions of the columns of Pascal's triangle written in the form of/3. 
Fortunately, the finite n x n lower left matrices A have determinants whose values are determined by an n x n 

determinant within the infinite one. For infinite matrices A, B, and C, if we know that<4$ = C by generating func-
tions, then it must follow that AB = dor n x n matrices, A, B, and C, because each/? x n matrix is the same as the 
n x n block in the upper left in the respective infinite matrix. That is, adding rows and columns to the n x n matrices 
A and B does not alter the minor determinants we had, and similarly, the n x n matrix C agrees with the infinite ma-
trix C in its/? x n upper left corner. We write the Lemma, 
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Lemma. Let A be an infinite matrix such that all of its non-zero elements appear on and below its main diagonal, 
and let AnXn be the n x n matrix formed from the upper left corner of A Let B and C be infinite matrices m\h 
Bnxn and Cnxn then x n matrices formed from their respective upper left corners. If AB = C, thenAnxnBnXn

 = 

CnXn-
We will frequently consider n x n submatrices of infinite matrices in this paper, but we will not describe the de-

tails above in each instance. We can apply earlier results [2], [3] to state the following theorems for the Catalan con-
volution array, since each submatrix of C in Theorem 2.1 and 2.2 is multiplied by a submatrix of A which has a unit 
determinant to form the similarly placed submatrix within Pascal's triangle written in rectangular form. 

Theorem 2.1. The determinant of any n x n array taken with its first row along the row of ones in the Catalan 
convolution array written in rectangular form is one. 

Theorem 2.2. The determinant of any k x k array taken from the Catalan convolution array written in rectan-
gular form with its first row along the second row of the Catalan convolution array and its first fcolumn the fh 

column of the array has its value given by the binomial coefficient 

(k+'-'\ 
On the other hand, taking alternate columns of Pascal's triangle with alternating signs to form matrix Q and alter-

nate columns of the Catalan convolution triangle to form matrix R as indicated below produces a pair of matrix 
inverses, where the row sums of absolute values of the elements of Q are the alternate Fibonacci numbers 1, 2, 5, 13, 
34, —, F2k+h - / while the row sums of R are 

1, 2, 6, 20, 70 « ) • 
the central column of Pascal's triangle. For 6 x 6 matrices Q and R, 

QR = 

1 0 0 0 0 0 
- 1 1 0 0 0 0 

1 - 3 1 0 0 0 
-1 6 -5 1 0 0 

1 -10 15 -7 1 0 
- 1 15-35 23-9 1 

• 

1 0 
1 1 
2 3 
5 9 

14 28 
42 90 

••» 

0 
0 
1 
5 

20 
75 

0 0 0 
0 0 0 
0 0 0 
1 0 0 
7 1 0 

35 9 1 

= / 

;th Here, they column of Q is generated by 

QM 
1+x ,(1+xP 

M 

:th while they column of R is generated by 

R(x) LulLzM. 
2x 

(1-J1- 4x)2 

Ax 

M 

so that they column of QR is generated by 

*h1 

the generating function for the identity matrix. 
3. MATRICES FORMED FROM CONVOLUTION TRIANGLES OF THE SEQUENCES S/ 

Now we generalize, applying similar thinking to the sequences $/. We use the notation of [2], letting P,j be the in-
finite matrix formed by placing every/column (beginning with the zeroth column which contains ithe sequence 
S;1) of the convolution triangle for the sequence S; on and below its main diagonal,and zeroes elsewhere. Then P0j 

contains every/th column of the convolution array for£0 = \ 1, 1, 1, — \ , which is Pascal's triangle, let P'/j denote 
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the matrix formed as Pjj from every jth column of the convolution array for S, but beginning with the column which 
contains S/°, so that the nth column of the matrix contains the sequence s/n'1^. Let Pf: be formed as tp/j ex-
cept that the columns are written in a rectangular display, so that the first row is a row of ones. Then, referring to 
Section 2, 

C = P*. P = P\ A = P 

so that AC = P becomes 
(3.1) 

One also finds that 

(3.2) 

,-t 
1,1 B = P: it u 

p * = P' 

0,1 R 1,2 

1,1 1,1 

p ~ 1 p * 
1,1 1,1 

0,1 

P'* 
0,1 
1 We extend these results toS 2 , where we will illustrate f irst P~ 'P2 2 = / for 5 x 5 submatrices [see 2 ] : 

1 
1 
0 
0 
0 

0 
1 

-3 
3 
-1 

0 
0 
1 

-5 
10 

0 
0 
0 
1 

-7 

0" 
0 
0 
0 
1-

. 

- 1 
1 
3 
12 
-55 

0 
1 
3 
12 
55 

0 
0 
1 
5 
25 

0 
0 
0 
1 
7 

0 
0 
0 
0 
1 

= / 

Here, the row sums of P2f2 are 1, 2, 7, 30, 143, - , which we recognize as S2, the first convolution of $2- N o t i c e 

tha t /^ 2 contains the odd rows of Pascal's triangle as its columns. 
If we'form P'22 using the even rows of Pascal's triangle taken with alternate signs on and below the main diagonal, 

then 
(3.3) 

which we illustrate for 5 x 5 matrices: 

pr-1p* _ „* 

1 0 0 0 0 
0 1 0 0 0 
0 - 2 1 0 0 
0 1 - 4 1 0 
0 0 6 - 6 1 

1 
1 
3 

12 
55 

1 
2 
7 

30 

1 
3 

12 
55 

143 273 455 

1 
5 

25 
130 
700 

1 1 
1 2 
1 3 
1 4 
1 5 

1 
3 
6 
10 
15 

1 
4 
10 
20 
35 

1 
5 
15 
35 
70 

Of course, this means that the results of Theorems 2.1 and 2.2 also apply for the sequence S2. 
Now, if the matrix P* is formed from every other column of the S2 convolution array written in rectangular 

form, the matrix product p'22
p\2 becomes the matrix containing every other column of Pascal's triangle written in 

rectangular form. For example, for the 5 x 5 case, 

1 0 0 0 
0 1 0 0 
0 - 2 1 0 
0 1 - 4 1 
0 0 6-6 

0" 
0 
0 
0 
1 

. 

- 1 
1 
3 
12 
55 

1 
3 
12 
55 
273 

1 
5 
25 
130 
700 

1 
7 
42 
245 
1428 

r 
9 
63 
408 
2565_ 

= 

~1 1 
1 3 
1 6 
1 10 
1 15 

1 
5 
15 
35 
70 

1 
7 
28 
84 
210 

1 
9 
45 
165 
495 

This also means that, using earlier results [3] , if we take the determinant of any square submatrix of P22 with 
its first row taken along the first row of P2f2 the determinant value will be 2^k^k"1^2^ if the submatrix ta'ken has 
order k. 

If we shift the columns of P2 1 one to the left so that the new matrix begins with S2 in its first column, we find 
that, for 5 x 5 submatrices, 
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1 0 
-1 1 
0 -3 
0 3 

. 0 -1 

0 0 0" 
0 0 0 
1 0 0 

-5 1 0 
10 -7 1 

. 

" 1 
2 
7 
30 
143 

1 
3 
12 
55 
273 

1 
4 
18 
88 
455 

1 
5 
25 
130 
700 

1" 
8 
33 
182 
1020 

= 

"1 1 
1 2 
1 3 
1 4 
J 5 

1 
3 
0 
10 
15 

1 
4 
10 
20 
35 

1' 
5 
15 
35 
70 

We shall show that this is also true for the infinite matrices indicated, which means, in light of our previous results, 
that the results of Theorems 2.1 and 2.2 also apply to the rectangular convolution array for $2 if we truncate its 
zeroth column. 

Using every other column, we can make some interesting shifts. We already observed that P2;2^2,2 = ^0,2-^e ^ s o 

can write P~2 2P*2 2> w n ' c n provides every other column of Pascal's triangle, beginning with the column of integers. 
We also can write'two matrix products relating the matrix containing the odd columns of the convolution matrix for 
S2 to matrices containing every other column of Pascal's triangle, each of which is illustrated below for4x4 submatrices. 

1 
-1 
0 
0 

0 
1 

-3 
3 

0 
0 
1 

-5 

0 
0 
0 
1 

1 1 1 1 
2 4 6 8 
7 18 33 52 

30 88 182 320 

1 1 1 1 
1 3 5 7 
1 6 15 28 
1 10 35 84 

1 
0 
0 
0 

0 0 
1 0 

-2 1 
1 -4 

0 
0 
0 
1 

1 1 1 1 
2 4 6 8 
7 18 33 52 

30 88 182 320 

1 1 1 1 
2 4 6 8 
3 10 21 36 
4 20 86 120 

Since we can establish that the corresponding infinite matrices do have the product indicated, if we form a rectangu-
lar array from the convolution array for S2 using every other column, whether we take the odd columns only, or the 
even columns only, the determinant of any k x k submatrix of either array which has its first row taken along the 
first row of the array will have determinant value given by 2^k^k~1^2^. 

Next, form P^j containing every third column of the convolution triangle for S3. Then, from I2],P~33 contains 
every third row of Pascal's triangle taken with alternate signs on and below the main diagonal with zeroes elsewhere, 
as illustrated for 5 x 5 submatrices: 

1 0 
-1 1 
0 - 4 
0 6 
0 - 4 

0 
0 
1 

-7 
28 

0 
0 
0 
1 

--10 

0 
0 
0 
0 
1 

• 

1 
1 
4 

22 
140 

0 
1 
4 

22 
140 49 

0 0 
0 0 
0 0 
1 0 

10 1 

Notice that the row sums of P33 are 1, 2, 9, 52, 340, —, or Si, the first convolution of S3. As before, we find that 

(3.4) P7lPl 3,3 3,1 0.1 

which allows us to again extend Theorems 2.1 and 2.2. We also find 

(3.5) 

which is illustrated for 5 x 5 submatrices: 

r3,3r3,3 0,3 

" 1 0 0 0 0" 
0 1 0 0 0 
0 - 3 1 0 0 
0 3 - 6 1 iQ 
0 - 1 15 - 9 1 

" 1 1 1 1 1" 
1 4 7 10 13 
4 22 49 85 130 

22 140 357 700 1196 
140 969 2695 5740 10647 

1 1 1 1 " 
4 7 10 13 

10 28 55 91 
20 84 220 455 
35 210 715 1820 
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Using earlier results [3 ] , this means that, if we take any k x k submatrix of P33 which has its first row along the 
first row of P33, the value of its determinant is 3[k(k~1}/2], However, we have the same result if we take every third 
column to form the array, whetherwe take columns of the convolution array f o r 5 j of the form 3k, 3k + 1, or 3k + 2. 

Next, we summarize our results. First the matrix pjt always contains the ith rows of Pascal's triangle written on 
and below the main diagonal with alternating signs, beginning with the first row, and zeroes elsewhere. That is, the 
Ith column of PjJ contains the coefficients of (1 - x)1 * ,^~1\ j = 1, 2, - k on and below the main diagonal, 
and zeroes above the main diagonal. Inspecting Pjj gave the row sums as sf, the first convolution of Sj. Both of 
these results were proved in [2] . 

If we form the matrix P,
jJ

1 using the Ith rows of Pascal's triangle taken with alternate signs on and below the main 
diagonal, but beginning with the zeroth row, so that the/f /7 column contains the coefficients of (1 -x)'Q~1K / = 1, 
2, —, and form the matrix Pj 1 so that its elements are the convolution triangle for Sj written in rectangular form, 
then 

(3.6) r-'p* °P*, 
l,i l, i 0,1 

the matrix containing Pascal's triangle written in rectangular form. 
If we form an infinite matrix Pff from every ith column of the convolution array for the sequence Sj, then the ma-

trix product 
(3.7) P^PJ. = />•. 

the matrix formed from every Ith column of Pascal's triangle written in rectangular form. Further, (3.7) is only one 
of 2i similar matrix products which we could write. By adjusting the columns of PJJ to write modified matrices which 
are formed using the Ith rows of Pascal's triangle as before but taking the first column of the new matrix (PJ-J),. to 
contain the r row, so that its j t h column contains the (r + (j - 1)i) row of Pascal's triangle or the coefficients of 
(1 -x)r+l'J~ ,j= 1, 2, •••, on and below its main diagonal, we can write 

(3.8) (PJp P* = (Pi.) . , r = 0, 1, -.., / - 1, 
where (PQJ) contains every Ith column of Pascal's triangle written in rectangular form beginning with itsrth column. 
Notice that f= 0 in (3.8) gives (3.7), and that 

tf-fPiJ>0 Whi'e PU=lPlPl-
We can also write 
(3.9) pllK;K={pl;K-r r = o, i,-,i-7, 
where (P*.) contains the ith columns of the convolution array for 5/ beginning with the rth column. Also, 

(3.10) <PU><Pli>r = (POj'o ' Ph- ' = °> l - ' ' - 1 

(3.11) iP^)iPl)r=(Pl.)H. 

The matrix identities of this section are proved next. 
4. PROOF OF THE MATRIX IDENTITIES GIVEN IN SECTION 3 

The proof of (3.3) follows from [2] but is a little subtle since we do not have explicit formulas for the generating 
functions for Sj, i > 2. However, we do have the following from [2 ] : USj(x) isthe generating function for Sj and if 
SQ(X) = f(x), then 

ffxSjM) = Sf(x); HS2
2M) = S2M;>; f(xSk

k(x)) = Sk(x). 

And further, f(1/S.j(x)) = S^(x), etc. That means 

S2(x(1-x)2) = S2(x/[1/(1-x)2]) = SoM = ^ — 
which generates Pascal's triangle. 
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The genera! case given in (3.6) follows easily by replacing 2 with / in the above discussion. We prove (3.7) by taking 

Siixia-x)1]' = (j^)' 

the generating function for the matrix containing the ith columns of Pascal's triangle. Equation (3.8) merely starts 
the matrices with shifted first columns, but it is the constant difference of the columns, or the power of (1 -x) 
which is the ratio of two successive column generators, which is used in the relationships shown above. 

All of this raises a very interesting situation. Clearly, if we can obtain Pascal's triangle from the convolution array 
for Sj by matrix multiplication, then we can get the convolution array for any Sj< by multiplying the convolution 
array for Sj by a suitable matrix. The possibilities are endless. Also, one can factor Pascal's triangle matrix when 
written in its rectangular form into several factors. 

Mow, in all of these special matrix multiplications, when AB = C, the column arrangement of B determines the col-
umn configuration of C. Whatever appears in A for Ith columns of a convolution array forS, will appear as the rec-
tangular convolution array for Sj (every column) if the proper middle matrix is used. Starting with, say, S2(x) as the 
first column of A and then xS\(x)f x2S\(x)f — , one can use as the middle matrix the one with column generators 
(1 +x), (1 +x)2, (1+x)3, -,where S„Jx) = (1+x). UO\NS„1(XS3

2(X)) = SJX), etc. Thus the columns of the right-
most matrix are 5| , S\, S\, —, as is to be expected. 

