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Bromwich [1] f p. 24, attributes the formula 

(1) _ i _ + _ * ! _ + _ * ! _ + ... + J^- * A l_ 
1-x% 1-x4 1-x* 1-x2n 1~x 1-x*n 

to Augustus de Morgan, together with the corresponding sums of the infinite series, namely x(1 - x)-1 if |*| < 1, and 
(1 - x)'1 if |*| > 1. As far as the authors know, the following generalization has not yet appeared in print. 
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To see this, note that the expression 
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 +z2mn+1
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(1-zm )(1-zm } 
is equal to the sum of all those powers ofz where the powers are multiples of m" but not multiples of tnn+ . Therefore 

(3) y _£? (1-zm (m^!l , _ j L_ (\z\<1). 
n=0 (1-Z<» )(1-z

m ) 1-Z
m 

On replacing z by y/x we obtain (2), and, on allowing N to tend to infinity we obtain, if \x\ ^ \y \, 

(A) V Ccv)mnfxmn(m-1)-vmn(m-1)] = min(abs)/x,W fm = 2 3 «J 
Z^ „ n n+1 n+1 X-y ' ' ' 
n=0 (X

m -ym )(X
m -ym ) 

where min (abs) fx,^ signifies x or ̂ depending on whether \x \ < | / |o r |x | > | / | * respectively. 
To obtain examples, let a and h be positive integers and let un be the denominator of the (n - Vth convergent of the 

continued fraction , , , 
]L A A 
a+ a+ a+ 

so that 
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(5) un - -p^L . 
j(a2+4b) 

where 
y - a + J(a2+4b) n . a-J(ar+4b) 
5 2 ' V~~ 2 

Now putx = % m&y = Vk in (2), where k is a positive integer, and we obtain 

(B) f (-HI*'''''**'**.,, , g W*"™ 
~ Ukmnukmn+1 ukmn+* 
n=u 

When £ = /the formula simplifies somewhat. When a = b= 1, then un = Fn, the /?f/* Fibonacci number. 
Some specM rases nf these formulae are 

(7) ^ + £ 1 2 ^ + 2 ^ , . . . . , (x = 2fy=hm=M))] 

(8) F - + r 1 +r- +r~ +-= 1-^Z^ (a = b = k*.1,m=2mHi),nN^—); 
rl ~2 ~4 ' 8 ' 

(9) k ^ k + k + . . . = i Z l ^ I fe-6-*-/,/»=3in«)f«yV^-A-

(where £j = 7, L2 =3, L3 =4, L4 = 7, -are the Lucas numbers), 

(10) FJL+FJL+ f± + ... = tz.s/E 
L3 L9 L21 10 ' 

OO OO 

(11) Y\ Lk3n = (J5-7)k ^ y » fAr3n = ^ 5 - 1)k 

Further generalization. Formulae (2) and (4) can be further generalized to 

M „ K. = y Xn+lYn-*nVn+1 + K m _ 
1 ' * 0 - K o f^0 <xn-Yn)(Xn+1-Vn+l) Xm-Ym ' 

where \xn\ and j ^ o } are any sequences of real or complex numbers, with xntynVn, and 
oo 

Mi l V xn+lYn-XnYn+1 = I y0/(x„ - y0) if y„/x„ - 0 
1 ' t-itXn-YnHXn+1-Yn+l) X x0/(x,-y0) ii X„/yn -* 0 ' 

/7=0 
Although (12) is more general than (2), its proof is obvious. A special case of (13), after a change of notation, is 

( 1 4 ) y Ms(n)[xs(n+1hs(n) - ys(n+1hs(n}] __ ys(m) 

, ~ fxs(n)_ys(n)j[xs(nH)_ys(n^1)j xs(m) _ ys(m) 

if \x\ > \y\ and s(n) -*• «> as n -» <*>. 
Now put A- = 5, y= r\ and we obtain 

d5) Y (-h)s(n)us(n+ihs(n) s r ^ 
~ ! Us{n)Us(n+1) Us(m) 

n-m 
and in particular 
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h~~^ra^7~M-T-) /Fs(0)-n=0 

For example , \U(n)= Fn+1, 

p° 

hi) V €n Fn - =*BL=J where e « J 1 if /? = 0 or 1 (mod 3) 

and \is(n)= Ln+1, 

(18, f JL^.^/. 

Putting s M = fa * 7^r in (16) gives 

~ F(n+i)kF(n+2)k Fj? 

Put t ing^ = (n +2)c and yn = 1 in (13) gives, after a change of notation, 

(2o> J2 — ( ^ . n i ^ i i — . -i— (C > D. 
t^2 (nc~1)((n + 1)c-1) 2C-1 

ft\VLmxn = 8<n+1)t, yn=e~(n+1)t in (13) gives 

(2D V L = _ d l 
£< cosh (2n+Vt-cosh t 2$lnh2{ ' 

Historical note. The formula 
( 2 2 ) ^ 3 = 2 ~ 4 ~ 4J4 " 4.14.194 " ' " ' 

where 14 = 42 - 2, 194 = 142 - 2, - , was drawn to the attention of I. J. Good by Dr. G. L Camm in November 
1947. (The sequence 4, 14, 194, — occurs also in tests for primality of the Mersenne numbers [4 ] , p. 235.) The 
similar formula 

(23) 

where 
m + 1 

- (r-Van r^J(l_ + _!_ + . \ 

r > I ax = 2 ^ - j , an+1 = a£-2, |30 = /, Pn = a1a2-of1 

was given in [ 3 ] ; and formula (8) in [2] and [6] . Hoggatt [5] then noticed that 

T -1-
^ Fk2» n k2" 

could similarly be summed. All these results follow from deMorgan's formula. S. J. Good noticed the generalization 
(4) in November 1947, but at that time did not see its application to the Fibonacci and similar sequences and there-
fore withheld its publication. P. S. Bruckman independently, and recently, noticed the more general formula (14). 
Alternate methods of proof appear in [7 ] . 
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ON THE HARRIS MODIFICATION OF THE EUCLIDEAN ALGORITHM 

G.J. RIEGER 
Institut fii'rMathematik, Technische Universitat Hannover, Hannover, Germany 

V. C. Harris1 (see D. E. Knuth2 also) modified the Euclidean algorithm (= algorithm by greatest integers) for find-
ing the gcd of two odd integersa>A > 1. The conditionsa = bq + r, \r\ <b, 2\r define the integersq,r uniquely. In 
case r=0, stop. In caser^O, divider by its highest power of 2 and obtain*? (say); proceed with/?, \c\ instead oia,b. 
Denote by H(a,b) the number of steps in this Harris algorithm. 

Example: 83 = 47-1+4.9, 47 = 9-5 + 2.1, 9 = 1-9; //(83,47) = 3. 
Denote by E(a,b) resp. N(a,b) the number of steps in the algorithm by greatest resp. nearest integers for a > b > 0. 

According to Kronecker, N(a,b) < E(a,b) always. In this note we prove that H(a,b) is sometimes much larger than 
E(a,b) and sometimes much smaller than N(a,b). 

Let 
L . , c0 := I cn+i = 2cn + 5 (n > 0); 

obviously 
r u . E(cn+1,cn)<5 (n > 01 
Furthermore, since , • , _ 

Cn+2 = 3cn+i - 2cn, 2\ cn (n > 0), 
the choice ak = ck/ bk = ck- / (k > 0) gives 

Theorem 1. For every integer k > 0 there exist odd integersak>bk>Q with 
E(ak,bk) < 5, H(ak,bk) = k. 

Let 
vo '= 0, v1 := 1, vn := 2vn„1 + vn-2 (n > 1); 

then_ 
ton+U Vn) = h *n < 3n"1, 2\vn ~ 2\n (n > 0). 

1 The Fibonacci Quarterly, Vol. 8, No. 1 (February, 1970), pp. 102-103. 
2 The Art of Computer Programming, Vol. 2, "Seminumerical Algorithms," Addison-Wesley Pub., 1969, pp. 300, 316 

[continued on page 200.] 



POLYmmiALSP2n+lM SATISFYING P2n+l(Fk) = F(2n+l)k 

DAVID G. BEVERAGE 
Civilian Instructor, USN Program for Afloat College Education, Chapman College, Orange, Calif. 92668 

Denote the polynomials defined indirectly and recursively by my Theorem [1] by ?2n+iM so that 

Px (x) = x, P, (x) = 5x> + 3(~ 1)kx, P5 M = 25xs + 25(- Vkx3 + 5x, 

P,(x) = 125X1 + 175(-1)kxs + 70x3 + 7(-1)kx, 

P9(x) = 5Ax9°+32-53(-1)kx1 + 33-52x5 +2-3'52(-Vkx3 +32x, 

PJx) = 55xll+5*>11(-1)kx9 + 22«53-11x1 +527.11(-1)kx5 +5211x3 + 11(-1)kx, 

PJx) = 56xl3+5513(-1)kx11 + 5513x9 + 22-3>53 13(-1)kxn + 2>527-13xs + 5-7-13(-1)kx* + 13x, 

PJx) = 5nx15 +3*51(-Vkx13 +2-3256x11 + 5611(-1)kx9 +2-325sxn + 2-33527(~1)kx5 

+ 22527x3 +3>5(-Vkx . 

Theorem [1] may be written as 

Theorem 1. 

in p2n+iM = 5°x2n+i-Y, (n
2:;is) [<-i)k+iin+i-sp2s-iM. 

s=1 

The following Theorem 2 gives an explicit expression for these polynomials: 
Theorem 2. 

n 
(OS P^ <(v\ - V K^n 1}kr (2n + 1)[(2n-r)!] 2n+1-2r 

Proof. The polynomials P3 (x) obtained by substituting n = 1 into Eqs. (1) and (2) are easily shown to be identical. 
Using the second principle of mathematical induction, assume that (1) and (2) express identical polynomials P2s+lM 
for all s <n [2 ] . Substituting the expression (2) into the right-hand side of Eq. (1), it will be shown that the resulting 
expression for P2n+i(*) is identical to that as determined by Eq. (2). Thus, Eq. (1) becomes 

p2n+iM = 5 V + 7 - £ ( / ; ; _ ' , ) [(-vk+1]n+1-sp2s-iM. 
s=1 

where 
s-7 

Pn <M = V Rs^'ryc2s'1'2f(-1)kr (2s-1)[(2s-2-r)!] 

r=0 

Rearranging terms and changing the variable of summation by t = s- r- I eliminating r, and interchanging the order 
of summation on t and s obtain: 
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(3) P2n+1M = 5"x2n+1 - £ 5U-1)kn-kt+n+1 l 2 " ( 2 t ^ r • Q. 

where 

Q = E ^i^f= (2s-1)[(s + t-1)!] 
1)!(n-s+1)!(n+s)! 

S=t+1 

Expression Q may be summed using the antidifference method as 

Q = ~(-~1)s(s + t-W s^n+1 __t-i\n+1 (-1)nTl(n + t)! 
,=tH (n-t)(2n)!(n-t-D! ' 

p2n+lM - ^ ' , E <-i^-<> 0tm^-(n+t)l 

(n— t)(n - 5 + 1)!(n + s - 1)!(s - t - 2)! 

Substituting the latter for Q in (3) above and simplifying, obtain 

(4) 

Finally, changing the variable of summation to r = n - t, and noting the first term is represented with r= 0, Eq. (4) 
becomes (2) as desired. 

Theorem 3. P(2m+ D (2n+D M = P2m+1 (P2n+1M). 
Proof. Each of the polynomials is of degree (2m + 1)(2n + 1), and since the same Fibonacci number, namely, 

F(2m+D(2n+i)k> is obtained forx = F^, k= 1, 2, 3, —, the polynomials have identical values for an infinite number 
of arguments, and thus by a well known property of polynomials, the polynomials in x are identical [3 ] . 

Theorem 4. 

(5) P2n+sM = [5x2 + 2(-1)k] P2n+3(x) - P2n+1(x) -
Proof. Substituting (1) into the right-hand member of Eq. (5) above, and multiplying by [5x2 + 2(-1)k], one 

obtains three summations: 

n+1 

E t-n+2-r, lSkr (2n + 3)[(2n + 2 - r)!] 2n+5-2r 
5 { ' V r!(2n+3-2r)! * 

n+1 
4.XT Rn+1~n *1*fr*D 2(2" + 3)[(2n +2- r)!] „2n+3-2r 

2 - , 5 (~1} r!(2n+T^2F)!~ * 

n 

E qn-r, nkr (2n + 1)[(2n - r)!] 2n+1-2r 
5 f " r!(2n+1-2r)! * 

r=0 

Replacing r by r - 1 and r - 2 in the second and third summations, respectively, each summation has the common 
factor 5n+2~r(-1)k rx 2n+5~2r

 w i th the range of summation overlapping forr = 2ton + 1 as follows: 

n+1 

E t-n+2-r, iikr (2n + 3)[(2n +2-r)!] 2n+5-2r b (~1J ~ni2n^r^jr * 
n+2 

+ V trn+2-r( i\kr 2(2n +3)[(2n + 3 - r)! 2n+5-2r 
+ l a * (-JJ T^JT!(2n + 5~2r)! * 

r=1 
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n+2 

E rn+2-n nkr (2n + 1)[(2n + 2- r)l] „2n+5-2t 
l"U (r-2)!(2n+5-2r)! X 

r=2 
Collecting the overlapping portion of the summations in a single summation and simplifying the remaining individual 
terms, one obtains: 

n+1 ( \ 

E 5n+2-r( 1}kr2n+5-2r ) (2n +3)[(2n+2- r)l] , 2(2n+3)[(2n+3 -r)!] (2n+1)[(2n+2- r)f] [ 
^2 ) r!(2n + 3- 2rH (r- 1)!(2n +5-2r)\ ~ (r- 2)!(2n +5- 2r)l I 

(6 ) +Sn+2x^^ + Sn+U-1)k(2n + Shc^+3 + (2n+5)(^1)knx. 

The expression within the brace of Eq. (6) becomes 
(2n + 2-r)![(2n+3)(2n + 5-2r)(2n+4-2r) + 2r(2n + 3)(2n+3-r)-r(r-1)(2n+1)] 

r!(2n+5-2r)I 

= !??+l~-)rT7 ttn* +48n2+ 94n - 8m2 - 34m + 2r\n + 5r* - 35r + 60] 
r!(2n + 5- 2r)l 

= , / ? ? ? " ? . , [<2n+5H2n+4-r)(2n+3-r)l « {2" + ?,{li2"+*Z!,)U -r!(2n +5- 2r)l r!(2n + 5-2r)f 

Substituting this simplified result for the brace in (6) and noting the three individual terms in (6) from the summa-
tion general summation term with r= 0, 1, and n +2, respectively, Eq. (6) becomes P2n+sM as expressed by (2). 

Theorem 5. 
(7) [5x2 + 4(~1)k]P'2n+lM + 5xP'2n+iM- 5(2n + 1)2P2n+lM = 0 . 

Proof. Differentiating (2) and substituting into the left-hand member of (7), multiplying the binomial [5x + 
4(-1) ] appropriately in (7) to form two summations and changing the index of summation r to r- 1 in the sum-
mation formed from 4(-1)kP'2n+i(x), one obtains four summations with like general terms inx with the range of 
summation overlapping from r= 1 to n - I Factoring out the common factors, the left-hand member of (7) becomes 

y .5^"U2n + 1M:Vkr(2n-r)l I (2n_2r + J)(2n_2r) + 4r(2n.r+1) +(2n+l-2r)- (2n +I)2 \x2n+1~2r 

L^t r! (2n - 2r+ 1)1 < ' 
r=1 
+ 5n+1(2n + 1)[(2n)!]x2nH

 + 5(-1)kn(2n + 1)[(n + 1)!]4x + 5n+1 (2n+1)[(2n)!]x2n+1
 + 5(-1)kn(2n+1)[n!]x 

Of (2n - 1)1 (n - D! 1! 0! (2n)f n! 0! 

5nH(2n+1)3[(2n)!]x2n+1 __ 5(-1)kn(2n + 1)2(n!)x 
01 (2n + 1)! nf 1! 

The expression within the brace of the summation is easily shown to be zero, and the remaining six individual terms 
are easily shown to be zero also. 

Theorem 6. The polynomials P211+1M satisfy 

P2n+1M = -jL- T2n+1 ( ^ / ) or (-V JL T2n+1 ( - i ^ x ) 

according to k odd or even, where T2n+iM is the Chebyshev polynomial of the first kind [4]. 
Proof. For k odd, 

/ W W - - ^ l i , + f ( f * ) f and ^+IW - X ^ ( ̂  J-
by applying the chain rule. 
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Substituting into (7) and changing the variable* to z by x - (2/\Js)z, obtain 

(1-z2)T2n+l(z)-z.f2n+l(z)+(2n+1)2T2n+lM s 0 

defining the required polynomials [4: 22.6.9 p. 781]. The case for k even may be handled similarly. 

REFERENCES 
1. David G. Beverage, "A Polynomial Representation of Fibonacci Numbers," The Fibonacci Quarterly, Vol. 9, No. 

5 (Dec. 1971), pp. 541-544. 
2. Nathan Jacobson, Lectures in Abstract Algebra, D. Van Nostrand, 195.1, Vol. 1, p. 9. 
3. L E. Dickson, New First Course in the Theory of Equations, John Wiley & Sons, 1960, p. 15, Th. 4. 
4. Handbook of Mathematical Functions, U.S. Dept. Commerce, National Bureau of Standards, Applied Math Ser-

ies 55, pp. 773-795. 
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[Continued from page 196.] 

L&t k>0,2\k, K:=4k + 3; the conditions 
Vk+I?k + Vkrk+1 = 2K, 0 < rk+t < 2vk+1, 2/f rk+1 

define the integers rk+-j, rk uniquely. Then 2rk+i <rk. Let 
. rj := 2rj+7 + r/+2 (j = k-1,k-2, »., 1); 

0 < 2rj+1 < rj, 2J[r/~2J[j, Vj^rj + vjrj^ - 2K (j = k-1,k-2,~, 1); 
j= 1 gives #> ^ 

2r1+r2 = 2K, 0 < 2r1 < 2K. 
IS l* if 

ls\yk := 2*2 +rj, xk := 3yk+2 ;then2-2 < yk,2j(yk,2/\xk.The defining equation for xk gives 
H(xk, yk) = 2. The defining equations forxk, yk, q (j= 1, 2, - , k - 1) are the beginning of &.. algorithm by greatest 
and by nearest integers forxk, yk and therefore N(xk, yk) > k. For an arbitrary integers > 0, \etgs :=xs,hs := ys 

in case 2\s and gs :=xs+f, hs := ys+f in case 2 Jf s. This proves 
Theorem 2. For every integer s > 0 there exist odd integers gs > hs > 0 with E(gs, hs) > N(gs, h$) >s, 

H(gs,hs)=l 
Nothing is known about the average size of H(a,b). 



FIBONACCI NUMBERS AND UPPER TRIANGULAR GROUPS 

LOUIS SHAPIRO 
Howard University, Washington, 0.0. 20001 

In this note we call attention to the curious fact that the Fibonacci numbers arise when we look at that familiar 
example from group theory, the n X n nonsingular upper triangular matrices. Once incidence subgroups are defined 
the result follows quite easily. 

Let K be any field with more than two elements and let K* denote the nonzero elements of K. We define Tn to 

be the group of all nonsingular n x n upper triangular matrices over K. That is Tn= i (a-tj)\ajj= 0 i f / > / , an^K*, 

a,-j e K\. The key definition is as follows. 

Definition. A subgroup, H, of Tn is an incidence subgroup if 
(a) The relations defining H can be given entirely by specifying the domain for each a,f. 
(b) The two possibilities for each a,;- are an = 1 or a,,- e F*. 
(c) The two possibilities for a,f when / < / are <?;/ = 0 or a,f e F 
Since He Tn we automatically have a,f = 0 whenever / >j. By way of example we have 

is an incidence subgroup of Td. 

is a subgroup but not an incidence subgroup since the (1,2) and (1_„3) entries are dependent. 

{( 0 / A ] | a,h e K 
\0 0 1 

is not a subgroup. 
We let G' denote the commutator subgroup of G. Then it is easily shown that 

^(atj)\an = I a,f e F if T'n 
i < 

For instance 

which is an incidence subgroup. 
Our result is the following: 

n-
r, = a,b,c s F 

Proposition 1. The number of incidence sugroups.S, of Tn such that5 '= T'n is Fn+2, where 

\Fn}-= {1,1,2,3,5,8,-} 
is the sequence of Fibonacci numbers. 
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Proof. We must have TnDS D T'n so that if S = j (a/j) I we then have a,j = 0 for/ >j, a//G Kfor/ <j, and for 

each /we must specify either a,/= 1 or a/,* e /f* 
Suppose we specify 1 = a/f = aj+ij+i. Note that the commutator 

U 7/ U / / \0 1l\0 11 ~ \0 l)\0 1 l \ O l ) \ 0 1 l = \ 0 1 ) 
Now let 

3in\ 
32n 

A = 
' 1 ai,i+t 
0 1 

bin 
I>2n 

1 bi,i+1 
0 1 

Using block multiplication and the above computation we have 

/ / Cl2 - Cfn 

0 1 C2n 

A-lB~lAB = 
0 0 

and such matrices will not yield all of T'n. 
Similarly 

\0 1J \0 1) [O 1) \0 1j [ 0 1 ) 

and we can generate T\ by choosing a appropriately. 
Alternatively both 

F* b G F] and H. -
) 

a e F* b e f 

are nonabelian. !f every 2 x 2 block, 

\0 al+1ii+1)' 
along the main diagonal is either Hu H2 or T2 then 5,;/>/ G F is specified for each i. This yields S'= T'n. Thus if no 
two consecutive entries on the main diagonal are specified as 1's then S'= T'n. 

To complete the proof we need the standard result (for instance see Niven [1]) that the number of sequences of n 
plus and minus signs with no two minus signs adjacent is Fn+2. 

Incidence subgroups are themselves an interesting topic. The term comes from incidence algebra as used in the study 
of locally finite partially ordered sets., The following facts are known. If K is finite then most normal and all charac-
teristic subgroups of T'n are incidencesubgroups (see Weir [2]). The center or commutator subgroup of any incidence 
subgroup is itself an incidence subgroup. The number of normal incidence subgroups of T'n is given by the Catalan 
numbers. 

If the number of incidence subgroups of T'n were known it might be useful in determining the number of finite TQ 

topologies. However this is an unsolved problem for/7 larger than nine. 
REFERENCES 
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ON THE INFINITE MULTINOMIAL EXPANSION1 

DAVID LEE H1LL1KER 
The Cleveland State University, Cleveland, Ohio 44115 

Abel, [1 ] , about 150 years ago gave the first proof of the Binomial Theorem for the case of an arbitrary complex 
exponent. From Abel's result one can deduce various versions of the Multinomial Expansion. In this note we shall de-
rive one such form. 

Let/7, a-j, ar, —, ar be complex numbers with n not equal to a non-negative integer. If the inequalities 

(!) \aj\ < \ai+B2 + - + *j-l\, 

forj = 2, 3,-,r, all hold, then the following Multinomial Expansion holds: 

n\ ( V * l - V n(n- V-(n~n1-n2 n^+1) nlan2 ji^n-n^n^^-n^ 
(2) { L * 1 - L "777^7^77— *' ^ "a2 "1 

where the summation is an iterated summation taken under all n; > 0, where i first takes on the value r - 1, then r -

2, and so on until the last value, 1, is taken on. 

We first establish the following triple summation expansion: 

( r \n r « ( j-1 \ n-k 

£'/ - E E ( 0 ' ' £ * +a" i=1 J T2 k=1 \ ««/ / 
if the inequalities (!) all hold. Here we use the usual convention that f n

k \ = 0 when n is a positive integer and k > n. 

Formula (3) is of interest in its own right This author has found it, as well as Formula (7), to be of use in the repre-
sentation of integers in specialized arithmetical systems, such as the binary system. 

Indeed, letZj = 0 and 
H 

zi = E a* 
9=1 

for / > 2, so that the right side of (3) becomes, by (1), 
r r 

E <bl + 'l>n-z?) = E (*M-*I> = *»1 > 
M M 

which is precisely the left side of (3). 
Since n - k $ 0, we can apply Formula (3) to the summation under c on the right side of (3). This iterative process 

can be continued. After/77 iterations of Formula (3), m > 0 and not too large, we obtain 

1 Received by the editors in July, 1973. 

203 



204 

(4) 
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C 2 m + i ~ 7 

[OCT. 

+ E E U)("C2) - (""^jrH ^••^/- v "- e ' k ^ 
Here the indices vary over 

(5) 
J 2 < c, < r, 
^ 2 < fi2/>/ < c2/-7 - I f ° r 1 < i < rn, 
L 7 < fi2/>2 < °° , for 0 < i < m. 

The only restriction on /w is that/w < r - 2, so that the first two inequalities in (5) are possible. 
We let m = r - 2, for r > 2. Then, by (5), %2r-3 = 2, so that Formula (4) becomes 

(6) n-9.2 £3 f~a 

/=/ 

- 1 * * . . , * » , , , • e\k a"-^-~^+a" 

We now extend the range of fi2i, for 1 < / < r - 1, to include 0. Then, the summation under k reduces toasingle 
term k = r- 1; and, by (5), the subscripts are uniquely determined: 

r, r-1, c2r_3 2. 

