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Bromwich [1], p. 24, attributes the formula

T—x Tox Tox T ©7
- X —-X —-X 7 —x2" -X ’_in

(1) X x? x* P B 1

to Augustu.s de Morgan, together with the corresponding sums of the infinite series, namely x(7 — x)-! if k| <1, and
(71— x)=* if [x| > 1. As far as the authors know, the following generalization has not yet appeared in print.
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To see this, note that the expression
n n
n n+1 zm (7 __zm (m—1))

n n n+1
[zm +z.2-m + ...+z(m-1)m ][7 +zm +z2m + ...ad lnf] = e (lzl < 7)

n
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is equal to the sum of all those powers of z where the powers are multiples of m" but not multiples of m"™*". Therefore
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On replacing z by y/x we obtain (2), and, on allowing / to tend to infinity we obtain, if [x|# |y |,

had n n n
@) Z bey)™ L™ fm=1) _ ym(m-1); _ min (abs) (x,) (m=23),
n n n+1 n+1 X-y
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where min (abs) (x,y/ signifies x or y, depending on whether [x| < |y|or [x| > |y|. respectively.
To obtain examples, let a and b be positive integers and let v, be the denominator of the (n - 1)t convergent of the
continued fraction b b b

at at at
so that

193



194 A GENERALIZATION OF A SERIES OF DE MORGAN [0«

n n

(5) = s N
N7y

where

E=a+5z(a’ +4b) nza—;((a’ +4b)
2 ! 2 ’

Now putx = Ekanxly = nk in (2), where k is a positive integer, and we obtain

N n
6) Z (—b)km Ukmn(m-1) _ n__nkmNﬂ_
‘; UppmUfmn+1 ukmn+1
n=

When b = [ the formula simplifies somewhat. Whena =6 = 1, thenu, = F,,, then % Eibonacci number.
Some special rases nf these formulae are

22+1) L 22(22+1) |, 2°(2° +1 _ .
@ »-1 -1 T 227_1)+""1 x=2,y=1,m=3in(4));
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(where L, =1,L,=3,L,=4, L, =7, - are the Lucas numbers),
(10) f‘_+fl+£2+...=£:.§§,
I, L, L, 10
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Further generalization. Formulae (2) and (4) can be further generalized to
Xntt¥n—Xay Y
Yo = n+1¥n ~Xn¥n+1 + m
(12) Xo = VYo né'z, (Xn = Yn)Xn+1=VYn+1)  Xm—Ym

where { Xp } and { Yn } are any sequences of real or complex numbers, with x,, #y,, ¥,, and

Xn+1Yn —XnYn+1 = § Yo/lxg —yo) if yn/xp = 0
13 n = o/ [Xo o/ It yn/xp
" ;; R L { Xo/ (xo —vo) i Xp/¥n ~> 0

Although (12) is more general than (2), its proof is obvious. A special case of (13), after a change of notation, is

(14) (xy)s(n)[xs(nﬂl-s(n) _ ySlat1)-sin); - ys(m)
xSl _ ys{n)][xs(nﬁ) _ ys(n+1)] xSfm) _ ys(m)

n=m

if x| > |y| and sfn) —» = as n - .
Nowputx =&, y= n and we obtain

< (_pjsin) s(m)
(151 Z (-b) Us(n+1)-s(n) - M
nem Us{n)Usfn+1) US{m)

and in particular
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=1 Etrpst) _ 1 1-JF |
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Forexample , ifsfn)= Fp+7,
po
€fFn  _ 5 -1 - 1 if n=0 or 1 (mod3)
“7) 1 FFni1FFnio 2 7 wher? €n = { -1 if n =2 (mod 3)
n=
and ifsfn)=Lp+7,
) _
(18) S G fn 51
n=0 FLn+1FLn+2 2
Putting s(n) = (n + 1)k in (16) gives
w 1-/5 )"
(19) E (_7)(n+1}k _ ( 2
' = Fint 1)k Fin+2)k F2

Putting x,, = (n +2)€ and y,, = 1 in (13) gives, after a change of notation,

oo

c c
(20) (n*1)~n =1 fc >1).
n=2 (€ =1)n+1)°-1) 2°-1

Putting x,, = ¢ ™7/t yn =&~ 1t in (13) gives

- 1 _ el
1) ':2=: cosh (2n + 1)t — cosh ¢ 2sinh2t

Historical note. The formula

F=9_1__1 _ 1 _

(22) V8= 2- - T rmaam

where 14 = 42 — 2, 194 = 142 — 2, ..., was drawn to the attention of |. J. Good by Dr. G. L. Camm in November
1947. (The sequence 4, 14, 194, - occurs also in tests for primality of the Mersenne numbers [4], p. 235.) The
similar formula

= _(r="Ta, r=1(1 1
() Ve T 2 (755 )

where

3

r>1, a, =2 ant1 =a5—2, B, = 1, Bn = azap ap

+1
-1

was given in [3]; and formula (8) in [2] and [6]. Hoggatt [5] then noticed that

7
2 Fom

n

3

could similarly be summed. All these results follow from deMorgan’s formula. I. J. Good noticed the generalization
(4) in November 1947, but at that time did not see its application to the Fibonacci and similar sequences and there-
fore withheld its publication. P. S. Bruckman independently, and recently, noticed the more general formula (14).
Alternate methods of proof appear in [7].
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ON THE HARRIS MODIFICATION OF THE EUCLIDEAN ALGORITHM

i G. J. RIEGER
Institut fur Mathematik, Technische Universitat Hannover, Hannover, Germany

V. C. Harris! (see D. E. Knuth? also) modified the Euclidean algorithm (= algorithm by greatest integers) for find-
ing the ged of two odd integers 2 > & > 1. The conditions a = bg +r, |r| < b, 2|r define the integers g, uniquely. In
case r= 0, stop. In case r # 0, divide r by its highest power of 2 and obtain ¢ (say); proceed with b, |¢| instead of 4,4,
Denote by H(a,b) the number of steps in this Harris algorithm.

Example: 83 = 47.1+4.9, 47 =9.5+2.1, 9 =1.9; H(83,47) = 3.
Denote by £(a,b) resp. N(a,b) the number of steps in the algorithm by greatest resp. nearest integers fora > b > 0.
According to Kronecker, N(a,b) < E(a,b) always. In this note we prove that H(a b) is sometimes much larger than

E(a,b) and sometimes much smaller than N(a,b).
Let

obviously

co: =1 c¢cpt1 = 2Zpn+s5 (n>10);
. Elcpe1,cn) <5 (n > 0)
Furthermore, since
Cpt2 = 3cpe1—2n, 2te, (n > 0),
the choice ax = ¢k, bk = ck~1 (k > 0) gives

Theorem 1. Forevery integer k > 0 there exist odd integers ax > by > 0 with

Elag, bx) < 5, Hlag, bx) = k.
Let

vo =0, vi=1, Vp:= Wpgtvp2 (n>1);
then_

Wpi1,vn) = 1, vy < 3™, 2|vp = 2|0 (n > 0).

:The Fibonacci Quarterly, Vol. 8, No. 1 (February, 1970), pp. 102—103.
The Art of Computer Programming, Vol. 2, *‘Seminumerical Algorithms,” Addison-Wesley Pub., 1969, pp. 300, 316

[continued on page 200.]
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DAVID G. BEVERAGE
Civilian Instructor, USN Program for Afloat College Education, Chapman College, Orange, Calif. 92666

Denote the polynomials defined indirectly and recursively by my Theorem [1] by P2, +7(x) so that
Piix) = x, P,lx) = x> +3(—=1)Kx, P (x) = 25x5 + 25(—1)kx> +5x,
Pylx) = 125x7 + 175(=1)%xs + 70x> + 7(—1)Xx,
Py(x) = 5x°+ 325 (~1)Kx7 +3%.52x5 + 2-3-52(-1)%x® + 32x,
Polx) = 55x1 + 55 11(=1)Kx2 +22.5% . 11x7 +527-11(-1)%x5 + 5211x% + 11(—1)Kx,
P,y lx) = 5ox13 +5513(—1)Kx11 +5513x° + 22.3.5313(=1)¥x7 + 2.52713x5 + 5:7-13(-1)%x3 + 13x,
P.o(x) = 57x%5 +3.57(=1)Kx13 + 2.3256 x11 + 56 11(—1)Kx® + 2.3255x7 + 2.33 52 7(—1)¥x*
+ 2052 7x3 +3.5(-1)%x

Theorem [1] may be written as

Theorem 1.
(1 Pon+1(x) = 5nX2n+1 —E.n: (n2:1+_13 ) [(_7)k+7]n+1—sP23_7(X) .
s=1
The following Theorem 2 gives an explicit expression for these polynomials:
Theorem 2.
(2) Pan+1(x) = Xn: 5 (1)K %;3—1%‘”5;5’# x2nt=2r

r=0

Proof. The polynomials P, (x) obtained by substitutingn = 7 into Eqs. (1) and (2) are easily shown to be identical.
Using the second principle of mathematical induction, assume that (1) and (2) express identical polynomials Pogs+7(x)
for all s <n [2]. Substituting the expression (2) into the right-hand side of Eq. (1), it will be shown that the resulting
expression for Pop+7(x) is identical to that as determined by Eq. (2). Thus, Eq. (1) becomes

n
Popsilx) = 5nx2n+7_2 ( 2n+1 )[(_Uk+1]n+7—sp2s_jlx)’

n+1—s
s=1
where
s-1
- s-1-r,25-1-2r(_qjkr (25 — 1){(2s — 2 — r)I]
Pas-1lx) = 3 57 x e

r=0
Rearranging terms and changing the variable of summation by ¢=s — r — 7, eliminating 7, and interchanging the order
of summation on ¢ and s obtain:
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n-1

_ Fn 2n+1 t,_qjkn-kttn+1 (20+ )3T
(3) Pon+1lx) = 5% ::5 5'(-1) e 1] a,

where

n
XN g8 (2s — 1)[(s +t— 1)!]
0 2‘ 1) (s—t—1)n—s+1)n+s)!
s=t+1
Expression @ may be summed using the antidifference method as
Q- —(=1)5(s +¢—1)! s=ntl _ A=1)" o)t
h=tln—s+1ln+s— 1s—t—2)! |s=pr7 (0 —tN20)!n —t— 1)1 ~

Substituting the latter for @ in (3) above and simplifying, obtain

2
¢ 5t(2n + 1)x2t*1 (n+t)!

n-1
_ pn,2n+1 k(n- el AT
@) L D

t=0
Finally, changing the variable of summation to r=n — ¢, and noting the first term is represented with r = g, Eq. (4)
becomes (2) as desired.

Theorem 3. Pi2m+1)(2n+1)(x) = Pom+1(Pan+1(x)) .

Prooﬁ Each of the polynomials is of degree (2m + 7)(2n + 1), and since the same Fibonacci number, namely,
F(2m+1)(2n+1)k. is obtained forx = Fg, k=1, 2, 3, -, the polynomials have identical values for an infinite number
of arguments, and thus by a well known property of polynomials, the polynomials in x are identical [3].

Theorem 4.
(5) Pon+5(x) = [5x2 + 2(=1)%]P2p+3(x) — Paps1(x) .