5. DETERMINANT IDENTITIES IN CONVOLUTION ARRAYS 

Since, in Section 3, we found several ways that /*,*/ and P*j, when multiplied by matrices having unit determinants, 
yield matrices containing columns of Pascal's triangle, and since the n x n submatrices taken in the upper left cor-
ners have the same multiplication properties as the infinite matrices from which they are taken in these cases, we 
have several theorems we can write by applying earlier results concerning determinant values found within Pascal's 
triangle [3] . Specifically, (3.5) and (3.7) allow us to write the very general theorem, 

Theorem 5.1. Write the convolution array in rectangular form for any of the sequences Sj. Any n x n suib-
matrix of the array which has its first row taken along the row of ones of the array has a determinant with value one. 
Any/7 x /7submatrix of the array such that its first column lies in thejtfl column of the array and its first row is taken 
along the row of integers of the array has determinant value given by the binomial coefficient [n+f~1\ . Any 
n x n matrix formed such that its columns are every rth column of the convolution array beginning with thejth col-
umn, / = 0, I —, r- 1, has a determinant value of rn'n~1 . 

However, the surprising thing about Theorem 5.1 is that so much of it can be stated for the convolution array of 
any sequence whatever! Hoggatt and Beirgum [5] have found that MS is any sequence with first term 1, then the 
rows of its convolution array written in rectangular form are arithmetic progressions of order 0, 1, 2, 3, -wi th con-
stants 1, s2, s\, s\, •••, where s2 is the second term of sequence S. Applying Eves' Theorem [3] , 

Theorem 5.2. Let S be a sequence with first term one. If any n x n array is taken from successive rows and 
columns of the rectangular convolution array for S such that the first row includes the row of ones, then the deter-
minant has value one if the second term of the sequence is one and values^ ' n~1' '2 if the second term of£sss2. 

Theorem 5.3. Let S be a sequence with first and second term both one. If any n x n array is formed from suc-
cessive rows and columns of the rectangular convolution array for S such that the first row includes the row of in-
tegers and the first column includes SJ~ , j = 1, 2, •••, then the determinant of the array is given by the binomi-
al coefficient I n +^ ~ 1 \ . 

Conjecture. LetS be a sequence with first term one and second terms2. If any/? x n array is formed using 
the successive rows and columns of the rectangular convolution array forS such that the first row includes the row 
1u2, 2u2, 3u2, 4u2, - , a n d the first column includes^ , / = 1, 2, —,then the determinant of the array is given by 

$n(n-1)/2 f n + j - l \ . 

For further interesting relationships, see Hoggatt and Bruckman [1 ] . 
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LETTER TO THE EDITOR 
n C J . April 21, 1975 
Dear Editor: 
Following are some remarks on some formulas of Trumper [ 5 ] . 

Trumper has proved seven formulas of which the following is entirely characteristic 

(1) FnFm - FxFn+m„x = (-1) Fx„mFn„x . 

He actually gives 13 formulas, but the duplicity arises from the trivial replacement of A- by -x in all but the seventh 
formula. 

St is of interest to note that the formulas are not really new in the sense that they can all be gotten from the single 
formula 
(2) Fn+a Fn+b - Fn Fn+a+b = (- 1)nFn Fb 

by use of the negative transformation 

(3) F-n = (-1)nHFn. 

For example, in (1) replacen by/7 +x and m bym +x, and we have 

Fx+n^x+m- FxFx+n+m = (~U F~mFn
 = ("~D FmFn, 

the last step following by (3). But the formula is then simply a restatement of (2) with n replaced byx, a by n, and£ 
by m. Similarly, for his formula (4), which we may rewrite as 

Fn+x Fm ~ Fn Fm+x = (~ H Fn~m Fx , 

we have only to set* = 3, m =n +b and use (3) again to get (2), and all steps are reversible. The reader may similarly 
derive the other formulas. 

For reference to the history of (2), see [1 , p. 404], [2 ] , [3] , Formula (2) was posed as a problem [6] . Tagiuri is 
the oldest reference [4] of which I know. Formula (2) is the unifying theme behind all the formulas in [5 ] . 

[Continued on page 146.] 
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1. INTRODUCTION 
In [1] Holden discusses the system of outwinding squares met in the geometric proof of 

F\+Fl + ~+F* = FnFn+1 . 

In fact, it is shown there that the centers of the squares Sie on two orthogonal lines with slopes -1 /3 and 3, 
respectively. This was the original problem. Further, if one lets £// = /, U2 = P, and un+2 = Un+l + Un, one obtains 
the generalized Fibonacci sequence. Here the tiling is not made up of squares but contains one 1 by Ct? — 1) rectangle 
but the whirling squares still have their centers on two orthogonal straight Sines. 

It is the purpose of this paper to extend the results to in-winding systems of squares and rectangles. For back-
ground and generalizations, see Hoggatt and AlJadi [2] . 

2. THE CLASSIC EXAMPLE 

The Golden Section Rectangle yields one beautiful example of in-winding spirals of squares. We start with a rec-
tangle such that if one cuts a square from it,Jhen the remaining rectangle is similar to the original one. The ratio of 
length to width of this rectangle is a= (1 + >/5 )/2. 

Square s^ 
1 / 

14 ^ 

Square 
2 

/ Square 
J 3 

I 
We now repeat the cutting off of a square from the second rectangle, then a square from the third rectangle, and 

so on for/7 steps. This will leave some 1 by {p - 1) rectangle in the middle of the system of squares. One immediately 
notices that if the rectangle is 1 x {p - 1), then the nth square was/7 x p and reversing the construction you are in-
deed adding squares on such that the sides form a generalized Fibonacci sequence. That is, the resulting squares have 
their centers on two mutually perpendicular straight lines. Now, since the out-winding squares from the 1 x {p - 1) 

144 
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rectangles have centers on two mutually orthogonal lines for one n the same pair of lines hold for all n. In other 
words, the nested set of rectangles converges onto a point In the case of the Golden Section rectangle the sequence 
of corners of the rectangles lie on two mutually orthogonal lines and further the common point of intersection of 
this pair of lines coincides with that of the pair of lines determined by the centers of the in-winding squares. 

Suppose we let f0 

f5=(2~p)-(2p-
--p and fl = i,f2=f0-ft=p-if9 = i-(p-i) = 2-p,f4 = (p-1)-(2-p) = &- 3, 
3) = 5-3p,- , so that in general one gets 

where Fn is the nth Fibonacci number. In the event that/7 = a, then 

Fn+1 Sim f 

n * oo 'n 

This suggests that although we know 

lim F 

in reality 

lim 

lim 

Fn+1 

rn+1 

\= o 

0. 

To see this, we look at 

Thus, 

an+1-!5n+1 

an-f 
^n+1 on+1 r.n+1 

an-$n 

+ aBn
 = -8n(a-$) 

a — p 

^n+1 -a \= -$n •> a 

This seems to indicate that unless a= p, the process will not converge for squares. 

3. A GEWERALIZATIOW: THE SILVER RECTANGLE 

Suppose we cut off k squares from the rectangle and then want the remaining rectangle to be similar to the original. 

kx y - kx 

\<r 

1: 
X y - kx 

y2 - kxy - x2 = 

d)-
1 = k±Jk2 +4 
x 2 
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Since we wish y/x > 0, then a= (k + ^Jk2 + 4 )/2 »s selected. In reality, this leads naturally to the Fibonacci poly-
nomials. Suppose again we start out with fQ = p and fl = 1, f2 = p - K 

f3 = l-k(p-k) = k2 -kp+1 = (k2 + 1)-pk 

f4 = (p-k)-k(k2 -kp+1) = (-ks - 2 k ) + p(k2 + 1) = -u4(k) +pu3(k) 

f„ = (-Dn[un+1(k)-pun(k)], 

where un(k) is the nth Fibonacci polynomial. Once again ^^ fn does not exist unless 

p = (k + sJk2+4)/2; 

then 

un+l(k) '«-'-»"«»»'("-sf-' 
llm t, = 0 

as before. When k= 1(un(1) = Fn) so that unless/? = a, then 

f„ = l-lf lun+1(k) - aun(k)- (p - a)un(k)J = (-1)*1+ (-1)n(a-p)un(k) 

which diverges since n "J1^ un (k) •» «»for each k > 0. 
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ARITHMETIC SEQUENCES OF HIGHER ORDER 

JAIVIESALOMSO 
Bennett College, Greensboro, Worth Carolina 27420 

i 
Definition 1. Given a sequence of numbers 

(1) a0 ax a2 - an -

we call first differences of (1) the numbers of the sequence 
D1 D1 Dl ... D1 
u0 ux u2 un 

with 
1 

Dn = an+1-3n-

By recurrence we define the differences of order k of (1) as the first differences of the sequence of differences of 
order k — 1 of (1), namely the numbers of the sequence 
(2) Dk

0 D) Dk
2 ». Dk -

with 
(3) Dk

n=Dk
n-+\-D

k
n-

1 . 

Observe that (3) is also valid for /r = 1 if we rename an = D®. 

Definition 2. The sequence (1) is arithmetic of order k if the differences of order k are equal, whereas the differ-
ences of order k - 1 are not equal. It follows that the differences of order higher than k are null. 

Proposition 1. Given a sequence (1), if there exists a polynomial p(x) of degree k with leading coefficients such 
that an = p(n) for n = 0, 1, 2, — then the sequence is arithmetic of order k and the differences of order k are equal 
to k!c. 

Proof. Letp(x) = cxk + bxk~1 + - (the terms omitted are always of less degree than those written). Then 

an = cnk + hnk~1 + -
hence 

D1
n = an+1-an = c[(n+1)k-nk]+b[(n+1)k-1 -nk-1] + - * cknk~1+ -

therefore, for the first differences we have a polynomial/?/ (x) = kcxk~1 + - o f degree k - 1 and leading coefficient 
kc such that D1

n= pi(n). Repeating the same process k times we come to the conclusion that Dn =pt<(n) for a poly-
nomial Pk(x) of degree zero and leading coefficient k!c; hence Dn = klcior n = 0, 1, 2, —. 

EXAMPLE. The sequence 

(4) 0 1 2k 3k - nk 

for k a positive integer is arithmetic of order k and Dn = k!. 

Proposition 2. For any sequence (1), arithmetic or not, we have 

Dk = [k0)
an+k- ( * ) an+k-1 + {k

2) *n+k-2+"± ( £ ) *>n 

The proof is straightforward using induction on k with the help of (3). 
In particular for the sequence (4) we have 

147 
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(5) Dk = [k0)(n+k)k- ( * ) (n + k-1)k+[k2yn+k-2)k-..-± ( £ ) " * , 

where the coefficient of nk"' (i = 0, 1, 2, - , k) is 

( ' .)(?)'-(*)(?)»-' ' ' (#?)»-*'-••• ' ' U.) (?) ' ' * (£)(?)• ' 
(we assume that 0 ' = 0for / = 7, £ -., £ a n d 0 ° = / / Hence the coefficient of nk"f (i= 1,2, •-, k) in (5) is 

( * ) [ (5)* / - ( * ) r * - , ; / + (J) r * -^- - ± ( * -») / ,J 
and the coefficient of /7* 

( S ) - ( ? ) ' ( S ) — ( i ) -
Since we know that Dn = k! we have the remarkable equalities: 

» ( £ ) - ( * 0 * ( 5 ) — * ( £ ) - » 
(which is a very well known fact since it is the development of (1 - 1 r ) . 

(6) (ii) ( J ) k'- ( * ) (k- 1)'+[ * ) fk-2)'- ...± ( fcl , ) /'' - 0 

iori=t,2,-,k- 1 

(7) (iii) ( £ ) * * " ( * / ) ' * - " * • (5) ^ - ^ - - ± ( ^ - ? ) '* = *•' 

A fourth identity can be obtained from (5) with n = 0 and (21), namely 

£ f-tf' (*,-Mft-/-/;* = ft-w(*' 
which can alsp be written in the form 

(iv) {ko)kk+1-[))(k-^)k+1^[k
2)(k-2)k+1--±{k

k
1) 1k+1 = kl[k+

2
1) 

k! 

I! 
Starting with k + 1 numbers AQ, A /, —, Ak we form the "generalized" triangle of Pascal 

AQ At A2 Ak 

A0 A0+At Ax+A2 - Ak 

A0 2AQ+AX AQ+2AX+A2 AX+2A2+AZ - Ak 

A0 3AQ+AX 3A,+3AX+A2 

where each number is the sum of the two above. We observe that the coefficient of A0 \nthQhth entry of then* 

row is ( n
hZ \ ) ;the coefficient of Ax is ( n

hZ
1
2 ) - and the coefficient o f / I * is ( h

 n_ ~k
 1_ 1 ] . (We set f " 

= 0 whenever/ >n o r / < 0.) Therefore the hth entry of the/7f/? row is 

In particular, for the triangle over the k+ 1 differences^,, Dl
Q, D\, •••, Dk of the sequence (1) assumed to be arith-

metic of order k, in view of (3) and taking into account that 0% = D% = — we have 
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aQ D\ 0 J . . . 0 * 

aQ a, D\ D\ -Dk
x 

a0 S\ a2 D\ D\-..D* 

aQ S* SI a, D\ Q\ . . . 0 * 

^ S\ SI SI a4 D\ D*...Dk
4 

where 
SI = a0 S} = S}_7 +a, and Sk

n = Sk
n_1+S^1 . 

Since in this triangle an is the {n+lf entry of the (n+1)th row, we have 

«» • » - ( « ) » . * ( » - / ) ^ + ( „ l 2 ) ^ + - + ( » - * ) °k» 
or, equivalently, 

do) • « - » . * ( ? ) ° i * ( a ) °5* -* (* ) ^ • 
Observe that if the sequence (1) is not arithmetic we still can construct a "generalized" triangle of Pascal starting 

with an infinity of entries in the first row. 
an Di Dl - D" .» 

and then instead of (10) we would have 

>n".+ (n
1)Dl + (n

a)'n+~+(n
n)D?. 

Proposition 2. If (1) is an arithmetic sequence of order k, we can find a polynomial p(x) of degree k such that 
an = p(n). 

Proof. P(x) = aQ + ( * ) D\ + ( * ) Dl +'-+(x
k) D* 

w i t n - * / * i / . , i 
I x \ = x(x ~ V '" (x - i + 1) 
\'" / // 

is obviously a polynomial of degree k and in view of (10), an = p(n). 
Forthe partial sum S^a0 +ax + — + an wehaveaformulasimilarto (10). In fact, observing thatS/, is the (n+1) 

entry of the (n+2)th row in the "generalized" triangle of Pascal, we have 

or, equivalently, 

in) sh- ["+1) .^["V) DI+.-+[I+
+\)D* . 

Therefore S}, = q(n), where q W i s a polynomial of degree k + 1. This was to be expected, since obviously the sequence 
S\, S\, -,S},,-\s arithmetic of order k + 1. 