It now follows from (6) that 

2> -E n(n- 1)~'(n-z2 ,+ D Jt 

i=1 
Q \0 I . . . 0 I V 2 ^ / " ^ 2 2 ^ 

/7-2, 

this result being valid for all r > 1. Here, we are employing the usual convention that the empty sum is 0 and the emp-
ty product is 1. 

The Multinomial Expansion (2), subject to the restrictions (1), now follows with a change of notation. 
Another version of the Multinomial Theorem is 

(7) t" i~1 
] = (-Dr ii <-i)' 
/ k=1 

H 

E 
n-k 

E ("*)*/ 2> *' £ 
£=7 / 

*a * ; 

valid under the conditions (1). 
A good source for the Binomial Theorem and the Multinomial Theorem is Chrystal's/4/#0i&/*a [2 ] , Volumes I and 

II. Our sequence of expository papers on the Binomial Theorem, the Multinomial Theorem, and various Multinomial 
Expansions (Hilliker [3 ] , [4 ] , [53, [6] and the present paper) will continue (Hilliker [7 ] , [8]). 

ADDENDUM. Here, as usual, zn is defined to be that branch of the function f(x) = en , o g z defined over the com-
plex z-plane with the nonpositive real axis included, and with f(1) = I That is, the logarithmic function is given by 
logz= log |z| + i argzwith |argz| < n. Our inequalities (1) imply that the quantities ax + a2 +-» + a/, for 1 <J<r, 
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are not 0. We shall need to assume that they are not negative real numbers. When n is a (negative) integer these re-
strictions which guarantee single-valuedness, may, naturally, be ignored. For more on this, and also for a develop-
ment of the Binomial Theorem, that is, the Maclaurin expansion 

(1+z>n - E (l)zk 

k=0 

for /7 and z complex and with \z\ < 1,.see Markushevich [9 ] , I. 
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THE SUM OF TWO POWERS IS A THIRD, SOMETIMES 

R. B. K8LLGR0VE 
California State University, Los Angeles, California 90032 

1. INTRODUCTION 
We seek integer solutions to the Diophantine equation 

(1) xn+ym = zk, 

where n, m and k are positive integers. We have a general algorithm which sometimes augments primitive parameters 
to primitive solutions regardless of the choice of m, n, k. We classify the types of applications of this algorithm based 
on the greatest common divisor of the exponents. For some types all the primitive parameters augment to all the 
primitive solutions. For the type which includes the famous case n = m = k > 2, the finding of the primitive param-
eters which augment to primitive solutions is equivalent to the original problem. Without gain of generality (an ex-
pression of Professor DeHardt), we could extend this approach to a Diophantine equation with more powers on the 
left than two but only one power on the right. 

2. HISTORY OF THE PROBLEM 
In 1964 we obtained the computer solution (1176)2 + (49)3 = (35)4 and from this one example we discovered our 

method of augmentation as well as a type of exponents for which we determined all primitive solutions. Subsequent-
ly that year Professor E. G. Strauss pointed out to us that this method could be applied successfully (i.e., yielding 
solutions) to another type. At this time we found that Basu [1] and others had found rational solutions for the first 
type mentioned above. Recently Beerenson [2] has found a similar method for finding integer solutions for this first 
type. At this later time we found that Teilhet [8] in 1903 used the method of augmentation for a special case k = 3, 
m=n=2. 

1 TRIVIAL SOLUTIONS 
For completeness as well as for illustrating a simple case of primitive solutions, we now discuss the trivial solutions 

to C\),x0, y0, z0, where xQy0z0 = 0. Let us call the case x = y = z = Q, the zero case, and turn our attention else-
where. Then exactly one of x0, y0, z0 is zero, and the non-zero elements are both powers with common exponent 
the least common multiple of their corresponding exponents (x0 corresponds to n, y0 to/??, z0 to k). Thus for the 
non-zero trivial solutions with x0 = 0, we say y0, zQ form a primitive solution if and only if there is no integer d > 1 
such that d \y0 and d \zQ where L = [m,k]. Thus the possible candidates for a non-zero, trivial, primitive solution 
are:K0

 =±hz* s±1. 

4. PRIMITIVE SOLUTIONS AND THE CLASSIFICATION SCHEME 
The computer example indicated to us that the usual definition of primitive solution x0, y0, z0, namely, one 

where 
(**, yj = (*<>, zo> = fro, zj = I 

was not adequate. Thus we give a new definition which reduces to the old when appropriate. 
Definition: A solution u, vf w, uvw^O, to (1) is called a (non-trivial) primitive solution if and only if there 

is no t > 1 such that ta\u, tb\v, tc\w, where 
a = L/n, b = L/m, c = L/k, and L = [n, m, k]. 

206 
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The case n = m = k > Z \$ referred to as Fermat's Last Theorem (F.LT.) wherein the conjecture states that there 
are no non-trivial solutions. This conjecture is true for/7 < 25000 [7] . \\(n,m,k)> 2, then (1) for this type of ex-
ponents can be reduced to F.LT. 

The type (n,m,k) = 2 has not yet been completely resolved. If n = 2h, m = 2i, and k = 2j, and if (h,i) = (h,j) = (ij) = 
1, then (E.G. Strauss) all possible solutions can be obtained by augmentation. If (h,i) > 2, we can show there are no 
non-trivial solutions if F.LT. holds. We conjecture the same holds for (hj) > 2 and (ij) > 2. 

The type (n,m,k) = 1,butnooneof/7,/77,/r is relatively prime to the other two, is the only known type which some-
times yields a finite number of primitive solutions. Sn all other cases, as far as we know, if non-trivial solutions exist, 
there are an infinite number of primitive solutions. 

We complete our classification scheme by mentioning the remaining type where one of n, m or k is relatively prime 
to the others. This is the "first type" referred to in Section 2. 

5. THE METHOD OF AUGMENTATION 

Let D = [m,n] throughout this section. 

Definition: Positive integers x0 and y0 are primitive parameters for (1) if and only if there is no f > 1 such 
that td\x0 and te\yQ , where d = D/n and e = D/m. 

Definition: A primitive solution u,v,w, uvw ? 0, to (1) is an augmentation of primitive parameters x0, y0 

for (1) if and only if u=x0z
d, v = y 0z%, zdn = ZQ171 = z®. I fz0 > 1, then we have a proper augmentation. 

Theorem 1. If positive integers u,v,w form a primitive solution to (1) then there is a unique ordered pairx0,K0 

which are primitive parameters so that u,v,w\% an augmentation of x0, y0. 

Proof. Let t be the largest positive integer for which td\u an d *e\v and d=D/n, e = D/m. T\\mxQ=u/td 

andy0 =v/f are primitive parameters, and u,\t,w is an augmentation ofx0 ,y0. Suppose^, y t are primitive param-
eters and 

u = xxz
d, v = yxzl. 

Let/7 be a prime such thatpq\\ t andpQ\\z0 and qf(L Thenpd\xj and/?e\y,-, where/ = 0 if q <Q and/= 1 if Q < 
q. This contradicts the condition x,y,- are primitive parameters. Thusf : =z0 andx0 =xt andj/0 =yx. 

Theorem 2. If A-0, yQ are primitive parameters for (1) andx" +y™ is written as akakZ
1i — a^ai, where each 

a;, i f k, is squarefree and (a-,, aj)= 1 for each i <k? j <k, i ? j, then there is an augmentation to a positive primitive 
solution for (1) if and only if for each /; 1 <i <k, either a; = 1 or there is a solution g\ to Dg\ = -/ ' (mod k) and g-t is 
the smallest such positive solution. 

Proof Suppose we have a primitive solution u > 0, v > 0, w > 0. Then 

Hence 

u = x0z
d

0, v = y04 and wk = ak
ka

k
k_\ -a^a^Zg 

(w/ak)
k = akZ] -a^ajZQ . 

Suppose there is an /̂  1 < / < / r , such that a,-^ 1. Then for each prime p dividing a; we have p'p9 = pq , where 

p9\\z0 and pq\\(w/ak). 

Thus Dg =-i (mod k). The smallest such positive solution \%<k/(D,k) [2, p. 51]. \ig>k/(D,k), then gD > [D,k] 

= L = [n,m,k]. Thus 
pL\u". pL\vm, pL\wk, 

and u,\/,w is not a primitive solution. 
Suppose the conditions hold, and we write bc as/? exp c, thenz^ is one if all a/= 1 fo r /V& and is the product of 

a,- exp D g; for all i, 1 < / <k and ai$\, otherwise. Then 

u = xOzO' v = VozO* a n d w s ak*' 

where 7T is the product of the positive kth roots of a,-exp f\, fj= Dgj + i,a-st 1, or one. This is a solution to (1) but it 
may not be primitive whenz0 $ 1. 
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If this is not a primitive solution, then there is a prime/? such that 

pa\x0z
d

0, pb\yozeo and pc\w, 

where a = L/n,b = L/m,c = L/k If pj(a,-for any i, 1 </<k, then/7 /{z0 and/7a|x0 and/?^|y0. Since L - VS for 
some integer S, a = Sd, b = Se, andx0 and y0 are not primitive parameters. 

\\p\aj, then/7 exp#/|z0, andg,-< k/(D,k). But 

k/(D,k) = [D,k]/D » L/D = S. 

Theng,<S - 1,so 
g,-d < dS-d = a-d, g,-e < eS - e = h - e. 

Since 
Pa\*OzO' a n d pexpg,-dlZQ, 

then p \xo;similarly pe\yo an&xo, yo are not primitive parameters. 

6. THE TYPE (n,m,k) = 2 

Here n = 2h, m = 2i, k = 2j. For completeness we give a proof for a theorem in the literature [4] because it is easy 
and not too accessible. 

V. A. Lebesque Theorem: lfx2t + y2t = z2 has a non-trivial solution then t is odd and ut + vt=wthasa 
non-trivial solution. 

Proof. If t is even, we use the fact [3, p. 191] that*4 +y* = z2 has only trivial solutions. Thenxt= 2rs, y* = 
r2 - s2 [3, p. 190]. But (r + s, r-s)= I (In this case the new and old definition of primitive are equivalent), hence 
r + s = u* and r-s = vf, but either2r= wt or2s = wt. In the former case, by adding r + s to r—s, we obtain i / f + 
vt=wt. In the latter case subtract/- -s from r + s and rename. 

Lemma 1. \\n = 2,m = 2f k = 2t, then all the primitive solutions to (1) are obtained by augmentation of prim-
itive Pythagorean triples. 

Proof. From a primitive Pythagorean triple [3, p. 190] x0, y0, z0, we can use x0, y0 for primitive param-
eters, and if 

2 2 2t 2t-1 
X0+V0 = a2ta2t-1 "'a2a1 

under the conditions of Theorem 2, then a, = 1 for all odd / and 2g,=-i (mod 2t) can be solved for all needed even 
i. If xl + y\ is not a square, then when written in the above form a,-1 1 form some odd i, and 2gj = - / (mod 2t) has 
no solution, and there is no augmentation. 

NOTE: Our method does not distinguish solutions 15, 20, 5, and 7, 24, 5 forn - m = 2, k = 4, except as proper or 
improper augmentations. For n = k = 2, m = 4 we use a general modification of Theorems 1 and 2 using 

zO-~xO - amam-1 a2a1-
Lemma 2. Sf n = 2, m = 2$,k = 2t, (s,t) = 1, then all primitive solutions to (1) are obtained from primitive so-

lutions to (1) with n = 2, k = 2by augmentation. 

Proof \fx0, y0, z0 is a primitive solution to (1) with n = 2,m - 2s, k = 2, then;^, y0 are primitive parameters 
for n = 2, m = 2s, k = 2t, (s,t) = 1, and the corresponding odd indexed a; = 1, and 2sg,- = - / (mod 2t) can be solved 
for all even /. But if y0 +y0

s is not a square for;f0/ y0, primitive parameters then there is an odd /such that a/^ 1, 
and there is no solution to 2sg,- = - / (mod 2t). 

Theorem 3. If 
n = 2h, m = 2i, k = 2j, (h,i) = (h,j) = (i,j) = 1 

then there are an infinite number of primitive solutions to (1) obtained by none, one, or more augmentations of 
Pythagorean triples. 

We do not give the proof since it repeats a third time essentially the proofs of the two lemmas. 
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7. THE TYPE (m,n,k) = 1 BUT NONE OF n,m,k IS RELATIVELY PRIME TO THE OTHER TWO 

We know how to solve only n = 2h, m=3i, k = 6] for this type. We assume a result of Legendre [5 ] , namely that 
x3 + y3 = 2z3 implies x = ±y. Using this hard to obtain result we give a proof of a theorem in the literature [6,9]. 

Thue-Lind Theorem. The only non-trivial primitive solutions t o * 2 + y3 = z6 Mex = ±3,y = -2,z = t l 

Proof. First we note (z3 -x,z3 +x)= 1 o r Z In the former case,z3 -x = u3,z3 +x= v3, and u3 + v3 = 2z3. 
By Legendre's result, u = ±v. If u = v, x = 0, and if u = -v, then z = 0. Therefore for non-trivial solutions (z2 -x, z3 

+ x) = 2. Now 

z3 -x = 2y3 and x3 +x = 4v3 or z3 -x = 4u3 and z3 +x = 2\/3 . 

One case can be obtained by the other by replacing x by -x, but x is a solution if and only if -x is. Thus we con-
sider the former case only. Then by adding, we obtain z\ + (-u)3 = 2\/3, and by Legendre's result, z = u orz = -u. 
Sf z = u, then v = 0, and / = 0; thus for non-trivial solutionsz = -u. Then v = -u, s®, from (u,v) = 1,u = +1, \/-±f; 
hencey =-2,z = ±L Q.E.D. 

Mow any solution u, v, w to (1) for n = 2h, m - 3if k = 6j is a solution to the case n = 2,m = 3, k = 5 and hence 

uh = ±3a3, vl = -2a2, w1 = ±a. 

If/7 is a prime greater than 3 an6pd\\a, then 

h\3d, i\2d, and j\d and [n,m,k]\6d 

and this is not a primitive solution. Thus a = 2b3c, and j\ h and j\c and h \3b and i\2c and h \ 1 + 3c and /1 / + 2b. Con-
versely if these conditions are met then there is a solution. Moreover, it can be shown there is ai? and c if and only if 
(h,i) = (bj) = (ij) = 1- Note for b = 4 c = 9, we obtain 8, 9, 6 case as well as 8, 27,6 case. 

8, THE REMAINING CASE AND SUMMARY 

The remaining case when one of n, m, k is relatively prime to the other two, then the conditions of Theorem 2 are 
always met and every set of primitive parameters augment, when the equation is written with the special exponent 
term being the only term of one side of the equation. For example, n = 2,m =3, k = 4 then we write z4 -x2 = y3, 
and, for example, 5, 24 being relatively prime are primitive parameters and 54 - 242 = 72 from the Pythagorean 
triple, 7, 24, 25. Then we augment by 74 and obtain the solution we found on the computer. 

Mr. Jim Grant, U.C.L.A. student, has also found an algorithm for obtaining rational solutions for this remaining 
case. He has made a real gain with his general approach because it not only applies to general Diophantine equations 
of this type but also applies to many other problems as well, including some differential equations. 
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THE RANK AND PERIOD OF A LINEAR RECURRENT 
SEQUENCE OVER A RING 

DONALD W.ROBINSON 
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INTRODUCTION 

Two problems from the theory of linear recurrent sequences are considered in this paper. The first is to establish 
the existence of the rank of the Lucas sequence over an arbitrary ring with an identity. In particular, a theorem of 
Wyler [10, Theorem 1], for second-order sequences over a commutative ring, is generalized to sequences of arbitrary 
order over an arbitrary (not necessarily commutative) ring. The second problem is to determine the period of a purely 
periodic Lucas sequence as a function of its rank. Solutionsto this problem have previously been given in special cases: 
Vinson [7, Theorem 3] and Barner [1 , Theorem 2] for the modular Fibonacci sequence; Ward [9] for modular inte-
gral sequences of arbitrary order in case the characteristic polynomial of the recurrence has distinct roots; and Wyler 
[10, Theorem 4] for second-order sequences over a commutative ring with odd prime power characteristic. A solu-
tion is given in the present paper for linear recurrent sequences of arbitrary order over an arbitrary commutative ring 
with an identity. 

1. PERIODIC LINEAR RECURRENT SEQUENCES 

Let R be an associative ring with an identity 1, and let a/, —,fy be elements of /?. A sequence (w): wQ, wu —of 
elements in R that satisfy the recurrence 

wn+k = wn+k-iai + ~' + wnak 

for/7 > 0 is said to be a (right) linear recurrent sequence associated with the list fa/ , —, akl Let S(a-j, —, a^J be the 
collection of all linear recurrent sequences over R associated with (a^f —, a^J and let 

/ 0 0 - 0 ak 

A = I / 0 •». 0 ak-i 

\ 0 0 - / a7 

be the companion matrix of (ai, —, a -̂1 
The Lucas sequence of S(a1f - , a^) is the sequence (u): u0, uu - associated with the list fa;, -ak) such that 

ug = Q, '••, Uk-2=0, Uk-1 = /. (In case/r = 7, thenuo = /). For A7 a non-negative integer and e^ = (0, —, 0, 1)e/? , 
let Un e Rkxk be the matrix with ekAf~1+n as its ith row, / = 7, —, k. Since the rows of U0 are of the form €k = O, 
. - , O, 1), ekA = (O, »., 7, */, - , ekA

k~1 = (1, * - , *), then U0 is invertible in Rkxk. 

Lemma 1. Let (w)^S(aj, • •, akl Then for A > O, 

(wn, - , wn+k-i) = (w0, - , wk-i)A
n = (w0< '" ,Wk-i)UQ Un. 

Proof. By finite induction on /?, both the firstequality and Un = UQA11 are valid. Thus, since U0 is invertible, then 
An = U~Q Un, and the second equality holds. 

Let (w) <ES(ai, "v ak)- I f t n e r e 's a l ' s t of k consecutive elements of (w) that is equal to a preceding list of A- con-
secutive elements of (w), then the sequence is said to be of finite period. Specifically, if 

(wa+v, - / wa+v+k-1> = (WQ, - , wa+k-lh 
with a+v> a> 0, is the first such list, then W&, wa+i, ---is periodic of period v. In this case (w) is said to be period-
ic of index a and period v. If the index a= 0, then (w) is said to be purely periodic. 

Similarly, the matrix A is said to be periodic if some term of the sequence /, A, A2, — is equal to a preceding term. 
210 
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\iAa = Aa
f a+v>a>Q, is the first such term, then A is said to be periodic of index a and period v. 

Lemma 2. The following statements are equivalent: 
(i) Every sequence otSfaj, —, a^) is periodic. 
(ii) The Lucas sequence ofS(aj, —, ak) is periodic. 

(iii) A is periodic. 

Proof, (i) => (ii) is trivial. 
(ii) =• (iii). let(u) be periodic. Then 

U0A"+P = U0A° and Aa+V = A" . 

Ua+v ~ Ua, 

a+V = u^Ac 

Aa+V = Aa, 

a+v > a > 0. 

and Aa+V 

a+v > a > 0 

Hence, 

That Is, >4 is periodic. 
(iii) => (i). Let 

Then 

and (w) is periodic. 
It is clear that the index of (w) is at most the index of A and that the period of (w) divides the period of A More-

over, the index and period of the Lucas sequence are, respectively, the index and period of A 

Lemma 3. Let the Lucas sequence of Sh], —, ak) be periodic. Then the following statements are equivalent: 
(i) Every sequence of S(aj, —, a^) is purely periodic. 
(ii) The Lucas sequence ofShi, —, a^) is purely periodic. 
(iii) ak is right invertible in /?. 
(iv) a^ is not a right zero divisor in /?. 

Proof, (i) => (ii)and (iii) => (iv) are trivial. 
(ii) => (iii). Let the Lucas sequence (u) e Stai, —, ak) be purely periodic. Then Uv = UQ for v > 0. That is, 

Av = UQUV= L 

If Icjj] = A , then by direct calculation, akCkj = 1, and ak is right invertible. 
(iv) => (i). Since (u) is periodic, then by Lemma 2, every (w) e S(aj, •••, ak) is periodic. Let 

(wo, - , Wk^i)Aa+v = (wo, -", Wk-i)Aa, a+v > a > 0. 
Also since ak is not a right zero divisor, then A is right cancellable. Indeed, suppose BA = 0. Since 

Ak = Iak + Aak-1 + - + Ak~1ai , 

then Bak = 0 and B = 0. Therefore, 

(w0, - , Wk-l)AV = (W0f - , M/£-./j 

and /Wj is purely periodic. 
Reference is made at this point to DeCarli [ 4 ] ; the main result given there follows immediately from Lemma 3. 

2. THE RAWK OF THE LUCAS SEQUENCE 

A result of Wyler [8, Theorem 1], for second-order recurrences over a commutative ring, is now extended. 

Theorem l.Let(u) e $(aj,-,ak)bet\\e Lucas sequence, and suppose ak is not a right zero divisor in /?. Then 
there exists a unique non-negative integer p such that un = 0, —, un+k?-l = O if and only if n is a multiple of p. If 
p= 0, then (u) is not periodic. If p > 0, then (u) is periodic if and only \iup+k-1 is of finite order in the unit group of R. 

Proof First, a matrix characterization of the condition un = O, ••-, un+k-2 = 0\s provided. Specifically, suppose 

un+k-iek = (O, - , O, un+k-i) = ekA
n

f and un+k-iekA' = ekA
nAl = ekA'An 
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f o r /= £7, ~<,k- 1. Thereforelun+k-.iUo= UQA". On the other hand, if WQ = UQA" for some t <ER, then by check-
ing the first row of this matrix, un = 0, —, un+k-2 - 0 and un+k-i = t. Consequently, un = 0, —, un+k-2 = 0 if and 
only if An = U~QXUQ\W some te/?;and in this case t = un+k-j. 

Second, if An' = U'QUUO, then ns not a right zero divisor in R. Indeed, suppose vt = 0 for v e R. Then 

vU0A
n = vtU0 = 0. 

Since ak is not a right zero divisor in R, then as in the proof of Lemma 3, A is right cancellable, VUQ = 0 and v = 0. 
The existence of p is now demonstrated. If un = 0, •••, un+k-2 = 0 implies n = 0, then choose p = 0. In this case, 

by Lemma 3, the Lucas sequence (u) is not periodic. Thus, suppose un = 0, —, un+k-2 ~ 0 f ° r s o m e n > 0, and ^et P 
be the least such n. (If /r = 1, then the condition is satisfied vacuously for every positive n and p = 1.) We show that 
every such/7 is a multiple of p. Indeed, let A? = UQ} SU^with s = up+k-1 • Then 

Apq = Uo1sqU0 and upq = 0, - , upq+k.2 = 0. 

On the other hand, suppose 

An = Uo1tUo, t e R, n = pq + \, 0 < X < p . 

Then 

UQUUO = An = AxApq = AxUo1sqU0, 

where sq is not a right zero divisor. Define 

[djj] = D = U0A
xUo1. 

Then Dsq = It Since d,jsq = 0 for / i=j, then djj = 0 for / ^ j. Also since 
<//7^ = t = d„Sq. 

then */// = f//7 = d, say,/ = /, —, £. That is, D = Id and Ax = U^dilo- Hence, by definition of p, it follows thatX = 
0 and n = pq. That is, the desired p exists and is unique. 

Finally, the last statement of the theorem is demonstrated. Indeed, if sq = 1, then APq = UQUQUQ = I and, by 
Lemma 2, (u) is periodic. Conversely, if (u) is periodic, then it is purely periodic and Av= l,v > 0. Therefore, Av 

= UQ Wo and v= pq for some q. Consequently, 

I = Apq = U-0
1sqU0t lsq = I, 

sq - 1, and 5 = up+k-i is of finite order in the unit group of R. 

The non-negative integer p of Theorem 1 is called the rank of the Lucas sequence associated with (aj, —, a^l 

Corollary 1. Suppose a/< is not a right zero divisor in R. Letp be the rank of the Lucas sequence (u)<ES(aj, 
—, a/d and let (w) e S(a-j, •-, a^l If WQ = 0, then Wp = 0. 

Proof. Let e; = (I, Q, - , O) <= Rk and e^ = (O, ••-, Of 1) e /?*. Since e£ = U0ep where the prime denotes trans-
pose, then UQ ek = e\. Therefore, 

Ape'7 = U'o'up+k-jUQe'j = WQ1 up+^j^ = U"0
1 ekup+k.j = e ' ; * / p +* - / f 

and 
wp = (wp, - / wp+k-i)e'i = (wo, - / wk.i)A

Pc'j = (w0, - , Wk-lfe'iUp-k-1 = ^oup+k-1 • 

Consequently, if M/0 = 0, then w/p= 0. (Compare [3, Theurem 1].) 

3. RELATIONS BETWEEN THE RANK AND PERIOD 

In this section R is a commutative ring with identity 1. Also, (x,y) and [x,y] denote the greatest common divisor 
and least common multiple of the positive integers* and y. 