Proof. Substituting (1) into the right-hand member of Eq. (5) above, and multiplying by [5x2 +2(-1)X], one
obtains three summations:
n+1
Z §nt2-r(_qykr (204 3)[(2n +2 = r)l] | 2n+5-2r
’ ri(2n +3 - 2r)!

r=0

n+1

+ Z g*t1-r(_q)klr+1) 2(2n +3)[(2n +2 — t)l]  2n+3-2r
r=0

ri(2n +3 - 2r)!

n
. -n-r;_qjkr (2n+ 1)[(2n — r)l]  2n+1-2r
2 51 ion+1-2 * :
r=0
Replacing r by r — 7 and r — 2 in the second and third summations, respectively, each summation has the common
factor 57727 (—1)Kry2n*5-2r itk the range of summation overlapping for r = 2 ton + 7 as follows:

n+1
Z gnt2-r(_qjkr 2043)[(2n +2 —r)l] 2n+5-2r
ri(2n +3 - 2r)!

r=0

n+2
nt2-¢(_ 1)kr 2(2n +3)[(2n + 3 — r)!
D e s e

2n+5-2r _

X
r=1
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n+2

B Z g*2-r(_gpkr (204 1)[(2n+2 = 1)l] | 2n+5-2r
r=2

(r=2)1(2n+5-2r)!

Collecting the overlapping portion of the summations in a single summation and simplifying the remaining individual
terms, one obtains:
n+1
E 5211 kr, 2n+5-2r (2n+3)[(2n+2-1)1] | 2(2n+3)[(2n +3 -1)!] _ (2n+1)[(2n +2- r)I]
ri2n +3 - 2r)! (r—112n+5=2r)1 (r-2)!(2n+5-2r)!

r=2
(6) + 522075 4 11 )K (2 + 51203 4 (20 + 5)(=1)KN .
The expression within the brace of Eq. (6) becomes

(20 +2 =r)l{(2n +3)(2n + 5 =2r)(2n +4 = 2r) + 2r(20 + 3)(2n +3 — r) — rlr — 1)(2n + 1)]
ri(2n +5—2r)!

= (2n+2-1)! _ _ _
o 5= 217 [8n® +48n? +94n — 8rn® — 34m + 2r:n + 5r — 35r + 60]

(2n+2—r)! _ ) = (20+5)[(2n +4 —r)l]
Ti(on +5 =207 [(2n+5)(2n+4 —r)(2n+3—1)] 120 + 5= 27 .
Substituting this simplified result for the brace in (6) and noting the three individual terms in (6) from the summa-
tion general summation term with r = 0, 7, and n + 2, respectively, Eq. (6) becomes Pa,,+5(x) as expressed by (2).

Theorem 5.
(7) [5x2 + 4(~1)K [P3p41(x) + 5xPops 1(x) — 5(2n + 1)2P2p41(x) = 0 .

Proof.  Differentiating (2) and substituting into the left-hand member of (7), multiplying the binomial [5x2 +
4(-1)k] appropriately in (7) to form two summations and changing the index of summation 7 to r — 7 in the sum-
mation formed from 4(- I}kP5n+1(x), one obtains four summations with like general terms in x with the range of
summation overlapping from r=7 to n — 7. Factoring out the common factors, the left-hand member of (7) becomes

n-1
n-r+1 k
Z it r(IZI(IZZH(}Z{‘rI()ZI”—”! {(2n—2r+ 7}(2n—2r)+4r(2n—r+7}+(2n+1-2r}-(2n+7}2}XZ"”'Z’
r=7 H - .

4 5" o0+ )20)x2T | SR 20+ 1) [0+ 1)1]4x |, 67 (20 + 1)((20)11x%"*T | 5(=1)%"(3n + 1)[n1]x

0! (2n - 1)I (n—1)11! 0! (2n)! n!0!
5" an + 13020 )1x 2T B(=1)%"(2n + 1)3(ntix
0! (2n+ 1)1 nl1! :

The expression within the brace of the summation is easily shown to be zero, and the remaining six individual terms
are easily shown to be zero also.

Theorem 6. The polynomials Po,, .+ (x) satisfy

Pop+1(x) = \/Lg T2,,+1( 325x> or (-1)" % T2,,+1( —i 5é—§x )

according to k odd or even, where 75,+7(x/ is the Chebyshev polynomial of the first kind [4].
Proof. For kodd,

/ 5 ) 77 ’ “
Pant1lx) = 7‘25 Tan+1 ( L25‘X )59' and  Popeplx) = \—/23: Ton+1 ( )%l) 457

by applying the chain rule.
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Substituting into (7) and changing the variable x to z by x = (2/4/5 )z, obtain

(1- z‘g}?r'g',,+1(z) —2-Tons1lz}+(2n + 1}2T2,,+7(z) =0
defining the required polynomials [4: 22.6.9 p. 781]. The case for k even may be handied similarly.
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[Continued from page 196.]

\

Letk > 8 2|k K :=4k+ 3, the conditions

Vis1 T F Vich+1 = ZK, 0 < rer1 < 2vpry, 2/ e+t
define the integers rg+7, re uniquely. Then 2rig+7 < re. Let
‘ 1= 2rig1 + 1 G=k-1k=2-,1)
then j 1T 2 )
0< 21 <t;, 2/17%20j Vppijtvjrag =25 (= k=1k=2 -, 1)

Zri+ry = 2K 0 < 2ry < 2K,

Letye = 2-2K+r1 , Xk = 3y +.2K,- then 2.2K < Yk» 24 Yk, 2 {xk. The defining equation for x; gives
Hlxk, yi) = 2. The defining equations for xg, yk, rj (j= 1, 2, -, k — 1) are the beginning of a.: algorithm by greatest
and. by nearest integers for x4, y4 and therefore Nixy, yr) > k For an arbitrary integer s > 0, let g := X5, A = Vs
in case 2|s and gg /= X541, hs ;= Y47 in case 2 s This proves

Theorem 2.  For every integer s > 0 there exist odd integers gg > hs > 0 with E(gs, hs) > Nlgs, hs) >,
Hlgs, hs)= 2.

Nothing is known about the average size of H(a,b).

Fehcscdohcseke
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FIBONACCI NUMBERS AND UPPER TRIANGULAR GROUPS

LOUIS SHAPIRO
Howard University, Washington, D.C. 20001

{n this note we call attention to the curious fact that the Fibonacci numbers arise when we look at that familiar

example from group theory, the 7 X n nonsinguiar upper triangular matrices. Once incidence subgroups are defined
the result follows quite easily.

Let K be any field with more than two elements and let K* dencte the nonzero elements of K. We define 7, to

be the group of all nonsingular 7 X n upper triangular matrices over K. Thatis 7, = { la;/} |aij=0ifi>j aje K%,
ajj € K}. The key definition is as follows.

Definition. Asubgroup, H, of T, is an incidence subgroup if

(a} The relations defining # can be given entirely by specifying the domain for each a;;.
{b) The two possibilities for each a;; are a;; = 1 oraj; € F*

(e} The two possibilities fora;; when/ </jareai;j=0ora; € F.

Since #-C T, we automatically have a;; = 0 whenever /> By way of example we have

T ab )
(0 70>a,be/(, ceK*}
00c¢c
1 a —a
{(01 0>aeK}
g0 1

is a subgroup but not an incidence subgroup since the (1,2) and (1,3) entries are dependent.

1 ado0
{( 016 ) ab ek
00171
is not a subgroup.

We let G” denote the commutator subgroup of G. Then it is easily shown that

T, = {(a,-j}|a,-,-= 1, ajje F if I</}

1 ab
T, = 01c¢ abec e F
001

Proposition 1. The number of incidence sugroups, S, of 7, such that§”= T, is Fj,+2, where
{F}r = {1123546-}

is an incidence subgroup of 7,.

For instance

which is an incidence subgroup.
Our result is the following:

is the sequence of Fibonacci numbers.

201
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Proof. We must have T, 2§ > T, so that if S = { (a;j) } we then have a;; = 0 for/ > j, a;j€ K fori <}, and for

each / we must specify eithera;;= 1 ora; € K*
Suppose we specify 1= a; = aj+7 j+7 . Note that the commutator

G Gl () -G GG - (29)

Now let
dyy ay, ain bn bu bin
0 ay a2n 0 by ban
A= 0 0 .. - , B = 0 0 ".. .
1ot 1 bjj+1
01 . o1
ann/ bnn /
Using block multiplication and the above computation we have
1 ¢y - Cin
01 C2n
00 . .
A'B-'AB = 170 .
a1 -
7
and such matrices will not yield all of 77,.
Similarly
(a 0)"(1 7)“(3 0)(7 7) ___(1 I—a")
o 1 o1 o 1/\0 1 0 7

and we can generate 7, by choosing a appropriately.
Alternatively both

-J(a0b . - ’b)aeF*,beF}
H, = (0 l)laeF,beF} and H, {(Oa I

are nonabelian. If every 2 X 2 block,
(aii aj,i+1 )
\O  ajr1,i+1)°

along the main diagonal is either #,, H, or T, then a; ;+7 € F is specified for each i This yields "= 77,. Thus if no
two consecutive entries on the main diagonal are specified as 1's then §"= T,

To complete the proof we need the standard result (for instance see Niven [1]) that the number of sequences of n
plus and minus signs with no two minus signs adjacent is F,.2.

Incidence subgroups are themselves an interesting topic. The term comes from incidence algebra as used in the study
of locally finite partially ordered sets. The following facts are known. If K is finite then most normal and all charac-
teristic subgroups of 7}, are incidence subgroups (see Weir [2] ). The center or commutator subgroup of any incidence
subgroup is itself an incidence subgroup. The number of normal incidence subgroups of 7, is given by the Catalan
numbers.

If the number of incidence subgroups of 7;, were known it might be useful in determining the number of finite 7,
topologies. However this is an unsolved problem for n larger than nine.
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ON THE INFINITE MULTINOMIAL EXPANSION'

DAVID LEE HILLIKER
The Cleveland State University, Cleveland, Ohio 44115

Abel, [1], about 150 years ago gave the first proof of the Binomial Theorem for the case of an arbitrary complex
exponent. From Abel’s result one can deduce various versions of the Multinomial Expansion. In this note we shall de-
rive one such form.

Letn, ay, a,, -, a, be complex numbers with n not equal to a non-negative integer. /f the inequalities
(1 laj| < |a7 +az+-+ap-q]|,
forj=2 3, -, r, all hold, then the following Multinomial Expansion holds:

n n
nln—1)~(n—ny—np——nq+1) 5 , f_q 00 =N,=..=n
. = 172, ... gr=1 172 r-1
2 z; a Z nylng!--npq! a apty dztay ’
, 1=

where the summation is an iterated summation taken under all n; > 0, where i first takes on the value r — 1, then r —
2, and so on until the last value, 1, is taken on.

We first establish the following triple summation expansion:

r n r o j-1 n-k
k Y
@) Ta| LT (h)f Z @) o
=1 =2 k= Q=1
if the inequalities (1) all hold. Here we use the usual convention that Z = 0 when n is a positive integer and k > n.

Formula (3) is of interest in its own right. This author has found it, as well as Formula (7), to be of use in the repre-
sentation of integers in specialized arithmetical systems, such as the binary system.
Indeed, letz, = 0 and
-1
Zj = z aQ

e=1
forj = 2, so that the right side of (3) becomes, by (1),

r r
Y (3" ~2]) = o ey =20) = 2y,
=1 j=1

which is precisely the left side of (3).
Since n — k # 0, we can apply Formula (3) to the summation under £ on the right side of (3). This iterative process
can be continued. After m iterations of Formula (3), m > 0 and not too large, we obtain

TReceived by the editors in July, 1973.
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A n Lomas-T n=2,==2, ma4,

= n [n-2 n=0Q, == Q. Q Q
@) Z aj = 2 (‘22 ) ( o, 2) ( 2 2m) anaQ; ...agﬂznn:‘: ag /

Q
i=1 am+2 Q=1

n—2L, n—Q, — =2 Q, 2 Qk n-2,-—L n
+ 2 2k-2 2 204 2 2k +
T m () (7] - (o) sk e

Here the indices vary over

2< <r,
(5) 2<Q2,+1 Qoj7—1, for 1<i<m,
1 < Qjp2 < oo , for 0 <i<m.