EXAMPLES. If we apply (11) to the sequences of type (4) with k= 1, 2, 3,4 we obtain the well known formulas 

1. 0+1+2 + ~. + n=(n+
1

1) 0+[n+
2

1) T = n-1jSL 

2. 0 + J * + 2 * + - + n> • ( n +
1

1 ) 0 + { n + 2 1 ) 1 + [ " V ) 2 = nJnJj^!LLl) 

3. 0+V+2*+~ + n* = ( " + ' ) 0+{n+
2

1) l+[n+
3
1) 6+(n+

4
1)6 = 1* + W + "* 
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0+ P +2* +-+ n4 6ns + 1§n4 + 10n3 -n 
"30 

We now know that the sum 

111 

Sk(n) = 0+ 1k + 2k + - + nk 

is given by a polynomial in n of degree k + 1. The question arises, how to find out the coefficients of this polynomial? 
Obviously the coefficient of/?0 is zero, since Sk (0) = Q, and the coefficient of n + is 1/(k + 1) as we can see from 

(11). Hence the polynomial form for Sk(n) is 

(12) Sk(n) = 1/(k+l)nk+1 +honk+hrn
k~1 + - + hk.1n 

for some coefficients/?^, hi, —, /?£-?• Since Sk (n) - Sk(n - 1) = n , we have 

^[nk+1-(n^1)k+1]+h0[n
k-(n-1)k]+h1[n

k-'1-(n-1)k-1] + -

+ hi[n
k~i-(n- 1)k-'] + - + hk-1 = nk 

and taking coefficients of the different powers of /?, we have the following equations: (the first is an identity, the 
rest form a linear system of k equations in k unknowns, which permits to compute recursively /?#, hff •••, hk+i). 

r 

(13) 

TM*;')-(?)*»-» 
F M V ' H S M V ' ) * ' " 

1 *77(^')-(?)*»'0:;)»'-"*(*-r'K'-» 

From the second equation we obtain hQ =
 1/2, independent of k. If we set 

(14) A / ' (^b, h2~[k
2)b2:.hk„1=[k

k_i)bk-l 

and observe that 

:th, we can write the iw equation in (13) in the form 

m(f)-*(?)*(f)c.)"-(f)(i)^-(f)(/f)v-*(f)(,z,)^-» 
or, equivalently: 

TW-H'i)b'-{,2)b*+-A,i)bi+-"*[i-i)b'-'-0-
Hence the system (13), after omitting the first two identities reduces to: 
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(15) < 777- j*C, )» ' - ( i )»^- i ( ; )» / -* ( , i , )*M"> 

f*7-HiMsV-*(*->N<-«-
We will call Bernoulli numbers the numbers bu b2, - . The Bernoulli numbers have over the numbers bu hv -

the advantage that they do not depend on k, as we can see from system (15). Equation (14) permits to calculate for 
each k the h's in terms of the b's. 

Proposition. The*even Bernoulli numbers are null. 
Proof: Writing n = 1 in (12) we have 

On the other hand, the last equation in (13) is 

k+1 2 

Adding and subtracting these two equations, we obtain: 

1 _ L+h1-h2 + "±hk-1 0. 

(16) 

The second equation in (16) can be written 

( $ ) ' 2 * ( J ) * 4 * ~ « « 
where the sum is extended to all the subscripts less than or equal to k- 7. For k = 3 we get62 =0;\ox k = 5, 64 = 0, 
etc., which proves the proposition. 

The first equation in (16) for /r = 3, 5, 7, -yields the infinite system of equations: 
r 

(17) 

3\ u - 1 1 

< 

v 
and for k = 2, 4, 6, ••• the system 

(18) 

I- I 
2 3 

< 1)"*(l)«4-| 
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Subtracting the equations in (18) from those in (17), we have 

(19) 
a _7_ 

3-4 

< 

( S M ; ) * 4 I ) * - T 5 

,k-3 

2 Dk
0'

1 = (k- 1)kL 

Any of the infinite systems (17), (18) or (19) permits to find recursively the Bernoulli numbers with odd subscripts. 
Substituting in (12) the Bernoulli numbers, we express 

Sk(n) = Q±1k + >» + nk 

in the form 

(20) Sk(n) = J L . t t ^ + l n k ' + b 1 ( * )nk-1 + b3(
k
3) n> 

where the coefficients of the different powers of n are products of a combinatorial number of k and a number which 
Hnps nnt denend on A: 

NOTE. If we compute the coefficient of the kth power of n in (11) we have 

(k+1)(k-2) nk. 1 nk-i 

On the other hand for the sequenced, 1 ,2k, — that coefficient is 1/a, and DQ = kl Hence, for this particular sequence 
we have 
(21) 

EXAMPLES. From (10) we obtain: 

b * S l 2 b * = - j 2 0 b*=252 b^=~ m l 

which, substituted in (20) for k = 1, 2, —, 11 yields the formulas: 

1+2 + -+n = ̂  n2 + 1- n 

P+22+- + n2 = \n3 + 1-n2 + 1-n 
3 2 6 

p + 23 +- + n3 = 1- n4 + 1-n3 + 1- n2 

4 2 4 

P +2* +... + n* = I n5 + 1~ n4 + 1- n3 - 1- n 
5 2 3 30 

1*+2*+~ + n* = 1Qn6 + ]2n5+J2n*- JJ"2 

P +26 +- + n6 = l-n1 + I n6 + I n5 - 1- n3 + ~ n 
7 2 2 6 42 

= J__ 
132 

v+2n+... + „•> = 1-n*+ 1-n" + j^n6 - ^ n4 + jj n2 

P+2*+-- + n* = 1-n9 + Lnt + Z-n1 - ^-n5 + I n3 - ^ n 
if 2 3 15 g 30 

V +29 +- + n9 = -L n10 + 1-n9 +^n8- ^ n6 + {n4 - 4K n2 

10 20 

7«o +2"> + ... + n™ = 1- n11 + 1- n10 + | n9 - n1 + ns - ]-n3 + ^ n 

1"+2"+- + n" = ~n"+ l n u + lLnio_1_lns+!1_n6_.!^n4+^n2 
12 Z IZ o b o l d 



DIVISIBILITY PROPERTIES OF CERTAIN RECURRING SEQUENCES 

RONALD SOLOIVSOfy 

Department of iVIathemafses, Ohio State University, Colitmbys, Ohio 43210 

We shall consider the sequences, iwn(r,s;a,c)f, defined by wg = r, wj = s and wn = awn„i + cwn-2 ^orn > 2; 

henceforth denoted by J wn I where no ambiguity may result. We shall confine our attention to those sequences 

for which r, s, a, and c are integers with (a,c) = 1f (r,s) = /, (s,c) = 1, ac fi 0 and wn £ 0 for n > 1. The major resuJt of 

this paper will be a complete classification of all sequences j wn I for which wk \ w2k for all integers k > 1. 

If w0 = 0 and wL = 1, we have a well known sequence which we shall denote, following Carmichael [1 ] , by 

I Dn(a,c) J , or \ Dn J if no ambiguity may result, and concerning which we shall assume the following facts to 

be known ic f . [1 ] \ [2] ) : 
/=/ ; f ^ , £j = / for all /7 > 7, 
F 2 ; (Dn,Dn+1) = 1 for all ./?. 

/ 5 : If c is even, then Dn is odd for all /L 

If c is odd and a is even, then Dn=n (mod 2) for all /?, 
If both a and c are odd, then Dn is even if and only if n = 0 (mod 3), 

F# : Let/? = a2 *4c and let/? be an odd prime. 

Let ft/p; = ^ j f / ? | ^ 

i f f o c j = /, then/? \Dp~(b/p). 

F5: Dm+n=cDmDn^ +Dm+1Dn for all /?? > 0 and/? > 1. 

F £ ; If m |/7, then Z7m \Dn. 

If w0 = 2 and w1 = a, we have a well known sequence which we shall denote, following Carmichael [1 ] , by 

\sn(a,c) \ ,* or by •} Sn J if no ambiguity may result, and concerning which we assume the following fact to fcre 

known: 
F7: D2n = DnSnfoT?\\n. 

Theorem 1: wn(r,s: a,c) = sDn(atc)+rcDn^^(a,c) for all n > 7, 
The proof is by complete mathematical induction on/7; 
1. sD1 +rcDQ = s = wl . 

2. sD2 +rcDx = as + rc = w2 

3. Suppose the theorem is true for all/? less than some fixed integer ^ > 3. Then 1 % - / = sDf<-i + rcD^wd 

Wk-2 = sDk-.2 + rcDk-3. 

So 

*We differ from Carmichael in requiring that (a,2) = 1. if (a,2) = 2, wn(1, (a/2);a,c) = 1ASn (a,c) for all n, and hence 
the former sequence has essentially the same divisibility properties as the latter. 

153 
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wk = a(sDk^1+rcDk^2)+c(sDk^2
 + rcDk^3) = s(aDk^1 + cDk„2) + rc(aD k-2 + cDk^) = sDk + rcDk„1. 

Using (F1), (F2) and the fact that (r,s) = I we have: 
Corollary: (wn,Dn) = (r, Dn) = (rf wn), (wn, Dn^) = (s, Dn^) = (s, wn). 

Theorem 2: (wr$, wn+i) = 1 for all n > 0 . 
The proof is by induction on n: 

1. (w0, wj = (r,s) = 1. 

2. (wuw2) = (s,as + cr) = (s,cr) = 1. 

3. Suppose(wk„<}, wk)- 1 forsomefixed integer/r>2. Let/W^, wk+i) = d. S\ncewk+i = awk + cwk-.i, d\cwk~i, 
whence d\c. Now wk=awk„i + cwk-2, whence d\n. Hence d = ~1. 

Theorem 3: (wn,c) = 1 for all n > U 
Proof: 

1. (wuc) = (s,c) = 1. 

2. Supposen > 2. Then wn = awn-i +cwn-2. L&td= (wn, c). Then d\awn-p Hence, by Theorem 2, d= 1. 

Theorem 4. (a) If c is even, then wn is odd for all n > 1. 
(b) If # is even and c is odd, then 

(i) Wn is odd, then wn =s (mod 2). 
(ii) if n is even, then wn =r (mod 2). 

(c) If a and c are both odd, then 
(i) l f /?=Q (mod 3), then 1^=/-(mod 2). 
(ii) If n = 1 (mod 3), then wn =s (mod 2). 
(iii) If/? ^ 2 (mod 3), then wn=r + s (mod 2). 

Proof: Part (a) is immediate from Theorem 3. 
Parts (b) and (c) follow from (F3) and Theorem 1. 

Corollary: If r is even, then wn ^Dn (mod 2) for all n. 

Theorem 5: Let/? be any odd prime. 
(a) lf/?|c, then (p, wn)= 1 for all /? > 1. 
(b) If (p,c)= 1, then p\wp-(h/pj if and only if/?|r. 
Proof: Part (a) is immediate from Theorem 3. 

Part (b) follows from (F4) and Theorem 1. 
REMARK: The only recurring sequences for which p\wp-.(t,/p) for more than a finite number of primes/? are 
± Dn(a,c) . 

Theorem 6: wm+n = cDn-iwm + Dnwm+i for all m > 0 and/? > 1. 
Proof: wtm+n = sDm+n + rcDm+n^1 (by Theorem 1); 

= s(cDmDn-i + Dm+iDn) + rc(cDm-iDn-i+DmDnJ (by F5); 
= cDn. 1 (sDm + rcDm„ 1) + Dn (sDm+1 + rcDm) 

= cDn..iwm + Dnwm+i (by Theorem 1). 
Corollary 1: (wn, wk) = (wn, Dn~k) = (wk, Dn-k), where n >k>0. 

Proof: This corollary is immediate if n = k. Suppose n > k>0. Then 
Wn = Wk+(n-k) = cDn-k-1Wk + Dn-kWk+1. 

Hence if d\wn and d\wkl then d\Dn.kwk+i. B v Theorem 2, (wk, wk+i)= I Hence d\Dn-k. 
Similarly, \\d\wn and d\D^k, then d\cDn„k-iwk. But (Dn„k, dDn-k„i)= I So d\wk. 
Finally, if d\wk and d\Dn-k, then d\wn. 

Corollary 2: wk\ wn if and o nly if wk | Dn„k, where n > k > 1, 
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Corollary 2: wk\wn if and only if Wk\Dn-k , where n>k> I 

Corollary 3: (a) Wk\wmk if and only if Wk\®(m-l)k for/7 > /. 

(b) If Wk\Dtk, then Wk\wmk whenever/?? = 1 (mod t). 

Proof: Part (a) is immediate from Corollary 2 with n = mk. 

Part (b). By (F6), Dtk\Dntk for all positive integers/?. Then Wk\Dntk, whence Wk\W(nt+1)k for all non-
negative integers/?. 

Corollary 4: (a) Wk\w2k if ar,d only if Wk\r. 

(b) Wk\v\f3k if and only if Wk\rSk-

(c) Wk\w^k ^or all k > 1 if and only if Wk\r(2s-ar) for all/r > 1. 

Proof: Part (a) follows from Corollary 3(a) and the corollary to Theorem 1. 
Part (b) follows from (F7), Corollary 3(a) and the corollary to Theorem 1. 
Part (c): Suppose that Wk\w3k for all k > 1. By Part (b), M/̂ .|rS^ for all/r > 1. In particular, n//1/*5;, 
i.e., s|r& Since (r,s) = 1,sa. let a = sd. We shall prove by complete mathematical induction on &that 

Sk(a,c) ••= dwk(r,s;a,c) + c(2 ~ rd)Dk-i(a,c) for all k>\. 
1. d\N1+c(2-rd)DQ = ds + Q - a = 5 / . 

2. dw2 + c(2-rd)D1 = d(as+cr) + c(2 - rd) = a 2 * 3 c * 5 2 . 

3. Suppose that the theorem is true for all integers k less than some fixed integer t > 3. 

St = aSt^1 + cSt-.2 = a[dwt„i + c(2 - rd)Dt„2] + c[dwt„2 + c(2 - rd)Dt„3] 

= adw^f + c(2 - rd)(Dt„<[ - cDt„3) + cdwt„2 + c2(2 - rd)Dt„3 

= adw^-j + c(2 - rd)Dt„ 1 - c2(2 - rd)Dt~3 + cdwt-2 + c2(2 - rd)Dt„3 

= d(awt~i + cwt~2) + c(2 - rd)Dt„i - dwt + c(2 - rd)Dt^, 

Hence if p\wn and p\Sn, thm p\c(2 - rd)Dn„f. So by Theorem 3 and the corollary to Theorem 1,p\(2- rd)s. 
Thus, by Part (b), if Wk\ W3k$w all k > 1, then Wk\r(2s - ar) for all k > 1. 

Conversely, suppose wk\r(2s - ar) for all k > 1.Since wi\r(2s-ar) and (r,s) = 1,s\a. Then, Setting <? = ft/, it fol-
lows from the first half of the proof that (Sk, Wk) = (2s- ar, w/̂ ^ for all/r > 1. Hence, by Part (bland the corollary 
to Theorem 1, if Wk\r(2s- ar) for all /r > 1, then wk\w3k for all k > I 

Lemma 1: Wk\w2k for all k > 1 if and only if ^ ^ ^ / | r f o r a l l k > 1. 

Proof: The " i f " part is immediate by Corollary 4, Part (a). 
Suppose that wk\w2k for all k > 1. By Corollary 4 (a), Wk\r and Wk+i\r. But by Theorem 2, (w^ Wk+l)= 1-

Hence WkWk+i\r> 

Lemma 2: If rfOand (a,r) = 1, then wk\w2k for all k only in the following cases: 
(a) r = s = ±1, a + c = 1; in which cases | wn X = ± 4 /, 7, — {•. 