Theorem 2. Suppose^ is not a zero divisor in R. Let the Lucas sequence (u)^S(aj, •»«, ak) be of rankp > 0. 
Then (u) is periodic if and only if ak is of finite order in the unit group of /?. In this case, let v be the period of (u), 
and let 5 and j3be the orders of (-1)k~1 and Up+k-j, respectively, in the unit group of R. Then 

(i) v=p$=(k,$)[&,p] 
(ii) (k,(3) \sthe order of uj££J/p. 



1976] THE RANK AND PERIOD OF A LINEAR RECURRENT SEQUENCE OVER A RING 213 

Proof. Since Ft is commutative, then 

^ = U-Jup+k-fUo = up+k^l and ((-1)k-1ak)
p = d e t ^ = (up+k.1)

k . 
Therefore, ak is of finite order if and only if Up+k-.f is of finite order. Consequently, by Theorem 1, (u)\$ periodic 
if and only if ak is of finite order. 

Now, suppose (u) is periodic of period v, and let 5 and j3be the orders of (-1)k~1ak and Up+k-i, respectively, in 
the unit group of R Since 

I = Av = <AP)v/p = (up*-M)v/P, 
then §\vlp. On the other hand since 

A<* - lup+^lf - /, 
then v\p$. Therefore, v= pj3. Moreover, the order of 

((-Vk-1ak)
p = (up+k.J)

k 

is 5 /(8,p) = p/(kM Since 8/(b,p) = [8,p]/p, then 

pfi = (k,P)[8,pJ • 

Finally, since $/(k,P) = [8,p]/p, then (k,$) is the order of uj$.fj/p. 

The first part of (i) in Theorem 2 is due to Carmichael [2] . The second part of (i) is an extension of a result of 
Ward [9] for modular integral sequences. (See also Robinson [6].) 

Corollary 2. Let the conditions be as in Theorem 2. Then 
(i) 5 | i ; . 
( i i)0|A:5. 
(iii) P\k if and only if 5 |p . 

This corollary includes several facts that have been previously observed for some special sequences. For example, 
let 0, 1, 1, 2, 3, 5, — be the sequence of Fibonacci numbers reduced modulo m > 2. In this case, k = 2, ax = a2 = 1, 
and 5 - 2 . In particular 2\p. (See for example Wall [8, Theorem 4].) Also, j3|4, and /3|2 if and only if 2|p. In other 
words, ]3|2 if 2\p and j3= 4 if 2 j p . (See Vinson [7, Theorem 3].) 

Corollary 3. Let the conditions be as in Theorem 2, and suppose k is a prime. Then 

(i) v= k[8,p] if u[p%pJ/p M . 

(ii) v = [&,p] if u^k
pJ/p = 1. 

In particular, the relation between the rank and period of the Fibonacci sequence modulo a prime may now be 
given. (See Barner [1, Theorem 2] or Herrick [5, Theorem 3].) 

Corollary 4. Let the Fibonacci sequence reduced modulo an odd prime be of rank p and period v. Then 
(i) v = 4p if 2{p. 

(ii) v = 2p if 2 | p ,2 |p /2 . 
(iii) i/= p if 2 | p , 2 ( p / 2 . 
Proof. Let R be the ring of integers modulo an odd prime; in particular, k = 2 and 5 = 2. If pis odd, then /3= 4 

and, by Theorem 2(i), v- 4p. Thus, suppose p is even and let A be the companion matrix associated w i t h ^ = 7, a2 

= 1. Clearly 
(_1}p/2Ap/2 = mAP/2)AP/2= (M.Ap/2)Ap/2)Ap/2 = M]AP/2)AP = (ad]A

p/2)upH . 

Since the off diagonal elements of Ap/2 are not zero and are the negatives of the off diagonal elements of adj Ap/ * 
then it follows that Up+i = -(-1)P/2. Therefore, since [2,p]/p = 1, 

«;/p-^--/-^/2-(_?,YT; 
P+T P l / if 2\p/2 . 

Consequently, by Corollary 3, v= 2pif 2|p/2 and v = pit 2{p/2. 
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A slight extension of the foregoing argument provides another proof of the main theorem of Wyler [10], In fact, 
Wyler [10, Theorem 4] is valid for every purely periodic second-order Lucas sequence over a commutative ring with 
1 satisfying the following two properties: 1 + 1 is not a zero divisor, and u2 = 1 implies either u = 1 or u = - 1 . 
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LETTER TO THE EDITOR 

GENERALIZED FIBONACCI NUMBERS AND UNIFORM DISTRIBUTION MOD 1 

L KUBPERS 
Mollens, Valais, Switzerland 

In the following I want to comment on a paper by William Webb concerning the distribution of the first digits 
of Fibonacci numbers [1] and to give a partial answer to some questions raised by the author. In fact, restric-
tion to Fibonacci-related sequences makes it possible to obtain a number of results. (Fn) or 1, 1, 2, 3, 5, -
stands for the sequence of Fibonacci numbers. 

Theorem 1. Let k be an integer different from 0. Then the sequence (log Fn ) is uniformly distributed 
mod 1 (abbreviated u.d. mod 1). 

Proof. We apply a classic result of J. G. van der Corput: Let (un) be a sequence of real numbers. If 

Jim^ (un+1-un) 

exists and is irrational, then the sequence (un) is u.d. mod 1. See [2 ] , p. 28. 
Nowsetf/n = logF/ / j t . Then 

un+, - un = log F'n§ - log F1
n

/k = I log F-^± , 

which tends to 

[Continued on page 253.] 



THE SUMS OF CERTAIN SERIES CONTAINING HYPERBOLIC FUNCTIONS 

F.P.SAYER 
University of Bristol, Bristol, England 

and 

1. liTRODUCTIOfy 

In this paper we are concerned with the summation of a number of series. They are 

± (-»"' y cothnr ^ »»*<»">% y j ^ 

^ / ^ s i n h r / j$ r4p~1 ' *£ (2r + V4p~1 ' % (2r + I)4***cosh (2r + 1)± 

y (-1)rHr4p~3 y (-1)r(2r+1)4p~1 

h , i n h n r ' h mhVr+Vf 

~ | 2 4 p c o t h r | - c o t h 2 n r f 

r=1 ' 

where p = 1, 2, 3, 
Certain of the above series have been extensively discussed in the past Results for particular values of/7 are given 

by Ramanujan in [ 4 ] , while Phillips, Sandham and Watson in [3, 5, 6] have determined, by varying methods, sums 
for general p. The last series of the group, however, seems to have received less attention. It differs from the others 
in that it contains the inverse powers of 4p + /. Further, it is cioselv related to the Riemann Zeta function $(4p + 1). 
As this paper shows, the sums of the series, where they are not identically zero, satisfy recursive relations containing 
binomial coefficients. 

Thus if we write 

T4p-1 
(~1)p(4p)! y (-1)r 

^4P-122p-2 f - r 4 P - / g i n h n r 

then 

t ( V p
2 ) V / " / n=1,2, 

P=1 

The recursive relations are themselves of interest and can be inverted. Their inversion, which leads to the sums of the 
various series, involves the Bernoulli and the lesser known Euler numbers. 

All results are obtained by considering the Neumann problem for the rectangle. Although this problem is of an ele-
mentary nature and is in fact discussed in both contemporary and established literature on Laplace's equation, a com-
plete solution to it does not seem to be available. Kantorovich and Krylov in [2] proposed a method of solution but 
the suggested method contains, as we shall show, an error of principle. Once this error is removed the method can be 
applied to solve the problem. Initially, therefore, we state and solve the Neumann problem for the rectangle and then 
subsequently in Section 3 make appropriate use of the solution to obtain the various results. 

215 
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2. THE NEUMANN PROBLEM FOR THE RECTANGLE 
This problem requires the determination of a function </>(x,yJ satisfying 

(2.1) ^xx + <t>yy - 0 for 0 < x < a, 0 < y < h 

(2.2) <t>y(x,0) = f(x), <j)y(x,b) = g(x) for O < x < a 

(2.3) 4>x(0,yJ = F(y), <px(a,y) = G(y) for 0 < y < b, 

where fix), g(x), F(y) and G(y) are known functions and the subscripts* and y are used to denote partial differentiation. 
It is necessary for a solution that 

(2.4) f |& ds = 0, 
c 

where c is the boundary of the rectangle, d/dn denotes differentiation with respect to the outward normal to c and s 
refers to arc length. The condition (2.4) is equivalent to 

a b 
(2.5) f (f-g)dx+ f (F-G)dy = 0. 

0 0 

We now briefly describe the method used by Kantorovich and Krylov in [2]. We put $ = U + V, where U and V are 
functionsofxandy. We choose the function U so that it satisfies (2.1)# (2.2) and Ux(0,y)= Ux(a,y) = £7 for 0<y < 
b, while Vsatisfies (2.1), (2.3) and Vy(x,0) = Vy(x,b) = OforO<x<a. 

Thus, the original Neumann problem is replaced by two other Neumann problems, one for U and the other for V. 
It is evident that if we can find U and V we shall fulfill the conditions imposed on 0 by (2.1) to (2.3). By virtue of 
(2.4) the existence of U requires 

a 
f (f-g)dx = 0. 

0 
Likewise, the existence of V requires 

b 
f (F-G)dy = 0. 
o 

However, given functions £& Fand £ satisfying (2.5), it does not necessarily follow that the integrals 
a b 

f(f-g)dx and f(F-G)dy 
0 0 

are each zero, and therefore the functions U and V may not exist. Yet the difficulty is readily overcome. We write 
0 = A(x2-y2) + U+K 

where A is some constant to be found, while the functions (/and V each satisfy (2.1) and the further conditions: 
Ux{0.y) = Ux(a,y) - Vy(x,0) - Vy(x,b) - O 

Uy(x,0) = f(x), Uy(x,b) = g(x)+2Av for O < x < a 

Vx(0,y) = F(y), Vx(a,y) = G(y)-2Aa for 0 < y < b. 

Using (2.4) we require for the existence of U and V 

a a 
f | g(x) + 2Ab - fix) \dx = 0, i.e., 2abA = f (f-g)dx 

0 0 

and 
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f { G(y)-2Aa - F(y) } dy = 0 or 2abA = f (G - F)dy. 
0 0 

Equation (2.5) shows that these two expressions for A are consistent Having found A, we can now follow the pro-
cedure given in [2] to determine U and V. In fact, it can be verified directly that to within an arbitrary constant <£ 
is given by 

\gr cosh 3K = fr cosh QL (b -y) \ 
(2.6) 0 = A(x* -y2) + 1/2fQy + 1/2F0x + V —* = —± 1 cos 

r^ nrslnh ^ a 
r a 

°° b i£?rcosh ^ ~Frcosh 2E fe-xjA 
+ V - 1 - ^ — Jt i c o s ^ f , 

% nrsinh G5 * 
b 

where r"r, #r fr = 0, 1, 2, •••) are the Fourier cosine coefficients for f(x) and #W, respectively, over the range 0 < x < 
a and Fr, Gr (r= 0, 1, 2, •••) are the Fourier cosine coefficients of F(y) and G(y) over 0 <y <b. 

3. APPLICATION OF THE SOLUTION TO THE NEUMANN PROBLEM 
We puta = i& = 7rand define functions (p(x,y,4n), where n= 1,2,3, -., by 

(3.1) 2$(x,y,4n) = (x + /y)4n + (x- iy)4n. 
It is readily verified that these functions satisfy (2.1). Further, using (2.2) and (2.3), we deduce for them that f(x) 
and Fly) are both identically zero. In addition 

glx) = 2n { fr+ix)4n'1 + fr- ix)4n~f} and G(y) = 2n \ fr+iy)4n'1 + fr-iy)4n~1} . 
Thus, the Fourier coefficients fr and />are all zero, while gr = Gr = lr(n) (r= 1,2, —), where 

(3.2) lr(n) = Re4-^ f [fr+ix)4n'1-t fr- ix)4n'1]eirxdx 
0 

using the result 
a 

2abA = f (f-g)dx 

o 

we find that the constants vanishes and hence with the help of (2.6) we can write 

(3.3) 4>(x,yAn) = < * „ + £ !,(„} )cosh/y cos^cosh/x cos/zl 

the C4n (n = 1, 2, • •) being constants which have yet to be determined. Successive integration by parts of (3.2) leads 
to the result 

(3.4) lr{n) = ( = ^ 7r4n'322n(4n)(4n -1) + % (4n - 1)(4n - 2)(4n - 3)1 Jin - 1) . 
:: r2 t4 

In particular 

so that putting n= 1 in (3.1) and (3.3) we find 

E t i\r+l \ cos" ry cos rx + cosh rx cos ry § 
(~~V ' "Fl iShnr 

!r(1) = h1)»l 4M 
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Repeated application of (3.4) yields 

(3.6) lrM - (-irl'41 * ̂  * ̂  * aj¥T-\ • 
[ r2 r6 r10

 r4n-2 J 
where, for example, 
(3.7) a2(n) = (-1)n7T4n~322n4n(4n - / ; 
and more generally 
(3.8) a4p.2<n) = {-ir*+i*4n-4p+122n-2p+2(4p-2)! [4p

4n_2 ) , P =.1,2, - , n. 

Using this last result, it follows 
a4p+2(n +U s (4n+4)(4n +3)(4n+2)(4n + 1)a4p-2(n) 

and hence from (3.6) that 

(3.9) fan +4)(4n + 3)(4n+2)(4n + 1) ^ = lr(n + i) + (~1)*1 a2(n + 1) . 

We now proceed to find the constants C4n occurring in (3.3). We integrate Eq. (3.3) twice with respect to x and twice 
with respect to y. These integrations will introduce arbitrary functions of x and y. We have, therefore, 

JihTl^&ilim*4l ^n(y^an(y)+yPnM+qnM 

= c
 x2V2 _ V * / (n) I cosh ry cos rx + cosh rx cos ry f . 
4n 4 Ld r rs sinh m 

r=1 

wherepn(x), qn(x), Pn(y) and Qn(y) are arbitrary functions which may depend on n. Noting the result contained in 
(3.9) we can write this equation in the alternative form 

<j>(x,y,4n+4) = T l Ir(„ + 1) + (=1^1 ^ (n + ; A t cosh V c p i / * * cosh rx cos / y ] 
r=1 ^ J 

+ (4n + 1)(4n+2)(4n+3)(4n+4) J xPn(y) + Qn(y) + yPn (x) + qn (x)- c4n ^ f \ -

This reduces with the help of (3.3) and (3.5) to 

0 = -c4n+4 + ̂ p - (** - Bx*y2 +y*-cj 

+ (4n + 1){4n+2M4n+3)(4n + 4) <xPn(y) +Qn(y) + ypn(x) + qn(x)-c4n
 x-^f-\ . 

This is an identity. Hence equating to zero the coefficient of x2y2 we deduce with the aid of (3.7) 
/ 1 \n~An 02n 

(3-10) *» - 0ijkhr • 
Thus we have 
(3.11) (x+iy)4n + (x-iy)4n = 2c4n + 2 V lr(n) l£0.sh ry cos rx ^cosJLaf^o»f lJ 

*-* rsinhnr 
r=l 

where c4n is given by (3.10) and lr(n) by results (3.6) and (3.8). Putting* = y = 0in (3.11) and simplifying we obtain 

(4n + 1)(4n + 2) ^ r s i n h n r | Z * 7t4p-i22p-2r4p-2 I ' *' ' 
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Thus if we write 
oo 

•1)r 

, P = 1,2, -
sinh m 

(3.12) T4P.1 = (-7)P(4p,! T ~ L 

then it follows T4P-i satisfies the recursive relation 

(us) /= £ (4»4;2| Upi n = lz..._ 

This is the first of our results. We now show how this recursive relation can be inverted to give F ^ / in terms of the 
Bernoulli numbers. To do this, we observe that (3.13) can be put in the alternative form 

T 
1 _ T~"% '4p-1 

(4n+2)l 2-J (4p)!(4n+2~4p)! 

Multiplying both sides of this equation by x and summing from n = 1 to <*> yields 

1J (4n+2)l " 2-r LJ (4p)!(4n+2-4p)! ) ^ (4p)l [ ) £ i (4k + 2)! 

After some manipulation we obtain 

°° A 
(3.14) V 1 UD-1 77-iT = 7 - —r-^~ = 1+ ^cosechcurcosech/cur, 

^ w ^ f4/?// cosh x - cos x 2 
P=1 

where 2a = 1 + i. 
Using the expansion of cosechx given in [1] Eq. (3.15) leads after some simplification to 

T«~' ' ^ Z (-'ft**-'- D(24p-2c>-1 - D ( J ) BqB2p.q . 
2 q=0 

It should be noted that BQ is taken as - 1 while the Bernoulli numbers are defined here by 

?V-j' i>""'*&-
e —/ p=i 

With the help of (3.12) we deduce 

In a similar manner if we pu t * = y = 7rin (3.11) and define S4p~t by 

oo 

S4p-1 = (-1)P~1*1-4p2-2p+2(4p)! Y ^-^ 
" Ap-1 

then 
n 

(3.16) £ [*£2)s4p-t-'*>(*!>+3) 
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S4P~i can also be expressed in terms of the Bernoulli numbers. By writing (3.16) in the form 

V S4p~1 = I / —L l—\ 
L* (4n -4p + 2)!(4p)! 2 \ (4n)! (4n + 2)! \ 

and following a procedure similar to that for T^p-/ we find 

J ^ x4p 2 
> S4P-i * ,/ = - y - coth ax coth lax - /. 

Since (see [1]! 

we have 

giving 

2p 
xz*xhx= £ r - / / * V * jf^ 

p=0 

«p-i-**f: <-vp+q {%) *qB2P~q 
q=0 

n\i\ V c o t h nr = P4p-2_4p-1 TT* (-Dq+ Bg%2p-g 
[ } JL, 4f>-1 Z * jLi (2q)!(4p-2q)! ' 

r=1 i q=Q 

We next put x = 0, y = -n in (3.11) and subtract from twice the result the expressions obtained by putting* = y = 0 
and x = y = n. This leads to 

(3.18) ^"U + l-n^h2"-1] =T2l2r+l(n) —±- • 
U (2r+V4p-1 

Writing 

(3.19) Q4p. , = (- If V 4 p * 12-2p+4(4p)! V - " J * 
% <2r+1)4p-1 

(3.18) gives with the aid of (3.6) and (3.19) 
n 

(3.20) £ (4n4p2) Q*P-1 = (4» + U(4n+2) { 1 + (~1)nH
2
1'2n] . 

This is the third of the recursive relations and may be compared directly in form with (3.13) and (3.16). &4P-i can 
also be expressed in terms of the Bernoulli numbers. 

From (3.20) we deduce 

±\»»r»>~\&-\t^&\\±&& 
n=1 {p=1 ) (k=0 ) 

or, after some manipulation, 

(4p)! coshx- cos* 

where as before 2a - 1 + i. 

E n *4p - „ 2 1 cosh x + cos x - 2 cosh ax - 2 cos ax + 2\ 
4p~1 WW " * TZ^Z—TZrz * 



1976] THE SUMS OF CERTAIN SERIES COWTAIWIWG HYPERBOLIC FUNCTIONS 221 

The right-hand side of (3.21) can be expressed as 

•y ( coth y- coth l-~- -2 coth ax coth fax - 2 cosec ax cosech fax - tanh ^ tanh '^- i . 

Recalling the expansions for coth x, cosech x already used and noting that in [1] for tanhx we obtain after some 
manipulation 

nA , = (-IPfail V> / ,,<? (24P-2«- 1)(22«- 1) B g Q4P-1 ^.s 2 - , '-11 (2g)!(4p-2g)l B"B*"> 

and hence by (3.19) 

(3 a , f ^(2r+1>l ^ 2T1 (24p-2q _ 1)(22q _ 1} 

The expression in (3.11) can be differentiated as many times as we wish with respect t o * and y at points within the 
rectangle. 

Differentiating once with respect to x and once with respect to y gives 
oo 

(3.23) (2n)(4n - 1)i[(x + iy)4n~2 - (x - iy)4n"2] = Y* ^P^-1 /sinh ry sin rx + sinh rx sin ry] 
" sinh m 
r=1 

Puttings = y = n/2 in (3.23) and defining /?4P„3 by 

(3.24) R4p.3 = / - f " . fa ~ 2)1 E S ^ " T 
n4p-322p-1 ~0 (2r+ D4"-3 cosh ̂  +1)f 

yields 

(3.25) '^^--EUAK-* 
The quantities /?4P-j can be expressed in terms of the Euler numbers (see [1]). 

Following a procedure similar to earlier ones, we can deduce from (3.25) that 

Since 

X>„ + , ^ r , -jr-ef "* 2 X4* 
lp+1 (4p+2U ' 

sec* 
oo 

= E 
q=0 

1 
* 2" 

^ 

-secM 

x2« 
(2q)l ' 

where Elf E2, —, are the Euler numbers and E0 is taken as unity, we obtain 

(3.26) R4p+1 - (4P ,2), £ £ E M,« ^ ^ 7 
and hence 
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00 2p n 

/o97v V (-W „4p+U-4p~3 X^ (-1rEqE2p-q n - n 1 9 
(3-27) S ^ / ^ W ^ / , ? * ' h <*»«!-»!>' p' °'l2' 2 
Putting /? = / i n (3.23) yields 

(3.28) xy = 2ft 2^ ™ ~ — | sinh ry sin rx + sinh rx sin ry I (~1)r 

i 

Hence differentiating once with respect t o * and then y we have, on putt ing* = y = n/2 

~ tr+f 

'-"ES; A / - / / 
sinh m 

If we differentiate (3.28) (2p + 1) times with respect to x and (2p + 1) times with respect to y then f o r * -y = it/ 2 
we find 

± J ^ l l = O t P=1,2,.... 
*-^ smh nr 
r=/ 

Likewise differentiating (3.28) (2p) times with respect to x and 2p times with respect to y leads to 

f " (2r+1)4p~1(-1)r 

% cosb(2r+1)Z =0< P= 7<2<~" 

We now proceed to find the sum of the last of the series referred to in the Introduction. Using the results of Section 
2, it can be shown for n = 1, 2, • 

- I (x + iy)4n+2 + (x- iy)4n+2 \ = (- 7)n<n4n22n(x2 -y2) + Y" (-1)r ^ o s h ^ cos ry - cosh ry cos rx ! 
2 % > *-*> r sinh nr 

r=1 

o=1 r ) 

X J % i-i>"+1-P i d H ^ l 92n-2p+2,AnU (4n+2\\ 

P=1 

The constant appearing in the Neumann solution is determined here to be zero by observing that each side of (3.29) 
vanishes when x = y = 0. 

Putting* = 7r , / = 0 in (3.29) and de f in ing#4^ / by 

(3.30) M4p+1 = (-1)p+1^4p"12'2p+2(4p)! £ / * M / * coshr^ p s , z . 
leads to "1 r p H sinh nr 

(3.3D J2 M*p+i {4n4p2) = i + (-vnHr2n> 
P=1 

From the recurrence relation (3.31) we deduce 

\ T * M
 x p - 1 J. i ™+ a* +*n fax i + „ „ ax nn+ /'ax 

2-r M*P+I J4$T ~ 1 2 T x T ~Jm Y T~ 
P=I 

and hence 
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22p-2 »++, - (-if -gg E h1)S (2mP
2-2S~+2), B°B2^-° 

Since 
00 / -,r*/ u * °° ( coth^-2""4pcoth2ttr ) y ^ f-/A # cosh HT* / - -V1 } 2 f 

~i r**'sinhnr ~ %1 } &+1 \ 

we can, noting (3.30), obtain the required sum. It also follows for/7 > 3 we can obtain a good approximation to 

- cothJJ 
Za 4p+1 

in terms of the Bernoulli numbers. 
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SEQUENCES OF MATRIX INVERSES 
FROM PASCAL, CATALAN, AND RELATED CONVOLUTION ARRAYS 

V. E. HCIGGATT, JR., AND MARJORIE BICKNELL 
San Jose State University, San Jose, California 95192 

A sequence of sequences 5/ arising from the first column of matrix inverses of matrices containing certain columns 
of Pascal's triangle provided a fruitful study in [1]. Here, we use convolution arrays of the sequences S/ to form a 
sequence of matrix inverses, leading to inter-relationships between the sequences Sj. The proofs involve generating 
functions for the columns of infinite matrices, and have diverse applications. 

1. SEQUENCES OF MATRIX INVERSES 

In this paper, we return to the sequences S/ arising from the first column of PJ1 as in [1]. We form a series of nxn 
matrices P/j by placing every /^column of the convolution triangle for the sequenceS/ on and below the main di-
agonal, and zeroes elsewhere. Then, to relate to the matrix/5/ from [1] which was formed by writing the// + 1)st col-
umns of Pascal's triangle on and below the main diagonal, in the new notation, Pj-i-Poj, of/ every/^column of 

the convolution array for the sequence So = | 1 ,1 ,1 , - J - , which is Pascal's triangle. As a second example, the ma-
trix Pii3 would contain every third column of the convolution array for the Catalan sequence Sx written in triangu-
lar form. 