The only restriction on m is that m < r — 2, so that the first two inequalities in (5) are possible.
We let m = r— 2, for r > 2. Then, by (5), 22,-3 = 2, so that Formula (4) becomes

r
) n n=90\  [(n—2 — =2, Q2 Q, Ly pmg N2y = —Rar~2
(6) Z aj Z(Qz) ( 2, ) ( Qs ao aQ R
=1

r-2

n—., n—Q, — =y Qe L, QK n-L 2=, N
Z Z ( )( ) ( * L,k ? 2) aQAaQS ank 13 ta,

n

[}

4

r-1
E E n\(n=2\ (1= — =Ry, 08 L LRy o0
(QZ)( 2 ) ( 22k )anaQa Q-1 ta, .
k=1

We now extend the range of ¢, for 1 </ <r — 1, to include 0. Then, the summation under k reduces to:asingle
term k = r— 1; and, by (5), the subscripts are unlquely determined:

e, =1, Q =r—1, =, e, =2.

It now follows from (6) that

r n
Z a - nln—=1)(n—9 ==, +1) QnaQ aﬁ‘gp-z n-, = “Ryp=y
i r—1""9 ]

g, le, b0 ! !

this result being valid for all r > 1. Here, we are employing the usual convention that the empty sum is 0 and the emp-
ty productis 1.

The Multinomial Expansion (2), subject to the restrictions (1), now follows with a change of notation.
Another version of the Multinomial Theorem is

r n r ) [ j-1 n-k j-1 n
(7) Za,— =(—1)’Z(—I)’ Z (Z)af‘ Zag +2 Zag +a',’;
i=1 j=2 _ k=1 e=7 e=1

valid under the conditions (1).

A good source for the Binomial Theorem and the Multinomial Theorem is Chrystal's A/gebra [2], Volumes | and
I1. Our sequence of expository papers on the Binomial Theorem, the Multinomial Theorem, and various Multinomial
Expansions (Hilliker [3], [4], [5], [6] and the present paper) will continue (Hilliker [7], [8]).

ADDENDUM. Here, as usual, z” is defined to be that branch of the function fix) = 2" '°9Z defined over the com-
plex z-plane with the nonpositive real axis included, and with 7(7) = 1. That s, the logarithmic function is given by
log z = log |z| +/ arg z with |arg z| < . Our inequalities (1) imply that the quantities a, +a, + ~+aj,for7<j<u,
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are not 0."%Ve shall need to assume that they are not negative real numbers. When n is a (negative) integer these re-
strictions which guarantee single-valuedness, may, naturally, be ignored. For mare on this, and also for a develop-
ment of the Binomial Theorem, that is, the Maclaurin expansion

(1+2)" = Z (Z) zk
k=0
for n and z complex and with |z| < 1, see Markushevich [9], I.
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THE SUM OF TWO POWERS IS A THIRD, SOMETIMES

R. B. KILLGROVE
California State University, Los Angeles, California 90032

1. INTRODUCTION

We seek integer solutions to the Diophantine equation

(1) x"+y™ = 2K,

where n, m and k are positive integers. We have a general algorithm which sometimes augments primitive parameters
to primitive solutions regardless of the choice of m, n, k. We classify the types of applications of this algorithm based
on the greatest common divisor of the exponents. For some types all the primitive parameters augment to all the
primitive solutions. For the type which includes the famous case n = m = k > 2, the finding of the primitive param-
eters which augment to primitive solutions is equivalent to the original problem. Without gain of generality (an ex-
pression of Professor DeHardt), we could extend this approach to a Diophantine equation with more powers on the
left than two but only one power on the right.

2. HISTORY OF THE PROBLEM

In 1964 we obtained the computer solution (1176)* + (49)® = (35)* and from this one example we discovered our
method of augmentation as well as a type of exponents for which we determined all primitive solutions. Subsequent-
ly that year Professor E. G. Strauss pointed out to us that this method could be applied successfully (i.e., yielding
solutions) to another type. At this time we found that Basu [1] and others had found rational solutions for the first
type mentioned above. Recently Beerenson [2] has found a similar method for finding integer solutions for this first
type. At this later time we found that Teilhet [8] in 1903 used the method of augmentation for a special case k = 3,
m=n=2

3. TRIVIAL SOLUTIONS

For completeness as well as for illustrating a simple case of primitive solutions, we now discuss the trivial solutions
to (1), x,, Vo, 2,, where x,y,2, = 0. Let us call the case x = y =z =0, the zero case, and turn our attention else-
where. Then exactly one of x,, y,, z, is zero, and the non-zero elements are both powers with common exponent
the least commen multiple of their corresponding exponents (x, corresponds to n, y, tom, z, to k). Thus for the
non-zero trivial solutions with x, = 0, we say y, , z, form aprimitive solution if and only if there is no integerd > 1
such that dL |yo and d- Izo where L = [m,k]. Thus the possible candidates for a non-zero, trivial, primitive solution
are:y, =x1,z, =£1.

4. PRIMITIVE SOLUTIONS AND THE CLASSIFICATION SCHEME

The computer example indicated to us that the usual definition of primitive solution x,, y,, z,, namely, one

where
(xo, Vo) = (Xol z,) = (yo/ Zo) =17,

was not adequate. Thus we give a new definition which reduces to the old when appropriate.

Definition: A solution u, v, w, uvw # 0, to (1) is called a (non-trivial) primitive solution if and only if there
isno ¢ > 1such that t?|u, t°ly, t°|w, where

a=L/n, b=L/m, ¢c=L/k ad L =[nmk].
206
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The case n = m = k > 3 is referred to as Fermat's Last Theorem (F.L.T.) wherein the conjecture states that there
are no non-trivial solutions. This conjecture is true for n < 25000 [7]. If (n,m,k) > 2, then (1) for this type of ex-
ponents can be reduced to F.L.T.

The type (n,m,k) = 2 has not yet been completely resolved. If n = 2h, m = 2j, and k = 2j, and if (h,i) = (h,j) = (ij) =
1, then (E.G. Strauss) all possible solutions can be obtained by augmentation. If (h,i) > 2, we can show there are no
non-trivial solutions if F.L.T. holds. We conjecture the same holds for (A,j) > 2 and (i,j) >

The type (n,m,k) = 1,butno one of n,m, k is relatively prime to the other two, is the only known type which some-
times yields a finite number of primitive solutions. In all other cases, as far as we know, if non-trivial solutions exist,
there are an infinite number of primitive solutions.

We complete our classification scheme by mentioning the remaining type where one of n, m or k is relatively prime
to the others. This is the “first type” referred to in Section 2.

5. THE METHOD OF AUGMENTATION
Let O = [m,n] throughout this section.

Defmtzon Positive integers x, and y, are primitive parameters for (1) if and only if there is no ¢ > 1 such
that t? |x, and |y, , where d =D/n and e=0/m.

Definition: A primitive solution u,v,w, uvw # 0 0 to (1) is an augmentation of primitive parameters X, y
for (1) if and only if u =x,2% v=y,28, 29" = 26™ = 2P, I§ 2, > 1, then we have a proper augmentation.

Theorem 1. |f positive integers u,v,w form a primitive solution to (1) then there is a unique ordered pairx,,y,
which are primitive parameters so that u,v,w is an augmentation of x, y, .

= d
Proof.  Lett be the largest positive integer for which t9|uand t|v and d = D/n, e = D/m. Thenx, =u/t
and y, = v/t® are primitive parameters, and v,v,w is an augmentation of x, , y, . Suppose x, , y, are primitive param-

eters and

u=x29, v=yzt.
Letp be a prime such that p7 ¢t and p 2|z, and g # Q. Then p?|x; and p®|y;, wherei=0ifg < Qandi=1ifQ <
g. This contradicts the condition x;y; are primitive parameters. Thus t=z, and x, =x, andy, =y, .

Theorem 2. |fx,, y, are primitive parameters for (1) and x| +y;" is written as a,’fa’,ﬁ:; agay, where each
aj, i # k, is squarefree and (a;, a;)= 1 foreach / < k, j < k, i #}, then there is an augmentation to a positive primitive
solution for (1)if and only if foreach j, 1 </ <k, euther a; = 1 or there is a solution g; to Og; =—i (mod k) and g; is
the smallest such positive solution.

Proof. Suppose we have a primitive solutionv > 0, v >0, w > 0. Then

u = xozg, v = yozs and wk = a,lfak_7 aza,zo .

Hence 4 2 b
(W/ak)k = ak_7 »rdgdqZg -
Suppose there is an j, 1 </ < k, such that a; # 1. Then for each prime p dividing a; we have p’pgD =qu, where
p9lzg and  p9|(w/ag).

Thus Dg =—i (mod k). The smallest such positive solution is < &/ (D,k) [2, p. 511. If g > k/(D,k), then gD > [D,k]
=L = [n,m,k]. Thus
Ll n

U,p!V,pL|k

P w,

and u,v,w is not a primitive solution. D
Suppose the conditions hold, and we write 5€ as b exp ¢, then zp isoneifalla; =1 for/i # k and is the product of
ajexp D g; forall [, 1</ <kanda; # 1, otherwise. Then
u=xp28, v=ypz§, and w= am,

where is the product of the positive k7" roots of a; exp ;, f;=Dg;+i, a; £ 1, or one. This is a solution to (1) but it
may not be primitive when z, # 1.
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If this is not a primitive solution, then there is a prime p such that
p?lxp25, p°\voz§ and p°lw,
wherea=L/n, b=L/m, c=L/k. Ifp {a; forany i, 1 </ < k, then p fz, and p®|x, and pb|yo .Since L = DS for
some integer S, a = Sd, b = Se, and x, and y, are not primitive parameters.
Ifp|aj, then p exp _q,-“zo ,and g; < k/(D,k). But

k/(D,k) = [D,k]/D = L/D = §.
Theng;<S-—1,s0
gid < dS—d =a-d, ge <eS—e =h—e.
Since J
p?\xp28.  and  pexpgid |23,
then pd|xo; similarly p®|y g and xg, v are not primitive parameters.
6. THE TYPE (n,m,k)=2

Here n = 2h, m = 2i, k= 2j. For completeness we give a proof for a theorem in the literature [4] because it is easy
and not too accessible.

V. A. Lebesque Theorem: 1§x% +y2t =72 has a non-trivial solution then ¢ is odd and u® +v¥ = w? has a
non-trivial solution.

Proof. I tiseven, we use the fact [3, p. 191] thatx* #y* = z* has only trivial solutions. Then xt=2rs yt=
r> —s? [3,p. 190]. But (r +s, r — s) = 1. (In this case the new and old definition of primitive are equivalent), hence
r+s=uand r—s=v? buteither 2r=w’ or 2s = w’ In the former case, by adding r + s to r — s, we obtain ut +

v=w? In the latter case subtract r — s from r +s and rename.

Lemma 1. fn=2 m=2 k=2t then all the primitive solutions to (1) are obtained by augmentation of prim-
itive Pythagorean triples.

Prooﬁ From a primitive Pythagorean triple [3, p. 1901 x,, y,, z,, we canuse x,, y, for primitive param-

eters, and if ;
Bord - BB aa

under the conditions of Theorem 2, then a; = 1 for all odd / and 2g; =/ (mod 2¢) can be solved for all needed even
i. If xz +y?2 is not a square, then when written in the above form a; # 1 form some odd /, and 2g; = —i (mod 2t) has
no solution, and there is no augmentation.