(b) r = ±1,s = +1,-a + c = 1; in which cases 4 w„ | = ± | I ~l I ~h - J -
(c) r = i £ 5 = 7/ , a = c = -1;\n which cases J Mfo i = ± | 2 , - 7 , -1,2, -1,-1, - J> 

(d) r = * £ $ = ±7,a= 7, * = - 7 ; i n which cases | ^ l = ± | £ 1,-1,-2,-1, 1,2, 1,-1,-2,-1, 1, ••< ] - . 

Proof: Suppose M/̂  (r,s;a,c) is a sequence for which ^ |^2A- f ° r all ^ Then, by Corollary 4 (a), Wk \w2k f ° r a^ 
k. Since (s,r)= 1,s = wi and wx\r, we may conclude that s-±l UQ\N wn(r,1; a,c) = -wn(-r, -1;a, c) for all/?. So it 
suffices to consider the case where 5 = /. 

Since w2\r and (w2,r) = (a + cr, r) = (a,r) = 1, w2 = £l We shall prove by complete mathematical induction on n 
that wn (r,s; a,c) = (- 1)n+1wn (-r,s; -a,c) for all n > 0: 

(1) wjr,s;a,c) = r = (-1)U-r) = (-1)lw0(-r,s;-a,cl 
(2) wx(r,s;a,c) = s = (-1)2(s) = (-1)2wJ~r,s;-a,c). 
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(3) Suppose that the theorem is true for al! integers n less than some fixed integer k > 3. 

Wk(r,s;a,c) = awk-i(r,s;a,c) + cw^fcs;a,c) = (-V aw^7(-r,s;-a,c) + (-1) " cwk-2(~r,s;-a,c) 

= (~1)k+1[ha)wk^(-rfs;-afc)+cw^2(--rfs;-afc)] = (-1)k+1wk(-r,s;-a,c). 

Hence it suffices to consider the case where w2 - 1. 
CASE I: Suppose that a> 1. 
Then c < - 1 . For were c > 1, we would have Wj+1 > Wj > 1 for / > 3, contradicting the fact that w\ < in for all L 
Also since r= (1 - a)/c, 1 - a <c < - 7. So a + c> 1. 
(a) If a +c = 1, it is easily seen that the sequence reduces to < w0, wu — f " 1 I h — \ • 

(b) Suppose that a + c > 1. We shall prove by induction on/that M/ />M/ /_ ; fori> 3. 
(1) By hypothesis it is true fori = 3. 
(2) Suppose it to be true for/equal to some fixed integern > 3. Then wn+i = awn + cwn~i >wn(a + c)>wn. 

But this means that the w/% form an unbounded sequence, which is impossible since w, < \r\ for all / . 

CASE I I : Suppose that a < -1. 
Sincea + c\a- 7, e i t h e r c a - 7 or0 <c <-2a+ 7. 
(a) Suppose c = -1. Then w4 = a2 - a - 1 and, since w4 \r, a

2 - a - 7 < 7 - a. Hence a2 < 2, i.e., a = -1. 

Then r = -2and this yields the sequence | - 2 , 1 , 1 , - 2 , 1 , 1, — i . 

(b) Suppose c > 0 . Nowr= (1 -a)/c anda + c\r. So ac + c2\a- 7. 

:. ac + c2 < 7 - 5 
:. a(c+1) < 1 - c2 

c+ 1 
k\%oac + c2 > a— 1, whencea(c - 1) > -c2 - 7. Hence eitherc= 7 or 

c- 1 < -a < °-—=(c+1) + 2 

c - 7 ff- 7 * 

Thus case (b) reduces to the following four subcases: 
(i) c= I Uo\NW3\D3lle.,a + 1\a2 + I Since a2 + 1 = (a + 1)(a- 1) + Za + 1\2. So a =-2 ora =-3. 

1. I f £= 7anda = -<? then r = J butn/5 = - Z 
2. \fc= 1anda = -3, then r = 4 butw/4 = 7 

(ii) a = -c- I Then w^= 2c + 1, r= (c+2)/c and w4|r. Hence2c2 + c <c+2. Soc= 1, a case already considered. 
(iii) a = -c+ 7. But then 3 * c = 7, a case already considered. 
(iv) c = 2 and 3 = -5. Then /- = 5 but w4 = 17. 

This exhausts all of the possible cases. The other six sequences mentioned in the theorem are precisely those ob-
tained from the sequences | 1, 1, — I and i - 2 , 1, 1, - 2 , 1,1, — \ by the permutations of sign outlined at the 
beginning of the proof. 

Theorem 7. If r / 0, then wk| W2/f * o r a " ^ o n 'y m t n e cases Iistzed in Lemma 2. 
Proof: We shall prove that if r / 0 and fo/V = d >\, then w* fails to divide W2k for some /r. The theorem will 

then follow by Lemma 2. Suppose the contrary, i.e., suppose there exists a sequence wn(r,s;a,c) such that wk\w2k 
for all k As in Lemma 2,s = ±1 and, moreover, we need only consider the case where s = 1. 

Then w2|rand w2\D2, where D2 = a. So w2\d. But d\w2, since w2 = as + cr. Thus i^2 = ±d and, a$ in the lemma, 
we need only consider the case where w2 = d. 

Suppose a > 0 and d > 0, c < 0 for otherwise the Wj'% would become unboundedly large. 
Uo\Nd(ad + c)\r by Lemma 1 and r= (d~ a)/c ? 0. Hence c(ad + c)\ 7 - (a/d) and 1 - (a/d) <0. 
Since d 7 - fa/W, 7 -(a/d)<c<0. Since ad + c\1 - (a/d), ad + 1 - (a/d) <ad+ c <(a/d) - 7. 
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:. ad <2-§--2. d 
d2 ^ 2-^-< 2, 

a ' 
which is impossible since d > 2. Hence a < 0. 

Since cd(ad + c)\a - d, a-d < cd(ad + c) <d- a. 
Supposes <0. Mowacd2 +c2d<d- a. 

:. a(cd2 + 1) < d(l-c2). 

• a > d(1-c2) > Q 

" a > cd2 + 1 > 0 f 

contradicting the fact that a < 0. So a < 0 and c > 0. 
No\Nacd2+c2d > a-d. 

:. a(cd2- 1) > -d(c2 + 1). 

d(c2 + 1) 

Since a < — 1, 

a>-'~&-r 

c2d + d > 1 
cd2- 1 

:. c2d + d > cd2 - 1. 

:. d[c(c-d)+l] > -1. 

Since d > 1, d[c(c - d) + 1] > 0, whence c(c - d)>-L Then, since c^O and (c,d)= 1, either c> d ore = / and 
d = 2. But in the latter case, the inequalities 

cd2- 1 
imply that 5 = - 7 , contradicting the fact that*/|& 

Now, since cd\a-d, c < / - (a/d) < 1 - a. SoO<d<c<1- (a/d) < 1 - a. 
Suppose that a = -d. Then a + cr = -a, i.e., cr = -2a and a\r. 
CASE I: r=-aandc = 2, 
Then ad + c = 2 - a2 and ad + c\-a. Hence eithera = - / or a = -2. 
But both possibilities are inadmissible since d =-a > /and (a,c) = I 

CASE I I : r =-2a and c = 1. 
Then ad + c = 1 - a2 and ad + c\-2a. But this requires that 1 - a2 must divide 2, since fa, 1 - a2)= 1, and this is 

not satisfied by any integers. Hence a < -2d. 
Suppose that d >2. By Lemma 1, wdw^\r. It follows that (ad + c)(a2d + ac + cd) >a- d. 

;. a-d < a3d2 + 2a2cd' + acd2 + ac2 + c2d < a3 d2 + 2a2cd + acd2 < d2a3 +2a2(1 - a)d+ad3. 

:. 0 < d2a3 +2a2(1-a)d + ad3 -a+d = (d2 - 2d)a3 +2da2 + (d3 - 1)a + d < (d2 - 2d)a3 + 2da2 

< a3 +2da2 = a2(a + 2d) < ft 

a contradiction. Hence d = 2. Then 
9 — a 

ad + c = 2a + c and r=-—-
c 

By Lemma \,d(ad + c)\r. So 4a + 2c > a- 2. 

:. c > -°~a-1 > -a- 1. 

Hence -a - 1 <c <-a+ 1, i.e., c = -a. But this contradicts the facts that (a,c) = 1 and a < -1 
Thus we have verified that there is no sequence wn(r,s;atc) for which r £ 0, (a,r) > 1 and w^w^k for all k. 
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CONCLUDING REMARKS 

This theorem completes the identification of those sequences for which Wk\w2k f ° r a " k > V those sequences 
being 

±\tln(afc)} ; ±{ wn (1,1; a,c) I , 
where 

a + c = 1; + | wn (J, -1; arc) \ , 

where 
-a + c = 1; ± hwn (Z - / ; - 7 , -V } and ± | wn (2, 1; I -1)\ . 

These sequences, it is clear are precisely those for which Wk \ wmk for all integers k > 1 and m > Q. In fact, an in-
spection of the proofs of Lemma 2 and Theorem 7 discloses that these are the only sequences for which Wk\w2k 

f o r 7 ^ £ < 5 a n d | \wk\ \k-1,2,-\ is bounded. 
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RECURSION RELATIONS OF PRODUCTS OF LINEAR RECURSION SEQUENCES 

BROTHER ALFREO BROUSSEAU 
St Mary's College, Moraga, California 94575 

Given two sequences S,- and 7) governed respectively by linear recursion relations 

P 
n ~ £^J ai^n-i 

M 

Q 

Tfl = lis biT"-1 

of order q. Required to find the recursion relation of the term-by-term product of the two sequences Z-, = £//"/. 
Initially we shall assume that the roots of the auxiliary equations corresponding to the above recursion relations 

are distinct so that: 
P 

where s,- (i = 1,p) are the roots of xp - a -]XP~1 ~ a2Xp — ap = Q. Similarly, 

Q 

<4» Tn = £ Bit? , 
/-/ 

where V, (i = 1,q) are the roots of xq - hjxq'1 - h2Xq~2 -~hq = 0. 
No universal formulation applying to all orders has been arrived at so that the results will be given as a series of 

algorithms applying to particular cases. The method employed is to find the products of the general terms (3) and 
(4) and then note the new set of roots for the recursion relation of the product. By finding the symmetric functions 
of these roots one can arrive at the recursion relation of the term-by-term product. 

1 GEOMETRIC PROGRESSION BY ANOTHER SEQUENCE 

A geometric progression is a linear recursion relation of the first order: 

Sn = rSn~i 

whose general term can be taken as Sn = Arn. If such a term be multiplied by (4) one has: 

Q 

(5) SnTn = £ Bjfrt;)" 
1=1 

Thus these terms behave as belonging to an auxiliary equation Mio'se roots are rt; (i = 1,q). Consequently by finding 
the symmetric functions of these quantities one arrives at the lin/ear recursion relation governing the terms Zn = SnTn. 
It is not difficult to verify that this leads to: 

159 

of order p and 
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Q 

(6) Zn = J\ BjSZn-i 

i=1 

Z TWO RELATIONS OF THESECOND ORDER 
Let the auxiliary equations corresponding to two linear recursion relations of the second order be: 

x2 +axk + bx = 0 
x2 +a2x + b2 = 0 

Let the terms of the sequence governed by the first relation be: 
Sn=Arn + Bsn 

and the terms governed by the second sequence be: 

Tn = Cun + Dvn . 
Then 

?n = SnTn = AC(ru)n + AD(rv)n + BC(su)n + BD($v)n . 

The roots of the auxiliary equation for Zn are ru, iv, su, sv. To obtain the coefficients of this equation we calculate 
the symmetric functions of these roots. 

^4,i = (r+s)(u + v) = (-aj(-a2) = ala2 

S42 = r2uv + rsu2 + rsuv + rsuv + rsv2 +s2uv = uv(r2 + s2) + rs(u2 + v2) + 2rsuv 

= bja2
2 - 2b\) + b2(a\ - 2b J + 2hlh2 = bxa2+b2a\-2bxb2 

54 3 = r2su2v +r2suv2+rs2u2v + rs2uv2 = rsuv(r + s)(u + v) = b1b2a1a2 

S44 = r2s2u2v2 = b\b\ . 
The recursion relation for the product of two sequences of the second order is thus 

x4 -a1a2x3+(b1a2+b2a2
1-2b1b2)x2-a1a2b1b2x + b2b2

l = 0, 
EXAMPLE. The sequence 1, 4, 17, 72, 305, -isgoverned by Tn+1 = 4F„ + Tn„j while 1,-5, 26,-135, 701, - is 
governed by Tn+<i = -5Tn + Tn^. The product sequence is 1, -20 , 442, -9720, 213805, - . In terms of the above 
formulation, ax = -4, b1 = -i,a2 = 5, b2 = - 7. The auxiliary equation for the product sequence is given by: 

x4 + 20x3 - 43x2+20x +1 = 0. 

(-9720H-20) + 442*43 + (-20M-20) - 1 = 213805 . 
SECOND- AND THIRD-ORDER RECURSION RELATIONS 

Given two sequences Sn, Tn governed respectively by the relations 

(7) x2 +aix + bl = O 
(8) x3 +a2x2 +b2x + c2 = O 
with roots ru st and r2, s2, t2, respectively. The recursion relation of the product SnTn will have for roots rxr2, 
rxs2, rlt2,slr2, sts2, sxt2. The symmetric functions of these roots are as follows. 
(9) S^x = (rl + st)(r2 +s2+t2) = axa2 

(10) S6/2 = rxsx{s\ + t2
2+r2) + lr2+s\Hr^2+r2t2+s2t2) + 2rlsl(r2s2 + 

= bja\ -2b2) + (a\-2bx)b2 + 2bxb2 - bxa\ + b2a\- 2bxb2 

(11) S63 = (r\ + s\Hr2s2t2) + rxsx(rx + sx)(r2 +$2 +t2){r2s2 +r2t2 +s2t2) 
= (a\ -3axbx)c2 + axbxa2b2 
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(12) 
= A^JajCj + b\b\-2b\a2c2 

(13) 
(14) 
EXAMPLE 

s6,$ = r\sl(rx 

x2 -4x + 3 = 0 
2 
7 

22 
67 

202 
607 
1822 
5467 

16402 
a, = -4, bx = 

s& 

+ s1 )r2s2t2(r2s2+r2L 

°6,& r i 5 l f 2 5 2 r 2 

3, 

1 

x3 -3x2 + 6x-
3 

-21 
-60 
-45 
162 
576 
621 

-1107 
-5319 

a2 = -3, 

= 3*9 + 6*16-2* 

i + V a i * 
b3c2 
u l L 2 

3 = 0 

K =6, 

"18 = 87 

b\axb2c2 

6 
-147 

-1320 
-3015 
32724 

349632 
1131462 

-6051969 
-87242238 

o2 = ~ 

S6/3 = (-64 + 36)(-8)+216 = 300 

S6/4 = 3*16*9 + 9*36-2*9*9 = 594 

S*,s = 9(-4)*6(-3) = 648 

S6/6 = 27*9 = 243 . 

The recursion relation corresponds to: 
x6 -x5 - 12xs + 87x4 - 300x3 + 594x2 - 648x + 243 O. 

CHECK 
12(-6051969) - 87(1131462) + 300(349632) - 594(32724) + 648(-3015) - 243(-1320) = -87242238 . 