We call the inverse ofPfj the matrix PjJ and record these inverses in the tables that follow. 
Now, let us analyze the results. First, we look at the form of the elements of each matrix inverse, disregarding signs, 

for Pij, For/ = 1, the rows of Pascal's triangle appear on and below the main diagonal; these columns are also the 

columns of the convolution triangle for the sequenceS~f = j 1,1, 0, 0, 0, ••• I. The column generators, alternating 

signs included, are (1 - x) , which are the reciprocals of the column generators for Pascal's triangle, where we do 
not adjust for the triangular form. For/ - 2, we have alternate columns of Pascal's triangle, or alternate columns of 
the convolution triangle for S0. (In fact, notice that each array contains columns of the convolution array for its left-
most column.) For/ = 3f we ha?/e every third column of the convolution triangle forSit while/- 4 gives fourth col-
umns for S2. 

These results continue for P^j in Table 1.2. When / = 1, disregarding the alternating signs of the array, we have 

every column of the convolution triangle for the sequence $~3 = 4 1, 1, - 1 , 2, - 5 , 14, -42 , —I which contains 

the Catalan numbers or Sx, taken with alternating signs, following the initial term. If the generating function of Sx 

is CM, then the generating function for SL3 is MC(x). Then, for/ = 2, we have every second column of the array for 
S- i ; for/ = 3, every third column of the array forS0, or, every third column of Pascal's triangle. These results con-
tinue, so that when/=4, we have every fourth column of the convolution array for the Catalan numbers, oxSx;j= 5, 
the fifth columns of the array forS2;j-- 6, the sixth columns of the array for£3; and for / * 7, the seventh columns 
of the convolution array for£4. 

Inspecting Table 1.3 for the form ®fP$j verifies that these results continue. When/25 1, every column of the eon-

volution array for the sequence S_3 = 4 1,1, - 2 , 7, -30 , — }• appears. Notice that S_3 contains the elements of the 
first convolution of S2, or of S2

2! taken with alternating signs and with one additional term preceding the sequence. 
If the generating function for£2 is Dfx), then the generating function for£„3 is 1/D2(x). For/ = 2, we have every 
second column of the convolution array for S„2; j = 3, every third column of the array forSLj//= 4, every fourth 
column of the array for£0; —, and for/= 8, we have every eighth column of the array for£4. 

224 
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CATALAN, AND RELATED CONVOLUTION ARRAYS 

Table 1.0 
Non-Zero Elements of the Matrices PQ- and PQJ 

D~1 'to 

1 
-1 

1 
-1 

1 
- 1 

1 
- 1 

2 
-B 
14 

1 
- 1 

3 
-12 

BB 
1 

-1 
4 

-22 
140 

1 
- 2 

3 
-4 

B 

1 
-3 

9 
-m 

1 
-4 
18 

-88 

1 
-B 
30 

-200 

phj 

1 
-3 

6 
-10 

1 
- 5 
20 

1 
-7 
42 

1 
-9 
72 

1 
-4 
10 

1 
- 7 

1 
-10 

1 
-13 

1 
- 5 1 

1 

1 

1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

•1 

1 
1 
1 
1 
1 

1 
2 
3 
4 
S 

1 
3 
6 

10 

1 
4 

10 
20 

1 
5 

15 
35 

PoJ 

1 
3 
6 

10 

1 
5 

15 

1 
7 

28 

1 
9 

45 

1 
4 

10 

1 
7 

1 
10 

1 
13 

1 
5 1 

1 

1 

1 

1 
- 1 

0 
0 
0 
1 

- 1 
1 

-1 
1 
1 

- 1 
2 

-5 
14 
1 

- 1 
3 

-12 
BB 

-273 

Ni 

1 
- 2 

1 
0 

1 
-3 

6 
-10 

1 
-4 
14 

-48 

1 
-5 
25 

-130 
700 

Table 1.1 
on*Zero Elements of P~* 1

! 

f hi 

1 
-3 

3 

1 
-5 
15 

1 
-7 
35 

1 
-9 
63 

-408 

1 
-4 

1 
-7 

1 
-10 

1 
-13 
117 

1 

1 

1 

1 
-17 1 

and/*/, 

1 
1 
2 
5 

14 
1 
1 
2 
5 

14 
1 
1 
2 
5 

14 
1 
1 
2 
5 

14 
42 

/ 

1 
2 
5 

14 

1 
3 
9 

28 

1 
4 

14 
48 

1 
5 

20 
75 

275 

PlJ 

1 
3 
9 

1 
5 

20 

1 
7 

35 

1 
9 

54 
273 

1 
4 

1 
7 

1 
10 

1 
13 

104 

1 

1 

1 

1 
17 1 
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Table 1.2 
Non-Zero Elements of P^j and P2j 

1 

2 

3 

4 

5 

6 

7 

1 
-1 
-1 
-2 
-5 

1 
-1 
0 
0 
0 

I 
-1 
1 

-1 
1 

1 
-1 
2 

-5 
14 

1 
-1 
3 

-12 
55 

1 
-1 
4 

-22 
140 

1 
-1 
5 

-35 
285 

1 
-2 
-1 
-2 

1 
-3 
3 

-1 

1 
-4 
10 

-20 

1 
-5 
20 

-75 

1 
-6 
33 

-182 

1 
-7 
49 

-357 

1 
-8 
68 

-606 

H2,j 

1 
-3 
0 

1 
-5 
10 

1 
-7 
28 

1 
-9 
54 

1 
-11 
88 

1 
-13 
130 

1 
-15 
270 

1 
-4 

1 
-7 

1 
-10 

1 
-13 

1 
-16 

1 
-19 

1 
-22 

1 

1 

1 

1 

1 

1 

1 

1 
1 
3 
12 
55 

1 
1 
3 
12 
55 

1 
1 
3 
12 
55 

1 
1 
3 
12 
55 

1 
1 
3 
12 
55 

1 
1 
3 
T2 
55 

1 
1 
3 
12 
55 

1 
2 
7 
30 

1 
3 
12 
55 

1 
4 
18 
88 

1 
5 
25 
130 

1 
6 
33 
182 

1 
7 
42 
245 

1 
8 
52 
320 

J 

1 
3 
12 

1 
5 
25 

1 
7 
42 

1 
9 
63 

1 
11 
88 

1 
13 
117 

1 
15 
150 

1 
4 

1 
7 

1 
10 

1 
13 

1 
16 

1 
19 

1 
22 

1 

1 

1 

1 

1 

1 

1 
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/ = 1 

/ = 2 

/ = 5 

/ = 7 

/ = 

1 
-1 
-2 
-7 
-30 

1 
-1 
-1 
-2 
-5 
1 

-1 
0 
0 
0 
1 

-1 
1 

-1 
1 

I 
-1 
2 

-5 
14 

1 
-1 
3 

-12 
55 

1 
-1 
4 

-22 
140 

1 
-1 
5 

-35 
285 

Fable 1, ,3 
Non-Zero Elements of P^-

ps 

1 
-2 
-3 
-10 

1 
-3 
0 

-1 

1 
-4 
6 

-4 

1 
-5 
15 

-35 

1 
-6 
27 

-110 

1 
-7 
42 

-245 

1 
-8 
60 

-456 

1 
-9 
81 

-759 

1 
J 

1 
-3 
-3 

1 
-5 
5 

1 
-7 
21 

1 
-9 
45 

1 
-11 
77 

1 
-13 
117 

1 
-15 
165 

1 
-17 
221 

1 
-4 

1 
-7 

1 
-10 

1 
-13 

1 
-16 

1 
-19 

1 
-22 

1 
-25 

1 

1 

1 

1 

1 

1 

1 

1 

and P3J 

1 
1 
4 
22 
140 

1 
1 
4 
22 
140 
1 
1 
4 
22 
140 
1 
1 
4 
22 
140 

1 
1 
4 
22 
140 

1 
1 
4 
22 
140 

1 
1 
4 
22 
140 

1 
1 
4 
22 
140 

p3j 

1 
2 
9 
52 

1 
3 
15 
91 

1 
4 
22 
140 

1 
5 
30 
200 

1 
6 
39 
272 

1 
7 
49 
357 

1 
8 
60 
456 

1 
9 
72 
570 

1 
3 
15 

1 
5 
30 

1 
7 
49 

1 
9 
72 

1 
11 
99 

1 
13 
130 

1 
15 
165 

1 
17 
204 

1 
4 1 

1 
7 1 

1 
10 1 

1 
13 1 

1 
16 1 

1 
19 1 

1 
22 1 

1 
25 1 

To generalize, P"jj contains the sequence S/-/-/ along its first column and the/f/? columns of the convolution tri-
angle for the sequence £/-/-/, taken with alternating signs, on and below its main diagonal, with, of course, zeroes 
everywhere above its main diagonal. The sequences S/, / > 0, were explored in [1]. The sequences S,./, / > 2, are all 
related to the sequences S,- by 
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s-, - 1 = stf 
so that, if the initial one is deleted, the sequence £_./ is identical to the (i - 2h& convolution of the sequence S/_y, 
i> 2. Also, if the generating function for S; is G(x), then the generating function for 5- / - / \%1/G'(x), i> 1, andS_; 
has a generating function which is the reciprocal of that for Sn. 

There are other patterns which occur for the matrices P~Jm Except for the alternating signs, Pjj,\% identical to P;j 
fo r / = 2i + 1. Furthermore, this property still holds if we form Pfj from any set ofjth columns of the convolution 
triangle for S,; j = 2i + 1. For example P'J^ contained the same elements as Pft3 except for the alternating signs, 
where Pff3 contained the zeroeth, third, sixth, •••, columns of the convolution triangle for Sf so that its k**1 column 
was the (3k)th column of the convolution array. Form ̂ j to contain every third column of the convolution array 
fo rS / , but beginning from the first convolution, so that the kth column o f P / ^ i s t h e (3k + 1)st column of the array, 
and P*f3 has the same elements ^p\s, taken with alternating signs. Similarly, if we form the matrix P*'*3 from the 
(3k + 2)nd columns of the convolution array forSff P*f*3

1 has the same elements as P^*3 taken with alternating 
signs. For example, using 5 x 5 matrices, 

p*-1 
P1,3 ~ 

13 -

1 
2 
5 

14 
_42 

" 1 
3 
9 

28 
L.90 

0 
1 
5 

20 
75 

0 
1 
6 

27 
110 

0 
0 
1 
8 

44 

0 
0 
1 
9 

54 

0 
0 
0 
1 

11 

0 
0 
0 
1 

12 

0 
0 
0 
0 
1_ 

0" 
0 
0 
0 
1 

- 7 | 

= 

-7 

= 

- 1 
-2 

5 
-14 

_ 42 

r 1 
-3 

9 
-28 

I 90 

0 0 
1 0 

- 5 1 
20 - 8 

-75 44 

0 0 
1 0 

- 6 1 
27 - 9 

-110 54 

0 Q-| 
0 0 
0 0 
1 0 

-11 i j 
0 0 
0 0 
0 0 
1 0 

-12 1 
Notice that we can consider n x n submatrices of the infinite matrices of this paper, since for infinite matrices A, B, 
and C, if we knowthat/4# = £by generating functions, then it must follow that AB = C forn x n matrices^, B, and 
C, because each n x n matrix is the same as the n x n block in the upper left in the respective infinite matrix. We 
write the Lemma, 

Lemma. Let A be an infinite matrix such that all of its non-zero elements appear on and below its main diagonal, 
and le t^x /7 bethenxn matrix formed from the upper left corner of A Let B and C be infinite matrices with Bnxn 

and Cnxn the/7 x n matrices formed from their respective upper left corners. If AB = C, then Anxn&nXn = CnXn> 

Returning for a moment to Tables 1.1, 1.2, and 1.3, notice that the row sums of Pij are | 1, 2, 5, 14,42, - I, 

orS^-therowsumsof/^ are j 1, 2, 7,30,143, - | , or SJ; and the row sums of P33 are | l , 2, 9, 52, 320, •••} , 
or SI. We easily prove that 

Theorem. The successive, row sums of P,j are sf. 

Proof. Let S,(x) be the generating function for the sequence S/. Then the row sums are 

R(x) = SjM+xS'f'M+xZsf*1 *••• = Sj(x)/[1-xSlM] 

by summing the infinite geometric series. But, by [1 ] , 

/ BSiM-xSpUx), 

so that R(x) = Sf (x) upon simplication. 

2. PROOF OF RESULTS AND FURTHER APPLICATIONS 

Now, we establish firmly the matrix inverse results of this paper. LetSffx) denote the generating function for the 
sequence Sf, and let Sk I Sk~i mean that5^-7 is the solution to 

Sk(x/s(x» = S(x), 

with S(O) = I It will follow that 
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Now, it turns out that 

From this we can show 

as follows: 

is trivial, but this continues as 

and thus we can generally say 

<u>2 I w j 4-WQ I w_ j i 6_ 

s->Masfcj 
1 - (-x) 

= 1+x. 

1 1 
Sj-x) * Sj-x) * S2(-x) 

SjxSjx)) = S2(x) 

1 1 
Sj-x/1/SJ-x)) SJ-x)' 

1 1 
Sm(-x) Sm+1(-x) 

Notice that, if S0 (x) = 1/(1 - x), then Sn(x) satisfies 
/ 

1-xSn
n(x) 

S„M or 1 = Sn(x)-xS^7(x) 

Now, let us look at our general (Pascal) problem. (We denote each matrix by giving successive column generators.) 
The two infinite matrices 

(fm(x), fm+k(x), fm+2k(x), -) and (Am(x), Am+k(x), Am+2k(x), •-) 
are matrix inverses if 

A(x)f(xAk(x)) = 1 or f(x/[1/Ak(x)]) = 1/A(x). 

That is, 1/A(x) is k steps down the descending chain of sequences from f(x). Let us examine the two together. 
{S%M,S*M,SllM,~)-1 

is given by 
(A(x)/A

6(x)/A
11(x)/-h 

where 
SJx/1/AUx)) = 1/A(x) 

so we go down five sequences from S2(x): 

S2(x),Sx(x),S0(x),S_Jx) = 1/SJ-x),S_2(x) = l/SJ-xhS.Jx) = 1/S2(-x) 
so that 

1/AM = SJ-x). 
This verifies that 

1 o o o o i " ; r i o o o cr 
1 1 0 0 0 
3 6 1 0 0 

12 33 11 1 0 
55 182 88 18 1 

-1 1 0 0 0 
3 - 6 1 0 0 

[-12 3 3 - 1 1 1 0 
55 -182 88 -16 U 

Lemma. Two infinite matrices 
(f(x), xf(x)A(x), x2f(x)A2(x), x3f(x)A3 (x), -) and (g(x),xg(x)B(x),x2g(x)B2(x),x3g(x)B3(x), - J 

are inverses if 
g(x)B(x)A(xB(x))f(xB(x)) = 1. 
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There are several interesting applications. Consider the central column of Pascal's triangle, j 1, 2, 6, 20, - | 
which, upon proper processing, originally gave us the Catalan sequence. Let fM he the generating function for the 
central column of Pascal's triangle, and take 

fM = 1/sJ1-4x, A(x) - (1-^1-4x )/2x, g(x) = 1 -2x, B(x) = 1 -x, 

' 2x(1-x) 1-x B(x) 
so that B(x)A(x(B(x)) = /.Now 

f(x(B(x)) = -77^=r7l^=sr= —±- = - f -

so thatg(x)f(xB(x)) = 1 also. This matrix uses elements from the central column of Pascal's triangle and the columns 
parallel to it, and has inverse whose columns have the coefficients from the generating functions. For example, for 
the 5 x 5 case, 

1 0 0 0 0 \ ~ ; / 1 0 0 
2 1 0 0 0 \ / -2 1 0 
6 3 1 0 0 = 0 - 3 1 

10 10 4 1 0 / \ 0 2 -4 
20 35 56 5 1 / \ 0 0 5 - 5 1 

If we now go to themth columns, then 
glx)Bm(x)Am(x(B(x))f(xBM) = 1 

so it seems to naturally break into two separate parts: 
(1) B(x)A(x(B(x)) = 1 

(2) gMf(xBM) = 1, 

where we already know how to solve (1), but (2) is something new when combined with (1) since the above has to 
hold for ail m ̂ 0 . 

Let us consider S* = \ 1, 3, 15, 84, —J, the diagonal of Pascal's triangle, which, upon proper processing, lead to 
our sequence^ = J 1,1, 3, 12, 55, 273, - J. LztS*(x) be the generating function forS*, and take 

f(x) = Sjx), AfxJ = Sjx)f 

and let Sl(x) = C(x) be the generating function for the sequence Sx = | 1, 1,2,5, 14, 70,-J- , the Catalan sequence. 
Then, 

gM = 1-3xC(x) B(x) = 1-xC(x) 

- _ 1 _ _ * - 1 
" CM CM 

= 3 _2 ^ I 
Sjx) Sjx) 

Now, let S* = | 1,4, 28, 220, — }, the diagonal of Pascal's triangle which led to the sequence S3. Here, we use 
/ = Sjx)-xSjx) 

and we can write 
fM = Sjx), AM = SJx), BM = 1/SdM, and gM = 1-4xSjx) = 4/SJx)-3. 

Generally speaking, we take 
fM = S*kM, AM = Sk(x), BM = 1/Sk(x), gM = 1 - (k+1)xSk

k~
1M = t±±- - k. 
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Lemma. The two infinite matrices 
(f(x)Am(x),xf(x)Am+k(x), x*f(x)Am+2k(x),.-) and (g(xBm(x).xg(x)BmH(x), x2g(x)Bm+2k(x), - J 

are inverses \if(xBk(x))g(x) = 1 and A(xBk(x))B(x) = 1, simultaneously. 
The Lemma is the same as considering the two infinite matrices 

(F(x),xF(x)Ak(x),x2F(x)A2k(x), ••) and (G(x),xG(x)Bk(x),x2G(x)B2k(x), ~), 

where 
Fix) = f(x)Xn(x); G(x) = g(x)Bm(x); Ak(xBk(x))f(xBk(x))Am(xBk(x))Bm(x)g(x) = 1 

or 
[A(xBk(x))B(x)]m = 1 and f(xBk(x))g(x) = 1, MO) = B(O) = 1. 

With application to the sequences S/ of this paper, we can take 
fix) = DofxK A(x) = Sk(x), g(x) = 1-(k+ 1)Sk

k~
1(x), and Blx)- 1/Sk^(x). 

The above lemma can also be illustrated by taking 
f(x) = 1/(1 - x), A (x) =11+ x)/(1 - x), g(x) = (3 + x - yJ1 + 6x+~x~~*)/2, 

and 
B(x) = [~(1+x) + s/1 + 6x+x2]/2x. 

This arises from the triangular matrix (from a paper by Alladi [61) 
1 
1 1 
1 3 1 
1 5 5 1 
1 7 13 7 1 x = u + v + y 

where the column generators are successively given by 

/ x(l-f-x) xn(1+x)n 

1-x' U-x)\ ' ' " ' (1-Xf+1' 

The lemmas of this section also apply to some other interesting sequences. Suppose we take the sequence 
J1, 1, 2, 4, 8, 16, - 1 which is generated by 

n=0 

Let Hfix) = S(x), where S(O) = 1 and S(x) satisfies f(xS(x)) = S(x). Then H* f(x) = S(x) means that f(xS2(x)) = S(x), 
S(O) = I 

which is the generating function for | 1,1,3,11,45,197,903,-, \. (See Riordan [2], p. 168), while 
Hir^k)= H(g(x,, = hix)> 

which is the generating function for the sequence | l . 1,4,21, 126, 818, 5594, -J- given by Carlitz [4]. There is 
another sequence from the same article by Carlitz, but first we note^ = | l , 1,3,11,45, - , bn, -J- obeys 

In + 1)hn - 3(2n - 1)hn-1 + (n - 2)bn.2 = 0. 

Y 
u V 
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We solve the quadratic 

2xS2 -(x+DS+1 = 0 

S(x) = 1+*£j1+2x+x2 -8x 
4x 

SM= /+w/- f r+*L- 52 
4x 

n=*0 

From this, we should be able to establish the recurrence. We also note that, where C(x)= (1 - sJ1 -4x )/2xisthe 
generator for the Catalan sequence, 

ciTih.) -«" 1 + x \ (1+x)2 

which comes from Riordan [2 ] , p. 168. 
There is another application. Let f(x) generate the odd numbers. Then the solution to f(x($(x)) = S(x), S(O) = 7, is 

the sequence | 1, 3, 14, 79,494,3294, - J - given by Carlitz [4 ] , which has generating functions 

1+x 
(1-x)2 1 +3x + 5x2 +7xz * . » 

1+xS(x) = <w , 
(1-xS(x))2 " b{Xi 

1 + xS(x) = S(x) - 2xS2 (x) +x2S3 (x) 

0 = x2S3 (x) - 2xS2 (x) + (1- x)S(x) - 1, 

where S(x) generates | 1, 3, 14, 79,494, 3294, ••}. As verification, 
S = { 1,3, 14, 79,494, 3294, •• \ , S2 = { 1, 6,37, 242, 1658, - \ 

S3 = { 1, 9, 69, 516, •••} , -15° = { - 1 , 0, 0, 0, 0, 0, - } 

S = { 1,3,14, 79,494,3294,.. j . , -xS = { 0, - 1 , - 3 , - 1 4 , - 7 9 , -494, -\ 

-2xS2 = { 0, - 2 , -12 , -74 , -484, -3316, • } , x*S3 = { 0, 0, 1, 9, 69, 516, - \ 

with all vertical sums equalling zero. 
With the methods of this section, it is easily shown that, if Pjjte the matrix formed by moving each column oiPjj 

up to form a rectangular array, PjjP*j contains Pascal's triangle written in rectangular form, which is such a prolific 
result that it is the content of another paper [3 ] . Paul Bruckman has proved the matrix theorems used in this section 
in [5 ] . See [7] also. 

REFERENCES 
1. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Catalan and Related Sequences Arising from Inverses of Pascal's Tri-

angle Matrices," The Fibonacci Quarterly, Vol. 14, No. 4 (Dec. 1976), to appear. 
2. John Riordan, Combinatorial Analysis, John Wiley and Sons, 1968. 
3. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Pascal, Catalan, and General Sequence Convolution Arrays in a Matrix," 

The Fibonacci Quarterly, Vbl. 14, No. 2 (April, 1976), pp. 135-142. 
4. L. Carlitz, "Enumeration of Two-Line Arrays," The Fibonacci Quarterly, Vol. 11, No. 2 (April, 1973), pp. U S -

ISO. 
5. Paul Bruckman, Private Communication 
6. Krishnaswami Alladi, Private Communication. 
7. V. E. Hoggatt, Jr., and Paul S. Bruckman, "The H-Convolution Transform," The Fibonacci Quarterly, Vol. 13, 

No. 4 (December 1975), pp. 357-367. 
NOTE: In the paper, "Pascal, Catalap, and General Sequence Convolution Arrays in a Matrix," the publication dates 
of references 1 and 2 were inadvertently interchanged. Reference 4 should have read: Michael Rondeau, "The Gen-
erating Functions for the Vertical Columns of (N + 1)-Nomial Triangles," unpublished Master's Thesis, San Jose State 
University, December, 1973. 



ON A GENERALIZATION OF THE FIBONACCI NUMBERS 
USEFUL IN MEMORY ALLOCATION SCHEMA; OR 
ALL ABOUT THE ZEROES OF Zk - Zk~1 - 1, k > 0 
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Brigham Young University, Prove, Utah 34602 

ABSTRACT 

A generalization of the Fibonacci numbers arises in the theory of dynamic storage allocation schema. The associated 
linear recurrence relation involves the polynomial Zk - Zk~1 - 1, k > 1. A theorem is proven showing that all the 
zeroes of this polynomial lie in the intersection of two annuli. 

Complete information about the sequence then follows, e.g., expressing the elements in terms of certain sums of bi-
nomial coefficients and sums of powers of roots, limits of quotients of terms, and limits of roots. Tables useful for 
storage design are included. 

A certain linear recurrence relation arises in the theory of memory allocation schema which generalizes the linear re-
currence defining the Fibonacci numbers. The generalized numbers may be expressed as the coefficients of a rational 
generating function where the denominator of the rational function involves the trinomial Zk -Z ~ - 1. From this 
fact follows two expressions for the numbers themselves, one in terms of linear combinations of the powers of the roots 
of the trinomial, and another expression giving the numbers as sums of binomial coefficients which lie on a line of 
rational slope falling across Pascal's triangle. The former expression gives complete information on the limit of succes-
sive quotients. This latter data depends upon the location of the roots of this trinomial: all complex zeroes lie in the 
intersection of two annuli in the complex plane. See Table 1 and Figure 1 for explicit numbers and visulization of the 
following central theorems. 

Theorem A. Let k > 1. All of the k zeroes of Z - Z "f - 1 are distinct and lie in the intersection of the two 
annuli 

X0 < \Z\ < \ t and Xx - 7 < \Z- 1 | < / + X0 , 

where Xe= \e(k) is the largest (positive) real solution of 

rk + (-1)erk'1 - 1 = 0, e= 0,1, 0 < \ < 1 < \ < 2. 

Table 2 gives approximate values of these \ e = \e(k), k= 1,2, —, 20, 100. 

Theorem B. Let k > 1. Define fkff1 = fken, / + fk,n-k / fkj = 0,j < k; f^ = 1. Then 

lim thpt!' = \(k) and lim XJk) = 1. 