NOTE: Our method does not distinguish solutions 15, 20, 5, and 7, 24, 5 forn =m = 2, k = 4, except as proper or
improper augmentations. Forn = k =2, m =4 we use a general modification of Theorems 1 and 2 using

k n_ _m_m-1 2
ZO -—Xo = am am_, "'3281 .

Lemma 2. \fn=2 m=2s k=2t (s,t)=1, then all primitive solutions to (1) are obtained from primitive so-
lutions to (1) with n = 2, k = 2 by augmentation.

Proof. 1ix,,y,, z, is a primitive solution to (1) withn =2, m = 25, k= 2, then x,, y, are primitive parameters
forn=2,m =2s, k=2t (s,t)= 1, and the corresponding odd indexed a; = 7, and 2sg; = —i (mod 2¢) can be solved
for all even /. But if yg +y5s is not a square for x,, y,, primitive parameters then there is an odd / such that a; # 7,
and there is no solution to 2sg; = —i (mod 21).

Theorem 3. If

n=2h m=2 k=2, (hi)=1(nj)="j=1
then there are an infinite number of primitive solutions to (1) obtained by none, one, or more augmentations of
Pythagorean triples.

We do not give the proof since it repeats a third time essentially the proofs of the two lemmas.
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7. THE TYPE (m,n,k) = 1 BUT NONE OF n,m,k IS RELATIVELY PRIME TO THE OTHER TWO

We know how to solve only n = 2h, m = 3i, k = 6] for this type. We assume a result of Legendre [5], namely that
x® +y?® = 27° implies x = £y. Using this hard to obtain result we give a proof of a theorem in the literature [6,9].

Thue-Lind Theorem. The only non-trivial primitive solutions tox? +y® =25 arex =£3, y =-2,z = £1,

Prooﬁ First we note (z> — x, z> +x)=1o0r 2. In the former case, 2> — x =u?, 2> +x = v3, and u® +v® = 223,
By Legendre’s result, v = £v. If u =v, x = 0, and if v = —v, then z = O Therefore for non-trivial solutions (22 — x, z*
+x)=2 Now

z22—x =2y and x3+x =4v® or 22 —x =4u® and Z2*+x = 2/°.

One case can be obtained by the other by replacing x by —x, but x is a solution if and only if —x is. Thus we con-
sider the former case only. Then by adding, we obtain z2 +(—u)? = 2v®, and by Legendre's result, z = v orz = —u.
If z=u, then v = 0, and y = 0; thus for non-trivial solutions z = —u. Thenv =—u, so, from (u,v) =1, u=F1,v=21;
hencey = -2, z=+1. Q.E.D.

Now any solution u, v, w to (1) forn = 2h, m = 3i, k = 6] is a solution to the case n =2, m = 3, k = 6 and hence

uh = t3a3, vi = —2a% wl = ta.
If p is a prime qreater than 3 and p? |3, then
h|3d, i|2d, and jld and [nm,k]|6d

and this is not a primitive solution. Thus a = 2°3°, and j|b and j|c and h|3b and /|2 and h|7 + 3¢ and 7|7+ 2b. Con-
versely if these conditions are met then there is a solution. Moreover, it can be shown there is a b and ¢ if and only if
(h,i) = (h,j) = (i,j) = 1. Note for b =4 ¢ = 9, we obtain 8, 9, 6 case as well as 8, 27, 6 case.

8. THE REMAINING CASE AND SUMMARY

The remaining case when one of n, m, k is relatively prime to the other two, then the conditions of Theorem 2 are
always met and every set of primitive parameters augment, when the equation is written with the special exponent
term being the only term of one side of the equation. For example, n =2, m = 3, k = 4 then we write z* — x* = y3,
and, for example, 5, 24 being relatively prime are primitive parameters and 5* — 242 = 72 from the Pythagorean
triple, 7, 24, 25. Then we augment by 7% and obtain the solution we found on the computer.

Mr. Jim Grant, U.C.L.A. student, has also found an algorithm for obtaining rational solutions for this remaining
case. He has made a real gain with his general approach because it not only applies to general Diophantine equations
of this type but also applies to many other problems as well, including some differential equations.
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THE RANK AND PERIOD OF A LINEAR RECURRENT
SEQUENCE OVER A RING

DONALD W. ROBINSON
Brigham Young University, Provo, Utah 84602

INTRODUCTION

Two problems from the theory of linear recurrent sequences are considered in this paper. The first is to establish
the existence of the rank of the Lucas sequence over an arbitrary ring with an identity. [n particular, a theorem of
Wyler [10, Theorem 1], for second-order sequences over a commutative ring, is generalized to sequences of arbitrary
order over an arbitrary (not necessarily commutative) ring. The second problem is to determine the period of a purely
periodic Lucas sequence as a function of its rank. Solutions to this problem have previously been given in special cases:
Vinsen [7, Theorem 3] and Barner [1, Theorem 2] for the modular Fibonacci sequence; Ward [3] for modular inte-
gral sequences of arbitrary order in case the characteristic polynomial of the recurrence has distinct roots; and Wyler
[10, Theorem 4] for second-order sequences over a commutative ring with odd prime power characteristic. A solu-
tion is given in the present paper for linear recurrent sequences of arbitrary order over an arbitrary commutative ring
with an identity.

1. PERIODIC LINEAR RECURRENT SEQUENCES

Let A be an associative ring with an identity 1, and let ay, -+, a be elements of A. A sequence (w/): w,, w,, - of
elements in A that satisfy the recurrence

Wn+k = Wntk-1d1 1+ Wpag

forn > 0 is said to be a (right) linear recurrent sequence associated with the list (a4, -, ax . Let Sfay, -+, ax ) bethe
collection of all linear recurrent sequences over A associated with (a;, -, ax/ and let

0 0 -~ 0 a
A = 17 0 0 ak-1 e Hka
0 0 -« 1 a

be the companion matrix of faz, -, ax )

The Lucas sequence of S(ay, -, ak) is the sequence (u): u,, u,, - associated with the list (a4, --ax ) such that
vp =0, -, ug-2=0, ug_g =1 (Incase k = 7, then ug = 7). For n a non-negative integer and e = (0, -, 0, 1) & R,
let U, € RKXK be the matrix with e, A’ 7 as its it row, i = 1, -, k. Since the rows of U, are of the form ex = 0,
v, O01), € A=(0, -, 1, %), ., g AR"T=(1 % .., %) then U, is invertible in Rkxk.

Lemma 1. Let(w)<S(ay, -, ar). Then forn >0,

(Wn, e, Whik-1) = (wg, -, Wk_.1)An = (Wg/ ", Wk—IIIU(;’Un-

Proof. By finite induction on 7, both the firstequality and U,, = Ug A" are valid. Thus, since U,, is invertible, then

A" = U&’U,,, and the second equality holds.

Let (w) € Sfay, -, ax ). If there is a list of k consecutive elements of {w) that is equal to a preceding list of k con-
secutive elements of {w), then the sequence is said to be of finite period. Specifically, if

(Watp, -, Warp+k-1) = Wa, -, wark-1),
with a+ v > a > 0, is the first such list, then wy, W+, - is periodic of period v. In this case (w) is said to be period-
ic of index a and period ». |f the index a = 0, then (w/ is said to be purely periodic.

Similarly, the matrix A is said to be periodic if some term of the sequence /, A, A2, .--is equal to a preceding term.
210
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v . . . . . . .
IfA*V= A% a+v>a>0,is the first such term, then A is said to be periodic of index a and period ».

Lemma 2. The following statements are equivalent:

(i) Every sequence of Sfay, -, ax ) is periodic.

(i) The Lucas sequence of S(ay, -, ax/ is periodic.

(iii) A is periodic.
Proof. (i) = (i) is trivial.

(i) = (iii). Let {u) be periodic. Then

Ugrp = Uy, atv >a > 0.
Hence,
U, A%V = 1, A% and ATV = g

That is, A is periodic.
(iii) = (i). Let
ANV = pe atv>a> 0.

Then
(Watp, -+, Watptk-1) = Wo, =, Wotk-1).

and (w) is periodic.
It is clear that the index of (w) is at most the index of A and that the period of {w) divides the period of A. More-

over, the index and period of the Lucas sequence are, respectively, the index and period of A

Lemma 3. Let the Lucas sequence of Sfay, -, ax) be periodic. Then the following statements are equivalent:
(i) Every sequence of Sfay, -, ax ) is purely periodic.

(i) The Lucas sequence of Sfay, -, axJ is purely periodic.

(i) ay is right invertible in A.

(iv) ag is not a right zero divisor in A.

Proof. (i) = (ii)and (i) = (iv) are trivial.
(i) = (ii). Letthe Lucas sequence (u) € Sfay, -, ax) be purely periodic. Then Uy, = Ug forv > 0. That is,

AY = upluy = 1.
If lcji] = A then by direct calculation, agck, 1 =1, and ax is right invertible.
(iv) = (i). Since (i) is periodic, then by Lemma 2, every (w) € S(ay, -, ax/ is periodic. Let
{wop, -, Wk_1)Aa+V = (wp, -, wi-1)A, atv>a >0
Also since ax is not a right zero divisor, then A is right cancellable. Indeed, suppose BA = 0. Since
Ak = lag + Aag-1+ -~+Ak—137 ,

then Bag = 0 and B = 0. Therefore,

(wo, -, wk-1)AY = (wp, -, Wk-1)

and (w) is purely periodic.
Reference is made at this point to DeCarli [4] ; the main result given there follows immediately from Lemma 3.

2. THE RANK OF THE LUCAS SEQUENCE
A result of Wyler [8, Theorem 1], for second-order recurrences over a commutative ring, is now extended.

Theorem 1.Let(u) € S(ay, -, ax) be the Lucas sequence, and suppose ax is not a right zero divisor in A. Then
there exists a unique non-negative integer o such that u, = 0, -, up+x-2 = 0 if and only if n is a multiple of p. If
p=0, then (u) is not periodic. If p >0, then (1) is periodic if and only if up+-7 isof finite order in the unit group of A.

Proof. First, a matrix characterization of the condition v, = 0, -, up+,-2= 0 is provided. Specifically, suppose

Up=0, -, Up+k-2="0. Then ) ) )
Uptk-1€k = (0, ~, 0, Uptp-1) = A", and  uppp-16kA’ = e A"A! = g A'A”
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fori =0, -, k— 1. Therefare, up+-7Ug= UgA”. On the other hand, if tl/g = UgA" for some t € A, then by check-
ing the first row of this matrix, v, = 0, -, Up+k-2=0and u,+4-7 = t. Consequently, v, =0, -, up+x-2= 0 ifand
only if A7 = U57tUo for some ¢ € A and in this case t = U, 4x—7 .

Second, if A7 = U57tU0, then t is not a right zero divisor in A. Indeed, suppose vt = 0 forv € A. Then

vUgA" = vtlg = 0.
Since ay is not a right zero divisor in B, then as in the proof of Lemma 3, A is right cancellable, vU/g=0and v = 0.

The existence of p is now demonstrated. If u, = 0, -, Up+4-2 = 0implies n =0, then choose p = 0. In this case,
by Lemma 3, the Lucas sequence () is not periodic. Thus, suppose u,, = 0, -, Up+k-2 =0 for some n > 0, and let p
be the least such n. (If K = 1, then the condition is satisfied vacuously for every positive 7 and o = 1.) We show that
every such n is a multiple of p. Indeed, let AP = UE)1SU0 with s = up#g-7. Then

API = yoTs9y, and Upg = 0, -, upg+k-2 = 0.
On the other hand, suppose
A" = upTty, te R n=pgt), O <A<p.
Then
Up'tg = A" = AMPY = A g5,

where s7 is not a right zero divisor. Define

[yl = D = UpA™Up! .
Then Ds9 = /t. Since dj;s9 = 0 for/ #/, then d;;= 0 for/ # . Also since

dijs? =t = dqys9,

then djj =dq7=4d, say,i=1, -, k. Thatis, D = /d and AN = U[,7dU0, Hence, by definition of p, it follows that \ =
0 and 7 = pg. That is, the desired p exists and is unique.