TWO THIRD-ORDER RELATIONS 
For two sequences governed by the relations: 

x3 + aix
2 +b1x + c1 =0 and x3 + a2x

2 + b2x + c2 =0 

The coefficients of the recursion relation of the product are found to be: 
X9 1 

x1 a\b2 + a\bx -2bxb2 

x6 -a\c2 -ale, -3cxc2 + 3aibic2 -3a2b2cx -ala2b1b2 

xs b\b\-2a2b\c2 -2alb\cl + a2a2b1c2 + ala2
2b2c1 -ala2clc2 

x4 -a1b2b2c2 -a2bxb\cx + 2a\ 2c{c2 + 2a2
2blclc2 -a\a\cxc2 + bxb2clc2 

x3 b\c\ +b\c\ - 3axbxcxc\ - 3a2b2c\c2 +3c\c\ + axa2b xb2cxc2 

x2 -a2b\cxc\ ~ a\blc\c2 + 2axa2c\c\ 

x b.b.clcl 
1 -c\c\ 
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EXAMPLE x*-3x*+5x-2 
1 
1 

- 2 
-9 

-15 
- 4 
45 

125 
142 

-109 
-787 

-1532 
-879 
3449 

al = -3, b1 = 5f 

The recursion relation for the product is: 
x9 + 12x* + 87x7 -88x6 + 

CHECK 

= O 

Ci = 

97xs -. 

x3 +4x2 - 7x-3 = O 
0 n 
1 
2 

- 1 
21 

-85 
484 

-2468 
13005 

-67844 
355007 

-1855921 
9705201 

-2, a2 = 4, 

*• 2665x4 + 563x3 

-12*1631354559 - 87(- 543870724) + 88*53393228 -
- 563*60500 + 828( -3825) + 1260(-

-2 
-18 

15 
-34 

-3825 
60500 

-350456 
-1417545 
53393228 

-543870724 
1631354559 

33473238249 
b2 = -7, c2 = -3. 

-828x2- 1260x-216 = O. 

97(- 1417545) - 2665 (- 350456) 
841 + 216*15 = 33473238249. 

[April 

SECOND AND FOURTH ORDERS 
Given two sequences governed by the following relations, respectively: 

x2 +axx+bx = O 

x4 +a2x
3 +b2x

2 +c2x + d2 =0. 

The coefficients of the product recursion relation are: 

EXAMPLE 

X8 

X1 

X6 

Xs 

X4 

X3 

X2 

X 

1 

X2 -

a\d2-

-3x+2 = 
10 
22 
46 
94 

190 
382 
766 

1534 
3070 
6142 

12286 

/ 
- * i 3 a 

a\b2 +a\bx -2bxb2 

-a\c2 -ala2b1b2 +3alblc2 

~4a2bxd2 +2b\d2 +a\a2bxc2 - 2a2b
2c2 +b\b\ 

-a\a2bld2 -axb\b2c2 +3ala2b
2d2 

a\b\b2d2+b\c2
2-2b\b2d2 

-axb\c2d2 

b\d2 

O x4 +2x3 -3x2 +x-3 = O 
8 -80 

34 748 
-97 -4462 
319 29986 

-987 -187530 
3130 1195660 

-9831 -7530546 
30996 47547864 

-97576 -299558320 
307361 1857811262 

-967939 -11892098554 
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CHECK 
The recursion relation of the product corresponds to: 

x8 + 6xn - 7x6 - 27x5 + 5x4 - 144x3 + 188x2 - 72x + 144 = 0 

-6(1887811262) + 71-299558320) + 27*47547864 + (-5) (-7530546) + 144*1195660 
- 188(-187530) + 72*29986 - 144(-4462) = -11892098554. 

THIRD-AND FOURTH-ORDER SEQUENCES 

For two sequences governed respectively by the relations corresponding to: 

x3 + axx2 + hxx + cx = 0 
and 

x4 + a2x3 + b2x2 + c2x + d2 = 0 

the coefficients for the auxiliary equation of the product are given by 

x1T 1 
x11 -axa2 
A1* a\b2+a\bx-2bxb2 

x9 ~d\c2 -3cxc2 + 3axbxc2 + 3a2b2cx - axa2bxb2 -a\cx 
xs a\d2 -4a\bxd2 -axa2cxc2 + a\a2bxc2 -2a2b\c2 + b\b\ -2axb\cx + axa\b2cx + 2b\d2 +4aicld2 
x1 -a\a2bxd2 -5a2bxcxd2 + 3axa2b\d2 + a\a2cxd2 -axb\b2c2 + 2a\b2cxc2 +bxb2cxc2 -a\a\cxc2 

+ 2a\bxcxc2 ~a2bxb\cx 
x6 a\b\b2d2 -2a\b2cxd2 -2b\b2d2 + 4axbxb2cxd2-3b2c\d2 +a\a\cxd2 +3a\c\d2 -3axa2bxcxd2 

+ b\c\ - 3axbxci c2 + 3c2cl + b\c\ -3a2b2c\c2 + axa2b xb2cxc2 
xs -3tb3c2d2 +3a\bxcxc2d2 + b\ctc2d2 -5axc\c2d2 + axa2b2c\d2 - a\a2bxb2cxd2 + 2a2b\b2cxd2 

- a2b\cxc\ + 2axa2c\c\ - axb2c\c2 
x4 b4d2

2-4axb2
xcxd2

2 +2a2c2
xd2

2 +4bxc\d\ + ataxicxc2d2 - 2a\a2c\c2d2 -a2bxc2c2d2 +a\b\c\d2 

-2bxb\c\d2 +bxb2C\c2
2 

x3 -a2b3
xcxd2+3axa2bxc2

xd2-3a2c3
xd2+3b2c3c2d2~ 

x2 b\b2c\d2
2 - 2axb2c3

xd2+axc\c\d2 

x -b.c^ld2 

1 c\d\ 

'• ~x- 1 = 0 

6 
11 
20 
37 
68 
125 
230 
423 
778 
1431 
2632 
4841 
8904 
16377 
30122 

X4 - X3 -X2 - X - 1 

21 
39 
76 
147 
283 
545 
1051 
2026 
3905 
7527 
14509 
27967 
53908 
103911 
200295 

= O PRODUCT 
126 
429 
1520 
5439 
19244 
68125 
241730 
856998 
3038090 
10771137 
38187688 
135388247 
479996832 
1701750447 
6033285990 

The recursion relation for the product corresponds to the equation: 

x12 -x11 -4x10 - 12x9 - Ux* - 12xn -5x6 + Wx5 - 7x4 - 2x3 + Ox2 +x- 1 - O. 
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CHECK 
479996832 + 4*135388247 +12*38187688 + 17*10771137 + 12*3038090 + 5*856998 

-10*241730 + 7*68125 + 2*19244-1520 + 429 =1701750447. 
REPEATED ROOTS 

The case of d roots can be handled in the same way but with some modifications in the procedure for find-
ing the symr ictions. This discussion will be limited to the important case in which one of the sequences has 
a general tei... a.vCi. Jy a polynomial function. The recursion relation for such a polynomial function of the/7f/? de-
gree has its coefficients determined by the expansion of 

(x-1)n+1 = O . 

Irs other words there are/7 + 1 roots all equal to unity. 

QUADRATIC POLYNOMIAL SEQUENCE 

The general procedure can be illustrated by the case of a sequence whose terms are given by a quadratic polynomial 
function. To keep the resulting formulas reasonably simple, let the other sequence be limited to order five and be in 
the form: 

x5 - axxA +a2x3 - a3x2 + a4x - a5 = O 

so that the quantities a,- are the symmetric functions of the roots. If the roots are given by r,-, the general term of the 
sequence would be: 

If the polynomial function is f(n) = Bxn
2 + B2n + B3, the product of the terms of the two sequences is: 

Z„ = Tnf(n) = Brn^Arf +B2nJ2Afr? + B3J^A;r?. 

This shows that the equation for the product has the roots /y taken three times. The problem then is to find the sym-
metric functions for three such sets of roots taken together. Suppose we wish to find Sts 9, the symmetric function 
of these fifteen roots taken nine at a time. The various cases can be found by taking the partitions of 9 into three or 
less parts, the largest being five (since this limitation was set on the order of the recursion relation). These partitions 
would be: 54, 531, 522, 441, 432, 333. Hence 

Sx5/9 - 6asa4 + 6a5a3ax + 3asa2
2 +3a\ax + 6a4a3a2 + a\ 

the coefficients being determined by the multinomial coefficient corresponding to the number of ways the various 
groups of roots can be selected. 

For the quadratic polynomial function and linear recursion relations up to the fifth order the coefficients of the 
product recursion relation are as follows: 

/ 
—3al 

3a2 +3a\ 
-[3a 3 + 6ala2 + a\] 
3a4 + 6ala3 +3a\ +3a2a\ 
-[3a5 +6a4ax +6a3a2 +3aza\ +3a\aJ 
6a5al +6a4a2 +3a\ +3a4a\ +6a3a2ay +a\ 
-[6asa2 +6a4a3 +3asa\ +6a4a2al +3a\ai +3a3a\J 
6asa3 +3a\ +6asa2al +6a4a3al +3a4a\ +3a\a2 

-[6a5a4 +6asa3al +3a^a\ +3a2
4ax +6a4a3a2 + a\] 

3a2
5+6asa4al +6a5a3a2 +3a2a2 +3a4a\ 

-I3a\ax +6asa4a2 +3a5a\ +3a4a3J 
3a\a2 +6asa4a3 + a\ 
-I3a\a3 +3aBa2J 
3a\a4 
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EXAMPLE x5 -2x«+x*+x2-3x-2 = 0 ffn) = n2 

1 
2 
3 
4 
5 
11 
26 
54 
94 
151 
254 
477 
939 
1788 
3224 
5660 
10079 
18516 

1 
4 
9 
16 
25 
36 
49 
64 
81 
100 
121 
144 
169 
196 
225 
256 
289 
324 

PRODUCT 
1 
8 
27 
64 
125 
396 
1274 
3456 
7614 
15100 
30734 
68688 
158691 
350448 
725400 
1448960 
2912831 
5999184 

The recursion relation of the product corresponds to the equation: 
x15 -6x14 + 15x13 - 17x12 -6xxl + 42x10 - 38x9 - 21x8 +69xn - 17x6 - 54x5 

+ 33x4 +21x3-42x2 -36x-8 = O. 
CHECK 

6*725400 - 15*350448 + 17*158691 + 6*68688 - 42*30734 + 38*15100 + 21*7614 - 69*3456 
+ 17*1274 + 54*396-33*125-21*64 + 42*27 + 36*8 + 8*1 = 1448960. 

ARITHMETIC PROGRESSION 
An arithmetic progression is given by a polynomial function of the first degree so that its recursion relation corres-

ponds to (x - V2 •= 0 with the root 1 taken twice. For a fifth order linear recursion relation such as given under the 
quadratic polynomial the coefficients of the equation corresponding to the linear recursion relation for the product 
are as follows. 

-2a, 
2at + a\; 

-[2a9+2a3aJ 
2a4 + 2a9ax +a\ 

-[2a$ +2aAax + 2a9aJ 
2a5al +2aAa2 +a\ 
-[2a5a2+2a4a3] 

2asa9+a* 
-2a,a, 

POLYNOMIAL OF THE THIRD DEGREE 
For a third-degree polynomial and a recursion relation up to the third order the coefficients of the equation cor-

responding to the linear recursion relation of the product are given by the following. 
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/ 
-4a x 

4a2 + 6a2 

-[4a3 + 12a2ax +4a\] 
12a dax +6a\ + 12a2a

2 + a\ 
~[12aaa2 + 12a3a

2 + 12a2at + 4a2a\] 
6a\ + 24aza2ax + 4aza\ + 4a\ + 6a\a\ 

-H2a\ax + 12ada
2 + 12aza2a\ + 4a\aJ 

12a\a2 +6a\a\ + 12a3a
2ax +a\ 

-I4a\ + 12a\a%ax+4a%a\] 
4a%ax+6a\a\ 

~4ala2 

*} 
EXAMPLE 

x3 -3x2 +x-2 = 0 and f(n) = n3 

1 
2 
3 
9 
28 
81 
233 
674 
1951 
5645 
16332 
47253 
136717 
395562 
1144475 

1 
8 
27 
64 
125 
216 
343 
512 
729 
1000 
1331 
1728 
2197 
2744 
3375 

1 
16 
81 
576 

3500 
17496 
79919 

345088 
1422279 
5645000 
21737892 
81653184 
300367249 
1085422128 
3862603125 

The recursion relation of the product corresponds to the relation: 
x12 - 12x11 + 58x10 - 152x9 + 267x8 - 384xn +442x6 - 396xs + 337x4 - 184x3 + 120x2 

-32x+W = O. 
CHECK 

12*81653184 - 58*21737892 + 152*5645000 - 267*1422279 + 384*345088 - 442*79919 + 396*17496 
-337*3500+184*576-120*81+32*16-16 = 300367249 

REPEATED ROOTS IN GENERAL 
Given a sequence whose recursion relation has/7 repeated roots and another whose recursion relation basq repeated 

roots. We would have: 
Sn = rn(ao + ain + >~ + ap-1n

p~]f) 

Tn = sn(h0 + b1n + - + bq-1n
q-1) 

?n = SnTn = (rs)n(cQ + cin + -• + cp+q-2n
p+q~2) 

so that the recursion relation of the product is of order/7 +q - I 
If the first recursion relation has m distinct roots/-/and a repeated root rof multiplicityp, while the second has/7 

distinct roots Sj and a repeated root of multiplicity q, the product recursion relation has the following number of 
roots: mn + pn + qm + p + q - 1 = (m + p)(n + q) - (p - 1)(q - 1). The symmetric functions of these roots will give 
the coefficients of a recursion relation of this order. Similar considerations can be applied when there are a number 
of repeated roots of various multiplicities. 

******* 
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The Tarry-Escott problem requires that for each positive integer t the least integer N(t) be found such that there 

exist two distinct sets of integers { * / } , \ b i \ ' i = 7 -N(t) such that a™ = b™ for m = 1-1 It is easily shownitfiat 

for each t, N(t) > t + 1 and that for small values of t equality holds. For example N(2) = 3 since the sets { 1,8,9 f 

and {3,4,11 } satisfy the equations 1+ 8 + 9 = 3 + 4 + 11 and 1 2 +8 2 + 92 = 32 + 42 + 112 . A complete solution 

to the problem is unknown. 
We call a system L = | S / f /L ; of sets of integers f-magic if the numbers 

are independent of the choice of S,- for m = 1 ••• t Thus a solution to the Tarry-Escott problem is a f-magic system 
of two sets of cardinality N(t). 

It has been shown [1] that for appropriate choices of/? and k, orthogonal systems of magic Latin /r-cubes of order 
n can be constructed. In this paper we exhibit a Latin 3-cube of order 8 in which are embedded subcubes possessing 
hypermagic properties. 

The cube (Fig. 1) comprises 83 ordered triples with entries 0,1,2,3,4,5,6,7. It is orthogonal, viz., each of the triples 
from 000 to 777 appears exactly once. In the diagram we show the cube as a set of eight squares which are to be 
placed one above the other to form the complete 3-dimensional array. After each of the entries is attached one of 
the letters a, b, c, d. Each of the rows in each square is labeled with one of the symbols R00, RQl, Rn, R2Q, R2U R30, 
R31 and each of the columns is labeled with one of KQ0, K0l, —, K3l. Thus the totality of entries /?// represents a 
set of rows parallel to one of the horizontal edges of the cube. A similar statement can be made about all entries 
labeled K,j. 