The proofs of these theorems depend upon two sequences of lemmas, those bearing more directly upon Theorem A 
or B; we number the lemmas accordingly. 

Lemma Al. let p(Z) = Zk - Zk~1 - 1,k>\. None of the zeroes of p(Z) are rational; all of the zeroes of 
p(1)(Z) are rational. 

Proof. Since 

P
(1)(z) = kzk~2 (z-k-f±) 

233 



234 ON A GENERALIZATION OF THE FIBONACCI NUMBERS [OCT. 

Figure 1. The Two Annuli Theorem 
(The shaded region represents the region in which all of the complex zeroes of Zk - Zk~1 1 must lie.) 
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nk 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

1 

0 

1 
2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

2048 

4096 

8192 

16384 

32768 
65536 

131072 

262144 

524288 

1048576 

2097152 

4194304 

8388608 

16777216 

33554432 

67108864 

134217728 

268435456 

536870912 

1073741824 

Table 1 

The Sequences f̂ /7 = h,r 
WithfkJ= 0,j <k; fkrk 

2 

0 
0 
1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 
610 
987 
1597 

2584 

4181 

6765 

10946 

17711 

28657 

46368 

75025 

121393 

196418 

317811 

514299 

832040 

3 

0 

0 
0 
1 
1 
1 
2 
3 
4 
6 
9 
13 
19 
28 
41 
60 
88 
129 
189 
277 
406 
595 
872 
1278 

1873 

2745 

4023 

5896 

8641 
12664 

18560 

27201 

4 

0 
0 
0 
0 
1 
1 
1 
1 
2 
3 
4 
5 
7 
10 
14 
19 
26 
36 
50 
69 
95 
131 
181 
250 
345 
476 
657 
907 
1252 

1728 

2385 

3292 

5 

0 
0 
0 
0 
0 

2 
3 
4 
5 
6 
8 
11 
15 
20 
26 
34 
45 
60 
80 
106 
140 
185 
245 
325 
431 
571 
756 

= 1,k 

6 

0 
0 
0 
0 
0 
0 

2 
3 
4 
5 
6 
7 
9 
12 
16 
21 
27 
34 
43 
55 
71 
92 
119 
153 
196 
251 

n-k 
> 1 

1 

0 
0 
0 
0 
0 
0 
0 

2 
3 
4 
5 
6 
7 
8 
10 
13 
17 
22 
28 
35 
43 
53 
66 
83 
105 

8 

0 
0 
0 
0 
0 
0 
0 
0 

2 
3 
4 
5 
6 
7 
8 
9 
11 
14 
18 
23 
29 
36 
44 
53 

9 

0 
0 
0 
0 
0 
0 
0 
0 
0 

2 
3 
4 
5 
6 
7 
8 
9 
10 
12 
15 
19 
24 
30 

10 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
13 
16 

11 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 



236 ON A GENERALIZATION OF THE FIBONACCI NUMBERS [OCT. 

Table 2 
\€ = \€(k), e = 0,1 is the Largest Positive Real Root of rk + (-l)erk~1 - I 

The roots are truncated to 25 decimal places; see [3]. 

k 

~ 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
100 

\(k) 

2.0000000000000000000000000 
1.618033988749894B482045868 
1.4655712318767680266567312 
1.3802775690976141156733016 
1.3247179572447460259609088 
1.2851990332453493679072604 
1.255422871076846543 2050014 
1.2320546314285722959319676 
1.2131497230596399145540815 
1.1974914335516807746915412 
1.1842763223508938723515139 
1.1729507500239802071448788 
1.1631197906692044180088153 
1.1544935507090564328867379 
1.1468540421995067272864110 
1.1400339374770049101652704 
1.1339024903348373489121350 
1.1283559396916029856471042 
1.1233108062463267587889592 
1.1186991080522260494554442 
1.034 

\(k) 

0.0000000000 ~ 
0.6180339887498948482045868 
0.7548776662466927600495088 
0.8191725133961644396995711 
0.8566748838545028748523248 
0.8812714616335695944076491 
0.8986537126286992932608757 
0.9115923534820549186286736 
0.9215993196339830062994303 
0.9295701282320228642044130 
0.9360691110777583783971914 
0.9414696173216352043780467 
0.9460285282856136156355381 
0.9499283999636198830314051 
0.9533025374016641591079826 
0.9562505576379890668254960 
0.9588484010075613716652026 
0.9611549719964985735216646 
0.9632166633389015467989664 
0.9650705109167162350928078 
0.9930 

Figure 2. Combined graph of xk - xk~1- 1 = y for k even and odd. There is a local minimum atx = 
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we see that the roots of piJ(Z) are 0 with multiplicity k-2and (k - l)/k\N\\\\ multiplicity 1, both rational. Since 
p(Z) is rnonic with integer coefficients any rational root must be agaussian integer. From the relation Zk'Uz - 1)= 1 
it is easy to infer that Z cannot be integral. 

Corollary Al. Define the collection of zeroes of p(Z) to be 

Then [Z^] = k, i.e., the roots are distinct, and we can order them 

\KA < l**,/+/|' / = 1,2,-,k-1 
with equality iff \/<j is the complex conjugate of \k,j+i • 

Proof. From Lemma A1 we have proven that p(Z) and p (Z) are relatively prime (C is algebraically closed) 
which is sufficient for the roots to be distinct. We note that in addition to nonreal complex zeroes occurring in con-
jugate pairs, exactly two roots are real if k is even and exactly one is real if k is odd. 

Lemma A2. There exist numbers, 0 < X0 < 1 < X, < 2 dependent only upon k, k > 1, such that all of the 
zeroes of p(Z) -Z - Z ~1 - 1 lie in an annulusX0 < \Z\ <XX centered atO and in an annulusXi - 1 <\Z- 1| < 
1 + X0 centered at 1. 

Proof. Since p(Q) $ 0, any complex zero Z of p(Z) has norm |Z| = r > 0 andp(Z) = 0 gives \Z- 1\ = r1~k\ Thus 
any zero lies on the intersection of the two circles |Z| = rand \Z - 1\ = r1"k with fixed centers. There are two cases of 
empty intersection: one circle lying wholly inside the other. Comparing radii of these circles there will be a non-vacuous 
intersection i f r < 1+r1~k o r i f r < X j where \ is the largest positive root of p(Z). (!). The second case of \Z\=r ly-
ing inside \Z- / j - rr""^ yields 0 < rk + rk~1 - 1 orr> X0 where X0 is the largest positive root of q(Z) = Zk + Z ~1~-
1. Locating these roots gives the inequalities above and noting that \1~k = 1 + X0 Xf " * = \x - 1 bounds the radius 
1~k 

Corollary A2. S e t X ^ ^ ^ X / ^ ^ X y . Then Xj(k) is real and |X^/ | <\i(k) for 1 <j<k. 

FigureS. Combined Graph ofxk + xk~1- 1 = y for k Even and Odd. There is a local 
maximum and minimum a t * = (1 - k)/k. 
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Proof. Xt is, from the proof of Lemima A2 the largest possible real root oip(Z). Note that if k is even that - X 0 

is the smallest real root oip(Z). 

Lemma A3. Let 

be any (complex) linear combination of the nth powers of the zeroes ofp(Z). Then, for A = Yl \ci\ < k max \cl\ 
t<J<k ^'<k 

L erf} < A\1 . 
11<J<k I 

Proof. This follows directly from Corollary A2 and the usual absolute value inequalities. This Lemma gives infor-
mation on the rate of growth of the integers f^n. 

Lemma A4. forp^fx)=xk -xk'! - 7, 

1+ X) PjM*xk - *• 
1<J<k 

Proof The sum telescopes. The purpose of this simple Lemma is to motivate the next Lemma; the largest positive 
real zero of the sum is k . 

Lemma A 5. Let k > 3. Then \<\t(k)<k1/k. 
Proof §'mep(1) = -7 we need only show that p(k1/k)>Q. For k> 3 it is clear that 

1+mhj<lnl<-
But 

t __ _ _ 
2(k- 7) 2k ' 2k2 ' 2k3 "" ' " 2k ' 3kT ' 4k 

so that 

7 + ^7T~T =4r+ihr+-JrT+>~> 1+ 4r + T£T + -rrr + " = -klil ( 7 - 1~r 

Rewriting, we have 

exp is order preserving so that 

Then 

But this gives 

-kin I 1-T) < Ink. 

ln[k-fl) >lnk-1/k, 

1-l>k~1/k. 

><i-fc<'-
0 <k-k1-(lM-1 = p(k1/k). 

Lemma A6. Let* >2. Then£~///: < \<k) < 1. 
Proof For 

q(z) = xk+xk'1- 7, q(7) = 7 

it is sufficient to show that q(k~1/k) < 0. It is clear that k1/k < k - / for k an integer larger than two. But then / + 
k1/k <k gives 
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k k 

Lemma AT. . lim k1/k = I 

Proof. This follows from ^lim^ (lnk)/k = 0. 

The development concludes the proof of Theorem A and the second limit of Theorem B. We now proceed to the 
rationality of the generating function, the two closed form expressions for its coefficients and the limit of successive 
ratios. 

Lemma Bl. Let fk,n be defined as in Theorem B. For k>\, the generating function for fk/n, viz., 

(1) 

is a rational function of £ In fact, 

(2) 

GkM = Y*fk,nt" 
n>Q 

•Hi ft 1 - f 

Uk(V 

1-t-r 

(3) 
— i - \ k j t 

1<J<k 

where the Xkj are as in Corollary A1 and 

(4) AkJ = BkJ4j 
with 

(5) BkJ = k\kJ-lk-j) 
Proof. Given equations (2) and (3), we have 

<3'» 1 - E *u ^ 
]<j<k K'J 

From Lemma A1, and letting f-^X^.- we have 
k .._£ j~ 

.k-i 
(4') Akij 

which, with X^~* = Xkj - 1 yields (5). 
From the initial conditions, fk/J = 0, j<k, fkfk = 1 m hwe fk,k+j - I 0<j<k by referring to the relation 

(6) 'fk,n = fk,n-1 + fkji-k • 

Then 

(7) Gk(t)= 53 fnf + Y* fntn 

k<n<2k n>2k 

and 

(8) tGk(t)= £ f^it"+ J2 ^-1*" 
k<n<2k n>2k 

(9) tkGk(t) = 0+Y1 fn-ktn. 
n>2k 
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From the relation (6) we have the equation 

(10) tGkM- $^ fn-itn + t*6k(t)°GkM- E fnt"' 
k<n<2k k<n<2k 

Isolating Gk(t) and noting that 

«D '*" E fn*n~ E W 
k<n<2k k<n<2k 

we have 

•A-
(12) Gk(t) = - 1 

1 - t - t k 

tk 

(13) - f 

n n-Xkjt) 
1<J<k 

where A^,/ are the solutions of Zk - Zk"~1 = 0. Clearly, 

(14) E KJ = I n xkJ = (-Dk~1 . 
/ < /< * 1<J<k 

Since, by Lemma A1 the Xkj are all distinct we have the partial fractions decomposition stated in the Lemma, Eq. (3). 

Lemma B2. Let k > 1. 

d5) fK„- £ ("-'-J*-'*") • 
0^n<(n-k)/k * ' 

Proof. From Eq. (2) in Lemma B1 we have 

(16) 0 * M = - ^ - — 
1-(t + tk) 

(u) -f* Etv/***-'/ 

(18) -£ i** £ M r*-'*» 
s>0 0<m<s 

s> 0 0<m<s 

(20) 
n>0 0<m<(n-k)/k 

Thus (15) follows from the definition of G/tM Note that i f £ = 7, 
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(2D 
0<m<n-1 

corresponding to summing Pascal's triangle horizontally. If k = 2, the case of Fibonacci numbers yields the familiar 

(22) f2gn 
0<m<(n~2)/2 

corresponding to summing the binomial coefficients lying upon lines of slope 1 through Pascal's triangle. In general one 
sums along lines of slope k - 1. See Figure 4. 

fl,5 = 16 

hj = 8 ....-••'" 

s* 

f3,10= 9 ,S' 
y' 

/ 

fdld = 14/ 

1 
I 2 1 s 

3 h/'' 
i i^<s¥ 
^^""\yy\M 
i yi / 15 
i / ' ' y 21 
l' / 8 28 
I / ' 9 36 
) / 10 45 
1 11 55 
1 12 66 
1 13 

1 
4 

10 
20 
35 
56 
84 

120 
165 

1 
5 

15 
35 
70 

126 
210 

1 
6 

21 
56 

126 

1 
7 

28 

Figure 4. The Numbers/^,, as Sums of Binomial Coefficients Lying Upon Lines of Slope k— 7 through Pascal's 
Triangle. (See Lemma B2.) 

Lemma B3. Let k > 1. Then 

(23) 

where the \k,j are the zeroes of 

Proof. From Eq. (3), 

(24) 

(25) 

(26) 

1<j<k k\kij-(k-1) 

zk-zk-1-i. 

Gk(t) = tk E Akrj Y, Ktitn , 
1*q<k n>0 

- E ^ E **.JKI. 

= E ' " E **JKJ • 
n>k 1<j'<k 
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Table 3 
Real and Complex Zeroes Rounded to Five Places, ^k,jJ= h 2, -, K of the Polynomial Zk - Zk~1 - 7 for k= 1,2,—, 10 
(The zeroes are listed in decreasing order of modulus. A more complete table of these roots, k-
nificant digits is available upon request .) 

* hc,k 
1 2.00000 
2 1.61803 -0.61803 
3 1.46557 -0.23279 ±i0.79255 
4 1.38028 0.21945 ±i0.9144 7 
5 1.32472 0.50000 ±i0.86603 
6 1.28520 0.67137 ±i0.78485 
7 1.25542 0.78019 ±i0.70533 
8 1.23205 0.85224 ± iO.63526 
9 1.21315 0.90173 ±10.57531 

10 1.19749 0.93677+ J0.52431 
F\xk> 1. Then 

1,2, -,20 to 28 sig-

-0.81917 
-0.66236+ i0.56 228 
-0.37333 ±i0.82964 
-0.10935 ±i0.93358 

0.10331 ±i0.9 5648 
0.26935 ±i0.94058 
0.39863 ±10.90691 

-0.88127 
-0.79855 ±i0.42110 
-0.61578 ± iO.68720 
-0.41683 ±i0.84192 
-0.23216 ±i0.92442 

-0.91159 
-0.86082 ± iO.33435 
-0.73720 ±i0.57522 -0.92957 

Lemma B4. 

(27) Jim_ - ^ — - X^max 
n-+" /k,n 

where X^max is the largest positive real root of Zk - Zk~1 - /. In fact, X#,max ^^k-

Proof. From Lemma B3, 

E BkM:,1 

(28) %n+1 = 1</<k . 
fk,n y * n 

1<j<k 

Define X^ m a x to be the zero of Zk - Zk~1 - / with largest absolute value. Then 

(29) fkiwH > 1<&k * A * ' m a x ' 
f ~ A/r,max 
Tk,n 

.utv X Kk,max 1 1<j<k 

Letting S7-+ °°, each sum in the quotient has one or two terms depending upon whether X^max is real or complex and 
in the latter case the limit need not exist. But from the proof of Lemma A2, X^ m a x is real and is equal to \k,k- (Each 
nonreal complex root has absolute value r such that 1 + r1~k > r or r < X ^ ^Xifk).) Since 

the Lemma follows. 
Lemma A8. Let k > 1. Then 

(30) 
where 

H<KnH = (l + M,n>1/(1~k), HO,0 « 1 

Proof. Clear 

XeM = Jim M, ~e-/? 

and 1-k Vt,n+1 = 1+Vin< V-hO* 1-
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LemmaA9. For k>0 
(31) XJkl >\Jk+V. 
In other words X1 (k) converges monotonically to 1 3S K —> oo , 

Proof. [2], litr = XJk),s = \Jk + U Thenr>1,s> 7, r js, and 
r(rk_rk-1_1)= 0f sk+1 _sk_1 = Q 

Subtracting the second equation from the first and dividing through by r- s we have 

(32) (rk+1-sk+1) _ (rk-sk) = r^J 
r-s r-s r-s 

But the left-hand side is positive because it equals 

(33) rk + (s- lHrk'1 + rk-2s + - + rsk-2+sk-1). 

Thus/*-s>0. 
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A NOTE ON SOME ARITHMETIC FUNCTIONS CONNECTED 
WITH THE FIBONACCI NUMBERS 

THERESA P. VAUGHAN 
Duke University, Durham, North Carolina 27706 

1. INTRODUCTION AND PRELIMINARIES 
The Fibonacci numbers are defined as usual by 

(1.1) F0 = 1, F1 = 1, Fn = Fn^ + Fn-2 (n > 2) 

and the Lucas numbers are defined by 

(1.2) L0 = 1, Lt = 3, Ln = Ln-i + Ln-2 (n > 2). 

Recall that if A- is any real number, [x] is defined to be the greatest integer less than or equal tox, and kx\ =x -
fx] is called the fractional part of x. Thus we have 0 < j x \ < 1. 

In [1] and [2], L. Carlitz, V. E. Hoggatt, Jr., and R. Scoville have introduced and studied the arithmetic functions 
a and b which are defined by 

(1.3) a(n) = [on], b(n) = [a2nj, where a = 1A(1 +s/5), and n > 0 . 

The functions a and h satisfy many relations which follow from (1.3), e.g., 

(1.4) b(n) = a(n)+n=a2(n)+1 (n>1) 

(1.5) ab(n) = a(n) + b(n) = bain)+ 1 (n > 1). 

Here, and throughout this paper, juxtaposition of functions indicates composition. 
The equalities (1.4) and (1.5) are given in [1], along with many other properties of a and b. 
In the present paper we show that the functions has the following property: L e t / > 0 and let/7 be an integer with 

n > F21. WaM ^a(n - F2j)(mod F2J+1) then 

a(n) = a(n + kF2j) (mod F2j+i) for k = 0,1, - , L2j-2. 

In fact, we have the stronger result, that 

a(n+kF2j) = a(n) + kF2j+i for k = 0,1, - , L2j-2. 

In addition, if a(n) ^a(n - F2j) fmod F2J+1), then 

a(n + L2jF2j) = a(n) + L2jF2j- 1. 

We give conditions on n for deciding whether or not a(n)^a(n + (L2/ - VF2/) /'mod Fq+i) -
Finally, we have similar results for the Fibonacci numbers of odd index, and for the Lucas numbers. 

2. VALUES OF THE FUNCTION aWHICH ARE CONGRUENT MODULO A FIXED FIBONACCI NUMBER 

We shall require_a few facts about the Fibonacci and Lucas numbers, which may be found in V.E. Hoggatt, Jr. [4]. 
If a= 1M1 + V^and/3= 1M1 - sf5) (i.e., a and /3 are the roots of the equation x2 -x - 1 = 0), then the Fibonacci 

numbers, defined by (1.1), are also given by 

(2.1) Fn = ^ ~ ^ - (n = 0,1,2,-) 

244 
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and the Lucas numbers defined by (1.2) are given by 

(2.2) Ln=an+Pn (n = 0, 1,2,~). 

Using (2.1) and (2.2), it is easy to check that 
(2.3) aFn = Fn+1-$

n (n = 0, 1,~) 

and 
(2.4) aLn = Ln+1-F-1(1 + p) (n = 0, 7 , - J . 

The main results of the present paper are given in the next four theorems. 
2.5 Theorem. Let n be a positive integer. Write m = [an] and e= j an I. Suppose that/? > F2j- (j > 0) and that 
a(n - Fy) ? a(n) - F2j+-j. Then 

(i) e > 1-fl 

(ii) a(n + kF2j) = a(n) + kF2j+1 for k = 0, 1, - , L2j-2 

(iii) If e > /-/32/-f/34/,then 
a(n + (L2j - DF2j) = a(n) + (L2j - 1)F2j+1 

(iv) Ife < / - 0 2 y + j3 4 / , then 
a(n + (L2j ~ 1)F2j) = a(n) + (L2j - 1)F2j+1 - 1 

(v) a(n + L2jF2j) = a(n) + L2jF2j+i - 1. 

2.6 Theorem. Let/7 be a positive integer, and set/?? = [on] and e- \on\. Suppose that/? > F2j+i and 
a(n - F2j+1)?a(n)- F2j+2. 

Then 
(i) e < \$fl+1 

(ii) a(n+kF2j+1) = a(n) + kF2j+2 for k = 0, 1, •», L2j+1 - 1 

(iii) If e < j34yV"2, then we have 
a(n + L2j+iF2j+1) = a(n) + L2j+1F2j+2 

(iv) Ife > (34j+2, then 
a(n + L2i+1F2j+<[) = a(n) + L2j+iF2j+2+ 1 

(v) a(n + (L2j+1 + DF2j+i) = a(n) + (L2j+1 + 1)F2j+2 +1. 

2.1 Theorem. Let/? be a positive integer, and set/?? = [an] and e= ja/? J\ Suppose that/? > L2j(j>0) and that 
a(n - L2j) ? a(n) - L2j+i. Then 

(i) 6 < \&fi-i(1 + p) 

(ii) a(n+kL2J) = a(n) + kL2J+1 for k = 0, 1, - , F2J- 1. 

(iii) If e < (34/, then 
a(n + F2jL2j) = a(n) + F2jL2j+1 

(iv) If e > $4j, then 
a(n + F2jL2j) = a(n) + F2jL2j+1 + 1 

(v) a(n + (F2J + 1)L2j) = a(n) + (F2j + 1)L2j+1 + 1. 
2.8 Theorem. Let/? be a positive integer, with m = [an] and e= \an\. Suppose that /? > L2l+i (j > 0) and that 
a(n - L2j+i)? a(n) - L2j+2. Then 

(i) e> 1-$2j(1+$2) 

(ii) a(n + kL2j+1) = a(n) + kL2j+2 for k = ft f, - , f 2 /> / - 2 
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(iii) If e > l-fPd+pl+tf1*2.*™ 

a(n + (F2j+1 - DL2J+1) = a(n) + (F2j+1 - DL2j+2 

(iv) If £ < / - $2j(1 + p) + fj+2, then 
a(n + (F2j+1 - DL2j+i) = a(n) + (F2j+1 - 1)L2j+2 - 1 

(v) a(n + F2j+ iL2j+i) = a(n) + F2j+1 L2j+2 - 1. 

The proofs of Theorems 2.5-2.8 are given In §3. 
It is natural to ask about the values of a(kFm) and a(kLm), and in fact, we have the following theorem (which is 

not quite a direct corollary of the preceding results). 
2,9 Theorem. Let/ > 0 be any integer. Then 
(a) a(kF2j) = kF2j+1 - 1 for k = I 2, - , L2j- 1 

and a(L2jF2j) = L2JF2J+-J-2. 

(b) a(kF2j+1) = kF2j+2 for k = 1,2, •», L2j+1 

and a((L2j+1 + 1)F2j+1) = (L2j+1 + 1)F2j+1 + 1. 

(c) a(kL2j) = kL2j+1 for k= 1,2,-,F2j 

and a((F2j + 1)L2j) = (F2j + 1)L2j+1 + 1 

(d) a(kL2jH) = kL2j+2- 1 for k = 1, 2, - , F2j+1 - 1 

and a(F2j+<iL2j+i) = F2J+IL2J+2- 2. 

Proof. The proofs of all four parts are very similar, and we prove only (a). By (1.3) we have 
a(kF2j) = [kaF2j] = [k(F2j+1 - f h ] , 

where the last equality follows from (2.3). It is easy to check, using (2.2), that 
L2JP

2i = 1 + f1 > h 
while 

(L2j-1)$2i = 1 + $4i-$2i 

and since |/3| < 1, we have j32y > (l4j\ so that 
(L2j-1)$2j < 1. 

Then for all k= 1,2, - , L2j- 1, we have kf32j < 1, while L2j(5
2j > 1. This proves (a). 

3. PROOFS 
We prove in detail only Theorems 2.5 and 2.7. It is then obvious how to prove Theorems 2.6 and 2.8. 
Proof of Theorem 2.5. From the definition (1.3) of the functions, we have a(n) = m, and 

a(n - F2j) = [a(n - F2j-)] = [an - aF2j] 

= [m + e- (F2j+1 - P21)] (by (2.3)) 
- tm-F2j+1 + (e + $2hl . 

Now the assumption 

implies that 
a(n - F2j) ? a(n) - F2j-+i 

e + fl > 1 
and this proves part (i). 

To see (ii), suppose that k > 0 is any integer. Then 
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a(n + kF2j) = [on + k(aF2j)J 

= fm + e + k{F2jH-P2J)] (by (2.3)) 
= [m+kF2j+i + e-k$2i] . 

To prove (ii), we need only show that for all k satisfying 0 < k < L2j - 2, we have 
(3.1) 0 < e-k$21 < U 

By (i), we have e > 1 - j3 y. It suffices to show 
(3.2) / - f1 > kf1 > 0 (k = 0, I -., L2j - 2) 

orequivalently, 
(3.3) (k + 1)P2J < / (k = 0, I »., L2I - 2). 
Clearly, if we can show 
(3.4) (L2j-1)$2j < I 

the inequality (3.3) will follow. By (2.2), we have 
(3.5) L2j$

2j = (a2i+$2h$2i = 1 + $4i 

and so 
(L2l-nf! = 1+f1 -f1. 