Finally, the last statement of the theorem is demonstrated. Indeed, if s9 = 1, then AP9 = Ub7qu0= / and, by
Lemma 2, (u) is periodic. Conversely, if {u) is periodic, then it is purely periodic and AV = {,v > 0. Therefore, A”
= UB’]UO and v = pg far some g. Consequently,

1= AP = y3ls9y,, 159 = 1,
s9=1 ands= Up+k-1 is of finite order in the unit group of A.

The non-negative integer o of Theorem 1 is called the rank of the Lucas sequence associated with (ay, -, ax /.

Corollary 1. Suppose ag is not a right zero divisor in A. Let p be the rank of the Lucas sequence (u) € S(a4,
-, axJ, and let (w) € Sfayz, -, ax ). 1fwg=0, then wp = 0.

Proof Lete;=(1,0,-,0/¢ Rkand e =10, -, 0 1) e RX. Since €, = Ug€y, where the prime denotes trans-
pose, then U[,’e,; = €. Therefore,

, -1 , -1 , -1, ,
Ap€7 = UO Up+k..1U0€7 = UO Up+k..7€k = UO ExlUp+k-1 = €4Uptk-1.
and
Wp = (Wp, e, Wp+k._7)e'7 = (Wg, ., Wk_.y)ApE'I = (WD, ey, wk-7)e’1up+k_7 = WolUp+k-1 -
Consequently, if wp = 0, then wp = 0. {Compare [3, Theurem 11.)
3. RELATIONS BETWEEN THE RANK AND PERIOD

In this section A is acommutative ring with identity 1. Also, (x,y)and [x,y] denote the greatest common divisor
and least common multiple of the positive integers x and y.

Theorem 2. Suppose ax is not a zero divisor in A. Let the Lucas sequence (u) € S(ay, -, ax) be of rank p > 0.
Then (u) is periodic if and only if ax is of finite order in the unit group of A. In this case, let v be the period of (u),
and let § and § be the orders of (—7)%~7 and up+x_7, respectively, in the unit group of A. Then

i) v=pB=(k B[S, p].
(i) (k) s the order of u 2/
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Proof. Since R is commutative, then
Ap = U57Up+k_1U0 = Up+k-1/ and ((-”k_Iak}p = detAp = (Up+k_7}k .

Therefore, a is of finite order if and only if Up+k-1 is of finite order. Consequently, by Theorem 1, (u)is periodic
if and only if ax is of finite order.

Now, suppose (u) is periodic of period v, and let § and 3 be the orders of (— 1)k 7ak and up+k-1, respectively, in
the unit group of AR Since

/=AY = (Ap)V/’D = (u,o+k_1/}V/p,

then B{v/p. On the other hand since

APE = (upik-11)° = 1,

then v|pf. Therefore, v= pf. Moreover, the order of
(=1)* )P = (upsr-1)¢
is8/(8,p)=B/(k,B). Since 8/(8,p) = [8,p]/p, then
pB = (kB)IS,p] .
Finally, since 8/(k,8) = [6,p] /p, then (k,B3) is the order of uéé;(e],/p .

The first part of (i) in Theorem 2 is due to Carmichael [2]. The second part of (i) is an extension of a result of
Ward [9] for modular integral sequences. (See also Robinson [6].)

Corollary 2. Let the conditions be as in Theorem 2. Then
(i) &|v.

(i) BJ45 .

(iii) B|k if and only if 8|p.

This corollary includes several facts that have been previously observed for some special sequences. For example,
let 0, 1, 1, 2, 3, 5, - be the sequence of Fibonacci numbers reduced modulo m > 2. In this case, k= 2,a, =a, =1,
and 8= 2. In particular 2|». (See for example Wall [8, Theorem 41.) Also, |4, and |2 if and only if 2|p. In other
words, 8|2 if 2|0 and =4 if 2 p. (See Vinson [7, Theorem 3].)

Corollary 3. Let the conditions be as in Theorem 2, and suppose & is a prime. Then

(i) v=kls,p] if u,€§;<’3],/p £1.

(ii) v = [8,p] if ué?«}ﬁjy/p = 1.
In particular, the relation between the rank and period of the Fibonacci sequence modulo @ prime may now be
given. (See Barner [1, Theorem 2] or Herrick [5, Theorem 3].)

Corollary 4. Let the Fibonacci sequence reduced modulo an odd prime be of rank p and period ». Then

(i) v=4p if 4p.
(i) v =20 if 2|p,2|p/2.

(i) v = p if 2|p, 2| p/2.

Prooﬁ Let R be the ring of integers modulo an odd prime; in particular, k=2 and § = 2. If p is odd, then =4
and, by Theorem 2(i), v=4p. Thus, suppose p is even and let A be the companion matrix associated witha, = 7, a,
= 1. Clearly .

(—~1)P/24P/2 = (4ot AP/2)AP/2 = ((adj AP/2)AP/2 )AP/2 = (adj AP'2)AP = (adi AP/ 2 Jupes .

Since the off diagonal elements of AP/2 are not zero and are the negatives of the off diagonal elements of adj AP/2
then it follows that up.7 = —(— 1)P/2 Therefare, since [2,01/p = 1,

12,01 /p _ _ 0/2 _ {“’ if 2|p/2
u = Upry = ~(~1)P/2 -
o+t pri 1if 2{p/2 .

I

Consequently, by Corollary 3, v=2pif 2| p/2 and v = p if 2{ o/2.
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A slight extension of the foregoing argument provides another proof of the main theorem of Wyler [10]. In fact,
Wyler [10, Theorem 4] is valid for every purely periodic second-order Lucas sequence gver a commutative ring with
1 satisfying the following two properties: 1+ 1is not a zero divisor, and 4#* = 1 implies eitheruv = 1oruv = —1.

1.
2

10.
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LETTER TO THE EDITOR

GENERALIZED FIBONACCI NUMBERS AND UNIFORM DISTRIBUTION MOD 1

L. KUIPERS
Mollens, Valais, Switzerland

In the following | want to comment on a paper by William Webb concerning the distribution of the first digits
of Fibonacci numbers [1] and to give a partial answer to some questions raised by the author. In fact, restric-
tion to Fibonacci-related sequences makes it possible to obtain a number of results. (F,) or 1, 1, 2, 3, 5, -
stands for the sequence of Fibonacci numbers.

Theorem 1. Letk be an integer different from 0. Then the sequence (log F,,”k) is uniformly distributed
mod 1 (abbreviated u.d. mod 1).

Proof.  We apply a classic result of J. G. van der Corput: Let (u,,) be a sequence of real numbers, If
nl@m (Un+1 - Un)

exists and is irrational, then the sequence (u,) is u.d. mod 1. See [2], p. 28.
Now set u,, = log ,I7%. Then

|og fﬂ.ﬂ. ,

1/k k
Up+71—Up = log Fn,{1 —log F,Z/ = F
n

1
k
which tends to

[Continued on page 253.]



THE SUMS OF CERTAIN SERIES CONTAINING HYPERBOLIC FUNCTIONS

F.P.SAYER
University of Bristol, Bristol, England

1. INTRODUCTION

In this paper we are concerned with the summation of a number of series. They are

o0 o0 co _71- oo
(—1)rT coth i E tanh (2r+7)2 Z 1)
= P Tsiohem 2 APT = ere 1)t g (24 )% 3 0sh (2 + 7)%
Y U ) e
=1 sinh =0 cosh (2r+ 7);
and I
i i24p coth rg- — coth err}
~ Apt1 !

wherep=1,23, -

Certain of the above series have heen extensively discussed in the past. Results for particular values of p are given
by Ramanujan in [4], while Phillips, Sandham and Watson in [3, 5, 6] have determined, by varying methods, sums
for general p. The last series of the group, however, seems to have received less attention. It differs from the others
in that it contains the inverse powers of 4p + 7. Further, it is closelv related to the Riemann Zeta function {(4p + 7).
As this paper shows, the sums of the series, where they are not identically zero, satisfy recursive relations containing
binomial coefficients.

Thus if we write

_ (—1)Pap) (=1)"
,”4p—122p-2 = r4p-1

7-4p—1
sinh rm

then
n
Y [4n+2 = =
2 ("52) Taer=1 n=12

The recursive relations are themselves of interest and can be inverted. Their inversion, which leads to the sums of the
various series, involves the Bernoulli and the lesser known Euler numbers.

All results are obtained by considering the Neumann problem for the rectangle. Although this problem is of an ele-
mentary nature and is in fact discussed in both contemporary and established literature on Laplace’s equation, a com-
plete solution to it does not seem to be available. Kantorovich and Krylov in [2] proposed a method of solution but
the suggested method contains, as we shall show, an error of principle. Once this error is removed the method can be
applied to solve the problem. Initially, therefore, we state and solve the Neumann problem for the rectangle and then
subsequently in Section 3 make appropriate use of the solution to obtain the various results.

215
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2. THE NEUMANN PROBLEM FOR THE RECTANGLE
This problem requires the determination of a function ¢ (x,y) satisfying

(2.1) dxxtdyy =0 for O0<x<a 0<y<b
2.2 oylx,0) = fix), ¢ylxb) = glx) for 0<x<a
(2.3) ox(0y) = Fly), ¢xlay) = Gly) for 0 <y <b,

where f{x), g{x), F(y) and G(y) are known functions and the subscripts x and y are used to denote partial differentiation.
It is necessary for a solution that

39 4o =
(2.4) cf % ds =0,

where ¢ is the boundary of the rectangle, 3/an denotes differentiation with respect to the outward normal to ¢ and s
refers to arc length. The condition (2.4) is equivalent to
a b

(2.5) f (f—gldx + f (F—Gldy = 0.

0 0
We now briefly describe the method used by Kantorovich and Krylov in [2]. We put® = U + V, where U and V are
functions of x and y. We choose the function U so that it satisfies (2.1), (2.2) and U, (Oy) = Ux(ay) =0forO0<y <
b, while V satisfies (2.1), (2.3) and V,,(x,0)= V) (x,b) = Ofor0 <x <a.

Thus, the original Neumann problem is replaced by two other Neumann problems, one for U and the other for V.
It is evident that if we can find U and V/ we shall fulfill the conditions imposed on ¢ by (2.1) to (2.3). By virtue of
(2.4) the existence of U requires

a
S (f—gldx = 0.
0
Likewise, the existence of V/ requires
b
S (F-Gldy = 0.
o

However, given functions £, g, F and G satisfying (2.5), it does not necessarily follow that the integrals

a b
S (f—gldx and S (F—Gldy
] 0

are each zero, and therefore the functions U and I may not exist. Yet the difficulty is readily overcome. We write
¢ = Alx2—y?)+U+V,
where A is some constant to be found, while the functions ¢ and V each satisfy (2.1) and the further conditions:
UxlOy) = Uxlay) = Vy(x,0) = V,(x,b) = 0
Uyx,0) = fix), Uylx,b) = glx)+2Av for O0<x <a
Vi(Oy) = Fly), Vxlay) = Gly)—2Aa for 0 <y < b.
Using (2.4) we require for the existence of U and V/

a

a
S {g(x}+2Ab— fix)fdx = 0, ie, 2abA = f (f-gldx
0 0

and
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b b
S {6t -28a-Fty)}ay =0 o 24 = f (G- Fldy.
0 g
Equation (2.5) shows that these two expressions for A are consistent. Having found 4, we can now follow the pro-
cedure given in [2] to determine ¢ and V. In fact, it can be verified directly that to within an arbitrary constant ®

is given by
© g {g,coshr—ﬂzzf,.coshrjI (b—y)}
(2.6) ¢ = Alx* —y?) + lifyy + BFox + 3 a - cos X
=1 rsinh T a
- m_ I (o }
L o b {G,cosh b F,cosh A (a )(}J T
=7 rmsinh 2 b

where 7., g, (r=20, 1, 2, --- ) are the Fourier cosine coefficients for f(x/ and gfx), respectively, over the range < x <
aand F,, G, (r=0, 1, 2, --) are the Fourier cosine coefficients of Ffy) and Gfy) over0 <y <b.