The two subcubes that we consider are designated as A and B. They are constructed as follows. Cube A is obtained 
by deleting the second entry in each cell of the original cube and regarding the remaining pair as a two-digit number 
in base eight So that each of the first 64 positive integers may appear in each subsquare of the cube we add 1 to each 
of the two-digit numbers. Thus the first row of the first square of cube A is: 20a 33b 76c 51d 44a 67b 22c 
05d RQ0. Cube B is constructed exactly the same way, deleting the first entry in each cell. For convenience in com-
putation we convert the entries to base ten. 

We denote by A^ the kth (horizontal) square of cube A and by Bk the kth square of cube B. Then a,jk is the entry 
in the ith row, kth column of Ak and b/jk the corresponding entry in Bk. 

We now observe that for fixed j,k 

H3Uk-Lbuk = 2m 
i i 

167 
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and for fixed ltk 

Haijk = YibUk = 2®0-
1 I 

Similarly 

E 4 = Z>/f* - E i -Htfk 'urn. 
i i J 1 

Thus in a natural way, we have exhibited a system of 256 sets of eight integers that is 2-magic. 
We now define a system of 196 sets of 16 integers that is 3-magic. This system has the pleasant property that it in-

cludes the principal diagonals as well as the rows and columns of cubes A and 8. 

Let Aka be the set of 16 numbers in Ak that are followed by the letter a. Let Akh, Akc, Akd, BkQ> Bkb, BkcAkd 
be similarly defined. (This defines 64 sets.) 

Let ARki (resp. Bk,) be the set of 16 numbers in Ak (resp. Bk) that lie in rows /?/# or /?//, i=0, 1, 2, 3. (This de-
fines 64 sets.) let AKk,' (resp. Bk/) be the set of 16 numbers in Ak (resp. Bk) that lie in columns K,o or K-,1, i= 0,1, 
2,3. (This defines 64 sets.) 

Let ADa (resp. BDa ) be the set of numbers in the two main diagonals of cube A (resp. B) of the form a///or 
as-if8-i,i 'resP- bjjj, b8-j,8-i,i)' It will be observed that each of these entries is labeled by the letter a Similarly let 
ADd (resp. BD^) be the set in the other two main diagonals 

| ai,8-i,i } / \ a8-i,i,i | / | £/,*-/,/ f / | b8-i,i,i } • 

(This defines 4 sets.) 
Now let L be the system of 196 sets defined above. It can be verified that L is a 3-magic system. Explicitly, if 

S e£ then 

£s = 520> Yls*= 223S0 and Yls3 = i°8i600' 
We remark in conclusion that we have by no means exhausted the hypermagic systems that can be extracted from 

the cubes. To this end we append the following constructions. 

HYPERMAGIC CONSTRUCTIONS 

In what follows, when it is mentioned that sets of numbers (in this case each set contains 16 two-digit numbers) 
are equal in sum, this will mean that they have the same sum of kth powers for k= 1,2 and 3. 

We also point out that each row in every one of the eight squares has two numbers that end in a, two numbers that 
end in b, two numbers that end in c, and two numbers that end in d. 

I 
II 

III 
IV 
V 

VI 
VII 

VIII 
IX 
X 

XI 
XII 

1 
2 
2 
3 
4 
4 
5 
6 
6 
7 
8 
8 

1 

2 
1 
7 
4 
5 
3 
6 
3 
5 
8 
7 
1 

2 

3 
4 
4 
1 
2 
2 
7 
8 
8 
5 
6 
6 

3 

4 
3 
5 
2 
7 
1 
8 
1 
7 
6 
5 
3 

4 

5 
6 
6 
7 
8 
8 
1 
2 
2 
3 
4 
4 

5 

6 
5 
3 
8 
1 
7 
2 
7 
1 
4 
3 
5 

6 

7 
8 
8 
5 
6 
6 
3 
4 
4 
1 
2 
2 

7 

8 
7 
1 
6 
3 
5 
4 
5 
3 
2 
1 
7 

„_— 7 

8 = Square Number 
Figure 2 Chart 
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How to Read the Figure 2 Chart 
The numbers on the bottom of the Chart (below line Z) each denotes the number of some square in the cube. The 

number in the column above the number denoting a square denotes a row number (counting from top to bottom) in 
the particular square listed on the bottom of the column. For example: Cell (Vll,6)= 2 denotes the 8 numbers on 
row 2 to Square 6. Each of the 6 numbers on a row in the Chart represents a magic system. For example: We write 
the numbers on rowVII to get row5 in square 1, row6 in square 2, - r o w 4 in square 8. We now arrange the (result-
ing) 64 3-digit numbers so that the 16 numbers that end in a are in (say) column 1, the 16 numbers that end in b are 
in column 2, and the 16 numbers that end in c are in column 3, and the 16 numbers that end in d are (say) in column 
4. 

We first consider the first and third digit of each and every number in the 4 columns (that is cube A) and after add-
ing 1 to each pair of digits we express the 64 2-digit numbers in the scale of 10. 

We now add (in cube A) the 16 numbers in column 1 to get the sum si, 
a a a a a a a is a a *y a a a a f% 

II II II II II II II II II II q " It II II e O 

** II II II II II II II II II A II II II II A 

Then for the sum of the kth powers (for Ar = 1, 2 and 3) we haves1!:s22:s3^4 (in cube A). 
The exact relationship between the numbers in cube A also holds true for cube B (in the 2nd and 3rd digits). 
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SOIVIE FACTORABLE DETERMINANTS 

P. C. COWSUL* 
University of Calgary, Canada 

A number of computer programs for evaluating determinants of large order are available, however, these programs 
are quite cumbersome if the determinants are non-symmetric and their order is large. It is rather difficult to test out 
these computer programs on account of the presence of round-off errors. In many situations, where a researcher is 
more interested in error assessment, the problem becomes exasperating. 

To ease this problem Bowman and Shenton [1] have recently quoted a non-symmetric determinant of order (s+ 1), 
given by Painvin [2 ] , which is factorable and have used an ingenious method to show that two other determinants 
can be reduced to the sth power of a number n, which occurs in the determinant. Since there is only one number/7, 
in each of the determinants, which can be changed arbitrarily the use of these results becomes highly restricted. 

We quote below more general forms, containing two arbitrary numbers n and s, of these two factorable determin-
ants. Their proofs are not being given as they are exactly similar to the one given by Bowman and Shenton. 

(1) 

n - 2as 0 

a(2s -1) n- 2a(s - 1) 

a(1-s)/2 a(2s-3) 

0 a(2 - s)/2 

0 

0 

0 

0 

n-6a 0 0 

5a n-4a 0 

-2a/'2 3a n - 2a 

0 -a/2 a 

(-2? 
s \ (-?}s~1 

1 j ( ZS 

S2) 
(-2) s-2 

s 
s- 1 

s \ /^oiO 

(-2) 

(-2) 

= n 

It may be noted that there is no "a" in the last column. Each value of a, positive or negative or zero, gives a differ-
ent determinant, however, the value of the determinant remains unaltered by a and is equal to ns. 

*This work was done by the author while he was spending part of his sabbatical leave at the Computer Center, 
University of Georgia, Athens, U.S.A., whose help is gratefully acknowledged. 
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(2) 

n - 2 as 0 0 

2a(s -1) n- 2a(s - 1) 0 

a(1-s)/2 2a($-2) n-2a(s-2) 

0 a(2-s)/2 2a(s-3) 

0 a(3-s)/2 
0 

l-2f 
s \ (_2)s-1 

(-2) s-2 

n-6a 
4a 

-2a/2 

• 
n-4a 
2a 

. 
0 

n-2a 

0 -a/2 [•) (-2)° 

= (n-2a)s 

The value of the above factorable determinant depends upon the value of a. When n is replaced by n + 2 and a = 1, 
the above result becomes identical with Bowman and Shenton's result 

We also give here a more general form of Painvin's factorable determinant. For all values of n and a, taking either 
the upper sign or the lower sign at all places, the value of the determinant is (n + as/2f+1. 

(3) 

n 
as/2 
0 
0 
0 

. 

. 
0 

±a/2 
n +a 

+a(s - 1)/2 
0 
0 

. 
• 
0 

0 
+2a/2 
n+2a 

+a(s-2)/2 
0 

. 
• 
0 

0 
0 

-±3a/2 • 
n + 3 a 

+a(s-3)/2 • 

. 
• 
0 

0 0 
.. 
.. 
.. 

o 
- n + (s- 2)a +(s - Va/2 
•• +.2a/2 n + (s- 1)a 

0 +a/2 

0 
0 
• 
• 

0 
0 

dsa/2 
n + sa 

- ( • • * ) 
s+1 

Evidently, when a = -1, and we take the lower sign, the above reduces to Painvin's result 

Proof. Letr denote the number of the row. If the respective rows are multiplied by 1-1) , r* 1,2, —, s+1 

and added into the first row, then (n + as/2) comes out as a common factor leaving 1 , - 1 , •••, (-1)s~ as the ele-
ments. The order of the determinant can be now reduced by unity by multiplying the new first row by t+las/2) and 
subtracting it from the second row. 

In the second operation the respective TOWS are multiplied by (-1)r~1 ( rA , r= 1, 2, —, s and added to the first 
row to give another (n + as/2) as a common factor. The order of the determinant can again be reduced by unity i*y 
multiplying the new first row by +a(s - 1)/2 and subtracting it from the second row. 

In the third operation the respective rows are multiplied by (-1)r~1 ( r +
2

 1 ) , r= 1, 2, —, s - 1 and added to-
gether to give another factor (n + as)/2) and then reduction of the order follows the above procedure. 

Repeating these operations (s - 4) times more, one can easily find that the given determinant reduces to 

(n + as/2) s-1 
±a/2 

+s2a/2 
n+sa 

which gives our result. 
REFERENCES 
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NOTE: The author offers a reward of $25 for non-trivial generalizations of the three results in (1), (2) and (3). 



FIBONACCI TRIANGLE 

HARUOHOSOYA 
Department of Chemistry, Ochanomizu University, Bunkyo-Ku, Tokyo 112, Japan 

1. DEFliyiTlOiy 
The Fibonacci sequence | fn I is defined by the recursive relation 

(1-D fn = fn-1+fn-2 
with 
(1.2) f0 = fx = /.* 

Let us define the set of integers | fm,n } with two suffices 

(1-3) fm,n = fm-tn* fm-2,n 

(1-4) fm,n = fm-1,n-1 + fm-2,n-2 
with 

(1.5) f0,0= ff,0= fl,1 = f2,1 = 1-

These numbers can be arranged triangularly as in Fig. \ 

(m > 2, m > n > 0) 

1 
1 1 

2 1 2 
3 2 2 3 

5 3 4 3 5 
8 5 6 6 5 8 

13 8 10 9 10 8 13 
21 13 16 15 15 16 13 21 

34 21 26 24 25 24 26 21 34 
55 34 42 39 40 40 39 42 34 55 

Figure 1. Fibonacci Triangle 

* Another set of the initial values can be chosen as 
(1.2') f0 = Q, fx = 1. 
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where the entries in a row have the same/7? and line up according to the value of/? (O-m) from left to right. 
Let us call them the Fibonacci Triangle.* A number of interesting relations were found, part of which will be given 

in this paper. 
2. RELATION WITH THE FIBONACCI NUMBERS 

As evident from the definitions (1.3)—(1.5) we have four Fibonacci sequences in the Triangle; 

(2-1) fm,0 ~ fm,m = fm 

(2.2) fmfi = fm,m-1 = fm-1 • 

Successive application of (1.3) to itself gives the following relation 

(2.3) fmfn = fk-fm-k,n + fk-1-fm-k-1,n (1 < k < m-n-1). 

By putting k = m - n - 7 into (2.3) one gets 

(2.4) fm/n = fm-n- l'fn+1,n + fm-n-2'fn,n 

(from (2.1) and (2.2)) 
= fn (fm-n-1 + fm-n-2^ • 

It follows then that 

(2.5) fm,n = fm-n-fn (m > n > 0). 

It means that the Fibonacci Triangle is constructed by the selfcmultiplication of the Fibonacci sequence, or 
symbolically, 

(2.6) | fm,n } = \ fm } X { fn \ . 
In other words the Fibonacci Triangle is the 2-dimensional Fibonacci sequence. Then extension to the ^-dimensional 
Fibonacci sequence 
( Z 7 ) { fml,m2,-,mk } = {fm,} X j fm% \ X - X j fmj< } 

is straightforward, but we will not duscuss them further. 
It is proved from (2.5) or (2.6) that the Fibonacci sequences multiplied by the Fibonacci numbers are seen in the 

Triangle alongside of the "roof." That the Triangle is symmetric, 

(2.8/ fm,n = fm,m-n * 

is directly proved from (2.5). On the center line of the Triangle the squares of j fn \ are lined up, 

(2.9) fm,m/2 = (fm/2)2 (™ = even). 
Application of the Binet's formula 

(2.10) fn = (an+1 - (3n+1'j/y/s 

a-(1 + ^5)/2, P=(1-y/5)/2 

to (2.5) gives 

(2.11) fm,n = 1 (am+2 + $m+2) + (- t)n(am-2n + f3m~2n) } /S. 
The Lucas sequence | gn }•, which is defined by 

(2.12) gn = gn-1+9n-2 
with 
(2.13) g0 = Z gx = 1, 
is expressed as 
(2.14) gn = an+$n. 
Thus one gets 

*The author noticed that the term "Fibonacci Triangle" is used for quite a different array of integers. [1] . 
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(2.15) fm,n=\Bm+2+{-Vngm-2n\/5 

(2-16) ={9m+2+(-1)m-nQ2n-m\'/S. 

In deriving (2.16) the following relation 
(2.17) g„n = (-1)ngn 

was used. 
3. MAGIC DIAMOND 

As all the entries in the Triangle are generated from four one's (1.5) forming a diamond, any quartet (fmfn, fm-1/ir 
fm-l,n-u fm-2,n-i) ' n t n e Triangle generates the nearest neighbors to the four corners and will be called as a "magic 
diamond." 

Application of (1.3) into (1.4) gives "downward generation" 

(3-D fm,n + fm-1,n + fm-1,n-1 + fm-2,n-1 = fm+2,n+1 } 

m illustrated in Fig. 2a. Similarly one gets "upward generation" 
(3-2) fmrn - fm-1,n ~ fm-1,n-1 + fm-2,n-1 = fm-4,n-2 

as in Fig. 2b. 
"Leftward generation" and "rightward generation" (Figs. 2c,d) are obtained respectively as 

(3.3) fmfn + fm-1,n ~ fm-1,n-1 ~ im~2,n-1 = fm-1,n-2 
and 
(3.4) fmfn - fm> ifn + fm- i/n- / - fm-2,n-1 = fm- 1,n+1 • 

DOWN UP LEFT RIGHT 

From (2.5) one gets 
(3.5) 

Figure 2. Magic Diamond 

fm,n'fm-2,n-1 " fm-1,n-1'fm-1,n 



176 FIBONACCI TRIANGLE [April 

or 
(3.6) fm,n * fm~1,n * fm-1,n-1 X fm-2,n-1 = h 

which shows the stability of the "magic diamond" (see Fig. 3). 
It is verified from (2.5) that the four numbers at the corners in any parallelogram are stable like an "Amoeba." 