Since |j3| < 1, we have/34y < j32y foraSI/> 0, and this proves (3.4). 
To see (iii) and (iv), we have 

a(n + (L2j - 1)F2j) = [m +e+(L2j - 1)F2jH - (L2j - 1)$2i] . 
If 0 < e - (L2j - 1)P2j < 1, then we have 

a(n + (L2j - 1)F2j) = a(n) + (L2j - 1)F2jH. 
But since 

(L2I-HP2J = 1-$2j + &4i, 
then 

0 < e-(L2j-1)p2j' < 1 
is equivalent to 
(3.6) 0 < e-(1-P2j' + p4J) < 1 

orequivalently, 
(3.7) 0 < 1-p2I + p4J < e < 1 

(since we always have 0 < e< 1). This proves (iii). 
It is clear that if (3.6) (and hence (3.7)) does not hold, then we must have 

(3.8) e-(L2j-1)$2i <0 

since 0 < e < 1 and (L2j - 1)P2j > 0. It is evident that if (3.8) holds, then 
a(n + (L2j - 1)F2j) = a(n) + (L2j - 1)F2j+1 - 1. 

This proves (iv). 
Finally, to see (v), we have from (3.5) that L2j-p

2j = 1 * j34y Then 
a(n + L2jF2j) = [m + e+ L2j(F2j+1 -$2j)l = [m + L2jF2M- 1 + e-fl] 

We must show that 
(3.9) 0 < e-j34y < / . 
It is easy to compute that 
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(3.10) .6 < |/3| < .7 
so that P2 < 1/2 and /34 < %. By (i) we know e > 7 - j32y, and since/ > 0, this gives e > Vi. But also, 0 4 y < j34 < %, 
and (3.9) follows. This proves (v) and completes the proof of Theorem 2.5. 

Proof of Theorem 2. 7. As before, we have a(n) = m, and 
a(n - L2/) = [m + e- aL2j] = [m + e- U2I+1 - P2h 1(1 + f))l 

(by (2.4)). Then the assumption a(n - L2j)?a(n) - L2j+i is equivalent to 
(3.11) e+$2H(1 + $2) < 0, 

since/3 < 0. Clearly (3.11) is the same as 
(3.12) e < \$\2H(1 + $2) 

and this proves (i). 
To see (ii), we first have, for any integer k > 0, 

a(n + kL2j) = [m + e+k(L2j+1 - $2h 1(1 + $2))]. 
As in the proof of Theorem 2.5, we need to show that 
(3.13) 0 < e + (F2j- 1)\$\2H(1 + $2) < I 

We first note that, since o|3 = - 1 , 

(3.14) 1 + f = / - £ = <kzl , 
a a 

Then we have 

Then, using (i), we have (since/ > 0) 
0 < e+(F2j-1)\$\2i-1(l + $2) 

< \$\2hUi+f) + (i-$4i)-\$\2H(i+$2)= i-$4i < u 
It follows that if 0 < k < F2j - 1, we have 
(3.16) 0 < e + k\$\2H(1+$2) < 1 
and (ii) is proved. 

It is clear from (3.15) that if 0 < e < j34/, then 
(3.17) 0 < e+F2j\$\2i~1(1 + $2) = e+(1 - $4j) < 1 

and (iii) follows. On the other hand, if e> j3 J, then 
e+F2j\$\2>-1(1+$2) = e+(1-f>) > 1, 

and this proves (iv). 
To see (v), we have 

(3.18) (F2j+1)\$\2H(1+$2) = (1~&4i) + \$\2H(1 + $2) > 1 

and it follows that (v) holds. 
This completes the proof of Theorem 2.7. 
In view of (1.3), it is clear that Theorems 2.5 - 2.8 all remain true if we substitute the function b for the function 

a wherever it appears. 
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SOME BINOMIAL SUMS 

LCARLITZ 
Dyke University, Durham, Nortli Carolina 27706 

1. Put 
n+1 

where it is understood that 

(_",) '(nit) '° (n>°>-
Consideration of this sum was suggested by the following problem proposed by H. W. Gould [1] . Let 

V - £ '-W(Z)-U-/ t-
(K2k<n V ' J 
0<2k<n 

Then 
A2(2m -i-D = (2m + DA, (2m + 1). 

It is noted that this result does not hold for even n, 
Since 

AU-T. Mr*"{(..;„)- (.•,)}'- £ /-«-'"{(,;,) -(:)V. 
k=0 ^ J k=0 v- J 

so that 
(1.2) AM = (-1)nA(n), 

therefore 
(1.3) A(2m + 1) = 0. 

However (1.2) gives no information about A(2ml By (1.1) we have 

^ - E ^ M O 3 - 5 S ^ * ( 2 ) 2 ( * - i ) + 3 i i ^ ( ; ) ( * - 0 2 
k=0 k=0 k=0 

k=1 k=0 k=0 k=0 

Supported in part by GP-37924. 
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Thus if we put 
n+1 2 

k=0 k=0 

n+1 

S2(n)=Z(-V* (»)(,»,)' 

it is clear that 

(1.4) A(n) = 2S0 (n) - 3S, (n) + 3S2 (n). 

In the next place, we have 

n+1 , _ 2 n+1 

k=0 k=0 

n+1 

k=0 
so that 

(1.5) S2(n) = (-iF+'Sjfn) 

and (1.4) becomes 

(1.6) AM = 2S0(n)-3{l + (-1)n)s1(n). 

In particular we have 

/-, 7\ f A(2m) = 2S0 (2m) - 6Sl (2m) 
j A(2m + 1) = 2S0(2m + 1). 

It is well known (see for example [2, p. 13], [3, p. 243]) that S0 (2m + 1) = 0, while 

(1.8) ' SQ(2m) = (-1)m (M[ . 

However St (n) does not seem to be known. 

2. In order to evaluate Sx (2m) we proceed as follows. We have 

n+1 n r s n+1 

^ - E r - ^ ( ; ) 2 { ( ^ + ' ) - ( ; ) } . E ^ ( ^ ) 2 ( ^ + , ) - ^ 

f'-*(i)(n:'){(ni')-(*%)}-*<*> 
k=0 

so that 
(2.1) SJn) = T0(n)- Tjnj-SJn), 
where 

n+1 

w - E ' - ^ U H ' T ) ' Ti<»> = H<-i>k[n
k){nl1){k-i)-

k=0 k=0 

Now 
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k=0 

n+1 

= "̂*? !>"*(*-, )(T)U) . 
k=o v 

that is, 
(2.2) Tjfn) = (-1}nHTi(ni. 
Therefore T7(2m) = 0and (2.1) yields 
(2.3) Sj2m) = Tf(2m)-S0(2m). 

In the next place 

To*)-1 (-i>k[:)[nv)2= t <-'?*( „:k )[::i)2 
k=0 X k=0 N 

- r - / / ' i : M / f ( j ) ( n ; ) 2 - M ^ i : ^ * ( ; ) ( j ; : ; ) { ( ; : ? ) - ( - r ) } 
k=0 k=0 ^ J 

.-(-ri»± (-i)k[n
k){n

k
+

+\){nV)+^nt ^*(fl*)(**?)f(2^)-(**! 

--r-/r E r-/^(;)(-:;)(-r)+M^ £ M ; * ( ; ) ( ; : ? ) 2 

A:=0 £=0 

- M / « E ^ ( ; ) ( j : ! ) { ( B r ) * ( ; : ! ) } 

A:=0 ' x N k=0 ' 

H-irz (-i>k{n
k)[

n
k
++2i)2• 

k=0 
so that 

(2.4) { / + (-1)"\T0(n) = -2(-Vn f ) C-// ( J ) ( T ) ( 2 * \) 

* M / » I : ^ ( ; ) ( ; : ? ) 2 . 
£=0 

For/7 = 2m + 1, (2.4) gives no information about 7"0^m * / j ; indeed each sum on the right vanishes. For/7 =2/77, 
however, (2.4) becomes 
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2m 

k=0 

2m 
+ 

k=0 
It is known [3, p. 243] that 

2m 

(2.5) 2T0(2m) = -2 £ (-Vk ( * " ) ( 2m+
k
1) ( 2m

k
+

+] ) 

2m 0 

k=0 

U,D; 4* \ k 1\ k M k+1 f m!m!(m + D! 
k~u 

and 
2m 0 

l?i\ V * / i)k ( 2m \ (2m+ 2 Y = (-D™ 2(3m+2)! 
U'/} Z^{ 1} { k ) [ k+1 I ( u m!m!(m+1)!(2m + 1) ' 

k=0 x 

Substituting from (2.6) and (2.7) in (2.5), we get 

as. ram - <-ir !$£&* • 
Therefore by (2.3) and (1.8) 

(2.9) S? (2m) = (-1)m - — 7 - ^ — 7 r . 
' m!m!(m - 1)!(2m + 1) 

Finally, by (1.6) and (2.9), 
(2.10) A(2m) = -2(-1)m I M l ^ l L . 

(ml)3 (2m + 1) 
This completes the evaluation of the sum A(2m). Note that we have not evaluated 5j (2m + 1). 

3. For completeness we give a simple proof of (1.8), (2.6) and (2.7). We assume Saalschutz's theorem [2, p. 9]: 

C\ i) V * (-nk(a)k(h)k = (c-a)n(c-b)n 

L> k!(c)k(d)k (C)n(c-a-b)n ' 
k=0 

where 
(a)k = a(a+l)-(a + k- 1), (a)0 = 1 

and 
(3.2) c+d = -n + a + b+ 7. 
We rewrite (3.1) in the following way: 

H o\ v ^ H)r(a+j)r(b + c-a+1)r = (a - b)j(a - c)j 
1 ' 2-# r!(b + l)r(c + 1)r (b + l)j(c + 1)j 

the condition (3.2) is automatically satisfied. Multiplying both sides of (3.3) by (a)jX^/j! and summing over/, it fol-
lows that 

E (a)i(a-b)j(a-ch J = V (ill J V <-Or(a+J)r(b + c-a+1)r 

m+1)/(F+J7T 4-* il *-* r!(b+1)r(c+1)r 
1=0 1=0 r=0 

OO OO CO 

E , ., (a)2r(b + c-a + 1)r , ^ (a + 2r)j •• _ ^ / „ r (a)2r(b+c-a+ 1)r , a.2r 

' " r!(b+1)r(c+1)r * ^ jl X - l ^ ' - 1 ' rl(b+1)r(c+Vr 
r=0 j=0 r=0 
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Mow take a = -n and we get 

(34) V (-ntj(-n-b)j(-n-cij / _ A r (~n)2r(b+c+n - 1)r , 
K6A> 2 ^ ji(b + 1)j(c + 1)j

 x - L, ( 1J r!(b + Vr(c +1)r
 { 

For/7 = 2m and x = 1, (3.4) reduces to 

{ b l ^ j!(b+1)j(c + 1)j { U m!(b + 1)m(c+1)m 

Now let b,c be non-negative integers. Then (3.5) yields 

2m 

(3-6) E <-»m ( T ) ( 2 m / ? / C ) ( 2m]+cC ) 
/=o 

/ _ f j m (2m)!(3m +b + c)!(2m +b+ c)l 
f m!(m+b)(m+c)!(2m+b)!(2m+c)! 

ForZ? = c = 0weget (1.8);for/? = 0, £ = /we get (2.6);for;& = c = / we get (2.7). 

REFERENCES 

1. E 2395, Amen Math. Monthly, 80 (1973), p. 75; solution, 80 (1973), p. 1146. 
2. W. H. Bailey, Generalized Hypergeometric Series, Cambridge, 1935. 
3. L J. Slater, Generalized Hypergeometric Functions, Cambridge, 1966. 

[Continued from Page 214.] 

i '•• '•¥• 
as n -+ °°. Since this limiting value is an irrational number, the sequence (un) is u.d. mod 1. 

REMARK. Let/7 and q be non-negative integers. Then the sequence 
p, q, p + q, p+2q, 2p+3q, '" 

or(Hn),n = 1,2, - w i t h 

Hn= qFn-1+pFn-2 (n>3), H1 = p, H2 = q 

possesses the property shown in Theorem 1. For if \/n = log H n , we have 

Vn+1-Vn ~* \ log — j ^ -

as n -» oo. 

Theorem 2. Let/?, q, p* and q* be non-negative integers. Let (Hn) be the sequence 

p, q, p+q, p + 2q, 2p+3q, -

and (H%) the sequence 

/?*, (7* A?* + <7*, p* + 2q*, 2p* + 3q*, - . 

[Continued on Page 276.] 
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Duke University, Durham, North Carolina 27706 

1. INTRODUCTION 
A composition of the integer n into k parts is defined [1, p. 107] as the number of ordered sets of non-negative 

integers (ai, a2, -, s^) such that 
(1.1) a<i+a2 + ~' + ak * fl-
it is well known and easy to prove that the number of such compositions is equal to the binomial coefficient 

/ n + k - 1 \ 
[ k-1 ) • 

If we require that the a, be strictly positive then of course the number of solutions of (1.1) is equal to 

( " . : ! ) • 

In the present paper we consider the problem of determining the number of solutions of (1.1) when we require that 
(1.2) ait ai+1 (i = t,2,~,k-t). 

Let c(n,k) denote the number of solutions of (1.1) and (1.2) in positive a/ and let c~(n,k) denote the number of solu-
tions of (1.1) and (1.2) in non-negative a,-. Then clearly 
(1.3) c(n,k) = c~(n-k,k). 

Also it is evident from the definition that 
(1.4) 

We shall show that 

(1.5) 

Forz = 7, this reduces to 

(1.6) 

E 
n,k=0 

y 

c <n,k) = 

c(n,k)xn. 

" c(n)xn 

0 

zk = 

_ _ 

(k > 2n + 1). 

1 

1 + JT(-i)l-*!£ 

1 

/ - / ' - * ' 

nm0 t+22t-v'-*L 

where 

Supported in part by NSF grant GP-3724X1. 

2S4 
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(1.7) c(n) = Y l c(n>k)> c(0) = 1-
k=1 

Thus c(n) is the number of solutions of (1.1) and (1.2) with a; > 0 when the number of parts is unrestricted. 
it follows from (1.3) and (1.6) that 

(1.8) 7+ £ c(n,k)xnzk = — i . 

M 1-*' 
This is also proved independently. 

The generating function for 

(1.9) F(n) = J2 c(n,k), 1(0) = 1 
k 

is less immediate. It is proved that 
oo 

(1.10) £ c(n)xn = 
0 / , V x2i~1 

i-n-x)^ 
t (1-x2H)(1-x2j) 

It is of some interest to determine the radius of convergence of the series 
oo oo 

(LID J2 c(n)xtl< X ! *(n,xn • 
0 0 

We show that the radius of convergence of the first is at least V%\ the radius of convergence of the second is also prob-
ably > 1/2 but this is not proved. 

2. GEiyERATIPJG FUiCTlOWS FOR c(n,k) AS^D ca(n;k) 

It is convenient to define the following refinements Qic(n,k) and F(n,k). let ca(n,k) denote the number of solu-
tions of (1.1) and (1.2) in positive integers a,- with a, = a; Ia(n,k) is defined as the corresponding number when the a,-
> 0. Clearly 

n n 

(2.1) c(n,k) = Y! €a(nM c(n.k) = } £ ca(n,kl. 
a=1 a^O 

The enumerantcafr7,^ satisfies the recurrence 

(2.2) ca(n,k) = 2 ^ cb(n -a,k-1) (k > 1). 
h^a 

If we put, fork> 7, 
oo oo 

Fa(x,k) = £ ca(n,k)xn, <bk0c,y) = £ FafcUy* . 
n=1 a=1 

it follows from (2.2) that 
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Fa(x,k) = xa E Fb<x,k- V (k > V. 
bta 

Then 
OO OO OO 

*k(*,Y) * E (xy,a Tt Fb(*,k- If = E Fb(x,k- V E M a - E V * , * - V ( jzL- ~ Wb ) 
a=1 hta b=1 atb b=1 \ *Y I 

so that 
(2.3) *k(x,y) = j-&j ^k^(xf1)-^k^(xfxy) (k > 1). 

Iterating (2.3), we get 

®k(*,v) = jz^r *k-l(x,D- j ^ $k-2(x,D + ®k-2(x,x2Y) (k > 2) 
and generally 

s 

*k(*,y) = £ (~VH -JS^r- $H<X'1> + <-1>5®k-s<x,xsv) (k > s). 
j=1 1-x'y 

In particular, for$ = Ar - 7, this becomes 
k-1 

(2.4) <bk(x,y) = £ (-D'~1 -JU^- $k-j(x,1) + (-1)k-1<f>1(x,xk-1,y) <k> 1). 
1=1 1-x'y 

Since 

®r(x,y) = J2 (xy,a = r^--

it is clear that (2.4) may be replaced by 
a-1 

k 

(2.5) * * f r ^ = E (-1)H ^ Fk-l(x,D (k > 1), 
n i-xJy 

where it is understood that 
(2.6) 9o0c,y) = 1. 

F o r / = 7, (2.5) reduces to 
k 

(2.7) $ * fc / ; + E l-D1-^-, $k-j(x,D = Skm1 

where 5 ^ / is the Kronecker delta. 
Using (2.6), this gives 

k 
„j i 

= 1 
-* i •* ' *—* - / •* ' ' i 

and therefore 

f : zk f *k(x,D+J2 {-»•> si- *H(X,D} = 
k=0 ^ j=1 1-x' J 

(2.8) £ $>klx,1hk = 1 
k=° nJT (-1)1-*!iL 

M 1-x' 
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In view of (2.1), (2*8) can be written in the more explicit form 

(2.9) £ c(n,k)xnzk = 
".k=0 , . V / „./ x'z' 7 + V {-t)J JlllL 

M 1-*' 

Mk 

oo 

= (1-xHl 

1 

•D1 

-X 

\>,M 

x'z' 

1-x1 

2,...(J. 

k=0 

-Xk), 

,1) - PJM 

PkM k 
Mk ' 

Mo = / 

We now put 

(2.10) 

where 

Clearly 

(2.11) _ „ - w 

The Pk(x) are polynomials inx that satisfy 
k 

(2.12) Pk(x) = Ys ("1>H [ y 1 MHX'PHM (k > V, 
M 

where 

r k i = Mk 

L ' J M/M*-/ ' 
The first few values of P^ (x) are 

Pjx) = I Pjx) = x, Pjx) = 2x\ Pjx) = x4 +xs +4x6 . 

In the next place, by (2.5), 

E **fcj** - E ^ E t-v"-*!*- »wfc« -E M;" -^f E 
Hence, by (2.8), 

(2.13) £*kMfc*-*=* L^K. 
™ M | oo . 

* = ' - . V , -./ x'z' i+Y, (-»' 
This evidently reduces to (2.8) when y = 1. 

Note that the LHS of (2.13) is equal to 

M 1-*' 

(2.14) £ 2 ca(n,k)x"yazk . 
n-1 a,k 

3. GENERATING FUNCTION FOR c(n) AND RELATED FOWCTIOiyS 

Forz= 1, (2.8) reduces to 
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oo 

(3.1) £ *k(*,1) = - • 
; _£ h1)H ^!__ 

We have i=1 x 

j=1 1~x' j,k=1 n=1 j\n 
Put 

(3.2) d'(n)=Y,(-1)H ; 
A" 

thus d'(n) is the number of odd divisors of n less the number of even divisors. 
For/7 = 2rm, where m is odd, and r>0, 

s=0 j\m j\m 
so that 
(3.3) din) = -(r-Dd(m), 

where d(n) is the number of divisors of /?. 
Thus we may replace (3.1) by 

oo 

(3.4) J^$k(x,l) = z-1 " 
k=° 1-JbdW 

Since 1 

OO OO OO 

k=0 n,k,a=1 n=1 

we have therefore 
oo 

(3.5) 1+YJ c(n)x" = " = ~ • 

' /=/ I-*' n-1 

It follows that cfn) satisfies the recurrence 
n 

(3.6) cfn) = £ d'fjkfn-j) (n > 1), 

M 
where cfO) = I 

It is also of some interest to take z = - / in (2.8). We get 

]£ f-Vk^k(x.7) = 1 = L 
""" -^ ' OO o o 

1 1-X1 1 
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Since 
oo oo oo 

J2 (-Vk*k{x,1) = 1+ J2 {-1)kca(n,k)xn = 1 + J2 c*(n)xn , 

k=0 n,k,aFl n-1 
where 

n 

(3.7) c*(n) = Yl t-1)kca(n,k), 

k,a=1 
we get 

oo 

(3.8) 1+Y\ c*(n)xn = ' . 
; 1+1Ld(n)xn 

1 
This yields the recurrence 

n 

(3.9) c*(n) + Y^ d(j)c*(n-j) = 0 (n > 1), 

M 
where c*(0)= I 

The first few values oH*(n) are 

c*(1) = -1, c*{2) = - 7 , c*{3) = I c*{4) = 0, c*(5) = 1, c*(6) = -2. 

It is also of interest to take y =-1 in (2.13). F o r / - - / / z = / we get 

£ (-D1 -^~ 
E*,fc-/;- ' —'— 
k=1 

so that 

? + E (-1)'' - ^ 7 1-x> 

(3.10) £ ^k(K-1) = '- — 
k=0 

1-x' 

If we take)/ =z = -1 in (2.13) we get 
oo 

k=1 

so that 

J2 (-Vk<S>k(x,-1) = — [ — — 

1 + 2 T , - ^ 1+2Zdo<n)x" 
(3.11) £ (-Dk^k(x,-D = J ? * = ^ 

k=0 1+Y,-*!-7 1 + J2d(n)x» 
1 1-*' 1 
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where dQ(n) denotes the number of odd divisors of n. Note that the LHS of (3.11) is equal to 
oo 

(3.12) 1 + £ xn £ (- 1)a+kca(n,k). 
n=1 a,k 

4. GENERATING FUNCTION FOR c(n,k) IkUWc a(nfk) 

Whilegeneratingfunctionsfors (n,k) and Fa(n,k) can be obtained from those for c(n,k) and ca(n,k) by using (1.3), 
it is of some interest to derive them independently. Put 

oo oo 

Fafok) - J2 ca{n,k)xn. ®k(x,y) = J^ Fa0c,k)y' . 
n=0 a=0 

Then, exactly as in Section 2, 

~ca(n,k) = ]£ cb(n - a,k), 
b?a 

so that 

Ta(n,k) = xa "2l'Fb(x,k-1) 
bfa 

and 
oo oo 

**(x-y> = H (xy)a H Tb(*,k- D - £ hh*- V ( rz~r - Mb ) -
a=0 h^a b=0 

Thus 
(4.1) ®k(*,y) - j ~ - Qk-iOc,V-Qk-t(x,xy) (k > 1). 

As above, iteration yields 
k~1 hi 

Since 

:(x,y) = ] T J^l— <f>k_j0c,f) + (-1)k'1<!>t(x,xk~1y} (k > 1). 
j=1 f-xJy 

®i(x,y> = J2 <xy>a = jz~ > 
a=0 

we get 

(4.2) *k(KY) " £ S=1L-r *k-j(*.t) (k > 1), 
pi i-x'y 

where 
(4.3) W0(x,y) = 1. 

Fory = /, (4.2) reduces to 
k 

J=J£ S. (4.4) 

It follows that 

QkOctJ+E - ^ 4 - 4>H(x,V = 8k/0 

pi 1-x1 
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<4-5> E *k<x.ikk = —^~J—— 
k=0 ^E^y—-

Now put 
M 1-x' 

Pk(x) zk 

/ = / 1-*' 
so that _ 

<4-6)_ **M-P-Mt • 
The Pk(x) are polynomials in x that satisfy the recurrence 

k 

(4.7) Pk(x) = 2 r~/ j /^ [/ ] MhPHM (k > 1); 
1=1 

also it is clear from the definition that 
(4.8) Pk(x) = xkPk(x). 

For* = / , (4.7) reduces to _ _ 
Pk(V = kPk-td), 

so that 

(4.9) Pk(1) = kL 

Also it is easy to show by induction that _ 
deg/J-W < %j(j- n 

Indeed, assuming that this holds f o r / < k, it follows that the degree of the/f /? term on the right of (4.7) 

<j(k-j) + 1/2jlj- D + %(k-j)(k-j- 1) = M(k- V. 

Let jk denote the coefficient otx^'*'1' in Pk(xl Then we have 
k k-1 

yk = E ?*-/= E v (k > 1)-
1=1 ro 

This gives 

so that 

E vkxfl ? - E * y = i. 
k=0 \ M j 

E Jk*k - 1~K-1-2x ' 
k=0 

Thus yk = 2k~ 1,k> 1, and so 

(4.10) degfyM = M(k- 1). 

Since, by (2.4), 
c(n,k) = 0 (k > 2n + 1), 

it follows \\\%\Pk(x) begins with a term i n ; r J; moreover the coefficient of this term is 1 for k odd and 2 for /r 
even and positive. 
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It is clear from the recurrence (4.7) that all the coefficients are integers. It would be interesting to know if they are 
positive. 