3. APPLICATION CF THE SOLUTION TO THE NEUMANN PROBLEM
We put a = b = wand define functions ¢(x,y,4n), wheren=1,2, 3, -, by
(3.1) 20(x,y,4n) = (x +iy)*" + (x — iy)*".

It is readily verified that these functions satisfy (2.1). Further, using (2.2) and (2.3), we deduce for them that #(x)
and F(y) are both identically zero. In addition

o) = 2n { wei)™ T+ (moi* 1Y and  Gly) = 20 (we i+ (m- iy}
Thus, the Fourier coefficients 7, and F, are all zero, while g, = G, =1.(n) (r=1, 2, - ), where

w
3.2) 1.(n) = Re 4—1# S [t ix)*™ 1 & fn— ix )" 16" gx
(]

using the result

a
2abA = J’ (f— gldx
4]
we find that the constant A vanishes and hence with the help of (2.6} we can write

- w {cosh ry cos rx + cosh rx cos n/}
(3.3) olx,y,4n) = cqn + Zj Ir(n) P
r=

the c4p, (n = 1, 2, - ) being constants which have yet to be determined. Successive integration by parts of {3.2) leads
to the result

ntr
(3.4) tytn) = L= 73220 4n)an - 1)+ 22 (an — 1)fan - 204 = 3)idn — 1) .
In particular
- r+1 48
(1) = (1) 28
so that puttingn = 7 in (3.1) and (3.3) we find

! (1)1 {cosh ry cos rx + cosh rx cos /y}
(3.5) X4=Bxtyt +yt = o, +48m 2 r* sinh

r=1
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Repeated application of (3.4) yields

(3.6) Iotn) = (=17 4 22 (n) , asln) , ay(n) , agn-2(n))
re r r4""2
where, for example,
(3.7) a,(n) = (~1)"7*"32%"4n(an - 1)
and more generally '
(3 8) a4p_2(n} = (__ I)n—p+1ﬂ_4n—4p+122n~2p+2(4p _ 2}/ (4p4_l_12 ) , p= 7’ 2] o, n

Using this last result, it follows
agp+2(n+ 1) = (4n +4)(4n + 3)(4n +2)(4n + 1)agp-2(n)
and hence from (3.6) that

(3.9) (4n +4)(4n + 3)(4n + 2)(4n + 1) /,(n)

rt1
= ln+1)+ (_Iiz a,in+1).

We now proceed to find the constanis c4,, occurring in (3.3). We integrate Eq. (3.3) twice with respect to x and twice
with respect to y. These integrations will introduce arbitrary functions of x and y. We have, therefore,

-0 (x, v, 4n+4)
(4n + 1)(4n +2){4n +3)(4n + 4)

+xPply) + Qply) +ypn(x) +qn(x)

- xyr / {cosh ry c0s rx + cosh rx cos ry} )
fan = Z rfn) r® sinh rm

where p,, (x), g, (x), Po{y) and Q,, (y) are arbitrary functions which may depend on n. Noting the result contained in
(3.9) we can write this equation in the alternative form

{— 7) \ { cosh ry cos rx + cosh rx cos ry}
+4) = +1)+ 2
olx, y, 4n +4) E, Iefn +1) a,(n+ 7) s
-

+(4n + 1)(4n + 2){4n + 3)(4n + 4) { XPp{y) + Qnly) + ypn(x) + Gplx) = ca i‘%}’—}
This reduces with the help of (3.3) and (3.5) to

+
0= C4n+4+a_(:8 ”——(x" 6x3y2 +y* —¢,)

+(4n + 1){4n + 2)(4n + 3)(4n + 4) ixPn (v) + Qply) +ypplx) + Gnlx) — can X—;—

This is an identity. Hence equating to zero the coefficient of x2y? we deduce with the aid of (3.7)

(—1)" 1T4n 22n

.10 an = G+ i)ln+1)
Thus we have
3.11) (x _,_I-y}4n +(x — iy)4" = Jeqp+2 Z /r(n) {CDSh s Cﬂjg)l(n'; ’C’;JTSh X cosry }

r=1
where c4,, is given by (3.10) and /,{n) by results (3.6) and (3.8). Putting x = y = 0 in (3.11) and simplifying we obtain

— P'7 /
_ 7 (~1) (-1)°""(4p - 2)! ( 42 ) ) )
0 (4n + 1)(4n + 2) Z rsinh rm pg; 740-1720-2,4p-2 n=12-
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Thus if we write

_ 1P (1)
(3.12) Tap-1 = =11 00)L 5~ , p=12-
a¥%=1220-2 = T Ginh e

then it follows 74, 7 satisfies the recursive relation

n
(3.13) =3 (4';;2) Tape1 n =12
p=1

This is the first of our results. We now show how this recursive relation can be inverted to give 74,7 in terms of the
Bernoulli numbers. To do this, we observe that (3.13) can be put in the alternative form

7 - Z T4p-1
(4n +2)! . (4p)1(4n + 2 — 4p)!
p=

Multiplying both sides of this equation by x#7*2

JAnt2 Sl Tan _x4n*2 o~ Tgpo1x P yAk+2
}: (4,; w21 - 21 L (@p)ilan +2—4p)! pz_; (4p)! E (4k+2)’
o =

and summing from n = 7 to < yields

After some mampulat on we obtain
(3.14) Taoos 220 LSNP h hi
. Z 4p-1 74_/7)—, = cm = -2- cosech ax cosech/ax,

where 2a= 17 +1.
Using the expansion of cosech x given in [1] Eq. (3.15) leads after some simplification to

(1Pt &
Tap-1 = ;2p_2 2. (~1)2(2%9°1 — q)(2%-2a-1_ y) ( ) BqB2p-q -
q=0

It should be noted that B, is taken as —1 while the Bernoulli numbers are defined here by

X =7-% +Z‘ (-1)P* 1B, X (2), .

e* -1
With the help of (3.12) we deduce

oo

2p
g+t _ _1)97929-1 _ 4p-29-1 _
0™ et S (212 (2 U Bybapeg -

s A=1 Gioh ro (2q)! (4p — 2q)!

In a similar manner if we putx =y = win (3.11) and define 5457 by

Sap-1 = (- 7)P‘77T1-4p2-2p+2(4p )1 E coth rm
r4p-1
then

n
(3.16) (4" +2 ) S4p-y = 2n(4n+3)
p=1
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S4p-7 can also be expressed in terms of the Bernoulli numbers. By writing {3.16} in the form

Z S4p-1 =10 1 2
{4n —4p + 2)’(4/1) I 2) (4n)!  (4n+2)!
and following a procedure similar to that for 74,7 we find

4p 2
E Sdp~1 (7)‘:”7,— =~ )(7 coth ax cothjax ~ 7.
p=1

Since (see [1]),

xeothx = 9 (~1)P1B,2% X

/

=0 (20)1
we have

Zp

sap-1 = 2% > -1F a (;Z ) BgB2p-q

q=0

giving
coth rm _ ,4p-2, 4p-1 (-1)9" " ByBap-q

(3.17) = 2 E (Zq)l(4p 2q)/ )

r=1

We next put x = 0, y = 7 in (3.11) and subtract from twice the result the expressions obtained by puttingx =y = 0
and x =y = 7. This leads to

, = tanh (2r+7) T
(3.18) 714 (=122 = 3 2gpay(n) 2
=0 (2r+ 1)%-1

Writing
tanh (2r+ 1)
(3.19) Qup-1 = (~1)P 0P 12720 S gp)r 3~ Z

o (2r+1)%T
(3.18) gives with the aid of (3.6) and (3.19)

n
4n +2 _ +1,1-2
(3.20) ¥ (0?) Cao-r = tan s 1dan+2) {14012}
p=1
This is the third of the recursive relations and may be compared directly in form with (3.13) and (3.18). yp-1 can
also be expressed in terms of the Bernoulli numbers,
From (3.20) we deduce

oo

ol ton k+2
o 2 et (2( 32 Q-1 7y (4p)/ gi; (4k+2l'%

n=1

or, after some manipulation,

E Q4p-1 x% = x2 {coshx+cosx—2coshax—~250$ax+2}
. =1 (4p)i cosh x — cos x ’
p=

where as before 2a = 7+74.
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The right-hand side of (3.21) can be expressed as

2 .
% { coth CLZX coth ’%’—ﬁ — 2 coth ax coth jax — 2 cosec ax cosech jax — tanh aZ_X tanh l—%i} .

Recalling the expansions for coth x, cosech x already used and noting that in [1] for tanhx we obtain after some
manipulation

_ (=1)P(4p)! q (229 _ 12?9 y)
Qap-1 920-3 2 (=1) (2q)!(4p — 29)! BqB20-q

and hence by (3.19)
= tanh (2r+ 1) % L 4p

_ a1 (2%729— 1)(2%9 — g)
(3.22) > 1)4/9-1 E -1 2q)itap - 201 ZaBao-q -

The expression in (3.11) can be differentiated as many times as we wish with respect to x and y at points within the
rectangle.
Differentiating once with respect to x and once with respect to y gives

3.23)  (2n)4n — 1)il(x +iy)*"2 — (x — iy)*""2] = Z (s| e 'r [sinh ry sin rx + sinh rx sin ry/

n
Z (—1)Pn*1 4n-4p+1 22"_2p+2(4g 2)! ( 4n )
‘ Ap-2 -2
p=

Puttingx =y = /2 in (3.23) and defining R4p-3 by

oo

_ (=1 Y (-1)"
(3.24) Rap-5 = 25 27 (4p — 2 Z_oj (24 1% cosh (214 1) &
yields
n
(3.25) M—”—’L;’gf——” - Z;( w2 Rz
s

The quantities Agp-3 can be expressed in terms of the Euler numbers (see [1]).
Following a procedure similar to earlier ones, we can deduce from (3.25) that

4p 7 ax iax

~ X _ 1 ax
Z Rap+1 ol T2 sec 2= sec 5=

p=0
Since
x2a
secXx = Z q (Zq}/ ,
q=0

where £,, E,, -, are the Euler numbers and £, is taken as unity, we obtain

EqE2p-q

_ (—7) _1)9 __=q°
(3.26) Rap+1 = (4/’*?/’ Z (=1) (2q//(4p 2q)7

and hence
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oo 2p q
@.27) 0T paetipaes N CUEE2g gy,
=0 (2r+ 1)%P*1 cosh (2r + 7}% =0 (29)!(4p — 2q)]
Putting n = 7 in (3.23) yields
S eyt
(3.28) xy =2m Z;, r—‘g—in—{‘)—E { sinh sy sin rx + sinh rx sin ry } .
r= »

Hence differentiating once with respect to x and then y we have, on puttingx =y =7/2