(3-7) fm^n • fm~k-Sl,n~k = fm-kfn-k ' fm-Sifn • 

Figure 3 Amoeba 

4. CRAWLING CRAB 

The sum of the three entries in any downward triangle (fm n, fm-j nt fm-1 n-1) o r a "Crab" is kept constant as 
long as the Crab crawls sideways teee Fig. 4a), 

(4.D fm,n + fm-1,n + fm-1,n-1 = fm,Z +fm-1tZ + fm-1,l-1 (m - 1 > n. S. > 1). 

Proof. From (1.3) and (1.4) one gets 

(4-2) fm+1,n = fm,n + fm-1,n = fm,n-1 + fm-1,n-2 

and 

W-3) fm,n + fm- 1fn
 + fm- 1,n-1 = fm,n-1 + fm- 1,n-2 + fm- l,n-1 • 

This relation is transmitted along a given row/7? and yields (4.1). 
It is easy to derive from (4.1) the following relation 

W.4) fm,n + fm. itn + fm~ 1ell-1 - fm+ / • 

Application of (1.3) to (4.4) gives 

(4.5) fm+1,n + fm-1,n-1 = fm+1-

Combination of (4.4) and (4.5) with proper shift of suffices one gets the transmission property pertinent to an up-
ward triangle (Fig. 4b), 

(4-6) fmfn + fmfn-1 ~ fm- 1,n-1 = fm • 

5. ROLLING DUMBBELL 

The relation (4.5) means that the sum of any two vertical neighbors in the Fibonacci Triangle is kept constant for 
a horizontal movement. Add up the both sides of the two equations derived from (4.5) by substituting (m = m + 2, 
n=n + 1) and (m = m -2, n = n - 1), subtract (4.5) from the sum, and one gets 

(5.D fm+3,n+1 + fm-3,n-2 = fm+2 + fm-1 = 2fm+i. 
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Figure 4. Crawling Crab 
More generally one gets the "Rolling Dumbbell" relation (Fig. 5a) 

(5.2) fm+2k+1,n+k + fm-2k-1,n-k-1 = hk'fm+l = fm+2k+1,m+1 

(from (2.5)). 
By putting m = m - 2 and n = n - / in to (4.5) one gets 

(5.3) fm- y//7„ 7 + fm-3,n-2 = fm-1 -

Subtraction of (5.3) from (4.5) followed by substitution m = m + 1 and n = n + 1 gives 

(5.4) fm+2,n+1 ~ fm-2,n-1 = fm+1 • 

This is extended to the expression 

(5-5) fm+2k,n+k- fm-2k,n-k = hk-l'fm+l = fm+2k,m+1 . 

which is illustrated in Fig. 5b. 
6. RELATION WITH THE TOPOLOGICAL INDEX 

The present author has defined the topological index ZQ for characterizing the topological nature of a non-directed 
graph G [2 ] . Anon-adjacent number p(G,k) for graph G is defined as the number of ways in which k disconnected 
lines are chosen from G; p(G,Q) being defined as unity for all the cases. The topological index ZQ is the sum of Ihe 
p(G,k) numbers. 

It is shown [2] that the non-adjacent numbers and the topological index of a path progression S/v* are given by 

(6.1) 

(6.2) 
[N/2] , 

k=0 

The topological index of a series of path progressions recurses, 
(6-3) ZSN = ZSN^+ZSN^2 , 

as the Fibonacci sequence (1.1). This is a special case of the composition principle (a recursion formula) of ZQ, 

(6.4) ZQ = ZQ^+ZQ®^ 

*A path progression S/\/ is a graph composed of linearly connected N points. A point is S1 and a line joining a pair 
of given points is S2 and so on. 
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Figure 5. Rolling Dumbbell 

where G - c is a subgraph of 6 derived from G by deleting line fi, and G 8 c is further derived from G - c by deleting 
all the lines which were adjacent to line c in £ 

In Fig. 6 a graphical equivalent of the Fibonacci Triangle is given, where the "roofs" are omitted owing to their re-
dundancy. Note, however, that in this case (1.3)—(1.5) should read 

(1.3') 
(14') f = f * , + f o o (m > 3, m- 1 > n > 1) 

'm,n ~ 'm- 1,n + 'm-2,n 

m,n ~ fm- 1,n-1 + fm-2,n-2 

(1.5') fU = I f2,1 = fl,2 = 2, f2,2 = 4. 

Except for the difference in the boundary conditions all the relations pertinent to the Fibonacci Triangle hold for 
the topological indices of the trangle array of the graphs in Fig. 6. 
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/ \ 

/ A A \ 
/ A A A \ 

/ ' A AAA, \ 
Figure 6. Graphical Equivalent of Fibonacci Triangle 
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A CONJECTURE RELATING QUARTIC RECIPROCITY 
AND QUARTIC RESIDUACITY TO PRIMITIVE PYTHAGOREAN TRIPLES 

LARRY TAYLOR 
85-22 144th Street, Briarwood, New York 11435 

CONJECTURE 

(a) If 
p = a2 + b2 = 1 (mod 4) 

Is prime, q = 1 (mod 8) is prime with (p/q) = 1, and (x,y,z) is a primitive Pythagorean triple, then either a2 = x2 

with b2 = y2 (mod q) for some (x,y) and a2 = -x2 with b2 = -y2 (mod 7) for other (x,y) ox a2 £ ±x2 with 
b2 = ±y2 (mod #) for any 60W/ 

(y/p/dify/g/p) = 1 

if and only if the first alternative is true, in which case 

(z/qHJq/p) = 7. 

(b) \iq = 5 (mod 8), then either a2 = x2 with b2 = y2 (mod 2#) for some (x,y) and a2 = # - x 2 with Z/2 = 
q - y2 (mod 2#) for other (x,y) or c?2 = -x2 with Z;2 E= - y 2 (mod 2q) for some (x,y) and a2 = q +x2 with 
b2 = q+y2 (mod 2 7) for other (x,y); 

(y/p/q)(y/q/p) = 1 

if and only if the first alternative is true, and 

(z/qHJq/p) = 1 

if and only if a = x (mod 2). 

(c) lf<7s=3 (mod 8), then a2 = x 2 with Z;2 = y2 (mod 2q) for some (x,y) and a2 3= q +x2 with Z?2 =q+y2 

(mod 2#) for other fc/A" 

(z/q)(J=q/p) = 1 

in the first case and 

(-z/qHsP-q/p) = 1 

in the second case. 

(d) \f q = 7 (mod 8), then a2 = x2withZ?2 = j / 2 (mod #) for some fcW and 

(z/q)(y/=q/p) = 7. 

In the following examples, (x,y,z) is the smallest primitive Pythagorean triple that satisfies the congruence: 

180 
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p = a% +h2 (x,y,z) q or2g 

5 = 1 + 4, (21, 20, 29) 
(12,35,37) (mod 22); 
(77, 36, 85) 
(20,21,29) (mod 38); 

(57,176,185) 
(12,5,13) (mod 58); 

(435,308,533) (mod 31); 
K-,-) 
( - , - , - ) (mod 41); 

29 = 25+ 4# (5, 12,13) 
(20, 21, 29) 

41 = 25 + 16, (5,12,13) 
(20, 21, 29) 

101 = 1 + 100, (21,20,29) 
(12,5,13) 

109 = 9 + 100, (21,20,29) 
(12,5,13) (mod 10); 

13 = 9+ 4, (3,4,5) 
(12,5,13) (mod 6); 

{ - , - . - ) (mod 17); 
(20, 21, 29) (mod 23); 
(7, 24, 25) 

(84,437,445) (mod 58); 
17 = 1+ 16, (21,20,29) 

(12,35,37) 
29 = 25+ 4, (77,36,85) 

(8,15,17) (mod 26); 
17 = 1+16 , 139,80,89) 

(20,99,101) (mod 38); 
53 = 49+ 4, (112,15,113) 

(40,9,41) 
149 = 49+100, (7,24,25) 

(45,28,53) (mod 17); 
41 = 25+ 16, (615,728,953) 

(116,837,845) (mod 122); 
61 = 25+ 36, (87,416,425) 

(45,28,53) (mod 41). 



ADVANCED PROBLEMS AND SOLUTIONS 
Edited by 

RAYMOND E. WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 1774S 

Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathematics 
Department, Lock Haven State College, Lock Haven, Pennsylvania 17745. This department especially welcomes 
problems believed to be new or extending old results. Proposers should submit solutions or other information that 
will assist the editor. To facilitate their consideration, solutions should be submitted on separate signed sheets with-
in two months after publication of the problems. 

H-261 Proposed by A. J. W. Hilton, University of Reading, Reading, England. 

It is known that, given k a positive integer, each positive integern has a unique representation in the form 

•-(r) •(£;)*-(?) 
where t = t(n,k), a,- = a/(n,k), (i = tf —, k), t > 1 and, if k > t, a^ >a^i> —>at. Call such a representation the 
k-binomial representation of n. 

Show that, \\k>2,n = r + s, where r>1,s>1 and if the /r-binomial representations of r and s are 

'-(!') *(£7)~(t) • «-(?)•(£',)*-(?) 
then 

UM£jM.- ' . ) <(**»)*(£; M .-*•») * (•»)• fc )-* (,*,) 
H-262 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 
Lp2 = / (modp2) *± Lp s 7 fmod/?2A 

//-2£? Proposed by G. Berzsenyi, Lamar University, Beaumont, Texas. 
2 2 

Prove that £ 2 m / ? = 4 fmod Lm) for every /?,/?? = /, 2, 3, - . 

SOLUTIONS 

WFFLE! 

//-2?4 Proposed by R. £ Whitney, Lock Haven State College, Lock Haven, Pennsylvania. 

Suppose an alphabet, A = j x x , x2 / x3 / — | , is given along with a binary connective, P (in prefix form). Define a 
well formed formula (wff) as follows: a wff is 

(1) x,fori = 1, 2, 3, - , o r 
(2) \\AUA2 are wffsr then PA ^ 2 is a wff and 
(3) The only wf f s are of the above two types. 
A wff of order n is a wff in which the only alphabet symbols are xx,x2, —,xn in that order with each letter occur-

ring exactly once. There is one wff of order 1, namelyxx. There is one wff of order 2, namely Pxxx2. There are two 
wffs of order 3, namely PxxPx2x3 md.PPxxx2x3, and there are five w f f s of order 4, etc. 

182 
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Define a sequence i Gj I ~ 
as follows: 

Gj is the number of distinct wffs of orders 

(a). Find a recurrence relation for | Gj I Jl1 and 

(b). Find a generating function for i Gj I T . 

Solution by P. B rue km an, University of Illinois at Chicago, Chicago, Illinois. 

Let Fk denote any arbitrary wff of order k In order to form Fn (n = 2, 3, — ) , we need to apply P to all possible 
distinct "products" of the form FkFn.k,(k = 1,2, - , n - 1). Hence, we obtain the recursion: 

n-1 

(a) Gn = £ GkGn.k, n = 2,3,4, - , with G7 = 1 . 
k=1 

The above recursion is the well known relation which yields the Catalan numbers, defined by: 

(?) (b) Gn+1 = JLZLJL; thus, (GJ = (1 ,1 ,2 ,5 ,14 ,42 ,132 ,429 , - ) . 
n + 1 

We shall give a brief derivation of (b) from (a), using generating functions. Let us define the generating function for 
the Gn's: 

oo oo 

(D y = Z G"+i x" • E 6^""' -
then 

n+1 °° A?—/ 

K2 L ^ E Gk+iG„-k+j - E ^ E <?*<w* - E *n~2 E ^^n-

- E en*"" 
A7=2 

using (a). Hence, 

n-2 

(using (D). Thus,/ is a solution of the quadratic equation 

(2) xy2-y+1 = 

Solving the quadratic, we obtain two solutions: 

(2) xy2-y+ 1 = 0; we note that y(O) = 6 / = 1. 

y 2x 

The positive sign must be rejected, since this solution is not defined atx = 0. Thus, y = [1 - (1 - 4x) 2]/2x; it is 
easy to verify, by L'HospitaTs rule, that \'mQy = I Expanding this expression by the binomial theorem, or other-
wise, we fi nd 

y-i-it (n) ^n - - i f (?) w -2±{n *,) w • 
n=0 n=1- n=0 
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Comparing coefficients with (1)f we have: 

Gn+1 - 2 ( „ * , ) (-4)" - 2.%. ±±1 -(-4)" - ± * | , 
which establishes (b). 
>4/s0 sa/i/etf />/ A Shannon, R. L Goodstein, and the Proposer. 

SUM DIFFERENTIAL EQUATION! 
H-235 Proposed by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

a. Find the second-order ordinary differential equation whose power series solution is 
oo 

£ Fn«xn • 
n=0 

b. Find the second-order ordinary differential equation whose power series solution is 
OO 

E Ln+1*n • 
n=0 

Solution by A. G. Shannon, University of New England, Armidale, N.S.W. 

Consider {//„} ; Hn - Hn- / + Hn-2 

and \^n\ = Fn when / / ; = H2 = 1 

and \Hn\ = Ln when H1 = 1, H2 = 3. 

Let Y = y(x). 
Then 

00 00 00 

y = E Hn+lX" a n d ^ = E (n+DHn+2x
n and y " = E (n + D(n + 2)Hn+3x

n. 
n=0 n=0 n=0 

Thus 
00 00 00 

fr2 + x - 1fy" + 2(2x + 1)y' + 2y = £ /ifo - 1)Hn+1x
n + £ nfo + t)Hn+2x

n - £ fa + W/j +2)Hn+3x
n 

n=2 n=1 n=0 

00 00 OO 

+ 4 2 ] nHn+1x
n+2^ (n+t)Hn+2x

n+2Yl
 Hn+1x" 

n=1 n=0 n=0 

OO 

= E fo2* *" +2)(Hn+1 + Hn+2 - Hn+3)x
n . 

n=2 

Thus 
(x2 +x- 1)y" + 2(2x+l)y' + 2y = 0 fox all { / / „ } . 

/I/ft? stf/i/e /̂ by P. Bruckman, F. D. Parker, and the Proposer. 

SUM PRODUCT! 
H-236 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 
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<1> D f-/;va-f; ^- n n-xk), 

where M * = (1 - x)(1 - x2)-(1-xk), (x)0 = 1. 

Solution by P. Bruckman, University of Illinois at Chicago, Chicago, Illinois. 