If we put 

Pk(x) = Ys 1(k>J,xi and 157 = 2 P<n,k)xn, 
j n=0 

so that/?f/7,£/isthe number of partitions (in the usual sense) of/7 into parts < k, it follows from (4.6) that 

(4.11) c(n,k) = J2P("-J, kfttKl) • 
J 

Returning to (4.2), we have 

This gives 

i <-»H - 4 -
(4.12) 2 *k(*.Ykk = -^Z 1-~ • 

M 1-*' 

We may rewrite (4.5) and (4.12) as 
GO 

(4.13) 1 + J] I(n,k)xnzk = 1 , 

t <-»H - 4 -
(4.14) 1 + J2 E Ca<n,k)xnyazk = M _ L l i L £ 

By (1.3) we have /=? ; ~ x 

(4.15) £7/j,/tf = c(n + k,k). 

Hence, replacingz byxz in (4.5), we have 

* * 

(4.16) 1+ £ c(n + k,k)xn+kzk 1 

n.k=1 „ V > / „./ x'z1 

t + J^f-r )'-*£-. 

This is of course equivalent to (2.9). 
Since 

~caln,k) = ca+i(n+k, k) (k > 0), 

the equivalence of (4.16) and (2.9) follows easily. 
Note that it follows from (4.6) and (4.12) that 

(4.17) *k(x,y) - £ J=Htl FgM , 



1976] RESTRICTED COMPOSITIONS 203 

Sn addition to (4.15) another relation expressing c (n,k) in terms of c(nfk) can be obtained by considering the pos-
sible location of zero elements. There may be a zero on the extreme left or the extreme right; also there may be one 
or more zeros on the inside. Thus we get relations such as the following. 

1(0,0) =J(0,1) = I h~(n,1) = c(n,1) = 1 (n > 1), 
c (n,2) = c(n,2) + 2c(n, 1) (n > 2), 

~c(n,3) = c(n,3) + 2c(n,2) + x(n, 1)+ ^2 c(n u 1)c(n2, 1), 
nx+n2=n 

c~(n,4) = c(n,4) + 2c(n,3) + c(n,2) + 2 ^ c(n u 1)c(n2, 1) + 2 J2 °(n u 1k(nv 2). 
ni-"f

,n2
ssn nl+n2

s=n 

It follows that 

J^f$k(x,Vzk = 1+z + (1+z)*J^<l>k(xJ)zk + (1+z)>zlY,®k(x,1)^ y+(1+z)'zYE*k(x,1)*kl *'" 

(1+z)* ] T <$>k(x,t)zk 

= 1+z + 1 m 
oo 

1~z V <bk(Xf1)ik 

1 
It is easily verified that this is in agreement with (2.8) and (4.5). 

5. GEWERATliG FU!\fCTIOf\IS FOR cfn) AND F(n) 

We may not put z = 1 in (4.5) since the right-hand side then becomes meaningless. We can get around this difficulty 
in the following way. 

To begin with, we shall get crude upper bounds forc(n) and c~(n), Let v(n>k) denote the number of solutions in pos-
itive integers of 

n = ax+ a2 + ••• + ak 

and let v(n,k) denote the number of solutions in non-negative integers. Then 
vM = (°kZ)) , v(n.k)-("?_-,') -

Clearly 
c(n,k) < v(n,k), c (n,k) < v(n,k). 

It follows that 
(5.1) c(n) < 2n~1 (n > 1), 

so that the radius of convergence of 

(5.2) 

is at least V2. 
As for FfW, since 

we get 
2n+1 

F(n) < J2 
k=l 

so that 

c 

{ 

(n,k) •-

n +k-
k-

E 
0 

= 0 

V) 

c(n)xn 

(k > 2n 

2n 

= £(" 
k=0 

+ 1), 

r) 2n 

<£ 
k=0 
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(5.3) 
~c(n) < 23n. 

Hence the radius of convergence of 

(5.4) J2 c(n)xn 

o 
is at least 1/8; 

Presumably these bounds are by no means best possible. It seems likely that the radius of convergence of (5.4) is 
about Vz. 

Next consider 
2k k I \ <*> 
y t-1\H Z' = Y f Z2'~1 _ Z2' - V 1-Z+X2H(Z-X) 2j-1 

PI 1-x' M \ J - X 2 H I - * * ) M <l-x2H)(1-x2i> 

Thus (4.5) becomes 

(5.5) Yi ®k(*,Vz k 
0 /_ y* i-z+x2H(z-x) 

1 (1-x2H)(1-x2i) 

It is now permissible to \etz-> 1. We get 
oo 

(5.6) V ) c (n)xn = 1 

1-a-x) Y, x2j-i 

3 105 31.63 

i (1-x2h1Hl-x2i) 

Forx = & we get 
1/2 . 1/8 . 1/32 _ 4_ . J6_ . _32_ . , 

('-})('-!) I'-iK'-i) [>-A)(>-A)" 
Thus the radius of convergence of (5.4) is probably somewhat greater than 1/a. 

REFERENCE 
1. John Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958. 
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SUMS OF COMBINATION PRODUCTS 

IVIYRONTEPPER 
195 Dogwood, Park Forest, Illinois 60466 

INTRODUCTION 
The combinations of the integers 1, 2, 3, 4 can be represented by the following diagram: 

^2.2—-#-1.2-3.4 
. ^ 1 - 2 ^ * 1 - 2 - 4 

^ 2 . 3 — ^ 2 . 3 4 
-24 

3»—*-#»r3.4 
4 

We will be interested in developing methods for evaluating sums of the form 
1.2 + 1.3 + 1.4 + 2.3 + 24 + 3.4 and 1.2.3 + 1.24 + 1.3.4 + 2.3.4. 

We let 

£ ) (xt.X2--.-Xr) 
K1<r<xr 

denote the sum of all products of the form xj 9X2" — mxr, where 
*1 < x2 < "' < xrt XVX2> '"*xr ^ | 1, 2, - ,n\, and n > r > 2. 

For example, 

5 2 * i * * = 1-2+1-3+ 1 4 + 2-3+ 2 4 + 34 and ^ xix* = 1-2+1-3 + 2.3. 

We define 
n 

An
r = Ys (X1°X2 Xr}< t>2' m] * 7 " 2 3 ' -

Mn 

In this paper we develop formulas for A^ A3, A4. We also provide a general approach for finding >4̂  when/7 > r>5. 

A. We now develop a formula for A%. Consider 

( n \ I n \ n n n 

£ ' E/ -EE^-E^E'-2-
/=/ l \ M J ',=1 M W /•/ 

Thus, 
265 
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Now, 

Mn 

Thus, 
1)(2n + 1) 

Thus, we have 

Theorem 1. Say n > 2. Then 

/</ \ / = / / /=/ 

For example, with /7 = 3, 

2(1.2 + 1.3+2.3) = 3 ' 3 4 - 3 2 j t13 f 3 3 - 3>. 
We could also find 

/</ 

by using the method of undetermined coefficients. We begin by assuming that 

Y^ (*1 xr) 
x1<"<xr 

Mn 

is a polynomial of degree 2r in n (we assume that the coefficient of n° is zero): 

2 ^ T / / = An4 +Bn3 + Cn2 +Dn. 

i<j 

Now, £ / / = 1-2 = 2, £ / / = 1-2+L3 + 2.3 = 11, 

M2 M, 

Y^ii = 1-2+1.3+1.4+2.3+2.4+3.4 = 35, 

J2 U = 1-2+1.3 + 1.4+1.5 + 2.3 + 2.4 + 2.5 + 3.4+3.5+4.5 = 85. 
/</ 

[OCT. 
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Thus, 
2(2) = A-2« +B.2*+C-22+D>2, 2(11) = A-24 + BWl+ C-V + D>1, 
2(35) = /f»44 -/-£-43 +C-V+D-1, 2(85) = A-B4 +B-& + C-§2 +D-S. 

Solving this system forA,B,C,D should provide the required answer. Generalizing Theorem 1, we have 
Theorem 2. Say a,-, aj e I ai, a2, - , an I and n > 2. Then 

I n y n 
2 

267 

For example, letting a,- = i2 

Similarly, letting a/- ///; 

*E^-(E'-VX> 

For example, 

*£ ,HEf -£,4-
2 ( J L + - L + J _ \ = ( 1 + l + l V f i + l + L ) : 

\ 1-2 1-3 2-3 / I 2 3 / \ 4 9 / 
Now, say x3 + Bx2 + Cx + D = 0. Then, by Theorem 2, letting a-, equal the / root of the above equation, 

2C = B*-(a\+a\+a%). 

Say B = C = 0. Then a\+a2+a2 = 0. Thus, we have 
Theorem 3. Say ru r2, - , rn are the roots of xn = -Df and n > 3. Then r2+r2

2+ - * r£ = 0. 
B. We now develop a formula for A^ . Consider: 

(i'Yt/Y t»W£')'-£££*• 
We consider 

n n n 

E E E ** 
/«/ /= ; *= / 

to be a sum of products having three factors. Hence, 

E E X > - E «*+ E «** E vk. 
i=1 j=1 k-t all factors all factors two factors 

. , .r , , A - « A • A!_ equal different equal 
Now, if the product 1 -2-4 appears in the sum 

n n n 

E E E VK 
i=l j=1 k=1 

the following products also appear: 
1-4-2, 2-1-4, 2-4-1, 4-1-2, 4-2-1 . 

These may be considered as rearrangements of 1 -2-4. We note that the number of permutations of three distinct ob-
jects taken three at a time is six. 

lithe product 1-1-4 appears in the sum 
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n n n 

E £ £ ^ 
M ri k=i 

the following products also appear: 
1*4-1, 4 - M . 

We note that the number of permutations of three objects, two of which are of one kind, is three. Thus, 
n n n n I n \ / n \ 

E E E 'ik = H i3+6 E 'Jk+[3E i2'-3-i3 r J E n-3-2* 
i=i j=i k=t i=i i<j<k \ 1=1 / \ /»/ / 

Mn 

( n \ n n 

5 E n2i-3n* \ = lLi3+6 E iik + 3Y^i(12+22+'''-hn2}-3(P+2*+--- + nz) 
i=1 j M i<j<k i=1 

i=1 i<j<k \ i=1 j \ i=1 ) i=1 
Mn 

Thus, we have 

Theorem 4. Say n > 3. Then 

Mn 
For example, with n= 4, 

6(1.2.3+1.2.4+1.3.4+2.34) -( Yl # ] +2^ / 3 - ( jr n)( E / ) -

We now give an alternate derivation of the formula for £^ ijk 
i<j<k 
Mn 

Consider: 3(1-2) + 4(1-2 + 1 -3 + 2-3) + 5(1 -2 + 1 -3 + 1 -4 + 2-3 + 2-4 + 3-4) = (1 -2-3) + (1-2-4 + 1-3-4 + 2-3-4) 
+ (1 -2-5 + 1 -3-5 + 1 -4-5 + 2-3-5 + 2-4-5 + 3-4-5). This suggests that 

E '7*-5E'>**E ii+~'+n E v • 
i<s<k j<j i<j /< / 
Mn 

Thus, we conjecture, 

(2) 

Thus, by Theorem 1, we conjecture 

E Uk-
i<j<k 
Mn and we have 

M2 M3 Mf 

n-1 

£ #*= E Av+tf £ />'• 
i<j<k w=2 Kj 

Mn Mw 

w=2 

Theorem 5. Say n > 3. Then 
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24
 1L1 ijk = Y\ (3i5 +5/4 - /3 - Si2 - 2 i ) -3ns - 5n4 +n3 + 5n2 +2n. 

i<j<k • f 

Mn 

We can prove Theorem 5 by using Theorem 4 and the following formulas: 
n n n 

2 Y^'= "2 +n' 3 Y 1 p = n* + ^j + j * 4 J2 /B = n* +2n*+n2' 
i=i i=i 1=1 

i=1 1=1 

C. We now develop a formula for A%. Consider: 

4(1 -2-3) + 5(1 -2-3 + 1-2-4 + 1 -3-4 + 2-3-4) = (1-2-3-4)+ (1-2-3-5 + 1-2-4-5 + 1-3-4-5 +2-3-4-5) 
This suggests that 

^ ijkz =4 J2 '*k + 5 Yl ijk + ~ + n ^ ijk . 
i<j<k<z Kj<k j<j<k i<J<k 

Mn M3 M4 Mn-1 
Thus, we conjecture, 

n-1 

(3) ]£ ^ = I] (w+1> £ ft-
t<J<k<Z w=3 i<j<k 

Mn Mw 

Thus, by Theorem 4, we conjecture, 
n-1 

w6 w5 3w* , w3 ,t/u2 

y ~ y ~ y~ y w 

/</<*<£ w=3 
Mn 

E //*« - i <*&• ( 

and we have 
Conjecture 1. Say A? > 4. Then 

E '̂  = E ( f -""5-'4 + ¥ + / 1 ) - r ^"s+"4-f3 -"2 24 
/</<*<« i=1 

Mn 

Comparing (2) and (3) we have 

Conjecture 2. S a y n > r > 3 . Then 
n-1 r_1 

E £ */- E ^ E ,?, */ 
x 1 < - < x r w=r-1 Xj<-<xr-/ 

'w 
Thus, we have 

Conjecture J . Conjecture 2 and Theorem 1 provide a recursive method for determining A^, A%, An
5, - . 

D . Theorem 6. Say n > 2. Then 

(n - i)i = nn'1 + £ (-li'A?-1,!"-0*1*. 
i=1 
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Proof. 
(n - 1)! = (n - 1)(n -2)- [n - (n ~ 1)] = nn~1 + (~1)1 Anf1 nn~2 + (-V2 A n

2"
1 n n~2 

+ (-1)3An
3"

1nn"4 + .« + (-1)n'1An
nZ1

1n
n^ . 

E. Theorem 7. The A" can be solved for by Cramer's rule. Also, 
n 

E A? = (n + 1)!-1. 

Proof. LetfM = (x+ 1)(x+2)-(x+n) = <x + n)!/xl. TnmfM=xn+ An
1x

n~1+ An
2x

n'2+ -+An
n_1x+An

n. 

T h U S' An
1l"-i + An

21
n-2+- + An

n_1 1
1 + An

n = f(D- 1" 

Ap"-1 + A2
12n~2+ ••• + A^_j21 + An

n = f(2)-2n 

Ar\n
n-1 + An

2n
n-2+~ + An

n_in
1+An

n = f(n)-nn, 

where the A" can be solved for by Cramer's rule. 

F. Theorem 8. Sayn>r> 7 and f(x) = (x + n)!/x!. Then 

, » _ f[n-rl(Q) 

fnrl ' (n-f)l ' 
where r J (0) denotes the n - r derivative avaluated at zero. 

Proof. Say f(x) = (x + Dfx + 2) •• (x + n) = (x + n)!/xL Then f(x) = xn+An
7x

n~1 + - + An
n_ ; x - M £ . Now f(x) 

is a polynomial of degree n. Thus, by Taylor's formula, 

f(x) - HOlH^fOk* f[2l<°>x2 + •••+ f--@£ . 
/l n! 

Thus, comparing the coefficients of the above two equations, the theorem is proved. 
G. A Curiosity. Let 

Q Q X j ~ ; 
(4) 

xx-1 x2-1 

where 

^ - - E v E ' . E *>-£** E x> E 
xx=1 xx=2 x2=1 xi~3 x2=2 xz~1 

Q xt-1 x2~1 x3-1 

£ *i E ** £ ** £ ^-•••^w^, 
x 3=2 x 4 -7 x*=3 

Q 

V(V,Q) = (-n¥ Y* x 

x,=v 

X j - 7 x , , -7 

* 2 

Thus, 
(5) 

(6) 

(7) 

£ *> £ *•"£ *> 
x2=v-1 xz=v-2 x^f 

Q Q 

:. TQ = -J2 *i * £ W(V<Q>-
xt=1 v=*2 

Tx = -[1] 

T2 = -[1+2] +[2(1)] I 2 - —l I -r d.J T L*\ l/J 

Tz =-[1+2 + 3] + [2(1)+ 3(1+2)] - { 3[2(1)]\ = -[1 + 2 + 3] + [(2-1) + (3-1) + (3-2)] - [(3-2-1)]. 

This suggests 
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Conjecture 4. 
n xx~~1 n xt-1 x2-1 

A"2 - E *. E *- AS - E *. E *. E *• 
xx=2 x2 = 7 x ^ J x2=2 x3 = 7 

fl X j - / x 2 - 7 *n-2"1 

••A"-i= E *« E ** E x* E x"-? 
xx=n-1 x2=n-2 x 3=11-3 Xn-I^l and 

Conjecture 5. 

We note that from Conjecture 4, 
? /? 

^ = E *. 
x,-2 

x , -7 
E *> 

x2=7 

n 

r„ = E '-"W • 
/ / 

n i—1 n 

-zz^z i=2 j=1 i=2 

= 1 J\n(n+1) f n(n + 1)(2n + 1)\ 
~2\l 2 \ ~ 6 } 

which agrees with Theorem 1. 
Similarly, 

n xl-1 x2-1 n i-1 j—1 

xt=3 x2=2 x3 = 1 i=3 j=2 k=1 

We note that T3 = T2 -3 + 3[1 + 2] - 3[2(1)1 = T2-3-3T2 and T4 = T3 -4+4[1 + 2 + 3] - 4[2(1) + 3(1 +2)] 
+ 4 | 3[2(D] \= T3-4-4T3. Thus, T3 = -2T2 - 3 and F4 = -3T3 - 4. This suggests 

Theorem 9. Say Q > 1. Then 
(8) TQ = -(Q-DTQ^-Q. 

We leave the proof to the reader. 
We might hope that the TQ represent a new species of number. Let's see; i.e., from (5), (6), (7) we have 

Ti = - I T2=-3 + 2=-l T3 =-6+11-6 = -1. 
This suggests 

Theorem 10. Say Q > 1. Then TQ = - 1 . 
Proof (induction). By (5) we know that Tt = - 1 . Say k is a fixed integer greater than or equal to two and 

7V./ = - 1 . Then, by (8), T^ = - 1 and the theorem is proved. 
Hence, from Conjecture 5 and the above theorem, we have 
Conjecture 6. 

n 

E (-D'AP = - / . 



A PRIMER FOR THE FIBONACCI NUMBERS, PART XV 
VARIATIONS ON SUMMING A SERIES 

OF RECIPROCALS OF FIBONACCI NUMBERS 

V. E. HOGGATT, JR., and IVSARJORSE BfCKNELL 
San Jose State University, San Jose, California 95192 

It is not easy, in general, to derive the sum of a series whose terms are reciprocals of Fibonacci numbers such that 
the subscripts are terms of geometric progressions. However, in [1] Good shows that 

d) ±i.i=Ji 
n=0 2n 

a problem proposed by Millin [2]. This particular series can be summed in several different ways. 
Method I. Write out the first few terms of (1), 

1, 1 + 1. 1 + 1+j-J. 1 + 1 +
3

i + 2 T = 2 T ' - -
Now, 

which suggests that 

(2) 

From [3], we write 

(3) LmLm+i- L.2m+1 = (-Vm 

from which it follows that 

1 + -AJZ1.-2- + L = 1+ 2—~f 

2n 2n 2"+1 2nH 

since FmLm = F2m- Thus, we can prove (2) by mathematical induction. If we compute the limit as/? ->• <*> for (2), 
then we have the infinite sum of (1), for (see [3]) 

where a= (1 + \j5)/2f which simplifies to (7 - yjS )/2. 
The limits used above can be easily derived from the well-known 

r,n an 

'--^ff-' In"**?' 
where a = (1+V5)/2,j3 = (1 ->/5)/2 are the roots ofx2 -x- 1 = 0. 

1 
Fr 

» - ' • & • ' • £ • 

2 4 2n 2n 

LJL= ,im (a-pjar+gL. ,,m (a-v 1+JteZ.^ urn _ ..... ,^ „ , 
n -+ °° Fn n -J.OO „n on /? -» «> ' n an^n « - - t-(fi/ajn 

since fa- §) = y/5 andj3/a< 1. In an entirely similar manner, we could show that 
Jim ̂  Ln+r/Ln « ar, Jirn^ Fn+r/Fn - ar 

272 
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Method II. Returning to the first few terms of (1), 

which suggests 

(4) 4- + 4- +... + -L- = 2+ 2"~2 

50 = 7 , 8 - o , F6 

21 21 Z Fft ' 

2n 2n 

If we take the limit as n-><*> of the right-hand side of (4), we obtain 2 + 1/a2= (7 ->/5)/2. We can prove (4) by in-
duction, since 

, , V - 2 , / _2:
 <F2^HF2»J/F2«+1 _ , . L2»F2»-2+1 

F2n F2n+1 F2nH F
2»+1 

We need to establish that 
F2n-2L2n*1 = F

2n+K2 

which follows from (see [ 3 ] , [ 4 ] ) 
(5) Fm+p-Fm-.p = FpLm, p even, 

where m + p = 2n+1 - 2, m - p = 2, m = 2n, p = 2n - 2, so that 

F2nH-2~F2= F2n-2L2n • 

Method I I I . Examining the first terms of (1) yet again, 
50_ = 3 _ ' 
21 21 15.= 3- l i = 3 -

suggests F 

(6) * + 1 + ...+ - L =3- -£=! . 
1 2 2n 2n 

used by Good [ 1 ] , where the l imit as n -> <*> of the right-hand side is 3 - 1/a= ( 7 - V 5 ) / 2 . Establishing (6) by in-
duction involves showing that 

r%n 4 , L nF n — 1 F n+i 
3 - 2 - 1 1 _ ? 2n 2n-f _n 2nl-1 

r
2

n 2n+1 2n+1 2n 

where we need 
L2nF2n-1 = F2n+1-1 + Fl 

which follows from [ 3 ] , [4] 
Fm+p + Pm-p = LmFp, p odd, 

wherem+p = 2n+1 - 7, m-p=1, m = 2n, p=2n- I 
Method IV. Proceeding in a similar manner, we notice that 

50 = , 34 = A F9_ 

and 

if indeed 

4 _ *L= 4 _ 
21 21 FB 

l,m I AJ^}.4-a-4-l±&-Z=j£ 
n->°°\ F?n I 2 2. 

(7) 1+1+...+ 1 . 4 - F - p l -
1 2 2n 2n 

Thus one expects 
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L2"F2n+1~1 " F2n+1H 
which follows from [3 ] , [4] 

(8) Fm+p + Fm-p = LpFm> P even, 
\Nherem+p = 2n+7 +1, m-p=1, m=2n + 1, p=2n. 

Method V. Again looking at the early terms of (1), 
50.= q Fl0 

21 " FB 

suggests 

(9) 1 + 1 + ... + _ L = 5 _ *j* 
l 2 2n 2n 

where the limit of the right-hand side as/7-*-<*>is5-a2 = 5 - ( a + l ) = 4 - a again. From the form of (9) 
and earlier experience, one expects 

F n L n — 1 = F n+1 
2n+2 2n 2 + 2 

which follows from (8), where/w +p = 2n+1 +2, m - p = 2, m=2n +2 and p = 2n. 
Method VI. One last time, we inspect the early terms of (1) to observe 

which has the form of 

(10) 

The proof of (10) by induction depends upon the identity 

L2n+iL2n~1 = L2nHH 

which follows readily from (3). The limit as/7 -» *> of the right-hand side of (10) follows from 

Jim -f^- = Jim JL.J0+1 = ^.a, n.+ oo p^ n^oo p^ L ^ 

becoming 6 - y/b -a, which simplifies to (7 - s/b )l 2. 
Method VII. We again return to the early terms of (1), but we proceed in a different manner. 

1 A 1 _ 0 J . 7 + 1 _ 0 J . ^ 4 + 1 

7 
F> 

» • • -

* 7 f -

7 6 - R 
I T - 6 " 

* . 
f . 

= ff-
L2n+1 

2 + ± + _ J - = 2 + ~ T - ' = 2 + 

Assume that 

(11) E V?9i = 2 

3 21 21 F, 

2 + ^ J L * - J _ = 2 T * » £ ' * * » * 1 = 2i L»+L*+L* + * 
F6 Fl6 Fu Fl6 

L„n +Ln +L„ +-+L4+I 
+ 2"-4 2'-8 2"-12 

Since 
2J * F 

j=o 2 n 

Jim ±E=L = j5-a-r 
n-*°° Fm 

the limit as n -> <*> of the right-hand side of (11) becomes 

2 + j5(a-4+a-8+ar12+•-') +0 = 2 + ̂ /5-or4[1/(1- or4)] = 2 + J5f1/(a4 - 1)] 

= 2 + j5[1/(a2 + 1)(a2 - 1)] = 2 +J5 [1/(^/5a)(a)] = 2+1/a2 
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since 
a2 = a+ 1 and a2 + 1 = a+2 = L±j£ + 2 = 5-^- = s/5-a. 