_ > r{_”r‘f'I
1=4n Z, sinhrr °
=

If we differentiate (3.28) (2p + 7) times with respect to x and (2p + 7) times with respect to y then forx =y = n/2
we find

Likewise differentiating (3.28) (2p) times with respect to x and Zp times with respect to y leads to

o~ (2r+ 1% _1)"

=0 t:thh(2r+7);—r =0 p=12Z-

We now proceed to find the sum of the last of the series referred to in the Introduction. Using the results of Section
2, it can be shown forn=1, 2, -

(3-29), _27_{ (x+iy)4"+2+(x—iy)4”+2} _ (—7)"174"22"(X2—y2/+2 (—1)" {cosh rx cos ty — cosh ry cos rx |
r=1

rsinh rm

4n-4p+1

n
_nti-p T 2n-2p+21, ), { 4n +2)
x ; (1) & 2 o)t (*ys i

The constant appearing in the Neumann solution is determined here to be zero by observing that each side of (3.29)
vanishes whenx =y =0
Puttingx =, y = 0 in (3.29) and defining M4p+7 by

> r+
(3.30) Mapsy = (—1)P* 19071 7 20%24p)1 5 ’—"5-151——925*!11 p=12-
leads to =1 P sinhrr
n
(3:31) 3 Maper (22 = 10020
p=1

From the recurrence relation (3.31) we deduce

4p . . . .
0 X / ax ax / ax 1ax
2 M. = + = =2 =t =2 =
4p+1 (lp)l 7 7 cot 2 tan 2 2 tan 2 cot 2

and hence
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20 4p-2s+2
. Up)! s _(2 -1
Map1 = (~1)P 2—{-2-;?)3 > =z BBt
=0
Since

= { coth rz_rr__ 27% coth 2rm

g (1) coshrm+ 1 _
B ]

rP*7 sinh rr =1 2 Pt

r=1
we can, noting (3.30), obtain the required sum. It also follows for p > 3 we can obtain a good approximation to

o rm
pppiy]
=1 I i
in terms of the Bernoulli numbers.
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SEQUENCES OF MATRIX INVERSES
FROM PASCAL, CATALAN, AND RELATED CONVOLUTION ARRAYS

V.E. HOGGATT, JR.,, AND MARJORIE BICKNELL
San Jose State University, San Jose, California 95192

A sequence of sequences S; arising from the first column of matrix inverses of matrices containing certain columns
of Pascal’s triangle provided a fruitful study in [1]. Here, we use convolution arrays of the sequences S; to form a
sequence of matrix inverses, leading to inter-relationships between the sequences S;. The proofs involve generating
functions for the columns of infinite matrices, and have diverse applications.

1. SEQUENCES OF MATRIX INVERSES

In this paper, we return to the sequences S; arising from the first column ofPi" asin [1]. We form a series of nxn
matrices P; ; by placing every /th column of the convolution triangle for the sequence S; on and below the main di-
agonal, and zeroes elsewhere. Then, to relate to the matrix 7; from [1] which was formed by writing the (i + 7)*¢ col-
umns of Pascal’s triangle on and below the main diagonal, in the new notation, ;-7 = Pg ;, ot, every i column of

the convolution array for the sequence Sg = { 1, 1,1, }, which is Pascal’s triangle. As a second example, the ma-

trix P, , would contain every third column of the convolution array for the Catalan sequence S, written in triangu-
lar form.

We call the inverse of £; ; the matrix P,-:-’ and record these inverses in the tables that follow.

Now, let us analyze the results. First, we look at the form of the elements of each matrix inverse, disregarding signs,
for Py ;. Forj =1, the rows of Pascal’s triangle appear on and below the main diagonal; these columns are also the

columns of the convolution triangle for the sequence S_7 = { 1,10,0,0, - } The column generators, alternating

signs included, are (7 — x)k"1, which are the reciprocals of the column generators for Pascal’s triangle, where we do
not adjust for the triangular form. Forj = 2, we have alternate columns of Pascal’s triangle, or alternate columns of
the convolution triangle for S, . (In fact, notice that each array contains columns of the convolution array for its left-
most column.) For j =3, we hare every third column of the convolution triangle for S, , while / = 4 gives fourth col-
umns for S,.

These results continue for P}j- in Table 1.2. When j = 1, disregarding the alternating signs of the array, we have

every column of the convolution triangle for the sequence S-, = { 1,1, -1,2, -5, 14, -42, } which contains

the Catalan numbers or S,, taken with alternating signs, following the initial term. If the generating function of S,
is Cfx), then the generating function for S_, is 1/C(x). Then, forj = 2, we have every second column of the array for
S_,; forj =3, every third column of the array for S,, or, every third column of Pascal’s triangle. These results con-
tinue, so that when j = 4, we have every fourth column of the convolution array for the Catalan numbers, or S,, /=5,
the fifth columns of the array for S,/ = 6, the sixth columns of the array for S, ; and forj = 7, the seventh columns
of the convolution array for S,.

Inspecting Table 1.3 for the form of P'}; verifies that these results continue. When j = 1, every column of the gon-
volution array for the sequence S_, = { 1,1,-2,1, =30, -- } appears. Notice that S_, contains the elements of the

first convolution of S,, or of S2, taken with alternating signs and with one additional term preceding the sequence.
If the generating function for S, is D(x), then the generating function for S_, is 7/0*(x). Forj = 2, we have every
second column of the convolution array for S_,, j = 3, every third column of the array forS_, = 4, every fourth
column of the array for S, ; -, and forj= 8, we have every eighth column of the array for S, .

224
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CATALAN, AND RELATED CONVOLUTION ARRAYS

Table 1.0 /
Non-Zero Elgments of the Matrices Py ; and Py ;
Poj Po,j
1 1
-1 1 1T 1
j=1 1 =2 1 1 2 1
-1 3 3 1 T 3 3 1
1 —4 6 -4 1 T 4 6 4 1
-1 5 -10 10 -5 1 1T 5 10 10 5 1
1 1
-1 1 T 1
j=2 2 -3 1 T 3 1
-5 9 -5 1 1T 6 5 1
14 -2 20 -7 1 1 10 15 7 1
1 1
-1 1 1 1
j=3 3 4 1 1 4 1
=12 18 -7 1 11 7 1
55 88 42 -10 1 1 20 28 10 1
1 1
-1 1 1 1
j=4 4 -5 1 1 5 1
=22 30 -9 1 1T 16 9 1
140 -200 72 -13 1 1 36 45 13 1

Table 1.1
Non-Zero Elements of P and Py
-1 11/ A
P P1i
1
g o
j=1 0 -2 1 2 2 1
0 1 3 1 5 5 3 1
0 0 3 -4 1 14 14 9 4 1
1 1
-1 1 1 1
j=2 1 -3 1 2 3 1
-1 6 -5 1 5 9 5 1
1 -10 15 -7 1 14 28 20 7 1
1 1
-1 1 1 1
j=3 2 -4 1 2 4 1
-5 14 -7 1 5 14 7 1
14 -48 35 -10 1 14 48 35 10 1
1 1
-1 1 1T 1
j=4 3 -5 1 2 5 1
-12 2% -9 1 5 20 9 1
55 —130 63 -13 1 14 75 54 13 1
-273 700 -408 117 —17 1 42 275 273 104 17 1



226 SEQUENCES OF MATRIX INVERSES FROM PASCAL, [OCT.

Table 1.2
Non-Zero Elements of Pz,z and Py ;

-1
Paj Py

~
"
-—
|
-
|
N
H -
TN W =

-1 10 -7 1 1 18 7 1
1T -20 28 -10 1 55 88 42 10 1

-5 20 -9 1 1 25 9 1
14 =75 54 -13 1 55 130 63 13 1

-12 33 -1 1
5, -182 88 -16 1

33 11 1
182 88 16 1

~
]
(42
w
|
(=]
-
N, .
POT N W
(2]
—_

-22 49 -13 1
140 =357 130 -19 1

42 13 1
245 117 19 1

~
]
(=7}
ES
|
~
-
P, Y
P OT N W e
~
e

-1 1

~
]
~
o
|
(==
-
N W = -
(==}
-

-35 68 -15 1 1 52 16 1
286 -606 270 -22 1 55 320 150 22 1
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Table 1.3
Non-Zero Elements of P}j- and Py ;
P Psj
1 1
-1 1 1 1
;=1 -2 -2 1 4 2 1
-1 -3 -3 1 22 9 3 1
3070 A8 sA 14052 05 A
1 1
-1 1 1 1
j=2 -1 -3 1 4 3 1
-2 ¢ -5 i 22 1 5 1
g SOOI o SOV OOt SO N UV L UUORE: 1 SO
1 1
-1 1 1 1
j=3 0 -4 1 4 4 1
0 6 -7 1 22 22 7 1
R VOO, ST NOPeet| UL 4 L. SVUOR. - SO A
1 1
-1 1 1 1
j=4 1 -5 1 4 5 1
-1 i5 -9 i 22 30 9 1
1 -3 45 -13 1 140 200 72 13
t 1
-1 1 i 1
j=5 2 -6 1 4 6 1
-5 21 -1 1 22 38 11 1
14 110 77 -16 1 140 272 99 16
1 1
-1 1 1 1
j=6 3 ~7 1 4 7 1
-12 42 -13 1 22 49 13 1
85 -—-245 117 -18 1 140 357 130 19
1 1
-1 1 1 1
=1 4 —8 1 4 8 1
=22 60 1% 1 22 60 1B 1
140 45 165 -22 1 140 45 185 22
1 1
-1 1 1 1
=8 5 -9 1 4 9 1
-35 81 —17 1 2 72 17 1
285 759 221 -25 1 140 570 204 25 1

227

To generalize, P,.] contains the sequence Sj;-7 along its first column and the /%' columns of the convolution tri-
angle for the sequence Sj_;_7, taken with alternating signs, on and below its main diagonal, with, of course, zeroes
everywhere above its main diagonal. The sequences S;, 7/ > 0, were explored in [1]. The sequences S.,, / > 2, are all

related to the sequences S; by
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S;-1=8:1
so that, if the initial one is deleted, the sequence S_y is identical to the (/ — 2/nd convolution of the sequence S;-7,
i = 2. Also, if the generating function for S;is G(x), then the generating function for S_;_7 is 7/G'(x), i > 1, and S-;
has a generating function which is the reciprocal of that for Sp.