We begin with the well known Jacobi "triple-product" formula: 

(1) 5 (1+x2r-1w)(1+x2r-1w-1)(1-x2r) = Y xn2wn = l + Y; x"2(wn + w-n); 
r=1 iL-^ . 

n=-<x> n=1 

the following treatment is formal, and avoids questions of convergence, but it may be shown that the manipulations 
are valid in the unit disk |x| < 1. Setting w= - / in (1), the left-hand side becomes: 

r=1 r-1 £ (1+xr) 

- 5 SLzlD. . 
f (1+xr) 

Hence, we obtain the identity 

(2) n [LixL\=-1+2 V (-Wx* = J - 2 T (-1)nx(n+lP 

r=1 \1+Xr I n=0 n=0 

Next, we will establish the following identity: 

(3) n (is*)-1 -Y. rf- < 
where 

(x)0= L (x)n = (1-x)(1*-x2)-(1-xn), n= 1,2,3,--
Letting 

f(w,x) = 5 (1-Xrwf1 « YJ An(*)wn * 
r=1 n=0 

we first note that f(0,x) = 1 = Ad (x); also, we observe that 

f(wx,x) = 5 (1-xr+1w)~1 = 5 (1-xrw)"1 = (1-xw)f(w,x). 
r=1 r=2 

Hence, by substituting into the series form, we obtain the recursion: 
xnAn(x) = An(x) -xAn-i(xJ, n = 1,2,3, - , A0(x) = 1, 

i.e., 
An(x) = x/(1-xn)An.1(x). 

By an easy induction, we establish that An(x) = xn/(x)n for all n, where (x)n is defined in (3). This establishes (3). 
If, in (3), we replace w by -w, we obtain: 
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(4) 5 n+M'-Y.z^Tpe- . 

Adding, and then subtracting, both sides of (3) and (4), we obtain: 

(5) n (l-xrwr'+Il tt+x'wf1 = 2Y. JL-rr— 

and 

(6) n a-xrwr1- n a+xrw)'1 = 2T —7-T^ 
r=1 r=1 n lx>2n+1 

n=u 
If, in (5) and (6), we set w = 1, and multiply throughout by 

5 (1-xr), 
r=1 

we obtain: 

. . . . / " . «2n 
(7) " "5 ( ^ ) ^ L ^ 5 (1-*') 

n=0 
and 

(8) -
°° f l - y r \ — , , ,2^7 <*> 

/ - n (7—x- ) = 2 y -A— n a-xr) 
r~1 X1+Xrl t?n (x)2n+f r=1 n=0 

Now if, in (7) and (8), we substitute the expression obtained in (2) for the infinite product on the left-hand side, 
simplify and divide by 2, we obtain the desired results: 

(9) £ (-1)nx"2 = E TT- n <1-xr). 
„= 0 n=0

 M2n r=1 

and 

>4/s0 stf/i/gtf by P. Tracy and the Proposer. 

SUM RECIPROCAL! 

H-237 Proposed by D. A. Miller, High School Student, Annville, Pennsylvania. 

Prove 

~ F.lr 2 ' k=0 2k 

Editorial Note: A solution to this problem appears in a note (accepted Feb. 27, 1973)appearing in the Dec. '74 issue o 
the Quarterly, p. 346. 

Solution by A. G. Shannon, University of New England, Armidale, N.S.W. 

Let °° 2
k~1 

FM - D *1 
k=1 2

k 
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Then 
oo 9k-1 9k-i 

F(ax) = J2 SL—T— 
k=1 2

k 

and so 
00 oAr-7 ~k-1 , * , 

Z n2 4-a2 l, 1 °° Ok'1 °° Ok 

±—p— x
2k-1. v ^ _ „_ v | f „ . X+F(x.)m 

k==0 2" fa F
2k-i £?o V 

x + F(x2) = F(ax) + F($x). 

-f} + F(p) = F(-p) + F(-a&) 

F(V = -P + 2P2 

a& = -1 

F(P2) = F(-^) + 2^ . 

0 0 

k=0 2
k 

= 7-/3 + 2$2 

= 2-(1 + $-$2) + $2 

= o + (3-J5) - 7-J5 
2 2 ' 

Also solved by I. J. Good (see note), J. Shalf/t, W. Brady, P. Bruckman, F. Higgins, L Carlitz, and the Proposer. 

Editorial Note. Kurt Mahler reports 

is transcendental. 

So 

Put* = -j3; 

or 

since 

and 

Thus 



ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited By 

A, P. HtLLMAN 
University of New Mexico, ASbuquerque, New Mexico 87131 

Send all communications regarding Elementary Problems and Solutions to Professor A. P. Hillman; 709 Solano Dr., 
S. E.; Albuquerque, New Mexico 87108. Each solution or problem should be on a separate sheet (or sheets). Prefer-
ence will be given to those typed with double spacing in the format used below. Solutions should be received within 
four months of the publication date. 

DEFECTIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 7 and Ln+2 = Ln+1 + Ln, L0 = 0, L1 = I 

Also a and b designate the roots of (1 + V5 )/2 and (1 - V5 )/2, respectively, of x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THSS ISSUE 

B-328 Proposed by Walter Hanseli, Mill Valley, California, and V. £ Hoggatt, Jr., San Jose, California. 

Show that 
6(12+22 +32 + -- + n2) 

is always a sum 
m2 +(m2 + 1) + (m2 + 2) + -+(m2 +r) 

of consecutive integers, of which the first is a perfect square. 

B-329 Proposed by He rta T. Pre/'tag, Roanoke, Virginia. 

Find r, s, and fas linear functions of/? such that 2P2
r- FsFt is an integral divisor of Ln+2 + Ln for/7 = 1,2, ••». 

B-330 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas. 

Let Gn = Fn+29Fn+4+Fn+8 -

Find the greatest common divisor of the infinite set of integers j G0, Gu G2, - t -

B-331 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas. 

Prove that F%n+1 s ; (mod 24>-

B-332 Proposed by Phil Man a, Albuquerque, New Mexico. 

Let a(n) be the number of ordered pairs of integers (r,s) with both 0 < r<s and 2r + s = n. Find the generating 
function A(x) = a(0) +xa(1) +x2a(2) + .... 

B-333 Proposed by Phil Mana, Albuquerque, New Mexico. 

Let Sn be the set of ordered pairs of integers (a,b) with both 0\<a <b and a + b <n. Let Tn be the set of ordered 
pairs of integers (c,d) with both 0 <c <d <n and c + d > n. For n > 3, establish at least one bijection (i.e., 1-to-l 
correspondence) between Sn and Tn+f. 

SOLUTIONS 
SO BEE ST 

B-304 Proposed by Sidney Kravitz, Dover, New Jersey. 
According to W. Hope-Jones'The Bee and the Pentagon/' The Mathematical Gazette, Vol. X, No. 150, 1921 (Re-

printed Vol. LV, No. 392, March 1971, Page 220) the female bee has two parents but the male bee has a mother 
188 
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only. Prove that if we go back/7 generations for a female bee she will have Fn male ancestors in that generation and 
Fn+] female ancestors, making a total of Fn+2 ancestors. 

Solution by Sister Marion Beiter, Rosary Hill College, Buffalo, New York. 

The proof is by induction, let P(n) be the statement of the problem. P/W holds for/7 = /. 
One generation back a female bee will have Fi = 1 male ancestor and Fj.+1 = 1 female ancestor, a total of Fl+2 = 2. 

UP(n) holds for n = k, it holds for n = k+ 1: 
If we go back k generations for a female bee she will have F^ male ancestors in that generation and F^+i female 

ancestors, making a total of F^-^2ancestors. 
Then if we go back k + 1 generations, she will have F^+i male ancestors (from the F^+f females in the kth genera-

tion), and Fk+2 female ancestors (from the total F^+2 ancestors in the kth generation). This makes a total of F^+j 
+ Fk+2 = Fk+3 • Hence, P(n) holds for all natural numbers n. 

Also solved by George Berzsenyi, Paul S. Bruckman, Herta T. Freitag, Graham Lord, A. G. Shannon, and the Proposer. 

A TELESCOPING SUM 

B-305 Proposed by Frank Higgins, North Central College, Napervil/e, Illinois. 

Prove that 
n 

F8n = L2n Yl L2n+4k-2 • 
k=1 

Solution by Graham Lord, Universite Laval, Quebec, Canada. 

The following steps use standard identities: 

n n 

L2n 5 3 L2n+4k-2 = L2n ( 5 3 \F2n+4k-2+2~ F2n+4k-2-2 \ J 
k=1 k=1 

= L2n(F6n~ F2n) = L2n'F2n'Un 

= F4n'L4n = Fsn « 
Also solved by George Berzsenyi, Wray G. Brady, Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, C. B. A. Peck, 
Bob Prielipp, Jeffrey Shallit, A. G. Shannon, and the Proposer. 

SOMETHING SPECIAL 

B-306 Proposed by Frank Higgins, North Central College, Naperville, Illinois. 

Prove that 
n 

F8n+f~ 1 = L2n /2, ^2n+4k-1 • 
k=1 

Solution by George Berzsenyi, Lamar University, Beaumont, Texas. 

For generalized Fibonacci numbers defined by letting //#and / / ; be arbitrary integers and Hn = / / „ _ ; + Hn^2^ 
n > 2, it is known that 

n 

5 3 H4k-1 = F2n^2n+1 • 
k=1 

(See, for example, Identity (9) in Iyer's article, FQ, 7 (1969), pp. 66-72;) More generally, 

n 

/ M ^2n+4k-1 = F2nH4n+1 • 
k=1 
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Specializing this identity to Lucas numbers and using (ln) and (/24) of Hoqqatt's Fibonacci and Lucas Numbers, one 
obtains 

n 
L2n 5 3 L2n+4k-1 = ^2nF2nUn+J = F4nL4n+1 = F8n+1 ~ 1> 

k=1 

Also solved be Wray G Brady, Paul S. B rue km an, Herta T. Freitag, Ralph Garfield, Graham Lord, C. B. A. Peck, Bob 
Prielipp, Jeffrey Shallit, A. G Shannon, and the Proposer. 

MODULARLY MOVING MAVERICK 

B-307 Proposed by Verner E. Hoggatt, Jr., California State University, San Jose, California. 

Let 
(1+x+x2)n = anfo + ang1x+ant2X2 +-, 

(where, of course, antk = 0 for k > 2n). Also let 
OO OO OO OO 

An = ^ L , an,4j, Bn = 2_^ a„f4j+i, Cn =zL an,4j+2, Dn = 2 j an,4j+3 • 
1=0 j=0 j=0 j=0 

Find and prove the relationship of An,Bn, Cn and Dn to each other. In particular, show the relationship among these 
four sums for n = 333. 

Solution by George Berzsenyi, Lamar University, Beaumont, Texas. 

One may easily prove by induction on/7 that the trinomial coefficients^^ satisfy the recursion formula 
an,k - an- 1,k-2 + an- 1,k-1 + an- 1,k 

for/7 > 0 with initial values 
f 1 if k = 0 

aO,k = I 0, otherwise . 

By lettingx = 1 in the defining equation one may also deduce that 

This last fact and two applications of the recurrence relationship readily yield the following identities for/? >2: 

An= 2-3n-2 + Cn-2, Cn = 2-3n-2 + An.2. 

Bn = 2-3"-2 + Dn-2. Dn = 2-3n~2 + Bn.2 . 

Iteration on n, upon summation of the resulting geometric series, yields the following formula for each 

Xe{A,B,C,D\, m e \o, 1,2,3,] , n = 0,1,2,-: 

X4n+m = y434n+m-3m)+Xm. 

Less compactly, but more in the spirit of comparison one finds 

B4n = C4n = D4n = A4n- 1, B4n+1 = C4n+i = A4n+1 = D4n+1 + 1, 

R4n+2 = D4n+2 = ^4n+2 = C4n+2~ *, ^4n+3 = ^4n+3 = &4n+3 = B4n+3+ * > 

for each n = 0, 1, 2, — , In particular, 

^333 = * . . . = ^333 * D^ + 1 = %(3™ + 1>. 

Also solved by Paul S. Bruckman, Herta T. Freitag, Graham Lord, David Zeitlin, and the Proposer. 
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A GARBLED HINT 

B-308 Proposed by Phil Mana, Albuquerque, New Mexico. 

(b) Let r be a real number such that cos (m) = p/q, with p and q relatively prime positive integers and q not in 

J1, 2,4, 8, ••• |. Prove that r is not rational. 
[The (a) part has been deleted due to an error in i t ] 

Solution by Paul S. Bruckman, University of Illinois, Chicago Circle, III. 

(b) We first recall the multiple-angle formula from trigonometry: 

in/2] 

(1) cos/?0 = # YJ (~1)k ITTk [n~kk] tfcosW"-2*, n= 1,2,3,-. 

We also recall, or we may easily show, that this is a polynomial with integer coefficients, in cos 6 . 
Suppose now that r = u/v is rational (with u and v relatively prime natural numbers), and satisfies: 

(2) cos (rir) = p/q, 

wherep and q are relatively prime natural numbers and (q,2) = 1 (i.e.,q is odd), except qf\. Mote that this restricts 
q more than in the original problem, but we will deal with the remaining values of q later. Letting 6 = m and n = v 
in (1), we get: 

lv/2] 

<-"• - -"- * ? '-"* A (v) (*p - ̂  - *=. v-2k <y\t-1„V "iv~3
n

 v"2 

v-2 
k=0 q q 

= 2v-1pv + c2M 

v-1~v J. ~2nj, „V\ _ -f.u..+ +i, v + A\*.\An /iV-1~v_L„2nl 

where M is some integer. 
Since (2,q) = (p,q) = 1, it follows that (2v"'pv + q*M, qv) = 7; but then qv cannot divide (2V~'pv + q*M), and 

their ratio cannot be (-1)u = ±1. This contradiction shows that r cannot be rational, when q is as stated above. 
Suppose now, as before, that (2) holds for some rational r, where q = 2st, (2,p) = (p,t) = (2,t) = 1,s and t are nat-

ural numbers, t > 3. As before, 

(-l)u = (2v-1pv + q2M)/qv = (2y~1 pv+ 22st2M)/2svtv . 

Since (2,t) = (p,t) = 1, the indicated ratio cannot be an integer, and we have again reached a contradiction. Hence, 
we have proved that the only possible values of q satisfying (2) are q = 1 and q = 2; this, in turn, implies that cos (rir) 
= 0, ±1/2, ±1 are the only possible values, corresponding to r = n + Y2, n ± 1/3, and n, respectively, where n is an arbi-
trary integer. This is a stronger result that originally sought. 
Also solved by the Proposer. The error in Part (a) was pointed out by Paul S. Bruckman and Herta T. Freitag. 

AN ANALOGUE OF an =aFn + Pn^ 

B-309 Corrected version ofB-284. 

Letz2 = xz + y and let k, m, and n be nonnegative integers. Prove that 

(a) zn = pn(x,y)z + Qn(x,y), where pn and Qn are polynomials inx and y with integer coefficients andpnhas de-
gree n—\ in xforn> 0. 

(b) There are polynomials r, s, and t, not all identically zero and with integer coefficients, such that 

zkr(x,y)+zms(x,y)+znt(x,y) = 0. 

Composite of solutions by David Zeitlin, Minneaspolis, Minnesota, and the Proposer. 

(a) Let UQ = 0, Uj = 1, and Un+2 = xUn+] + yUn for n = Ot 1, - . Then one easily proves by induction that 
zn =zUn + Un-i using z ^ 7 = xzk + yzk~1. 
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(b) z satisfies a quadratic equation over the field F = Q(x,y) of polynomials i n * and y with rational coefficients. 
Hence F[z] is a vector space of degree 2 over F. Thus any three powers of z are linearly dependent over F. Clearing 
denominators, gives the desired result. 

Also solved by Paul S. B rue km an and He rta T. Freitag. 

******* 