Also, since a" = (Ln + Fny/5)/2, a2 = (3 + sj5)/2, and the above becomes 

2 + 1/a2 =2 + (3- s/5)/2 = (7 - y/5)/2. 
Here, (11) can be proved by induction if the identity 

(12) Ln(L/n + L,n +~°+L4+1) = L n+i + L n+1 +-+L4 
2ni (2n-4) (2n-8) 4 2n l-4 2n -8 

is known. (See [5]). 
We could also have used 

/1Q\ V ^ / - L2k(n+1) ~ L.2kn ~ ^-2k ~ 2 

to sum the numerator of (11), and proceeded as in [6 ] . 
Method VIII . Starting with the first few partial sums, 

Generally, 
" L n + L n +-+L2+ 1 

" 4 > E 1/Foi= V }+'2"-2 2"-4 
2J 

1=0 2" 
but 

L2m + L2m-2 + ~"l'L2 = ^2m+1 ~~ 1-
Thus 

H5) E ^'F2r
 1+-f~- = A 

?0 

so that 

Method IX. I. J. Good [7] uses the identity 

Jim A = 1+s/5/a= (7-sj5)/2. 

D (xy)2 /(x^-y2") = m i n y_y , 
— n=1__ 

where x = (1 + ^/5)/2 and y = (1 - s/5)/2. This is not quite complete by itself. 
Method X. On the other hand, L Carlitz [8] uses 

n=o i=o a2 -$2 hi a2 -$2 i=i\,=o 

but (a/3)2 = 1, so that this is 
oo / oo 

(*-vnz«(2j+i)2l]+i 
i=l\j=0 

but clearly, every even number greater than zero can be written as (2j+ 1)2'. Thus, this is 

,Ha-n £ ."* - ,. i^M . , , £ ^ , ^ 
n-1 2 
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Method XI. For yet another method see A. G. Shannon's solution in the April 1976 Admwiced Problem Section 
solution to H-237. 
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Then the sequence 

is u.d. mod 1. 

Proof. We have 

(wn) = (\oqHnH*) 

which tends to 

as/7 -*°° for 

• Hn+1 , Hn+1 
Wn+1-Wn = log -77— "Hog -7J17-

2 l o g l ^ 

Mn+1 „ qFn+PFn-1 ~ q(Fn/Fn^)+p Fn-1 

goes to 
qFn.1 +pFn„2 q(Fn„f/Fn-2) +P Fn-2 

1 + x / T 
2 

as/7 -»°° 
Theorem 3. Let/7, q, /?*, q*, Hn and H% have the same meaning as in Theorem 2. Then the sequence 

(xn) = (\Q%(Hn + H*)) 

is u.d. mod 1. 
Proof. By the definitions of Hn and H„ we have 

Hn + H* = (q+qVFn-j + (p + p*)Fn.2 (n > 3) 

and so we see that 
» nu ^u* urn +u*n - , n n (q+q*)Fn + (P+P*)Fn-1 *n+l-xn = log ((Mn+1+Hn+1)/(Hn+Hn)) - log ^ - — — — — — — — — , 

[Continued on Page 281.] 



A MODEL FOR POPULATION GROWTH 

DAVID A.KLARWER 
State University of Wew York, Binghamton, Wew York 13901 

In 1969, Parberry [1] posed and solved an interesting problem in population growth analogous to the rabbit 
problem considered by Fibonacci. In this note we describe how one might treat a generalization of these prob-
lems. First, we state the problems of Fibonacci and Parberry and note what they have in common. 

The situation considered by Fibonacci involves two types of rabbit which will be denoted B and F (for baby 
and female, respectively). Starting with one individual of type B, a sequence of generations of rabbits is formed 
as follows: Each individual of type B in the nth generation matures to become an individual of type F in the 
(n + 1)st generation. Also, each individual of type F in the nth generation gives birth to an individual of type 
B in the (n + l)st generation, and survives to become an individual of type F in the (n + l)st generation. A 
family tree may be drawn which represents this process; see Figure 1. 

generation number 

0 

Figure 1. Family Tree of Fibonacci's Rabbits 
277 
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Parberry considered populations of diatoms, one-celled algae whose reproductive capabilities can be classi-
fied according to size and maturity. Changes in classification along with reproduction are assumed to take 
place at regular intervals which will be called generations. Let/77 and n denote natural numbers, and let 

$1* ' " / Srrif Sm+1 * "V $m+n 

denote a classification of the diatoms. Diatoms of type Sj for / = 7, —, m split to form two new diatoms, one 
of type Sj and the other of type Sj+f, but diatoms of typeSm+j for / = 7, —, n can only mature to become 
diatoms of type Sm+j+i, where a diatom of type Sm+n+i is defined to be of type Sj. For example, when 
m = 2, n = 1, the family tree of diatoms descending from one individual of type Sj is shown in Figure 2. 

generation number 

Figure 2. Family Tree of Diatoms 

The problems of Fibonacci and Parberry have common features which are embodied in the following gener-
alization. There is a finite set T- | 7, - , . t \ of types of individuals, and each individual of type / in the nth 

generation gives rise to f;j individuals of type/ in the (n + 1)stgeneration (1 <i,j< fjfor/7 = Of 1, • - . Also, 
there is an initial population containing f; individuals of type i. Let f,(n) denote the number of individuals of 
type / in the nth generation, (Thus, f; = f2(0)), and put 

f(n) = fj(n) + - + ft(n). 

The sequences 
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(fi(n):n = 0, 1,~) 

are of interest: How are they related, how should they be calculated, what is their rate of growth, and so on. 
There is a very simple theory which explains these things. 

Each of the fj(n - V individuals of type / in the (n - 1)st generation gives rise to fy individuals of type k\x\ 

the/7 generation; hence, summing on/we have 

(1) fk(n) = f1(n)f1k + -+ft(n)ftk. 

This may be expressed in terms of matrices as 

filfl2'"flt 

ffjfn) -ft(n)] = [f7(n - 1) -ft(n - 1)] 
f21 f22-ht 

ft1 ft2 

or, with an obvious notationa! convention, this may be succinctly expressed as 

(2) l(n) = f(n- 1)F. 

Using (2), an easy induction argument gives 

(3) f(n) = J(0)Fn. 

Now (3) can be used to show that each of the sequences (f-,(n): n = 0, 1, —) satisfies a certain difference 
equation, hence, the sequence (f(n) : n = 0, 1, —) also satisfies this difference equation. Recall the Cayley-
Hamilton Theorem: Every square matrix M satisfies its characteristic equation. Thus, if we form the polynom-
ial cp(x) = det (xl - F), where / denotes the t x t identity matrix, then cp(F) is the all-zero matrix. Hence, 

(4) FncF(F) = 0 

ior n = 0, I - . Let 

cp(x) = xf- a-jXt" at, 

and let f,j(n) denote the (jj)th entry of Fn for/7 = 0, I - . Then (4) implies 

(5) fjj(n + t)- aif-,j(n + t-1) atfjj(n) = 0 -

for n = 0, 1, ••• and / < i, j < t. Since each of the sequences 

(fij(n):n = 0, 1,-) 

satisfies the same difference equation given in (5), any linear combination of these sequences also satisfies this 
difference equation. In particular, this implies 

(6) f,(n + t) = a1fj(n + t - l ) + - + atfj(n) 

for A7 = 0, 1, •" ; also, the sequence 

(f(n):n = 0, 1,-) 

satisfies this difference equation. 
The matrix F may satisfy a polynomial equation with degree less than t; if so, this polynomial may be used 

in place of cp(x) to obtain a lower order difference equation. It is well known and easy to prove that there is a 
polynomial, unique up to a constant factor, having minimal degree such that F satisfies the corresponding 
polynomial equation. This polynomial, called the minimal polynomial Qi F, is a factor of Cf(x). 

Returning to Fibonacci's problem, the matrix involved is 
fO 1 ' 

/ 7 (?!) 
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The minimal polynomial of this matrix is A-2 - X - 1: Hence, fin), the number of rabbits in then generation 
satisfies 
(7) fin +2)- f(n + 1) - fin) = 0 

for/7 = Q, 7, •••; also, we have f(0) = f(l) = 1, so this gives Fibonacci's sequence 1,1, 2, 3, 5, 8, —. 
A more realistic model of a rabbit population would reflect the fecundity of the female depending on her 

age. For example, type 1 matures to become type 2; type 2 has a litter of 3 type 1's and matures to become 
type 3; type 3 has a litter of 4 type 1's and matures to become type 4; type 4 has a litter of 2 type 1's and 
dies. The matrix involved is 

(8) 
0 1 0 0 
3 0 1 0 
4 0 0 1 
2 0 0 0 

and the characteristic equation is 
x4 -3x2 -4x-2 = (x+1)(x3 -x2 -2x-2). 

Suppose the initial population consists of one rabbit of type 1, then the family tree shown in Figure 3 results. 

generation number 

DOO© ©OO© ©©©@© C 
Figure 3 

th , The number of rabbits in the n generation satisfies 
(9) fin + 4) = 3 fin +2)+ 4f(n + 1) + 2f(n)f 

but it is easy to check that the initial conditions 

HO) = f(1) = 1, f(2) = 4, and f(3) = 8 

give rise to a sequence 1, 7, 4, 8, 18, - which satisfies the lower order difference equation 
(10) fin + 3) = fin +2) + 2f(n +1)+ 2f(n). 
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This relation arose because 

x3 ~x2 -2x-2 

is a factor of 

x4 - 3x2 -4x-2. 

Since 

x3-x2~2x-2 

has a real zero 9 between 2.2 and 2.3, it follows that 

fin) > (2.2)n 

for all sufficiently large n. 

REFERENCE 
1. Edward A. Parberry, "A Recursion Relation for Populations of Diatoms," The Fibonacci Quarterly, Vol. 

7, No. 4 (Dec. 1969), pp. 449-456. 

[Continued from Page 276.] 

which tends to „ .-
log 1 ^ ^ 

as n -» <*> and this completes the proof. 
In addition we want to mention another interesting property possessed by the sequences of the previous 

theorems. This property can be shown by applying a result of Vanden Eynden (see [2] p. 307): Let (Cn) be a 
sequence of real numbers such that the sequence (Cn/m) is u.d. mod 1 for all integers m > 2. Then the se-
quence ([Cn]) of integral parts is u.d. in the ring of integers Z . 

Theorem 4. The sequences 
([\mFn/kll ([\o$HnH*]) and f/log (Hn + H*n)]) 

are u.d. in Z . 
Proof. It is easily seen that for all non-zero integers m the expressions 

i l o g F1
n
/k, 1- log (HnH*) and ± log (Hn + H*n) 

satisfy the condition in van der Corput's Theorem. 
REFERENCES 

1. William Webb, "Distribution of the First Digits of Fibonacci Numbers,*' The Fibonacci Quarterly, Vol. 13, 
No. 4 (Dec. 1975), pp. 334-336. 

2. L. Kuipers and H. Niederreiter, "Uniform Distribution of Sequences," 1974. 
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H-264 Proposed by L Carlhz, Duke University, Durham, North Carolina. 

Show that 
m-r n-s 
XT* ls+i\(m+n-s-i+l\ = ST* I r + i \ I m + n - r - / + 1 \ 
i M / )[ n-s ) " Ls [ i J [ m-r ' 
i=0 i=0 

H-265 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Show that F 3 k„7 = 0 (mod 3*), where k > 1. 

H-266 Proposed by G. Berzsenyi, Lamar University, Beaumont, Texas. 

Find all identities of the form 

k=0 
with positive integral r, s and t 

SOLUTIONS 

TRIPLE PLAY 

H-238 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Sum the series 

S = £ xmynzp , 
m,n,p=0 

where the summation is restricted to m,n,p such that 

m < n +p, n < p+m, p < m + n. 

Solution by D. Russell, Digital Systems Lab, Stanford, California. 

If m + n + p is even, then either (1) exactly one of m, n, or p is even, or (2) all of/??, n, and/7 are even. In either 
case, m +n - p is also even. Leta= 1Mm + n - p), and similarly le t£= 1Mn +p - m) and c= 1Mp +m - n); because 
of the restrictions, all of a, b, c are non-negative. Then m = a + c, n = a +b, and p =b + c, and 

xmynzp = xa+cy*+t>zt>+c = (xy)a(yz)b(xz)c. 

This is a general term of the generating function 
7 Tt even (1-xy)(1-yz)(1-xz) 

282 
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and it is easily seen that all tem$xmynzp of 7"even satisfy the restrictions and that m+n+p\s even. 
Consider the terms where m + n + p is odd and m + n + p > 3 (no terms exist with m +n+p = \). Either (1) ex-

actly one of m, n, or p is odd, or (2) all of m, n, and/? are odd. In either case, in the restriction m <n + p, equality 
may not hold, since then one side of the relation would be even and the other would be odd. But if m <n + p, then 
m - 7 <n +p -2. Let m' = m - 7, n' = n - I p'= p - I lhmxm yn zp satisfies the restrictions and / T J ' ^ ^ ' ^ P ' 
is even. The terms 

xmynzp = (xyz)xm'yn'zp' 

with m + n+p odd are thus terms of the generating function T0^ = xyzTeyen and all terms of 7"0dd are easily seen 
to satisfy the restrictions with m + n +p odd. 

Since m + n + p is either odd or even, the sum S is given by 

q 7 +xyz 
" (1-xy)(1-yz)(1-xz) ' 

Also solved by P. Bruckman, W. Brady, M. Klamkin, 0. P. Lossers, A. Shannon, and the Proposer. 

FERMAT' INEQUALITY 

H-239 Proposed by D. Finkel, Brooklyn, New York. 

If a Fermat number 2 + 1 is a product of precisely two primes, then it is well known that each prime is of the 
form 4A?7 + 1 and each has a unique expression as the sum of two integer squares. Let the smaller prime be a2 +b2, 
a > b; and the larger prime be c2 +d2, c> d. Prove that 

\c d\< 1 
\ a b\ 100' 

Also, given that 2 2 ' + 1 = (274,177) (67,280,421,310,721) and that 274,177s5 51€2 +89*, express the 14-digit prime 
as a sum of two squares. 

Solution by the Proposer. 

It is well known that 

(1) (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad - be)2 = (ac - bd)2 + (ad + be)2. 
Let c/a = r and d/b = r'. Then 

(2) (a2 +b2)(c2 +d2) = (a2r + b2rT +(abrf-abr)2 = (a2r-b2rr)2 + (abrJ' + abr)2 . 
One of the four squares on the right-hand side of (2) must be 1 2 . Takings, b, c, andtf as positive, it is obviously not 
the first one on the top line or the last one on the bottom line. Clearly ac > bd and thus (a2r- b2r')2 > 1. Hence, 

(abr'-abr)2 = P or I r ' - r l = ~ . 1 ' ab 
The smallest Fermat number which is a product of exactly two primes is 22 5 + 1 = (641 )(6,700,417). Here 641 = 
252 +4 2 and ab = 100. No other Fermat number can have an ab product as low as 100.* Hence the result, 

U_ d\ < _i_ 
\a b\ " 100 ' 

follows. For the last part of the problem, let the smaller prime b e ^ = a2 + b2 and the larger prime be 

p2 = c2 +d2 = a2r2 +b2(r')2 . 
Now rand /a re approximately equal m&p2/px ~ r2. Since c = ar and d= hr', a simple calculation leads to 

p2 = 80831112 + 13941802 . 

*Beiler, Recreations in the Theory of Numbers, pp. 143, 175. 
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EGAD 
H-240 Proposed by L Carlitz, Duke University, Durham, North Carolina* 

Let 
m\n(n,p) mi+(n-i)(p-i) 

S(m,n,p) = (q)n (q)p T] , , , . , . 
i=0 

where 
W / = f / - q)(1 - ?V .» f / - qj), (q)o = 1-

Show \\\dXS(m,n,p) is symmetric in m,n,p. 

Solution by the Proposer. 

Put 

e(x) = ff (1-qnxr1 = T j-r . 
n=0 *~i Wn 

n=0 
It is well known and easy to show that 

oo 

E M_n_ n = e(x) 

(q)„ e(ax) ' 
n=0 

where 
(a)n = (1 - a)(1 - qa) - (1 - qn'1 a), (a)0 = 1. 

It follows that 
oo oo oo. oo oo 

r,s=0 r=0 s=0 r=0 r=0 

so that 

Then 

E qr xrys
 = e(x)efy) 

n (q)r(q)s efxy) ' 
r,s=0 

efx)e(y)efz) = e(x)efyz) e(y)e(z) 
e(xyz) e(xyz) e(yz) 

r.mi+jk V qmixm(vzr v * qjkvizk _ V xmynzP V s i 
~ , (q>m(q)i .f"n (q)j(q)k ' ^ „ <q>m .$* (q)i(q)j(q>k 

m,i=0 J,k=0 J m,n,p=0 i+j=n ' 
i+k=p 

E Xmynzp V * qrni+(n-i)(p-i) 

n (q>m — (q)i(q)n-i(q)P-i 
m,n,p=0 i=0 H 

so that 

vm..n_p 
BjxMiMil = y _ ^ V L _ s(mnp) 

eixyzi L (q)m(q)n(Q)P ' " P 

m,n,p=0 

The stated result follows at once. 

REMARK. Since 
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J _ - V (-1\» q1/2n(n-1)zn 

e(z) - Z - , { 1} (a)n 
n=0 / 

it follows from (*) that 

6d?!L 
m,n,P=0 — - ij.k-0 —Wlk S = 0 

so that 
min (m,nj)) 

*-* (q)s(q)m-s(q)n-s(q)P-s 
s=0 ^ 

HARMONIC 

H-241 Proposed by R. Garfield, College of Insurance, New York, New York. 

Prove that 
n-J 

1 _ / v 7 hT. n n ^ j 2k7T . 
K u 1-xe n 

Solution by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

Using partial fractions, we have 
n-1 

1 _ 1 _ y* Ak 

* - 1 k=0 x - e — ' 

As-1) 
[e.g., see Edwards, Integral Calculus, Vol. 1, p. 145.1 

n-1 n-1 n-1 

i n 2-* 2irk(n-1). I 27Tk. \ n Ls 2nk(n-1) n *-* 2lTk 
1~X k=0 ne~"* ' [ x-e"^' j k=0 i -xe~» k=0 1-xe n 

since (n, n- V= I 

Also solved by C Bridger, P. Smith, and the Proposer. 
PELL-MELL 

H-243 Proposed by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

Show that for each triangular number tn = ^(n+ 1) there exist an infinite number of nonsquare positive integers 
D such that t*+r- t^D = 1. 

Solution by the Proposer. 

In the Pellian equationx2 - Dy2 = 1, letx = tmtn+i, y= tn, mn ? 0. 

[(mt2n + 1)(mtn + 2)+2] [(mt2 + 1)(mt2n + 2)-2] = 4t2nD. 

[m2tn + 3mt2n+4](m2tn+3m) = 4D. 
The left-hand side is congruent to zero modulo 4 for the conditions (1) m an even integer, (2) m odd, tn odd, (3) 

m odd, tn even. Hence D is an integer, and not an integer square since the difference of these two integer squares 
is never one. 
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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 
Fn+2 = Fn+1 + Fn* F0 = 0, Ff = 1 and Ln^2 = Ln+1 + Lnv LQ = 2, Z. / = 7. 

Also a and b designate the roots (1 + >/5 )/2 and (1 - yjb )/2, respectively, ofx2 - x - 7 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B- 334 Proposed by Phil Man a, Albuquerque, New Mexico. 

Are all the terms prime in the sequence 11, 17, 29, 53, -defined by u0 = 11 and un+<i - 2un - 5 for/7 > 0? 

B-335 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Obtain a closed form for 

n-k 

]T (Fi+kLj + FjLj+k). 

i=0 

B-336 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Let Qo= 7 = CLi and Qn+2 = 2Qn+i + #/?• Show t h a t i Y ^ - 1) is a perfect square for/7 = 1, 2, 3, ••*. 

B-337 Proposed by Wray G. Brady, Slippery Rock State College, Slippery Rock, Pennsylvania. 

Show that there are infinitely many points with bo th* and / rational on the ellipse 25x2 + 16y2 = 82. 

B-338 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas. 

Let k and n be positive integers. Let/? =4k+ 1 and let h be the largest integer with 2b + 1 <n. Show that 

TO 

is an integral multiple of2n~7. 

B-339 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

Establish the validity of E. Cesko's symbolic Fibonacci-Lucas identity (2u + 7)n = u3n; after the binomial expan-
sion has been performed, the powers of u are used as either Fibonacci or Lucas subscripts. (For example, when n = 2 
one has both 

4F2+4FX+F(} = F6 and 4L2 +4LX+ L0 = L6 .) 

286 
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SOLUTIONS 

SPECIAL BINOMIAL COEFFICIENTS 

B-310 Proposed by Daniel Finke/, Brooklyn, New York. 

Find some positive integers n and r such that the binomial coefficient ( n ) is divisible by n + 1. 

Solution by David Singmaster, Polytechnic of the South Bank, London, England. 

For/7 < 100, I find the following solutions for f̂ /7 + 1) [ n), with 2r < /?; 

n = 29, r = 6, 7, 14; 
n = 59, r = 12, 13, 14, 15; 
n = 69, r = 21,22,23,24; 

n = 83, r = 36, 37, 38, 39, 40, 41; 
n = 89, r = 15, 18, 19, 20, 21, 22, 23, 40, 41,42, 44. 

One can show that n + 1 must have at least three prime factors. 

Also solved by the Proposer. 

ANONHOMOGENEOUS RECURRENCE 

B-311 Proposed by Jeffrey Shal/it, Wynnewood, Pennsylvania. 

Let k be a constant and let j an i be defined by 

an = an-i+an-.2 + K a0 = 0, a1 = I 
Find 

n\\mJan/Fn). 

Solution by Graham Lord, Universite Laval, Quebec. 

With ao - 0 and 3/ = 1 then an = Fn + (Fn+f - 1)k (use induction) and so the limit is 1 + ak. 

Also solved by George Berzsenyi, Paul S. Bruckman, Charles Chouteau, Herta T. Freitag, Ralph Garfield, Frank 
Higgins, Harvey J. Hindin, Mike Hoffman, John W. Milsom, C.B.A. Peck, A. G. Shannon, Martin C. Weiss, Gregory 
Wulczyn, David Zeitlin, Larry Zimmerman, and the Proposer. 

DOUBLY-TRUE FIBONACCI ALPHABETIC 

B-312 Proposed by J. A. H. Hunter, Fun with Figures, Toronto, Ontario, Canada. 

Solve the doubly-true alphametic 
O N E 
O N E 
O N E 
TWO 

T H R E E 
E I G H T 

Unity is not normally considered so, but here our ONE is prime! 

Solution by Charles W. Trigg, San Diego, California. 

0£zero, T+1 = E, and ONE is prime, so E= 3, 7, or 9. Then 4E + O = T+ 10k. 
If E = 3, then 0 = zero, which is not acceptable. 
If £ = 9, then T=%,0 = 2,H= 7, and the sum of the digits in the hundreds' column is<30. Hence, £ £ 9 . 
If £ = 7, then 7"= 6, and 0 = 8, whereupon N = 2 or 5, since ONE is prime. But if N = 2, then / = 2. Consequently, 

N = 5, H = 9, / = 2, W= 4, R = 1, and G = 3. 
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The unique reconstruction of the addition is: 

857 + 857+857 + 648 + 69177 = 72396. 

Also solved by Hai Vo Ba, RichardBlazej, PaulS. B rue km an, Madeleine Hatzenbuehler and George Berzsenyi (jointly), 
John W. Milsom, C.B.A. Peck, A. G. Shannon, Martin C. Weiss, and the Proposer. 

EXPONENTIATING LUCAS INTO FIBONACCI 

B-313 Proposed by VernerE. Hoggatt, Jr., California State University, San Jose, California. 

Let 
MM = Lxx + (L2/2)x2 + (Ld/3)x3 + .... 

Show that the Maclaurin series expansion fore **' is 

Fx + F2x + F3x
2 * » . . 

/. Solution by Graham Lord, Universite Laval, Quebec. 

If Ln is replaced by an + (3n then MM becomes 
-\n(l-ax)(l -0x) 

which is the same as 
-\n(1-x-x2). 

HenceeM(x)\$1/(1-x-x2),thatis 
Ft + F2x + Fdx

2 + -. 

2. Solution by Martin C. Weiss, San Jose, California. 

M'M = Lt + L2x + L3x
2 •/-••• = (1+2x)/(1-x-x2). 

Integrating, MM = -\n(1 -x-x2l Hence, 
eM(x) s i/(i_x_X2) = Fi +F^x + FzX2 + ...m 

Also solved by Paul S. Bruckman, Charles Chouteau, Herta T. Freitag, Ralph Garfield, Harvey J. Hin din, Mike Hoff-
man, A. G. Shannon, Sahib Singh, David Zeitlin, and the Proposer. 

LUCAS NUMBERS ENDING IN THREE 

B-314 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Show that L u> - 3 ( m o d 1 ° ) f o r a" primesp > 5. 
Solution by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

For all primesp >b,p=±1 (mod 6). Hence, for all natural k, pk =±1 (mod 6), which implies-2/?^ = ±2 (mod 12). 
If we now write down the Lucas sequence (mod 10), we readily find that the cycle has length 12 (i.e. Lm+12~ Lm 

(mod 10), Mm); it is also easy to observe that 

£ ^ 3 (mod 10) iff m s ±2 (mod 12). 
Combining this with the first result above, it follows that L k = * <m o d 1 0 > * f o r a ! l prime/? > 5. 

Also solved by Frank Higgins, Graham Lord, A. G. Shannon, Martin C. Weiss, Gregory Wulczyn, David Zeitlin, and 
the Proposer. 