There are other patterns which occur for the matrices P; ;. Except for the alternatmg signs, P7; s identical to Pij
forj = 2i + 1. Furthermore, this property still holds if we form P,, from any set of/ columns of the convelution
triangle for S;, j = 2i + 1. For example P,:—,. contained the same elements as P73 except for the alternatmg signs,
where £ 3 contained the zeroeth, third, sixth, --, columns of the convolution triangle for S so that its k% column
was the (3k)t column of the convolution array. Form P; 3 to contain every third column of the convolution array
forS, but beginning from the first convolution, so that the & % column ofP7 zis the (3k + 1) column of the array,
and P, 2 has the same elements a§P7 3, taken with alternatmg signs. Similarly, if we form the matrix 2”5 from the
(3k + 2}" columns of the convelution array for Sy, P, 3 T has the same elements as P, 3 taken with alternating
signs. For example, using 5 X 5 matrices,

™ 1 0 0 0 U"’ -1 0 0 0 0

2 1 0 0 0 -2 1 0 0 0
Pid-5 5 1 0 o0f =| 5 5 1 00
’ 14 20 8 1 0 -14 20 -8 1 0
| 42 75 44 11 1] 42 -75 44 -11 1

1 0 o o o7’ [ 1 0 0 0 0

3 1 0 0 0 -3 1 0 0 0

P;“;:’ =1 9 6 1 0 0 - 9 -6 1 0 0
’ 28 27 9 1 0 -28 271 -9 1 0
190 110 54 12 1 90 -110 5 -12 1

Notice that we can consider 7 x n submatrices of the infinite matrices of this paper, since for infinite matrices 4, 5,
and C, if we know that AB = C by generating functions, then it must follow that AB = C forn X n matrices 4, B, and
C, because each 7 X n matrix is the same as the n X n block in the upper left in the respective infinite matrix. We
write the Lemma,

Lemma. Let A be an infinite matrix such that all of its non-zero elements appear on and below its main diagonal,
andlet A,y , be then X n matrix formed from the upper left corner of A. Let 8 and € be infinite matrices with B,x
and C,x  the n X n matrices formed from their respective upper left corners. If AB=C, then A,xnBnxn = Cnxn -

Returning for a moment to Tables 1.1, 1.2, and 1.3, notice that the row sums of Py 7 are { 1,2,5, 14,42, - },

or §3; the row sums of P, , are «,‘ 1,2,7,30,143, - } or §3; and the row sums of P, , are {1, 2,9, 52,320, } ,
or S2. We easily prove that

Theorem. The successive row sums of P; ; are S,-z.
Proof.  LetS;jlx) be the generating function for the sequence S;. Then the row sums are
Rlx) = Six) + xS (x) + x2SZ*T e = Si(x)/ [1~ xS}(x)]
by summing the infinite geometric series. But, by [1],
1= Sitx)-x8["(x),
so that R(x) = S,-2/x} upon simplication.
2. PROOF OF RESULTS AND FURTHER APPLICATIONS

Now, we establish firmly the matrix inverse results of this paper. Let S;(x) denote the generating function for the
sequence S;, and let S  Sk—7 mean that Sy is the solution to

Sklx/s(x)) = Six),
with $(0) = 1. 1t will follow that
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Now, it turns out that

From this we can show

as follows:

CATALAN, AND RELATED CONVOLUTION ARRAYS
Sy 48, 18, 48,18, .

7 _ 1
o(—x) 7
1~(—x)

= 1+x.

S_,lx) = 3

1,1
Sol—x) 7 S, (-x) 7 S,(—x)

S, xS, (x)) = S,(x)

is trivial, but this continues as

1 _ 7
S, (—x/158,(~x)) ~ §,(—x)’

and thus we can generally say
1

1

Sm (—x) ¢ Sm+1(“X}

Notice that, if S, (x) = 1/(1 — x), then S, (x) satisfies

7

——— = 8,x) or
1-xS)(x)

1= Splx)—xST(x).
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Now, let us look at our general (Pascal) problem. (We denote each matrix by giving successive column generators.)

The two infinite matrices

(FM(x), F7*K(x), "2k (x) ...) and

are matrix inverses if

That is, 7/A(x) is k steps down the descending chain of sequences from f(x). Let us examine the two together.

is given by

where

Alx)fixAX(x)) = 1 or  fix/[1/A%x)]) = 1/Alx).

(8, (x), S x), S (x), - F!
(Alx), A (x), A* (x), - ),

S,Ix/1/A%(x)) = 1/Alx)

so we go down five sequences from S, (x):

S,(x), 8, (x), Sy(x), 8_,(x) = 1/Sy(—x), S_,(x) = 1/8,(—x), S_,(x) = 1/8,(—x)

so that

This verifies that

— 1
1
3

12
55

1/Alx) = S,(—x).

0 0 o0 o7 1 0 0 0
1 0 0 0 -1 1 0 0
6 1 0 0| =| 3 -6 1 0
33 11 1 0 —12 33 11 1
182 88 16 1 55 —182 88 -—16

Lemma. Two infinite matrices

(flx), xfix)A(x), x*f(x)A?(x), x*f(x)A®(x), ) and

are inverses if

g(x)B(x)A(xB(x))f(xB(x)) = 1.

- 00 00O

(A™(x), AT (x), AT*2K(x), )

|

(glx), xglx)B(x), x*g(x)B? (x), x*>g(x)B>(x), ---)
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There are several interesting applications. Consider the central column of Pascal’s triangle, { 1,2, 6, 20, - }

which, upon proper processing, originally gave us the Catalan sequence. Let f(x/ be the generating function for the
central column of Pascal’s triangle, and take

fix) = 1//1—4x. Afx)

(1-JT—4x )/2x, glx) = 1-2x, Blx) = 1-x,

1=J1-4x(1-x) _ x 1

Alx(B(x)) 2x(1—x) 1—x i Blx)

so that B(x)A(x(B(x)) = 1. Now
= ! = ! = _7_
Ax(Blx)) JI-4x(1-x) 1-2x  glx)

so that gfx)f(xB(x)) = 1 also. This matrix uses elements from the central column of Pascal’s triangle and the columns
parallel to it, and has inverse whose columns have the coefficients from the generating functions. For example, for
the 5 X 5 case.

-1

1 0 0 00 1 0 0 0 0
2 1 0 0 0 -2 1 0 0 0
6 3 1.0 0 = 0 -3 1 0 0
10 10 4 1 0 0 2 -4 10
20 35 5 5 1 0 0 5 -5 1

If we now go to the m ¥ columns, then
g(x)B™ (x)A™ (x(B(x))f(xB(x)) = 1
so it seems to naturally break into two separate parts:
(1) Bix)A(x(B(x)) = 1
(2) glx)f(xB(x)) = 1,

where we already know how to solve (1), but (2) is something new when combined with (1) since the above has to
hold for all m > 0.

Let us consider S; = { 1,3, 15, 84, }, the diagonal of Pascal’s triangle, which, upon proper processing, lead to
our sequence S, = { 1,1,3, 12,55, 273, - } Let S*(x) be the generating function for S}, and take
fix) = S}(x), Alx) = S,(x),

and let S, (x) = C(x) be the generating function for the sequence S, = { 1, 1,25, 14,10, } , the Catalan sequence.
Then, ’

glx) = 1-3xC(x) B(x) = 1—xC(x)
“ w2 729
S, (x) S,(x)

Now, let S5 = { 1,4, 28, 220, --- } , the diagonal of Pascal’s triangle which led to the sequence S,. Here, we use
1 =8,(x)—xS82(x)
and we can write
fix) = S3lx), Alx) = S,(x), Blx) = 1/S,(x), and glx) = 1-4xS;(x) = 4/S,(x) - 3.
Generally speaking, we take

fix) = Sk(x), Alx) = Sklx), Blx) = 1/Sklx), glx) = 1—(k+1xSK"(x) = %‘7)(’7 -
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Lemma. The two infinite matrices
(FJA™ (x), xF)A™ K (x), xP#0)A™ 2K (), ) and  (glxB™(x), xglx)B™ K (x), x2glx)BM 2K ), ...)
are inverses if f(xBX(x))g(x) = 1 and A(xB*(x))B(x) = 1, simultaneously.
The Lemma is the same as considering the two infinite matrices
(Flx), xFx)AX (x), x2F(x)A%K(x), ) and  (Glx), xG(x)B¥(x), x2G(x)B% (x), - )

where
Fix) = fix)A™(x);  Glx) = gx)B™(x);  AX(xBX(x))(xB¥ (x))A™ (xBX (x))B™ (x )glx) = 1
or
[AxBX(x))B(x)]™ = 1 and fxBX(x)lglx) = 1, A(0) = B(O) = 1.

With application to the sequences S; of this paper, we can take
fx) = Dolx), Alx) = Sklx), glx) = 1—(k+ 1)K (x),  and  Blx)— 1/Si-qx).
The above lemma can also be iltustrated by taking

fix) = 1/(1—x), Alx) = (1+x)/(1=x), glx) = (3+x —J1+6x +x?)/2,
and
Blx) = [—(1+x)+/T+6x+x2]/2x.

This arises from the triangular matrix (from a paper by Alladi [61)

1

1 1 m
13 1

1 5 5 1 X

1 7 13 7 1 X =u+tvty

where the column generators are successively given by

1 x(1+x) x"(1+x)"
T—-x' (1-x)27 ° (7—X)N+1,

The lemmas of this section also apply to some other interesting sequences. Suppose we take the sequence
{1, 1, 2, 4, 8, 16, - } which is generated by

= 1=-x _ X _ = _nn
fx) = 7730 = 14725 = 1+ 37 27" .
n=0

Let H#Fix) = S(x), where S(0) = 1 and S(x/ satisfies f(xS(x)) = S{x). Then H?fix)=S(x) means that f(xS>(x}) = S(x),
S} =1.

i 75) = o

which is the generating function for { 1,1,3, 11,45, 197, 903, ---, } (See Riordan [2], p. 168), while

H{1=5£) = Hloto) = hto)

which is the generating function for the sequence {1. 1,4, 21,126, 818, 5594, } given by Carlitz [4]. There is
another sequence from the same article by Carlitz, but first we note 8 = {1, 1,3,11,45, -, by, } obeys
{n+1)b,—3(2n — 1)bp-q+(n—2)bp-2 = 0.
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We solve the quadratic

28 ~(x+1)S+1 =20

Six) = T+x+JT+2x +x* — 8x_
4x

S(X)_I'I'X ‘\/"‘ bx +x* _ anx

From this, we should be able to establish the recurrence. We also note that, where C{x) = (1 — /1 —4x }/2xisthe
generator for the Catalan sequence,

L c(”f{m} = Six)

which comes from Riordan [2], p. 168.
There is another application. Let f{x/ generate the odd numbers, Then the solution to f(x{S(x})) = S(x}, S{0)= 1, is

the sequence { 1, 3,14, 79,494, 3294, } given by Carlitz [4], which has generating functions

7T=x7 = 1+3x +5x* +7x3 + -

(1— xS(x))?

1+x8(x) = Sx) — 2xS*(x) +x283(x)
0 = x28%(x) — 2xS*(x) + (1 — x)S(x) - 1,
where S(x) generates { 1,3, 14, 79, 494, 3294, } As verification,
S = { 1,3, 14,79, 494, 3294, }, S = { 1,6,37,242, 1658, }
$§3 = { 1, 9,69, 516, } , —18° = { -1,0,0,0,0,0, }
S = { 1,3, 14, 79, 494, 3294, - }, -x§ = { 0,—-1,-3,-14,-79, —494, -
~2x5? = { 0,-2,-12, 74,484, -3316, - }, x°5* = {0,0,1,9,69, 516, - }
with all vertical sums equalling zero.

With the methods of this section, zﬂt is easily shown that, if P“ is the matrix formed by moving each column of #; ;
up to form a rectangular array, P; /P’ Icontams Pascal’s triangle written in rectangular form, which is such a prolific
result that it is the content of another paper [3]. Paul Bruckman has proved the matrix theorems used in this section
in [5]. See [7] also.
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ABSTRACT

A generalization of the Fibonacci numbers arises in the theory of dynamic storage allocation schema. The associated
linear recurrence relation invaolves the polynomial zk _ Zk-1_ 1, k > 1. A theorem is proven showing thatall the
zeroes of this polynomial lie in the intersection of two annuli.

Complete information about the sequence then follows, e.g., expressing the elements in terms of certain sums of bi-
nomial coefficients and sums of powers of roots, limits of quotients of terms, and limits of roots. Tables useful for
storage design are included.

A certain linear recurrence relation arises in the theory of memory allocation schema which generalizes the linear re-
currence defining the Fibonacci numbers. The generalized numbers may be expressed as the coefficients of a rational
generating function where the denominator of the rational function involves the trinomial Zk — 7K1 _ 1, From this
fact follows two expressions for the numbers themselves, one in terms of linear combinations of the powers of the roots
of the rinomial, and another expression giving the numbers as sums of binomial coefficients wh<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>